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Chapter 5

Introduction

This chapter presents the topic of disturbance energies in flows and the advanced post-processing tool
developed during this PhD to check the closure of balances of disturbance energy conservation equations.
Section5.1gives a review of previous studies related to this topic. The attention is particularly focused
on the hypothesis done by each authors to derive conservation equations for disturbance energies.
Section5.2 presents the post-processing tool used during this thesis to compute the balances of such
quantities. Details of the implementation are provided.
Section5.3 gives simple validations of the tool on a 2D reacting configuration checking the closure of
the balances of mass, axial momentum and total energy conservation equations.

5.1 Previous studies

Combustion stability has received sustained attention in both the academic and industrial communi-
ties over the last fifty years in particular. During this time, the literature on this problem has grown
enormously, and now spans numerous applications including rockets [45, 35], afterburners [12], gas
turbines [39, 107] and industrial burners [118]. The sustained research on this problem is primarily
because manufacturers still rely heavily on in situ testing and tuning of the complete, operating device
to avoid instability. This continued reliance on testing has several causes, including incompleteness in
our fundamental understanding of the problem, as argued recently by Nicoud and Poinsot[93].

The following sections present previous studies concerning this particular issue.

• First a simple derivation leading to an extended Rayleigh stability criterion is discussed. It points
out the main hypothesis that are necessary for this criterion to be relevant.

• Further developments of Morfey [85] and Bloxsidge et al. [12] on acoustic energy are then dis-
cussed.



INTRODUCTION

• Finally, the notion of ”disturbance energy” in non-reacting and reacting flows is introduced thanks
to the works of Myers [88] and Chu [23].

5.1.1 Classical acoustic energy

The Rayleigh stability criterion is the most common argument for explaining combustion stability. Whilst
Rayleigh himself only first stated this criterion in prose form [120], it is often written as

∫
Ω
p′ω′Tdx > 0, (5.1)

wherep′, ωT
′ andΩ are the static pressure and heat release rate disturbances at a point in space and the

combustor volume respectively.(¯) denotes the time average. This criterion states that the combustor
is unstable when the relative phase of the pressure and heat release disturbances over the combustor
volume are such that the integral is positive.

The following paragraphs presents a simple derivation of the acoustic energy in a reacting medium1

which (with the right assumptions) leads to an extended Rayleigh criterion. The starting point of this
derivation is the Navier-Stockes equations expressed here in tensor form and using total derivatives. The
first two used assumptions are:

• zero volume forces

• zero volume heat sources

The required equations are mass and momentum conservation equations:

Dρ

Dt
+ ρ~∇.~u = 0 (5.2)

ρ
D~u

Dt
= −~∇p+ ~∇τ (5.3)

Since the flow is not adiabatic, the energy equation is also required :

ρcp
DT

Dt
= ω̇′T +

Dp

Dt
+ τ : ~∇(~u)−

(
ρ

N∑
k=1

Cp,kYk
~Vk

)
.~∇T (5.4)

where~Vk is the diffusion velocity vector of species k. By dividing equation5.4 by ρcpT and using the
equation of statep = ρrT , one obtains a conservation equation forln(p):

1
γ

Dln(p)
Dt

+ ~∇.~u =
1

ρcpT

[
ω̇T + τ : ~∇(~u)− ρ

N∑
k=1

Cp,kYk
~Vk

]
+

1
r

Dr

Dt
(5.5)

1The major part of this derivation can be found in [107]
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5.1 Previous studies

Furthermore, if the following hypothesis are made:

• low-speed mean flow,

• identical molecular weights for all species,

• negligible viscous terms,

• all convective derivatives are negligible compared to time derivatives,

the following simplification can be made:

• γ is constant and the mean pressurep0 is also constant so thatγp0 = ρ0c
2
0 is constant.

Equation5.5then simplifies to :
1
γ

∂ln(p)
∂t

+ ~∇.~u =
1

ρcpT
ω̇T (5.6)

Equation5.3simplifies to :

ρ
∂~u

∂t
= −~∇p (5.7)

Linearizing equations5.6 and5.7, one derives the following set of equations for the fluctuations of
pressurep1 and velocity~u1

∂~u1

∂t
= − 1

ρ0

~∇p1 (5.8)

1
γp0

∂p1

∂t
+ ~∇.~u1 =

γ − 1
γp0

ω̇T1 (5.9)

Taking the scalar product of equation5.8 with ~u1 and multiplying equation5.9 by p1 and adding both
results, leads to :

∂

∂t

(
1
2
ρ0u

2
1 +

1
2ρ0c20

p2
1

)
+ ~∇. ~p1 ~u1 =

γ − 1
γp0

p1ω̇T1 (5.10)

Equation5.10 stands for the local evolution of the acoustic energy. To assess the increase of the
acoustic energy in a configuration, equation5.10must be integrated over the total volume and over one
period of oscillation which gives :

E1(Tn+1)− E1(Tn) =
∫

V

γ − 1
γp0

p1ω̇T1dv −
∫

S
p1 ~u1.~nds (5.11)

whereE(Tn) = 1
2ρ0u

2
1(t = Tn)+ 1

2ρ0c20
p2
1(t = Tn) accounts for the acoustic energy at timet = Tn. The

stability criterion emerging from equation5.11states that the configuration will become unstable (i.e the
acoustic energy will grow from one cycle of excitation to the other) if :∫

V

γ − 1
γp0

p1ω̇T1dv >

∫
S
p1 ~u1.~nds (5.12)
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the term
∫
S p1 ~u1.~nds therefore represent the ’acoustic losses’ due to acoustic fluxes across the bound-

aries.

Table5.1 sums up the hypothesis used to derive an extended Rayleigh stability criterion. The first
remark is that many hypothesis are needed, therefore restricting the analysis to special cases. To sum up,
species must have the same thermal capacities and the mean flow velocity must remain small in order to
conserve a small mean Mach number. Finally, the fluctuations of all variables must remain small which
is a strong hypothesis especially in reacting flows where the flame moves from one place to the other.
This move creates temperature fluctuations which have the same amplitude as the mean temperature.

For all these reasons many authors have tried to define other quantities that would have the same
properties as the acoustic energy well defined in non reacting flows but that would not rely on the same
hypothesis. In the following section, emphasis is made on the works of Morfey [85] and Bloxsidge et
al. [12].

5.1.2 Further development of the concept of acoustic energy

The generalised concept of acoustic energy

Morfey start his analysis with some statements about the definition of acoustic energy. Some parts of the
following are directly taken from [85]. In an ideal acoustic medium at rest, the sound power crossing any
closed surface S is defined as :

W =
∫

S
Ids (5.13)

whereI = p′~v′.~n is the acoustic intensity.
”The usefulness of sound power derives from its continuity property : ifS1 andS2 are two surfaces
enclosing the same source of sound, the same value ofW is found for both surfaces, provided that the
intervening region is in a steady state. This property is so useful that the question arises whether in a
more general situation, such as a moving medium, a quantity can be found analogous to sound power in
the classical situation.”
Morfey proposes the following approach:
A vector ~I may be sought which is based on first-order estimates of the sound field, and reduces to the
classical expression in that~∇.~I vanishes (to second order in fluctuating quantities) over a wider range of
conditions than~∇.(p′~v′). The wider the range of conditions, the more general is the continuity property
and the more useful the definition.

Separing the velocity fluctuation into rotational (induced by vorticityw′) and irrotational (induced
by acousticu′) parts (v′ = u′ + w′), Morfey defines a conservation equation for a generalized acoustic
energy (E?) in a rotational mean flow, in presence of entropy gradients combined with mean pressure
gradients or flow. Heat conduction and viscous dissipation is also taken into account.

∂E?

∂t
+ ~∇. ~N? = P0 + P1 (5.14)
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5.1 Previous studies

Description Comments
H1

Usual hypothesis, the flow is not forced using
external forced

zero volume forces

H2
Usual hypothesis, the flow is not heated using an
external source of heat.

zero volume heat sources

H3
In practice the derivation can be done for small
mean Mach number configuration only.

low-speed mean flow :M0 << 1

H4
The derivation is enclosed in the analysis of
mixture with low differences between species
thermodynamic quantities. This excludesH2/O2 or
H2/Air flames.

Cp,i = c̄p, Cv,i = c̄v for all species

H5
Often true for low Reynolds configurations.
Especially, in reacting flows, the variation of the
pressure due to the combustion process is much
bigger than the variation due to the turbulence

negligible viscous terms :τ << 1

H6
Strongly linked with H3~u.~∇(f) << ∂f

∂t

H7

Low fluctuation level :
u1 << c0, p1 << p0, etc...

One of the most important hypothesis. If this
condition is not satisfied the linearization process
cannot be accomplished. A priori not always true,
especially for temperature fluctuations in reacting
configurations.

Table 5.1 -Necessary hypothesis to derive an extended Rayleigh stability criterion.
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E? represents a generalized acoustic energy density andN? is the generalized acoustic energy flux, given
by :

E? =
1

2ρc2
p′2 +

1
2
ρu′2 + (~V .~u′)

p′

c2
(5.15)

and
~N? = p′~u′ +

p′2

ρc2
~V +

p′

c
(~V .~u′)~V + ρ(~V .~u′)~V (5.16)

where~V is the mean velocity.P0 andP1
2 are respectively the production rate in uniform fluid at rest and

the additional production term when sound travels through a rotational medium, or through a medium in
which mean entropy gradients are combined with mean pressure gradients or flow.

The acoustic energyE? defined by Morfey differs from the the classical acoustic energy in that it
contains an additional term :(~V .~u′) p′

c2
. This term appears as one considers the propagation of sound

in a moving medium and accounts for the acoustic energy contained in the interaction between the
fluctuations of velocity and pressure and the mean field. The acoustic energy flux also differs from the
classical one in that it contains three terms that are related to the interaction between the mean moving
flow and the fluctuations of pressure and velocity. The sound power crossing two enclosed surface is
in general different of an amount equal to the volume integral of the production term in the intervening
space.

This analysis states that part of the sound production can be related to fluctuations of the entropy
field. Though, the sources terms linked to entropy fluctuations are not developed and therefore no direct
link with the Rayleigh criterion can be made.

Morfey[85] considers a viscous, heat conducting fluid, and first splits the disturbance velocity field
into irrotational and solenoidal components which are defined as the acoustic and unsteady vortical
motions respectively. He then applies the definitions of acoustic energy density and flux proposed by
Cantrell[18] for inviscid, non heat conducting flows to his acoustic field. Any resulting entropy dis-
turbances in Morfey’s analysis are then shifted into the source term. However, the definition of all
irrotational velocity disturbances as ‘acoustic’ is problematic in combusting flows because they usually
feature significant irrotational velocity disturbances due to heat addition. These are entropy disturbances
and therefore convective rather than acoustic [24].

On the production rate terms

Bloxsidge et al. [12] address this particular point theoretically by deriving a 1D conservation equation
for acoustic energy in a reacting configuration. In their case, drag forces in the momentum equation
have been neglected. Heat capacities for the species are equal and constant. Conservation equations
of velocity, entropy and mass are linearized around the mean flow field denoted(¯). All fluctuating

2The reader is referred to [85] for the exact definitions of these terms

152
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quantities are denoted()′. The following production term for the acoustic energy defined by Morfey[85]
is found:

P =
γ − 1
ρ̄c̄2

ω′T (p′ + ρ̄ūu′)

−(γ − 1)ω̄T

1− M̄2

[
(γ − 1− γM̄2)

(
p′2

γ2p̄2
+
ūp′u′

γρ̄c̄2

)
+ (1− M̄2)

u′2

c̄2
+
M̄ρ′

ρ̄

(
u′

c̄
+
M̄p′

γp̄

)]
− M̄2

(1− M̄2
(ūp′ + ρ̄c̄2u′)

s′

cp

dA

dx
(5.17)

The main interest of this derivation lies in the fact that it generalizes the Rayleigh stability criterion. Since
it also introduces explicitly the mean and fluctuating heat releaseω̄T andω′T , it also enables a simpler
physical interpretation of their results. It appears at first sight thatP contains the Rayleigh source term
in the formγ−1

ρ̄c̄2
ω′T p

′. ButP also contains many other terms that are interesting to consider. Eq.(6.1) can

be reordered using the linearized state equationρ′

ρ̄ = p′

p̄ −
T ′

T̄
:

P =
γ − 1
ρ̄c̄2

ω′T (p′ + ρ̄ūu′)

−(γ − 1)ω̄T

1− M̄2

1
ρc2

[
(2γ − 1)

p′2

2ρc̄2
+ (2γ − 1− γM2)

ūp′u′

c̄2
+ 2

ρu′2

2

]
+M̄

(γ − 1)ω̄T

1− M̄2

T ′

T̄

(
u′

c̄
+
M̄p′

γp̄

)
− M̄2

(1− M̄2
(ūp′ + ρ̄c̄2u′)

s′

cp

dA

dx
(5.18)

Table 5.2 gives an attempt of physical interpretation for each term composingP . Compared to the
classical acoustic energy production term, new terms appear in this derivation that come from the
interaction between the fluctuations of velocity and the heat release fluctuation, the interaction between
the acoustic energy itself and the mean heat release, the interactions between the fluctuations of velocity
and pressure and the fluctuations of temperature coupled with the mean heat release and finally the
coupling between entropy fluctuations and the axial gradient of section area.

This study reveals that many physical phenomena can be responsible for the fluctuation of the acoustic
energy. Yet, the main drawback of this study is the use of Morfey extended acoustic energy to a reacting
case. In contrary to the non-reacting case, the separation between rotational and irrotational components
of the velocity field cannot be done. The combustion phenomenon creates disturbance of velocity that
are irrotationnal but not of an acoustic nature. Furthermore, this analysis states that the disturbances of
entropy should be seen as a production term for the acoustic. This production term is not developed here
and its interpretation may be somewhat hard to find.

5.1.3 Development of the ”disturbance energy” concept

Because of these conceptual issues, an other path has been followed by other authors, following the idea
that the acoustic energy is not the only disturbance energy that can be linked to fluctuations in the flow,
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especially in a reacting case. They consider the energy linked with entropy fluctuations as being part of
an extended ”disturbance energy” involving acoustic, turbulence and entropy fluctuating energies. In this
section, we will focus on the concept of disturbance energy developed by Chu [23] and by Myers [88].

Chu starts from the Navier-stockes equations for any newtonian fluid in movement. Adding a conser-
vation equation for mass and internal energy, he states that whatever a disturbance in that fluid should
be, it must be a disturbance of one of the following six variables :p′, ρ′, T ′, u′i(i = 1, 3). The aim of his
study is to construct a definite positive quantity representing the energy contained in the disturbances in
the flow. Linearizing the five corresponding equations around the mean steady flow, he finally describes
that the evolution of all disturbances in a fluid can be represented by the following equations.

∂ρ′

∂t
+ ρ0

~∇.~u′ = 0 (5.19)

ρ0
∂~u′

∂t
= −~∇p′ + ~∇(τ ′) (5.20)

ρ0cv
∂T ′

∂t
+ p0

~∇.~u′ = ~∇.(λ~∇T ′) (5.21)

p′

p0
=
ρ′

ρ0
+
T ′

T0
(5.22)

Using the set of equations5.19-5.22, he constructs a conservation equation for a ”disturbance energy”
(E) defined as :

E =
1
2
ρ0
~u′.~u′ +

1
2
ρ0c

2
0

(
p′

γp0

)2

+
1
2
γ − 1
γ

p0

(
s′

r

)2

(5.23)

where the fluctuation of entropy is part of the disturbance energy. Chu shows that this quantity is a
definite positive quantity.

The fact that the fluctuations of entropy should appear in the definition of the disturbance energy is
made clear by taking a simple example. If the fluid is originally at rest with no gradient of pressure but
with a gradient of entropy, this gradient through heat diffusion will introduce a gradient of mass density
that will introduce a movement of the fluid. We see that in this particular case, the energy contained

in the 1
2

γ−1
γ p0

(
s′

r

)2
has been transfered to the12ρ0

~u′.~u′ term. This example shows a conversion of

potential entropy disturbance energy into kinematic disturbance energy.

For Chu, the disturbance energy should be ”a positive definite quantity which in the absence of heat
transfer at the boundaries and of work done by them must be a monotone non-increasing function of
time.” The quantityE defined by equation5.23has the properties required by this definition. The main
hypothesis of his analysis are

• the mean flow is an uniform medium at rest :~u0 = 0

• all species have the same thermodynamic properties
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• thermodynamic quantities are constant over space and time

• mean variables are constant over space (for example :~∇T0 = ~0)

• the perturbations are small compared to the mean flow variables.

Chu shows that under the limitations of the previous hypothesis, the conservation equation forE can be
written as follows

∂E

∂t
=
T ′

T0
ω′T −

λ0

T0
(∇T ′)2 − Φ′ (5.24)

whereΦ′ is the fluctuation of the dissipation function defined as

Φ =
1
2
τij

(
∂ui

∂xj
+
∂uj

∂xi

)
.

Equation5.24states that the source term for the disturbance energy is linked with the heat release fluctu-
ation in a different way as for the Rayleigh criterion. This term is proportional to the correlation between
temperature and heat release fluctuations. A criterion can be derived from this equation. In a reacting
case, ifTn is the period of oscillation of the fluctuation of the disturbance energy, the energy contained
in disturbances will grow only if :

1
T0

∫
Tn

∫
V
T ′ω′Tdvdt >

∫
Tn

∫
V

[
λ0

T0
(∇T ′)2 + Φ′]dvdt (5.25)

The main output of this study is that if a disturbance (defined as depending of velocity, pressure and
entropy fluctuations) grows in a combustor, the source term for the energy transported by it is not the
classical Rayleigh term which only account for the source term of mecanical disturbance energy (i.e the
parts depending of u’ and p’) but is the correlation between local fluctuations of temperature and heat
release.

Even if this analysis is of first interest because it involves the entropy disturbance energy in a more
general type of disturbance energy, the definition of the disturbance energy still relies on the linearization
hypothesis and on the hypothesis that the mean Mach number is zero.

Exact non linear disturbance energy equation in non-reacting flows

Myers [88] addresses the issue of the linearization process. He defines a non-linear conservation
equation for a disturbance energy in flow. This analysis is valid for non-reacting cases and the following
paragraphs focus on the derivation of this conservation equation.

In contrary to what has been considered so far, Myers does not linearizes quantities using the decom-
position in mean part and fluctuating part (small enough to linearize the equations) but considers that any
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quantity can be written as follows3:

q(x, t) = q̄(x) +
inf∑

n=1

δnqn(x, t) (5.26)

The goal of this analysis is to give a nonlinear conservation equation for a quantity which account for
the energy of disturbances in any non-reacting flow. The conditions that this equation must meet are that
the zeroth order and first order of the above decomposition of the disturbance energy must be zero. If
linearized to second order, this equation equation should only let appear first order terms for the primitive
variables. These properties are used to avoid any conceptual problem having to consider two different
orders for the fluctuations of the same quantity. After quite heavy algebra that may be found in [88],
Myers derives the following exact nonlinear conservation equation for the energy of the disturbances in
a non-reacting flow:

∂E

∂t
+ ~∇. ~W = −D (5.27)

where

E = ρ[H −H − T (s− s)]− ~m.(~u− ~u)− (p− p) (5.28)
~W = (~m− ~m).[H −H − T (s− s)] + ~m(T − T )(s− s)

−(~m− ~m).
(
τ

ρ
− τ

ρ

)
+ (T − T )

(
~q

T
− ~q

T

)
(5.29)

D = (~m− ~m).[~ζ × ~u− ~ζ × ~u+ (s− s)~∇T ]− (s− s)~m.~∇(T − T )

+
(
τ

ρ
− τ

ρ

)
.∇(m−m)− (~m− ~m)

(
τ

ρ2
.~∇ρ− τ

ρ2 .
~∇ρ
)

(T − T )
(

Φ
T
− Φ
T

)
−

(
~q

T
− ~q

T

)
.~∇(T − T )

+(T − T )

(
~q.~∇T
T 2

− ~q.~∇T
T

2

)
(5.30)

A simple treatment can be applied to equation5.27to enable the comparison with previous studies.
One can apply the decomposition given by equation5.26 to it. In this case, one finds the following
equation for the second order of the disturbance energy decomposition4 :

∂E2

∂t
+ ~∇. ~W2 = −D2 (5.31)

3q′ verifies :
Pinf
n=1 δnqn = q′

4It can be shown thatE0, E1, ~W0, ~W1, D0, andD1 all vanish with this decomposition
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where

E2 =
p2
1

2ρ0c20
+

1
2
ρ0u

2
1 + ρ1~u0.~u1 +

ρ0T0s
2
1

2Cp0
(5.32)

~W2 = ~m1.

(
p1

ρ0
+ ~u0.~u1

)
− ~m1

(
τ

ρ

)
1

+ ~m0T1s1 + T1

(
~q

T

)
1

(5.33)

D2 = −ρ0~u0
~ζ1 × ~u1 − ρ1~u1

~ζ0 × ~u0 + ~m1s1~∇T0 − s1 ~m0.~∇T1

+
(
τ

ρ

)
1

.∇m1 − ~m1

(
τ

ρ2
.~∇ρ

)
1

−T1

(
Φ
T

)
1

−
(
~q

T

)
1

.~∇T1 + T1

(
~q.~∇T
T 2

)
1

(5.34)

If furthermore one considers that the first order of fluctuation is the only one which is not zero for all
primitive variables (i.eq1 = q′ for all variables), that the reference flow is at rest (i.eu0 = 0 andτ0 = 0),
that the gas is thermodynamically perfect (i.ecp = cv =constant), one finally can write the following
equation for the disturbance energy in a non-reacting flow :

∂E2

∂t
+ ~∇. ~W2 = −D2 (5.35)

where

E2 =
p′2

2ρ0c20
+

1
2
ρ0u

′2 +
1
2
γ − 1
γ

p0

(
s′

r

)2

(5.36)

~W2 = ~u′p′ − ~u′τ ′ − λ0

2T0

~∇(T ′2) +
λ0T

′2

T 2
0

~∇T0 (5.37)

D2 = ρ0s
′~u′~∇T0 + τ ′.∇u′︸ ︷︷ ︸

Φ′

+
λ0

T0
(~∇T ′)2 + λ0

T ′2(∇T0)2

T 3
0

− T ′
(

Φ′

T0

)
︸ ︷︷ ︸

=0 to second order

(5.38)

Equations5.35-5.38can be compared to equation5.24given by Chu for the temporal evolution of the
disturbance energy in a reacting flow because they refer to the same quantityE. The first thing to notice
( apart from the fact that Chu has a source term related to heat release fluctuation because he considers a
reacting case) is that the equation5.24is not a transport equation because it contains no transport term
for the energyE. The transport term5.37 has four terms. Actually, the first three are also found by
Chu5, but only when the mean flow is not zero. The first term is the classical acoustic flux, the second
one is usually small and corresponds to the transport of disturbance energy thanks to the viscous fluxes.
The third one is the thermal flux of disturbance energy and the last one is the transport of disturbance
energy by the mean gradient of temperature.

5The last one is not present in the analysis from Chu because he considers that the mean gradient of temperature is zero
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Concerning the source terms, both find two equivalent terms : dissipation of the disturbance energy
thanks to viscous and thermal effects. In Myers analysis, two more terms appear. Equation5.38shows
a dissipation term linked with the mean gradient of temperature and a term coming from the correlation
of the velocity and entropy fluctuations in presence of a gradient of mean temperature. Note that if the
mean gradient of temperature is neglected, one finds the equations given by Pierce for the transport of
disturbance energy [100].

Myers[88] allows entropy disturbances to remain in both the energy density and flux terms. Myers’
equation is consistent with those developed earlier by Chu[23] and Pierce[100] for zero mean flow.
However, because the energy density and flux terms contain entropy disturbances, the resulting energies
are not ‘acoustic’ and are properly called ‘disturbance energies’ [23, 88].

Remarks on the definition of disturbance energies and stability criteria.

In combusting flows, any equation stating disturbance energy conservation must start from equations of
motion that at least include non-zero mean flow quantities and entropy variation. To ignore either the
mean flow or entropy variation causes conceptual problems. It appears that only the energies defined by
Morfey[85] and Myers[88] do this. Viscous dissipation and heat conduction, whilst included in these
works, are not essential and are usually small.

Nicoud and Poinsot [93] rederive the fluctuating energy equation of Chu[23] and argues that the
Rayleigh criterion is an incomplete description of the significant sources of ‘disturbance’ energy in
combustion. In the limit of small disturbance amplitude, a source term proportional toT1ωT1 is found
whereωT1 andT1 are the first terms in the heat release and static temperature asymptotic expansions.
This term is analogous but significantly different to the ’Rayleigh term’ in equation5.1. Entropy distur-
bances through the flame are also argued to be a significant source of disturbance energy. Bloxsidge[12]
and Dowling[38] also show that terms other than the Rayleigh term existed for their differently defined
acoustic energy equation, but both argue that these terms are small in practice.

This difference of opinion on such a fundamental and practically important problem needs resolving.
This can be achieved by first deriving a general equation for disturbance energy, as done in section6.3
and then study numerically the magnitudes of all identified source terms. The basic equation should
not be linear as it is often the case when dealing with acoustics. Indeed the temperature, entropy and
velocity disturbances in particular can be large within flames and nonlinear effects are already known to
be significant in the acoustic energy analysis of solid rocket combustion [45, 35].

The work of Myers[88] also justifies the inclusion of entropy disturbances in the energy density and
flux terms. Large entropy or pressure disturbances can be accompanied by convectively and sonically
travelling disturbances in the pressure and entropy fields respectively [24]. Thus, a useful disturbance
energy should incorporate pressure, velocity and entropy disturbances for nonlinear studies.
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In order to know what are the main source terms of this energy, one needs to investigate the balance
closure of conservation equations for the different disturbance energies that can be defined in reacting
flows6. Here LES is chosen to reach this goal. This choice comes from the following remark that
resolved structures should account for the major part of the disturbance energy in the flow.

An advanced post-processing tool is required to get all fields needed to close the budget of such an
energy. Thanks to this kind of tool, one would expect to gain insight into the understanding of this issue.
Section5.2 presents in more details the implementation of this tool in the LES code ”AVBP” which is
used at CERFACS and section5.3presents simple validation test cases for this tool.

6Note that this energy can be ”purely acoustic”, ”acoustic and turbulent”, or also contain ”entropy disturbances”
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5.2 An advanced post-processing tool for LES : POSTTIT

5.2.1 Motivations

Two main motivations support the development of an advanced post-processing tool for LES:

• The balance closure of conservation equation in LES codes.

• The visualization of complex variables not directly available in the code.

Balance of conservation equations in AVBP LES code

It is important in LES to know the conservation of equations that are used to advance the different
variables in the code. An example of such equation is the total energy equation that is advanced by the
LES code ”AVBP” :

∂ρE

∂t
= −~∇.(ρE~u) + ω̇T − ~∇.~q − ~u : ~∇σ (5.39)

This equation is local and stands for the variation of the total energy in a fluid element. To obtain the
balance of the total energy in a given configuration, one has to integrate this equation over the entire
volume. It becomes :∫

v

∂ρE

∂t
dv = −

∫
v

~∇.(ρE~u)dv +
∫

v
ω̇Tdv −

∫
v

~∇.~qdv −
∫

v
~u : ~∇σdv (5.40)∫

v

∂ρE

∂t
dv =

∫
s
ρE~u.~nds+

∫
v
ω̇Tdv −

∫
s
~q.~nds−

∫
v
~u : ~∇σdv (5.41)

Equations5.40and5.41are equivalent. Whatever is the method chosen to obtain the total variation of
the total energy inside the configuration, one either has to be able to compute the operator~∇. ~f and/or to
be able to get the fluxes crossing the boundaries.

Usual post-processing visualization tools already exist that are able to do such operations. But
there is no certitude that the algorithm for these operators are the same in the LES code and in the
post-processing tool. Moreover, numerical terms are often added during the advancement of equations to
ensure the stability of the code. These terms should also appear in the balance of conservation equations
since they are global sink (or source) numerical terms for the variables of interest.

In order to better understand the motivations for an advanced post-processing tool in LES, it is now
of interest to give the conservation equations that are advanced in the LES code AVBP, to describe the
advancement of these equations and have a few comments about the numerical terms that influence them.
The conservation equations in the LES code AVBP have been described on page35but are recalled here
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for the reader comprehension. The transport equations to advance species, velocity and total energy are:

∂ρYk

∂t
+ ~∇.(ρ(~u+ ~V c)Yk) = ~∇.(ρDk

~∇Yk) + ω̇k (5.42)

ρ∂~u

∂t
+ ρ(~u× ~∇)~u = −~∇p+ ~∇τ (5.43)

ρ
∂E

∂t
+ ρ~u.~∇E = ω̇T − ~∇.~q − ~u : ~∇σ (5.44)

Adding all species equations, the following set of local equations appears which represent the quan-
tities of interest for the conservativity of the LES code AVBP:

∂ρ

∂t
= −~∇.(ρ~u) (5.45)

∂ρ~uj

∂t
= −~∇.(ρ~uj~u)− ~∇(p)j + ~∇(τ)j (5.46)

∂ρE

∂t
= −~∇.(ρE~u) + ω̇T − ~∇.~q − ~u : ~∇σ (5.47)

These equations stand for the conservation of mass,momentum and total energy.
In the code, all variables are updated explicitely from one time step to the other. The way this update is
done only relyies on the number of Runge-Kutta time steps chosen for each iteration.
Both TTGC spatial scheme [29] which is third order and Lax-Wendroff spatial scheme which is second
order are available in the AVBP code. In this work, only the Lax-Wendroff scheme has been used because
of its simplicity in terms of advancement which directly impacts on the post-processing tool. In this case,
the time scheme is a simple corrected one-step Runge-Kutta scheme. Doing so, the update ofE from
iterationn to iterationn+ 1 can be split into three stages :

• First, all local physical terms of the equation are computed which gives the predicted value for the
variable at iterationn+ 1

E(n+ 1)pre1 = E(n) +A(n)× dt(n) (5.48)

whereA(n) is the update function at iteration n. To be consistent with all equations presented
previously,A is therefore the sum of all local source terms in Eqs.(5.45)-(5.47).

• Then, the correction terms due to the artificial viscosity and Lax-Wendroff scheme are applied.

E(n+ 1)pre2 = E(n+ 1)pre1 + LW(n)× dt(n) + AVI(n)× dt(n) (5.49)

whereLW (n) andAV I(n) are respectively the contributions of the scheme and of the artificial
viscosity to the time advancement of variableE. These contributions are different in nature.

– The artificial viscosity correction is a numerical term which is applied to ensure that the
dispersion and dissipation properties of the scheme do not impact on the stability of the
computation (see Section1.5).
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– The contribution of the Lax-Wendroff scheme is quite different. The goal of this term is to
ensure that the space derivative of variableE is second order in space. This term therefore
has some importance when sharp gradients must be resolved as it is the case in flames (see
Section1.6).

• Finally, boundary corrections are applied toEpre2 field on the nodes at the boundaries. This
term should not be seen as a numerical correction since the prescription of boundaries is part of
the mathematical problem involving the whole geometry. Therefore, the separation of this term
from the rest of the residualA(n) is more a numerical artifact that comes from the way the time
advancement is done in the code. Yet, in the present case, this term adds to the previous ones to
give the final value ofE for all nodes at iterationn+ 1 :

E(n+ 1) = E(n+ 1)pre2 + BND(n)× dt(n) (5.50)

Summarizing these steps, in AVBP, when using the Lax-Wendroff scheme, the local advancement of
a variableE from iterationn to n+ 1 is given by the following equation :

E(n+ 1)− E(n)
dt(n)

= A(n) + LW(n) + AVI(n) + BND(n) (5.51)

Note thatE(n+1)−E(n)
dt(n) also represents a discrete time derivative of variableE at iterationn.

To evaluate the conservation of the advanced equations in the code, Eq.(5.51) must be integrated over
the whole volume of the mesh. Taking the volume integral of Eq.(5.51) gives:

∫
V

(
E(n+ 1)− E(n)

dt(n)

)
dv =

∫
V

(A(n) + LW(n) + AVI(n) + BND(n)) dv (5.52)

Applying this general scheme to Eqs.(5.45)-(5.47) gives the integral equations using results at iterations
n andn+ 1 that should conserve in the code :
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∫
V

(
ρ(n+ 1)− ρ(n)

dt(n)

)
dv =

∫
V

(
~∇.(ρ~u(n))

)
dv

+
∫

V
(LWρ(n) + AVIρ(n) + BNDρ(n)) dv (5.53)

∫
V

(
ρ~u(n+ 1)− ρ~u(n)

dt(n)

)
dv =

∫
V

(
ρ(~u× ~∇)~u(n)

)
dv

+
∫

V

(
~∇τ(n)− ~∇p(n)

)
dv

+
∫

V
(LWρu(n) + AVIρu(n) + BNDρu(n)) dv (5.54)

∫
V

(
ρE(n+ 1)− ρE(n)

dt(n)

)
dv =

∫
V

(
~∇.(ρH~u(n) + ~q(n))

)
dv

+
∫

V

(
ω̇T (n)− ~u : ~∇(τ)(n)

)
dv

+
∫

V
(LWρE(n) + AVIρE(n) + BNDρE(n)) dv (5.55)

For these equations, the time derivative term is calculated as
∫
V

E(n+1)−E(n)
dt(n) dv and therefore only re-

quires to know the values of the variables at the beginning and at the end of the iteration.

