
Institut National Polytechnique de Toulouse (INP Toulouse)

Systèmes (EDSYS)

Motion planning and perception : integration on humanoid robots
Planification de mouvement, modélisation et perception : intégration sur un

robot humanoïde

jeudi 24 septembre 2009

Alireza NAKHAEI

Systèmes automatiques

Prof. Seth HUTCHINSON Rapporteur

Dr. François PIERROT Rapporteur

Dr. Florent LAMIRAUX Directeur de Thèse

Dr. Jean-Paul LAUMOND Président du jury

Prof. Seth HUTCHINSON

Dr. François PIERROT

Dr. Florent LAMIRAUX

Laboratoire d’Analyse et d’Architecture des Systèmes

Abstract

This thesis starts by proposing a new framework for motion planning using
stochastic maps, such as occupancy-grid maps. In autonomous robotics appli-
cations, the robot’s map of the environment is typically constructed online, us-
ing techniques from SLAM. These methods can construct a dense map of the
environment, or a sparse map that contains a set of identifiable landmarks. In
this situation, path planning would be performed using the dense map, and the
path would be executed in a sensor-based fashion, using feedback control to
track the reference path based on sensor information regarding landmark posi-
tion. Maximum-likelihood estimation techniques are used to model the sensing
process as well as to estimate the most likely nominal path that will be followed
by the robot during execution of the plan. The proposed approach is potentially
a practical way to plan under the specific sorts of uncertainty confronted by a
humanoid robot.

The next chapter, presents methods for constructing free paths in dynamic
environments. The chapter begins with a comprehensive review of past meth-
ods, ranging from modifying sampling-based methods for the dynamic obstacle
problem, to methods that were specifically designed for this problem. The thesis
proposes to adapt a method reported originally by Leven et al.. so that it can be
used to plan paths for humanoid robots in dynamic environments. The basic idea
of this method is to construct a mapping from voxels in a discretized representa-
tion of the workspace to vertices and arcs in a configuration space network built
using sampling-based planning methods. When an obstacle intersects a voxel
in the workspace, the corresponding nodes and arcs in the configuration space
roadmap are marked as invalid. The part of the network that remains comprises
the set of valid candidate paths. The specific approach described here extends
previous work by imposing a two-level hierarchical structure on the representa-
tion of the workspace.

The methods described in Chapters 2 and 3 essentially deal with low-dimensional

iii

problems (e.g., moving a bounding box). The reduction in dimensionality is es-
sential, since the path planning problem confronted in these chapters is compli-
cated by uncertainty and dynamic obstacles, respectively. Chapter 4 addresses
the problem of planning the full motion of a humanoid robot (whole-body task
planning). The approach presented here is essentially a four-step approach. First,
multiple viable goal configurations are generated using a local task solver, and
these are used in a classical path planning approach with one initial condition
and multiple goals. This classical problem is solved using an RRT-based method.
Once a path is found, optimization methods are applied to the goal posture. Fi-
nally, classic path optimization algorithms are applied to the solution path and
posture optimization.

The fifth chapter describes algorithms for building a representation of the en-
vironment using stereo vision as the sensing modality. Such algorithms are nec-
essary components of the autonomous system proposed in the first chapter of the
thesis. A simple occupancy-grid based method is proposed, in which each voxel
in the grid is assigned a number indicating the probability that it is occupied.
The representation is updated during execution based on values received from
the sensing system. The sensor model used is a simple Gaussian observation
model in which measured distance is assumed to be true distance plus additive
Gaussian noise. Sequential Bayes updating is then used to incrementally update
occupancy values as new measurements are received.

Finally, chapter 6 provides some details about the overall system architec-
ture, and in particular, about those components of the architecture that have been
taken from existing software (and therefore, do not themselves represent contri-
butions of the thesis). Several software systems are described, including GIK,
WorldModelGrid3D, HppDynamicObstacle, and GenoM.

Résumé

Le chapitre 1 est pour l’essentiel une brève introduction générale qui donne le
contexte générale de la planification et présente l’organisation du document dans
son ensemble et quelques uns des points clés retenus : robot humanoïde, envi-
ronnement non statique, perception par vision artificielle, et représentation de cet
environnement par grilles d’occupation.

Dans le chapitre 2, après une revue de littérature bien menée, l’auteur pro-
pose de considérer les points de repère de l’environnement dès la phase de plan-
ification de chemin afin de rendre plus robuste l’exécution des déplacements
en cas d’évolution de l’environnement entre le moment où la planification est
menée et celui où le robot se déplace (évolution étant entendu comme liée à
une amélioration de la connaissance par mise à jour, ou due à un changement de
l’environnement lui-même). Le concept est décrit et une formalisation proposée.

Le chapitre 3 s’intéresse en détail à la planification dans le cas d’environnements
dynamiques. Les méthodes existantes, nombreuses, sont tout d’abord analysées
et bien présentées. Le choix est fait ici de décrire l’environnement comme étant
décomposé en cellules, regroupant elles-mêmes des voxels, éléments atomiques
de la représentation. L’environnement étant changeant, l’auteur propose de réé-
valuer le plan préétabli à partir d’une bonne détection de la zone qui a pu se
trouver modifiée dans l’environnement. L’approche est validée expérimentale-
ment en utilisant une des plateformes robotiques du LAAS qui dispose de bonnes
capacités de localisation : le manipulateur mobile Jido étant à ce jour plus perfor-
mant sur ce plan que l’humanoïde HRP2, c’est lui qui a été utilisé. Ces expéri-
mentations donnent des indications concordantes sur l’efficacité de l’approche
retenue. Notons également que la planification s’appuie sur une boite englobante
de l’humanoïde, et non pas sur une représentation plus riche (multi-degré-de-
liberté). En revanche, c’est bien de planification pour l’humanoïde considéré
dans toute sa complexité qu’il s’agit au chapitre 4 : on s’intéresse ici à tous
les degrés de liberté du robot. L’auteur propose des évolutions de méthodes exis-

v

tantes et en particulier sur la manière de tirer profit de la redondance cinématique.
L’approche est bien décrite et permet d’inclure une phase d’optimisation de la
posture globale du robot. Des exemples illustrent le propos et sont l’occasion de
comparaison avec d’autres méthodes.

Le chapitre 5 s’intéresse à la manière de modéliser l’environnement, sachant
qu’on s’intéresse ici au cas d’une perception par vision artificielle, et précisément
au cas de l’humanoïde, robot d’assurer lui-même cette perception au fur et à
mesure de son avancée dans l’environnement. On est donc dans le cadre de la
recherche de la meilleure vue suivante qui doit permettre d’enrichir au mieux
la connaissance qu’a le robot de son environnement. L’approche retenue fait à
nouveau appel à la boite englobante de l’humanoïde et non à sa représentation
complète ; il sera intéressant de voir dans le futur ce que pourrait apporter la
prise en compte des degrés de liberté de la tête ou du torse à la résolution de ce
problème.

Le chapitre 6 décrit la phase d’intégration de tous ces travaux sur la plate-
forme HRP2 du LAAS-CNRS, partie importante de tout travail de roboticien.

Acknowledgements

Early in the process of completing this project, it became quite clear to me that a
researcher cannot complete a Ph.D. thesis alone. Although the list of individuals
I wish to thank extends beyond the limits of this format, I would like to thank the
following persons for their dedication, prayers, and support:

First of all, I would like to thank Florent Lamiraux, the best advisor I could
have wished for, and without whose efforts for giving clear and simple expla-
nations, his knowledge, criticism and humor it would have been a much more
difficult, if not impossible, task. His advises even from long distance helped me
a lot during these three years.

I would like to thank Jean-Paul Laumond who supported me during my re-
search provided the facilities for conducting this thesis. I will always be thankful
for his wisdom, knowledge, and deep concern.

I wish to thank Eiichi Yoshida for his help, advise and enthusiasm. My thanks
to Anthony Mallet who helped me a lot for integrating my work on HRP2 and
always taking the time to answer my questions.

I wish to express my sincere gratitude to Olivier Stasse, for his valuable sug-
gestions for the improvement of this work.

Thanks to the people with whom I had the chance to collaborate during these
years, Mathieu Poirier, Oussama Kanoun, Tran Minh Tuan, Jesse Himmelstein,
David Flavigne, Manish Sreenivasa, Brice Burger, for always taking the time to
answer my questions and give good ideas. And also thanks to the other Gepet-
tistes, Tan Viet Anh Truong, Francisco Montecillo ...

A very special thanks to Sébastien Dalibard for a close collaboration on a
research project which continues after the thesis.

I would like to thank the various people who have provided their valuable
assistance, a helpful or encouraging word during these years.

Thanks to my office colleagues and friends for putting up with me all this
time. I am indebted to my many colleagues for providing a stimulating and fun

vii

environment, as well as for all their help and friendship and all those who I might
be forgetting.

My deepest thanks to Sepanta Sekhavat, for encouraging me to continue my
education in Gepetto group in LAAS.

It is difficult to overstate my gratitude to my family, specially to my parents,
my sister Atefeh and my brother Amidreza, if I am here it is certainly because of
them. Thanks.

Contents

. iv

. vi

Contents i

1 General Introduction 1
1.1 Robotics . 1
1.2 Humanoid robots . 2
1.3 Motivation . 3
1.4 Contribution . 4
1.5 Document organization . 5
1.6 Publications associated to this work 6

2 Motion planning in stochastic maps 7
2.1 Introduction . 7
2.2 Motion planning concepts . 11
2.3 Motion planning in stochastic maps 13
2.4 Definitions . 14
2.5 Description of the method . 17

2.5.1 Input data . 17
2.5.2 Localization . 17
2.5.3 Feedback control law 18
2.5.4 Path planing . 18
2.5.5 Distance to obstacles 19
2.5.6 Calculating the probability of collision 20

2.6 Example . 22
2.7 Conclusion . 23

3 Motion planning in changing environments 25

i

ii CONTENTS

3.1 Introduction . 25
3.2 General idea of the planner . 37
3.3 Work space cell-decomposition 39
3.4 Updating cells . 41
3.5 Constructing roadmap . 41
3.6 Updating roadmap . 42
3.7 Examples . 42

3.7.1 Experiment 1 . 44
3.7.2 Experiment 2 . 46
3.7.3 Experiment 3 . 46

3.8 Conclusion . 47

4 Whole-body task planning 51
4.1 Introduction . 51

4.1.1 Whole-Body task motion planning 51
4.1.2 Randomized motion planning 52
4.1.3 Contribution . 52

4.2 Preliminaries . 53
4.2.1 RRT-Connect . 53
4.2.2 Local path planning under task constraints 54

4.3 Randomized task planning for a humanoid robot 55
4.3.1 Task constrained extension 55
4.3.2 Goal configuration generation 57
4.3.3 Posture optimization 58
4.3.4 General architecture . 59

4.4 Work space analysis . 59
4.5 Examples and comparison with previous methods 61

4.5.1 Dual support ”Table” scenario 64
4.5.2 Single support “Torus” scenario 64
4.5.3 When to deal with obstacle avoidance 65

4.6 Conclusion . 66

5 Environment modeling 67
5.1 Introduction . 67
5.2 Environment modeling . 69

5.2.1 Occupancy grid map. 69
5.2.2 Sensor model . 70
5.2.3 Updating 3D model . 70

5.3 Next best view . 72

iii

5.3.1 Constraints on the next best view 73
5.3.2 Evaluating the next best view 73
5.3.3 Computing the next best view 73

5.4 Conclusion . 75

6 Integration 77
6.1 Introduction . 77
6.2 Integration . 78

6.2.1 Whole body motion . 80
6.2.2 vision . 80
6.2.3 Navigation . 81
6.2.4 Data flows . 82

6.3 Experimental results . 82
6.4 Conclusion . 83

7 Conclusion 85

Bibliography 87

List of Figures 95

List of Tables 100

Chapter 1

General Introduction

1.1 Robotics

Robotics is a branch of engineering that involves the conception, design, manu-
facture and operation of robots. This field overlaps with mechanics, electronics,
computer science, artificial intelligence, mechatronics, nanotechnology and bio-
engineering.

The notion of robots can be traced back to medieval times. Although people
of that era did not have a term to describe what we would eventually call a robot
they were nevertheless imagining mechanisms that could perform human-like
tasks. While the concept of a robot has been around for a very long time, it
was not until the 1940s that the modern day robot was born, with the arrival of
computers.

The robot really became a popular concept during the late 1950s and early
1960s. With the automotive industry in full expansion at that time, industrial
robots were employed to help factory operators. Industrial robots do not have
the imaginative, human-like appearance that we have been dreaming of through-
out the ages. They are computer-controlled manipulators, like arms and hands,
which can weld or spray paint cars as they roll down an assembly line.

Today, commercial and industrial robots are in widespread use performing
jobs more cheaply or with greater accuracy and reliability than humans. They
are employed for jobs which are too dirty, dangerous, or dull to be suitable for
humans.

The structure of a robot is mostly mechanical and can be called a kinematic
chain (its functionality being similar to the skeleton of the human body). The
chain is formed of links (its bones), actuators (its muscles), and joints which can

1

2 CHAPTER 1. GENERAL INTRODUCTION

allow one or more degrees of freedom.
The mechanical structure of a robot must be controlled to perform tasks. The

control of a robot involves three distinct phases: perception, processing, and
action.

1.2 Humanoid robots

A humanoid robot is a robot with its overall appearance based on that of the
human body, allowing interaction with made-for-human tools or environments.
In general humanoid robots have a torso with a head, two arms and two legs,
although some forms of humanoid robots may model only part of the body, for
example, from the waist up.

The creation of humanoid robots has been motivated by the idea of having
a device capable of operating in environments made by and for humans with
minimal change to those environments.

These machines are expected to perform autonomously most of the functions
a person is capable of. These include climbing stairs, reaching for objects, etc.

Like other mechanical robots, humanoids refer to the following basic compo-
nents too: Sensing, Actuating, Planning and Control. Since they try to simulate
the human structure and behaviors and they are autonomous systems, most of the
times they are more complex than other kinds of robots.

Humanoid robots are used as a research tool in several scientific areas. Re-
searchers need to understand the human body structure and behaviors and the
way that it interact with its environment.

Besides the research, humanoid robots are being developed to perform hu-
man tasks like personal assistance, where they should be able to assist the sick
and elderly, and dirty or dangerous jobs.

Based on these requirements, various humanoid platforms have been intro-
duced to research labs during the last years.

Kawada industries have developed a series of humanoid robots in the Hu-
manoid Robotics Project. This project is mainly supported by the National Insti-
tute of Advanced Industrial Science and Technology (AIST) in Japan. HRP2 is a
successful platform which is developed in this project. HRP2 family is made of
15 clones which are mostly used in the research lab. HRP3 family is introduced
to the research lab later. Apart from some structural different with its ances-
tor, its main mechanical and structural components are designed to prevent the
penetration of dust or spray.

The last HRP platform is HRP4 which was designed to look like an average

1.3. MOTIVATION 3

Japanese woman. It was presented to public in 2009. Figure 1.1 illustrates the
three platforms of the Humanoid Robotics Project.

Figure 1.1: HRP platforms. Right to left: HRP2, HRP3 and the last humanoid
HRP4.

1.3 Motivation

During the recent years, autonomy in robots has been in the centre of attention.
An autonomous robot must be able to interact with workspace both in modelling
environments and planning collision free path.

Therefore, to have an autonomous robot in environment, the robot should
be able to capture information from its environment by sensors, analyze sensor
data, generate a model of the workspace and then plan a collision free path in
this model. As it was explained in the previous section, the main phases are as
follows:

1. Perception is capturing the required information and data from environ-
ments. This information varies from the position of other objects to their
colors. Various types of sensors provide the required information for mod-
eling environments. Cameras, sonic and ultrasonic sensors, laser sensors
capture information from the environment.

4 CHAPTER 1. GENERAL INTRODUCTION

2. Environment modeling is the process of developing a mathematical rep-
resentation of environments. Based on the captured information from envi-
ronments, a model should be generated to be used later in other algorithms
such as motion planning.

3. Motion planning is to produce a continuous path that connects a start con-
figuration qS and a goal configuration qG, while avoiding collision with
known obstacles. The robot and obstacle geometry is described in a 2D or
3D workspace, while the path is represented in configuration space.

Figure 1.2: Autonomous robot in an environment: a- Perception, b- Modeling,
c- Motion Planning, d- Execution.

Our motivation is having an autonomous humanoid robot. Therefore, we
are going to link the required methods for perception, environment modeling
and motion planning. Based on our access to the HRP2 platform in LAAS-
CNRS, we integrate these methods on the robot. It enables the robot to interact
autonomously with its environment.

1.4 Contribution

The context of this work is vision-based motion planning for humanoid robots
in unknown environments. We present an efficient combination of on-line 3D
environment modeling and motion planning methods for humanoid robots for

1.5. DOCUMENT ORGANIZATION 5

Figure 1.3: The humanoid robot HRP2

navigation in non-static environment. Our work also enables humanoid robots to
plan whole-body collision free path in a 3D model.

For modeling environments, we rely on 3D occupancy grid method. The
robot is supposed to capture the required information by two on board cameras.
At the same time, by analyzing the captured images, HRP2 uses stereo vision
data to update the occupancy grid model of the environment.

As the robot navigates in the environment, it receives updated information
through its cameras and refreshes the 3D model. Conventionally, the model can
be composed of up to thousands of voxels. Based on any new information from
environment, the model changes.

As the model is not static, we deal with motion planning problem in chang-
ing environments to accelerate path planning for navigation. Our approach is a
descendant of an existing method which deals with changing environments.

In order to plan whole body paths, we propose to use local Jacobian based
method within randomized motion planning. This approach enables the robot to
plan stable paths to fulfill the required tasks.

1.5 Document organization

This document is divided in 6 chapters in the following way:
In chapter 2, a new framework for planning motion in probabilistic environ-

ments is proposed. The method is developed and at the end, a simple example
illustrates the functionality of the method in an uncertain map.

Chapter 3 presents our work on motion planning in changing environments.
The algorithms are explained and finally, the experimental results are used to

6 CHAPTER 1. GENERAL INTRODUCTION

evaluate the method.
Chapter 4 describes the idea of whole body task planning in 3D workspace.

The algorithms are used for HRP2 model to plan a path for user defined tasks.
Moreover, in some examples, the method is compared with existing approaches.