Remarks on correction terms

• Boundary correction

Boundary conditions are imposed in AVBP via characteristic and non-characteristic conditions at
the nodes.
During one iteration of AVBP, the predicted values for the fields on boundaries are given by the nu-
merical scheme. Corrected values correspond to the new fields on boundaries taking into account
the characteristic waves entering the domain :

E(n+ 1) = E(n+ 1)pre2 +
∑

i

Li × dt(n) (5.56)

where
∑

i Li are all characteristic waves crossing the boundaries. They impose weakly the target
values at the patch nodes.
Of course,E(n + 1)pre2 andE(n + 1) are different because computing Euler/Navier-Stockes
equations for a given flow is not enough to account for the target values at the boundaries. The
equivalent contribution of this correction on the advancement of a characteristic quantity is :∫
V BND(n)× dt(n)dv.

As this term only applies on the boundary nodes, its global importance greatly depends on the
total volume of these nodes compared to the inner volume. In practice, the importance of this term
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Figure 5.1 -Schematic representation of the influence of boundary conditions

therefore increases in case of poor discretization of the boundaries. Fig.(5.1) shows how boundary
conditions apply to impose the velocity profile on an inlet.

• Lax-Wendroff correction

The evaluation of the R-H-S terms of the conservation equations is done using a central difference
spatial scheme. But, as described on page60, the Lax-Wendroff spatial scheme requires the ad-
dition of a correction to the results given by this scheme. Doing so, it adds a global numerical
correction denotedLW to the global balance of conservation equations.

• Artificial viscosity correction

The artificial viscosity correction, denoted hereAVI, is used to dissipate numerical spatial high
frequency waves. This term should remain small as long as the mesh discretization is good enough
to resolve the gradients in the flow. In practice, attention should be paid to this term in reacting
configurations, especially when no thickening flame model is used as it is the case in this part.

Visualization of complex variables

Post-processing and analyze techniques of reacting/turbulent/two-phase flows now require the use of
complex treatments of the output fields of the simulation. Many examples can be found in the literature
of complex criteria useful for the analyzis of such flows.

• The Q criterion of Hunt et al.[58] and further developed by Jeong and Hussain [60] which detects
the presence of coherent structures in the flow is one of them. It requires the use of the gradient
operator applied to the velocity field.

For a three-dimensional smooth velocity fieldv(x, t), available Galilean invariant vor-
tex criteria uses the velocity gradient decomposition

~∇.~u = S + Ω (5.57)
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whereS = 1
2

[
~∇.~u+

(
~∇.~u

)T
]

is the rate-of-strain tensor, andΩ = 1
2

[
~∇.~u−

(
~∇.~u

)T
]

is the vorticity tensor. In historical order, the first three-dimensional vortex criterion
using5.57is the Q criterion of Hunt et al.[58] which defines a vortex as a spatial region
where

Q =
1
2
[
|Ω|2 − |S|2

]
> 0 (5.58)

• The criterionM(~x, t) defined by Pope [115] is used to assess the quality of an LES simulation.

The evaluation ofM(~x, t) requires the determination (locally in space and time) of the
turbulent kinetic energy of the resolved motionsK(~x, t) ≡ 1

2(W − 〈W 〉).(W − 〈W 〉),
and that of the residual motions (that can be evaluated using the formula given by
Sagaut [123])

kr(~x, t) =
(
νsgs

Cm∆

)2

.

whereνsgs is the sub-grid scale turbulent viscosity,∆ a characteristic mesh length and
Cm a constant provided by DNS of homogeneous isotropic turbulence. This constant
only depends on the shape of the spectrum of the kinetic turbulent energy.
This criterion is defined as :

M(~x, t) =
kr(~x, t)

K(~x, t) + kr(~x, t)
(5.59)

Thus the value of M is between 0 and 1:M = 0 corresponds to DNS andM = 1 to
RANS. Smaller values ofM correspond to the resolution of more of the turbulent mo-
tions. (Although this definition ofM is conceptually simple, in LES, the approximation
of means, denoted here by angled brackets〈〉, is non-trivial.)

As the complexity of analysis in flows will increase, the need for tools which can give access to such
complex variables will increase in order to avoid discrepancies between the LES code operators and the
post-processing tool operators.
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5.2.2 Objectives

Regarding to the previously presented motivations, three main objectives are prescribed to the POSTTIT
tool.

• Access to all variables : The user should be able to visualize any variable that can be computed
from the inner variables of the LES code. This includes :

– Numerical variables : The user should be able to have access to all numerical or boundary
corrections added to the variables advanced by the LES code (boundary corrections, wall law
corrections, numerical viscosity, numerical time derivative corrections, etc...).

– Physical variables :The user should be able to compute any complex physical variable that
can derive from the resolved variables. An example of a physical quantity that is usually
not directly available from the LES code is the classical local Rayleigh source term (i.e.
γ−1

γ p′ω̇′). If the pressure, heat release, calorific ratio are computed in the LES code, by first
reading a mean field for the case of interest, the user must be able to construct and store this
term in a solution file.

• Volume integrals and fluxes : The second objective is directly linked with the goal of closing
budgets in LES. After having calculated all terms one needs for closing a conservation equation
balance, the user must be able to integrate the volume terms over the whole volume of the config-
uration and evaluate the flux terms when needed.

• Exact spatial operators : An other objective, common to the two previous ones is that the op-
erators used to compute variables must be the exact ones used in the LES code. This should be
done to ensure consistency. Gradient (~∇()) and divergence (~∇.~()) operators should therefore use
the routines of the LES code.

5.2.3 Algorithmic organization

Table5.3 presents the algorithmic organization of the POSTTIT tool and its interactions with the LES
code AVBP. On the left is the evolution of an LES iteration from the declaration of variables to the
writing of an output solution. In the middle, one can find the specific POSTTIT modules that are filled
by the user to investigate the variables that are not directly computed by the LES code. On the right, the
inputs and outputs of the tool are described. The! sign precedes the names of files that must be filled to
run the POSTTIT tool.
To reach the objectives described in section5.2.2, the specific POSTTIT modules are directly integrated
in the LES code during the compilation. All these files have the ”.inc” extension. In addition to these
files, an ascii file ”posttit.choice” has to be filled to prescribe the major features of the tool. The user
therefore needs to fill seven files that are specific to the POSTTIT tool :

• ! posttit.choices: with this file the user specifies if he needs to read a mean solution file to
compute his own variables. In this case, the name of the mean solution file is provided. Then the
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name pattern of the solutions is given. The first iteration number, the last one and the iteration step
number are read. The user then states the number of fluxes he wants to calculate. Finally, a flag is
given which tells if fields are to be saved in the solution and how many fields are saved.

• ! perso declare.inc: It prescribes all needed scalars and vectors for the POSTTIT tool. Included
in ”commonbl slave.H” file.

• ! perso allocate.inc: It allocates all POSTTIT fields. Included in ”slavearray.F” file.

• ! perso define.inc: Maybe the most important file of the POSTTIT tool. In this file, the user
calculates the different variables he needs by using the already existing variables of the LES code.
Operators (grad,div,etc...) can be applied to the LES fields to compute the complex variables of
interest. Included in ”slavenorm flux.F” file.

• perso intv.inc: Only used when using POSTTIT in balance equation mode. With this file, the
user computes the desired volume integrals of any variables. Included in ”slavenorm flux.F” file.

• perso flux.inc: Only used when using POSTTIT in balance equation mode. With this file, the
user computes the desired surface fluxes of any vector. Note that when this file is used, the fluxes
of the vector are calculated across all patches and not only across inlet and outlet patches. Included
in ”slave norm flux.F” file.

• perso save.inc: Only used when using POSTTIT in visualization mode. With this file, the user
specifies the variables he wants to save as additional fields. Included in ”slavenorm flux.F” file.

There are two kinds of output files in the POSTTIT tool :

• avbp post : This file contains all volume integrals and fluxes of the variables that have been
computed by the tool. It is mostly useful when the user is interested in checking a conservation
equation balance closure.

• posttit.sol : This file contains the fields of the variables that the user has computed with the
POSTTIT tool and wants to visualize.

5.2.4 Remarks on the practical use of the POSTTIT tool

The POSTTIT tool uses the snapshots obtained from the LES computation.
Therefore, before running the code, the user should first have a reflection on the main frequencies that
will be present in his results. This reflection is made easier if the simulation concerns acoustically
unstable or harmonically forced configurations as it is the case here.
The user should consider to record at least 10 snapshots per period for the highest identified frequency.
Note that enough periods are often also required in order to have access to the long-term fluctuations.
This may lead to approximately 40 to 100 stored solutions. In his reflection, the user therefore also
has to consider the size of the memory that will be needed to store these solutions, especially for 3D
turbulent reacting cases.
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5.2 An advanced post-processing tool for LES : POSTTIT

In this work, 40 to 1600 snapshots have been used, depending on the investigated physical phenomena.

Once the snapshots are recorded, POSTTIT can be applied to each of them. The LES tool AVBP
is called by POSTTIT for each solution during one iteration and the outputs are recorded as previously
described. The local time derivative for each node is obtained by subtracting the value before the
iteration to the one obtained at the end and dividing the result by the local time step (for a one step
Runge-Kutta scheme).

Since it uses the AVBP code, POSTTIT benefits of all its characteristics. This post-processing
tool is therefore massively parallel and uses the exact gradient and divergence operators that are in the
code.
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5.3 Examples of conservation equation balance closure

5.3 Examples of conservation equation balance closure

This section presents three applications of the POSTTIT tool in a 2-D unstable reacting case. This tool
is used here to test the closure of the equations advanced by the LES code AVBP :

• mass conservation (Eq.(5.53))

• momentum conservation (Eq.(5.54) axial component)

• Total energy conservation (Eq.(5.55))

5.3.1 Description of the case/mesh

The test case studied here is a 2-D configuration. It reproduces the experimental test rig of Le Helley [52].
It contains approximately 26000 triangle elements. This burner corresponds to a laminar flame. The
unstructured mesh used for this study takes into account for a large part of the feeding line for acoustic
reasons. During the computation, the configuration is made unstable by increasing instantaneously the
acoustic reflection coefficient at the outlet. All primitive variables are perturbed and start to oscillate (see
Fig.(5.2)).

Figure 5.2 -Schematic representation of the studied case.

5.3.2 Mass balance closure

The mass balance closure is checked in this configuration. The integral shape of the mass conservation
equation is :

∂m

∂t
=
∫

S
ρ~u.~nds+

∫
V

(LWρ(n) + AVIρ(n) + BNDρ(n)) dv (5.60)

∂m
∂t is therefore identified to

∫
V

(
ρ(n+1)−ρ(n)

dt(n)

)
dv wherem is the total mass enclosed in the configura-

tion.
Eq.(5.60) states that the time derivative of the total mass inside the domain is equal to the sum of the
mass fluxes entering and leaving the domain plus numerical and boundary corrections. These corrections
are added to the sum of terms shown on Fig.(5.3). Note that in this case they are almost zero. Fig.(5.3) a)
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shows a perfect agreement between the time derivative of mass and the sum of all mass fluxes. Fig.(5.3)
b) shows the inlet mass flux (positive) and the outlet mass flux (negative). The fluctuation of the mass as
the instability is growing is mainly due to the fluctuation of the inlet mass flux. The outlet mass flux first
reacts to the change of the reflection coefficient by decreasing. It means that during a small amount of
time, the equilibrium between entering and leaving mass is broken and some mass leaves the domain.

a) b)

Figure 5.3 -a) Total mass balance closure :time derivative of total mass sum of all terms.
b) Main terms of the balance : inlet mass flux outlet mass flux

5.3.3 Axial momentum balance closure

The axial momentum balance closure is checked in this configuration. The integrated axial momentum
conservation equation is :∫

V

∂ρux

∂t
dv =

∫
S
ρux~u.~nds−

∫
V

(
~∇.~x

)
pdv +

∫
V

(
~∇.~~τ
)
.~xdv

+
∫

V
(LWρux(n) + AVIρux(n) + BNDρux(n)) dv (5.61)

∫
V

∂ρux
∂t dv is therefore identified to

∫
V

(
ρux(n+1)−ρux(n)

dt(n)

)
dv. Numerical and boundary corrections are

added to the sum of terms on Fig.(5.4) a).
Fig.(5.4) a) shows a perfect agreement between the time derivative of the axial momentum and the sum
of R-H-S terms in Eq.(5.61). Fig.(5.4) b) shows the major terms of the axial momentum balance. The
major terms in this case are the axial gradient of pressure and the viscous dissipation due to wall friction.
Both terms equilibrate before the excitation leading to a zero variation of the axial momentum. As the
reflection coefficient is increased at the outlet, the axial pressure gradient begins to oscillate and the
variation of the time derivative term is mainly due to it. The wall friction oscillations are much lower
and affect the global balance by making the time derivative of axial momentum oscillate around its the
equilibrium position.
Fig.(5.5) shows the inlet and outlet fluxes of axial momentum. They have almost no influence on the
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5.3 Examples of conservation equation balance closure

total balance because they are three order of magnitude lower than the major terms. Though, it can be
noticed that the outlet flux of axial momentum more strongly reacts to the excitation.

a) b)

Figure 5.4 -a) axial momentum balance closure :time derivative of axial momentum sum of all terms.
b) Main terms of the balance : volume integral of the axial gradient of pressure viscous dissipation of

axial momentum due to wall friction

Figure 5.5 -Main terms of the balance : inlet axial momentum flux outlet axial momentum flux

5.3.4 Total energy balance closure

The total energy balance closure is checked in this configuration. The integrated total energy conserva-
tion equation is :∫

V

∂ρE

∂t
dv =

∫
S
(ρ~uE).~nds+

∫
V
ω̇Tdv +

∫
S
~q.~nds−

∫
V
~u : ~∇ (σ) dv (5.62)

∫
V

∂ρE
∂t dv is therefore identified to

∫
V

(
ρE(n+1)−ρE(n)

dt(n)

)
dv. Numerical and boundary corrections are

added to the sum of R-H-S terms of Eq.(5.62) on Fig.(5.6) a).
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Fig.(5.6) a) shows a good agreement between the time derivative of the total energy and the sum of all
R-H-S terms of Eq.(5.62). Fig.(5.6) b) shows the major terms of the balance. The variation of the time
derivative of the total energy is due to two main sources terms :

• the inlet flux of total energy.

• the source heat release term.

and one sink term which is the outlet flux of total energy.
As the instability starts, both heat release source term and outlet flux absolute amplitudes increase and
oscillate which results in a global oscillation of the time derivative of the total energy.

a) b)

Figure 5.6 -a) Total energy balance closure :time derivative of total energy sum of all terms
b) Main terms of the balance : inlet total energy flux outlet energy flux
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Chapter 6

Disturbance energies in flow

This chapter focuses on the derivation of disturbance energy conservation equations. Three conservation
equations and disturbance energies are considered:

• In section6.1 a nonlinear conservation equation for quadratic pressure and velocity fluctuations
is proposed. When linearized, this equation shrinks into a linear conservation equation for the
disturbance energy defined bye1 = 1

2ρ0c0
p2
1 + ρ0

2 ~u1.~u1. For a laminar, isentropic and small mean
Mach flow, this disturbance energy is the acoustic disturbance energy. In all other cases, this
quantity is composed of fluctuations due to acoustic, turbulence and entropy disturbances1.

• In section6.2 a nonlinear conservation equation for quadratic entropy fluctuations is proposed.
When linearized, this equation shrinks into a linear conservation equation for the entropy distur-
bance energy defined byes = ρ0T0

2Cp0
s21.

• In section6.3 a nonlinear conservation equation is proposed for a disturbance energy (Ed) that a
priori contains acoustic, turbulence and entropy fluctuations.

• Section6.4focuses on the choice of the baseline flow.

• Section6.5 provides three tables summarizing the equations that are derived here. A comparison
with other similar disturbance energies conservation equations is also provided.

6.1 Pressure-Velocity (PV) disturbance energy Eq.(1)[Eq.(6.10)]

6.1.1 Nonlinear conservation equation for pressure fluctuations

For this derivation, when needed, all variables will be written as being the sum of their mean part (i.e.
ρ) and their fluctuating part (i.e.ρ′). All the missing details of the algebra leading to Eq.(6.11) may be

1due for example in reacting cases to the dilatation due to the flame.



DISTURBANCE ENERGIES IN FLOW

found in AppendixA.

This derivation uses a conservation equation for pressure (Eq.(6.1)) which writes

∂p

∂t
= −γp~∇.~u− ~u.~∇p+ (γ − 1)

[
ω̇T − ~∇. (~q)−

N∑
k=1

hskρ
DYk

Dt
+ τ : ~∇ (~u)

]
+
γp

r

Dr

Dt
, (6.1)

and a mean conservation equation (Eq.(6.2)) for this quantity :

consp − γ̄p̄~∇.~u− ~u.~∇p+

(γ − 1)

[
ω̇T − ~∇.~q −

N∑
k=1

hskρ
DYk

Dt
+ τ : ~∇

(
~u
)]

+
γ̄p̄

r

Dr

Dt
= 0. (6.2)

where consp contains all mean cross-correlations of fluctuations (ie.γ′p′, γ′~u′,etc...). Note that the

identity ∂p
∂t is assumed. It either means that the final and initial values of the pressure are the same, or

that the solutions are statistically stationary.

Substracting Eq.(6.2) to Eq.(6.1), multiplying byp′, and dividing byγp gives :

1
2γp

∂p′2

∂t
= − p′

γp

[
γp~∇.~u− γ̄p̄~∇.~u

]
− p′

γp

[
~u.~∇p− ~u.~∇p

]
+
p′

γp

[
(γ − 1) ω̇T − (γ − 1) ω̇T

]
− p′

γp

[
(γ − 1) ~∇.~q − (γ − 1) ~∇.~q

]
− p′

γp

[
(γ − 1)

N∑
k=1

hskρ
DYk

Dt
− (γ − 1)

N∑
k=1

hskρ
DYk

Dt

]

+
p′

γp

[
(γ − 1)

(
τ : ~∇ (~u)

)
− (γ − 1)

(
τ : ~∇

(
~u
))]

+
p′

γp

[
γp

r

Dr

Dt
− γ̄p̄

r

Dr

Dt

]
− consp

p′

γp

(6.3)

Eq.(6.3) is a nonlinear equation for the quadratic fluctuations of pressure. As it will be presented in the
next subsection, the linearization of Eq.(6.3) gives a conservation equation for the disturbance energy
contained in pressure fluctuations.

Linearization

All further developments assume that all fluctuations are very small compared to their mean value. To
avoid any confusion between the fluctuating part and the linearization of the variable to first order, the
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6.1 Pressure-Velocity (PV) disturbance energy Eq.(1)[Eq.(6.10)]

latter will be underscored 1. The order of the mean flow is therefore 0. Table6.1 summarizes the
transformations used for the linearization process:

Type of Derivation Variable Mean Flow Fluctuation
Non Linear β β β′

Linear β β0 β1

Table 6.1 -Notations for mean and fluctuating parts of variableβ.

Linearizing equation6.3and retaining only second order terms gives:

1
2γ0p0

∂p2
1

∂t
= −p1

~∇. ~u1 −
p2
1

p0

~∇. ~u0 −
p1γ1

γ0

~∇. ~u0

− ~u0

2γ0p0
.~∇p2

1 −
p1

γ0p0
~u1.~∇p0 +

γ0 − 1
γ0p0

p1 ˙ωT1 +
γ1p1

γ0p0
˙ωT0

−γ0 − 1
γ0p0

p1
~∇.~q1 −

γ1p1

γ0p0

~∇.~q0

−p1γ1

γ0p0

N∑
k=1

hsk0ρ0
DY0k

Dt
− p1 (γ0 − 1)

γ0p0

N∑
k=1

[
hsk1ρ0

DY0k

Dt
+ hsk0ρ1

DY0k

Dt
+ hsk0ρ0

DYk1

Dt

]
+
p1γ1

γ0p0
τ0 : ~∇ ( ~u0) +

p1 (γ0 − 1)
γ0p0

[
τ1 : ~∇ ( ~u0) + τ0 : ~∇ ( ~u1)

]
+
p1

r0

Dr1
Dt

+
Dr0
Dt

[
γ1p1

γ0p0
+

p2
1

r0p0
− p1r1

r20

]
− consp

p1

γ0p0
(6.4)

6.1.2 Nonlinear conservation equation for velocity fluctuations

The same reasoning is applied to the velocity to get an exact nonlinear conservation equation for the
disturbance energy contained in quadratic velocity fluctuations. The mean conservation equation for
velocity is :

~consv − ρ
(
~u× ~∇

)
~u− ~∇p+ ~∇τ = 0 (6.5)

where ~consv contains all mean cross-correlations of fluctuations (ie.~u′.~u′, etc...).
Therefore, a conservation equation for the fluctuating velocity is:

ρ
∂~u′

∂t
= −ρ

(
~u× ~∇

)
~u− ~∇p+ ~∇τ

+ρ
(
~u× ~∇

)
~u+ ~∇p− ~∇τ − ~consv, (6.6)

and gives:

ρ
∂~u′

∂t
= −ρ

(
~u× ~∇

)
~u′ − ~∇p′ + ~∇τ ′ +

[[
ρ~u− ρ~u

]
× ~∇

]
~u− ~consv (6.7)
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taking the scalar product of Eq.(6.7) by ~u′ gives a nonlinear conservation equation foru′2:

ρ

2
∂u′2

∂t
= −ρ~u.~∇

(
u′2

2

)
− ~u′.~∇p′ + ~u′ : ~∇τ ′ + ~u′.

[[
ρ~u− ρ~u

]
× ~∇

]
~u− ~u′. ~consv (6.8)

Linearization

Linearizing Eq.(6.8) to second order gives:

ρ0

2
∂u2

1

∂t
= −ρ0 ~u0.~∇

(
u2

1

2

)
− ~u1.~∇p1 + ~u1 : ~∇τ1

−ρ1 ~u1.~∇
(
u2

0

2

)
− ρ0u

2
1
~∇. ~u0 − ~u1. ~consv (6.9)

6.1.3 Nonlinear conservation equation for coupled pressure and velocity fluctuations

Combining Eq.(6.3) and Eq.(6.8), one obtains the following exact equation inp′2 andu′2 :

1
2γp

∂p′2

∂t
+
ρ

2
∂u′2

∂t
= −ρ~u.~∇

(
u′2

2

)
− ~u′.~∇p′ + ~u′ : ~∇τ ′

+~u′.
[[
ρ~u− ρ~u

]
× ~∇

]
~u− ~u′. ~consv

− p′

γp

[
γp~∇.~u− γ̄p̄~∇.~u

]
− p′

γp

[
~u.~∇p− ~u.~∇p

]
+
p′

γp

[
(γ − 1) ω̇T − (γ − 1) ω̇T

]
− p′

γp

[
(γ − 1) ~∇.~q − (γ − 1) ~∇.~q

]
− p′

γp

[
(γ − 1)

N∑
k=1

hskρ
DYk

Dt
− (γ − 1)

N∑
k=1

hskρ
DYk

Dt

]

+
p′

γp

[
(γ − 1)

(
τ : ~∇~u

)
− (γ − 1)

(
τ : ~∇~u

)]
+
p′

γp

[
γp

r

Dr

Dt
− γ̄p̄

r

Dr

Dt

]
− consp

p′

γp

(6.10)

This equation will be called Eq.(1)[Eq.(6.10)]

Eq.(1)[Eq.(6.10)] is constructed here supposing negligible numerical corrections. Yet, the code also introduces
dissipation and dispersion that must be taken into account for the balance analysis of this equation. These
terms (LWE1 , BNDE1 andAVIE1) may be found in AnnexD.
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6.1 Pressure-Velocity (PV) disturbance energy Eq.(1)[Eq.(6.10)]

6.1.4 Linear conservation equation for disturbance energy in pressure and velocity fluc-
tuations

Combining Eqs.(6.4) and Eq.(6.9) gives the following linear equation:

1
2γ0p0

D0p
2
1

Dt
+
ρ0

2
D0u

2
1

Dt
+ ~∇. (p1 ~u1) =

γ0 − 1
γ0p0

p1

[
˙ωT1 − ~∇.~q1 −

N∑
k=1

(
hsk1ρ0

D0Y0k

Dt
+ hsk0ρ1

D0Y0k

Dt
+ hsk0ρ0

D0Yk1

Dt

)]

+
γ0 − 1
γ0p0

p1

[
τ1 : ~∇ ~u0 + τ0 : ~∇ ~u1

]
+
p1γ1

γ0p0

[
−p0

~∇. ~u0 + ˙ωT0 − ~∇.~q0 −
N∑

k=1

(
hsk0ρ0

D0Y0k

Dt
+ τ0 : ~∇ ~u0

)]

−p
2
1

p0

~∇. ~u0 −
p1

γ0p0
~u1.~∇p0 − ρ1 ~u1.~∇

(
u2

0

2

)
− ρ0u

2
1
~∇. ~u0

+
p1

r0

D0r1
Dt

+
D0r0
Dt

[
γ1p1

γ0p0
+

p2
1

r0p0
− p1r1

r20

]
+ ~u1 : ~∇τ1 − ~u1. ~consv − consp

p1

γ0p0
(6.11)

This equation will be called Linear Eq.(1)

1
γ0p0

p2
1
2 + ρ0

u2
1
2 will be called Energy 1

D0
Dt denotes the total derivative with a spatial component relying only on the mean velocity (i.eD0f

Dt =
∂f
∂t + ~u0.~∇f ). Eq.(6.11) is a conservation equation for the quantity12γ0p0

p2
1 + ρ0

2 u
2
1 which represents the

acoustic energy in a laminar, isentropic and small mean Mach flow. In other cases, this quantity a priori
contains a part of the acoustic, turbulent and entropic disturbance energies.

6.1.5 Discussion

Eq.(6.11) shows that applying the linear hypothesis is not enough to obtain the acoustic energy conser-
vation equation. The following paragraph addresses the necessary hypothesis to obtain such an equation.
If all spatial dependencies of mean fields and all mean cross-correlations are neglected, Eq.(6.11)
shrinks to:

D0e
2
1

Dt
+ ~∇. (p1 ~u1) =

γ0 − 1
γ0p0

p1

[
˙ωT1 − ~∇.~q1 −

N∑
k=1

hsk0ρ0
D0Yk1

Dt
+ τ0 : ~∇ ( ~u1)

]

+
p1γ1

γ0p0
˙ωT0 +

p1

r0

D0r1
Dt

+ ~u1 : ~∇ (τ1) (6.12)
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with e1 = 1
2γ0p0

p2
1 + ρ0

2 u
2
1.

Assuming an homogeneous mixing and a negligible viscositygives a conservation equation for the
acoustic energy including the transport of acoustic energy by the mean flow:

∂e1
∂t

+ ~u0.~∇e1 + ~∇. (p1 ~u1) =
γ0 − 1
γ0p0

p1

[
˙ωT1 − ~∇.~q1

]
(6.13)

This equation will be called Simplified linear Eq.(1)

Summarizing the necessary assumptions that this acoustic energy conservation equation implies:

• Linear hypothesis (i.eβ1 << β0 (except foru1 << c0))

• Negligible mean cross-correlations (i.econsp = ~consu = 0)

• Negligible mean and fluctuating viscosity

• Homogeneous mixing

• Negligible mean gradients (i.e~∇β0 << 1)

These assumptions will be tested in chapter7 through the closure of Eq.(6.11).
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6.2 Entropy disturbance energy Eq.(2)[Eq.(6.18)]

6.2 Entropy disturbance energy Eq.(2)[Eq.(6.18)]

The goal of this section is to derive a nonlinear equation for quadratic entropy fluctuations (Eq.(6.18)) and
a linear conservation equation for the disturbance energy contained in entropy fluctuations (Eq.(6.19)).
All the missing details of the algebra leading to Eqs.(6.18) and(6.19) may be found in AppendixB.

6.2.1 Nonlinear conservation equation for entropy fluctuations

The conservation equation for entropy in a multicomponent, reacting medium writes :

∂s

∂t
+ ~u.~∇s =

1
ρT

[
ω̇T − ~∇.~q + φ

]
− 1
ρT

∑
k

gsk

[
ω̇k − ~∇. ~qk

]
(6.14)

Averaging all terms of Eq.(6.14), one may write a mean conservation equation for entropy :

− ~u.~∇s+
1
ρT

[
ω̇T + φ− ~∇.~q

]
− 1
ρT

∑
k

gsk

[
ω̇k − ~∇. ~qk

]
+ conss = 0

(6.15)

where

conss = −~u′.~∇s′ + 1
ρT

[
ω̇T + φ− ~∇.~q

]
− 1
ρT

[
ω̇T + φ− ~∇.~q

]
− 1
ρT

∑
k

gsk

[
ω̇k − ~∇. ~qk

]
+

1
ρT

∑
k

gsk

[
ω̇k − ~∇. ~qk

]
(6.16)

Note that the identity∂s
∂t is assumed. It either means that the final and initial values of the entropy are the

same, or that the flow is statistically stationary.
Taking the difference between Eq.(6.14) and Eq.(6.15) gives:

∂s′

∂t
= −~u.~∇s+

1
ρT

[
ω̇T + φ− ~∇.~q

]
− 1
ρT

∑
k

gsk

[
ω̇k − ~∇. ~qk

]
+ ~u.~∇s− 1

ρT

[
ω̇T + φ− ~∇.~q

]
+

1
ρT

∑
k

gsk

[
ω̇k − ~∇. ~qk

]
− conss (6.17)
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Multiplying the previous equation byps′

rcp
gives a nonlinear conservation equation fors′2 :

p

2rcp
∂s′2

∂t
= − ps

′

rcp

[
~u.~∇s− ~u.~∇s

]
+
s′

cp

[[
ω̇T + φ− ~∇.~q

]
− ρT

ρT

[
ω̇T + φ− ~∇.~q

]]
− s

′

cp

[∑
k

gsk

[
ω̇k − ~∇. ~qk

]
− ρT

ρT

∑
k

gsk

[
ω̇k − ~∇. ~qk

]]

− ps
′

rcp
conss (6.18)

This equation will be called Eq.(2)[Eq.(6.18)]

Eq.(2)[Eq.(6.18)] is constructed here supposing negligible numerical corrections. Yet, the code also introduces
dissipation and dispersion that must be taken into account for the balance analysis of this equation. These
terms (LWE2 , BNDE2 andAVIE2) may be found in AnnexD.

Linearization

Linearizing Eq.(6.18) to second order gives :

p0

2r0cp0

∂s21
∂t

= − p0s1
r0cp0

(
~u1.~∇s0 + ~u0.~∇s1

)
+
s1
cp0

[
ω̇T1 + φ1 − ~∇.~q1

]
+
s1
cp0

[(
−ρ1

ρ0
− T1

T0

)(
ω̇T0 + φ0 − ~∇.~q0

)]
−ρ0s1
cp0

[
−T1

T0

∑
k

gsk0
DYk0

Dt
+
∑

k

gsk1
DYk0

Dt
+
∑

k

gsk0
∂Yk1

∂t

]
(6.19)

This equation will be called Linear Eq.(2)

p0

r0cp0

s2
1
2 will be called Energy 2

6.2.2 Links between acoustic and entropy disturbance energies

This equation, giving the evolution of the disturbance energy contained in quadratic fluctuations of en-
tropy cannot be directly compared to Eq.(6.11). s1 is rewritten in function ofT1, p1 andYk1 to enable
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6.2 Entropy disturbance energy Eq.(2)[Eq.(6.18)]

this comparison. Using gibbs equation for entropy in a multispecies system to determines1 gives:

Tds = dh− 1
ρ
dp−

∑
k

gkdYk (6.20)

Ts1 = cpT1 −
1
ρ
p1 −

∑
k

gkYk1 (6.21)

and therefore :
s1
cp0

=
cpT1

cp0T
− r

pcp0
p1 −

∑
k

gk

cp0T
Yk1 (6.22)

Keeping only first order terms ins1 gives:

s1
cp0

=
T1

T0
− r0
p0cp0

p1 −
∑

k

gk0

cp0T0
Yk1 (6.23)

substituing Eq.(6.23) into Eq.(6.19) gives:

p0

2r0cp0

∂s21
∂t

= − p0s1
r0cp0

(
~u1.~∇ (s0) + ~u0.~∇ (s1)

)
+

[
T1

T0
− r0
cp0

p1

p0
−
∑

k

gk0

cp0T0
Yk1

] [
ω̇T1 + φ1 − ~∇. (~q1)

]
+

[
T1

T0
− r0
cp0

p1

p0
−
∑

k

gk0

cp0T0
Yk1

] [(
−ρ1

ρ0
− T1

T0

)(
ω̇T0 + φ0 − ~∇. (~q0)

)]

−ρ0

[
T1

T0
− r0
cp0

p1

p0
−
∑

k

gk0

cp0T0
Yk1

]
[
−T1

T0

∑
k

gsk0
DYk0

Dt
+
∑

k

gsk1
DYk0

Dt
+
∑

k

gsk0
∂Yk1

∂t

]
(6.24)

By doing the same assumptions as for the simplification of the linear disturbance energy conservation
Eq.(6.11) and using the fact that under these assumptionsγ0−1

γ0
= r0

Cp0
and ρ1

ρ0
= −T1

T0
+ p1

p0
, Eq.(6.24)

shrinks to :

p0

2r0cp0

∂s21
∂t

+
p0

2r0cp0
~u0.~∇s21 =

[
T1

T0
− γ0 − 1

γ0

p1

p0

] [
ω̇T1 − ~∇.~q1

]
−
[
T1

T0
− γ0 − 1

γ0

p1

p0

]
p1

p0
ω̇T0 (6.25)

This equation will be called Simplified linear Eq.(2)
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At this stage two important remarks should be made concerning source terms related toω̇T1 andω̇T0.
The classical Rayleigh term (i.e.γ0−1

γ0

p1

p0
ω̇T1) appears as a sink term for the entropy disturbance energy,

whereas its source term isω̇T1T1
T0

. It can therefore be suspected that in the linear framework, the rayleigh
term is a transfer term which takes energy from the entropy disturbance energy to increase pressure and
velocity disturbance energy, showing thereby a direct link between the two types of energies.
In contrary to what is observed for the disturbance energy defined in Eq (6.11), terms related tȯωT0 do

not vanish in the linearization. Unless the hypothesisM = 0 is made, the source termγ0−1
γ0

(
p1

p0

)2
ω̇T0

implies the creation of entropy disturbance energy by the quadratic fluctuations of pressure correlated to
the mean heat release.