Chapter 5 is a brief review of a 3D occupancy grid approach which is im-
plemented on the robot to generate the 3D model of its environment. Moreover,
we present our algorithms for finding the next best view for exploring unknown
environments.

The corresponding experimental tests on the robot are described in chapter 6.
We conducted experiments to evaluate our approach in a real environment with
HRP2. The robot is supposed to navigate in a 3D occupancy grid model gener-
ated by vision. A brief description of all the modules used in the experiments
can be found in this chapter. Finally, chapter 7 presents the conclusion of our
work.

1.6 Publications associated to this work

1. S. Dalibard, A. Nakhaei, F. Lamiraux, J.P. Laumond. Whole-Body Task
Planning for a Humanoid Robot: a Way to Integrate Collision Avoid-
ance. In 9th IEEE International Conference on Humanoids Robots (HU-
MANOIDS 2009), Paris , France, 2009, (Submitted).

2. A. Nakhaei, F. Lamiraux. Motion planning for humanoid robots in envi-
ronments modeled by vision. In 8th IEEE International Conference on
Humanoids Robots (HUMANOIDS 2008), Daejon, Korea , 2008.

3. A. Nakhaei, F. Lamiraux. A framework for planning motions in stochastic
maps, 10th International Conference on Control, Automation, Robotics
and Vision (ICARCV 2008), Hanoi, Vietnam, 2008.

4. J. Himmelstein, G. Ginioux , E. Ferre , A. Nakhaei , F. Lamiraux , J.P. Lau-
mond. Efficient architecture for collision detection between heterogeneous
data structures. Application for vision-guided robots. 10th International
Conference on Control, Automation, Robotics and Vision (ICARCV 2008),
Hanoi, Vietnam, 2008.

Chapter 2

Motion planning in stochastic
maps

2.1 Introduction

During the last decades, many researchers became interested in solving the prob-
lem of moving an object between two position in the environment by avoid-
ing collision with obstacles in the workspace. A famous example is the Piano
Mover’s which is stated by Schwartz and Sharir [58]. This pioneer work has led
to the development of the Motion Planning research field described extensively
in [11, 36, 37, 39]. The problem can be stated as follows: Given an environment
with obstacles and a piano, is it possible to move the piano from one position and
orientation, to another without colliding with the obstacles. Figure 2.2 shows an
instance of the Piano Mover’s Problem.

The concept of configuration space was introduced in 80’s by Lozano-Perez
[46]. Configuration space C is the set of all the possible configurations that a
mechanism can attain. This definition has been a key concept in motion planning
for it allows to translate the problem of moving a body in a spaceW ⊂ R2 or R3

into the problem of moving a point in another space.
In this context, a motion planning problem is re-stated as the problem of com-

puting Cobstacle and finding a continuous curve or Path : [0 1]→ C that connects
an initial configuration Path(0) = qinit to a final configuration Path(1) = qend.
The obstacle region Cobstacle in the configuration space corresponds to the con-
figurations which are forbidden.

Based on this translation, several planners which construct an explicit and ex-
act representation of Cobstacle were proposed such as [25, 9]. Although these ap-

7

8 CHAPTER 2. MOTION PLANNING IN STOCHASTIC MAPS

Figure 2.1: Motion planning concept: Finding a collision free path between an
initial and final configurations.

proaches have desirable properties such as completeness, in some cases, the com-
binatorial complexity makes even simple problems computationally intractable.

In order to provide a practical resolution for the planning problem, sampling-
based methods have been developed over the last fifteen years. These methods
have proven their efficiency for solving difficult problems in high-dimensional
spaces.

The main idea of these methods is to use the topology of Cfree in a roadmap
Rwithout computing explicitly Cobstacle. This roadmap is used to find a collision-
free path that connects qinit to qend. A roadmap can be obtained mainly by using
two types of algorithms: sampling and diffusion. These methods are said to be
probabilistic complete, which means that the probability of finding a solution, if
one exists, converges to 1 as the computing time tends to infinity.

These two kinds of sampling methods have been investigated with success:

1. The sampling approach, first introduced in [32] as probabilistic roadmaps
(PRM), consists in computing a graph, or a roadmap, whose nodes are col-
lision free configurations, sampled at random in the free space and whose
edges reflect the existence of a collision free elementary path between two
configurations. It aims at capturing the topology of the free space in a
learning phase in order to handle multiple queries in a solving phase.

2. The diffusion approach, introduced in both [23] and [35], which includes

2.1. INTRODUCTION 9

Figure 2.2: From [17]: a) A Piano Mover’s Problem. Two robots and a virtual
character cooperate to transport a piano in a workspaceW ⊂ R3. b) The config-
uration space is divided in Cfree (light areas) and Cobstacle (dark areas). A path can
be found between q1 and q2 because they lie in the same connected component
of Cfree, which is not the case for q3.

RRT planners, consists in solving single queries by growing a tree rooted
at the start configuration towards the goal configuration to be reached.

The Probabilistic Roadmap (PRM) family of planners first shoot random con-
figurations and add the collision free configurations to a roadmap.The initial and
goal configurations are also added to the roadmap. Then, a local search algorithm
attempts to connect nearby pairs of configurations (nodes), and if a free path is
found, an edge is added between the two nodes representing the local planners
path between the two configurations. This forms a graph of Cfree which can be
searched using A*. Classical PRM can answer many queries by attempting to
connect the initial and goal positions to an existing graph, making it a multi-shot
planning algorithm. Figure 2.3 illustrates how these types of planner explore the
free zone of the configuration space to connect the initial configuration to the
goal configuration.

The second approach of the family of randomized planners is based on the
Rapidly Exploring Random Tree (RRT). Configurations are sampled randomly
from configuration space, and the nearest node in the current roadmap is ex-
tended a fixed distance toward the sampled point. The new edge and node are
added only if the local path is collision free. The sampling and extension steps
are repeated to grow a search tree from the initial position until it reaches a goal
state. Figure 2.4 illustrates how RRT approaches deal with a motion planning
problem.

10 CHAPTER 2. MOTION PLANNING IN STOCHASTIC MAPS

Figure 2.3: From [17]: In the PRM algorithm a roadmap R is build around the
obstacles by drawing random collision-free configurations (nodes) and connect-
ing them to their nearest neighbors using feasible robot motions (edges). The
query is solved by connecting qinit and qend to the graph and then finding the
shortest path on it (thick lines)

These methods have been proven to be efficient and suitable for a large class
of motion planning problems.

In the following years, various approaches have been proposed based on the
sampling method. For example, in 2000, Simeon et al. [60] proposed Visibil-
ity PRM. Figure 2.5 illustrates how visibility PRM deals with motion planning
problems.

The main idea of this approach is, as in the basic PRM approach, to capture
the topology of Cfree into a roadmap. The main difference is that not every
collision-free drawn node is integrated into roadmap, but only the nodes with
certain visibility or connection characteristics are added to the roadmap. The
generated roadmap using the Visibility PRM algorithm is more compact that the
one obtained using PRM alone.

Most of the recent planners are good enough to solve motion planning prob-
lems. However, they need a complete and accurate model of environments.
Therefore, how can we deal with the uncertainties in the model of environments
to reduce the probabilities of collision?

Considering uncertainties in the model, we reformulate the path planning
problem in a stochastic map and then propose a way to modify classical path

2.2. MOTION PLANNING CONCEPTS 11

Figure 2.4: From [17]: With the RRT algorithm, two trees rooted on qinit and
qgoal can be grown simultaneously. Each tree is extended until leaf configura-
tions q1 and q2 from each tree can be connected by a randomly drawn configu-
ration qrand.

planning methods in order to fit into this new framework. In our framework,
sensors and landmarks should be taken into account. The core computations lie
in the evaluation of the probability of robot collision with its environment.

2.2 Motion planning concepts

In this section, we will present and define several important motion planning
concepts:

Workspace W is the robot environment. All the movements of robots and
the obstacles are realized in workspace. Generally, robots and obstacle geometry
is described in a 2D or 3D workspace.

Configuration Space C is the set of all possible configurations. A configu-
ration q describes the robot pose. For example:

1. If the robot is a single point (zero-sized) moving in a 2-dimensional plane
(the workspace), C is a plane, and a configuration can be represented using
two parameters (x, y).

12 CHAPTER 2. MOTION PLANNING IN STOCHASTIC MAPS

Figure 2.5: From [17]: The Visibility-PRM algorithm produces a compact
roadmap around obstacles with only a few nodes: guards qg (dark circles) and
connectors qc (in white). A new randomly drawn configuration qrand is added as
a guard if it covers a previously unseen visibility domain with a given L or as a
connector if it serves as liaison between at least two connected components.

2. If the robot is a 2D shape that can translate and rotate, the workspace is
still 2-dimensional. However, the elements of C can be represented using
3 parameters (x, y, θ).

3. If the robot is a solid 3D shape that can translate and rotate, the workspace
is 3-dimensional, but a configuration requires 6 parameters: (x, y, z) for
translation, and Euler angles (α, β, γ).

4. If the robot is a manipulator with n joints, the workspace is 3-dimensional
and configuration space C is n-dimensional.

Free Space Cfree is a set of configurations that avoids collision with ob-
stacles and self collision. The complement of Cfree in C is called the forbidden
region Cobstacle.

Often, it is prohibitively difficult to explicitly compute the shape of Cfree.
However, testing whether a given configuration is in Cfree is efficient. First,
forward kinematics determines the position of the robot’s geometry, and collision
detection tests if the robot’s geometry collides with the environment’s geometry.

2.3. MOTION PLANNING IN STOCHASTIC MAPS 13

Collision detection involves algorithms for collision checking in physical
simulations, video games and motion planner etc. These algorithms detect colli-
sions of two or more geometrical objects.

Path is a function as Path : [0 1] → C that connects two configurations.
Each movement of a robot inW corresponds a movement in C.

Admissible Path is a path whose alongside configurations are collision free.

2.3 Motion planning in stochastic maps

To perform a task autonomously, a robot should be able to build a map of its en-
vironment and to plan motions in this map. In this respect, motion planning and
SLAM (simultaneous localization and map building) have been active research
fields for the past decades. However, these fields have evolved separately. Many
robots are able to navigate in indoor 2D maps built by sensors [27, 64, 1].

However, for robots with high dimensional configuration spaces like robotic
arms or humanoid robots, performing autonomous motion is still a very difficult
problem. Several reasons explain this state of fact.

1. 3D SLAM techniques usually build sparse maps of landmarks containing
no obstacles [14, 18, 41, 42] and planning motions for high-dimensional
robots requires a 3D-map of obstacles.

2. Motion planning algorithms for high-dimensional systems are based on
the assumption that the map of the world is exact and static. These struc-
tures are mainly hierarchies of bounding boxes around obstacles [44] and
roadmaps of local paths in the free configuration space [32, 35].

Therefore, these algorithms do not allow robust operations for high-dimensional
robots interacting with real world with many uncertainties. In fact, we need to
deal with uncertainties in models of the environment evolving along time.

Our objective is to propose preliminary ideas that enables path planning tech-
niques for high dimensional systems to deal with models built by sensors. In
fact, the concept of autonomy means generating the model of the environment
with sensors and implements the techniques of motion planning in the gener-
ated model. As such models are not accurate, we are going to propose a new
framework for motion planning to deal with these uncertainties.

The contribution of this chapter is to propose a new framework to plan mo-
tions in uncertain environments represented by stochastic maps as built by SLAM
techniques. We do not address yet the non static aspect of the environment.

14 CHAPTER 2. MOTION PLANNING IN STOCHASTIC MAPS

We assume that we have a stochastic Gaussian map composed of landmarks
the position of which is represented by a mean vector and a covariance matrix.
To make the reasoning simpler, we assume that the landmarks are also obstacles.
However, this assumption could be easily relaxed.

Our work shares ideas with previous work in this area [48] but follows a
different approach. In [48], Missiuro and Roy address sensor uncertainty in the
context of complete motion planning. The approach adaptively samples con-
figuration space using a distribution based upon the certainty of the sampled
configurations. Paths are found in the resulting roadmap using A* search and an
uncertainty heuristic. The main difference comes from the localization notion
that is taken into account in the path planning step. The idea is to minimize the
probability of the collision as the robot follows the planned path. Our approach
significantly increases the complexity of the problem but we strongly believe that
landmarks should be taken into account right at the path planning step.

We would like to emphasize that the contribution of the chapter is mainly
conceptual. This work is very preliminary and we do not have impressive ex-
perimental results yet. However, we truly believe this preliminary work is worth
reporting in a chapter.

2.4 Definitions

Suppose that a model of an environment and desired initial and goal configura-
tions are given to a planner. The result of this motion planning problem is a path
and the robot is supposed to execute this reference path in a real environment.
During navigation in the environment, the robot usually:

1. Performs localization on landmarks of the map.

2. Tries to make the result of localization converge toward the configuration
along the reference path.

To make the reasoning simpler, let us assume that the closed loop control law
of the robot is powerful enough to maintain equality between the result of the
localization and the reference configuration:

qloc(q,M) = qref (2.1)

where qloc is the result of localization that depends on the actual position of the
robot q and the actual position of the landmarks M (the map). This equation
therefore defines a relation between q, qref and M that we can inverse to get an
equality of the form:

2.4. DEFINITIONS 15

q = g(qref ,M) (2.2)

This equation can be understood as: The executed path is the result of both
the reference path expressed in a landmark-based frame and the actual position of
the landmarks. This statement is very intuitive. As a simple example, a planner
plans a path for a robot and at the result, the robot is supposed to follow a path
alongside a wall. If the robot performs localization on the wall, the actual path
depends on the actual position of the wall also.

If the map does not correspond exactly to the actual position of the land-
marks, the actual path will be different from the reference path. As the map is
represented by random variables, the path followed by the robot becomes a ran-
dom variable. In result, the admissibility of the path becomes a random event.
This idea is the basis of our work.

We now give precise definitions for the different notions we will use in our
reasoning.

Stochastic map: A stochastic map is the random vector M , defining the
position of several landmarks {l1, ..., lp} in environments. Each landmark is rep-
resented by a vector li of dimension mi, i ∈ {1, ..., p}.

M =

 l1
...
lp

 ∈ Rm (2.3)

where m =
∑p

i=1mi.
Sensor: A sensor maps the positions of landmarks (the relative position of

landmarks) to the image space of the sensor:

imi = imi(q, li) ∈ Rpi , i ∈ {1, ..., l} (2.4)

where imi is the image of li in the associated sensor. For instance, considering
a camera as the sensor, a 3D-point (R3) is projected to the image space as a
point of dimension 2. Also, a vertical plane is projected in the image plane of an
horizontal laser range scanner as a straight-line.

If k landmarks are perceived simultaneously, we can put the above equations
in a vector as follow:

IM = f(q,M), IM ∈ Rr,q ∈ C (2.5)

16 CHAPTER 2. MOTION PLANNING IN STOCHASTIC MAPS

where,

IM =

 im1

...
imk

 r =
k∑
i=1

pi. (2.6)

Localization: Localization consists in computing the maximum likelihood
configuration, given a perception and a stochastic map:

qloc = f1(IM,M) (2.7)

= f2(q,M) (2.8)

after substituting (2.5).
Closed-loop path tracking: To track a reference path, a mobile robot usually

implements a closed loop control feedback. The effect of this control process is
to make the localization qloc converge toward the reference path.

For simplification purposes, we assume that the closed-loop control law is
good enough to maintain equality between the reference configuration and the
localization:

qloc = qref (2.9)

Using (2.7), this equality defines a relation between the q, qref and the map:

q = f3(qref ,M) (2.10)

As a conclusion, given a reference path qref (s), s ∈ [0, 1] planned in a map of the
environment, the path q(s), s ∈ [0, 1] actually followed by the robot depends on
the stochastic map M . This path is therefore a random variable and its collision
is a random event.

In the classical formulation of path planning, a path is said to be admissible
(or collision-free) if any configuration along this path is collision-free.

In our framework,
definition: A reference path qref (s), s ∈ [0, 1] is said to be admissible if the

probability of collision of the path q(s), s ∈ [0, 1] actually followed by the robot
is less than a tolerance ε > 0.

The goal of our work is to propose a method for planning admissible paths
according to the above definition.

2.5. DESCRIPTION OF THE METHOD 17

2.5 Description of the method

In this section, we develop the computations necessary to our method and we
introduce some approximations or simplifications.

2.5.1 Input data

The data given as input to our planner are:

1. A Gaussian stochastic map built beforehand by SLAM techniques repre-
sented by a mean vector M̄ and a covariance matrix ΣM .

2. An initial configuration qinit.

3. A goal configuration qgoal.

2.5.2 Localization

Assuming that the actual configuration of the robot keeps close to the reference
configuration, we perform localization by linearizing the relation (2.5) between
the actual configuration and images seen in the sensors about the reference con-
figuration:

IM ref +
∂f

∂q
(q− qref) +

∂f

∂M
(M − M̄) = IM (2.11)

IM ref is the expected image, that is the image seen from reference configu-
ration when M = M̄ and IM is the image actually perceived.

To find the best estimator qloc of q , we use Gauss-Markov theorem as fol-
lows.

Gauss Markov theorem: Let X and Y be Gaussian random vectors such
that

Y = H.X + b (2.12)

where H is a matrix and b a centered random vector of covariance matrix
identity. The optimal estimator X̂ of X given an observation of Y is given by:

X̂ = (HTH)−1HTY (2.13)

We consider ∂f
∂M

(M − M̄) as a Gaussian noise in (2.11). The covariance
matrix Σb of this noise is:

18 CHAPTER 2. MOTION PLANNING IN STOCHASTIC MAPS

Σb =
∂f

∂M
ΣM

∂fT

∂M
(2.14)

Based on Gauss-Markov theorem, the best estimator of q is:

qloc = qref + (
∂fT

∂q
Σ−1
b

∂f

∂q
)−1∂f

T

∂q
Σ−1
b (IM − IM ref) (2.15)

2.5.3 Feedback control law

As explained earlier, the robot is subjected to a closed loop control law which
tends to make qloc converge toward qref . As an approximation, we assume that
these two configurations are constantly equal, condition equivalent to:

∂fT

∂q
Σ−1
b (IM − IM ref) = 0 (2.16)

On the other hand, according to (2.11), the image IM in the sensor depends
on the configuration of the robot and the map. Therefore, substituting this later
expression into (2.16), the result will be:

∂fT

∂q
Σ−1
b (

∂f

∂q
(q− qref) +

∂f

∂M
(M − M̄)) = 0 (2.17)

which can be inverted as:

q = qref − (
∂fT

∂q
Σ−1
b (

∂f

∂q
)−1∂f

T

∂q
Σ−1
b

∂f

∂M
(M − M̄) (2.18)

This latter equation can be understood in two ways:

1. Given a reference configuration qref and the actual position of the land-
mark M , we can predict the position to which the robot will converge
when trying to reach qref in the environment.

2. Given a reference configuration qref and the stochastic map, we can ex-
press the position of the robot that converges to a random variable depend-
ing on the map.

2.5.4 Path planing

In section 2.4, the definition of admissible paths in a stochastic map was pre-
sented. In this section, we are going to explain how we plan admissible paths
in a meaning close to this definition. To make computations simpler, we indeed
consider that a path qref (s), s ∈ [0, 1] is admissible if and only if

2.5. DESCRIPTION OF THE METHOD 19

Figure 2.6: A brief diagram illustrates the planning date flow.

∀s ∈ [0, 1], P (qref (s) is in collision) < ε

We then modify existing random motion planning methods such as RRT or
PRM. In the classical path planning frameworks, roadmap based path planning
methods pick random configurations, test collision and then build paths between
these configurations. We replace the collision detection algorithm by the algo-
rithm of calculating the collision probability for random configurations as de-
fined by (2.18).

To approximate the collision probability of a configuration with the uncertain
obstacles of the map, we approximate the vector of random distances of the robot
to the obstacles by a Gaussian vector and compute the probability that one of
these distances is less than 0.

A brief description of our method is illustrated in figure 2.6.

2.5.5 Distance to obstacles

As the robot configuration and the positions of the obstacles (or landmark) are
considered as Gaussian variables, the distance between the robot and each ob-
stacle is also approximated by a Gaussian random variable. We build a random
vector di(q, li) by gathering these distances as follows:

d(q,M) =

d(q, l1)

d(q, l2)
...

d(q, lp)

 (2.19)

To approximate this vector by a Gaussian vector, we linearize the distance
function as:

20 CHAPTER 2. MOTION PLANNING IN STOCHASTIC MAPS

d(q,M)− d(qref , M̄) =
∂d

∂M
(M − M̄) +

∂d

∂q
(q− qref) (2.20)

Replacing q by expression (2.18), we get a linear relation between d(q,M)−
d(qref , M̄) and (M − M̄) that we do not express in this work for clarity. All the
computations can however be done by considering:

1. The expression of the distance between the robot and landmarks in a given
configuration.

2. The expression of the images in sensors with respect to the configuration
of the robot.

Point 1 requires the kinematic model of the robot and point 2 requires in
addition the model of the sensors.

The last equation will result in a Gaussian approximation of vector d(q,M)

with mean value d(qref , M̄) and variance-covariance matrix Σd.
After approximating the distance vector, the probability of collision for an

instance configuration should be calculated.

2.5.6 Calculating the probability of collision

In an uncertain world, the actual positions of obstacles are unknown. It is not
straightforward to validate a configuration. We propose a collision probability
parameter for making decision on accepting or rejecting a configuration.

Therefore, based on the calculated mean value of distance d̄ to obstacles and
its variance-covariance matrix Σd, the probability of collision for a proposed
configuration will be calculated as follow:

P (collision) = 1− P (¯collision) = 1− P (d(q, l) > 0) (2.21)

where inequality between two vectors is equivalent to inequality between each
component. The probability of non-collision will be as follows:

P (¯collision) =

∫
R

1d>0 dp(d) (2.22)

P (¯collision) =
1

(2π)
n
2
√
det(Σd)

∫
(R+)n exp(−1

2
(x− d̄)TΣ−1

d (x− d̄))dx (2.23)

2.5. DESCRIPTION OF THE METHOD 21

loa 1: Monte-Carlo Algorithm

1: Input: Number of test(Nmax)
2: Initialization: Probability (p = 0)
3: For i=1 to Nmax

4: Generating a Gaussian vector v with mean value of P d̄ and matrix variance-
covariance of identity.

5: IF v is inside cone P [(R+)n]
6: p+ +
7: End
8: End
9: p← p

Nmax

10: Output: Probability (p)

Figure 2.7: The integral is computed over a ball included in the cone defining
non-collision.

As matrix Σ−1
d is a symmetric positive definite matrix, there is a P such

that Σ−1
d = P T .P . Let y = P.x, The change of variables theorem gives dy =

det(P).dx. Thus, the probability becomes:

P (¯collision) = 1

(2π)
n
2
√
det(Σd)det(P)∫

P [(R+)n]
exp(−1

2
(y − P.d̄)TΣ−1

d (y − P.d̄))dy
(2.24)

we propose 2 methods for calculating this integral: Monte−Carlo and direct
approximation.

Monte-Carlo method: The integral that we want to calculate is the prob-
ability of a Gaussian variable with a mean value of P d̄ and matrix variance-
covariance identity. We can use n independent Gaussian variables in the algo-
rithm 1 to approximate the probability.

22 CHAPTER 2. MOTION PLANNING IN STOCHASTIC MAPS

Direct approximation method: In this approach, we find a lower bound for
this integral which is much faster than the Monte-Carlo method. Actually, we
reduce the space of integration from a cone to a hyper-spheres which centered
on P d̄ having the greatest radius (Figure 2.7). The radius of this hyper-sphere
will be equal or minimum distances of P d̄ to various hyper-plane which limits
the cone. We call this radius and the hyperbole of this radius centered on P d̄
respectively R and Bn(R). So, if the point P d̄ is inside the cone, there will be a
negative distance to one of the obstacles. Therefore, the probability calculations
stop and the result will be:

P (collision) = 1 (2.25)

As the iso-surfaces of our integral are hyper-spheres, we can easily have a
hyper-sphere change of variable as below:∫

P [(R+)n]
exp(−1

2
(y − P.d̄)T (y − P.d̄))dy >∫

Bn(R)
exp(−1

2
yTy)dy >

const(n− 1)
∫ R

0
rn−1exp(−0.5r2)dr

(2.26)

as,
If n is even, then: cons(n− 1) = 2pip−1

(p−1)!
, n = 2p

If n is even, then: cons(n− 1) = 22p+1pipp!
(2p)!

, n = 2p+ 1

So, the only thing that should be calculated is
∫ R

0
rn−1exp(−1

2
r2)dr which

can be calculated by recursive method.
So, we can calculate a lower bound for the non collision probability or an

upper band for the collision probability as follow:

p(collision) <

1− 1

(2P)
n
2
const(n− 1)

∫ R
0
rn−1exp(−0.5r2)dr

(2.27)

2.6 Example

To evaluate the approach, we consider 42 obstacles in the environment which are
considered as landmarks also. Figure 2.8 shows the model of the environment
which the obstacles are located in their mean value of their positions.

Given the map (the mean vector of obstacle positions and its variance-covariance
matrix), robots size, and the start and goal configurations, the planner aims to
produce a valid path between start and goal.

The robot is supposed to find a path between the initial point I.P and final
point F.P in the map and tracks the planned path based on the captured images

2.7. CONCLUSION 23

Figure 2.8: The mean value of the obstacle configurations and the robot initial
(I.P) and final (F.P) configuration.

from the environment. The robot is a two wheeled mobile robot and is equipped
with a 2D laser scanner. As it was explained in the previous sections, the planner
uses the mean values of positions of obstacles (landmark). The planner builds
a roadmap based on the proposed probabilistic method and finds the appropri-
ate path between I.P and F.P . The probability threshold is set to 30% in this
example.

At the step of executing the generated path in the real environment, as the
robot navigates in the environment and captures image of its environment, it
gets the real positions of the landmarks which would be different from the mean
values.

Figure 2.9 shows the planned path in the model. Red dots represent the mean
values the position of obstacles (landmarks). The red line represents the path
planned based on this stochastic map. Blue dots are the actual positions of the
obstacles and the blue line represents the path that is followed by the robot by
performing localization on the landmarks.

2.7 Conclusion

In this chapter, we presented a new framework to take into account uncertainties
of a map in path planning. We believe that this framework is more complete than
previously published work on this topic.

The main originality of our framework resides in the prevision of the path
actually followed by the robot given actual position of landmarks (simulation
of localization and motion control process), and in the estimation of collision
probability in a stochastic framework.

24 CHAPTER 2. MOTION PLANNING IN STOCHASTIC MAPS

Figure 2.9: Red dots represent the mean values in the stochastic map. The red
line represents the planned path. Blue dots represent the actual positions of the
landmarks and the blue line represents the path which is followed by the robot
by performing localization on the landmarks.

Let us notice that the input of the path planning algorithm is the output of
the SLAM process. We then proposed an algorithm to plan a path in stochastic
maps. A simple example illustrates this preliminary work on the way to binding
path planning with SLAM.

Chapter 3

Motion planning in changing
environments

3.1 Introduction

Computation of a collision-free path for a movable object among obstacles is
an important problem in the field of robotics. The problem has been studied
and several approaches were proposed for solving the problem in static envi-
ronments. However, most of real life environments are non-static and for path
planning in such environments, the key issue is how to deal with the changes in
such models. Considering a cost for time and memory usage during planning,
it becomes a challenging issue to use efficiently the existing information in each
state of the environment for solving a motion planning problem in the newly
updated environments.

Dynamic changes in environment are very common in various applications
such as motion planning in industrial environments [47] and navigating in real
word [19] or virtual word [55]. Although the probabilistic method such as RRT
and PRM are efficient enough to deal with motion planning problems, they are
focussed on static environments.

To deal with changing environments, some approaches have been imple-
mented and address the problem:

M. Cherif and M. Vidal used a roadmap based planner for planning in chang-
ing industrial plants [10]. Their idea is to find a collision-free trajectory for
a set of mobile robots for handling a group of movable objects in a cluttered
industrial plant. Their planner copes with constraints due to changing of the
workspace. The planner decomposes the problem into building a single roadmap

25

26 CHAPTER 3. MOTION PLANNING IN CHANGING ENVIRONMENTS

and then planning coordinated collision-free paths for these systems. It includes
manipulation of the roadmap to guarantee the incorporation of the workspace
changing. The basic idea of their approach consists in pre-processing the config-
uration spaces of all the moving systems (i.e., robots, and robot-object systems)
and build a roadmap. They manipulate this roadmap for accounting the changes
of the workspace. Their planner uses this roadmap to find collision free paths for
the individual systems and to coordinate their motions safely.

Figure 3.1: From [10]: Left: the planned path. Right: the resulting updated
roadmap after changing the workspace

O. Brock and O. Khatib used a strip framework to solve the problem [7, 8]. In
the first contribution, they present the elastic strip framework, which addresses
the problem by integrating global motion planning methods with a reactive mo-
tion execution approach. To maintain a collision free trajectory, a given motion
plan is incrementally modified to react to changes in the environment. This mod-
ification can be performed without suspending task behaviors. The elastic strip
framework is computationally efficient and can be applied to robots with many
degrees of freedom. In this approach, a trajectory can be imagined as elastic
material filling the volume swept by the robot along the trajectory.

The elastic strip framework is very similar in spirit to the elastic band frame-
work [56]. In the elastic band framework a previously planned robot motion is
modeled as elastic material. A path between an initial and a final configuration
can be imagined as a rubber band spanning the gap between two points in space.
Obstacles exert a repulsive force on the trajectory, resulting in an incremental
modification. This can be imagined as a moving obstacle pushing and deform-

3.1. INTRODUCTION 27

Figure 3.2: From [7]: a) A protective hull around the Stanford Mobile Manipu-
lator. b)An elastic tunnel formed by several overlapping protective hulls.

ing the rubber band. When the obstacle is removed, the trajectory will return to
its initial configuration, just as the rubber band would. An elastic band is rep-
resented as a one-dimensional curve in configuration space. This leads to high
computational complexity for high-dimensional configuration spaces.

By avoiding configuration space computation, the framework becomes ap-
plicable to robots with many degrees of freedom. In the elastic band framework,
the trajectory and the task are both described in workspace. In the elastic strip
framework a trajectory can be imagined as elastic material filling the volume
swept by the robot along the trajectory. This strip of elastic material deforms
when obstacles approach and regains its shape as they retract.

In the second contribution, a planning operation generates a path. The path
is augmented by a set of paths homotopic to it. This set is represented implicitly
by a volume of free space in the work space. Effectively, this corresponds to
delaying part of the planning operation for the homotopic paths until motion ex-
ecution. During execution reactive control algorithms are used to select a valid
path from the set of homotopic paths, using proximity to the environment as
a simple and effective heuristic and thereby significantly pruning the search in
the configuration space. The underlying idea is to represent a set of homotopic
paths by the workspace volume a robot would sweep out along them. This can
be done without considering the kinematic properties of the robot, i.e. without
exploring the configuration space. The prerequisite is the existence of a valid
path, called candidate path. Assume a planner has generated such a candidate
path and it lies entirely in free space. The free space around the candidate path
must contain the volume swept by the robot along paths homotopic to the candi-

28 CHAPTER 3. MOTION PLANNING IN CHANGING ENVIRONMENTS

Figure 3.3: From [8]: On the left: Four manipulator arms move into the path
of the Stanford Mobile Manipulator; replanning using elastic strips is performed
in real-time to maintain a valid path. The path is indicated by lines connecting
points on conscutive configurations along the elastic strip. It is converted into a
smooth trajectory during execution. On the right: A Stanford Mobile Manipula-
tor moves into the path of another one. The path is updated in real-time to avoid
a collision.

date path itself. Those paths are represented implicitly by an approximation of
the free space around the candidate path, rather than computing them explicitly.
During execution this set of homotopic paths can be searched very efficiently for
an alternate valid path, should the candidate path be invalidated by changes in
the environment.

Using such a representation, planning and control can be integrated very
tightly: The path generated by a motion planner is transformed into a more gen-
eral representation by augmenting every path with an implicit representation of

3.1. INTRODUCTION 29

paths homotopic to it. Control algorithms can then be used during execution to
efficiently search that space to find a valid path, should the original one become
invalid due to changes in the environment.

O. Brock and L. Kavraki used decomposition based approach proposed in [6].
They decompose the original planning problem into simpler subproblems, whose
successive solution empirically results in a large reduction of the overall com-
plexity. To achieve real-time motion planning for robots with many degrees of
freedom, a motion planning paradigm based on problem decomposition was pro-
posed. The paradigm addresses planning problems in which a minimum clear-
ance to obstacles can be guaranteed along the solution path.

The overall planning problem is decomposed into two planning subtasks:
capturing relevant connectivity information about the free space in a low-dimensional
space and planning for the degrees of freedom of the robot in its high-dimensional
configuration space. The solution to the lower-dimensional problem is computed
in such a manner that it can be used as a guide to efficiently solve the original
planning problem. This allows decomposition-based planning to achieve real-
time performance for robots with many degrees of freedom.

David Hsu et al. explore the configuration× time space for moving obstacles
along known trajectories [22]. They presents a novel randomized motion planner
for robots that must achieve a specified goal under kinematics and/or dynamic
motion constraints while avoiding collision with moving obstacles with known
trajectories. Their planner encodes the motion constraints on the robot with a
control system and samples the robot’s state × time space by picking control
inputs at random and integrating its equations of motion.

Their algorithm constructs a roadmap of sampled milestones in the state ×
time space of a robot. It samples new milestones by first picking at random a
point in the space of admissible control functions and then mapping the point
into the state space by integrating the equations of motion. Thus the motion
constraints are naturally enforced during the construction of the roadmap. They
evaluated the performance of the algorithm through both theoretical analysis and
extensive experiments. The result is a probabilistic roadmap of sampled state
× time points, connected by short admissible trajectories. For each planning
query, their planner generates a new roadmap to connect an initial and a goal
state time point. The application of this approach is limited because of requiring
information about obstacle trajectories.

L. Jaillet and T. Siméon proposed a PRM-based motion planner for dynam-
ically changing environments [26]. The proposed planner is based on proba-
bilistic path planning techniques and it combines techniques originally designed
for solving multiple query and single query problems. The planner first starts

30 CHAPTER 3. MOTION PLANNING IN CHANGING ENVIRONMENTS

Figure 3.4: From [5]: Real-time planning in a dynamic environment.

3.1. INTRODUCTION 31

Figure 3.5: From [22]: Top) Computed example for the air-cushined robot.
bottom) configuration × time representation.

with a preprocessing stage that construct a roadmap of valid paths with respect
to the static obstacles. It then uses lazy-evaluation mechanisms combined with
a single query technique as local planner in order to rapidly update the roadmap
according to the dynamic changes. This allows to answer queries quickly when
the moving obstacles have little impact on the free space connectivity. When
the solution can not be found in the updated roadmap, the planner initiates a re-
inforcement stage that possibly results into the creation of cycles representing
alternative paths that were not already stored in the roadmap.

Because the environment is only partially modified between each of the queries,
they use a two-stage method. First, they compute a roadmap for the robot and
the static obstacles (Figure 3.7.1), without considering the presence of the mov-
ing obstacles. Then to solve the path query, portions of the roadmap are updated
by checking if existing edges are collision-free with respect to the current po-
sition of the moving obstacles. Colliding edges are labeled as blocked in the
roadmap. If this labeling permits to obtain a path which does not contain any
blocked edge, then a solution is found (Figure 3.7.2). When the solution path
contains blocked edges, a mechanism of local reconnection based on RRT tech-

32 CHAPTER 3. MOTION PLANNING IN CHANGING ENVIRONMENTS

Figure 3.6: From [26]: Example of a 3D scene with moving obstacles: start
and goal configurations of the 9dof mobile manipulator carrying a board and
three path solutions obtained for several settings of the environment (doors
closed/open and three other moving obstacles placed around the table)

niques is used. It tries to reconnect the two extremities of those blocked edges
(Figure 3.7.3). Finally, if the existing roadmap does not allow to find a solution,
new nodes are inserted and the roadmap is reinforced with cycle creation (Fig-
ure 3.7.4). In practice, this general approach is combined with several methods
avoiding unnecessary collision tests, which makes it more efficient.

J. Berg, D. Ferguson and J. Kuffner in [66] use probabilistic sampling to
create a robust roadmap encoding the planning space and then plan and re-plan
over this graph in an anytime, deterministic fashion. The resulting algorithm is
able to generate and repair solutions very efficiently, and improve the quality of
these solutions as deliberation time allows.