In the two previous sections6.1 and6.2, linear conservation equations of disturbance energies are
derived. Yet, a linearization of the flow variables is not always possible, especially in reacting flows. In
this case, the flame front moves inside the combustor and the local temperature fluctuation level can be
as high as the mean local temperature. In this case, it is expected that non-linear phenomena will have
an important contribution to the level of disturbance energy in the flow. Following this remark, in this
section, one derives a nonlinear conservation equation for a disturbance energy in reacting flows.

6.3 Nonlinear disturbance energy Eq.(3)[Eq.(6.37)]

In a mathematical form, this equation should write :

DEd

Dt
+ ~∇. ~W = D (6.26)

whereEd is a nonlinear disturbance energy,~W the associated flux across boundaries andD the source
term.

The quantityEd should therefore meet several properties to be useful when applied to flow instabili-
ties studies. When needed2 Ed will be expanded asf(x, t) = f0(x) +

∑
εifi(x, t).

• P0: Ed should be zero when there are no fluctuations, that isEd0 = 0,

• P1: Ed should be quadratic in the primitive variables fluctuations, that isEd1 = 0

• P2: the leading order term ofEd should only depend on the first order terms of the primitive
variable fluctuations (i.eρ1, etc...)

• P3: Ed2 should be definite positive so that it increases with the amplitude of the fluctuations.

2One therefore has the following relation between this decomposition and the decomposition in mean and fluctuating part :P
εifi(x, t) = f ′
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6.3 Nonlinear disturbance energy Eq.(3)[Eq.(6.37)]

Notation Expression Notation Expression

~q −λ~∇T + ρ
∑N

k=1 hskYk
~Vk ~qk ρYk

~Vk

~ζ (~∇⊗ ~u)⊗ ~u ~ξ ~∇⊗ ~u

φ
∑

i

∑
j τij

∂uj
∂xi

ψj
∑

i
1
ρ

∂τij
∂xi

Q ω̇T−~∇.~q+φ
T ω̇T

∑N
k=1 ∆h0

f,kω̇k

hs h−
∑N

k=1 ∆h0
f,kYk H hs + ~u.~u

2

gsk hsk − Tsk gk gsk + ∆hf,k

Table 6.2 -Notations

6.3.1 Derivation of a disturbance energy conservation equation

In contrary to what is done for the derivation of Eqs.(6.10) and (6.18), here the baseline flow is the
steady state flow. This implies that no mean cross-correlations terms are considered anymore. This
choice is made here to ease the presentation of this derivation but also has important consequences on
the level of fluctuations in the flow. A discussion on these consequences may be found in section6.5
and the influence of the choice of the baseline flow on balance closure is addressed in Chapter7. Note
that details of the derivation with an unsteady averaged baseline flow may be found in appendixC. To
simplify the comprehension, a table6.2recalling the major terms involved in this derivation is provided.

The derivation of this disturbance energy equation requires Crocco’s formulations for the entropy and
momentum transport equations. The set of Eqs.(6.27-6.30) describe any reactive laminar flow:

∂ρ

∂t
+ ~∇.~m = 0 (6.27)

∂~u

∂t
+ ~ζ + ~∇H − T ~∇s = ~ψ + ~ψ? (6.28)

∂ρYk

∂t
+ ~∇.(~mYk + ~qk) = ω̇k, for k = 1, 2, ..., n (6.29)

∂ρs

∂t
+ ~∇. (~ms) = Q+Q? (6.30)

whereQ? = −
∑

k gsk

[
ω̇k − ~∇. ~qk

]
/T and ~ψ? =

∑N
k=1 gsk

~∇Yk, with gsk being the sensible free

enthalpy of species k,̇ωk the volumic mass rate of consumption for species k and~qk the species flux
defined as :~qk = ρYk

~Vk. All other variables correspond to the analysis of Myers [88], except that in this

reacting case derivation:Q = ω̇T−~∇.~q+Φ
T .

The corresponding equations for the steady mean fields are:

~∇.~m = 0 (6.31)

~ζ + ~∇H − T̄ ~∇s− ~ψ? − ~ψ = 0 (6.32)
~∇.~mYk + ~∇. ~qk = ω̇k (6.33)

~∇.
(
~ms
)
− Q̄− Q̄? = 0 (6.34)
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The derivation of a disturbance energy will also be using the specific stagnation enthalpy transport in-
stantaneous and mean equations:

∂

∂t
(ρH − p) + ~∇. (~mH)− ~m.~ψ − TQ = 0 (6.35)

~∇.
(
~mH

)
− ~m.~ψ − T̄ Q̄ = 0 (6.36)

The sum of
(
H − T̄ s−

∑n
k=1 gskYk

)
times Eq.(6.27), T̄ times Eq.(6.30), gsk times Eq.(6.29) and

the scalar product of~m with Eq.(6.28) are substracted from Eq.(6.35). Doing so and after quite heavy
algebra given in AppendixC, it gives:

∂

∂t

[
ρ
(
H −H

)
− ρT̄ (s− s)− ~m.(~u− ~u)− (p− p)−

n∑
k=1

gskρ(Yk − Yk)

]
︸ ︷︷ ︸

Ed

+~∇.
[(
~m− ~m

) [(
H −H

)
− T̄ (s− s)

]
− ~m(T − T̄ ) (s− s)

]︸ ︷︷ ︸
W

+(~m− ~m)(~ζ − ~ζ)︸ ︷︷ ︸
Dζ

+(s− s)(~m− ~m)~∇T̄ − ~m(s− s)~∇(T − T̄ )︸ ︷︷ ︸
Ds

−(T − T̄ )(Q− Q̄)︸ ︷︷ ︸
DQ

−(~m− ~m).(~ψ − ~ψ)︸ ︷︷ ︸
D~ψ

−(T − T̄ )(Q? −Q?)︸ ︷︷ ︸
DQ?

−(~m− ~m).( ~ψ? − ~ψ?)︸ ︷︷ ︸
D ~ψ?

−
n∑

k=1

g′skΩ
′
k −

n∑
k=1

g′skYk
~∇. ~m′ −

n∑
k=1

gskY
′
k
~∇. ~m′

︸ ︷︷ ︸
DY k

= 0 (6.37)

whereΩ′
k = [ω̇′k − ~∇. ~q′k − ~∇.(~mYk)′].

This equation will be called Eq.(3)[Eq.(6.37)]

Ed will be called Energy 3

6.3.2 Linearization

It is obvious from Eq.(6.37) thatEd satisfies propertyP0. Disturbances of the form()′ = () − (¯) =∑∞
i=1 ε

i()i are then substituted into the exact Eq.(6.37), and only the lowest order terms inε are retained.
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6.3 Nonlinear disturbance energy Eq.(3)[Eq.(6.37)]

In keeping with the other studies of disturbance energy in isentropic and homentropic flows [85, 18, 100],
the remaining terms are of second order in the disturbances, meaning thatEd also satisfiesP1. Retention
of all second-order terms in the exact flux vector and source terms results in a rather complex disturbance
energy equation, where much of the complexity is contained in viscous stress, dissipation, and heat
conduction terms that can be argued to be negligible in most combusting flows. Ignoring such terms as
well as the vorticity terms results in the following linearized disturbance energy equation,

∂Ed2

∂t
+ ~∇. ~W2 = D2, (6.38)

This equation will be called Linear Eq.(3)

where the disturbance energy densityEd2, flux vector ~W2, and sourceD2 terms are

Ed2 =
p2
1

2ρ0c20
+

1
2
ρ0~u1.~u1 + ρ1~u0.~u1 +

ρ0T0s
2
1

2cp0
+ EY 2, (6.39)

~W2 = (p1 + ρ0~u0.~u1)
(
~u1 +

ρ1

ρ0
~u0

)
+ ~m0T1s1, (6.40)

and

D2 = s1 ~m1.~∇T0 + s1 ~m0.~∇T1

+
T1

T0
(ωT1 − ~∇.~q1) + T1(ωT0 − ~∇.~q0)

(
1
T
− 1
T0

)
+ T1Q

∗
1 + ~m1. ~ψ

∗
1

+
n∑

k=1

gsk1Ωk1 +
n∑

k=1

(gsk1Yk1 + gsk0Yk1) ~∇.~m1. (6.41)

TheEY 2 term in Eq.(6.39) is the contribution from theρgsk0(Yk − Yk0) terms in Eq.(6.37) and is
equal to

EY 2 =
p0

2

n∑
k=1

[(
1 +

W

Wk
− skW

R

)
gsk − esk
CvT

+
W

Wk

(
1 +

1
Yk

)]
Y 2

k1

+ p0

n∑
k=1

∑
j 6=k

[(
1 +

W

Wk
− skW

R

)
gsj − esj
CvT

+
W

Wj

]
Yk1Yj1

+
ρ

Cv

n∑
k=1

(gsk − esk) s1Yk1 +
n∑

k=1

[
(γ − 1)(gsk − esk) +

RT

Wk

]
ρ1Yk1. (6.42)
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From Eqs.(6.39)-(6.42), the proposed disturbance energy also satisfies propertyP2 since its leading
order term only depends on first-order quantities. Note also that Eq.(6.38) simplifies to other, existing
acoustic energy conservation equations under the condition of homentropic flow and homogeneous mix-
ture. The energy densityEd2 and flux ~W2 terms then become those defined by Cantrell[18] for acoustic
propagation in a non-stationary medium. Under the zero Mach number flow assumption and calorific
perfection, Eq.(6.38) reduces to the form given in [93].

188



6.4 The choice of the baseline flow

6.4 The choice of the baseline flow

A mendatory property of the reference field considered in Eq.(1)[Eq.(6.10)], (2) and (3) is that it should be
easily obtained from unsteady computations. Two possibilities are investigated in this work.

• When available, the reference field can be the steady state solution of the flow. This is only possi-
ble if the flow is laminar. By definition, no such field can be defined in turbulent cases. In practice,
the fluctuating instantaneous solutions are therefore compared to the stable one.
Fig.(6.1) presents the implications of this choice on heat release fields in a 1D flame case. Here
the flame moves periodically from left to right ( for example under the influence of an incoming
acoustic wave). Fig.(6.1) shows the reference, the instantaneous and the fluctuating fields of heat
release.
Since the flame has moved compared to its steady state position, fluctuations are not zero. The
maximum amplitude is found on the maximum of the instantaneous field, and the minimum am-
plitude is found at the location of the maximum reference field. Note that if the reference and
instantaneous curves are symmetric in fresh and burnt gases, the integral of the fluctuation on the
line is zero.

Figure 6.1 -Fields of heat release in a 1D flame case(Steady state reference field):
Instataneous Reference Fluctuation

• Another possible choice for the reference field is the averaged mean field. Fluctuations will then
be obtained by comparing instantaneous fields to this reference. Fig.(6.2) takes the same example
of a 1D forced flame. Since the flame moves following the incoming acoustic wave, the averaged
field obtained after a few periods looks very different from the steady state. The averaged field is
not straight because the flame spends more time during a cycle at the locations of the maximum
flame extension.
Since in the two cases the instantaneous fields are the same, fluctuating fields look very differ-
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ent. Two zones of maximum and minimum fluctuation can also be found but their positions have
changed and their amplitudes are smaller than in the previous case.

Figure 6.2 -Fields of heat release in a 1D flame case(Averaged reference field):
Instataneous Reference Fluctuation

This comparison shows that this choice is critical since it changes the amplitude of local fluctuations
of heat release. Note that this phenomenon has nothing to do with turbulence. In practice, when dealing
with turbulent cases, only the second choice is possible and no steady reference field can be defined.
Using the averaged reference field on a laminar case is done in this work and should therefore be seen as
a step towards the analysis of disturbance energies in turbulent cases using LES.
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6.5 Summary of disturbance energies conservation equations

6.5 Summary of disturbance energies conservation equations

In order to help the reader in his comprehension, and to introduce simple notations that will used latter in
the text, Tables (6.3), (6.4) and (6.5) provide a clear presentation of Eqs.(6.10), (6.18) and (6.37). These
tables present for the three equations, the energy, the fluxes and the source terms that they involve.
A comparison with other conservation equations found in the Literature is also provided.
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6.5 Summary of disturbance energies conservation equations
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DISTURBANCE ENERGIES IN FLOW
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Chapter 7

Results

This chapter presents the results concerning balance closure of disturbance energy equations defined in
chapter6. Notations for the different terms involved in each balance may be found in AnnexE.

• General organisation

Two different configurations are studied and Fig.(7.1) presents a schematic representations of these
configurations.

For each configuration, different test cases are computed :

– ConfigurationA (Section7.1) a 1-D laminar flame. Two cases are studied :

∗ CaseA1 : the inlet is forced with an entering acoustic wave at 287Hz and an amplitude
corresponding to0.1m.s−1 for the acoustic inlet velocity. The baseline flow is the initial
steady solution.

∗ CaseA2 : the inlet is forced with an entering acoustic wave at 57Hz and an amplitude
corresponding to0.1m.s−1 for the acoustic inlet velocity. The baseline flow is the initial
steady solution.

– ConfigurationB (Section7.2) A 2-D laminar flame. Three cases are studied:

∗ CaseB1 : the inlet is forced with an entering acoustic wave at 600Hz and an amplitude
corresponding to0.05m.s−1 for the acoustic velocity. The baseline flow is the initial
steady solution.

∗ CaseB2 : the outlet acoustic reflection coefficient is increased so that the flame becomes
unstable at 856Hz. After 44ms, the reflection coefficient is released and the system
relaxes to its steady state. The baseline flow is the initial steady solution.

∗ CaseB2bis : It is the same case asB2, but the post-processing of solutions differ. The
baseline flow is the mean flow defined using all the snapshots gathered during the com-
putation.

Three different equations balance closure are tested.



RESULTS

Figure 7.1 -Scheme of the configurations with mesh informations.

– Eq.(1)[Eq.(6.10)] : a nonlinear conservation equation inp′2 andu′2 defined by Eq.(6.10)

– Eq.(2)[Eq.(6.18)] : a nonlinear conservation equation ins′2 defined by Eq.(6.18)

– Eq.(3)[Eq.(6.37)] : a nonlinear conservation equation for a general disturbance energy defined by
Eq.(6.37)

Tables6.3, 6.4 and 6.5 summarize these equations.Note that ”minimum” and ”minimum
linear” equations, deriving from the balance closure of Eqs.1, 2 and 3, depend on the case
studied and therefore will not be found in these tables.
When needed, one uses simplified notations for the different R-H-S terms of Eqs.(1), (2) and (3).
These notations may be found in appendixE on page313

• Presentation

Table7 sums up the investigated balance closures and gives for each test done (marked with a×)
the page where this test can be found.

For each case, the results will be presented as shown on Fig.(7.2) for Eqs.(1),(2) and (3).

– First, the nonlinear equation is closed. This step mainly checks the accuracy of the POSTTIT
post-processing tool applied to complex equations closures.

– Then, the balance closure of the minimum equation is checked. This step answers the fol-
lowing question : what are the terms responsible for the evolution of the chosen disturbance
energy? The arbitrary level of 10% of the absolute maximum amplitude of the time derivative
term is the limit under which terms are not kept. This step will be used in chapter8 to derive
a nonlinear stability criterion in flow for the disturbance energy defined by Eq.(3)[Eq.(6.37)].

– Finally, the balance closure of the minimum linear equation is presented. This step will
be used in chapter8 to derive stability criteria in flow for disturbance energies defined by
linearized Eqs.(1),(2).
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XXXXXXXXXXXEquation
Case

A1 (sec7.1.1) A2 (sec7.1.2)

Eq1 × (p 199) × (p 204)
Eq2 × (p 199) × (p 205)
Eq3 × (p 201) × (p 205)

XXXXXXXXXXXEquation
Case

B1 (sec7.2.1) B2 (sec7.2.2) B2bis (sec7.2.3)

Eq1 × (p 210) × (p 223) × (p 240)
Eq2 × (p 216) × (p 229) × (p 247)
Eq3 × (p 220) × (p 235) × (p 253)

Table 7.1 -Cases studied and corresponding balance equations tests

P0 is the mean linear power of the flame and only depends here on the configuration used. For
caseA, P0 = 5W.m−1. For caseB, P0 = 3950W.m−1 Nonlinear Eq.(3)[Eq.(6.37)] already describes
the evolution of a disturbance energy in contrary to Eq.(1)[Eq.(6.10)] and Eq.(2)[Eq.(6.18)]. The minimum
Eq.(3)[Eq.(6.37)] therefore gives a nonlinear stability criterion in flow which is one of the goals of this
study. For this reason, no balance closure for the linearization of the minimum Eq.(3)[Eq.(6.37)] will
be presented here.
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RESULTS

Figure 7.2 -Presentation of the results
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7.1 ConfigurationA (1-D Reacting Case)

7.1 Configuration A (1-D Reacting Case)

7.1.1 Case A1 (Forced case :F0=287Hz)

Tables6.3, 6.4 and 6.5 summarize Eqs.1, 2 and3 . Note that ”minimum” and ”minimum linear”
equations, deriving from the balance closure of Eqs.1, 2 and 3, depend on the case studied and
therefore will not be found in these tables.

Equation 1[Eq.(6.10)]

Fig.(7.3) a) shows a perfect agreement between the sumdeudt + depdt and the sum of the volume
integrals of all R-H-S terms of Eq.(1)[Eq.(6.10)]. As already mentioned, this step mainly checks the ability of
the post-processing tool (POSTTIT) to close the balance of Eq.(1)[Eq.(6.10)]. The maximum power reached
never exceeds4.0 10−4% of the mean power of the flame. This means that the pressure and velocity
fluctuations only contain a very small power compared to the chemical power released by the flame.
The major terms areAc1, Ac2. These terms are respectively:

• Ac1 : − p′

γp

[
γp~∇.~u− γp~∇.~u

]
• Ac2 : −~u′.~∇p′

Fig.(7.3) b) shows the closure of the minimum Eq.(1). The fluctuations of heat release and heat flux
(termsAc3, Ac4 (not shown)) are very small when compared to the major terms. In this case, the flame
does not directly interacts with the acoustic forcing. The numerical terms are small and do not influence
the sum of R-H-S terms of Eq.(1).

Fig.(7.3) c) shows the closure of the minimum linear Eq.(1) (not shown). The linearizing process
does not influences the closure, and the minimum linearized Eq.(1) shrinks to the classical non reacting
linear acoustic energy conservation equation. It is as if in this case, the acoustic disturbance energy
introduced at the inlet by the forcing was just propagating through the system without interacting with
the flame.

Equation 2[Eq.(6.18)]

Figs.(7.4) a) andb) respectively show the balance of the exact and minimum Eq.(2). The only term
which amplitude is bigger than 10% of the maximum absolute amplitude of the time derivative term is

En1 = − ps′

rcp

[
~u.~∇s− ~u.~∇s

]
. In this case,En2 andEn3 standing for the influence of heat release and

heat flux fluctuations are almost negligible. The flame therefore has a negligible direct influence of the
flame on the time derivative termdesdt.
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RESULTS

a)

Maximum amplitude of time
derivative : 4.10−6

b)

1
2γp

∂p′2

∂t + ρ
2
∂u′2

∂t =

−~u′.~∇p′ − p′

γp

[
γp~∇.~u− γ̄p̄~∇.~u

]

c)

1
2γ0p0

∂p2
1

∂t + ρ0

2
∂u2

1

∂t + ~∇.(p1 ~u1) = 0

Figure 7.3 -CaseA1 : Eq.(1)
a) Exact nonlinear dedt sum of terms
b) Minimum nonlinear dedt sum of terms
c) Minimum linear dedtl sum of terms
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7.1 ConfigurationA (1-D Reacting Case)

As shown in Fig.(7.4) c), linearizing the minimum Eq.(2) has no influence on the closure. There-
fore, keeping only the major terms of the balance leads to the following conservation equation for the
entropy disturbance energy:

∂es
∂t

= − p0s1
r0cp0

~u1.~∇s0 (7.1)

wherees = p0

2r0cp0
s21. It is interesting to note that Eq.(7.1) is the linearized conservation equation of

the entropy disturbance energy in a non-reacting flow but with mean gradient of entropy. This equation
states that in this case, the entropy disturbance energy travels through the configuration without creating
significant fluctuations of heat release and heat flux.
Having a closer look to the only remaining source term, and using the fact that under the present assump-

tionss1 = Cp0T1 ands0 = Cp0T0, it can be rewritten as−ρ0Cp0T1 ~u1.~∇
(

T 2
0
2

)
. In this case, the creation

or dissipation of the entropy disturbance energy therefore depends on the correlation of the temperature
fluctuations with the velocity fluctuations. When both are in phase, the entropy disturbance energy is
dissipated. If they are in opposition of phase, the entropy disturbance energy is created. Note that in the
present case which is pulsated, the entropy disturbance energy neither grow or decay over a period of
forcing.

Equation 3[Eq.(6.37)]

Fig.(7.5) a) shows the balance of the exact Eq.(3)[Eq.(6.37)].
The maximum amplitude of the time derivative of the disturbance energy represents almost0.7% of
the mean power of the flame. Fig.(7.5) a) shows many similarities with Fig.(7.4) c). The disturbance
energy is supposed to contain all disturbance energies in the flow. In this case, it mostly contains entropy
disturbance energy as Fig.(7.5) a) and Fig.(7.4) c) show very close time derivatives for both disturbance
energies.

The major term in this case isDs and Fig.(7.5) b) shows the balance of the minimum Eq.(3).
The term related to the fluxes of disturbance energy through the boundaries is almost negligible, and is
only responsible for0.2% of the fluctuation of the time derivative of the disturbance energy (not shown).
Considering thatDs is the only significant term and thats′ ~m.~∇T ′ is negligible (as shown in Fig.(7.6)),
a simplified conservation equation for the disturbance energy can be written :

∂Ed

∂t
= −s′ ~m′~∇T̄ (7.2)

Eq.(7.2) states that in this case (a 1-D flame forced at 287Hz with a velocity amplitude equal to 0.1m.s−1)
the growth or decay of the disturbance energy is linked to fluctuations of entropy and momentum in
presence of a gradient of mean temperature. This term is indirectly related to the flame since the flame
is the cause of the gradient of temperature in the flow.
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RESULTS

a)

Maximum amplitude of time
derivative : 8.10−3

b)

p
2rcp

∂s′2

∂t = − ps′

rcp

[
~u.~∇s− ~u.~∇s

]

c)

p0

2r0cp0

∂s21
∂t = − p0s1

r0cp0
~u1.~∇s0

Figure 7.4 -CaseA1 : Eq.(2)
a) Exact nonlinear desdt sum of terms
b) Minimum nonlinear desdt sum of terms
c) Minimum linear desdtl sum of terms
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7.1 ConfigurationA (1-D Reacting Case)

a)

Maximum amplitude of time
derivative : 7.10−3

b)

∂Ed

∂t = −s′~m′~∇T̄

Figure 7.5 -CaseA1 : Eq.(3)
a) Exact nonlinear dEddt sum of terms
b) Minimum nonlinear dEddt sum of terms

Figure 7.6 -CaseA2 : Eq.(3) s′ ~m.~∇T ′ −s′ ~m′~∇T̄
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RESULTS

7.1.2 Case A2 (Forced case :F0=57Hz)

Tables6.3, 6.4 and 6.5 summarize Eqs.1, 2 and3 . Note that ”minimum” and ”minimum linear”
equations, deriving from the balance closure of Eqs.1, 2 and 3, depend on the case studied and
therefore will not be found in these tables.

Equation 1[Eq.(6.10)]

Fig.(7.7) a) shows the balance of the nonlinear conservation equation for pressure and velocity fluctu-
ations. Fig.(7.7) a) shows a perfect agreement between the time derivative termdedt and the sum of
the volume integrals of the R-H-S terms of Eq.(1)[Eq.(6.10)] providing that the influence of the numerical
corrections is taken into account (see Fig.(7.8)). The time derivative term is perfectly quadratic showing
two oscillations per period of forcing.
Fig.(7.7) b) shows the balance of the minimum Eq.(1). The major physical terms that have to be kept are
:

• Ac1 : − p′

γp

[
γp~∇.~u− γp~∇.~u

]
• Ac2 : −~u′.~∇p′

• Ac3 : p′

γp

[
(γ − 1) ω̇T − (γ − 1) ω̇T

]
• Ac4 : − p′

γp

[
(γ − 1) ~∇.~q − (γ − 1) ~∇.~q

]
Fig.(7.8) shows the numerical correction linked with the 2nd spatial scheme used during the computa-
tion. The maximum absolute amplitude of this term almost represents 50% of the maximum amplitude
of the time derivative term. In this case, this correction term is obviously necessary. Note that it is not
in case forA1 for which the first step of the scheme already gives a second order discretization since
no numerical correction appear in Fig.(7.3). This is due to the behavior of the flame which is different
between the two cases. InA1, the amplitude of the move of the flame front is much smaller than in the
present caseA2. This acts on the fluxes that have to be resolved by the code. If their value becomes
important because the flame goes from one place to the other, the errors of discretization will also tend
to increase which is the case here.

As shown in Fig.(7.7) c), the linearization only has a small impact on the closure of the balance of the
minimum Eq.(1). Compared to the previous case (see sections7.1.1), the termsγ0−1

γ0p0
p1( ˙ωT1− ~∇.~q1) and

−p1γ1

γ0p0
( ˙ωT0 − ~∇.~q0) are much bigger when compared to−~u1.~∇p1. Therefore, direct interaction terms

with the flame (involving fluctuations of heat release and heat flux) are present in the linear minimum
Eq.(1). These terms have two major components :
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7.1 ConfigurationA (1-D Reacting Case)

• γ0−1
γ0p0

p1( ˙ωT1 − ~∇.~q1)
This term is composed of the fluctuations of heat release and heat flux coupled with the fluctuations
of pressure. This term is an extension of the Rayleigh term with fluctuations of heat flux.

• −p1γ1

γ0p0
( ˙ωT0 − ~∇.~q0)

This term depends on the correlation of heat specific ratio fluctuations with pressure fluctuations.
This term appears in multi-species cases.1

Note that the presence of terms based onγ1 in the minimum linear Eq.(1) shows that even ifγ1 is
generally considered as small enough to be neglected, the productγ1 ˙ωT0 may not be because of the high
local values that the mean heat release can take.

Equation 2[Eq.(6.18)]

Fig.(7.9) a) shows the balance of the nonlinear conservation equation for thes′2 quantity. The derivative
termdesdt is not perfectly quadratic and has two frequency components at 57Hz (frequency of forcing)
and 114Hz (quadratic component).

Fig.(7.9) b) shows the closure of the minimum Eq.(2).
Compared to caseA1 (see sections7.1.1), the relative importance of the termsEn2 andEn3 compared
to En1 has increased.
Fig.(7.10) compares the termEn2 for casesA1 andA2. The signals are normalized by the maximum
absolute value ofdesdt in the two cases. The relative importance of this term is multiplied by 5 in case
A2. This result is due to the cinematic effect of the velocity fluctuation on the flame front. When the
period increases, this gives more time for the flame to move and therefore increases its covered area.
This increase in area directly impacts the volume integral of heat release and heat flux fluctuations terms
leading to the observed difference in Fig.(7.10).

Fig.(7.9) c) shows the closure of the minimum linear Eq.(2).
The linearizing process has no influence on the closing of the balance. In this case, the linearization of
minimum Eq.(2) leads to :

∂es
∂t

= − p0s1
r0cp0

~u1.~∇s0 +
s1
cp0

[
ω̇T1 − ~∇.~q1

]
(7.3)

wherees = p0

2r0Cp0
s21.

Equation 3[Eq.(6.37)]

Fig.(7.11) a) shows the balance of the nonlinear disturbance energy. The maximum amplitude of the
time derivative term represents 3.4% of the mean power of the flame.

1This term is therefore present in any reacting case.
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RESULTS

a)

Maximum amplitude of time
derivative : 6.10−7

b)
1

2γp
∂p′2

∂t + ρ
2

∂u′2

∂t =

−~u′.~∇p′ − p′

γp

[
γp~∇.~u− γp~∇.~u

]
+

p′

γp

[
(γ − 1) ω̇T − (γ − 1) ω̇T

]
−

p′

γp

[
(γ − 1) ~∇.~q − (γ − 1) ~∇.~q

]
+ LWE1

c)
1

2γ0p0

∂p2
1

∂t + ρ0

2
∂u2

1
∂t =

− ~u1.~∇p1 + γ0−1
γ0p0

p1[ ˙ωT1 − ~∇.~q1] +
p1γ1

γ0p0
[−p0

~∇. ~u0 + ˙ωT0 − ~∇.~q0] + LWE1

Figure 7.7 -CaseA2 : Eq.(1)
a) Exact nonlinear dedt sum of terms
b) Minimum nonlinear dedt sum of terms
c) Minimum linear dedtl sum of terms
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7.1 ConfigurationA (1-D Reacting Case)

Figure 7.8 -CaseA2 : Eq.(1) Numerical correctionLWE1

Fig.(7.11) b) shows the closure obtained for minimum Eq.(3). Considering thatDs, DQ are the only
significant terms, the minimum conservation equation for the disturbance energy writes in this case :

∂Ed

∂t
= −s′ ~m′~∇T̄ + ~ms′~∇T ′ + T ′Q′ (7.4)

The relative amplitude of the termT ′Q′ is increased compared to the caseA1 (not shown). This term
represents the influence of the fluctuations of heat release and heat flux on the nonlinear disturbance
energy. This increase is therefore consistent with what is observed for Eq.(1)[Eq.(6.10)] and (2).
Figs.(7.11) a) and Fig.(7.9) a) can also be compared. It shows that in this case, the nonlinear disturbance
energy is almost entirely composed of entropy disturbance energy, disturbance energy in pressure and
velocity fluctuations being negligible.
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RESULTS

a)

Maximum amplitude of time
derivative : 3.10−2

b)
p

2rcp
∂s′2

∂t = − ps′

rcp

[
~u.~∇s− ~u.~∇s

]
+

ps′

rcp

[
1
ρT

[
ω̇T − ~∇.~q

]
− 1

ρT

[
ω̇T − ~∇.~q

]]

c)
p0

2r0cp0

∂s21
∂t =

− p0s1
r0cp0

~u1.~∇s0 + s1
cp0

[
ω̇T1 − ~∇.~q1

]

Figure 7.9 -CaseA2 : Eq.(2)
a) Exact nonlinear desdt sum of terms
b) Minimum nonlinear desdt sum of terms
c) Minimum linear desdtl sum of terms
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7.1 ConfigurationA (1-D Reacting Case)

Figure 7.10 -Normalized amplitudes ofEn2 A1( ), A2( )
Amplitudes are normalized by the maximum absolute amplitude ofdedt : Emax. (0.03 for A1 and0.008 for A2).

Time is shifted to compare both cases.

a)

Maximum amplitude of time
derivative : 3, 4.10−2

b)

∂Ed
∂t

= −s′ ~m′~∇T̄ + ~ms′~∇T ′ + T ′Q′

Figure 7.11 -CaseA2 : Eq.(3)
a) Exact nonlinear dEddt sum of terms
b) Minimum nonlinear dEddt sum of terms
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RESULTS

7.2 Configuration B (2-D Reacting Case)

7.2.1 Case B1 (Forced Case :F0=600 Hz)

Tables6.3, 6.4 and 6.5 summarize Eqs.1, 2 and3 . Note that ”minimum” and ”minimum linear”
equations, deriving from the balance closure of Eqs.1, 2 and 3, depend on the case studied and
therefore will not be found in these tables.

Equation 1[Eq.(6.10)]

Figs.(7.16, 7.17) present the balance of the nonlinear conservation equation for quadratic pressure and
velocity fluctuations. The evolution of the balance is split in two main phases. First the flame is forced
at 600Hz during almost 14 periods of oscillation and then the forcing is stopped and the system relaxes
to its initial state.
In the following, the analysis of the balance of Eq.(1)[Eq.(6.10)] is first done for the forced phase and then
the relaxation phase is studied.

• Forced phase

Fig.(7.16) a) shows the balance of the exact nonlinear conservation equation for quadratic pressure
and velocity fluctuations during the forced phase.
The maximum amplitude of the time derivative term is small compared to the mean power of the
flame (3.10−4%). The first striking particularity of the time derivative termdedt compared to
the previous configurationA is that no particular frequency component appears. This term is not
quadratic. Fig.(7.12) shows the frequency spectrum ofdedt. The predominant component is the
quadratic component at 1200Hz, but a strong component is also present at 1450 Hz (55% of the
amplitude of the quadratic component). Fig.(7.12) also shows that many harmonics of these two
frequencies are present in the signal with for example a non negligible component at 250Hz which
can be observed in Fig.(7.16) a) with a repeated pattern every two periods of forcing.

Fig.(7.13) shows the two components of the time derivative termdedt. During the first one and
a half period, both deudt and depdt are in phase and strictly positive. After this first phase, both
are almost quadratic, in opposition of phase and their absolute maximum amplitude grows rapidly
and then shows patterns at approximately 250Hz.

Fig.(7.16) b) shows the closure of the balance of the minimum Eq.(1). The major terms involved
in this equation (having an amplitude greater than 10 % of the maximum amplitude of the time
derivative term) are :

– Ac1 : − p′

γp

[
γp~∇.~u− γ̄p̄~∇.~u

]
– Ac2 : −~u′.~∇p′
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7.2 ConfigurationB (2-D Reacting Case)

Figure 7.12 -Frequency spectrum of the time derivative termdedt. All amplitudes are scaled by the quadratic
component amplitude (1200Hz)

Figure 7.13 -CaseB1, Eq.(1) : Forced phaseComposition of the time derivative term
dedt deudt depdt

– Ac3 : p′

γp

[
(γ − 1) ω̇T − (γ − 1) ω̇T

]
– Ac4 : − p′

γp

[
(γ − 1) ~∇.~q − (γ − 1) ~∇.~q

]
– Ac5 : ~u′ : ~∇τ ′

– Ac6 : − p′

γp

[
(γ − 1)

∑N
k=1 hskρ~u.~∇Yk − (γ − 1)

∑N
k=1 hskρ~u.~∇Yk

]
– Ac7 : p′

γp

[γp
r

∂r
∂t

]
– Ac8 : p′

γp

[
γp
r ~u.

~∇r − γ̄p̄
r ~u.

~∇r
]

– LWE1
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RESULTS

Compared to the previous forced configurationA1, the direct influence of the flame through the
termsAc3 and Ac4 is important. Furthermore, contrasting with casesA1 and A2, here the
viscous termAc5 is not negligible anymore.

All terms exceptAc1 and Ac2 (that shows a very small peak in Fig.(7.14)) are exactly zero
during almost one and a half period after the beginning of the forcing. This delay approximately
corresponds to the time needed by the acoustic perturbation to go from the inlet to the flame. After
this first phase,Ac3 which represents the combustion source term is strictly positive. Note that
the viscous term (Ac5) although not shown here is a strictly dissipative term.

Figure 7.14 -CaseB1, Eq.(1) : Forced phaseRepresentative terms
Ac2 Ac6 Ac3

The minimum Eq.(1) closure requires the Lax-Wendroff numerical correction term. Its maximum
amplitude is two times bigger than the maximum amplitude of the time derivative term. In com-
parison, the numerical term introduced by the boundaries remains almost negligible (not shown).

Fig.(7.16) c) shows that the linearization of the minimum Eq.(1) lowers the quality of the closure.
Periodically, the sum of the R-H-S terms of the minimum linear Eq.(1) overestimate the time
derivativededtl. Note that the closure is almost perfect during the first one and a half period
which corresponds to the time needed for the excitation to reach the flame. It can therefore be
assumed that when the flame moves, it introduces nonlinearities that are visible in Fig.(7.16) c).

• Relaxation

Fig.(7.17) a) shows a perfect closure of Eq.(1)[Eq.(6.10)] provided that the numerical correction term
is taken into account. During the first two periods, the derivative term keeps its complex frequency
structure. Then it oscillates at approximately 1700Hz and its maximum amplitude decreases. After
two periods, the time derivative term related to pressure fluctuations almost vanishes so that the
total time derivative term follows the termdeudt which oscillates harmonically at 1700Hz (see
Fig.(7.15)). This shows that the relaxation process appends at a different frequency from the
frequency of forcing. Since all terms are quadratic, it means that all fluctuations have a frequency
around 850Hz as the system goes back to its steady state. In the following caseB2 which is self-
excitated, it will be shown that this frequency is an eigen-frequency of the system. Note that (not
shown here) the numerical correction term decreases less rapidly than the other terms and therefore
becomes more and more significant as the steady state is reached.
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7.2 ConfigurationB (2-D Reacting Case)

Figure 7.15 -CaseB1, Eq.(1) : RelaxationComposition of the time derivative term
dedt deudt depdt

Fig.(7.17) c) shows that the minimum linear Eq.(1) better closes as the system returns to a steady
state. Overshoots almost disappear 10 periods after the excitation is stopped. This behavior let
think that it is indeed nonlinearities created by the excitation that explain the differences between
Fig.(7.17) b) and Fig.(7.17) c).
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RESULTS

a)

Maximum amplitude of time
derivative : 3.10−6

ALL PHASES

b)

1
2γp

∂p′2

∂t + ρ
2

∂u′2

∂t =

−~u′.~∇p′ − p′

γp

[
γp~∇.~u− γ̄p̄~∇.~u

]
+

p′

γp

[
(γ − 1) ω̇T − (γ − 1) ω̇T

]
−

p′

γp

[
(γ − 1) ~∇.~q − (γ − 1) ~∇.~q

]
+ ~u′ :

~∇τ ′ − p′

γp

[
(γ − 1)

∑N
k=1 hskρ~u.~∇Yk

]
+

p′

γp

[
(γ − 1)

∑N
k=1 hskρ~u.~∇Yk

]
+

p′

γp

[
γp
r ~u.

~∇r − γ̄p̄
r ~u.

~∇r
]

+ p′

γp

[
γp
r

∂r
∂t

]
+ LWE1

c)

1
2γ0p0

∂p2
1

∂t + ρ0
2

∂u2
1

∂t =

− ~u1.~∇p1−p1
~∇.~u1− γ1

γ0
p1
~∇.~u0 + γ0−1

γ0p0
p1 ˙ωT1 +

γ1p1
γ0p0

˙ωT0 − γ0−1
γ0p0

p1~q1 − γ1p1
γ0p0

~q0 + ~u1 :
~∇τ1 − p1

γ0p0

[
(γ0 − 1)

∑N
k=1 hsk0ρ0~u0.~∇Yk1

]
−

p1
γ0p0

[
(γ0 − 1)

∑N
k=1 hsk0ρ0 ~u1.~∇Yk0

]
−

p1
γ0p0

[
(γ0 − 1)

∑N
k=1 hsk0ρ1 ~u0.~∇Yk0

]
−

p1
γ0p0

[
(γ0 − 1)

∑N
k=1 hsk1ρ0 ~u0.~∇Yk0

]
+

p1
r0
~u1.~∇r0 + p1

r0
~u0.~∇r1 + p1

r0

∂r1
∂t + LWE1

Figure 7.16 -CaseB1, Eq.(1) : Forced phase
a) Exact nonlinear dedt sum of terms
b) Minimum nonlinear dedt sum of terms
c) Minimum linear dedtl sum of terms
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7.2 ConfigurationB (2-D Reacting Case)

a)

b)

c)

Figure 7.17 -CaseB1, Eq.(1) : Relaxation
a) Exact nonlinear dedt sum of terms
b) Minimum nonlinear dedt sum of terms
c) Minimum linear dedtl sum of terms
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RESULTS

Equation 2[Eq.(6.18)]

Figs.(7.20) and (7.21) show the balance closure of the conservation equation of the quadratic entropy
fluctuations. As for the previous energy, the analysis is split in two parts.

• Forced phase

Fig.(7.20) a) shows the balance of the exact nonlinear conservation equation for the entropy
fluctuations during the phase of excitation. The time derivative term is zero during a bit more than
one period which is the time needed by the incoming acoustic wave to reach the flame. After that,
bursts of entropy disturbance energy occur with a frequency of approximately 250Hz (≈ 2.5T0).
The amplitude of the bursts decay rapidly and the time derivative term oscillates at almost 1200Hz
after 10 periods of forcing. The maximum amplitude reached by this term represents 2% of the
mean power of the flame which is much more important than for the disturbance energy contained
in quadratic pressure and velocity fluctuations.

Fig.(7.20) b) shows the closure of the minimum Eq.(2). The terms that are kept in this min-
imum equation are :

– En1 : − ps′

rcp

[
~u.~∇s− ~u.~∇s

]
– En2 : s′

cp

[
ω̇T − ρT

ρT
ω̇T

]
– En3 : s′

cp

[
−~∇.~q + ρT

ρT
~∇.~q
]

– En4 : − s′

cp

[∑
k gsk

[
ω̇k − ~∇. ~qk

]
− ρT

ρT

∑
k gsk

[
ω̇k − ~∇. ~qk

]]
The termEn1 accounts for the transport of the disturbance energy. As shown in Fig.(7.18), En2 is
a source term for the disturbance energy and its maximum amplitude represents 15% of the mean
power of the flame.En3 andEn4 compensate this term so that the derivative term amplitude
never exceeds 2% of the mean power of the flame. Note that in this case,LWE2 , AVIE2 and
BNDE2 corrections are negligible (Not shown).

Figure 7.18 -CaseB1, Eq.(2) : Forced phase(Representative terms)
En2 En3 En4
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7.2 ConfigurationB (2-D Reacting Case)

Fig.(7.20) c) shows that the minimum linear Eq.(2) does not close at all after one and a half period
of forcing (i.e when the velocity fluctuation reaches the flame). This implies that nonlinearities are
important in minimum Eq.(2).
In this kind of linearization, it often assumed that only terms related to the fluctuation of heat
release should be kept. Doing so, one throws the term

− p0s1
r0cp0

[
ρ1

ρ0
2

+
T1

T0
2

] [
ω̇T0 − ~∇.~q0

]
.

Fig.(7.19) shows that the closure of the balance of the minimum linear Eq.(2) is much better in

this case. This implies that nonlinearities compensate the term− p0s1

r0cp0

[
ρ1

ρ0
2 + T1

T0
2

] [
ω̇T0 − ~∇.~q0

]
so that keeping only the term related to

[
ω̇T1 − ~∇.~q1

]
gives the right answer. This shows that one

should be very cautious when linearizing such disturbance energy equations.

p0

2r0cp0

∂s2
1

∂t =

− p0s1

r0cp0
~u1.~∇s0 + s1

cp0

[
ω̇T1 − ~∇.~q1

]

Figure 7.19 -CaseB1, Eq.(2) : Forced phase
Approximated minimum linear desdt sum of terms

• Relaxation

Fig.(7.21) a) shows the balance closure of the exact nonlinear conservation equation for the
quadratic entropy fluctuations during the relaxation phase. The excitation is stopped, and during
approximately one and a half period,desdt is not influenced. Then its maximum amplitude
decays rapidly and this term shows two components, one at twice the forcing frequency (1200Hz)
and one around 1700Hz. The first component almost vanish after 24 period of forcing anddesdt
oscillates at 1700Hz. Since this term involves the square of the entropy fluctuation, it means that
the entropy is fluctuating at 850Hz as observed for velocity fluctuations in the previous closure of
Eq.(1)[Eq.(6.10)].
After two periods of forcing, all terms fluctuate at 1700Hz and their maximum amplitude decays
rapidly (Not shown).

Fig.(7.21) c) shows that one period after the forcing is stopped, both terms start to decrease
so that the discrepancy between the two also decreases. Yet, the error only becomes acceptable at
least 10 periods after that (i.e when the flame does not move much anymore).
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RESULTS

a)

Maximum amplitude of time
derivative : 2.10−2

ALL PHASES

b)
p

2rcp
∂s′2

∂t = − ps′

rcp

[
~u.~∇s− ~u.~∇s

]
+

ps′

rcp
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ρT ω̇T − 1
ρT
ω̇T

]
+

ps′

rcp

[
− 1

ρT
~∇.~q + ρT

ρT
~∇.~q
]
−

ps′

rcp
1

ρT

∑
k gsk

[
ω̇k − ~∇. ~qk

]
+

ps′

rcp
1

ρT

∑
k gsk

[
ω̇k − ~∇. ~qk

]

c)

p0

2r0cp0

∂s2
1

∂t =

− p0s1

r0cp0
~u1.~∇s0 + s1

cp0

[
ω̇T1 − ~∇.~q1

]
−

p0s1

r0cp0

[
ρ1

ρ0
2 + T1

T0
2

] [
ω̇T0 − ~∇.~q0

]
Figure 7.20 -CaseB1, Eq.(2) : Forced phase

a) Exact nonlinear desdt sum of terms
b) Minimum nonlinear desdt sum of terms
c) Minimum linear desdtl sum of terms
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7.2 ConfigurationB (2-D Reacting Case)

a)

b)

c)

Figure 7.21 -CaseB1, Eq.(2) : Relaxation
a) Exact nonlinear desdt sum of terms
b) Minimum nonlinear desdt sum of terms
c) Minimum linear desdtl sum of terms
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Equation 3[Eq.(6.37)]

Figs.(7.23) and (7.24) show the balance closure of the conservation equation of the nonlinear disturbance
energy. As for the previous equations, the analysis is split in two parts.

• Forced phase

Fig.(7.23) a) shows the balance closure of the exact nonlinear Eq.(3)[Eq.(6.37)] during the phase of
excitation. As for the previous equations, the time derivative term is almost zero for approxi-
mately one and a half period of forcing. It then starts to oscillate at the quadratic frequency but
its maximum amplitude also shows bursts at 250Hz as observed for the balance of Eq.(2)[Eq.(6.18)].
The amplitude of the bursts decreases, and after ten periods of forcing, the time derivative of the
disturbance energy is almost quadratic. The maximum amplitude reached by the derivative term
corresponds to 4% of the mean power of the flame.
Fig.(7.40) b) shows the balance closure of the minimum nonlinear Eq.(3)[Eq.(6.37)]. The main terms
areDs, DQ andDY. Fig.(7.22) shows thatDs is the only source term of the balance.DQ and
DY tend to compensate it butDQ is the dissipative term having the most important amplitude.
Although involving the fluctuation of heat release,DQ is a sink term for Eq.(3)[Eq.(6.37)]. All these
terms have a quadratic behavior but also show the bursts at 250Hz present in the time derivative
term.

Figure 7.22 -CaseB1, Eq.(3) : Forced phase(Representative terms)
DY DQ Ds

• Relaxation

Figs.(7.24) a) andb) respectively show the balance closure of the exact and minimum nonlinear
Eq.(3)[Eq.(6.37)] during the relaxation. Approximately two periods after the forcing has been stopped,
the maximum amplitude of the derivative term starts to decay. It shows two major frequency
components, the first one is quadratic and decays rapidly as the forcing is stopped and the other
one corresponds to approximately 1700Hz. After 22 periods, the time derivative oscillates almost
harmonically at 1700Hz.
All R-H-S terms oscillate at 1700Hz two periods after the forcing is stopped and their amplitude
decreases rapidly. This delay corresponds to the time needed by an upstream propagating acoustic
information to go from the outlet to the inlet.
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7.2 ConfigurationB (2-D Reacting Case)

a)

Maximum amplitude of time
derivative : 4.10−2

ALL PHASES

b)

∂Ed
∂t

= −s′ ~m′~∇T̄ + ~ms′~∇T ′+T ′Q′+DY

Figure 7.23 -CaseB1, Eq.(3) : Forced phase
a) Exact nonlinear dEddt sum of terms
b) Minimum nonlinear dEddt sum of terms
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a)

b)

Figure 7.24 -CaseB1, Eq.(3) : Relaxation
a) Exact nonlinear dEddt sum of terms
b) Minimum nonlinear dEddt sum of terms
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7.2 ConfigurationB (2-D Reacting Case)

7.2.2 Case B2 Unstable Case:F0=856 Hz Reference : Steady state flow

Tables6.3, 6.4 and 6.5 summarize Eqs.1, 2 and3 . Note that ”minimum” and ”minimum linear”
equations, deriving from the balance closure of Eqs.1, 2 and 3, depend on the case studied and
therefore will not be found in these tables.

Equation 1[Eq.(6.10)]

Figs.(7.28), (7.29), (7.30) present the balance of the conservation equation for quadratic pressure and
velocity fluctuations. The evolution of the balance is split in three steps. First the configuration is made
unstable by increasing the outlet acoustic reflection coefficient and the system becomes unstable. Then
a limit cycle is reached and the maximum amplitude of the time derivative of the disturbance energy is
constant. Finally, after 44ms (38 periods of instability), the reflection coefficient is decreased to its initial
value and the system goes back to a steady state.
In the following, the analysis of the balance of Eq.(1)[Eq.(6.10)] is first done for the onset of the instability,
then the limit cycle is studied and finally the relaxation phase is analyzed.

• onset of the instability

Fig.(7.28) a) shows the balance of the exact nonlinear conservation equation for quadratic pressure
and velocity fluctuations during the onset of the instability. There is a perfect agreement between
dedt and the sum of the volume integrals of the R-H-S terms of Eq.(1)[Eq.(6.10)] as the instability
grows. Yet, this imposes to take into account the numerical correction term (LWE1) in Fig.(7.25).
The time derivative term starts to oscillate harmonically at 856Hz as soon as the outlet reflection
coefficient is increased. The maximum amplitude of the time derivative term increases exponen-
tially from zero to 0.001% of the mean power of the flame in almost 14 periods of oscillation.
During all the onset of the instability, deudt and depdt are in phase and their maximum amplitude
grows exponentially (not shown).

Fig.(7.28) b) shows the balance of the minimum Eq.(1).
After a delay of half a period, all major terms start to oscillate at 856Hz with a growing maximum
amplitude. These terms are:

– Ac1 : − p′

γp

[
γp~∇.~u− γ̄p̄~∇.~u

]
– Ac2 : −~u′.~∇p′

– Ac3 : p′

γp

[
(γ − 1) ω̇T − (γ − 1) ω̇T

]
– Ac4 : − p′

γp

[
(γ − 1) ~∇.~q − (γ − 1) ~∇.~q

]
– Ac5 : ~u′ : ~∇τ ′

– LWE1
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As expected from the results on caseA2, Ac3 is the strongest source term with an amplitude
growing to4.10−3% of the mean power of the flame (not shown). The main difference between
this case and the caseA is the presence of the termAc5 in the minimum nonlinear Eq.(1). This
comes from the wall friction which dissipates a part of the energy contained in quadratic velocity
fluctuations. In this case, Fig.(7.25) shows that the numericalLWE1 correction is not negligible
and behaves as a sink term for the instability with a maximum absolute amplitude of8.10−4%
of the mean power of the flame. Also noteBNDE1 in Fig.(7.25) remains small enough to be
neglected

Figure 7.25 -CaseB2, Eq.(1) : Onset of the instability LWE1 BNDE1

The linearization of the minimum Eq.(1) influences the closure of the balance as shown in

Fig.(7.28) c). After one period of instability, the time derivative1
2γ0p0

∂p2
1

∂t + ρ0

2
∂u2

1
∂t is under-

predicted.
Direct interaction terms (involving fluctuations of heat release and heat flux) may be found in the
minimum linear Eq.(1). Note that as already mentioned in caseA2, terms related to the fluctuation
of γ must be kept since they are not negligible.

• Limit cycle

Fig.(7.29) a) shows the balance of the exact nonlinear conservation equation for quadratic pressure
and velocity fluctuations during the limit cycle. The time derivative term maximum amplitude
grows until 20 periods of forcing and then reaches a limit cycle. It then oscillates with two major
frequency components, one at 856Hz and one at 1700Hz, so that it shows two peaks per period.
The maximum absolute amplitude reached corresponds to 0.002% of the mean power of the flame.
Fig.(7.26) shows that the two components of the time derivative term are in phase with a small
predominance of the time derivative linked to pressure fluctuations.

As for the onset of the instability, the major terms areAc1, Ac2, Ac3, Ac4, Ac5 and the
LWE1 correction. The agreement in Fig.(7.29) b) shows that all other terms are indeed negligible.

Fig.(7.29) c) shows the closure of the linear minimum Eq.(1). Obviously, nonlinearities are
necessary for the closure of minimum Eq.(1) since here the maximum absolute amplitude of the
time derivative term is under predicted. The sum of R-H-S terms goes not far beyond1.10−3% of
the mean power of the flame thoughdedt reaches2.10−3%.

• Relaxation
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7.2 ConfigurationB (2-D Reacting Case)

Figure 7.26 -CaseB2, Eq.(1) : Limit cycle Composition of the time derivative term
dedt deudt depdt

Fig.(7.30) a) shows the balance of the exact nonlinear conservation equation for quadratic pres-
sure and velocity fluctuations during the relaxation. As the acoustic outlet reflection coefficient
is decreased, the time derivative term decreases and the 856Hz component vanishes. After one
period, it oscillates at 1700Hz.
Fig.(7.27) shows that the two components of the time derivative have a small shift in phase during
the relaxation but their amplitude remains of the same order in contrary to what is observed during
the relaxation phase in caseB1(see Fig.(7.15)).

Figure 7.27 -CaseB2, Eq.(1) : RelaxationComposition of the time derivative term
dedt deudt depdt

Fig.(7.30) b) shows the balance of the minimum nonlinear Eq.(1)
After one period of instability, all major terms tend to oscillate at 1700Hz. The absolute maximum
amplitude of all terms decreases to zero. As the system goes back to a steady state,Ac3 andAc1

are the most significant terms (not shown).

Fig.(7.30) c) show that nonlinearities in the minimum nonlinear Eq.(1) decrease as the system goes
back to a steady state and almost disappear after 42 periods.
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a)

Maximum amplitude of time
derivative : 2.10−5

ALL PHASES

b)
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Figure 7.28 -CaseB2, Eq.(1) : Onset of the instability
a) Exact nonlinear dedt sum of terms
b) Minimum nonlinear dedt sum of terms
c) Minimum linear dedtl sum of terms
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7.2 ConfigurationB (2-D Reacting Case)

a)

b)

c)

Figure 7.29 -CaseB2, Eq.(1) : Limit cycle
a) Exact nonlinear dedt sum of terms
b) Minimum nonlinear dedt sum of terms
c) Minimum linear dedtl sum of terms
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a)

b)

c)

Figure 7.30 -CaseB2, Eq.(1) : Relaxation
a) Exact nonlinear dedt sum of terms
b) Minimum nonlinear dedt sum of terms
c) Minimum linear dedtl sum of terms
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7.2 ConfigurationB (2-D Reacting Case)

Equation 2[Eq.(6.18)]

Figs.(7.34), (7.35) and (7.36) present the balance of the nonlinear conservation equation for the distur-
bance energy in entropy fluctuations. As for Eq.(1)[Eq.(6.10)], the evolution of the balance is split in three
steps.

• Onset of the instability

Fig.(7.34) a) shows the balance of the exact nonlinear conservation equation for quadratic entropy
fluctuations during the onset of the instability. Fig.(7.31) a) shows the positive envelop of the
time derivative termdesdt. The time derivative term maximum absolute amplitude grows ex-
ponentially during the first 11 periods of the instability and Fig.(7.31) b) gives the exponential
coefficient (calculated using regression on curve in Fig.(7.31) a)) along the onset of the instability.
Note that this coefficient is not constant during the onset of the instability but increases during the
first 11 periods from 120 to 160 and then decreases to zero as the limit cycle is reached. Finally
note that the time derivative term oscillates harmonically at 856Hz during 11 periods and then a
component at 1700Hz appears.

a) b)

Figure 7.31 -
a) Envelop of the maximum amplitude of the time derivative term

during the onset of the instability
b) Exponential growth coefficient.

Fig.(7.34) b) shows the closure of the minimum nonlinear Eq.(2).
The major terms are :

– En1 : − ps′

rcp

[
~u.~∇s− ~u.~∇s

]
– En2 : s′

cp

[
ω̇T − ρT

ρT
ω̇T

]
– En3 : s′

cp

[
−~∇.~q + ρT

ρT
~∇.~q
]

– En4 : − s′

cp

[∑
k gsk

[
ω̇k − ~∇. ~qk

]
− ρT

ρT

∑
k gsk

[
ω̇k − ~∇. ~qk

]]
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Linearizing minimum Eq.(2) results in major errors as soon as the instability starts as shown in
Fig.(7.34) c). The time derivative of the entropy disturbance energy is largely overpredicted. As

for the caseB1, neglecting the term− p0s1

r0cp0

[
ρ1

ρ0
2 + T1

T0
2

] [
ω̇T0 − ~∇.~q0

]
leads paradoxically to the

right answer as shown in Fig.(7.32). This means that nonlinearities are important in

+
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ρT
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]
+
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ω̇k0 − ~∇. ~qk0

]

Figure 7.32 -CaseB2, Eq.(2) : Onset of the instability
Approximated minimum linear desdt sum of terms

• Limit cycle

Figs.(7.35) a) andb) respectively show the balance of the exact and minimum nonlinear Eq.(2)
during the limit cycle. The time derivative term maximum amplitude is almost constant after
25 periods of oscillation as also shown by Fig.(7.31) a) and represents 10% of the mean power
released by the flame. The signal has two major frequency components, one at 856Hz and one at
the quadratic frequency (1700Hz).
During this step,En2 andEn3 are the two most important terms, but they tend to compensate
each other so thatEn1 andEn4 have a non-negligible influence on the balance (not shown).

As for the onset of the instability, Fig.(7.35) c) shows the impossibility of deriving a mini-
mum linear Eq.(2) in caseB2

• Relaxation

Fig.(7.36) a) andb) respectively show the balance of the exact and minimum nonlinear Eq.(2)
during the relaxation. Approximatly one period after the outlet acoustic reflection coefficient is
lowered, the 856Hz frequency component vanishes in thedesdt signal. The time derivative term
maximum absolute amplitude decays exponentially and this term oscillates at 1700Hz as the insta-
bility disappears.
All major terms absolute amplitudes decay progressively andEn2 andEn3 are the two major
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7.2 ConfigurationB (2-D Reacting Case)

Figure 7.33 -CaseB2, Eq.(2) : Relaxation (Representative terms)
En1 En3 En2

terms of the balance and tend to compensate (see Fig.(7.33)). Also note that the termEn1 is
almost zero about one period after the relaxation has started.

The relaxation phase is very much different for the time derivative of the entropy disturbance
energy and for the the minimum linear Eq.(1). Even 7 periods after that the acoustic reflection
coefficient has been reset to its initial value, nonlinearities are still important.
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a)

Maximum amplitude of time
derivative : 1.10−1

ALL PHASES
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Figure 7.34 -CaseB2, Eq.(2) : Onset of the instability

a) Exact nonlinear desdt sum of terms
b) Minimum nonlinear desdt sum of terms
c) Minimum linear desdtl sum of terms
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7.2 ConfigurationB (2-D Reacting Case)

a)

b)

c)

Figure 7.35 -CaseB2, Eq.(2) : Limit cycle
a) Exact nonlinear desdt sum of terms
b) Minimum nonlinear desdt sum of terms
c) Minimum linear desdtl sum of terms
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a)

b)

c)

Figure 7.36 -CaseB2, Eq.(2) : Relaxation
a) Exact nonlinear desdt sum of terms
b) Minimum nonlinear desdt sum of terms
c) Minimum linear desdtl sum of terms
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7.2 ConfigurationB (2-D Reacting Case)

Equation 3[Eq.(6.37)]

Figs.(7.40), (7.41) and (7.42) present the balance of the nonlinear conservation equation of the nonlinear
disturbance energy. As for Eqs.(1) and (2), the evolution of the balance is split in three steps.

• Onset of the instability

Fig.(7.40) a) shows the balance of the exact nonlinear Eq.(3)[Eq.(6.37)] during the onset of the instabil-
ity. This figure shows a perfect agreement between the time derivative termdEddt and the sum
of the volume integrals of the R-H-S terms of Eq.(3)[Eq.(6.37)] as the instability grows. This validates
the ability of the POSTTIT tool to compute all R-H-S terms of Eq.(3)[Eq.(6.37)] precisely enough to
ensure its closure. The maximum amplitude of the time derivative term grows from zero to 10%
of the mean flame power in 10 periods of instability. This term oscillates harmonically during the
first 6 periods at 856Hz. After this, a component at 1700Hz appears.

Figs.(7.40) b) shows the balance of the minimum nonlinear Eq.(3)[Eq.(6.37)]. The major terms are:

– Ds : −s′ ~m′~∇T̄ + ~ms′~∇T ′

– DQ : T ′Q′

– DY : ~m′. ~ψ?
′
+ T ′Q?′ −

∑n
k=1 g

′
skΩ

′
k +

∑n
k=1 g

′
skYk

~∇. ~m′ +
∑n

k=1 gskY
′
k
~∇. ~m′

All major terms oscillate harmonically during the first 6 periods at 856Hz. After that, these terms
show nonlinearities which grow with the instability (see Fig.(7.37)). In contrary to what is ob-
served for Eqs.(1) and (2), DQ which includes fluctuations of heat release is a sink term for the
nonlinear disturbance energy. the phase betweenDs andDQ (shown in Fig.(7.37)) increases from
zero at the beginning of the instability to almost a quarter of the instability period at the end of
the growth phase. This shift of phase may be one of the reasons for the growth of the nonlinear
disturbance energy maximum amplitude.

Figure 7.37 -CaseB2, Eq.(3) : Onset of the instability (Representative terms)
DY DQ Ds

• Limit cycle

Figs.(7.41) a) and b) respectively show the balance of the exact and minimum nonlinear
Eq.(3)[Eq.(6.37)] during the limit cycle. After 20 periods of the instability, the limit cycle is reached.
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The time derivative term oscillates with two major frequency components, one at 856Hz, and one
at 1700Hz. The maximum absolute amplitude reached bydEddt represents 30% of the mean
power of the flame.
During the limit cycle, the phase betweenDs andDQ keeps constant and equal to a quarter of the
instability period (see Fig.(7.38)).

Figure 7.38 -CaseB2, Eq.(3) : Limit cycle (Representative terms)
DY DQ Ds

• Relaxation

Fig.(7.42) a) and b) respectively show the balance of the exact and minimum nonlinear
Eq.(3)[Eq.(6.37)] during the relaxation. The time derivative maximum absolute amplitude decays
rapidly, and in almost three periods of the instability is lower than 5% of the mean flame power.
Yet, this term decreases in amplitude but does not oscillates harmonically even for small ampli-
tudes.
The major terms are almost harmonic after 40 periods and oscillate at approximately 1700Hz (two
maximum per instability period) (see Fig.(7.39)).

Figure 7.39 -CaseB2, Eq.(3) : Relaxation (Representative terms)
DY DQ Ds
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7.2 ConfigurationB (2-D Reacting Case)

a)

Maximum amplitude of time
derivative : 3, 2.10−1

ALL PHASES

b)

∂Ed
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Figure 7.40 -CaseB2, Eq.(3) : Onset of the instability
a) Exact nonlinear dEddt sum of terms
b) Minimum nonlinear dEddt sum of terms

a)

b)

Figure 7.41 -CaseB2, Eq.(3) : Limit cycle
a) Exact nonlinear dEddt sum of terms
b) Minimum nonlinear dEddt sum of terms
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a)

b)

Figure 7.42 -CaseB2, Eq.(3) : Relaxation
a) Exact nonlinear dEddt sum of terms
b) Minimum nonlinear dEddt sum of terms
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7.2 ConfigurationB (2-D Reacting Case)

7.2.3 Case B2bis Unstable Case :F0=856 Hz Reference : Mean perturbed flow

In this case, the mean reference field is obtained from averaging 1200 snapshots obtained during the
computation. It therefore involves the influence of the instability. This impacts significantly the values
of the mean field as shown in Fig.(7.43). As one can observe, even if the mean temperature field is
only slightly changed in shape and intensity, the mean heat release is completely different. Indeed, the
reference heat release field for caseB1 andB2 is the steady one and therefore shows a maximum on the
axial line equal to3.1010 W.m−3 and coherent with instantaneous values of heat release.
The reference field used in caseB2bis is the averaging of instantaneous fields of heat release. It therefore
takes into account the fluctuation of the flame position which influences the position of its maximum.
Even if the maximum instantaneous values may be found on the axial line, the amplitude of the flame
front move makes that the maximum will not be found here after averaging. Two maximum are found,
one on each side of the axial line and their value is equal to6.109 W.m−3

a) b)

c) d)

Figure 7.43 -Reference fields : Isoline1500K
CaseB1,B2 a)Temperatureb) Heat release
CaseB2bis c)Temperatured) Heat release

As already discussed in section6.5, choosing the mean field as the reference field to obtain the
fluctuations therefore has many consequences that are pointed out in this section. When dealing with
turbulent cases, no steady solution is available. The procedure used here is then the only one which can
be applied. The caseB2biscan therefore be seen as a first step towards the study of disturbance energies
in reacting turbulent cases.
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Tables6.3, 6.4 and 6.5 summarize Eqs.1, 2 and 3 . Note that ”minimum” and ”minimum lin-
ear” equations, deriving from the balance closure of Eqs.1, 2 and 3, depend on the case studied
and therefore will not be found in these tables.