In the first, a roadmap is built representing the static portion of the planning
space. Next, an initial trajectory is planned over this roadmap in state-time space,
taking into account any known dynamic obstacles. This trajectory is planned in
an anytime fashion and is continually improved until the time for deliberation is
exhausted. Further, while the agent executes its traverse, its trajectory continues

3.1. INTRODUCTION 33

Figure 3.7: From [26]: A static roadmap is first computed in the configuration
space of the robot (1). During queries, a solution path can be found directly
inside this roadmap (2) or via a RRT like technique to reconnect edges broken by
dynamic obstacles (3). If the existing roadmap does not permit to find a solution,
new nodes are inserted and the roadmap is reinforced with cycle creation (4).

to be improved upon. Finally, when changes are observed, either to the static or
dynamic elements of the environment, the current trajectory is repaired to reflect
these changes. Again, this is done in an anytime fashion, so that at any time a
solution can be extracted.

There are a lot of attention to use mapping between workspace and config-
uration space to update roadmaps in changing environment. These approaches
are adopted to update the roadmap online rather than to construct it once again
when environments change. Dynamic Roadmap Method (DRM) [43, 29], pre-
serves a mapping from workspace to configuration space (W-C mapping) as a
mechanism to indicate invalid nodes and edges in a roadmap. DRM is a kind
of variation of PRM to solve path planning problems in changing environments.
The idea behind DRM is to represent the relationship between workspace and a
constructed roadmap in configuration space so that the roadmap can be updated
accordingly when obstacles move in workspace. DRM performs well when ob-
stacles move in workspace and environment changes.

34 CHAPTER 3. MOTION PLANNING IN CHANGING ENVIRONMENTS

Figure 3.8: From [66]: An example path (in black) planned through state-time
space from the initial robot position (in green) to the goal (shown as a vertical
blue line extending from the goal location upwards through time). Also shown
are the extrapolated trajectories of the dynamic obstacles (in yellow). The un-
derlying PRM has been left out for clarity but can be seen in Right image.

In [43], P. Leven and S. Hutchinson begin by constructing a graph that repre-
sents a roadmap for obstacle free environment in the configuration space. Nodes
are generated by shooting sample configurations and these nodes are then con-
nected to form a the roadmap by using straight-line planner. In this phase, they
consider obstacle free workspace to generate the initial roadmap. The only con-
straint in this step is self collision for the robot. They prohibited the configuration
in which the robot is in self collision for generating the roadmap. Then, they en-
code a mapping from work space to nodes and edges. W-C mapping is made up
ofW-C nodes mapping andW-C edges mapping, which map every basic cell in
workspace to nodes and edges in roadmap, respectively.

During the planning, in case of changing in the environment, they detect the
cells which became obstacles. Thanks to the W-C, they detect the concerned
nodes and edges to detected cells. Then, they erase the concerning nodes and
edges to a modified cell of the workspace which will result in a roadmap whose
nodes and edges are valid. Their planner uses this roadmap to plan a motion
between initial and goal configurations. The planning is reduced to connecting
initial and goal configuration to the roadmap. In case of failure, their planner
addresses more nodes to enrich the roadmap and solve the problem.

In [29] M. Kallman and M. Mataric evaluate the tradeoffs between using
DRM and applying RRT directly in changing environments which requires no
preprocessing or maintenance. They ground the analysis in several benchmarks

3.1. INTRODUCTION 35

Figure 3.9: From [43]: A plan for a 19-joint robot passing through a relatively
narrow corridor. The dark blocks are the obstacles.

in virtual environments with randomly moving obstacles. Different robotics
structures are used, including a 17 degrees of freedom model of NASA’s Robo-
naut humanoid.

For implementing the method, two data structures are computed off line:
the roadmap R and a grid-based cell decomposition of the workspace W . The
roadmap is computed only considering the robot and the static obstacles in W .
The grid G stores in each cell c ∈ G, all nodes and edges of R that are af-
fected by c. They call this process cell localization and, coupling G with R,
they obtain a Dynamic Roadmap (DRM). During run time, dynamic obstacles
are tracked and each time an obstacle appears, disappears, or moves, the affected
nodes and edges of R are updated accordingly. Their results show that dynamic
roadmaps can be both faster and more capable for planning difficult motions than
using on-line planning alone. The evaluation results recommend that it is worth
constructing W-C mapping and maintaining a roadmap that could be updated
dynamically.

H. Liu et al. also used the approach of mapping between workspace and con-
figuration space [45]. W-C nodes mapping coupled with lazy edges evaluation
is used to ensure a generated path containing only valid nodes and edges when
constructed probabilistic roadmap becomes partially invalid in changing envi-
ronments. They made an interesting observation and coupled theW-C approach

36 CHAPTER 3. MOTION PLANNING IN CHANGING ENVIRONMENTS

Figure 3.10: From [29]: Portions of the roadmap are dynamically invalidated
according to the obstacles inserted in Robonaut’s workspace.

with lazy PRM to accelerate the process. They believe that it takes only a little
time to buildW-C nodes mapping and most time is spent for the computation of
W-C edges mapping. Besides, another observation is thatW-C nodes mapping
is more important thanW-C edges mapping. If a node is invalid, a collision-free
path will not contain all its adjacent edges and thus these edges should be invalid
implicitly. An invalid edge needs to be marked explicitly only if its two adjacent
nodes are valid, and this situation appears only when the regions of configuration
space obstacles are very small or narrow.

In their approach, sampled nodes of a roadmap can be regarded as mile-
stones in configuration space. Therefore, for probabilistic path planner, W-C
nodes mapping is enough to preserve major information representing relation-
ship between workspace and configuration space. In their approach,W-C nodes
mapping is preserved and constructed within a little time while skipping W-C
edges mapping. In order to ensure the validity of found paths, lazy edges evalu-
ation, which is successfully used in Lazy PRM method [4], is integrated in their
method. Lazy edges evaluation is used to ensure all edges valid along a found
path. They use a dual-manipulator system to evaluate the efficiency of their plan-
ner in changing environments.

The approach we propose in this work to plan motions in changing envi-
ronment is also a W-C method and is an extension of the approach which was
presented in [43]. Their method is efficient in dealing with changes in environ-
ments. However, we tried to optimize their approach for integrating it in the

3.2. GENERAL IDEA OF THE PLANNER 37

Figure 3.11: From [45]: Path planning for a dual-manipulators system with 12
DOFs in changing environments.

problem of motion planning for humanoid robot in a big environment which is
explored by vision.

In the approach we describe in this chapter, we use the same basic idea of
workspace cell-decomposition, but we use two levels of decompositions and we
test again for collision the roadmap features lying in cells where obstacles have
appeared.

3.2 General idea of the planner

A robot is supposed to navigate in an environment. The robot has a perfect model
of the environment at the planning moment. After planning a path, it receives
updated information from the sensors regarding workspace. The positions of
some obstacles are changed. Some obstacles disappear and some new obstacles
enter to the environment. The robot is supposed to plan another path to a goal
configuration in the updated environment.

As it was explained in the previous section, considering a cost for time and
memory, how to deal with changes in environments is an important issue . Using
a roadmap based planner, the basic idea is looking for an algorithm to use effi-
ciently the existing solution for the previous problem to solve the new problem.

As the information concerning the free accessible zone Cfree is stored in a
roadmap, it is a good idea to use this information in the next step. But the envi-
ronment is modified and some information in the roadmap is not valid anymore.

38 CHAPTER 3. MOTION PLANNING IN CHANGING ENVIRONMENTS

Figure 3.12: The planner updates a roadmap based on the modification in the
environment. Figure a illustrates simple 2D model of the environment with a
roadmap that connect initial and final configuration. Figure b shows the recent
environment which is modified partially and in result, some nodes and edges of
the roadmap are in collision based on the new model. In c, the invalid nodes and
edges are erased and finally, in d, the updated roadmap is used to find the path in
new environment.

Erasing the invalid nodes and edges in the roadmap will result in a collision free
roadmap. This roadmap can be used as an initial estimate of accessible free zone
in the modified workspace.

Now, the question is how to optimize the algorithm to update an existing
roadmap. Logically, checking the validity of all nodes and edges is not an effi-
cient method in case of simple modification in workspaces.

We use an algorithm to detect the modified zone of the workspace. Then, we
extract the nodes and the edges which have intersection with the modified zone.
By re-validating these limited number of nodes and edges, the planner detects
the invalid nodes and edges rapidly and erase them. This algorithm will result in
a valid roadmap faster than checking all nodes and edges.

Figure 3.12, illustrates how the algorithm works. A roadmap is modified
based on the changes of the workspace. The nodes and edges that became invalid
are detected an erased.

3.3. WORK SPACE CELL-DECOMPOSITION 39

3.3 Work space cell-decomposition

We use a two-level workspace decomposition to deal with the problem. In the
first level, workspace is decomposed into a number of cells for which we store a
list of nodes and edge. In the second level, each cell is decomposed into voxels
which are the smallest volume of environment. Voxels can have the state of oc-
cupied , free or unknown. Based on the captured information from environment,
the state of each voxel may change.

Figure 3.13: 2D cell decomposition for a robotic arm.

W =
m⋃
i=1

Ci,∀i, j ∈ [1,m], Ci ∩ Cj = ∅ (3.1)

Ci presents a cell in the model andW is the workspace. In other hand,

Ci =

q⋃
i=p

Vi,∀i, j ∈ [p, g], Vi ∩ Vj = ∅ (3.2)

It should be mentioned that in this approach, cell-decomposition is not nec-
essarily uniform in the workspace. Therefore, based on any preliminary infor-
mation about the environment, the shape and size of cells would be different in
some regions to optimize calculations.

Moreover, as in [43], a mapping between configuration space C and work
spaceW is built to associate any configuration to a list of cells.

φ(q) = {Ci | A(q) ∩ Ci 6= ∅} (3.3)

where q is configuration andA(q) is a volume of environment which is occupied
by robot in q. In fact, thanks to this mapping, each q is associated to a list of cells

40 CHAPTER 3. MOTION PLANNING IN CHANGING ENVIRONMENTS

Figure 3.14: Motion planning in 3D model of robotics lab in LAAS-CNRS.
The size of workspace is 17m ×12.5m×1.7m. The workspace is modeled
with 10cm×10cm×10cm 3D Voxels. Also, workspace is decomposed to the
1.5m×1.5×1.5m Cells to implement the approach.

which are in collision with the robot at this configuration. By using (3.3), each
node and each edge are associated to one or several cells. To be more precise,
each node is a representation of a q and each edge is a mapping from interval
[0, T] to C.

Therefore, (3.3) maps each node and edge to one or several cells.
On other hand, based on this approach, a list of nodes and edges will be

assigned to each cell. Therefore:

Ci = {LNi , LEi } (3.4)

where, LNi is a list of nodes which the robot in their configuration will be in
collision with Ci. Also, LEi is a list of edges for which the robot is in collision
with Ci if it tracks that edges.

Figure 3.13 illustrates the concept of cells and voxels in a 2D workspace.

3.4. UPDATING CELLS 41

3.4 Updating cells

LNi and LEi are updated as the planner finds a path between initial and final
configurations. To optimize the calculation time, cell lists are updated during
execution of the generated path. Therefore, by using the updated roadmap, the
concerned nodes and edges should be added to the associated lists of each cells
Ci.

The figure 3.15 shows the process sequence in encountering a change in the
workspace.

Figure 3.15: The sequence of process in encountering a change in an environ-
ment.

For updating LNi with a new node, the robot will be considered at the con-
cerned q and the node will be added to LN of cells which are in collision with
robot. Updating LE is more complicated and time consuming. In fact, it consists
in a mapping between an edge and a set of cells which are in collision with robot
if the robot sweeps the concerned path. To update LEi , the same algorithm as
in [43] was used.

Figure 3.14 illustrates a 3D model which is decomposed into 1.5 m cell to
implement the approach.

3.5 Constructing roadmap

Having an instant model of environment, we begin by creating a roadmap in
the environment. Our planner uses all the internal constraints such as degree
of freedom and kinematic limitations to create a roadmap in the free zone of

42 CHAPTER 3. MOTION PLANNING IN CHANGING ENVIRONMENTS

the workspace. Nodes are generated by shooting random configuration in C and
valid nodes are added to the roadmap by valid edge. We denote the roadmap as
R(N,E) where N and E are the list of nodes and edges respectively.

However, as the environment is not static, the free zone is modified as the
robot received new information. So some nodes in N and some edges in E may
become invalid in the next instance of the environment model. After updating
the roadmap based on the modification in environment, the planner uses this
roadmap to find a path between initial and final configuration. In case of failure,
planner shoots random configurations and enriches the updated roadmap to solve
the problem.

3.6 Updating roadmap

Our approach for updating roadmaps is an extension of the approach presented
in [43]. Our planner can detect the cells which are modified. It detect the cells
whose voxels status changed to occupied.

After detecting the modified cells, instead of erasing their nodes and edges ,
our planner re-validates their features. The non valid features are erased and the
valid nodes and edges are used for the next path planning.

3.7 Examples

In order to validate our approach for motion planning in changing environment,
we needed to build a large model of environment. For building the model of
workspaces, we rely on an occupancy grid approach. As it is presented in chap-
ter 5, localization is a critical issue in generating a model. However, we do not
have yet a precise localization module on HRP2 robot. We therefore built the
map using another robot Jido ∗ equipped with an accurate localization module.
HRP2 then planned motions in this model.

Jido, figure 3.17, is a mobile manipulator which is equipped with a stereo
camera and also a laser scanner for localization. Jido was used in our exper-
iments for taking several photos. These photos were used to generate the 3D
occupancy model of the environment. The experiment was conducted in the
robotic laboratory of LAAS-CNRS as a large workspace.

The allocated size of the environment in these models is 17 m×12.5 m×1.7
m. The size of each voxel in the these 3D occupancy grid map was 10 cm×10
cm ×10 cm. The model is composed of 361250 voxels.

∗http://www.laas.fr/robots/jido/data/en/jido.php

3.7. EXAMPLES 43

Figure 3.16: Illustration of roadmap management during updates of workspace.
Red and green voxels represents occupied and unknown zone respectively. The
circle shows a free part of environment which becomes occupied later: a) A
roadmap is illustrated in the top view of a 3D model of an environment which
is generated by vision. b) The model is updated based on new information from
camera. c) The roadmap is modified based on the updates in the 3D model by
using our cell decomposition algorithm. Some nodes and edges are erased from
the roadmap during the modifications. d) The modified roadmap is used for a
motion planning process. Some nodes and edges are added to the roadmap.

We used a path planning algorithm for the HRP2 bounding box. The gener-
ated path for the bounding box is later used to generate a whole body path for
the robot. Although we simplified the problem of motion planning from a robot
with 40 degrees of freedom to a box with 3 degree of freedom, the approach is
valid in case of using all the degree of freedom in the stage of planning.

We conducted 3 tests in the generated models to illustrate the efficiency of our
planner. The presented times in each experiment are the average of computation
times for 10 tests. All the simulations were performed on a 2.13 GHz Intel Core
2 Duo PC with 2 GB RAM.

44 CHAPTER 3. MOTION PLANNING IN CHANGING ENVIRONMENTS

Figure 3.17: The mobile robot Jido which is used in the experiment for taking
the required photos.

3.7.1 Experiment 1

Two models of the lab were generated. The main difference between these 2
models is a table at the middle of the lab which was displaced. Displacement of
this table cause some free regions to become occupied and also some occupied
regions to become free. Although the only difference in the 2 states of environ-
ment is the displacement of the table, there are much more differences between
the two 3D models. In fact, based on any error of localization, some parts of the
model were modified. There are 7848 occupied voxel in the first model. There
are 1810 voxels which have been free or unknown in the first model and became
occupied in the second model.

Figure 3.18 illustrates the 2 generated models which are used to test our
approach in changing environments. Although environment modeling was not
done on-line with HRP2, it does not disturb the efficiency of the method.

In this scenario, we implement 3 tests to evaluate the efficiency of our algo-
rithm in terms of time. The goal is measuring the path planning time between an
initial and goal configurations in the 2 models.

In the test A, we do not use our algorithm and the roadmap is erased after
planning a path in the first environment. So, the time of planning a motion

3.7. EXAMPLES 45

Figure 3.18: Changes in the environment. HRP2 uses the cell decomposition
method to validate some of the nodes and edges in the existing roadmap for
planning next motions

between 2 configurations was measured separately in the 2 models. In the test
B, we keep the roadmap after solving the motion planning problem for the first
model. However, after loading the second model, we validate all the nodes and
edges of the roadmap with the new obstacles in the second model.

Finally, in test C, we use our approach to optimize the computation time. We
use our approach and the planner validates locally just some of the nodes and
edges of the roadmap. The size of cells in the last types of the tests was set to
1.7 m × 1.7 m × 1.7 m and each cell is composed of 4913 voxels. Table 3.1
compares the average of computation time in each stage of the conducted tests.

Table 3.1: Time performance.

Solving Updating Solving
Test problem 1 Roadmap problem 2

[ms] [ms] [ms]
A 399563 0 314452
B 399563 5447 18716
C 399563 1936 18716

46 CHAPTER 3. MOTION PLANNING IN CHANGING ENVIRONMENTS

3.7.2 Experiment 2

To analyze the effects of the cell size on the computation time and the memory
usage, we conduct 6 tests. We use the same 3D models as the previous exper-
iment. The first model of the environment is loaded in the planner. Then, the
planner generates a roadmap and find a path between the initial and final config-
urations. The generated roadmap is kept and modified after loading the second
model.

In the first test, we use the smallest possible size for each cell. The size of
each cell is 0.1m × 0.1m × 0.1m and each cell is composed of just one voxel.
We increase the size of the cells in the next successive tests. In the sixth test,
the size of each cell is 8 m × 8 m × 8 m and each cell is composed of 512000
voxels. The generated roadmap in the model is composed of 2999 nodes and
5996 edges. Table 3.2 illustrates the effects of cell size on the computation time
and the memory usage.

Table 3.2: Memory performance.

Cell Size Re-validated Re-validated Revalidation Time Memory
[m] Nodes Edges [ms] [kB]
0.1 107 242 71 301656
0.5 161 296 93 135004
1.0 234 580 118 131148
2.0 234 580 119 130644
4.0 447 1006 169 130076
8.0 1258 2636 355 129872

It is clear that by using bigger cells, we can save memory. On other hand,
by increasing the cell size, the number of nodes and edges in each cell increases.
So, the planner consumes more time to re-validates the components (nodes and
edges) of the modified cells.