Equation 1[Eq.(6.10)]

Figs.(7.48), (7.49), (7.50) present the balance closure of the conservation equation for quadratic pressure
and velocity fluctuations. As for caseB2, the analysis of the balance of Eq.(1)[Eq.(6.10)] is first done for the
onset of the instability, then the limit cycle is studied and finally the relaxation phase is analyzed. This
section emphasizes the differences between casesB2 andB2bis.

• onset of the instability

Fig.(7.48) a) shows the balance of the exact nonlinear conservation equation for quadratic pressure
and velocity fluctuations during the onset of the instability. Compared toB2, the time derivative
termdedt does not oscillate harmonically but shows a strong component at 1700Hz as soon as
the instability starts. The maximum amplitude reached at the end of the growing phase is only
7.10−4% of the mean power of the flame (10−3% in caseB2).

Fig.(7.48) b) shows the balance of the minimum Eq.(1).
In contrary to caseB2, all major terms oscillate as soon as the instability starts and no delay before
this oscillation is observed. These terms are:

– Ac1 : − p′

γp

[
γp~∇.~u− γ̄p̄~∇.~u

]
– Ac2 : −~u′.~∇p′

– Ac3 : p′

γp

[
(γ − 1) ω̇T − (γ − 1) ω̇T

]
– Ac4 : − p′

γp

[
(γ − 1) ~∇.~q − (γ − 1) ~∇.~q

]
– Ac5 : ~u′ : ~∇τ ′

– Ac6 : − p′

γp

[
(γ − 1)

∑N
k=1 hskρ~u.~∇Yk − (γ − 1)

∑N
k=1 hskρ~u.~∇Yk

]
– Ac7 : p′

γp

[γp
r

∂r
∂t

]
– −~u′. ~consv

– LWE1

Compared to caseB2, three terms are added in minimum Eq.(1). The first two termsAc6 and
Ac7 come from the fluctuation of the species mass fractions and thermodynamic quantities such
asr due to the chemical reaction. Compared toB2, the termAc7 does not have a much bigger
amplitude inB2bis (see Fig.(7.44) a)). The main reason for the fact that this term should be kept
here is that major terms such asAc3 (shown in Fig.(7.44b)) have a smaller amplitude in this case.
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7.2 ConfigurationB (2-D Reacting Case)

Actually, choosing the averaged mean flow as the baseline flow minimizes the fluctuation level in
the flow. Ac6 andAc7 are not influenced much by this phenomenon since they are constructed
using the fluctuation of pressure which (as the temperature in Fig.(7.43) a) andc)) is almost the
same in the two cases.

The last new term in minimum Eq.(1) is specific to this case. It is due to the choice of reference
field. Since it should be zero if the reference field was steady, it measures the influence of the mean
correlations on the level of fluctuations in the flow. This term is shown in Fig.(7.45). After half a
period this term is a strictly positive source term. It then oscillates at 856Hz. Note that after 11
periods, it starts to periodically dissipate fluctuations.

a)

b)

Figure 7.44 -CaseB2bis, Eq.(1) : Onset of the instability
a) : Ac7 B2bis B2
b) : Ac3 B2bis B2

The linearization of the minimum Eq.(1) does not influences the closure of the balance as shown
in Fig.(7.48) c) which is also a difference with caseB2 (see Fig.(7.28)). Linear terms coming from
Ac6 andAc7 are found in the minimum linear Eq.(1). Once more, terms related to the fluctuation
of γ must be kept since they are not negligible.

• Limit cycle

Figs.(7.49) a) andb) respectively show the balance closures of the exact and minimum Eq.(1).
The maximum amplitude of the time derivative term is 25% smaller than inB2. The remarks
concerning the main terms of minimum Eq.(1) and their differences with caseB2 still apply during
this phase.
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Figure 7.45 -CaseB2bis, Eq.(1) : Onset of the instability mean-correlations term

Fig.(7.49) c) shows that inB2bis, no underestimation of the time derivative of12γ0p0
p2
1 + ρ0

2 u
2
1 is

observed provided that the three new terms (once linearized) are taken into account.
Fig.(7.46) shows the mean-correlations term during the limit cycle. Even if its absolute minimum
amplitude is bigger than its maximum one, its integral over one period is almost zero. In contrary
to what is seen during the onset of the instability, this term is therefore not a source term any more.

Figure 7.46 -CaseB2bis, Eq.(1) : Limit cycle mean-correlations term

• Relaxation

Figs.(7.50) a) andb) respectively show the balance of the exact and minimum nonlinear Eq.(1)
during the relaxation.

Fig.(7.50) c) shows that the closure of the minimum linear Eq.(1) is almost perfect during
the relaxation phase.
Fig.(7.47) shows the mean-correlations term. As soon as the acoustic coefficient is decreased,
its absolute minimum amplitude sinks to get lower than4.10−4% of the mean power of the
flame. The integral of this term over one period is therefore negative and this term dissipates the
disturbance energy defined by minimum linear Eq.(1)
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7.2 ConfigurationB (2-D Reacting Case)

Figure 7.47 -CaseB2bis, Eq.(1) : Relaxation mean-correlations term

243



RESULTS

a)

Maximum amplitude of time
derivative : 1, 5.10−5
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Figure 7.48 -CaseB2bis, Eq.(1) : Onset of the instability
a) Exact nonlinear dedt sum of terms
b) Minimum nonlinear dedt sum of terms
c) Minimum linear dedtl sum of terms
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7.2 ConfigurationB (2-D Reacting Case)

a)

b)

c)

Figure 7.49 -CaseB2bis, Eq.(1) : Limit cycle
a) Exact nonlinear dedt sum of terms
b) Minimum nonlinear dedt sum of terms
c) Minimum linear dedtl sum of terms
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a)

b)

c)

Figure 7.50 -CaseB2bis, Eq.(1) : Relaxation
a) Exact nonlinear dedt sum of terms
b) Minimum nonlinear dedt sum of terms
c) Minimum linear dedtl sum of terms
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7.2 ConfigurationB (2-D Reacting Case)

Equation 2[Eq.(6.18)]

Figs.(7.54), (7.55) and (7.56) present the balance of the nonlinear conservation equation for the distur-
bance energy in entropy fluctuations. As for Eq.(1)[Eq.(6.10)], the evolution of the balance is split in three
steps. The analysis of the balance of Eq.(2)[Eq.(6.18)] is first done for the onset of the instability, then the
limit cycle is studied and finally the relaxation phase is analyzed.

• Onset of the instability

Figs.(7.54) a) andb) respectively show the balance of the exact and minimum nonlinear Eq.(2)
during the onset of the instability. As for Eq.(1)[Eq.(6.10)], the time derivative term shows a much
stronger 1700Hz component than for the caseB2. The maximum absolute amplitude reached by
this term represents 3% of the mean power of the flame after 14 periods of instability. This value
should be compared to the 6% reached at the same instant in caseB2.
As for Eq.(1)[Eq.(6.10)], the maximum amplitude of the time derivative term is smaller inB2bis
than in B2. The arguments given for the pressure and velocity fluctuations still apply here
for entropy fluctuations. Locally, the mean value of the entropy already takes into account
a part of the fluctuations compared to the steady field. Therefore, as an entropy disturbance
occurs at one place, its amplitude is artificially lowered of an amount equal to the mean value of
the fluctuations happening at the same place during all the cycle : excitation-limit cycle-relaxation.

In the present case, the major terms of the balance are the same as inB2. Yet, one has to
take into account the mean-correlations term displayed in Fig.(7.51).This term becomes positive
one period after the beginning of the instability. It remains strictly positive and therefore adds
power into the entropy disturbance energy during 7 periods. Then its minimum goes above
zero and this term also periodically dissipates disturbance energy. Note that after 14 periods,
its maximum absolute amplitude is 6% of the mean power of the flame which is two times the
amplitude ofdesdt at the same moment.

Figure 7.51 -CaseB2bis, Eq.(2) : Onset of the instability mean-correlations term

Fig.(7.54) c) shows that no linearization of Eq.(2)[Eq.(6.18)] in possible in this case.

• Limit cycle

Figs.(7.55) a) andb) respectively show the balance of the exact and minimum nonlinear Eq.(2)
during the limit cycle. The time derivative term maximum amplitude is almost constant after 20
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periods of oscillation and represents 6% of the mean power released by the flame which should
be compared to the 10% reached in caseB2. Besides the difference in maximum amplitudes,
Figs.(7.55) a) andb) also show that the 1700 Hz component of the termdesdt is much stronger
in B2bis than inB2 (see Fig.(7.35)).

Fig.(7.52) shows the mean-correlations term during the limit cycle. Its maximum absolute
amplitude reaches8.5% of the mean power of the flame and is therefore really significant in the
balance. Note that in contrary to the mean-correlations term for Eq.(1)[Eq.(6.10)] during the limit
cycle, it does not oscillates around zero. Even during this phase (which shows no specific growth
of disturbance energy), this term tends to produce (after averaging over one period) entropy
disturbance energy.

Figure 7.52 -CaseB2bis, Eq.(2) : Limit Cycle mean-correlations term

• Relaxation

Fig.(7.56) a) andb) respectively show the balance of the exact and minimum nonlinear Eq.(2)
during the relaxation. In contradiction withB2, the 856Hz frequency component does not vanishes
in thedesdt signal.

The mean-correlations term shows an interesting behavior as the acoustic reflection coeffi-
cient is released (see Fig.(7.53)). Less than one period after this, its maximum absolute amplitude
decreases but not its minimum one which tends to make of it a sink term for the instability (after
averaging over one period of instability). Its amplitude goes back to its value before the onset of
the instability.

248



7.2 ConfigurationB (2-D Reacting Case)

Figure 7.53 -CaseB2bis, Eq.(2) : Relaxation mean-correlations term
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Figure 7.54 -CaseB2bis, Eq.(2) : Onset of the instability
a) Exact nonlinear desdt sum of terms
b) Minimum nonlinear desdt sum of terms
c) Minimum linear desdtl sum of terms
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7.2 ConfigurationB (2-D Reacting Case)

a)

b)

c)

Figure 7.55 -CaseB2bis, Eq.(2) : Limit cycle
a) Exact nonlinear desdt sum of terms
b) Minimum nonlinear desdt sum of terms
c) Minimum linear desdtl sum of terms
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a)

b)

c)

Figure 7.56 -CaseB2bis, Eq.(2) : Relaxation
a) Exact nonlinear desdt sum of terms
b) Minimum nonlinear desdt sum of terms
c) Minimum linear desdtl sum of terms
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7.2 ConfigurationB (2-D Reacting Case)

Equation 3[Eq.(6.37)]

Figs.(7.60), (7.61) and (7.62) present the balance of the nonlinear conservation equation for the nonlinear
disturbance energy. As for Eqs.(1) and (2), the evolution of the balance is split in three steps. The nature
of the new terms added here in comparison to caseB2 is different from the additional terms that appear
in Eq.(1)[Eq.(6.10)] or (2). These terms still correspond to mean correlations of fluctuations but they are not
multiplied by any variable. Therefore, as it is shown in the following, their amplitude and sign remain the
same whether the instability is growing or decreasing. Finally, note that no linearization of Eq.(3)[Eq.(6.37)]

is provided.

• Onset of the instability

Fig.(7.60) a) shows the balance of the exact nonlinear Eq.(3)[Eq.(6.37)] during the onset of the insta-
bility. The maximum amplitude of the time derivative term grows from zero to 4% of the mean
flame power in 10 periods of instability. This level should be compared to the 10% reached at the
same instant bydEddt.

Fig.(7.60) b) shows the balance closure of the minimum nonlinear Eq.(3)[Eq.(6.37)]. The major terms
are:

– Ds : −s′ ~m′~∇T̄ + ~ms′~∇T ′

– DQ : T ′Q′

– DY : ~m′. ~ψ?
′
+ T ′Q?′ −

∑n
k=1 g

′
skΩ

′
k +

∑n
k=1 g

′
skYk

~∇. ~m′ +
∑n

k=1 gskY
′
k
~∇. ~m′

– Ds : − ~̄m.T ′~∇s′ − ( ~m′s′).~∇T̄
– DQ : T ′Q′

DQ is a constant sink term for the instability. Its amplitude is−8.8% of the mean power of the
flame.Ds is a source term with an amplitude of10.1%. The global influence of these terms on the
balance of disturbance energy is therefore positive and measures the influence of the stationary
hypothesis in this case.

Fig.(7.57) shows the major unsteady terms of the balance of Eq.(3)[Eq.(6.37)]. There are many
differences between the terms represented here and the same terms for caseB2 (see Fig.(7.37)).
The first one is that at the beginning of the instabilityDY, DQ andDs are not zero. This comes
from the fact that this instant is not very much different from another one when defining the
fluctuations using the averaged mean flow. The fluctuation level is not zero when the instability
starts.

• Limit cycle

Fig.(7.61) a) and b) respectively show the balance of the exact and minimum nonlinear
Eq.(3)[Eq.(6.37)] during the limit cycle. After 20 periods of instability, the limit cycle is reached. The
absolute maximum amplitude reached bydEddt represents 20% of the mean power of the flame
(30% forB2).
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Figure 7.57 -CaseB2, Eq.(3) : Onset of the instability (Representative terms)
DY DQ Ds

Fig.(7.58) shows the major terms of the minimum Eq.(3)[Eq.(6.37)]. The main difference be-
tween Fig.(7.58) and Fig.(7.38) is that termsDs andDQ never get close to zero, therefore always
creating or dissipating disturbance energy.

Figure 7.58 -CaseB2, Eq.(3) : Limit cycle (Representative terms)
DY DQ Ds

• Relaxation

Fig.(7.62) a) and b) respectively show the balance of the exact and minimum nonlinear
Eq.(3)[Eq.(6.37)] during the relaxation. The similarity between Fig.(7.62) and Fig.(7.42) is strik-
ing. One may say that the nonlinear disturbance energy relaxes the same way whatever the
reference field is.
The fluctuations of the main terms also look like in Fig.(7.59) and in Fig.(7.39). Yet, the main
difference is that hereDQ, Ds andDY do not return to zero amplitude but to their initial values
(steady state flow).
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7.2 ConfigurationB (2-D Reacting Case)

Figure 7.59 -CaseB2, Eq.(3) : Relaxation (Representative terms)
DY DQ Ds

a)

Maximum amplitude of time
derivative : 2.10−1

ALL PHASES
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Figure 7.60 -CaseB2bis, Eq.(3) : Onset of the instability
a) Exact nonlinear dEddt sum of terms
b) Minimum nonlinear dEddt sum of terms
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a)

b)

Figure 7.61 -CaseB2bis, Eq.(3) : Limit cycle
a) Exact nonlinear dEddt sum of terms
b) Minimum nonlinear dEddt sum of terms
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7.2 ConfigurationB (2-D Reacting Case)

a)

b)

Figure 7.62 -CaseB2bis, Eq.(2) : Relaxation
a) Exact nonlinear dEddt sum of terms
b) Minimum nonlinear dEddt sum of terms
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7.3 Summary of the results

Tables6.3, 6.4 and 6.5 summarize Eqs.1, 2 and3 . Note that ”minimum” and ”minimum linear”
equations, deriving from the balance closure of Eqs.1, 2 and 3, depend on the case studied and
therefore will not be found in these tables.

7.3.1 Influence of mean Mach number terms

The minimum linear Eqs.(1), (2) and the minimum Eq.(3) involve terms related to the mean Mach number
that are reported here. CaseB2 is taken as a reference for the present discussion. Note that the mean
Mach number is0.01 in this case.
No mean heat release can be sustained in a combustor if the mean velocity is zero. Therefore, the
presence of terms related to the mean heat release in Eq.(1), (2) and (3) reveals the influence of the mean
velocity field on the level of disturbance energies.

• Minimum linear Eq.(1) which refers to the Pressure-Velocity (PV) disturbance energy2 involves a
term which is linked to the mean Mach number :

γ1p1

γ0p0
(p0

~∇.~u0 + ˙ωT0)

The ratio γ1p1

γ0p0
is very small and its maximum mean value during the instability process is equal

to 3, 5.10−4. Yet, it must be multiplied by the mean heat release to know its influence on the
PV disturbance energy. In this case, the mean heat release per unit volume is6.106W.m−3. The
product of the two gives a maximum value per unit volume equal to2100W.m−3 which represents
60% of the maximum power of the disturbance energy per unit volume.

• Minimum linear Eq.(2) which refers to entropy disturbance energy, involves the following terms
related to the mean Mach number

− p0s1
r0cp0

[
ρ1

ρ0
2

+
T1

T0
2

]
ω̇T0 −

s1
cp0

∑
k

gsk1ω̇k0 +
p0s1
r0cp0

[
ρ1

ρ0
2

+
T1

T0
2

]∑
k

gsk0ω̇k0

As for the minimum linear Eq.(1), these terms include the mean heat release which therefore has an
influence on the balance of the entropy disturbance energy. Yet, since no closure of the minimum
linear Eq.(2) can be reached, a discussion on the exact influence of those terms may be somewhat
hazardous.

• Minimum Eq.(3) which refers to nonlinear disturbance energy involves the following term which
is directly related to the mean Mach number :~ms′~∇T ′. This term states that a fluctuation of
entropy, positively correlated to a fluctuation of the gradient of temperature may create nonlinear

2in homogeneous mixing, isentropic and small mean Mach flow, this disturbance energy is the acoustic energy
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7.3 Summary of the results

disturbance energy provided that the mean Mach number is not zero.
Also note that the termT ′Q′ contains the influence of the mean heat release since it linearizes as

1
T0

[
ω̇T1 − ~∇.~q1 + φ1

]
− T1

T0
2

[
ω̇T0 − ~∇.~q0 + φ0

]

7.3.2 Influence of chemical related terms

In the exact nonlinear equations1,2 and3 considered here, chemical related terms can be divided in two
groups.

• The first one involves the direct creation or dissipation of heat due to the presence of the flame.
This group therefore takes into account the fluctuations of heat releaseω̇T

′ and heat flux~∇.~q′.

• The other group is more linked with the fluctuations of the chemical products concentrations and
thermodynamic quantities due to the flame. It therefore involves the fluctuations of the gradients
of mass fractions~∇Y ′

k and of such quantities asg′sk, γ′ andr′, etc...

CaseA tells us that the influence of the second group on the disturbance energy is negligible in a 1D
flame case. Yet, the first group may influence the level of the disturbance energy as soon as the frequency
of the forcing is small enough. This comes from the fact that as the frequency decreases, it gives more
time to the flame front to react to the incoming perturbation. Without changing the shape of the flame
front, it changes the volume concerned by the fluctuations of heat release and heat flux and therefore
leads to the observed result.

CaseB points out the influence of the two groups on disturbance energies even for higher frequencies.
Both casesB1 andB2 require introducing the first group of chemical terms in minimum equations to
match the evolution of disturbance energies. It means that in caseB the velocity fluctuation in front of
the flame is big enough to make it move significantly. One can expect that it would also be the case for
turbulent flames.
The influence of the second group of terms mainly depends on the maximum absolute amplitude of the
time derivative term. For Eq.(1), this group lies at the limit (10%) of neglecting. It is therefore kept for
B1 and not forB2 although it almost has the same amplitude in both cases. As far as Eqs.(2) and (3) are
concerned, this group of terms should remain.

Derivations of disturbance energies in reacting flows often make the assumption that the second
group of terms is negligible (”homogeneous mixing”), this study shows that it is not always the case and
therefore that great care should be taken when doing such an assumption in reacting configurations.
Note that for Eq.(1), even when the second group is negligible, the linearization of the term

p′

γp
((γ − 1)ω̇T )′

leads to a term that writes
p1γ1

p0γ0
ω̇T 0
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which is not negligible because of high local values of the mean heat release.

7.3.3 The issue of the linearization

The issue of the linearization only concerns Eqs.(1) and (2). To describe the evolution of disturbance
energies, these conservation equations need to be linearized. The 1D flame case (A) shows no specific
issue concerning the linearization for both conservation equations as long as all major terms are kept.
In caseB, the equation giving the evolution of the ”pressure-velocity” disturbance energy (Eq.(1)[Eq.(6.10)])
linearizes quite nicely. The balance of the minimum linear Eq.(1) shows that nonlinearities only become
important when the rate of change of the disturbance energy is higher than a certain level. The conclu-
sions are quite different for Eq.(2)[Eq.(6.18)] which gives the evolution of the ”entropy” disturbance energy.
The linearization of Eq.(2)[Eq.(6.18)] is impossible as soon as the flame front is perturbed.

Since caseB is much closer to a realistic reacting configuration, it implies that the linearization of
Eq.(2)[Eq.(6.18)] might be problematic in those cases. The reason for that is that Eq.(2)[Eq.(6.18)] directly
involves terms such as [

ω̇T

ρT

]′
which cannot be linearized as [

˙ωT1

ρ0T0

]
−
[
ρ1

ρ2
0T0

+
T1

ρ0T 2
0

]
˙ωT0

becauseT1 ≮≮ T0 in the influence area of the flame.

7.3.4 Influence of the reference field

The influence of the reference field is studied here by comparing the results obtained in casesB2 and
B2bis. Both cases represent the same physical phenomenon of an instability in a combustor. The same
snapshops are used to compute the balances of Eqs.(1), (2) and (3). The differences between the two
cases therefore come from the choice of the reference field. The values of the reference variables directly
influence the amplitude of the fluctuations inside the domain. Yet, all terms are not modified in the same
way as shown by Fig.(7.43). The maximum power reached by the disturbance energy is smaller for case
B2bis. It represents 75% of caseB2 for Eq.(1)[Eq.(6.10)] and respectively 60% and 62% for Eq.(2)[Eq.(6.18)] and
(3). Actually, choosing the averaged mean field as the baseline flow minimizes the level of fluctuations
in the flow.

Also note that the change of reference field influences the shape of the time derivative of disturbance
energies by introducing more of the 1700 Hz component into it.
Finally, the sign of the mean correlation term for Eq.(1)[Eq.(6.10)] and (2) seems to follow the instability. It
is positive (in average over a period) during the onset and negative during the relaxation. These terms
measure the influence of the stationary hypothesis in that these terms are zero is the reference flow is
stationary.
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7.3.5 Influence of numerical corrections

Three kind of numerical corrections are considered here:

• AVI : which comes from the use of artificial numerical viscosity.

• BND : which represents the influence of boundary nodes on the variables of the code.

• LW : which represents the correction added to reach second order of spatial accuracy.

AVI is the only correction that the user can directly influence. Here, thanks to sufficient mesh
refinement, only small artificial viscosity is needed, so that this term is always negligible when not zero.

BND, the influence of the boundaries (which is not a ”numerical correction” is the sense that it
is part of the physical problem), has small influence on the disturbance energies studied here. This term
is therefore neglected in minimum equations. This should be the case as long as the ratio between the
total volume of the boundary nodes over the entire volume of the geometry remains small enough.

LW correction appears when fluxes of quantities such as mass, momentum, total energy are not
precise enough when given by a first spatial order divergence operator. This term corrects these fluxes
in order to reach second order accuracy. In this study, theLW correction only remains in minimum
Eq.(1) and not in Eq.(2)[Eq.(6.18)] and (3). Note that the disturbance levels for Eq.(1)[Eq.(6.10)] are much smaller
than for the two other disturbance energies. The ”pressure-velocity” disturbance energy is therefore
more influenced by numerical terms even for highly discretized meshes such as configurationB3. This
last issue will have to be addressed and solved when trying to close budgets of disturbance energies in
industrial cases.

3∆x = 0.03mm in the flame. There is therefore more than ten mesh points across the flame front.
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Chapter 8

Stability criteria in reacting flows

This chapter focuses on the implications of the previous results in terms of stability criterion for each
type of disturbances energy.

Section 8.1 points out the similarities between the disturbance energies studied in this work and
gives the evolution of their rate of change as the instability occurs.

Section8.2presents the results given by the criteria of Rayleigh and Chu applied to caseB2.

Section8.3 presents three types of stability criterion corresponding to the minimum equations de-
rived in Chapter7. These criteria are tested on the instability occurring in caseB2.

Section8.4 presents concluding remarks for this part as well as some prospects that this study im-
plies.

8.1 Evolution of disturbance energies

Tables6.3, 6.4and 6.5summarize Eqs.1, 2 and3 .

Time derivatives of disturbance energies are integrated over time. Figs.(8.1), (8.2) and (8.3) show,
for each kind of disturbance energy, the increase or loss during each period of oscillation. Results are
normalized by the energy released by the flame during the same amount of time (E0=4.61J.m−1).

The gain amplitudes respect the order of the maximum amplitude of time derivative terms seen in
Chapter7. The nonlinear disturbance energy is the most important. Then comes the entropy disturbance
energy and finally the pressure-velocity disturbance energy which is far smaller.
Yet, even if the levels they reach are very different, they all show the same trends as the instability grows



STABILITY CRITERIA IN REACTING FLOWS

Figure 8.1 -Energy 1Gain per period of oscillation (F0=856Hz)
(in percent of the energy released by the flame during one period (4.61J.m−1))

Figure 8.2 -Energy 2Gain per period of oscillation (F0=856Hz)
(in percent of the energy released by the flame during one period (4.61J.m−1)

and decays. First, the disturbance energy grows rapidly during the first three periods which is the time
needed by an acoustic fluctuation to go from the outlet to the inlet and come back. After period 6, a
second growth phase lasting approximately 20 periods occurs before the limit cycle is reached.
The outlet reflection coefficient is released at the beginning of period 38. The gain shrinks immediately
and the system undergoes a relaxation phase during at least 10 periods.

The striking point is that the three disturbance energies although representing different types of
fluctuations (pressure-velocity (Eq.(1)[Eq.(6.10)]), entropy (Eq.(2)[Eq.(6.18)]) and nonlinear (Eq.(3)[Eq.(6.37)]))
exactly show the same behavior. With a closer look, one can however notice that the pressure-velocity
disturbance energy is slightly shifted, late of approximately one and a half period compared to the other
disturbance energies.
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8.2 Linear criteria for stability : Rayleigh Criteria, Chu criterion

Figure 8.3 -Energy 3Gain per period of oscillation (F0=856Hz)
(in percent of the energy released by the flame during one period (4.61J.m−1))

8.2 Linear criteria for stability : Rayleigh Criteria, Chu criterion

8.2.1 The classical and extended Rayleigh criteria

The classical Rayleigh criterion writes∫
T0

∫
V
p1 ˙ωT1dvdt > 0

It states that if the fluctuation of heat release and the fluctuation of pressure positively correlate (so that
the previous integral is positive over one period of oscillation), an acoustic instability may grow inside
the combustor.

The extended Rayleigh criterion, derived by Nicoud and Poinsot in [93] applies to the acoustic
energy and writes : ∫

T0

∫
V

(γ0 − 1)p1

γ0p0
˙ωT1dvdt−

∫
T0

∫
S
p1~u1.~ndsdt > 0

It states that the acoustic disturbance energy may grow if the source term per unit volume involving
heat release and heat flux (due to the unsteady combustion process) is greater than the losses due to the
acoustic fluxes across the domain.

These two criteria are applied to caseB2 and the results are shown on Fig.(8.4). In order to give
a comparison point and also because these two criteria apply to the acoustic stability, the gain of the
PV disturbance energy is also provided. Both criteria should therefore be positive during the growth
phase and negative during the relaxation. It is not the case. These criteria correctly detect the onset of
the instability but remain positive during the limit cycle and even when the instability vanishes. They
therefore do not give satisfactory results by missing the detection of the relaxation phase (especially the
classical Rayleigh criterion).
Note that both criteria always remain over the gain of pressure-velocity disturbance energy. They
therefore tend to overestimate the instability occurring in the combustor.
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Figure 8.4 -Gain per period of oscillation (F0=856Hz)
(percent of the energy released by the flame during one period (4.61J))

Energy 1 Classical Rayleigh Extended Rayleigh

8.2.2 The Chu criterion

Chu derives a disturbance energy conservation equation in reacting cases [23]. His disturbance energy
involves the sum of the disturbance energies defined by linear Eq.(1)[Eq.(6.10)] and (2). For the cases enclosed
in this study, entropy disturbance energy levels are much bigger than levels of PV disturbance energy.
A criterion applying to entropy disturbance energy can therefore be derived from his work as already
written in [93].
This criterion writes : ∫

T0

∫
V

T1

T0
˙ωT1dvdt−

∫
T0

∫
S
p1~u1.~ndsdt > 0

This linear criterion for stability states that the growth of the disturbance energy is due to the positive
correlation between the fluctuation of temperature and the fluctuations of heat release and heat flux over
a period of instability. Note that this work shows that the acoustic flux term composing the Chu cri-
terion has an amplitude which is almost three orders of magnitude lower than the term

∫
T0

∫
V

T1
T0

˙ωT1dvdt.

Fig.(8.5) shows the expected gain given by this criterion and compares it to the gain of the en-
tropy disturbance energy in caseB2.
The Chu criterion correctly detects the onset of the instability as well as the limit cycle. Yet, it increases
when the relaxation starts as if a second phase of instability growth occurred. Because of this last point,
this criterion cannot be considered as giving satisfactory results as far as the detection of the main trends
of the instability are concerned.
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Figure 8.5 -Gain per period of oscillation (F0=856Hz)
(percent of the energy released by the flame during one period (4.61J))

Energy 2 Chu
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8.3 Deriving stability criteria from Eqs.(1), (2) and (3)

Tables6.3, 6.4and 6.5summarize Eqs.1, 2 and3 .

Energy 1 refers to p2
1

2γ0p0
+ ρ0u2

1
2 defined in linear Eq.(1)

Energy 2 refers to p0

2r0cp0
s21 defined in linear Eq.(2)

Energy 3 refers toρ
(
H −H

)
− ρT̄ (s− s) − ~m.(~u − ~u) − (p − p) −

∑n
k=1 gskρ(Yk − Yk) de-

fined in Eq.(3)

8.3.1 Pressure-Velocity (PV) disturbance energy (Eq.1).

Following the results obtained in caseB2 in chapter7, linear minimum Eq.(1) writes

1
2γ0p0

∂p2
1

∂t
+
ρ0

2
∂u2

1

∂t
= −~∇.(p1~u1) +

γ0 − 1
γ0p0

p1( ˙ωT1 − ~q1)

+
γ1p1

γ0p0
( ˙ωT0 − ~∇.~q0 − ~∇.~u0) + ~u1 : ~∇τ1 (8.1)

This linear minimum equation still involves too many terms to provide a simple stability criterion. If
one only keeps the terms that have an amplitude bigger than 50% of the maximum absolute amplitude of
the time derivative term, minimum Eq.(8.1) leads to the following simple linear stability criterion :∫

T0

[
+
∫

V

γ0 − 1
γ0p0

p1( ˙ωT1 − λ0∆T1)dv −
∫

S
p1~u1.~ndS

]
dt > 0 (8.2)

If this relation is satisfied, the disturbance energye1 = 1
2γ0p0

p2
1 + ρ0

2 u
2
1 will grow inside the domain.

This criterion extends the Rayleigh criterion by adding to it the influence of the fluctuation of the heat
flux.

This criterion is tested in the caseB2. Fig.(8.6) shows the expected gain given by the Pressure-
Velocity (PV) criterion and compares it to the real gain ofe1 per period of oscillation. This criterion
succeeds in detecting both the onset of the instability as well as the relaxation of the system (changing its
sign at the right moment). The predictions given by this Pressure-Velocity (PV) criterion are therefore
trustful in this case and could be tested on an instability occurring in a real combustor.

Note that in caseB2bis, one must include the mean-correlations term to this criterion to be able
to predict the occurring of the instability. Fig.(8.7) shows the results of the previous criterion without
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Figure 8.6 -Gain per period of oscillation (F0=856Hz)
(percent of the energy released by the flame during one period (4.61J.m−1))

Energy 1 Criterion1

Figure 8.7 -Case B2bisGain per period of oscillation (F0=856Hz)
(percent of the energy released by the flame during one period (4.61J.m−1))

Energy 1 Criterion1

taking into account the mean-correlation term in caseB2bis. The criterion detects the relaxation by
becoming negative, but also artificially predicts an other growing phase. This is due to the missing
mean-correlations term which has a significant importance during the relaxation. This result shows that
when using the average field as the reference flow, mean correlations have an influence on the stability of
the system. Obviously, more work is needed to define a simple criterion valid for turbulent cases (where
the mean average field is the only possible reference flow).