Based on our experiments, we believe that the efficiency of cell size depends
on the problem. There are various parameters which affect this efficiency such
as average number of modified voxels, robot size and voxel size. Therefore, we
can not propose a cell size which optimizes the time and memory usage for all
environments.

3.7.3 Experiment 3

we modified partially a model of the environment to simulate some changes in
the environment. A model of LAAS-CNRS robotic laboratory is used in this
experiment. Modification of 124 voxels in a model represents the displacement

3.8. CONCLUSION 47

Figure 3.19: S and G represent the initial and final configuration of HRP2 in the
model. Red and Green voxels represent the occupied and unknown region in the
model.

of a table in the workspace. Figure 3.19 and 3.20 illustrate the initial and goal
configuration and also the modifications in the model.

The models consist of 32787 unknown voxels, 7919 occupied voxels and
320544 free voxels. The size of each voxel is 0.1m × 0.1 m × 0.1 m. Also, the
size of the cells that are used in this experiment is 2.0 m × 2.0 m × 2.0 m.

Table 3.3 presents the computation time for solving the problem by generat-
ing a roadmap in the model to connect initial and final configurations.

Table 3.4 illustrates the efficiency of the approach by presenting the required
time for updating an existing roadmap in the environment and path planning by
using the modified roadmap. In the first line, the planner uses the roadmap which
is generated for solving the problem in the model B and updates it to plan a path
in the model A. The second line represents the results of the inverse scenario.The
planner updates the roadmap of model A based on the differences between the
two models and then it plans a path in the model B.

Based on the results presented in table 3.4, the computation time for path
planning is dramatically reduced by applying our approach.

3.8 Conclusion

We have presented an approach to deal with motion planning in changing envi-
ronments. We extended an existing approach and we improved its limitations in
terms of memory to adapt it to our problem. Although various approaches have
been presented to deal with changing environments in various types of problem,

48 CHAPTER 3. MOTION PLANNING IN CHANGING ENVIRONMENTS

Figure 3.20: Modification in the status of 124 voxels represent displacement of
a table in the model. Red and Green voxels represent the occupied and unknown
region in the model.

Table 3.3: Path planning

Workspace Path Planning Nodes
[ms]

A 198075 173
B 74401 74

Table 3.4: Path planning by applying the approach

Workspace Updating Roadmap Re-validated Path Planning
[ms] Nodes [ms]

B→ A 625 7 31739
A→ B 718 14 34603

we believe that our approach is highly efficient for navigating in large workspace.
This approach is adapted for planning a path for the bounding box of the robot.
Moreover, using two levels of discretization for workspace enable us to combine
the algorithm with occupancy model which is used for modeling the environ-
ment(chapter 5).

3.8. CONCLUSION 49

Furthermore, the results illustrate the robustness of the approach in interact-
ing with a large environment composed of thousands of voxels.

Chapter 4

Whole-body task planning

4.1 Introduction

Humanoid robots are highly redundant and complex systems. Planning collision-
free stable motions for these systems is challenging for several reasons. First,
most of them have a high number of degrees of freedom, which leads to the
exploration of a highly dimensioned configuration space to find a collision-free
path. Second, the motion we try to generate must satisfy many constraints: sta-
bility, physical capabilities, or even task constraints. Real-world task for a hu-
manoid robot can include reaching to an object with a hand, as well as opening
a door or a drawer.

This chapter presents a novel way to use random motion planning algorithms
coupled with local inverse kinematic techniques.

4.1.1 Whole-Body task motion planning

The problem of inverse kinematics for a humanoid robot, or any articulated struc-
ture, is to compute a joint motion to achieve a goal task. As the robots we deal
with are redundant, it is natural to take advantage of this redundancy by speci-
fying multiple tasks, potentially with different priorities. This problem has been
widely studied in robotics planning and control literature, and many jacobian-
based solutions have been proposed, among which [2, 33, 50, 59]. Obstacle
avoidance can be taken into account with similar local methods. To do so, one
has to include the obstacles as other task constraints to be satisfied. A recent
contribution on this subject is [30].

In our work, we have chosen to use the prioritized pseudo-inverse technique

51

52 CHAPTER 4. WHOLE-BODY TASK PLANNING

without taking into account the obstacles. The collision avoidance is externalized
from the task set, following the paradigm of randomized motion planning, where
the collision detection is used as a black box to validate sampled configurations.

4.1.2 Randomized motion planning

The other toolkit at our disposal is randomized motion planning. In the past
fifteen years, several ways of randomly exploring the configuration space C have
been successfully proposed [11, 32, 35, 36, 39]. These methods have been shown
to be efficient for planning collision-free paths for highly dimensioned systems.

Their application to humanoid robots, however, is not straightforward. [34]
proposes a whole-body motion planning method that deals with obstacle avoid-
ance and dynamic balance constraints. It explores a set of pre-computed stati-
cally stable postures with a RRT-like algorithm and then filters the configuration
space path into a dynamically stable trajectory. [61] deals with global motion
planning under task constraints. The method is also an extension of the RRT
algorithm, where the sampled configurations are projected on the sub-manifold
of C that solves a task. The limit of this work is that it only considers very spe-
cific constraints, basically restrictions on a robot end-effector motion relatively
to some world fixed frame. This is not sufficient to solve problems such as static
stability, which can be seen as positioning an abstract end-effector -the center of
mass of the robot- within a given region. A similar drawback is that it can not
deal with multiple and prioritized constraints, whereas the corresponding local
jacobian methods exist in the literature.

Finally, the problem we address is related with motion planning for closed
kinematics chains. Some random techniques have been proposed to solve these
problems [13, 40]. It differs from our work by the fact that the task is solved by
random techniques rather than jacobian based optimization.

4.1.3 Contribution

The work presented in this chapter proposes a new way to use local jacobian
based methods within randomized motion planning. The local methods are more
powerful than the ones in [61], which makes our algorithm usable for solving
humanoid whole-body motion planning. It differs from [30] and [31] by the way
we treat obstacle avoidance, i.e. not in the optimization loop. The experimental
section will show that it is a relevant choice.

Before going further and detailing our method, note that we only address
the problem of finding statically stable paths for humanoid robots. To transform

4.2. PRELIMINARIES 53

Figure 4.1: Reaching for an object in a constrained area

these paths into dynamically stable trajectories, we would need to use an other
optimization stage, as it is presented in [34] and [31] for instance. As this second
stage is independent from the first one, we chose not to deal with it here.

4.2 Preliminaries

4.2.1 RRT-Connect

This work considers humanoid whole-body motion planning problems. Because
of the stability constraints and of the way the goal is expressed (as a task and
not as a final configuration to achieve), we can not use classic generic motion
planning algorithms. However, we did use an architecture similar to random
diffusion methods, and more precisely to what is known in literature as RRT-
Connect [35]. Let us remind briefly the structure of that algorithm.

Algorithm 1 shows the pseudo-code of the RRT algorithm. It takes as input
an initial configuration q0 and grows a tree R in C. At each step of diffusion, it
samples a random configuration qrand, finds the nearest configuration to qrand in
R: qnear, and extendsR from qnear in the direction of qrand. The original version
of RRT-Connect depends on a step parameter ε. Each step of extension adds as
many collision-free nodes toR as possible in direction of qrand, each node being
at a distance ε from the previous one. Fig. 4.2 shows one step of extension of
the RRT-Connect algorithm.

54 CHAPTER 4. WHOLE-BODY TASK PLANNING

4.2.2 Local path planning under task constraints

The tasks we consider for the robot can be expressed as a goal value for some
function T of the robot configuration q: T (q) = 0. Assume the current con-

figuration has a value T (q) = c. By computing the jacobian J =
∂T

∂q
(q), one

can calculate velocities q̇ that tend to achieve the task. q̇ is solution of the linear
system:

Jq̇ = −λc (4.1)

where λ is a positive real.
If the robot is redundant enough, i.e. if that linear system is under con-

strained, we can solve other lower prioritized tasks at the same time, by keeping
q̇ in the affine space solution of eq. (4.1). Iteratively changing q according to
(4.1) is known as the Newton-Raphson method. Fig. 4.3 shows a 1-D example
of a zero approximation by this algorithm.

The jacobian based engine for solving tasks will be referred to as the “lo-
cal task solver”. The precise implementation of this engine is described in [69].
During global planning, we will consider several types of tasks for various rea-
sons:

• Static stability: the center of mass of the robot should stay at the vertical of
the support polygon center; if we are planning a dual support motion, the
two feet should remain at the same position and orientation. These tasks
should always be achieved.

Figure 4.2: One step of extension of the RRT-Connect algorithm

loa 2: RRT-Connect(q0)

R.Init(q0)
for i = 1 to K do
qrand ← Rand(CS)
qnear ← Nearest(qrand,R)
Connect(qnear, qrand)

end for

4.3. RANDOMIZED TASK PLANNING FOR A HUMANOID ROBOT 55

• Goal achievement: the robot should at some point not only explore C but
achieve some particular goal task as well. The ones we will present in
the experimental section are reaching a particular point with the hand and
open a door ; the hand should then stay on a given arc of a circle.

• Configuration space exploration: as we will explain in more details in the
next section, we use configuration space defined tasks to explore C.

4.3 Randomized task planning for a humanoid
robot

This section describes the global whole-body motion planner. The core of it is a
RRT-Connect algorithm. Some tasks have to be achieved for every configuration
in the growing tree. This is the case for instance for stability tasks as well as
for the position of the hand of the robot during a door opening motion. We will
refer to these tasks as constraints. Next paragraph explains how we change the
Connect function of the RRT algorithm to comply with these constraints.

4.3.1 Task constrained extension

Starting from a configuration qnear that respects a set of constraints, we want
to go as far as possible in an other configuration (qrand) direction, while keep-
ing the constraints verified. To do so, we add a task to the local task solver,
whose value is the distance, in C, to a given configuration. It is referred to as
ConfigurationTask in algorithm 3. This task is added with the lowest prior-
ity. The configurations we try to reach are successively the ones a classical RRT
would have added to the tree. Fig.4.4 shows one step of constrained extension.

Figure 4.3: Root finding using Newton-Raphson method

56 CHAPTER 4. WHOLE-BODY TASK PLANNING

loa 3: Constrained-Connect(R, qnear, qrand)

Tasks.Initiate(Constraints)
Tasks.Add(ConfigurationTask)
∆q ← ε.(qrand − qnear)/||(qrand − qnear)||
qtarget ← qnear + ∆q

qcurrent ← qnear
State← Progressing
while State = Progressing do
ConfigurationTask.SetTarget(qtarget)
qnew ← LocalPlannerPerformOneStep(Tasks, qcurrent)
if qnew 6= qcurrent
and CollisionCheck(qnew) = OK
and CollisionCheckEdge(qcurrent, qnew) = OK
and ConstraintsCheck(qnew) = OK then
R.AddNode(qnew)
R.AddEdge(qcurrent, qnew)
qcurrent ← qnew
if qtarget 6= qrand then
qtarget ← qtarget + ∆q

else
State← Reached

end if
else
State← Trapped

end if
end while

Figure 4.4: One step of constrained extension

After calling the local task solver, we check that the configurations respect in-
deed the constraints, that they are collision free, and that the edges linking them
together are collision free as well. Algorithm 3 shows pseudo-code for one call
to the Constrained-Connect function.

4.3. RANDOMIZED TASK PLANNING FOR A HUMANOID ROBOT 57

4.3.2 Goal configuration generation

One main difference between the problems we consider and classic motion plan-
ning is that the goal configuration is not defined explicitly. Instead, the input of
the planner is a given task in the workspace. The output of the planner should
therefore be a statically stable, collision-free path between the initial configura-
tion and a configuration that solves the goal task. There are many ways to adapt
motion planners to do so. One could be to grow a tree in C and try from time to
time to apply the goal task to a newly generated configuration, hoping that the
local task solver will return a collision-free path that solves the problem. This
option is available in our planner, simply by changing the task to solve in the
Constrained-Connect function. However, we found it more efficient to gener-
ate random goal configurations, using the local task solver, and then express the
problem as a classic motion planning one, with one initial configuration and sev-
eral goal configurations. The reason is that once we have defined explicit goal
configurations, we can root random trees at those configurations. The idea of
growing a tree rooted at the final configuration was first proposed in [35].

The way we generate a goal configuration is the following:

1. Shoot a random configuration in C.

2. Call the local task solver on this configuration, with the static stability
constraints and the goal task.

3. Check that all of those tasks are achieved.

4. Check for collisions.

Fig. 4.5 shows different random goal configurations respecting stability and
goal constraints.

Probabilistic completeness Guaranteeing probabilistic completeness is not
as straight forward for task planning as for classical configuration to configu-
ration planning. The reason is that we do not know explicitly the shape of the
solution manifold. Some solutions may not be in the same connected compo-
nent as the initial configuration while some other are. If we choose to first shoot
random goal configurations, we must ensure that any neighborhood of the solu-
tion manifold has a positive probability of being reached. This is the case with
our way of shooting the goals configurations. Reciprocally, if a collision-free,
statically stable solution path exists, we have a positive probability of shooting
a goal configuration in the neighborhood of that path’s final configuration, then

58 CHAPTER 4. WHOLE-BODY TASK PLANNING

Figure 4.5: Random goal configurations solving the reaching task. All the con-
figurations are stable and collision-free.

Figure 4.6: Different steps of a posture optimization. All the configurations
respect the stability and goal constraints, and the configurations are more and
more natural.

a positive probability of growing a branch of the tree in a neighborhood of the
path. This makes our algorithm probabilistically complete.

4.3.3 Posture optimization

As in classic motion planning, once we have found a random solution path, it
is important to optimize it. The criteria to optimize depend on the system. In
humanoid robotics, the motion should look “realistic” or “natural”, for any good
definition of these concepts. As the goal configuration we have reached as the
end of the solution path was generated randomly, we need to optimize it as well.
Note that we only optimize it after having found a solution path because we do
not want to optimize useless goal configurations.

To optimize the posture, we use a random gradient descent algorithm, start-
ing from the configuration to optimize. The local task solver ensures that all
the constraints (stability and goal task) are achieved and is repetitively called to
generate collision-free random displacements that minimize a certain “natural”
cost function. In the presented examples, that function was the C distance to a
reference posture. The new solution path is the concatenation of the previous
solution and the path resulting from the posture optimization.

4.4. WORK SPACE ANALYSIS 59

Fig. 4.6 shows the different steps of a goal posture optimization.

4.3.4 General architecture

Now that we have all the tools at our disposal, the architecture of the planner can
be explained.

1. First we generate several goal configurations.

2. We search for a path between the initial configuration and one of the goal
configurations with a RRT algorithm. We can either grow a single tree
rooted at the initial configuration or several other trees rooted at each of
the goal configurations.

3. If a path is found, we optimize the goal posture that has been reached.

4. We optimize the concatenation of the solution path and the posture opti-
mization with classic random motion planning path optimization methods.

During the RRT search and the final path optimization, we use the task con-
strained extension detailed earlier.

4.4 Work space analysis

Goal configurations are generated in two steps. In the first step, we shoot a
random position and orientation for the robot and then we generate the whole
body configurations that satisfy the desired goal tasks.

Selecting an appropriate position for the robot is an important issue. It re-
duces the process of goal configuration generation and also results in configura-
tions which look “realistic” or “natural”.

Figure 4.7 illustrates HRP2 in two different configurations for grasping a ball
by the right hand. Although, the both configurations satisfy the required task as
well as the stability constraints, configuration (a) looks more “natural”.

These configurations are generated by placing the robot in two different po-
sitions. Then, the robot is initialized in a random configuration and the inverse
kinematics model is solved to satisfy the task of grasping by the right hand.

Moreover, for some tasks such as grasping an object, when there is no prior-
ity for choosing the hand, choosing the proper hand is an important issue. For
grasping an object, choosing the active hand for grasping optimizes the goal con-
figuration and also increases the accessible workspace.

60 CHAPTER 4. WHOLE-BODY TASK PLANNING

Figure 4.7: HRP2 in two configurations: The both configurations satisfy the task
of grasping an object with the right hand. Configuration (a) looks more “natural”.

Figure 4.8: By considering the constraint of fixed foot position, the target is not
accessible by the left hand.

Figure 4.8 illustrates a simple situation where the target for grasping is not
accessible for the left hand.

For implementing our goal generator, we did some analyses on whole body
configurations for the task of grasping an object.

We generated a number of random configurations which satisfy the stability
constraints while keeping the feet at the same position. On the other hand, the
workspace is discretized and the position of each hand is noted for each con-
figuration and stored in the corresponding cell. This grid stores the information
of hand position density in each cell for a number of random stable configura-
tions. This data can be used for choosing an efficient position for the robot feet
or selecting the active hand for grasping an object.

4.5. EXAMPLES AND COMPARISON WITH PREVIOUS METHODS 61

Figure 4.9: The density of hand positions for a number of random configura-
tions.

Figure 4.9 illustrates the density of hand positions in the conducted survey.
Moreover, the accessible volume of workspace for grasping is shown in this
figure.

Figure 4.10 illustrates the same information in 2D. The density of HRP2 hand
positions is illustrated for each layer along the Z axis.

Such analysis can be conducted for other required tasks in order to develop a
specific goal generator.

4.5 Examples and comparison with previous
methods

This section presents experimental results of our whole-body motion planner
on simulations on the robot HRP2. We compared it thoroughly with the local
collision avoidance method presented in [30] and [31] on two different examples
of hand reaching motion. One is a dual support motion, where the humanoid
robot has to reach an object under a table, and the other one is a more complicated
single support motion, where the robot should reach a point inside a large torus
shaped obstacle. These comparisons were made to evaluate the relevancy of
avoiding obstacles at a global scale rather than inside the optimization loop.

In [30] and [31], the robot and its environment are modeled by non-strictly
convex polyhedra. A local collision avoidance method for non-strictly convex
polyhedra with continuous velocities is used to solve motion planning prob-
lems. The problem of the continuous interaction generation between polyhedra
is reduced to the continuous constraints generation between polygonal faces. A
collision-free motion is obtained by solving an optimization problem defined by

62 CHAPTER 4. WHOLE-BODY TASK PLANNING

Figure 4.10: The density of hand positions for a number of random configura-
tions. The density is illustrated for each layer along the Z axis.