8.3.2 Entropy disturbance energy (Eq.2).

As already known, in a flame, large entropy fluctuations occur and chapter7 shows that the amplitude of
the time derivative term related to the quantitys′2 is far more important than the one related to fluctuations
of pressure and velocity. In all cases studied here, the maximum absolute amplitude of the time derivative
term desdt is from 2.103 to 104 times bigger thandedt. It shows that the flame creates a lot more
entropy disturbance energy than PV disturbance energy as it becomes unstable.
Yet, chapter7 also shows that no linearization of Eq.(2)[Eq.(6.18)] is possible here. Because of that, no linear
criterion for stability can be derived for entropy disturbance energy within the framework of this study.
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8.3.3 Nonlinear disturbance energy (Eq.3).

This impossibility of deriving a linear criterion for entropy disturbance energy gives another reason for
deriving a nonlinear stability criterion. Considering the results obtained in chapter7 and keeping only
the major terms of Eq.(3)[Eq.(6.37)], this equation can be simplified to:

∂Ed

∂t
= −s′ ~m′~∇T̄ + ~ms′~∇T ′ + T ′Q′ + DY (8.3)

An instability criterion can be derived from this equation which writes:∫
T0

( −
∫
v s

′ ~m′~∇T̄ dv +
∫
v ~ms

′~∇T ′dv
)dt > 0+

∫
v T

′Q′dv +
∫
v DYdv (8.4)

If the relation8.4 is true, the nonlinear disturbance energy in the flow should grow from one period of
instability to the other.
The results given by this criterion are shown in Fig.(8.8) and compared to the gain of nonlinear dis-
turbance energy per period of oscillation. Results are normalized by the energy released by the flame
during the same period of time and expressed in percent. The two curves have exactly the same behavior.
The criterion detects the two growth phases. Yet, it underestimates the growth and therefore is already
negative during the limit cycle. For this reason its sign does not change as the relaxation starts. However,
it shrinks during the relaxation following the gain of disturbance energy.

Since its sign does not change during the relaxation, only its shrink in amplitude detects the end
of the instability. Obviously here the nonlinear criterion seems to have the potential to predict both the
occurence of the instability but also its amplitude. Yet, a source term present during the limit cycle is
missing to make this nonlinear (NL) criterion perfect.
The author sees three possible reasons for the observed discrepancy :

• There might be some small inconsistencies in the code when computing the entropy of the reacting
species because of the tabulation of thermodynamic variables (every 100K). It makes for example
thatcpk only changes every 100K.

• Note also that no numerical corrections have been considered for Eq.(3)[Eq.(6.37)]. The discrepancy
might come from those neglected terms.

• It might also be due to the precision of the POSTTIT tool which cannot give the closure of the exact
equation with hardly less than 1% error. Since the maximum amplitude of the time derivative term
is almost a third of the mean power of the flame, this error could lead to the observed discrepancy.

Note that in caseB2bis, one must include the mean-correlations terms to this criterion to be able to
predict the occurring of the instability. Fig.(8.9) shows the results of the previous criterion without these
terms. Since mean correlations are positive during all the computation, the criterion largely underpredicts
the instability in caseB2bis.
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8.3 Deriving stability criteria from Eqs.(1), (2) and (3)

Figure 8.8 -Gain per period of oscillation (F0=856Hz)
(percent of the energy released by the flame during one period (4.61J))

Energy 3 Criterion3

Figure 8.9 -Case B2bisGain per period of oscillation (F0=856Hz)
(percent of the energy released by the flame during one period (4.61J))

Energy 3 Criterion3
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8.4 Conclusion and prospects

8.4.1 Conclusions

The closure of balance equations of three different disturbance energies are studied in 1D and 2D laminar
reacting cases.
First a linear conservation equation (Eq.(1)) for PV disturbance energy is derived.
Then, the balance closure of a linear conservation equation (Eq.(2)) for entropy disturbance energy is
checked.
Finally, a conservation equation (Eq.(3)[Eq.(6.37)]) for a nonlinear disturbance energy in flow is derived and
its balance analysed.

Some interesting remarks can be made on the levels of the three different types of disturbance en-
ergies (here in caseB2) :

• Fig.(8.10) shows the quantity (in percent) of PV disturbance energy contained in the nonlinear
disturbance energy versus time. It shows that PV disturbance energy only represents less than
0.5% of the nonlinear disturbance energy. Other types of disturbance energies such as entropy
disturbance energy are therefore needed to explain the global level of disturbances in the flow.

• Fig.(8.11) shows the quantity (in percent) of entropy disturbance energy in the nonlinear distur-
bance energy. This type of energy represents in average 60 to 70% of the nonlinear disturbance
energy. Note that the curve goes beyond 100%. It means that for a reason which is not given here,
the level of entropy disturbance energy is higher than the level of the nonlinear energy although it
should be included into it.
The remaining percent (between 100% and the level of entropy disturbance energy) decreases
significantly at the beginning of the instability and during the relaxation. This supports the idea
that this part of the nonlinear disturbance energy is indeed linked with nonlinear effects which are
smaller during these two phases.

Figure 8.10 -Quantity (%) of PV disturbance energy in the nonlinear disturbance energy. (CaseB2)

One of the main outputs of this work is to point out the influence of mean Mach number terms on
the level of disturbance energies. This includes mean heat release which, multiplied byγ′p′

γp enters in the
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8.4 Conclusion and prospects

Figure 8.11 -Quantity (%) of entropy disturbance energy in the nonlinear disturbance energy. (CaseB2)

balance of the PV disturbance energy.
The influence of chemical related terms other than the heat release is also pointed out. Especially, the
fluctuation of thermodynamic quantities such asr cannot always be neglected.
It also appears that linearizing Eq.(2)[Eq.(6.18)] is impossible in the cases studied here. This is due to the
high amplitude of the temperature fluctuation which forbids to consider that(

1
T

)
1

= − T1

T0
2 .

One of the consequences is that no linear stability criterion can be derived for the entropy disturbance
energy.
The influence of the reference field is studied here as a first step toward the procedure that should be
used in turbulent cases. It reveals no major issue but mainly shows a decrease of the amplitude of the
fluctuations and disturbance energies when using the average mean field as the baseline flow. Note that
the ratio of the amplitudes of the different terms constituting the disturbance energies equation changes.
For example, terms such as the second type of chemical related terms are not negligible anymore because
they are almost not affected by the change of the reference flow though the major term related to the
heat release fluctuation decreases much.
Finally, this study reveals that because of the small amplitudes of the PV disturbance energy, the closure
of the balance of minimum linear Eq.(1) depends on the numerical correction introduced by the spatial
numerical scheme. Acoustic and turbulent power density levels are often small compared to the heat
released by the flame. This study therefore shows that high precision operators are needed to get these
levels correctly.

Two stability criteria in reacting flows are successfully tested on caseB2. The first one is linear
and applies to the PV disturbance energy. It extends the Rayleigh stability criterion by introducing the
influence of the fluctuation of the heat flux. The second one is nonlinear and applies to the nonlinear
disturbance energy defined by Eq.(3)[Eq.(6.37)]. Note that these criterion do not detect the instability in
caseB2bis, meaning that more work will be needed when trying to derive simple criteria in turbulent
configurations.

Part of the work (derivation (with averaged mean reference field) and balance closure of Eq.(3)[Eq.(6.37)] in a
2-D combustor) was done during the Stanford CTR Summer Program and is published in the proceedings
of CTR Summer Program 2006 (here in AppendixF). A publication (derivation of Eq.(3)[Eq.(6.37)] with
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steady reference field) has been submitted to Combustion and Flame and may be found in AppendixG.

8.4.2 Prospects

The main prospect of this study is the analysis of the balance of the nonlinear disturbance energy derived
here, in 3-D fully turbulent cases. Extending the present work to such cases would answer the following
questions:

• Is the nonlinear stability criterion still valid in turbulent cases ?

• What is the influence of the turbulence on the global balance of disturbance energy?

• What is the amplitude of the nonlinear part of the nonlinear disturbance energy in this case?

• Is acoustic disturbance energy always negligible compared to entropy disturbance energy in react-
ing flows?

Note that the PV linear criterion could also be tested on such flows with some interests.
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General Conclusion

The general objective of this thesis is to extend the understanding of combustion instabilities by testing
models, physical concepts and numerical procedures, and by providing new numerical post-processing
tools to do so. Two main aspects of the issue of combustion instabilities are studied and lead to many
outputs.

Four different methods for the determination of Flame Transfer Functions (FTFs) in LES have been
tested. HF-FFT method, based on harmonic flame forcing and FFT post-processing gives results of
global combustion delays that compare well with the experiments. This method also provides the local
FTF which gives valuable information about the amplitudes, delays and locations of the local flame
response. This method should reveal useful for configurations where the response of the flame is not
compact compared to the characteristic wavelength of the excitation, as it is in distributed reaction cases.
These results have been published in Journal of Turbulence [47].
A new WN-WH method based on filtered-white noise forcing and post-processing using the Wiener-
Hopf relation is successfully compared toHF-FFT . Though this method should be handled with care,
its main advantage is that it gives access to the frequency spectrum of the local FTF with no additional
computational cost.
An important aspect of this study is its link with stability analysis of combustors. Obviously, FTFs do
have an influence on the frequency and amplification rates of modes in the numerical methods used
for combustor stability [9, 91]. The present results show that methods likeWN-WH and HF-FFT
provide slightly different local FTF maps. Whether these differences will affect or not significantly the
frequencies and amplification rates of modes remains to be studied. What this study has shown is how
to construct FTFs which is the important ”brick” of acoustic analysis : further studies are needed to
determine which method will be the most precise. Note also that experimental results on global FTFs
are available but that no-one has studied local FTFs yet. This is obviously a required step for the future.

Disturbance energies and stability criteria in reacting flows have been studied. Following the work
of Myers [88] for non-reacting flows, a new nonlinear conservation equation for a disturbance energy
in gaseous reacting flows is derived. The derivation of this equation as well as an order of magnitude
analysis of its R-H-S terms have been submitted to Combustion and Flame[13].
A new modular post-processing tool is used here to check the balance closure of disturbance energies on
laminar 1D and 2D flames. A first step towards 3D turbulent configurations is also provided thanks to a
discussion on the choice of the reference field. This tool gives access to all the physical and numerical
terms responsible for the evolution of disturbance energies in the flow.



GENERAL CONCLUSION

For each equation, major terms are identified and this work proposes two stability criteria for reacting
flows. These criteria are validated on the case of an instability developing in a 2D reacting configuration.
The first criterion extends the linear Rayleigh criterion by taking into account the influence of the
fluctuation of the heat flux. This work therefore gives a relevant linear tool for the study of the stability
of combustion chambers.
The second criterion is nonlinear and includes the influence of the entropy disturbance energy on the
global stability (this part of the disturbance energy has been identified by Nicoud and Poinsot [93]
as a missing part in usually considered disturbance energies). This criterion aims at giving relevant
information on the stability when no linearization of the flow is possible. Note that these criterion do not
detect the instability in caseB2bis, meaning that more work will be needed when trying to derive simple
criteria in turbulent configurations. A significant part of these developments has been made during the
CTR Summer program at Stanford. A publication summarizing these is in press in the Proceedings of
the CTR Summer Program[46].
This work also shows that the entropy disturbance energy cannot be linearized in reacting flows because
of the local amplitude of temperature fluctuations. Finally, this study reveals that because of the small
amplitudes that disturbance energies can have, the closure of their conservation equations may depends
on the numerical correction introduced by the spatial numerical scheme. Acoustic and turbulent power
density levels are often small compared to the heat released by the flame. This work therefore shows
that high precision operators are needed to get these levels correctly.
Further studies are required to test the validity of the two criteria proposed here in 3D fully turbulent
cases. These studies would answer the question of what the main source terms of thermo-acoustic
instabilities in ”real” industrial combustors are.

276



Bibliography

[1] ABOM, M. A note on the experimental determination of acoustical two-port matrices.J. Sound
Vib. 155, 1 (1991), 185–188.

[2] ANDERSON, J. Modern Compressible Flow. McGraw-Hill, New York, 1990.

[3] ANGELBERGER, C., EGOLFOPOULOS, F., AND VEYNANTE, D. Large eddy simulations of
chemical and acoustic effects on combustion instabilities.Flow Turb. and Combustion 65, 2
(2000), 205–22.

[4] ANGELBERGER, D., VEYNANTE, D., EGOLFOPOULOS, F., AND POINSOT, T. Large eddy
simulations of combustion instabilities in premixed flames. InSummer Program(1998), Center
for Turbulence Research, NASA Ames/Stanford Univ., pp. 61–82.

[5] ARMITAGE, C., BALACHANDRAN , R., MASTORAKOS, E., AND CANT, R. Investigation of the
nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations.Combust.
Flame 146(2006), 419–436.
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Appendix A

Linear conservation equation for
Pressure-Velocity (PV) disturbance energy

The derivation of a conservation equation for pressure uses the conservation equations for mass, velocity
and total energy:

∂ρ

∂t
+ ~u.~∇ (ρ) = 0 (A.1)

ρ
∂~u

∂t
+ ρ

(
~u× ~∇

)
(~u) = −~∇ (p) + ~∇ (τ) (A.2)

ρ
∂E

∂t
+ ρ~u.~∇ (E) = ω̇T − ~∇. (~q)− ~u : ~∇ (σ) (A.3)

with :

ω̇T = −
N∑

k=1

∆h0
f,kω̇k (A.4)

~q = −λ~∇ (T ) + ρ

N∑
k=1

hkYk
~Vk (A.5)

Using the same notations, the conservation equation for the sensible enthalpy can be obtained1:

Dρhs

Dt
= ω̇T +

Dp

Dt
− ~∇. (~q) + τ : ~∇ (~u) (A.6)

Using the relation :

ρ
Dhs

Dt
= ρ

N∑
k=1

hsk
DYk

Dt
+ ρCp

DT

Dt
, (A.7)

1detailed derivation can be found in ”Theoretical and Numerical combustion” by T.Poinsot and D.Veynante, p16-18
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one obtains the following conservation equation for the temperature:

ρCp
DT

Dt
= ω̇T − ~∇. (~q) +

Dp

Dt
−

N∑
k=1

hskρ
DYk

Dt
+ τ : ~∇ (~u) . (A.8)

Dividing the previous equation byρCpT and using the state equationp = ρrT , one obtains the following
equation forln(p)

1
γ

Dln (p)
Dt

+∇.~u =
γ − 1
γp

[
ω̇T − ~∇. (~q)−

N∑
k=1

hskρ
DYk

Dt
+ τ : ~∇ (~u)

]
+

1
r

Dr

Dt
. (A.9)

It is quite direct to derive from this equation a conservation equation for the pressure:

∂p

∂t
= −γp~∇.~u− ~u.~∇p+ (γ − 1)

[
ω̇T − ~∇. (~q)−

N∑
k=1

hskρ
DYk

Dt
+ τ : ~∇ (~u)

]
+
γp

r

Dr

Dt
. (A.10)

When needed, all variables will be written as being a sum of their mean part (i.e.ρ) and their fluctu-
ating part (i.e.ρ′). Eq.(A.10) is used to derive the following mean equation for pressure:

consp − γp~∇.~u− ~u.~∇p+

(γ − 1)

[
ω̇T − ~∇.~q −

N∑
k=1

hskρ
DYk

Dt
+ τ : ~∇

(
~u
)]

+
γp

r

Dr

Dt
= 0. (A.11)

whereconsp contains all mean cross-correlations of fluctuations (ie.γ′p′, γ′~u′,etc...).

Substracting Eq.(A.11) to Eq.(A.10) therefore gives an exact form for the conservation equation of
the fluctuating pressure (p′):

∂p′

∂t
= −γp~∇.~u− ~u.~∇p+ (γ − 1)

[
ω̇T −

∂qi
∂xi

−
N∑

k=1

hskρ
DYk

Dt
+ τ : ~∇ (~u)

]

+
γp

r

Dr

Dt
+ γp~∇.~u+ ~u.~∇p−

(γ − 1)

[
ω̇T − ~∇.~q −

N∑
k=1

hskρ
DYk

Dt
+ τ : ~∇

(
~u
)]
− γp

r

Dr

Dt
− consp

(A.12)
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Rearranging this equation, multiplying it byp′, and dividing it byγp gives :

1
2γp

∂p′2

∂t
= − p′

γp

[
γp~∇.~u− γp~∇.~u

]
− p′

γp

[
~u.~∇p− ~u.~∇p

]
+
p′

γp

[
(γ − 1) ω̇T − (γ − 1) ω̇T

]
− p′

γp

[
(γ − 1) ~∇.~q − (γ − 1) ~∇.~q

]
− p′

γp

[
(γ − 1)

N∑
k=1

hskρ
DYk

Dt
− (γ − 1)

N∑
k=1

hskρ
DYk

Dt

]

+
p′

γp

[
(γ − 1)

(
τ : ~∇ (~u)

)
− (γ − 1)

(
τ : ~∇

(
~u
))]

+
p′

γp

[
γp

r

Dr

Dt
− γp

r

Dr

Dt

]
− consp

p′

γp

(A.13)

Eq.(A.13) is a nonlinear equation for the fluctuations of pressure to the square. Considering the com-
plexity of Eq.(A.13), the linearization is done term by term. All terms of order higher than second order
are neglected. It gives:

•

− p1

γp

[
γp~∇.~u− γ0p0

~∇. ~u0

]
= − p1

γ0p0

[
γp~∇. ~u1 + (γ0p1 + γ1p0) ~∇. ~u0

]
− p1

γp

[
γp~∇.~u− γ0p0

~∇. ~u0

]
= −p1

~∇. ~u1 −
p2
1

p0

~∇. ~u0 −
p1γ1

γ0

~∇. ~u0 (A.14)

•

− p1

γp

[
~u.~∇p− ~u0.~∇p0

]
= − p1

γ0p0

[
~u0.~∇p1 + ~u1.~∇p0

]
− p1

γp

[
~u.~∇p− ~u0.~∇p0

]
= − ~u0

2γ0p0
.~∇p2

1 −
p1

γ0p0
~u1.~∇p0 (A.15)

•

+
p1

γp
[(γ − 1) ω̇T − (γ0 − 1) ˙ωT0] =

p1

γp
[(γ0 − 1) ˙ωT1 + γ1 ˙ωT0]

+
p1

γp
[(γ − 1) ω̇T − (γ0 − 1) ˙ωT0] =

γ0 − 1
γ0p0

p1 ˙ωT1 +
γ1p1

γ0p0
˙ωT0 (A.16)
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•

− p1

γp

[
(γ − 1) ~∇.~q − (γ0 − 1) ~∇.~q0

]
= − p1

γp

[
(γ0 − 1) ~∇.~q1 + γ1

~∇.~q0
]

− p1

γp

[
(γ − 1) ~∇.~q − (γ0 − 1) ~∇.~q0

]
= −γ0 − 1

γ0p0
p1
~∇.~q1 −

γ1p1

γ0p0

~∇.~q0 (A.17)

•

− p1

γp

[
(γ − 1)

N∑
k=1

hskρ
DYk

Dt
− (γ0 − 1)

N∑
k=1

hsk0ρ0
DY0k

Dt

]
=

−p1γ1

γ0p0

N∑
k=1

hsk0ρ0
DY0k

Dt
− p1 (γ0 − 1)

γ0p0

N∑
k=1

[
hsk1ρ0

DY0k

Dt
+ hsk0ρ1

DY0k

Dt
+ hsk0ρ0

DYk1

Dt

]
(A.18)

•

p1

γp

[
(γ − 1)

(
τ : ~∇ (~u)

)
− (γ0 − 1)

(
τ0 : ~∇ ( ~u0)

)]
=

p1γ1

γ0p0
τ0 : ~∇ ( ~u0) +

p1 (γ0 − 1)
γ0p0

[
τ1 : ~∇ ( ~u0) + τ0 : ~∇ ( ~u1)

]
(A.19)

•

p1

γp

[
γp

r

Dr

Dt
− γ0p0

r0

Dr0
Dt

]
=

p1

γ0p0

[
γ1p0

r0

Dr0
Dt

+
γ0p1

r0

Dr0
Dt

+
γ0p0

r0

Dr1
Dt

− γ0p0r1
r20

Dr0
Dt

]
p1

γp

[
γp

r

Dr

Dt
− γ0p0

r0

Dr0
Dt

]
=
p1

r0

Dr1
Dt

+
Dr0
Dt

[
γ1p1

γ0p0
+

p2
1

r0p0
− p1r1

r20

]
(A.20)

Adding all these terms gives a linearized equation at second order for the disturbance energy contained
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in quadratic pressure fluctuations.

1
2γ0p0

∂p2
1

∂t
= −p1

~∇. ~u1 −
p2
1

p0

~∇. ~u0 −
p1γ1

γ0

~∇. ~u0

− ~u0

2γ0p0
.~∇p2

1 −
p1

γ0p0
~u1.~∇p0 +

γ0 − 1
γ0p0

p1 ˙ωT1 +
γ1p1

γ0p0
˙ωT0

−γ0 − 1
γ0p0

p1
~∇.~q1 −

γ1p1

γ0p0

~∇.~q0

−p1γ1

γ0p0

N∑
k=1

hsk0ρ0
DY0k

Dt
− p1 (γ0 − 1)

γ0p0

N∑
k=1

[
hsk1ρ0

DY0k

Dt
+ hsk0ρ1

DY0k

Dt
+ hsk0ρ0

DYk1

Dt

]
+
p1γ1

γ0p0
τ0 : ~∇ ( ~u0) +

p1 (γ0 − 1)
γ0p0

[
τ1 : ~∇ ( ~u0) + τ0 : ~∇ ( ~u1)

]
+
p1

r0

Dr1
Dt

+
Dr0
Dt

[
γ1p1

γ0p0
+

p2
1

r0p0
− p1r1

r20

]
−consp

p1

γ0p0
(A.21)

The same reasoning is applied to the velocity to get an exact nonlinear conservation equation for
the disturbance energy contained in quadratic velocity fluctuations. The mean conservation equation for
velocity is :

~consv − ρ
(
~u× ~∇

)
~u− ~∇p+ ~∇τ = 0 (A.22)

where ~consv contains all mean cross-correlations of fluctuations (ie.~u′.~u′, etc...).
Therefore, a conservation equation for the fluctuating velocity is:

ρ
∂~u′

∂t
= −ρ

(
~u× ~∇

)
~u− ~∇p+ ~∇τ

+ρ
(
~u× ~∇

)
~u+ ~∇p− ~∇τ − ~consv, (A.23)

and gives:

ρ
∂~u′

∂t
= −ρ

(
~u× ~∇

)
~u′ − ~∇p′ + ~∇τ ′ +

[[
ρ~u− ρ~u

]
× ~∇

]
~u− ~consv (A.24)

taking the scalar product of Eq.(A.24) by ~u′ gives a nonlinear conservation equation foru′2:

ρ

2
∂u′2

∂t
= −ρ~u.~∇

(
u′2

2

)
− ~u′.~∇p′ + ~u′ : ~∇τ ′ + ~u′.

[[
ρ~u− ρ~u

]
× ~∇

]
~u− ~u′. ~consv (A.25)

Linearizing Eq.(A.25) to second order gives:

ρ0

2
∂u2

1

∂t
= −ρ0 ~u0.~∇

(
u2

1

2

)
− ~u1.~∇p1 + ~u1 : ~∇τ1

−ρ1 ~u1.~∇
(
u2

0

2

)
− ρ0u

2
1
~∇. ~u0 − ~u1. ~consv (A.26)
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If Eqs.(A.13) and Eq.(A.25) are combined, one obtains the following exact equation inp′2 andu′2 :

1
2γp

∂p′2

∂t
+
ρ

2
∂u′2

∂t
= −ρ~u.~∇

(
u′2

2

)
− ~u′.~∇p′ + ~u′ : ~∇τ ′

+~u′.
[[
ρ~u− ρ~u

]
× ~∇

]
~u− ~u′. ~consv

− p′

γp

[
γp~∇.~u− γp~∇.~u

]
− p′

γp

[
~u.~∇p− ~u.~∇p

]
+
p′

γp

[
(γ − 1) ω̇T − (γ − 1) ω̇T

]
− p′

γp

[
(γ − 1) ~∇.~q − (γ − 1) ~∇.~q

]
− p′

γp

[
(γ − 1)

N∑
k=1

hskρ
DYk

Dt
− (γ − 1)

N∑
k=1

hskρ
DYk

Dt

]

+
p′

γp

[
(γ − 1)

(
τ : ~∇~u

)
− (γ − 1)

(
τ : ~∇~u

)]
+
p′

γp

[
γp

r

Dr

Dt
− γp

r

Dr

Dt

]
− consp

p′

γp

(A.27)

Combining Eqs.(A.21) and Eq.(A.26) gives the following linear equation:

1
2γ0p0

D0p
2
1

Dt
+
ρ0

2
D0u

2
1

Dt
+ ~∇. (p1 ~u1) =

γ0 − 1
γ0p0

p1

[
˙ωT1 − ~∇.~q1 −

N∑
k=1

(
hsk1ρ0

D0Y0k

Dt
+ hsk0ρ1

D0Y0k

Dt
+ hsk0ρ0

D0Yk1

Dt

)]

+
γ0 − 1
γ0p0

p1

[
τ1 : ~∇ ~u0 + τ0 : ~∇ ~u1

]
+
p1γ1

γ0p0

[
−p0

~∇. ~u0 + ˙ωT0 − ~∇.~q0 −
N∑

k=1

(
hsk0ρ0

D0Y0k

Dt
+ τ0 : ~∇ ~u0

)]

−p
2
1

p0

~∇. ~u0 −
p1

γ0p0
~u1.~∇p0 − ρ1 ~u1.~∇

(
u2

0

2

)
− ρ0u

2
1
~∇. ~u0

+
p1

r0

D0r1
Dt

+
D0r0
Dt

[
γ1p1

γ0p0
+

p2
1

r0p0
− p1r1

r20

]
+ ~u1 : ~∇τ1

−consp
p1

γ0p0
− ~u1. ~consv (A.28)

D0
Dt denotes the total derivative with a spatial component relying only on the mean velocity (i.eD0f

Dt =
∂f
∂t + ~u0.~∇f ). Eq.(A.28) is a conservation equation for the quantity12γ0p0

p2
1 + ρ0

2 u
2
1 which represents

the acoustic energy in a laminar, isentropic flow. In other cases, this quantity a priori contains part of the
acoustic, turbulent and entropic disturbance energies.
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Appendix B

Linear conservation equation for Entropy
disturbance energy

Here is the derivation of a conservation equation for entropy, valid in any reacting flow.
T, p, Yk is the set of independent variables used for this analysis. The following relations will be used in
the analysis :

dg =
(
∂g

∂Yk

)
T,p,Yj 6=k

dYk +
(
∂g

∂T

)
p,Yk

dT +
(
∂g

∂p

)
T,Yk

dp

g = h− Ts =
1
ρ

∑
ρYkgk =

1
ρ

∑
k

ρYk (hk − Tsk)

hk = hst
k +

∫ T

T st
cpkdT

sk = sst
k +

∫ T

T st

cpk

T
dT − R

Wk
ln

(
pk

pst

)
pk = ρRT

Yk

Wk
= pW

Yk

Wk
(B.1)
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the term
(

∂g
∂Yk

)
T,p,Yj 6=k

is primarily evaluated.

(
∂g
∂Yk

)
T,p,Yj6=k

=
1
ρ

[
∂ρg

∂Yk
− g

∂g

∂Yk

]
T,p,Yj 6=k(

∂g
∂Yk

)
T,p,Yj6=k

=
1
ρ

N∑
j=1

∂

∂Yk
(ρYj (hj − Tsj))T,p,Yj 6=k

− 1
ρ
g

(
∂ρ

∂Yk

)
T,p,Yj 6=k(

∂g
∂Yk

)
T,p,Yj6=k

=
1
ρ

N∑
j=1

Yjgj

(
∂ρ

∂Yk

)
T,p,Yj 6=k

+
1
ρ

N∑
j=1

ρgj

(
∂Yj

∂Yk

)
T,p,Yj 6=k

−1
ρ
g

(
∂ρ

∂Yk

)
T,p,Yj 6=k(

∂g
∂Yk

)
T,p,Yj 6=k

=
1
ρ

 N∑
j=1

Yjgj − g

( ∂ρ

∂Yk

)
T,p,Yj 6=k

+
1
ρ

N∑
j=1

ρgj

(
∂Yj

∂Yk

)
T,p,Yj 6=k(

∂g
∂Yk

)
T,p,Yj6=k

= gk (B.2)

Then the term∂g
∂T p,Yj

is evaluated :

∂g
∂Tp,Yj

=
1
ρ

[(
∂ρg

∂T

)
p,Yj

− g

(
∂ρ

∂T

)
p,Yj

]

∂g
∂Tp,Yj

=
1
ρ

 N∑
j=1

(
∂ρYj (hj − Tsj)

∂T

)
p,Yj

− g

(
∂ρ

∂T

)
p,Yj


∂g
∂Tp,Yj

=
1
ρ

 N∑
j=1

Yjgj − g

( ∂ρ
∂T

)
p,Yj

+
1
ρ

N∑
j=1

ρYj

(
∂ (hj − Tsj)

∂T

)
p,Yj

∂g
∂Tp,Yj

=
N∑

j=1

Yj

(
cpj − T

cpj

T
− sj

)
∂g
∂Tp,Yj

= −s (B.3)
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The term∂g
∂pT,Yj

is evaluated :

∂g
∂pT,Yj

=
1
ρ

[(
∂ρg

∂p

)
T,Yj

− g

(
∂ρ

∂p

)
T,Yj

]

∂g
∂pT,Yj

=
1
ρ

 N∑
j=1

(
∂ρYj (hj − Tsj)

∂p

)
T,Yj

− g

(
∂ρ

∂p

)
T,Yj


∂g
∂pT,Yj

=
1
ρ

 N∑
j=1

Yjgj − g

(∂ρ
∂p

)
T,Yj

+
1
ρ

N∑
j=1

ρYj

(
∂ (hj − Tsj)

∂p

)
T,Yj

∂g
∂pT,Yj

=
N∑

j=1

YjT

(
∂sj

∂p

)
T,Yj

∂g
∂pT,Yj

= TR

N∑
j=1

Yj

Wjp

∂g
∂pT,Yj

=
1
ρ

(B.4)

From Eqs.(B.2, B.3) and Eq.(B.4) the following relation can be derived:

dg =
N∑

k=1

gkdYk − sdT +
1
ρ
dp (B.5)

And asg = h− Ts = e+ p
ρ − Ts,

de =
N∑

k=1

gkdYk + Tds− pd

(
1
ρ

)

ρTds = ρde− p

ρ
dρ−

N∑
k=1

ρgkdYk (B.6)

wheree is the sensible-chemical energy. Using the conservation equations fore, ρ andYk, the conserva-
tion equation for entropy in a multicomponent, reacting medium writes :

∂s

∂t
+ ~u.~∇s =

1
ρT

[
φ− ~∇.~q −

∑
k

∆h0
f,k
~∇. ~̇kω

]
− 1
ρT

∑
k

gk

[
ω̇k − ~∇. ~qk

]
(B.7)

The mean conservation equation for entropy writes :

− ~u.~∇s+
1
ρT

[
ω̇T + φ− ~∇.~q

]
− 1
ρT

∑
k

gsk

[
ω̇k − ~∇. ~qk

]
+ conss = 0

(B.8)
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where

conss = ~u′.~∇s′ − 1
ρT

[
ω̇T + φ− ~∇.~q

]
+

1
ρT

[
ω̇T + φ− ~∇.~q

]
+

1
ρT

∑
k

gsk

[
ω̇k − ~∇. ~qk

]
− 1
ρT

∑
k

gsk

[
ω̇k − ~∇. ~qk

]
(B.9)

Taking the difference between Eq.(B.7) and Eq.(B.8) gives:

∂s′

∂t
= −~u.~∇s+

1
ρT

[
ω̇T + φ− ~∇.~q

]
− 1
ρT

∑
k

gsk

[
ω̇k − ~∇. ~qk

]
+ ~u.~∇s− 1

ρT

[
ω̇T + φ− ~∇.~q

]
+

1
ρT

∑
k

gsk

[
ω̇k − ~∇. ~qk

]
− conss (B.10)

Multiplying the previous equation byps′

rcp
gives a nonlinear conservation equation fors′2 :

p

2rcp
∂s′2

∂t
= − ps

′

rcp

[
~u.~∇s− ~u.~∇s

]
+
s′

cp

[[
ω̇T + φ− ~∇.~q

]
− ρT

ρT

[
ω̇T + φ− ~∇.~q

]]
− s

′

cp

[∑
k

gsk

[
ω̇k − ~∇. ~qk

]
− ρT

ρT

∑
k

gsk

[
ω̇k − ~∇. ~qk

]]

− ps
′

rcp
conss (B.11)

Linearizing Eq.(B.11) to second order gives :

p0

2r0cp0

∂s21
∂t

= − p0s1
r0cp0

(
~u1.~∇ (s0) + ~u0.~∇ (s1)

)
+
s1
cp0

[
ω̇T1 + φ1 − ~∇. (~q1)

]
+
s1
cp0

[(
−ρ1

ρ0
− T1

T0

)(
ω̇T0 + φ0 − ~∇. (~q0)

)]
−ρ0s1
cp0

[
−T1

T0

∑
k

gsk0
DYk0

Dt
+
∑

k

gsk1
DYk0

Dt
+
∑

k

gsk0
∂Yk1

∂t

]
− p0s1
r0cp0

conss (B.12)
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Appendix C

Exact conservation equation for a
nonlinear disturbance energy

Since the derivation of the fluctuating energy equation requires Crocco’s formulations for the entropy
and momentum transport equations, details are given on the specific transformations of these equations
before starting the desired derivation.