4.5. EXAMPLES AND COMPARISON WITH PREVIOUS METHODS 63

Table 4.1: Computational time [ms] for the presented scenarios.

Goal Path Posture Path Local Collision
Generation Planning Optimization Optimization Planner Detector

Table 281 4,017 16,181 5,096 1.25 % 86 %
Torus 1,689 27,965 40,479 23,851 9.19 % 84 %

Figure 4.11: Solution path for “Table” scenario.

Figure 4.12: Solution path for “Torus” scenario.

an objective function which describes a task and linear inequality constraints
which do geometrical constraints to avoid collisions.

64 CHAPTER 4. WHOLE-BODY TASK PLANNING

The implementation of our algorithm uses KineoWorksTM[38] implementa-
tion of random diffusion algorithms and collision checking. All the simulations
were performed on a 2.13 GHz Intel Core 2 Duo PC with 2 GB RAM. Note
that the figures taken from [30] and [31] were obtained on a similar PC, so time
comparisons are relevant here. For each problem, we ran the planner ten times:
this includes goal configuration generation, path planning, posture optimization
and whole-body path optimization. We indicated the cost of each of these com-
putations, as well as the relative costs of the collision detector and the local task
solver. The last costs are expressed as percentages of the total computational
time. They do not add up to 100%. The rest of the time is spent in roadmap and
environment management.

4.5.1 Dual support ”Table” scenario

Fig. 4.11 shows the solution path for a problem of reaching an object under a
table. A similar experiment was presented in [30]. The local method presented in
[30] computes one step of optimization in about 100 ms for this problem, which
means that it can run at half the speed required for real time when selecting a
time step of 50 ms. The trajectory lasts 14 s so the planning time is about 28 s.

Table 4.1 shows the time taken by our planner. The average total time, in-
cluding both planning and optimization, is 25.6 s. Note that most of the time
is spent with posture and path optimization. Problem solving itself (goal gener-
ation and path planning) only lasts 4.3 s. However, optimization is mandatory
since we are using random path planning method. It is indeed the total time that
should be compared to the 28 s found in [30].

4.5.2 Single support “Torus” scenario

Fig. 4.12 shows the solution path for a more complex problem. The robot is
on one foot and has to reach a point inside a large torus shaped obstacle.Table
4.1 shows the time taken by our planner. This problem was presented in [31].
It is a very difficult problem for a local method dealing with obstacle avoidance
because of the complexity and proximity of the obstacles. When computing this
motion with the precise models of both the robot and the torus, the local method
for obstacle avoidance takes 1.47 s per step. The reason is that there are 3460
constraints induced by the collision avoidance. The article presents simplified
models of the robot and the torus, which leads to a computational time of 50 ms
per step (375 constraints). The generated trajectory lasts 77 s (before dynamical

4.5. EXAMPLES AND COMPARISON WITH PREVIOUS METHODS 65

Figure 4.13: Solution path for a complete resolution of a door opening problem.
The walk motion at start was generated separately with a walk planner. We then
successively solved a hand reaching problem to grab the handle and a specific
door constraint problem to keep the hand on a given arc of a circle.

optimization). The planning time is then 77 s for the simplified models and 1540
s for the precise models.

Table 4.1 shows the time taken by our planner. The average total time is 94.0
s and the problem solving itself is 29.7 s. Once again, most of the time is spent
optimizing the results. Comparing to the previous scenario, the local task solver
is comparatively more costly for this problem, one explanation might be that the
stability constraint is more difficult to compute for single foot support.

4.5.3 When to deal with obstacle avoidance

It is difficult to compare our planner with a local collision avoidance method
because they are not intended for the same use. The local collision avoidance
method can be used as a controller, while our work is really about offline plan-
ning. However, what we can say is that the cost of collision avoidance constraints
make the local method unusable on complex examples. On the other hand, our

66 CHAPTER 4. WHOLE-BODY TASK PLANNING

probabilistic planner can be used to compute -in a reasonable time- a statically
stable, collision-free path that could be executed afterwards by a controller. Note
that it does not mean that local collision avoidance methods are hopeless, but for
now, they can only be used on simplified or dedicated models. For instance,
if the robot and the obstacles were modeled by spheres or smooth curves (with
analytical formulas for distance computation) rather than triangles, the number
of constraints induced by collision avoidance would decrease and the computa-
tional time would be drastically reduced.

4.6 Conclusion

In this chapter, we have presented a novel whole-body planning method for hu-
manoid robots. It uses a local task solver to generate valid configurations within
a random diffusion algorithm framework. Its advantages are the generosity of
the local task solver, that makes the planner usable for a large variety of prob-
lems -Fig. 4.13 shows a complete example of a door opening problem, and the
efficiency of random diffusion algorithms for highly dimensioned problems. In
this example, the intermediate robot feet position for opening the door was cho-
sen automatically. This position was computed deterministically based on the
geometry of the door. We have compared our approach with a local method for
collision avoidance. The results show that for complex scenarios, the planning
time can be more than an order of magnitude lower with random planning than
with local obstacle avoidance.

Chapter 5

Environment modeling

5.1 Introduction

As explained in the previous chapters, the context of this work is vision-based
motion planning for humanoid robots in an unknown environment. We presented
an efficient method of motion planning in non-static environments and whole
body task planning.

In this chapter, we present an implementation of stereo vision environment
modeling and also our method for finding the next best view in each instance of
the model.

Robotic mapping has been an active area in AI for a few decades. It addresses
the problem of acquiring a spatial model of the workspace through available
sensors on a robot. We can distinguish two main approaches addressing slightly
different problems :

1. Sparse 3D mapping aims at building a geometrically coherent sparse map
of characteristic features and localizing the robot in this map. Recent work
in this area include [14, 41].

2. Dense SLAM aims at building a dense map of the environment integrating
obstacles. These techniques are usually based on occupancy grid methods.
For more references and details about SLAM, please refer to [65].

Pioneering work on occupancy grids is described in [16, 49]. Later studies
define occupancy grid in a probabilistic framework [12, 63]. Moreover, [62]
proposed a very impressive metrical approach.

67

68 CHAPTER 5. ENVIRONMENT MODELING

An occupancy Grid Map maps the environment as an array of voxels. Each
voxel holds a probability value that the voxel is occupied. Occupancy map is
useful for combining different sensor scans, and even different sensor modalities
such as sonar, laser, IR, etc.

In this chapter, a simple occupancy grid approach is presented to generate
a model of the environment. The humanoid HRP2 is supposed to generate a
model of the environment based on stereo vision in order to plan collision free
motions in workspace. As the robot navigates in the environment, it receives
updated information through its on-board cameras and refreshes the 3D model of
the environment incrementally. HRP2 is supposed to plan and drive to multiple
positions to efficiently construct the model.

Finding the next best view (NBV) that improves the current model is another
important issue. In literature, finding the NBV also addresses the problem of
object reconstruction where the exterior of the objects can be seen.

The traditional NBV algorithms assume that the sensor head can freely move
around some object [3]. But in reality, various constraints may limit the move-
ments of the sensor. Also, the sensor is inside the scene and the accuracy of the
pose is limited.

The calculation of viewpoints, i.e., the placement of the 3D sensor to gen-
erate a model of the environment, is similar to the art gallery problem. The
problem states given a map of a building, what is the optimum placement of
guards such that the whole building is supervised [54]? Various approaches have
been proposed for finding the NBV.

J.M Sanchiz et al. present an approach to full 3D scene recovery by a range
sensor mounted on a mobile robot. The recovered scene is modeled by a voxel
map [57].

Andreas Nuchter et al. presented an approach for planning the next scan pose
as well as the robot motion. Their approach calculates a collision free trajectory
in presence of complicated objects [51].

T. Foissotte et al. implemented an algorithm for generating the next best
posture for a humanoid robot. This algorithm aims at building autonomously
visual models of unknown objects, using a humanoid robot [21].

In this chapter, after presenting the approach of occupancy grid methods, we
are going to present our algorithm for finding the next best position for HRP2.
Based on the limits of stability and whole body collision free motion, we rely
on a simple goal based algorithm which returns the next efficient 2D position of
HRP2 (x, y , θ) as a collision free reachable NBV.

5.2. ENVIRONMENT MODELING 69

5.2 Environment modeling

5.2.1 Occupancy grid map.

In our approach, a 3D occupancy grid map represents the environment. The oc-
cupancy grid representation employs a multidimensional tessellation of workspace
into voxels, where each voxel stores a probabilistic estimate of its state. The en-
vironment is discretized into uniform cubes which are the smallest volume of
our 3D model. We use the existing approach of modeling the environment to
generate the required model for planning [16].

The size of the cubes is selectable based on our desired resolution in the
model. Based on the volume of the 3D model, it can be composed of millions of
voxels.

W =
n⋃
i=1

Vi,∀i, j ∈ [1, n], Vi ∩ Vj = ∅ (5.1)

whereW is the workspace and Vi presents the voxel i in the model. The state
variable associated with a voxel Vi is defined as a discrete random variable with
three states: unknown, occupied and free.

P [S(Vi) = Occ] is the probability of voxel i to be occupied. This probability
has a range from 0 to 1. A probability of 0 means that the voxel is free and
a probability of 1 shows the highest possibility of being occupied. Logically,
probability of 0.5 is the lowest information about a voxel and such a voxel is
classified as unknown.

The robot obtains information from its environment through its cameras and
uses a stereo vision method to get a range value r for a 3D point in the environ-
ment. A stochastic sensor model defined by a probability density function p(r|z)

is used to relate the reading r to a true parameter space range value z.
Based on the recent probability density, P [s(Vi) = Occ] is modeled for each

voxel.
For certain applications such as motion planning, it is necessary to assign

a specific state to each voxel of the occupancy map. We used two optimum
thresholds to assign a state to each voxel. Based on these thresholds, probability
in a range around 0.5 represents the unknown zone. For a probability more than
the upper threshold, the voxel is considered as occupied and as free zone for a
probability less than the lower bound.

For initializing the model, all voxels are considered as unknown. Therefore,
the grid map is initialized with a probability equal to 0.5. The model is updated
incrementally as the robot explores the unknown environment.

70 CHAPTER 5. ENVIRONMENT MODELING

Figure 5.1: Estimating the occupancy probability profile.

5.2.2 Sensor model

As explained earlier, a sensor model is used to relate the reading r to a true
parameter space range value z and finally, to obtain the concerned probability
for each voxel. In fact, in this approach, the cameras are modeled with simple
Gaussian uncertainties in depth as follow:

p(rj|z) =
1

σ
√

2π
exp(
−(rj − z)

2σ2
) (5.2)

where j is the index of each 3D point of the stereo-image. Figure 5.1 illustrates
a simple model which is used to obtain the probabilities.

5.2.3 Updating 3D model

To allow the incremental composition of sensory information, the sequential up-
dating formulation of Bayes’ theorem is used to determine the probability of
each voxel [15]. Moreover, using these algorithms preserves the dynamic char-
acteristics of the model. In cases where an obstacle enters into or exits from the
environment, the probabilities of the concerned voxels change rapidly and their
states are modified. Extending the approach of [16] to the model, and consider-
ing the current probabilities of Vi as Pi(s(Vi) = Occ | rt) based on observations
{r}t = {r1, r2, ..., rt} and given a new observation rt+1, the updated estimate
will be given as follows:

P [s(Vi) = Occ | {r}t+1] =

P [rt+1 | s(Vi) = Occ].P [s(Vi) = Occ | {r}t]∑
s(Vi)

P [rt+1 | s(Vi)].P [s(Vi) | {r}t]
(5.3)

5.2. ENVIRONMENT MODELING 71

Figure 5.2: The robotic lab in LAAS-CNRS which is modeled based on this
approach. Red and green voxels (cube) represent occupied and unknown vol-
umes respectively in the model. The work space is modeled with 3D voxels of
5cm×5cm×5cm. Notice that this model is the result of several stereo-images
taken from different points.

At each step of updating the model, the current probabilities are obtained
from the occupancy grid map. Moreover, at the end of calculations, results are
stored in the voxels. These stored probabilities are used as the initial probabilities
for the next update. Figure 5.2 illustrates an environment which is modeled by
stereo vision.

It should be mentioned that localization plays a critical role in environment
modeling. In fact, as the data obtained from sensors are read in the sensor co-
ordinate frame, localization of sensors in the model is important for having a
precise model.

At the following step, the generated environment model is used for motion
planning. The robot moves in the free zone and incrementally improves the
occupancy grid map and explore the unknown area.

Figure 5.3 illustrates the incremental exploration of an unknown environ-
ment.

72 CHAPTER 5. ENVIRONMENT MODELING

Figure 5.3: Exploring an unknown environment. Red and green voxels represent
occupied and unknown zones in the model. The robot plans a path in free zone.

5.3 Next best view

Automatic map building is an important problem in robotics. Research in this
area has traditionally focused on developing techniques to extract environmental
features and currently on simultaneous localization and mapping (SLAM). But
an important question at the time of constructing a model is "where should the
robot move next to observe the unexplored regions?"

The answer involves the computation of successive sensing locations by it-
eratively solving the NBV problem. At each location, the robot must not only
observe large unexplored areas of the environment, but also a portion of the
known environment to allow the robot to connect to the known environment.
NBV is complementary to SLAM. A SLAM algorithm builds a map by making
the best use of the available sensor data, whereas a NBV algorithm guides the

5.3. NEXT BEST VIEW 73

robot through locations that provide the best possible sensor data.
NBV is an on-line version of the sensor placement problem, where the 2-D

map of the environment is unknown initially and only revealed incrementally as
new sensor data are acquired.

5.3.1 Constraints on the next best view

Various algorithms were proposed and implemented to find the NBV. But in our
case, we should consider some constraints before integrating an algorithm on
HRP2.

The first constraint is that the robot must not collide with known obstacles or
unknown area. The second is the humanoid robots stability. Stability constraints
are important limits in choosing a next best view. Also, generating stable motion
to reach the next best configuration limits the space of results.

Moreover, generating one connected free area instead of various smaller free
zones is important. Otherwise, based on the limitations of our planner, the robot
is obliged to stay in one free connected zone. Our planner plans a path for the
bounding box of the robot. The bounding box slides in the workspace and it can
not jump over the unknown zone.

5.3.2 Evaluating the next best view

Suppose that at the time t, the robot is positioned at qt and the free configuration
space is Cfree. The goal is to compute the future best configuration of the robot
to explore the unknown zone or arrive at a goal configuration. The first fact
is that the unexplored areas of the environment can only be revealed from a
configuration in the free zone.

Moreover, this best configuration is logically located somewhere around the
boundary of the known free zone. This boundary has a high potential visibility
gain compared to the middle of the free zone.

Also, in case of having a geometrical target in our model, the NBV must
favor an approach towards this goal location.

The computation of the NBV must also have a factor in the cost of motion,
which is weighed against the potential visibility gain.

5.3.3 Computing the next best view

At this point, the only remaining issue is to search for the NBV. Based on our
limits and problem constraints, the problem is simplified. Similar to our planner

74 CHAPTER 5. ENVIRONMENT MODELING

Figure 5.4: The safe zone in which we look for the NBV (Schematic).

in navigation, we work with the bounding box of the robot instead of considering
all the degrees of freedom. To find non-collision configurations inside the free
zone, we use a random-sampling method to generate a number of accessible
configurations for the bounding box (x, y, θ) of the robot. The planner generates
a roadmap in the free zone (safe zone) with a predefined minimum number of
nodes.

Moreover, a set of head configurations are pre-registered to be executed for
taking photos and updating the model at each position of the bounding box. In
other words, a number of predefined head configurations are assigned to each
bounding box position and will be executed automatically after each displace-
ment of the bounding box. These configurations and the whole body motion
between each of them are generated online by a generalized inverse kinemat-
ics (GIK) package that guarantees the stability of the robot [71]. This approach
addresses the question of stability and also accelerates the process.

Based on the set of head configurations and camera properties, it is simple
to find a distance threshold between the robot bounding box and unknown zone
to guarantee an overlap between the consecutive explorations. This threshold
defines a zone inside the free area which addresses the question of having overlap
between the explorations. Figure 5.4 illustrates our safe zone in which we look
for the next best view.

Based on the camera properties and the set of head configurations, an al-
gorithm was developed to estimate the potential visibility gain. This potential

5.4. CONCLUSION 75

Figure 5.5: The consecutive NBV in exploring the environment.

visibility gain is roughly the number of unknown voxels which are located in the
visible zone. Also, the voxels which are located in the target zone are favored.

Therefore, this algorithm returns a random accessible configuration for the
bounding box with a higher potential visibility gain that guarantees the overlap
of the exploration.

5.4 Conclusion

We presented the integration of an algorithms for environment modeling. The
approach is an implementation of an existing method. We do not considered
this part of our work as a contribution, but, for having an autonomous robot,
we developed and integrated the method to link it to our planner to deal with
unknown and changing environments.

We also developed a simple algorithm which returns a NBV that fulfills our
requirements to explore the model and navigate toward a goal zone. The experi-
ments for generating the model and looking for the NBV are presented in detail
in the following chapter.

76 CHAPTER 5. ENVIRONMENT MODELING

Figure 5.6: The consecutive NBV in exploring the environment.

Chapter 6

Integration

6.1 Introduction

Thanks to the recent developments in mechatronics, humanoid robots are today
certainly the most challenging platforms we may expect to support fundamental
research on robot autonomy. They are challenging because of their anthropo-
morphic mechanical structures. Humanoid robots may perform a lot of tasks
nearing the complexity and dexterity of human tasks. Such platforms are also
challenging due to their higher number of degrees of freedom and their stability
issues.

To evaluate our work, we have integrated our approach on the platform of
humanoid robot HRP2 N.14 (Figure 6.1). The HRP2 robot family is made of
15 clones. Several of them are at the research facilities at the University of
Tokyo [24, 52, 53] and AIST [67, 68].

This chapter presents our experiment on integrating vision, navigation and
motion planning on HRP2. This chapter does not focus on a specific technical
topic in our contribution. We are going to present the organization of various
packages which are used for an autonomous exploration of an environment. This
chapter presents an extension to the previous integration on the robot in [70]. The
objective is navigating in an unknown environment.