• Entropy conservation equation

The entropy conservation equation can be written as follows :

∂s

∂t
+ ~u.~∇s =

1
ρT

[
ω̇T − ~∇.~q + φ

]
− 1
ρT

∑
k

gk

[
ω̇k − ~∇. ~qk

]
, (C.1)

and can therefore be simplified to :

∂s

∂t
+ ~u.~∇s =

Q

ρ
− 1
ρT

∑
k

gsk

[
ω̇k − ~∇. ~qk

]
(C.2)

• Momentum conservation equation

Concerning the momentum equation the following transformation can be done :

ρ
∂~u

∂t
+ ρ~u.~∇~u+ ~∇p− ρ~ψ = 0 (C.3)

with ψj = 1
ρ

∂τij
∂xi

.
Stagnation enthalpy (Crocco formulation) is introduced in Eq.(C.3) using Gibbs relation.

dh− Tds−
N∑

k=1

gkdYk =
1
ρ
dP (C.4)
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which gives:

∂~u

∂t
+ ~u.~∇~u+ ~∇h− T ~∇s−

N∑
k=1

gk
~∇Yk − ~ψ = 0 (C.5)

Using the fact that~u.~∇~u = ~∇(~u.~u
2 ) + (~∇ ⊗ ~u) ⊗ ~u, that gk = gsk + ∆hf,k and thath =

hs +
∑N

k=1 ∆hf,kYk, it yields:

∂~u

∂t
+ ~∇(

~u.~u

2
) + (~∇⊗ ~u)⊗ ~u+ ~∇hs +

N∑
k=1

∆hf,k
~∇Yk − T ~∇s

− ~ψ? −
N∑

k=1

∆hf,k
~∇Yk − ~ψ = 0 (C.6)

which can be simplified in :

∂~u

∂t
+ (~∇⊗ ~u)⊗ ~u+ ~∇H − T ~∇s− ~ψ? − ~ψ = 0 (C.7)

Conservation equations for unsteady and mean flow

The set of Eqs.(C.8-C.11) therefore fully describe any reactive turbulent flow:

∂ρ

∂t
+ ~∇.~m = 0 (C.8)

∂~u

∂t
+ ~ζ + ~∇H − T ~∇s = ~ψ + ~ψ? (C.9)

∂ρYk

∂t
+ ~∇.(~mYk + ~qk) = ωk, for k = 1, 2, ..., n (C.10)

∂ρs

∂t
+ ~∇. (~ms) = Q+Q? (C.11)

whereQ? = −
∑

k gsk

[
ω̇k − ~∇. ~qk

]
/T and ~ψ? =

∑N
k=1 gsk

~∇Yk, with gsk being the sensible free

enthalpy of species k,̇ωk the volumic mass rate of consumption for species k and~qk the species flux
defined as :~qk = ρYk

~Vk. All other variables correspond to the analysis of Myers [88], except that in this

reacting case derivation:Q = ω̇T−~∇.~q+Φ
T .

The corresponding equations for the turbulent-perturbed mean fields are:

~∇.~m = 0 (C.12)

~ζ + ~∇H − T̄ ~∇s− ~ψ? − ~ψ − T ′~∇s′ = 0 (C.13)

~∇.~mYk + ~∇. ~m′Y ′
k + ~∇. ~qk = ωk (C.14)

~∇.
(
~ms
)
− Q̄− Q̄? + ~∇.

(
~m′s′

)
= 0 (C.15)
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The derivation of a disturbance energy will also be using the specific stagnation enthalpy transport in-
stantaneous and mean equations:

∂

∂t
(ρH − p) + ~∇. (~mH)− ~m.~ψ − TQ = 0

~∇.
(
~mH

)
− ~m.~ψ − T̄ Q̄+ ~∇.

(
~m′H ′

)
− ~m′. ~ψ′ − T ′Q′ = 0 (C.16)

Derivation of a disturbance energy conservation equation

The sum of
(
H − T̄ s−

∑n
k=1 gskYk

)
times Eq.(C.8), T̄ times Eq.(C.11), gsk times Eq.(C.10) and

the scalar product of~m with Eq.(C.9) are substracted from Eq.(C.16). Furthermore, the correlation term
ρ′e′s is substracted to ensure the positive definitiveness of the disturbance energy(Ed). Doing so it gives:

∂

∂t

(
ρH − p− ρ′e′s

)
−
(
H − T̄ s

) ∂ρ
∂t
− ~m.

∂~u

∂t
− T̄

∂ρs

∂t
−

n∑
k=1

gsk
∂ρ(Yk − Yk)

∂t

+T̄Q? −
(
H − T̄ s

)
~∇.~m− ~m.~ζ −

~m.~∇H + T ~m.~∇s+ ~m. ~ψ? + ~m.~ψ

−T̄ ~∇. (~ms) + T̄Q+ ~∇. (~mH)− ~m.~ψ − TQ

−
n∑

k=1

gsk
~∇.(~mYk + ~qk) +

n∑
k=1

gskωk +
n∑

k=1

gskYk
~∇.~m = 0 (C.17)

which can be rearranged into :

∂

∂t

[
ρ
(
H −H

)
− ρT̄ (s− s)− ~m.~u− p−

n∑
k=1

gskρ(Yk − Yk)− ρ′e′s

]
+~∇.

[
~mH − ~m

(
H − T̄ s

)
− ~msT̄ − ~mH + ~mTs

]
+ ~m.~∇

(
H − T̄ s

)
+ s~m.~∇T̄ +H~∇.~m− s~∇.

(
T ~m

)
− ~m.

(
~ψ − ~ζ

)
︸ ︷︷ ︸

A

−
(
~m− ~m

)
. ~ψ −

(
T − T̄

)
Q+ ~m.

(
~ψ − ~ζ

)
− ~m.~ζ

+T̄Q? + ~m. ~ψ?

−
n∑

k=1

gsk
~∇.(~mYk + ~qk) +

n∑
k=1

gskωk +
n∑

k=1

gskYk
~∇.~m = 0 (C.18)
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A can be rewritten using the set of mean Eqs.(C.12-C.15):

A = ~m.
[
~∇H − T̄ ~∇s− ~ψ + ~ζ

]
+ s~m.~∇T̄

−s~m.~∇T̄ +H~∇.~m− s~∇.
(
T ~m

)
(C.19)

A = ~m.
[
~ψ? + T ′~∇s′

]
+ s~m.~∇T̄

−s~m.~∇T̄ + (H − sT ) ~∇.~m︸ ︷︷ ︸
=0

−s~m.~∇T (C.20)

A = ~m.
[
~ψ? + T ′~∇s′

]
+ (s− s) ~m.~∇T̄ − s~m.~∇T (C.21)

Using Eq.(C.21), Eq.(C.18) can be rewritten:

∂

∂t

[
ρ
(
H −H

)
− ρT̄ (s− s)− ~m.~u− p−

n∑
k=1

gskρ(Yk − Yk)− ρ′e′s

]
+ ~∇.

[
~mH − ~m

(
H − T̄ s

)
− ~msT̄ − ~mH + ~mTs

]︸ ︷︷ ︸
B

+~m.
[
~ψ? + T ′~∇s′

]
+ (s− s) ~m.~∇T̄

−s~m.~∇T −
(
~m− ~m

)
. ~ψ −

(
T − T̄

)
Q+ ~m.

(
~ψ − ~ζ

)
− ~m.~ζ

+T̄Q? + ~m. ~ψ?

−
n∑

k=1

gsk
~∇.(~mYk + ~qk) +

n∑
k=1

gskωk +
n∑

k=1

gskYk
~∇.~m = 0 (C.22)

The termB can be rewritten as follows:

B = ~∇.
[(
~m− ~m

) (
H −H

)
− ~mT̄ (s− s) + ~mT (s− s)

]
−~∇.

(
~mH

)
+ ~∇.

(
~mTs

)
(C.23)

~∇.
(
~mH

)
= −~m.~ζ + T̄ ~m.~∇s

+~m. ~ψ? + ~m.~ψ + ~m.T ′~∇s′ (C.24)

~∇.
(
~ms
)

= Q̄+Q? − ~∇.
(
~m′s′

)
(C.25)

−~∇.
(
~mH

)
= ~m.~ζ − T̄ Q̄− T̄Q? − ~m.T ′~∇s′

−~m.~ψ − ~m. ~ψ? + T̄ ~∇.
(
~m′s′

)
(C.26)

~∇.
(
~mTs

)
= s~m.~∇T + TQ̄+ TQ? − T ~∇.

(
~m′s′

)
(C.27)

=⇒ B = ~∇.
[(
~m− ~m

) (
H −H

)
− ~mT̄ (s− s) + ~mT (s− s)

]
+~m.~ζ − T̄ Q̄− T̄Q? − ~m.~ψ − ~m. ~ψ? + s~m.~∇T

+TQ̄+ TQ? − ~m.T ′~∇s′ − (T − T̄ )~∇.
(
~m′s′

)
(C.28)
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Introducing Eq.(C.28) into Eq.(C.22) gives:

∂

∂t

[
ρ
(
H −H

)
− ρT̄ (s− s)− ~m.~u− p−

n∑
k=1

gskρ(Yk − Yk)− ρ′e′s

]
+~∇.

[(
~m− ~m

) (
H −H

)
− ~mT̄ (s− s) + ~mT (s− s)

]
+~m.~ζ − T̄ Q̄− T̄Q? − ~m.~ψ − ~m. ~ψ? + s~m.~∇T + TQ̄

+TQ? + T̄Q? + ~m. ~ψ? + ~m.~ψ? + (s− s) ~m.~∇T̄ − s~m.~∇T

−
(
~m− ~m

)
. ~ψ −

(
T − T̄

)
Q+ ~m.

(
~ψ − ~ζ

)
− ~m.~ζ

−~m.T ′~∇s′ − (T − T̄ )~∇.
(
~m′s′

)
+ ~m.T ′~∇s′

−
n∑

k=1

gsk
~∇.(~mYk + ~qk) +

n∑
k=1

gskωk +
n∑

k=1

gskYk
~∇.~m = 0 (C.29)

Using the fact that~u andp are independent oft, ~m.~ζ = ~m.~ζ = 0 it follows that :

∂

∂t

[
ρ
(
H −H

)
− ρT̄ (s− s)− ~m.(~u− ~u)− (p− p)−

n∑
k=1

gskρ(Yk − Yk)− ρ′e′s

]

+~∇.
[(
~m− ~m

) [(
H −H

)
− T̄ (s− s)

]
− ~m(T − T̄ ) (s− s)− T

(
~m′s′

)]
(~m− ~m)(~ζ − ~ζ) + ~m′.~ζ ′

(s− s)(~m− ~m)~∇T̄ − ~m(s− s)~∇(T − T̄ )

−~m.T ′~∇s′ + T̄ ~∇.
(
~m′s′

)
+ ~m.T ′~∇s′ + ( ~m′s′).~∇T

−(T − T̄ )(Q− Q̄)
−(T − T̄ )(Q? −Q?) + TQ?

−(~m− ~m).(~ψ − ~ψ)

−(~m− ~m).( ~ψ? − ~ψ?) + ~m. ~ψ?

−
n∑

k=1

gsk
~∇.(~mYk + ~qk) +

n∑
k=1

gskωk +
n∑

k=1

gskYk
~∇.~m = 0 (C.30)

Eq.(C.13) and Eq.(C.16) can be combined to get :

~m.~ζ − ~m.T̄ ~∇s− ~m. ~ψ? − ~m.T ′~∇s′ = −T̄ Q̄+ ~∇.
(
~m′H ′

)
− ~m′. ~ψ′ − T ′Q′, (C.31)

using furthermore Eq.(C.15) gives:

T̄ ~∇.
(
~m′s′

)
− ~m.T ′~∇s′ = −T̄ Q̄+ ~∇.

(
~m′H ′

)
− ~m′. ~ψ′ − T ′Q′

+T̄ Q̄+ T̄ Q̄? + ~m. ~ψ? (C.32)
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Introducing Eq.(C.32) in Eq.(C.30) gives:

∂

∂t

[
ρ
(
H −H

)
− ρT̄ (s− s)− ~m.(~u− ~u)− (p− p)−

n∑
k=1

gskρ(Yk − Yk)− ρ′e′s

]

+~∇.
[(
~m− ~m

) [(
H −H

)
− T̄ (s− s)

]
− ~m(T − T̄ ) (s− s) +

(
~m′H ′

)
− T

(
~m′s′

)]
+(~m− ~m)(~ζ − ~ζ) + ~m′.~ζ ′

+(s− s)(~m− ~m)~∇T̄ − ~m(s− s)~∇(T − T̄ ) + ~m.T ′~∇s′ + ( ~m′s′).~∇T
−(T − T̄ )(Q− Q̄)− T ′Q′

−(T − T̄ )(Q? −Q?)

−(~m− ~m).(~ψ − ~ψ)− ~m′. ~ψ′

−(~m− ~m).( ~ψ? − ~ψ?)

+~m. ~ψ? + ~m. ~ψ? + TQ? + T̄Q?︸ ︷︷ ︸
D

−
n∑

k=1

gsk
~∇.(~mYk + ~qk) +

n∑
k=1

gskωk +
n∑

k=1

gskYk
~∇.~m︸ ︷︷ ︸

E

= 0 (C.33)

The goal of the derivation is to derive an equation for a ”disturbance energy” which is explicitly
second order when linearized. It means that the source and flux terms should be written asα′β′, α and
β being any primitive variable. At this stage, a few terms in the derivation don’t verify this criterion
and therefore have to be rewritten. They are grouped under the terms D and E. The following paragraph
focuses on those terms.

D + E = −
n∑

k=1

gsk
~∇.(~mYk + ~qk) +

n∑
k=1

gskωk +
n∑

k=1

gskYk
~∇.~m

+~m. ~ψ? + ~m. ~ψ? + TQ? + T̄Q? (C.34)

D + E = −
n∑

k=1

(gsk − gsk)~∇.(ωk − ~qk)−
n∑

k=1

gsk ~m.~∇Yk

−
n∑

k=1

gskYk
~∇.~m+

n∑
k=1

gskYk
~∇. ~m′

+~m. ~ψ? + ~m. ~ψ? + T̄Q? (C.35)
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D + E = −
n∑

k=1

g′sk
∂ρYk

∂t
−

n∑
k=1

g′skYk
~∇. ~m′ −

n∑
k=1

gskY
′
k
~∇. ~m′

+~m. ~ψ? + T̄Q? (C.36)

Eq.(C.10) can be written as

−
n∑

k=1

ρgsk
∂Yk

∂t
= Q?T + ~m. ~ψ?, (C.37)

therefore:

Q?T̄ + ~m. ~ψ? = −Q?′T ′ − ~m′. ~ψ?′ −
n∑

k=1

ρgsk
∂Yk

∂t
(C.38)

Using the assumption that
(

∂
∂t

)
= 0, it gives

Q?T̄ + ~m. ~ψ? = −Q?′T ′ − ~m′. ~ψ?′ −
n∑

k=1

(ρgsk)′
∂Y ′

k

∂t
(C.39)

Q?T̄ + ~m. ~ψ? = −Q?′T ′ − ~m′. ~ψ?′ −
n∑

k=1

g′sk[ω
′
k − ~∇. ~q′k − ~∇.(~mYk)′]

−
n∑

k=1

(gskYk)′~∇. ~m′ (C.40)

Introducing Eq.(C.40) in Eq.(C.36) gives:

D + E = −
n∑

k=1

g′sk
∂(ρYk)′

∂t
−

n∑
k=1

g′skYk
~∇. ~m′ −

n∑
k=1

gskY
′
k
~∇. ~m′

−Q?′T ′ − ~m′. ~ψ?′ −
n∑

k=1

g′sk[ω
′
k − ~∇. ~q′k − ~∇.(~mYk)′]

−
n∑

k=1

(gskYk)′~∇. ~m′ (C.41)

By using Eq.(C.10) it also can be written as:

D + E = −
n∑

k=1

g′skΩ
′
k −

n∑
k=1

g′skYk
~∇. ~m′ −

n∑
k=1

gskY
′
k
~∇. ~m′

−Q?′T ′ − ~m′. ~ψ?′ −
n∑

k=1

g′skΩ
′
k −

n∑
k=1

(gskYk)′~∇. ~m′ (C.42)
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whereΩk = [ω′k− ~∇. ~q′k− ~∇.(~mYk)′]. Introducing Eq.(C.42) into Eq.(C.33) gives the following equation
for a disturbance energy (Ed) which is explicitly second order when linearized.

∂

∂t

[
ρ
(
H −H

)
− ρT̄ (s− s)− ~m.(~u− ~u)− (p− p)−

n∑
k=1

gskρ(Yk − Yk)− ρ′e′s

]
︸ ︷︷ ︸

Ed

+~∇.
[(
~m− ~m

) [(
H −H

)
− T̄ (s− s)

]
− ~m(T − T̄ ) (s− s) +

(
~m′H ′

)
− T

(
~m′s′

)]
︸ ︷︷ ︸

W

+(~m− ~m)(~ζ − ~ζ) + ~m′.~ζ ′︸ ︷︷ ︸
Dζ

+(s− s)(~m− ~m)~∇T̄ − ~m(s− s)~∇(T − T̄ ) + ~m.T ′~∇s′ + ( ~m′s′).~∇T︸ ︷︷ ︸
Ds

−(T − T̄ )(Q− Q̄)− T ′Q′︸ ︷︷ ︸
DQ

−(T − T̄ )(Q? −Q?)−Q?′T ′︸ ︷︷ ︸
DQ?

−(~m− ~m).(~ψ − ~ψ)− ~m′. ~ψ′︸ ︷︷ ︸
D~ψ

−(~m− ~m).( ~ψ? − ~ψ?)− ~m′. ~ψ?′︸ ︷︷ ︸
D ~ψ?

−
n∑

k=1

g′skΩ
′
k −

n∑
k=1

g′skYk
~∇. ~m′ −

n∑
k=1

gskY
′
k
~∇. ~m′ −

n∑
k=1

g′skΩ
′
k −

n∑
k=1

(gskYk)′~∇. ~m′

︸ ︷︷ ︸
DY k

= 0 (C.43)

Linearization

Retention of all second-order terms in the exact flux vector and source terms results in a rather com-
plex disturbance energy equation, where much of the complexity is contained in viscous stress, dissipa-
tion, and heat conduction terms that can be argued to be negligible in most combusting flows. Ignoring
such terms as well as the vorticity terms results in the following linearized disturbance energy equation,

∂Ed2

∂t
+ ~∇. ~W2 = D2, (C.44)

where the disturbance energy densityEd2, flux vector ~W2, and sourceD2 terms are
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Ed2 =
p2
1

2ρ0c20
+

1
2
ρ0~u1.~u1 + ρ1~u0.~u1 +

ρ0T0s
2
1

2cp0
+ EY 2, (C.45)

~W2 = (p1 + ρ0~u0.~u1)
(
~u1 +

ρ1

ρ0
~u0

)
+ ~m0T1s1, (C.46)

and

D2 = −~m1s1.~∇T0 − ~m0.T1
~∇s1

− s1 ~m1.~∇T0 + s1 ~m0.~∇T1

+
T1

T0
(ωT1 − ~∇.~q1) + T1(ωT0 − ~∇.~q0)

(
1
T
− 1
T0

)
+ T1Q

∗
1 + ~m1. ~ψ

∗
1

+
n∑

k=1

gsk1Ωk1 +
n∑

k=1

(gsk1Yk1 + gsk0Yk1) ~∇.~m1. (C.47)

TheEY 2 term in Eq.(C.45) is the contribution from theρgsk0(Yk − Yk0) terms in Eq.(C.43) and is
equal to

EY 2 =
p0

2

n∑
k=1

[(
1 +

W

Wk
− skW

R

)
gsk − esk
CvT

+
W

Wk

(
1 +

1
Yk

)]
Y 2

k1

+ p0

n∑
k=1

∑
j 6=k

[(
1 +

W

Wk
− skW

R

)
gsj − esj
CvT

+
W

Wj

]
Yk1Yj1

+
ρ

Cv

n∑
k=1

(gsk − esk) s1Yk1 +
n∑

k=1

[
(γ − 1)(gsk − esk) +

RT

Wk

]
ρ1Yk1. (C.48)
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Appendix D

Evaluation of numerical corrections for
Eqs.(1), (2) and (3)

As mentioned in Section5.2, numerical corrections can be split in three main components.

• a boundary correction denotedBND

• a correction due to the Lax-Wendroff scheme denotedLW

• a correction due to the use of artificial viscosity denotedAVI

Using explicit time advancement, these corrections are all added to the update function at the end of the
iteration to get the final result. In the following,BND correction will be taken as a model since the
general principles and equations are the same for all numerical corrections.
During the iteration, one only has access toBNDρu, BNDρE andBNDρYk

.
BNDE1 andBNDE2 should therefore be calculated using those terms. This is done by considering
the differential equations linkingE1 andE2 to the primitive variables (ρ~u, ρE andρYk) advanced in the
code. When needed, the term

∑
k dρYk will be changed indρ.

Numerical terms for Eq.(1)

After some algebra,dE1 writes :

dE1 = β
p′

γp
(dρE− ~u.dρũ + αdρ) + ~u′.(dρũ− ~udρ)

+
p′

γp

∑
k

XikdρYk (D.1)



EVALUATION OF NUMERICAL CORRECTIONS FOREQS.(1), (2) AND (3)

whereβ = γ − 1, α = u2

2 andXik = rkT − βesk

The following equation therefore definesBNDE1 :

BNDE1 = β
p′

γp
(BNDρE − ~u.BNDρũ + αBNDρ)

+~u′.(BNDρũ − ~uBNDρ) +
p′

γp

∑
k

XikBNDρYk
(D.2)

Numerical terms for Eq.(2)

After some algebra,dE2 writes :

dE2 =
s′

Cp

[
dρE− Edρ− ρ~u.dρũ− P

ρ
dρ +

∑
k

ρgk(dρYk − Ykdρ)

]
(D.3)

The following equation therefore definesBNDE2 :

BNDE2 =
s′

Cp
[BNDρE − EBNDρ − ρ~u.BNDρũ]

+
s′

Cp

[
−P
ρ
BNDρ +

∑
k

ρgk(BNDρYk
− YkBNDρ)

]
(D.4)

Numerical terms for Eq.(3)

In the present work, no numerical corrections are considered for Eq.(3).
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Appendix E

Short notations for balance closure
analysis (Chapter7).

E.1 Equation 1

deudt ρ0

2
∂u2

1
∂t

depdt 1
2γ0p0

∂p2
1

∂t

dedt deudt + depdt

Ac1 − p′

γp

[
γp~∇.~u− γp~∇.~u

]
Ac2 −~u′.~∇p′

Ac3
p′

γp

[
(γ − 1) ω̇T − (γ − 1) ω̇T

]
Ac4 − p′

γp

[
(γ − 1) ~∇.~q − (γ − 1) ~∇.~q

]
Ac5

~u′ : ~∇τ ′

Ac6 − p′

γp

[
(γ − 1)

∑N
k=1 hskρ~u.~∇Yk − (γ − 1)

∑N
k=1 hskρ~u.~∇Yk

]
Ac7

p′

r
∂r
∂t

LWE1 Lax-Wendroff correction term
BNDE1 BouNDary correction term
AVIE1 Artificial VIscosity correction term



SHORT NOTATIONS FOR BALANCE CLOSURE ANALYSIS(CHAPTER 7).

E.2 Equation 2

desdt p0

2r0cp0

∂s2
1

∂t

En1 − ps′

rcp

[
~u.~∇s− ~u.~∇s

]
En2

s′

cp

[
ω̇T − ρT

ρT
ω̇T

]
En3

s′

cp

[
−~∇.~q + ρT

ρT
~∇.~q
]

En4 − s′

cp

[∑
k gsk

[
ω̇k − ~∇. ~qk

]
− ρT

ρT

∑
k gsk

[
ω̇k − ~∇. ~qk

]]
LWE2 Lax-Wendroff correction term

BNDE2 BouNDary correction term
AVIE2 Artificial VIscosity correction term

E.3 Equation 3

Ds −s′ ~m′~∇T̄ + ~ms′~∇T ′
DQ T ′Q′

DY ~m′. ~ψ?
′
+ T ′Q?′ −

∑n
k=1 g

′
skΩ

′
k +

∑n
k=1 g

′
skYk

~∇. ~m′ +
∑n

k=1 gskY
′
k
~∇. ~m′

Ds − ~̄m.T ′~∇s′ − ( ~m′s′).~∇T̄
DQ T ′Q′
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Budget of disturbance energy in gaseous reacting
flows

By A. Giauque†, T. Poinsot‡, M. Brear¶, AND F. Nicoud‖

This paper presents an energy analysis of the disturbances that occur in gaseous com-
bustion. It builds upon the previous work of Myers (1991) by including species and heat
release terms, thus extending Myers’ exact and linearized energy corollaries to combust-
ing flows. These energy corollaries identify additional and significant energy density, flux,
and source terms, thereby generalizing the recent results of Nicoud and Poinsot (2005)
to include non-zero mean flow quantities, large amplitude disturbances, and varying spe-
cific heats. The associated stability criterion is therefore significantly different from the
Rayleigh criterion in several ways. The closure of the exact equation is performed on
an oscillating 2-D laminar flame. Results show that in this case the general equation
can be substantially simplified by considering only entropy, heat release, and heat flux
terms. The first one behaves as source term whereas the latter two dissipate the distur-
bance energy. Moreover, terms associated with the non-zero baseline flow are found to
be important for the global closure of the balance even though the mean Mach number
is small.

1. Introduction

Combustion stability has received sustained attention in both the academic and indus-
trial communities, particularly over the last fifty years. During this time, the literature
on this issue has grown enormously, and now spans numerous applications, including
rockets (Flandro 1985; Culick 2001), afterburners (Bloxsidge et al. 1988), gas turbines
(Dowling and Stow 2003; Poinsot and Veynante 2001), and industrial burners (Putnam
1971). The ”Rayleigh criterion” is the most common argument for explaining combus-
tion stability. While Rayleigh himself only first stated this criterion in prose form (Lord
Rayleigh 1878), it is often written as

∫

Ω

p′ω′
Tdx > L, (1.1)

where p′, ω′
T , L, and Ω are the static pressure and heat release rate disturbances at a

point in space, the losses from the combustor, and the combustor volume, respectively.
(¯) denotes the time average. This criterion states that the combustor is unstable when
the relative phase of the pressure and heat release disturbances over the combustor vol-
ume are such that the integral is larger than the (at present unspecified) losses.
Despite the ”Rayleigh criterion” having its origin well over a century ago, a recent paper
by Nicoud and Poinsot (2005) suggested that it is still at the very least unclear under
what conditions this criterion can be derived from the equations governing combusting

† CERFACS, Toulouse, France
‡ IMF Toulouse, France
¶ Mechanical Engineering, University of Melbourne, Australia - mjbrear@unimelb.edu.au
‖ Applied mathematics, University Montpellier II, France - nicoud@math.univ-montp2.fr
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fluid motion. The earlier works of Chu (1956, 1965), Bloxsidge et al. (1988), and Dowl-
ing (1997) attempted to show precisely this, using progressively more general definitions
of acoustic or disturbance energies that have appeared over the last fifty or so years.
These works illustrate that deriving the Rayleigh criterion from the governing equations
first requires a valid conservation equation for the energy contained in the disturbances,
whether these disturbances are considered acoustic or otherwise.
In combusting flows, any equation stating disturbance energy conservation must start
from equations of motion that at least include non-zero mean flow quantities and en-
tropy variation. To ignore either the mean flow or entropy variation causes conceptual
problems, discussed later in this paper. It appears that only the energies defined by
Morfey (1971) and Myers (1991) do this. Viscous dissipation and heat conduction, while
included in these works, are not essential and are usually small. The derivation in Dowl-
ing (1997) of an acoustic energy conservation equation for combusting flows extended the
approach of Morfey (1971) for non-combusting flows. In Morfey’s analysis, any entropy
disturbances are shifted into the source term. Myers (1991) allows entropy disturbances
to remain in both the energy density and flux terms. Myers’ equation was consistent with
those developed earlier by Chu (1965) and Pierce (1981) for zero-mean flow. Nicoud and
Poinsot (2005) rederived the fluctuating energy equation of Chu (1965) and argued that
the Rayleigh criterion is an incomplete description of the significant sources of fluctu-
ating energy in combustion. In the limit of small disturbance amplitude, a source term
proportional to T1ωT1 was found where ωT1 and T1 are the first terms in the heat release
and static temperature asymptotic expansions. This term is analogous but significantly
different to the Rayleigh term in Eq. (1.1). Entropy disturbances through the flame were
also argued to be a significant source of disturbance energy, but Nicoud and Poinsot’s
formulation was conceptually problematic because they assumed zero-mean flow quanti-
ties. Bloxsidge et al. (1988) and Dowling (1997) also showed that terms other than the
Rayleigh term existed for their differently defined acoustic energy equation, but both
argued that these terms were small in practice.
This difference of opinion on such a fundamental and practically important problem
needs to be resolved. This can be achieved by first deriving a general equation for dis-
turbance energy, as this paper does, and then studying numerically the magnitudes of
all the identified source terms. The basic equation should not be linear as it is often the
case when dealing with acoustics. Indeed the temperature, entropy, and velocity distur-
bances in particular can be large within flames and non-linear effects are already known
to be significant in the acoustic energy analysis of solid rocket combustion (Flandro 1985;
Culick 2001). Since Myers (1991) presented both exact and linearized disturbance energy
equations, comparison of the two would determine the applicability of the linearized
equations on a given combustor if the generalization of Myers’ approach to combusting
flows can be handled appropriately.
This paper supports the questioning of the validity of the Rayleigh criterion (Nicoud
and Poinsot 2005) in common combusting flows. It draws heavily on Myers’ exact and
linearized energy corollaries (Myers 1991) , and extends Nicoud and Poinsot’s results to
non-zero mean Mach numbers, large amplitude disturbances, and varying specific heats.
Preliminary testing of the proposed exact disturbance energy equation is then performed
by post-processing numerical simulation of a 2-D laminar oscillating flame.



Disturbance energy budget 3

2. Formulation

2.1. What is a ”disturbance energy” ?

The notion of a disturbance energy Ed is somewhat vague; we first present a set of
properties that we believe this quantity should meet in order to be useful when analyzing
combustion stability. Many of these properties are obtained when expanding Ed or any
other quantity as f(x, t) = f0(x) +

∑

εifi(x, t), where ε is a small parameter.

• P0: Ed should be zero when there are no fluctuations, that is Ed0 = 0,
• P1: Ed should be quadratic in the primitive variable fluctuations, that is Ed1 = 0,

and reduce properly to the well-established energies derived earlier for small amplitude
disturbances (Chu 1965; Myers 1991; Nicoud and Poinsot 2005) when proper assumptions
are made. P1 is also a pre-requisite for P3,
• P2: The leading order term of Ed, viz. Ed2, should only depend on the first order

term of the primitive variable fluctuations ρ1, p1, u1, etc.
• P3: Ed2 should be definite positive so that it increases with the amplitude of the fluc-

tuations. The disturbance energy itself should remain positive even for large amplitude
fluctuations.

While P0 is an obvious statement, P1 is enforced for consistency with previous works.
Noting E the sensible stagnation energy of the mixture, P1 disqualifies E − E0 as a
disturbance energy since (E − E0)1 = CvT1 for a calorifically perfect mixture at rest.
Property P2 is required for practical use: if Ed2 were depending on both p1 and p2, for
instance, one would have to define and handle two different pressure fluctuations when
computing/analysing Ed2. Eventually, let us assume a conservation equation of the form

∂Ed
∂t

+ ∇ ·W = D (2.1)

for Ed, where W and D stand for the flux vector and source of the disturbance energy.
If property P3 is satisfied, a stability criterion can easily be derived by integrating Eq. (
2.1) over the flow domain Ω bounded by the surface S:

STABILITY ⇔
∫

Ω

Ddx −
∫

S

W · ndS < 0, (2.2)

where n is the outward normal vector.