The robot is supposed to navigate in a 3D occupancy grid model of the en-
vironment generated by vision. This extension can be added to the "purple ball"
demo [70] and enables the robot to find a collision free path in the real envi-
ronment. The robot is supposed to localize the next best view and explore the
unknown environment to fulfill a task such as "Give me the purple ball!".

As mentioned in chapter 5, localization is an important issue for generating a

77

78 CHAPTER 6. INTEGRATION

Figure 6.1: The humanoid robot HRP2

precise model of environments. Localization errors become a critical issue when
generating models of a large environment or when the robot has a lot of displace-
ment in the environment. So, we allocate a small volume of the environment for
exploration by HRP2.

The model of the environment is generated incrementally. At each step, the
robot is supposed to find the NBV and plan a collision free motion to the point.
At the same time, for updating the model, HRP2 is required to look around and
take several photos. Then, the robot uses the photos to update the model of the
environment.

Moreover, an algorithm is provided an option to favors the NBV in way to go
toward a predetermined location. For example, it can be the position for grasping
an objet.

Figure 6.2 illustrates the evolution of a 3D model of an unknown environment
along with the planning motion in the model.

6.2 Integration

As it was presented in [70], there are various packages which are integrated on
HRP2 to provide the robot with some autonomy in interacting with the workspace.
We are going to briefly present some of the existing packages which are pre-
sented in detail in [70] and also our recent work to interact with an unknown
environment.

6.2. INTEGRATION 79

Figure 6.2: Exploration of an unknown environment. Red and green voxels
represent occupied and unknown volume. The robot plans a path to the NBV
after updating the model.

80 CHAPTER 6. INTEGRATION

Figure 6.3: From [70]: GIK: A general framework for task-driven whole-body
motion including support polygon reshaping.

6.2.1 Whole body motion

For generating whole body motions such as turning the head around for taking
photos, a generalized inverse kinematic (IK) model was used as presented in [69].
Based on this method, tasks such as gaze control and hand motion are considered
and whole-body joint angles are computed to execute the motion. Meanwhile,
several criteria such as manipulability, stability or joint limits are monitored and
finally, the motion is executed. The package GIK is in charge of all the required
calculation. A general framework of whole-body motion generation [69] includ-
ing support polygon reshaping is adapted in GIK.

Figure 6.3 shows an overview of the method which is used in the package
GIK.

6.2.2 vision

HRP2 is equipped with two pairs of firewire digital color cameras, configured
on two independent stereo-vision benches. Different lenses on the two benches

6.2. INTEGRATION 81

Figure 6.4: Data flow for generating the model of the environment.

allow the selection of the appropriate bench to deal with either narrow images
and close objects or global scenes.

For constructing the model of the environment, we implementd the algorithm
of occupancy grid in the package WorldModelGrid3D. WorldModelGrid3D re-
ceives the required information from the package which is in charge of com-
puting dense 3D images StereoPixel. Also, WorldModelGrid3D requires the
position of the cameras for updating the 3D Occupancy map. The package Pom
calculates the position of the robot and reports the position of each joint.

Based on the algorithms which are presented in chapter 5, the package World-
ModelGrid3D generate a 3D grid map. Our planner uses this model for planning
collision free motion in the environment.

Figure 6.4 illustrates the data flow for generating a model of environment.

6.2.3 Navigation

After localizing a next best view, the robot is supposed to plan a free collision
path and execute it. A sampling-based method is used for motion planning. The
planner is a combination of a linear planner and that used in [70]. It favors
the non-holonomic vehicle motion and in case of failure, it uses linear motion
to connect the sampled configurations. We apply this planning method to the
bounding box of the humanoid robot.

Converting the generated path to a locomotion path is done as presented
in [70]. After converting the path into footsteps, a walking pattern generator
is applied to generate a dynamically stable walking motion using a method pro-
posed by Kajita et al. [28] based on a preview controller for zero moment point
(ZMP).

We linked this planner to the package which is in charge of updating the
roadmap in a changing environment. The package HppDynamicObstacle deals

82 CHAPTER 6. INTEGRATION

Figure 6.5: Data flow for navigation in environments.

with the changes of the model of the environment and updates the existing roadmap
in each instant. The package HppWorldModelPlanner plans the path and also is
in charge of finding the NBV after receiving the modification of environment
from the package WorldModelGrid3D.

Figure 6.5 illustrates the data flow for navigation in environments.

6.2.4 Data flows

Data like photos, models of environment, NBV and path flow through the com-
ponents by using the standard mechanism of posters defined by GenoM [20].
Posters are basically shared data structures that can be written only by one pro-
ducer (the owner) and read asynchronously by several readers without requiring
code execution in the owner process context.

6.3 Experimental results

The experiment scenario is exploring an unknown environment towards a prede-
termined location. HRP2 generates a model of the workspace incrementally by
vision. The experiment is conducted in an environment of 3m× 3m. The robot
generates a 3D occupancy model with voxels of 10cm. The robot finds NBV’s
after receiving new information from the environment and updating the model.
Then, by updating the existing roadmap, it plans a motion toward the NBV. This
loop is repeated until it arrives at the predetermined location.

6.4. CONCLUSION 83

As it was mentioned in chapter 4, localization plays a critical role in modeling
the environment. As we do not have yet a precise localization module on HRP2
robot, after some steps of executing a path and modeling, we loose the precision
of robot position.

6.4 Conclusion

We have presented the integration of our work and the existing packages on
HRP2. we combining motion planning problems with a standard occupancy grid
modeling of the environment. This integration enables HRP2 to conduct the
experiment of exploration of an unknown environment in a real situation.

Such a feature supposes an important effort in terms of software development
coordination. The targeted robustness has been reached in a small workspace
thanks to the use of experienced methods integrated in carefully defined software
architecture.

However, based on the weakness of our localization, the integration is not
robust in a large environment. We believe that these approaches in terms of
integrating the modeling and motion planning would be a step toward allowing
autonomous humanoid robots work in real environments.

Chapter 7

Conclusion

In this document we presented a strategy to plan motions for humanoid robots an
environment modeled by vision. In particular, we tackled the problem of motion
planning in stochastic maps, motion planning in non-static environments, whole-
body task planning and generating the model of an environment.

A new framework for motion planning in stochastic maps is introduced in the
second chapter. We took into account the uncertainties of the map and linked the
resultant path to the landmarks. We redefined the definition of admissible path
and reformulate the motion planning problem according to this new definition.
Our planner estimates the probability of collision with the environment and uses
this probability to accept or reject random configurations. These configurations
are then used to construct a roadmap and find a path between the initial and final
configurations. We presented a simple example to illustrate the functionality
of this approach. We emphasize that our contribution in the second chapter is
mainly conceptual and our work is preliminary in nature. However, we believe
that the problem raised by us and our proposed solution are worth reporting.

For motion planning in non-static environments, we adapted an existing ap-
proach to the problem of motion planning for the bounding box of a humanoid
robot. The 3d model of this non-static environment, is composed of thousands of
voxels and their status changes based on updated information. In our adaptation,
we first decomposed the environment into cells, each of which was composed
of a number of voxels. Based on any modification in the status of the voxels,
we updated the existing roadmap and we used this modified roadmap in the next
motion planning. Although various approaches have been presented to deal with
changing environments, we show that our approach is especially suited for navi-
gating in large workspaces.

85

86 CHAPTER 7. CONCLUSION

In chapter 4, we presented a novel way to plan whole-body tasks for hu-
manoid robots. We used a local task solver to generate valid configurations
within a random diffusion algorithm framework. Our approach is general and
addresses various types of task planning problems for humanoid robots. The pre-
sented examples in the chapter illustrate the efficiency of our random diffusion
algorithms for highly dimensioned problems. Additionally, regarding the com-
putation time required, the presented example proves that our planner is faster
than the existing local method for collision detection.

For generating the model of an environment, we relied on a 3D occupancy
grid method. The environment was discretized to thousands of voxels and a prob-
ability of occupancy was assigned to each voxel. Stereo vision provided the re-
quired information for updating these probabilities. Based on these probabilities,
we assigned a status to each voxel. This enables the robot to generate a model
of its environment incrementally. Moreover, we presented a simple method that
allows the robot to find the next best view for updating the map. The critical is-
sue concerning environment modeling is localization. It plays an important role
in generating an efficient model of the environment.

Finally, we integrated our work on the platform of HRP2 to enable the robot
to explore unknown environments. The practical implementation of the various
algorithms and methods described in the previous chapters, on the robot, required
extensive effort in term of software integration.

From our experiments we observe that the target robustness of the algorithms
was achieved in small workspaces. However, the desired functionality could not
be completely satisfied for large scale environments. This was mainly due to
technical problems of localization which were not an issue of this thesis.

The work detailed in this thesis, implements and integrates novel approaches
to environment modeling and motion and task planning. We believe our contri-
bution is a small step towards allowing autonomous humanoid robots to work in
real environments.

Bibliography

[1] R. Alami, M. Herrb, B. Morisset, R. Chatila, F. Ingrand, P. Moutarlier, S. Fleury,
M. Khatib, and T. Simeon. Around the lab in 40 days [indoor robot navigation]. In
IEEE International Conference on Robotics and Automation, 2000. Proceedings.
ICRA’00, volume 1, 2000. [cited at p. 13]

[2] P. Baerlocher and R. Boulic. Task-priority formulations for the kinematic control
of highly redundant articulated structures. In 1998 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 1998. Proceedings., volume 1, 1998.
[cited at p. 51]

[3] J.E. Banta, Y. Zhien, X.Z. Wang, G. Zhang, M.T. Smith, and M.A. Abidi. A
best-next-view algorithm for three-dimensional scene reconstruction using range
images. In Proc. SPIE, volume 2588, pages 418–429, 1995. [cited at p. 68]

[4] R. Bohlin and LE Kavraki. Path planning using lazy PRM. In IEEE International
Conference on Robotics and Automation, 2000. Proceedings. ICRA’00, volume 1,
2000. [cited at p. 36]

[5] O. Brock and L.E. Kavraki. Decomposition-based motion planning: Towards real-
time planning for robots with many degrees of freedom. 2000. [cited at p. 30, 96]

[6] O. Brock and L.E. Kavraki. Decomposition-based motion planning: A framework
for real-time motion planning in high-dimensional configuration spaces. In IEEE
International Conference on Robotics and Automation, 2001. Proceedings 2001
ICRA, volume 2, 2001. [cited at p. 29]

[7] O. Brock and O. Khatib. Elastic strips: A framework for integrated planning and
execution. Lecture notes in control and information sciences, pages 329–338,
1999. [cited at p. 26, 27, 96]

[8] O. Brock and O. Khatib. Real-time re-planning in high-dimensional config-
uration spacesusing sets of homotopic paths. In IEEE International Confer-

87

88 BIBLIOGRAPHY

ence on Robotics and Automation, 2000. Proceedings. ICRA’00, volume 1, 2000.
[cited at p. 26, 28, 96]

[9] J. Canny. The complexity of robot motion planning. MIT press, 1988. [cited at p. 7]

[10] M. Cherif and M. Vidal. Planning handling operations in changing industrial
plants. In 1998 IEEE International Conference on Robotics and Automation, 1998.
Proceedings, volume 1, 1998. [cited at p. 25, 26, 96]

[11] H.M. Choset. Principles of robot motion: theory, algorithms, and implementation.
MIT Press, 2005. [cited at p. 7, 52]

[12] D. Cole and P. Newman. Using laser range data for 3d slam in outdoor envi-
ronments. In IEEE International Conference on Robotics and Automation, pages
1556–1563, Florida, May 2006. [cited at p. 67]

[13] J. Cortes, T. Simeon, and J.P. Laumond. A random loop generator for planning the
motions of closed kinematic chains using PRM methods. Robotics and Automa-
tion, 2002. Proceedings. ICRA’02. IEEE International Conference on, 2, 2002.
[cited at p. 52]

[14] A. Davison, I. Reid, N. Molton, and O. Stasse. Monoslam: Real-time single camera
slam. IEEE Transaction an pattern analysis and machine intelligence, 29(6), June
2007. [cited at p. 13, 67]

[15] A. Elfes. Occupancy Grids: A Probabilistic Framework for Robot Perception and
Navigation. PhD thesis, Carnegie Mellon University, 1989. [cited at p. 70]

[16] A. Elfes. Using occupancy grids for mobile robot perception and navigation. Com-
puter, 22(6):46–57, 1989. [cited at p. 67, 69, 70]

[17] C. Esteves Jaramillo. Motion planning: from digital actors to humanoid robots.
PhD thesis, Institut National Polytechnique, Toulouse, 100p., 2007. Doctorat.
[cited at p. 9, 10, 11, 12, 95, 96]

[18] C. Estrada, J. Neira, and J.D. Tardos. Hierarchical SLAM: Real-time accurate
mapping of large environments. IEEE Transactions on Robotics, 21(4):588–596,
2005. [cited at p. 13]

[19] E. Feron, E. Frazzoli, and M. Dahleh. Real-time motion planning for agile au-
tonomous vehicles. In AIAA Conference on Guidance, Navigation and Control,
2000. [cited at p. 25]

[20] S. Fleury, M. Herrb, and R. Chatila. Genom: A tool for the specification and the
implementation of operating modules in a distributed robot architecture. In Pro-
ceedings of the IEEE International Conference on Intelligent Robots and Systems
(IROS), 1997. [cited at p. 82]

89

[21] T. Foissotte, O. Stasse, A. Escande, P.B. Wieber, and A. Kheddar. A two-steps next-
best-view algorithm for autonomous 3d object modeling by a humanoid robot. In
IEEE International Conference on Robotics and Automation (ICRA), pages 1159–
1164, 2009. [cited at p. 68]

[22] D. Hsu, R. Kindel, J.C. Latombe, and S. Rock. Randomized kinodynamic motion
planning with moving obstacles. The International Journal of Robotics Research,
21(3):233, 2002. [cited at p. 29, 31, 96]

[23] D. Hsu, J.C. Latombe, and R. Motwani. Path planning in expansive configuration
spaces. Int. J. Computational Geometry & Applications, 9(4-5):495–512, 1999.
[cited at p. 8]

[24] T. Inamura, K. Okada, S. Tokutsu, N. Hatao, M. Inaba, and H. Inoue. HRP-2W:
A humanoid platform for research on support behavior in daily life environments.
Robotics and Autonomous Systems, 2008. [cited at p. 77]

[25] P. Indyk and J. Matousek. Low-distortion embeddings of finite metric spaces,
Handbook of Discrete and Computational Geometry, 2004. [cited at p. 7]

[26] L. Jaillet and T. Simeon. A PRM-based motion planner for dynamically changing
environments. In 2004 IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2004.(IROS 2004). Proceedings, volume 2. [cited at p. 29, 32, 33, 96, 97]

[27] B. Jensen, G. Froidevaux, X. Greppin, A. Lorotte, L. Mayor, M. Meisser, G. Ramel,
and R. Siegwart. The interactive autonomous mobile system RoboX. In IEEE/RSJ
International Conference on Intelligent Robots and System, 2002, volume 2, 2002.
[cited at p. 13]

[28] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and
H. Hirukawa. Biped walking pattern generation by using preview control of zero-
moment point. Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE In-
ternational Conference on, 2, 2003. [cited at p. 81]

[29] M. Kallman and M. Mataric. Motion planning using dynamic roadmaps. In 2004
IEEE International Conference on Robotics and Automation, 2004. Proceedings.
ICRA’04, volume 5. [cited at p. 33, 34, 36, 97]

[30] F. Kanehiro, F. Lamiraux, O. Kanoun, E. Yoshida, and JP Laumond. A Local
Collision Avoidance Method for Non-strictly Convex Polyhedra. In 2008 Robotics:
Science and Systems Conference, 2008. [cited at p. 51, 52, 61, 64]

[31] F. Kanehiro, W. Suleiman, F. Lamiraux, E. Yoshida, and J.P. Laumond. Integrating
Dynamics into Motion Planning for Humanoid Robots. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2008. IROS 2008, pages 660–667,
2008. [cited at p. 52, 53, 61, 64]

90 BIBLIOGRAPHY

[32] L.E. Kavraki, P. Svestka, J.C. Latombe, and M.H. Overmars. Probabilistic
roadmaps for path planning in high-dimensionalconfiguration spaces. IEEE trans-
actions on Robotics and Automation, 12(4):566–580, 1996. [cited at p. 8, 13, 52]

[33] O. Khatib, L. Sentis, J. Park, and J. Warren. Whole body dynamic behavior
and control of human-like robots. International Journal of Humanoid Robotics,
1(1):29–43, 2004. [cited at p. 51]

[34] J.J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, and H. Inoue. Dynamically-stable
motion planning for humanoid robots. Autonomous Robots, 12(1):105–118, 2002.
[cited at p. 52, 53]

[35] J.J. Kuffner and S.M. LaValle. RRT-connect: An efficient approach to single-query
path planning. In IEEE International Conference on Robotics and Automation,
2000. Proceedings. ICRA’00, volume 2, 2000. [cited at p. 8, 13, 52, 53, 57]

[36] J.C. Latombe. Robot motion planning. Kluwer academic publishers, 1991.
[cited at p. 7, 52]

[37] J.P. Laumond. Robot motion planning and control. Lecture notes in control and
information sciences. [cited at p. 7]

[38] J.P. Laumond. Kineo CAM: a success story of motion planning algorithms.
Robotics & Automation Magazine, IEEE, 13(2):90–93, 2006. [cited at p. 64]

[39] S.M. LaValle. Planning Algorithms. Cambridge University Press, 2006.
[cited at p. 7, 52]

[40] S.M. LaValle, J.H. Yakey, and L.E. Kavraki. A probabilistic roadmap approach for
systems with closed kinematicchains. In 1999 IEEE International Conference on
Robotics and Automation, 1999. Proceedings, volume 3, 1999. [cited at p. 52]

[41] T. Lemaire, S. Lacroix, and J. Solá. A practical 3d bearing-only slam algorithm.
Edmonton, Canada, August 2005. IEEE/RSJ. [cited at p. 13, 67]

[42] J.L. Leonard, R.N. Carpenter, and H.J.S. Feder. Stochastic mapping using forward
look sonar. Robotica, 19(05):467–480, 2001. [cited at p. 13]

[43] P. Leven and S. Hutchinson. Toward Real-Time Path Planning in Changing Envi-
ronments. Algorithmic and Computational Robotics: New Directions: the Fourth
Workshop on the Algorithmic Foundations of Robotics, 2001. [cited at p. 33, 34, 35,

36, 39, 41, 42, 97]

[44] M. Lin, D. Manocha, J. Cohen, and S. Gottschalk. Collision detection: Algorithms
and applications. In Algorithms for Robotics Motion and Manipulation (Proc.
of 1996 Workshop on the Algorithmic Foundations of Robotics), pages 129–142,
1996. [cited at p. 13]

91

[45] H. Liu, X. Deng, H. Zha, and D. Ding. A Path Planner in Changing Environments
by Using WC Nodes Mapping Coupled with Lazy Edges Evaluation. Intelligent
Robots and Systems, 2006 IEEE/RSJ International Conference on, pages 4078–
4083, 2006. [cited at p. 35, 37, 97]

[46] T. Lozano-Perez. Spatial planning: A configuration space approach. IEEE trans-
actions on computers, 1983. [cited at p. 7]

[47] A. McLean and I. Mazon. Incremental roadmaps and global path planning in
evolvingindustrial environments. In 1996 IEEE International Conference on
Robotics and Automation, 1996. Proceedings., volume 1, 1996. [cited at p. 25]

[48] P.E. Missiuro and N. Roy. Adapting probabilistic roadmaps to handle uncertain
maps. In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE
International Conference on, pages 1261–1267, 2006. [cited at p. 14]

[49] H. Moravec and A. Elfes. High resolution maps from wide angle sonar. Robotics
and Automation. Proceedings. 1985 IEEE International Conference on, 2, 1985.
[cited at p. 67]

[50] Y. Nakamura and H. Hanafusa. Inverse kinematic solutions with singularity ro-
bustness for robot manipulator control. ASME, Transactions, Journal of Dynamic
Systems, Measurement, and Control, 108:163–171, 1986. [cited at p. 51]

[51] A. Nuchter, H. Surmann, J. Hertzberg, and S. Birlinghoven. Planning robot motion
for 3d digitalization of indoor environments. In Proc. of the 11th International
Conference on Advanced Robotics (ICAR), 2003. [cited at p. 68]

[52] K. Okada, T. Ogura, A. Haneda, J. Fujimoto, F. Gravot, and M. Inaba. Humanoid
motion generation system on HRP2-JSK for daily life environment. planning, 6:7.
[cited at p. 77]

[53] K. Okada, T. Ogura, A. Haneda, D. Kousaka, H. Nakai, M. Inaba, and H. In-
oue. Integrated system software for HRP2 humanoid. In 2004 IEEE International
Conference on Robotics and Automation, 2004. Proceedings. ICRA’04, volume 4,
2004. [cited at p. 77]

[54] J. O’Rourke. Art gallery theorems and algorithms. Oxford University Press New
York, 1987. [cited at p. 68]

[55] M.H. Overmars. Algorithms for motion and navigation in virtual environments and
games. Algorithmic Foundations of Robotics V, page 1, 2003. [cited at p. 25]

[56] S. Quinlan and O. Khatib. Elastic bands: Connecting path planning and control.
In IEEE International Conference on Robotics and Automation, pages 802–802.
Citeseer, 1993. [cited at p. 26]

92 BIBLIOGRAPHY

[57] J.M. Sanchiz and R.B. Fisher. A next-best-view algorithm for 3D scene recovery
with 5 degrees of freedom. In Proc. British Machine Vision Conference BMVC99,
Nottingham, pages 163–172, 1999. [cited at p. 68]

[58] J.T. Schwartz and M. Sharir. On the piano mover’s problem: III. Planning, Ge-
ometry, and Complexity of Robot Motion, edited by JT Schwartz, M. Sharir, and J.
Hopcroft, Ablex, New York, 1987. [cited at p. 7]

[59] B. Siciliano and J.J.E. Slotine. A general framework for managing multiple tasks in
highly redundant robotic systems. In Advanced Robotics, 1991.’Robots in Unstruc-
tured Environments’, 91 ICAR., Fifth International Conference on, pages 1211–
1216, 1991. [cited at p. 51]

[60] T. Simeon, J.P. Laumond, and C. Nissoux. Visibility-based probabilistic roadmaps
for motion planning. Advanced Robotics, 14(6):477–494, 2000. [cited at p. 10]

[61] M. Stilman. Task constrained motion planning in robot joint space. In Proc. of
the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, pages 3074–3081.
Citeseer, 2007. [cited at p. 52]

[62] S. Thrun. Learning occupancy grid maps with forward sensor models. Autonomous
Robots, 15(2):111–127, 2003. [cited at p. 67]

[63] S. Thrun, M. Beetz, M. Bennewitz, W. Burgard, A. Cremers, F. Dellaert, D. Fox,
D. Hahnel, C. Rosenberg, N. Roy, J. Schulte, and D. Schulz. Probabilistic algo-
rithms and the interactive museum tour-guide robot minerva. IJRR, 19(11):pp 972–
999, 2000. [cited at p. 67]

[64] S. Thrun, M. Bennewitz, W. Burgard, AB Cremers, F. Dellaert, D. Fox, D. Hahnel,
C. Rosenberg, N. Roy, J. Schulte, et al. MINERVA: A second-generation mu-
seum tour-guide robot. In 1999 IEEE International Conference on Robotics and
Automation, 1999. Proceedings, volume 3, 1999. [cited at p. 13]

[65] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.
[cited at p. 67]

[66] J. van den Berg, D. Ferguson, and J.J. Kuffner. Anytime path planning and re-
planning in dynamic environments. Robotics and Automation, 2006. ICRA 2006.
Proceedings 2006 IEEE International Conference on, pages 2366–2371, 2006.
[cited at p. 32, 34, 97]

[67] K. Yokoi, E.E.S. Neo, H. Arisumi, E. Yoshida, O. Stasse, Y. Kawai, S. Kajita,
F. Kanehiro, et al. Humanoid robot hrp-2 no. 10 with human supervision. Nippon
Kikai Gakkai Robotikusu, Mekatoronikusu Koenkai Koen Ronbunshu, 2005, 2005.
[cited at p. 77]

93

[68] K. Yokoi, N.E. Sian, T. Sakaguchi, O. Stasse, Y. Kawai, and K.I. Maruyama. Hu-
manoid robot HRP-2 with human supervision. In Experimental Robotics, vol-
ume 39, pages 513–522. Springer. [cited at p. 77]

[69] E. Yoshida, O. Kanoun, C. Esteves, and J.P. Laumond. Task-driven support poly-
gon reshaping for humanoids. Humanoid Robots, 2006 6th IEEE-RAS Interna-
tional Conference on, pages 208–213, 2006. [cited at p. 54, 80]

[70] E. Yoshida, A. Mallet, F. Lamiraux, O. Kanoun, O. Stasse, M. Poirier, P.F.
Dominey, J.P. Laumond, and K. Yokoi. Give me the purple ball – he said to hrp-2
n.14. In IEEE RAS/RSJ Conference on Humanoids Robots, Pittsburg, USA, 30 Nov.
- 2 Dec., page Oral presentation, 2007. [cited at p. 77, 78, 80, 81, 99]

[71] E. Yoshida, A. Mallet, F. Lamiraux, O. Kanoun, O. Stasse, M. Poirier, P.F.
Dominey, J.P. Laumond, and K. Yokoi. "give me the purple ball" he said to hrp-2
n. 14. In Proceedings of the IEEE-RAS Conf. on Humanoids, 2007. [cited at p. 74]

List of Figures

1.1 HRP platforms. Right to left: HRP2, HRP3 and the last humanoid
HRP4. 3

1.2 Autonomous robot in an environment: a- Perception, b- Modeling,
c- Motion Planning, d- Execution. 4

1.3 The humanoid robot HRP2 . 5

2.1 Motion planning concept: Finding a collision free path between an
initial and final configurations. 8

2.2 From [17]: a) A Piano Mover’s Problem. Two robots and a virtual
character cooperate to transport a piano in a workspaceW ⊂ R3. b)
The configuration space is divided in Cfree (light areas) and Cobstacle
(dark areas). A path can be found between q1 and q2 because they
lie in the same connected component of Cfree, which is not the case
for q3. 9

2.3 From [17]: In the PRM algorithm a roadmap R is build around the
obstacles by drawing random collision-free configurations (nodes)
and connecting them to their nearest neighbors using feasible robot
motions (edges). The query is solved by connecting qinit and qend to
the graph and then finding the shortest path on it (thick lines) 10

2.4 From [17]: With the RRT algorithm, two trees rooted on qinit and
qgoal can be grown simultaneously. Each tree is extended until leaf
configurations q1 and q2 from each tree can be connected by a ran-
domly drawn configuration qrand. 11

95

96 LIST OF FIGURES

2.5 From [17]: The Visibility-PRM algorithm produces a compact roadmap
around obstacles with only a few nodes: guards qg (dark circles) and
connectors qc (in white). A new randomly drawn configuration qrand
is added as a guard if it covers a previously unseen visibility domain
with a given L or as a connector if it serves as liaison between at
least two connected components. 12

2.6 A brief diagram illustrates the planning date flow. 19

2.7 The integral is computed over a ball included in the cone defining
non-collision. 21

2.8 The mean value of the obstacle configurations and the robot initial
(I.P) and final (F.P) configuration. 23

2.9 Red dots represent the mean values in the stochastic map. The red
line represents the planned path. Blue dots represent the actual posi-
tions of the landmarks and the blue line represents the path which is
followed by the robot by performing localization on the landmarks. 24

3.1 From [10]: Left: the planned path. Right: the resulting updated
roadmap after changing the workspace 26

3.2 From [7]: a) A protective hull around the Stanford Mobile Manipu-
lator. b)An elastic tunnel formed by several overlapping protective
hulls. 27

3.3 From [8]: On the left: Four manipulator arms move into the path
of the Stanford Mobile Manipulator; replanning using elastic strips
is performed in real-time to maintain a valid path. The path is indi-
cated by lines connecting points on conscutive configurations along
the elastic strip. It is converted into a smooth trajectory during ex-
ecution. On the right: A Stanford Mobile Manipulator moves into
the path of another one. The path is updated in real-time to avoid a
collision. 28

3.4 From [5]: Real-time planning in a dynamic environment. 30

3.5 From [22]: Top) Computed example for the air-cushined robot. bot-
tom) configuration × time representation. 31

3.6 From [26]: Example of a 3D scene with moving obstacles: start
and goal configurations of the 9dof mobile manipulator carrying a
board and three path solutions obtained for several settings of the
environment (doors closed/open and three other moving obstacles
placed around the table) . 32

97

3.7 From [26]: A static roadmap is first computed in the configuration
space of the robot (1). During queries, a solution path can be found
directly inside this roadmap (2) or via a RRT like technique to recon-
nect edges broken by dynamic obstacles (3). If the existing roadmap
does not permit to find a solution, new nodes are inserted and the
roadmap is reinforced with cycle creation (4). 33

3.8 From [66]: An example path (in black) planned through state-time
space from the initial robot position (in green) to the goal (shown as
a vertical blue line extending from the goal location upwards through
time). Also shown are the extrapolated trajectories of the dynamic
obstacles (in yellow). The underlying PRM has been left out for
clarity but can be seen in Right image. 34

3.9 From [43]: A plan for a 19-joint robot passing through a relatively
narrow corridor. The dark blocks are the obstacles. 35

3.10 From [29]: Portions of the roadmap are dynamically invalidated ac-
cording to the obstacles inserted in Robonaut’s workspace. 36

3.11 From [45]: Path planning for a dual-manipulators system with 12
DOFs in changing environments. 37

3.12 The planner updates a roadmap based on the modification in the en-
vironment. Figure a illustrates simple 2D model of the environment
with a roadmap that connect initial and final configuration. Figure
b shows the recent environment which is modified partially and in
result, some nodes and edges of the roadmap are in collision based
on the new model. In c, the invalid nodes and edges are erased and
finally, in d, the updated roadmap is used to find the path in new
environment. 38

3.13 2D cell decomposition for a robotic arm. 39

3.14 Motion planning in 3D model of robotics lab in LAAS-CNRS. The
size of workspace is 17m ×12.5m×1.7m. The workspace is mod-
eled with 10cm×10cm×10cm 3D Voxels. Also, workspace is de-
composed to the 1.5m×1.5×1.5m Cells to implement the approach. 40

3.15 The sequence of process in encountering a change in an environ-
ment. 41

98 LIST OF FIGURES

3.16 Illustration of roadmap management during updates of workspace.
Red and green voxels represents occupied and unknown zone respec-
tively. The circle shows a free part of environment which becomes
occupied later: a) A roadmap is illustrated in the top view of a 3D
model of an environment which is generated by vision. b) The model
is updated based on new information from camera. c) The roadmap
is modified based on the updates in the 3D model by using our cell
decomposition algorithm. Some nodes and edges are erased from the
roadmap during the modifications. d) The modified roadmap is used
for a motion planning process. Some nodes and edges are added to
the roadmap. 43

3.17 The mobile robot Jido which is used in the experiment for taking the
required photos. 44

3.18 Changes in the environment. HRP2 uses the cell decomposition
method to validate some of the nodes and edges in the existing roadmap
for planning next motions . 45

3.19 S and G represent the initial and final configuration of HRP2 in the
model. Red and Green voxels represent the occupied and unknown
region in the model. 47

3.20 Modification in the status of 124 voxels represent displacement of a
table in the model. Red and Green voxels represent the occupied and
unknown region in the model. 48

4.1 Reaching for an object in a constrained area 53
4.2 One step of extension of the RRT-Connect algorithm 54
4.3 Root finding using Newton-Raphson method 55
4.4 One step of constrained extension 56
4.5 Random goal configurations solving the reaching task. All the con-

figurations are stable and collision-free. 58
4.6 Different steps of a posture optimization. All the configurations re-

spect the stability and goal constraints, and the configurations are
more and more natural. 58

4.7 HRP2 in two configurations: The both configurations satisfy the task
of grasping an object with the right hand. Configuration (a) looks
more “natural”. 60

4.8 By considering the constraint of fixed foot position, the target is not
accessible by the left hand. 60

4.9 The density of hand positions for a number of random configurations. 61

99

4.10 The density of hand positions for a number of random configura-
tions. The density is illustrated for each layer along the Z axis. . . . 62

4.11 Solution path for “Table” scenario. 63
4.12 Solution path for “Torus” scenario. 63
4.13 Solution path for a complete resolution of a door opening problem.

The walk motion at start was generated separately with a walk plan-
ner. We then successively solved a hand reaching problem to grab
the handle and a specific door constraint problem to keep the hand
on a given arc of a circle. 65

5.1 Estimating the occupancy probability profile. 70
5.2 The robotic lab in LAAS-CNRS which is modeled based on this

approach. Red and green voxels (cube) represent occupied and un-
known volumes respectively in the model. The work space is mod-
eled with 3D voxels of 5cm×5cm×5cm. Notice that this model is
the result of several stereo-images taken from different points. . . . 71

5.3 Exploring an unknown environment. Red and green voxels represent
occupied and unknown zones in the model. The robot plans a path
in free zone. 72

5.4 The safe zone in which we look for the NBV (Schematic). 74
5.5 The consecutive NBV in exploring the environment. 75
5.6 The consecutive NBV in exploring the environment. 76

6.1 The humanoid robot HRP2 . 78
6.2 Exploration of an unknown environment. Red and green voxels rep-

resent occupied and unknown volume. The robot plans a path to the
NBV after updating the model. 79

6.3 From [70]: GIK: A general framework for task-driven whole-body
motion including support polygon reshaping. 80

6.4 Data flow for generating the model of the environment. 81
6.5 Data flow for navigation in environments. 82

List of Tables

3.1 Time performance. 45
3.2 Memory performance. 46
3.3 Path planning . 48
3.4 Path planning by applying the approach 48

4.1 Computational time [ms] for the presented scenarios. 63

100

	Contents
	Abstract
	Résumé
	Acknowledgements
	Contents
	Chapter 1 General Introduction
	1.1 Robotics
	1.2 Humanoid robots
	1.3 Motivation
	1.4 Contribution
	1.5 Document organization
	1.6 Publications associated to this work

	Chapter 2 Motion planning in stochastic maps
	2.1 Introduction
	2.2 Motion planning concepts
	2.3 Motion planning in stochastic maps
	2.4 Definitions
	2.5 Description of the method
	2.5.1 Input data
	2.5.2 Localization
	2.5.3 Feedback control law
	2.5.4 Path planing
	2.5.5 Distance to obstacles
	2.5.6 Calculating the probability of collision

	2.6 Example
	2.7 Conclusion

	Chapter 3 Motion planning in changing environments
	3.1 Introduction
	3.2 General idea of the planner
	3.3 Work space cell-decomposition
	3.4 Updating cells
	3.5 Constructing roadmap
	3.6 Updating roadmap
	3.7 Examples
	3.7.1 Experiment 1
	3.7.2 Experiment 2
	3.7.3 Experiment 3

	3.8 Conclusion

	Chapter 4 Whole-body task planning
	4.1 Introduction
	4.1.1 Whole-Body task motion planning
	4.1.2 Randomized motion planning
	4.1.3 Contribution

	4.2 Preliminaries
	4.2.1 RRT-Connect
	4.2.2 Local path planning under task constraints

	4.3 Randomized task planning for a humanoid robot
	4.3.1 Task constrained extension
	4.3.2 Goal configuration generation
	4.3.3 Posture optimization
	4.3.4 General architecture

	4.4 Work space analysis
	4.5 Examples and comparison with previous methods
	4.5.1 Dual support ''Table'' scenario
	4.5.2 Single support ``Torus'' scenario
	4.5.3 When to deal with obstacle avoidance

	4.6 Conclusion

	Chapter 5 Environment modeling
	5.1 Introduction
	5.2 Environment modeling
	5.2.1 Occupancy grid map.
	5.2.2 Sensor model
	5.2.3 Updating 3D model

	5.3 Next best view
	5.3.1 Constraints on the next best view
	5.3.2 Evaluating the next best view
	5.3.3 Computing the next best view

	5.4 Conclusion

	Chapter 6 Integration
	6.1 Introduction
	6.2 Integration
	6.2.1 Whole body motion
	6.2.2 vision
	6.2.3 Navigation
	6.2.4 Data flows

	6.3 Experimental results
	6.4 Conclusion

	Chapter 7 Conclusion
	Bibliography
	List of Figures
	List of Tables