At this point, it is unclear whether a disturbance energy satisfying P0-P3 exists and if
it is unique. A potential candidate for which we can show that P0-P2 and at least partly
P3 are satisfied is discussed in the rest of this paper.

2.2. Basic equations

The exact disturbance energy conservation equation is derived from statements of mass
conservation, species mass conservation, momentum transport, energy conservation, and
entropy transport for a mixture of n gaseous species,
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∂ρ

∂t
+ ∇ · m = 0, (2.3)

∂ρYk
∂t

+ ∇ · (m + qk) = ωk, for k = 1, 2, ..., n (2.4)

∂u

∂t
+ ζ + ∇H − T∇s = ψ +ψ∗, (2.5)

∂

∂t
(ρH − p) + ∇ · (mH) − m ·ψ = TQ, (2.6)

∂ρs

∂t
+ ∇ · (sm) = Q+Q∗, (2.7)

In Eqs. (2.3)-(2.7), ρ is the volumetric density, u is the velocity vector, m = ρu
is the momentum, ξ = ∇ × u is the vorticity and ζ = ξ × u, H = hs + u · u/2 is
the sensible stagnation enthalpy, T is the temperature, s is the sensible entropy, ψ is
such that ψij = (1/ρ)(∂τij/∂xi) where τij is the ijth component of the viscous stress
tensor. Noting Yk, ωk, hsk, gsk, Vk and qk = ρYkVk the mass fraction, volumic rate of
production, sensible enthalpy, sensible Gibbs free energy, diffusion velocity and diffusion
mass flux of the kth species respectively, one also defines ψ∗ =

∑n

k=1
gsk∇Yk, TQ

∗ =
−∑n

k=1
gsk (ωk − ∇ · qk) and TQ = −∇·q+φ+ωT where q = −λ∇T+ρ

∑n

k=1
YkhskVk

is the heat flux, φ is the viscous dissipation, and ωT is the heat release per unit volume.
Splitting each quantity () into time-averaged (¯ ) and fluctuating components ()′, Eqs.
(2.3)-(2.7) can be time averaged to give:

∇ · m̄ = 0, (2.8)

∇ · (Ȳkm̄) + ∇ · q̄k + ∇ ·m′Y ′
k = ω̄k, (2.9)

ζ̄ + ∇H̄ − T̄∇s̄− T ′∇s′ = ψ̄ + ψ̄
∗
, (2.10)

∇ · (m̄H̄) + ∇ · m′H ′ − m̄ · ψ̄ − m′ · ψ′ = T̄ Q̄+ T ′Q′, (2.11)

∇ · (m̄s̄) + ∇ ·m′s′ = Q̄+ Q̄∗. (2.12)

Note that Eqs. (2.8)-(2.12) have been obtained by assuming that the time averages of
time derivatives are zero, which implies averaging either over a very long period of time
or over a finite number of periods of oscillation. For variables u, p, m, Yk, qk, ωk, ζ, H ,
T , s, ψ, ψ∗, Q, Q∗, es, gsk and Ωk = ωk−∇·qk−∇·(mYk), f(x, t) = f̄(x)+

∑

εifi(x, t)
where f̄(x) defines the baseline flow. Note that f ′ is therefore not equivalent to f1 as
defined in section 2.1. It is exactly

∑+∞
i=1

fi(x, t)ε
i and thus equals εf1 to order ε2. Note

also that Myers (1991) defined his disturbances around a laminar base flow, which has
little meaning in many combusting cases, particularly those undergoing strong limit cycle
oscillations. Nonetheless, if the disturbances are sufficiently small, the time averages of the
products of the disturbances in Eqs. (2.8)-(2.12) are negligible and the laminar equations
are recovered.

2.3. Non-linear disturbance energy

Myers’ approach (1991) consists of subtracting from Eq. (2.6) an appropriate linear
combination of Eqs. (2.3), (2.5), and (2.7) in order to obtain an exact conservation
equation for a disturbance energy. The same approach has been followed in this study,
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including combustion and mixing effects by including the species mass conservation Eq.
(2.3) into the linear combination that is removed from (2.6). A guide to determine a
proper linear combination of these equations is to eventually obtain a disturbance energy
that satisfies properties P0-P3. One shows that a proper choice is to multiply Eq. (2.3)
by (H̄− T̄ s̄−

∑n

k=1
gskȲk), Eq. (2.7) by T̄ , Eq. (2.5) by m̄, and Eq. (2.4) by ¯gsk and then

subtract all these from (2.6). Making use of Eq.s 2.8, 2.9, 2.11, and 2.12, one eventually
obtains an equation of the form 2.1, where the disturbance energy, flux vector, and source
terms are defined respectively as

Ed = ρ[H − H̄ − T̄ (s− s̄)] − m̄ · (u − ū) − (p− p̄) −
n
∑

k=1

gskρ(Yk − Ȳk) − ρ′e′s (2.13)

W = (m − m̄)[(H − H̄) − T̄ (s− s̄)] + m̄(T − T̄ )(s− s̄) (2.14)

+m′H ′ − Tm′s′

and

D = Dξ +Ds +DQ +DQ∗ +Dψ +Dψ∗ +DYk
, (2.15)

where

Dξ = −(m − m̄) · (ζ − ζ̄) − m′ · ξ′,
Ds = −(m − m̄) · (s− s̄)∇T̄ + (s− s̄)m̄ · ∇(T − T̄ )

−m′s′ · ∇T − m · T ′∇s′

DQ = (T − T̄ )(Q− Q̄) + T ′Q′

DQ∗ = (T − T̄ )(Q∗ − Q̄∗) + T ′Q∗′

Dψ = (m − m̄) · (ψ − ψ̄) + m′ ·ψ′

Dψ∗ = (m − m̄) · (ψ∗ − ψ̄∗) + m′ · ψ∗′

DYk
=

n
∑

k=1

g′skΩ
′
k +

n
∑

k=1

(g′skYk + gskY
′
k)∇ · m′

+

n
∑

k=1

g′skΩ
′
k + g′s∇ · m′,

where Ωk = ωk−∇ ·qk−∇ · (mYk). Note that the correlation term in Eq. (2.13) as been
introduced so that the leading order term of the disturbance energy does not contain a
constant contribution and is positive. Also note that the disturbance energy contains the
fluctuation of the turbulent kinetic energy, Ek = ρ̄ 1

2
(u′iu

′
i − u′iu

′
i).

2.4. Linearization

It is obvious from Eq. (2.13) that Ed satisfies property P0. Disturbances of the form
()′ = () − (¯ ) =

∑∞
i=1

εi()i are then substituted into the exact Eq. (2.1), and only the
lowest order terms in ε are retained. In keeping with the other studies of disturbance
energy in isentropic and homentropic flows (Morfey 1971; Cantrell and Hart 1964; Pierce
1981), the remaining terms are of second order in the disturbances, meaning that Ed also
satisfies P1. Retention of all second-order terms in the exact flux vector and source terms
results in a rather complex disturbance energy equation, where much of the complexity



6 A. Giauque, T. Poinsot, M. Brear, & F. Nicoud

is contained in viscous stress, dissipation, and heat conduction terms that can be argued
to be negligible in most combusting flows. Ignoring such terms as well as the vorticity
terms results in the following linearized disturbance energy equation,

∂Ed2
∂t

+ ∇ · W2 = D2, (2.16)

where the disturbance energy density Ed2, flux vector W2, and source D2 terms are

Ed2 =
p2
1

2ρ̄c̄2
+

1

2
ρ̄u1 · u1 + ρ1ū · u1 +

ρ̄T̄ s21
2c̄p

+ EY 2, (2.17)

W2 = (p1 + ρ̄ū · u1)

(

u1 +
ρ1

ρ̄
ū

)

+ m̄T1s1 + m′H ′ − Tm′s′, (2.18)

and

D2 = −m′s′ · ∇T̄ − m̄ · T ′∇s′

− s1m1 · ∇T̄ + s1m̄ · ∇T1

+

(

ω1T1

T̄
− ω̄TT

2
1

(T̄ )2

)

+ T ′ω′
T

+ T1Q
∗
1 + T ′Q∗′ + m1 · ψ∗

1 + m′ ·ψ∗′

+
n
∑

k=1

gsk1Ωk1 +
n
∑

k=1

(

gsk1Ȳk + ¯gskYk1
)

∇ ·m1

+

n
∑

k=1

gsk1Ωk1 + g′s∇ · m′. (2.19)

The EY 2 term in Eq. ( 2.17) is the contribution from the ρ ¯gsk(Yk − Ȳk) terms in Eq.
(2.13) and is equal to

EY 2 =
p̄

2

n
∑

k=1

[(

1 +
W

Wk

− skW

R

)

gsk − esk
CvT

+
W

Wk

(

1 +
1

Yk

)]

Y 2
k1

+ p̄

n
∑

k=1

∑

j 6=k

[(

1 +
W

Wk

− skW

R

)

gsj − esj
CvT

+
W

Wj

]

Yk1Yj1

+
ρ

Cv

n
∑

k=1

(gsk − esk) s1Yk1 +

n
∑

k=1

[

(γ − 1)(gsk − esk) +
RT

Wk

]

ρ1Yk1. (2.20)

From Eqs. (2.17)-(2.20), the proposed disturbance energy also satisfies property P2
since its leading order term only depends on first-order quantities. Note also that Eq.
(2.16) simplifies to other, existing acoustic energy conservation equations under the con-
dition of homentropic flow and homogeneous mixture. The energy density Ed2 and flux
W2 terms then become those defined by Cantrell and Hart (1964) for acoustic propa-
gation in a non-stationary medium. Under the zero Mach number flow assumption and
calorific perfection, Eq. (2.16) reduces to the form given in Nicoud and Poinsot (2005).
The last three lines in Eq. (2.19) as well as EY 2 are related to mixture inhomogeneities
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over space. These terms do not seem to have been reported elsewhere and require fur-
ther investigation. Although not negligible, they are not necessary to obtain a reasonable
closure of the disturbance energy budget (see Section 3.2).

2.5. Definite positivity of Ed2

It is not evidenced that Ed2 as defined in Eq. (2.17) is a positive definite quadratic form
(property P3). Even in the case of a homogeneous mixture where all the mass fraction
fluctuations are zero, this property is not clearly established because of the ρ1ū · u1

term (Hanifi et al. 1996). We propose in the following a simple proof that Ed2 is indeed
definite positive in the case of a flow without mass fraction fluctuations (EY 2 = 0) at
small enough mean Mach number. Making use of ρ1/ρ̄ = p1/(γp̄)− s1/Cp, which is true
only at chemical equilibrium, and then rewriting Ed2 in the following matrix form:

Ed2 = F tAF, (2.21)

where F is the reduced first order fluctuation vector F t = [p1/(ρ̄c̄
2) ||u1||/c̄ s1/Cp] and

A is the following matrix:

A =
ρ̄c̄2

2





1 Mn0 · n1 0
Mn0 · n1 1 −Mn0 · n1

0 −Mn0 · n1 1/(γ − 1)



 =
ρ̄c̄2

2
B, (2.22)

where n0 and n1 are ū/||ū|| and u1/||u1|| respectively. Note that B being symmetric,
it admits three real eigenvalues µ1 ≥ µ2 ≥ µ3 and that the eigenvalues of A are then
simply λi = ρ̄c̄2µi/2. Thus Ed2 is positive definite as soon as λ3 > 0, viz. µ3 > 0. From
Eq. (2.22), the characteristic polynomial of B is proportional to

P (µ) = (γ − 1)µ3 − (2γ − 1)µ2 + (γ + 1)µ− (1 − γM2(n0 · n1)
2)

and its roots are such that µ1+µ2+µ3 = (2γ−1)/(γ−1) > 0 and µ1µ2µ3 = (1−γM2(n0 ·
n1)

2)/(γ − 1), which is strictly positive as soon as M < 1/
√
γ ≤ 1/(|n0 · n1|

√
γ). Under

this latter restriction, it follows that the eigenvalues of A are either (a) all positive or (b)
such that µ1 > 0 and µ3 ≤ µ2 < 0. Since γ > 1, it is obvious that the two roots of the
derivative of P (µ), viz. P ′(µ) = 3(γ−1)µ2−2(2γ−1)µ+γ+1, are both strictly positive
so that at least two roots of P (µ) are positive. Thus only the (a) choice is acceptable and
µ3 > 0 as long as M < 1/

√
γ, which is not a restrictive condition in many combusting

flows. In other words, the linearized disturbance energy can be recast under the form:

Ed2 = λ1θ
2
1 + λ2θ

2
2 + λ3θ

2
3,

where the λi’s are all positive and the θi’s are linear combinations of ū · u1, p1, and s1.
Further work is required to investigate whether this P3 property still holds in the case
where mass fraction fluctuations are accounted for (EY 2 6= 0).

3. Numerical Results

3.1. Configuration

The 2-D laminar oscillating flame configuration considered for testing the closure of the
budget of the disturbance energy is adapted from an experiment described in Le Helley
(1994). The burner consists of a ducted premixed propane-air flame that is stabilized
thanks to a perforated plate with multiple holes. For certain operation modes this burner
features small laminar Bunsen tip flames behind each hole and no turbulence effects
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Figure 1. Schematic of the computational domain.

Figure 2. Heat release when the flame is the shortest (most left) and the longest (second on
the left) during the cycle of oscillation. The above illustrates time averaged heat release (first
on the right) and temperature (most right).

are present. We limit our study to this regime. The 2-D planar computational mesh
has been chosen such that chemistry and thermodynamic effects are resolved on the
mesh (50,000 nodes). Chemistry is modeled using a single-step Arrhenius law involving
5 gaseous species. The pre-exponential factor, mass fraction exponent, and activation
temperature are fitted to produce the proper flame speed in the lean regime. The main
characteristics of the computational flow domain are depicted in Fig. 1 (not to scale). The
velocity and temperature are imposed at the inlet while static pressure is prescribed at the
outlet. In both cases partially reflecting characteristic boundary conditions (Kaufmann
et al. 2002; Selle et al. 2004) have been used for numerical stability reasons. For the time
average mass flow rate (4.1x10−3kg.s−1) concerned and at stoichiometric equivalence
ratio, the flame is self-excited at a frequency close to 820 Hz, which corresponds to the
third longitudinal acoustic mode of the combustor including the air feeding line.

The extreme positions of the flame over the cycle are shown in FIg. 2, where the time
averaged temperature and heat release fields in the flame are shown. Recall that the
time averaged solution is the baseline flow and corresponds to no fluctuation and zero
disturbance energy in the present analysis.

The numerical tool used in this section is the unstructured combustion code AVBP de-
veloped at CERFACS (AVBP 2006). AVBP solves the complete Navier-Stokes equations
including chemistry in two and three spatial dimensions. The unstructured approach al-
lows computing not only the combustor but also the whole air feeding line as well as
the exhaust system. This code was selected because it solves the complete compressible
Navier-Stokes equations under a form that is mathematically equivalent to Eqs. (2.3),
(2.4), (2.5), and (2.6). Its ability to reproduce the unsteady behavior of the Le Helley’s
flame has been demonstrated elsewhere (Kaufmann et al. 2002).

3.2. Energy budget

The disturbance energy and all the sources and flux terms in Eq. ( 2.1) have been com-
puted by post-processing 40 fields over two periods of the limit cycle of the flame depicted
in Fig. 2. These quantities have subsequently been integrated over the computational do-
main to obtain

Ed =

∫

Ω

EddΩ W =

∫

S

W · ndS D =

∫

Ω

DdΩ.



Disturbance energy budget 9

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

2.01.51.00.50

Time / Period

P
ow

er
/
P̄

(a)

0.0001

0.001

0.01

0.1

1

2.01.51.00.50.0

Time / Period

E
d
/
P̄

)

(b)

Figure 3. Time evolution of (a) the time derivative of the total disturbance energy
dEd/dt ( ) and spatial terms D − W ( ) and (b) the disturbance energy Ed for
3.4x10−3 < |m| < 4.8x10−3 kg/s. (present flame, ) and 1.1x10−3 < |m| < 1.3x10−3 kg/s
( ).

As shown in Fig. 3a, the global budget dEd/dt = D−W closes nicely when all the terms
are included. Note that the scaling is by the time averaged total heat release of the flame
P̄ =

∫

Ω
q̄dΩ. The net power curve shows a near derivative discontinuity at time t ≈ 0.9T .

It corresponds to the shrinking of the flame front, which quickly creates disturbance
energy. Note that the time sampling shown on Fig. 3 is not the one used for the assessment
of the time derivative of Ed. Fig. 3b depicts the time evolution of the disturbance energy
for the flame of Fig. 2 as well as for a calculation with smaller mean and oscillating mass
flow rate (1.1x10−3 < |m| < 1.3x10−3 kg/s instead of 3.4x10−3 < |m| < 4.8x10−3 kg/s).
In both cases the disturbance energy remains positive (property P4), Ed being larger for
larger oscillating mass flow rate.

Order of magnitude analysis suggests that the viscous stress, thermal diffusion, viscous
dissipation (Dψ) terms are usually small in combustion. The vorticity term (Dξ) should
also be insignificant in most combusting flows although several orders of magnitude larger
than the other small terms (Dψ). This is confirmed by the numerical results from the
2-D oscillating laminar flame, as shown in Fig. 4. Some terms are 1000 times (or more)
smaller than dE/dt (see Fig. 4a) and do not contribute to the global budget. Note that
besides the vorticity and viscous dissipation terms, the boundary terms (W) belong to this
category. This result seems to contradict with the findings of Martin et al. (2004), where
the boundary terms were balancing the first-order Rayleigh term p′ω′

T . The difference
comes from the fact that only the acoustic part of the fluctuating energy was considered
in Martin et al. (2004), while Ed also contains the entropy fluctuations. Although the
boundary terms are still of the same order as p′ω′

T (not shown), they are much smaller
than the first-order term in the total disturbance energy balance, viz. T ′ω′

T . Indeed, the
Rayleigh term is approximately 1.5x10−4 P̄ , while the T ′ω′

T term is roughly 2x10−1 P̄
(see Fig. 5).

Other terms in the energy balance are only a few percent of dEd/dt and only contribute
slightly to the global budget. As shown in Fig. 4b, these terms are the contributions of the
DQ∗ , Dψ∗ , and DYk

terms in Eq. (2.15) and are related to the mixture inhomogeneities
and mass fraction fluctuations. Eventually, the first-order term in the energy balance are
the contributions from DQ and Ds (see Fig. 4c). Since Q = (−∇ · q + φ + ωT )/T is
almost equal to ωT /T − ∇ · q/T , the entropy, heat release, and heat flux terms are the
most important terms in the energy balance. Figure 4d shows that keeping only these
large terms leads to a reasonable closure of the disturbance energy equation.

Figure 5a,b shows the contributions of the different terms in the definition of DQ and
Ds (see Eq. (2.15)). In both cases, all the terms have approximately the same magnitude,
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Figure 4. Time evolution of the volume integrals of (a) the boundary (W, ), Dξ ( )
and Dψ ( ) terms, (b) the DQ∗ ( ), Dψ∗ ( ) and DYk

( ) terms, (c) the
DQ ( ) and Ds ( ) terms. Approximate budget (d) based on the heat release (DQ)
and entropy (Ds) terms only: exact time derivative of the total disturbance energy ( ) and
approximate spatial terms ( )

meaning that no further simplification can be made in the energy budget. Noticeably,
the correlation terms are important and cannot be neglected in the disturbance energy
balance. Recall that these correlation terms arise from the choice of the time averaged so-
lution as the baseline flow. Although it is natural that the definition of the no-fluctuation
state appears in the disturbance energy equation, it seems that the importance of these
correlation terms has not been reported elsewhere. Figure 5c also shows that only the
heat release and heat flux terms contribute in the T ′Q′ term, the viscous dissipation
based term being negligible. The heat release term can be further split in three terms by
using the identity

+T ′
(ωT
T

)′

= T ′ω
′
T

T
+ ω̄TT

′

[

1

T
−
(

1

T

)

]

− T ′

(

ω′
T

(

1

T

)′
)

,

where the three contributions on the RHS have similar amplitude as shown in Fig. 5d.
Note however that the time average of T ′ω′

T (1/T )′ is zero so that this term does not
contribute to the (in)stability of the flow. The first term in this decomposition, viz.
T ′ω′

T /T , is a source term. Note that assuming small amplitude fluctuations, this term
becomes T1ωT1/T̄ , the corrected Rayleigh term of Nicoud and Poinsot (2005). The second
term in the decomposition of T ′(ωT /T )′ is proportional to ω̄T and can be linearized as
−ω̄T (T1/T̄ )2 for small amplitude fluctuations, indicating that this term tends to dissipate
disturbance energy. Figure 5d indeed shows that the ω̄T term is a sink term in which
amplitude is comparable to the corrected Rayleigh source term so that the heat flux term
eventually contributes more than the heat release terms (Fig. 5c). Note that under the
zero Mach number assumption used by Nicoud and Poinsot (2005), the time averaged
heat release ω̄T is null and only the positive contribution of T ′(ωT /T )′, viz. T1ωT1/T̄ , is
present. This is another output of the present analysis that non-zero Mach number terms
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Figure 5. Time evolution of the volume integrals of (a) the terms in DQ, viz. T ′Q′ ( )

and T ′Q′ ( ) and (b) the terms in Ds, viz. −m
′ · s′∇T̄ ( ), s′m̄ · ∇T ′ ( ),

−m′s′ · ∇T ( ) and −m · T ′∇s′ ( ), (c) the terms in T ′Q′, viz. T ′(ωT /T )′ ( ),
−T ′(∇·q/T )′ ( ) and T ′(φ/T )′ ( ), (d) the terms in T ′(ωT /T )′, viz. T ′ω′

T /T ( ),

ω̄T T ′(1/T − 1/T ) ( ) and −T ′ω′

T (1/T )′ ( )

can have a significant contribution in the energy balance, even though the mean Mach
number is very small (of order 3x10−2 for the flame considered).

The production terms for the disturbance energy equation are related to entropy as
shown in Fig. 5b. In the low Mach number limit, ∇p̄ = 0 and ∇T̄ ∝ ∇s̄ so that the
−m′ · s′∇T̄ term is proportional to the classical production term −m′ · s′∇s̄ for scalars.
Assuming that acoustic fluctuations are negligible in the reaction zone, one obtains that
s′ ∝ T ′ so that the s′m̄ · ∇T ′ term in Ds is proportional to m̄ · ∇(s′2), which is most
likely positive since m̄ is from the fresh to the burnt gas and the entropy fluctuations are
generated in the flame region. This is indeed also confirmed by Fig. 5b. The remaining
entropy terms are based on time averaged correlations and require further investigation.

4. Conclusions

The exact transport equation derived for the disturbance energy from the basic gov-
erning equations for a combusting gaseous mixture can be used for generating the most
general stability criterion if Ed2 is indeed positive definite. Although the positive definite-
ness of Ed2 has only been shown analytically in cases where mass fraction fluctuations
can be neglected, the numerical results obtained for a 2-D laminar flame suggest that it
might hold also in the case of large amplitude fluctuations and variable mass fractions.
Moreover, the numerical results suggest that the time evolution of the global fluctuating
energy is mostly governed by the heat release, heat flux, and entropy source terms, the
contribution arising from the mixture changes over space and time being the largest of
the negligible terms. Previous classical energy forms for homentropic flows are recovered
as special cases of the fluctuating energy defined in this study. It is also shown that the
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terms proportional to the mean Mach number can be significant even if the baseline flow
speed is very small (M = 3x10−2 in the present study).
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Abstract

This paper presents an analysis of the energy transported by disturbances in gaseous

combustion. It builds upon the previous work of Myers [J. Fluid Mech. 226 (1991)

383–400] by including species and heat release terms, thus extending Myers’ exact

and linearised ‘energy corollaries’ to gaseous combustion.

These energy corollaries identify additional energy density, flux and source terms,

and generalise the recent work of Nicoud and Poinsot [Combust. Flame 142 (2005)

153–159] to include non-zero mean flow quantities, small or large amplitude distur-

bances, varying specific heats and chemical non-equilibrium. The source terms are

significantly different to that stated in the Rayleigh criterion in several ways, even
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for linear disturbances in a non-diffusive flow. An order of magnitude analysis then

suggests that linear arguments of energy transport by disturbances are unlikely to

apply in turbulent combusting flows in particular. Finally, a linear stability criterion

is proposed for laminar combusting gases.

Key words: disturbance energy, combustion stability, thermoacoustic instability,

Rayleigh criterion

1 Introduction

Combustion stability has received sustained attention in both the academic

and industrial communities over the last fifty years in particular. During this

time, the literature on this problem has grown enormously, and now spans

numerous applications including rockets [1,2], afterburners [3], gas turbines

[4,5] and industrial burners [6]. The sustained research on this problem is

primarily because manufacturers still rely heavily on in situ testing and tuning

of the complete, operating device to avoid instability. In the author’s view, this

continued reliance on testing has several causes, including incompleteness in

our fundamental understanding of the problem, as argued recently by Nicoud

and Poinsot [7].

The ‘Rayleigh criterion’ is the most common argument for explaining combus-

tion stability. Whilst Rayleigh himself only first stated this criterion in prose

form [8], it is usually written mathematically as

Email address: mjbrear@unimelb.edu.au (M. J. Brear).
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∫∫∫
V
p′ω′ > L, (1)

where p′(Pa), ω′(W/m3), L and V (m3) are harmonic disturbances in the static

pressure and heat release rate at a point in space, the ‘losses’ from the combus-

tor and the combustor volume respectively. The overbar () denotes the time

average over one cycle. This criterion states that the combustor is unstable

when the relative phase of the pressure and heat release disturbances over the

combustor volume are such that the integral is larger than the (at present

unspecified) losses.

Despite the Rayleigh criterion having its origin well over a century ago, a re-

cent paper by Nicoud and Poinsot [7] suggested that it still at the very least

unclear under what conditions this criterion can be derived from the equations

governing combusting fluid motion. The earlier works of Chu [9,10], Bloxsidge

et al. [3], and Dowling [11] attempted to show precisely this, using progres-

sively more general definitions of acoustic or disturbance energies that have

appeared over the last fifty or so years. These works illustrate that deriving

the Rayleigh criterion from the governing equations first requires a valid con-

servation equation for the energy contained in the disturbances, whether these

disturbances are considered ‘acoustic’ or otherwise.

In combusting flows, any equation stating disturbance energy conservation

must start from equations of motion that at least include non-zero mean flow

quantities and entropy variation. To ignore either the mean flow or entropy

variation causes conceptual problems, as is discussed later in this paper. It

appears that only the energies defined by Morfey [12] and Myers [13] do this.

Viscous dissipation and heat conduction, whilst included in these works, are
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not essential to the problem.

Dowling’s [11] derivation of an acoustic energy conservation equation for com-

busting flows extended Morfey’s [12] approach for non-combusting flows. Mor-

fey considered a viscous, heat conducting fluid, and first split the disturbance

velocity field into irrotational and solenoidal components which were defined

as the acoustic and unsteady vortical motions respectively. He then applied

the definitions of acoustic energy density and flux proposed by Cantrell and

Hart [14] for inviscid, non heat conducting flows to his acoustic field. Any

resulting entropy disturbances in Morfey’s analysis were then shifted into the

source term. However, the definition of all irrotational velocity disturbances

as ‘acoustic’ is problematic in combusting flows which feature significant ir-

rotational velocity disturbances due to heat addition. These disturbances can

also be expressed as entropy disturbances and are therefore convective rather

than acoustic [15].

The earlier approach of Bloxsidge et al. [3] was also based on Morfey’s [12]

analysis. However, Bloxsidge et al. did not separate the disturbance velocity

field into irrotational and solenoidal components, but presented a one dimen-

sional analysis. Once again, entropy disturbances were considered as part of a

relatively complex source term.

Myers [13] took a different approach in deriving a disturbance energy conser-

vation equation. He allowed entropy disturbances to remain in both the energy

density and flux terms, and did not split the velocity field. Myers’ equation

was consistent with those developed earlier by Chu [10] and Pierce [16] for zero

mean flow. However, because the energy density and flux terms contained en-

tropy disturbances, the resulting energies are not ‘acoustic’ and are properly
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called a ‘disturbance energy’ [10,13].

Nicoud and Poinsot [7] used Chu’s [10] fluctuating energy equation, and ar-

gued that the Rayleigh criterion is an incomplete description of the significant

sources of ‘fluctuating’ energy in combustion. A source term proportional to

T ′ω′ was found where T ′ is the static temperature disturbance. This term

is analogous but significantly different to the ’Rayleigh term’ in equation

1. Entropy disturbances through the flame were also argued to be a signif-

icant source of disturbance energy, but Nicoud and Poinsot’s formulation was

conceptually problematic because they assumed zero mean flow quantities.

Bloxsidge et al. [3] and Dowling [11] also showed that terms other than the

Rayleigh term existed for their differently defined acoustic energy equation,

but both argued that these terms were small in practice.

This difference of opinion on such a fundamental and practically important

problem needs resolving. This can be achieved by first generalising Nicoud and

Poinsot’s results to include mean flow quantities, as this paper does. Later

numerical and experimental studies can then determine the magnitudes of all

the identified source terms.

A further, fundamental issue in these cited studies concerns the use of lin-

earised equations of motion. This may be acceptable for determining linear

stability and for classical acoustics, but it is questionable within flames where

temperature, entropy and velocity disturbances in particular can be large.

Indeed, nonlinear effects are already known to be significant in the acoustic

energy analysis of solid rocket combustion [1,2]. Since Myers [13] presented

both exact and linearised disturbance energy equations, comparison of the

two will determine the applicability of the linearised equations on a given
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combustor.

Myers’ [13] exact energy equation also justifies the inclusion of entropy dis-

turbances in the energy density and flux terms. Large entropy or pressure

disturbances can be accompanied by convectively and sonically travelling dis-

turbances in the pressure and entropy fields respectively [15]. Thus, a useful

disturbance energy should incorporate pressure, velocity and entropy distur-

bances for nonlinear studies. Myers’ linearised disturbance energy density and

flux terms can then be viewed as formulations that are consistent with those

required for nonlinear studies.

This paper supports Nicoud and Poinsot’s [7] questioning of the validity of the

Rayleigh criterion in common combusting flows. It draws on Myers’ [13] exact

and linearised energy corollaries, and generalises Nicoud and Poinsot’s results

by removing a conceptual difficulty of their analysis and also presenting a

complete definition of exact and linearised disturbance energy density, flux and

source terms for combusting flows. It is then shown that the Rayleigh criterion

can only be derived from the equations of combusting fluid motion under

assumptions that are inappropriate for turbulent combustion in particular,

and most likely gaseous combustion in general.

2 Results and discussion

2.1 Governing equations

Myers [13] commenced his derivation of the exact disturbance energy conser-

vation equation from statements of mass conservation, momentum transport,
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energy conservation and entropy transport. Transport of (n − 1) species is

added in the present analysis which, together with mass conservation, guar-

antees conservation of the nth species. Appendix A derives these equations for

a combusting gas with body forces absent,

∂ρ

∂t
+ ∇.m= 0, (2)

n−1∑
k=1

[
∂ρYk
∂t

+ ∇.(mYk) =ωk −∇.(ρVkYk)], (3)

∂u

∂t
+ ζ + ∇H − T∇s=ψ +ψ∗, (4)

∂

∂t
(ρH − p) + ∇.(mH)−m.ψ=TQ, (5)

∂ρs

∂t
+ ∇.(ms) =Q+Q∗, (6)

In equations 2 to 6, ρ (kg/m3) is the density, u (m/s) is the velocity vector,

m = ρu is the mass flux vector, Yk, ωk and Vk are the mass fraction, reaction

rate and diffusion velocity of species k, ξ (1/s) = ∇×u is the vorticity and ζ =

ξ×u, H (J/kg) is the sensible stagnation enthalpy, T (K) is the temperature,

s (J/kgK) is the entropy,ψ is such that ψij = (1/ρ)(∂τij/∂xi) where τij (Pa) is

the ijth component of the viscous stress tensor, ψ∗ =
∑n−1
k=1 gk∇Yk where gk is

the sensible Gibbs free energy of the kth species, TQ is directly proportional to

the combustion heat release ω and also contains thermal and species diffusion

terms and the viscous dissipation. All of these terms are defined in Appendix

A.

Equations 2 to 6 have steady solution,
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∇.m0 = 0, (7)
n−1∑
k=1

[∇.(m0Yk0) =ωk0 −∇.(ρ0Vk0Yk0)], (8)

ζ0 + ∇H0 − T0∇s0 =ψ0 +ψ0
∗, (9)

∇.(m0H0)−m0.ψ0 =T0Q0, (10)

∇.(m0s0) =Q0 +Q∗
0. (11)

Rather than the steady equations 7 to 11, the time average of an unsteady

flow can also be chosen as the base flow. The resulting energy corollaries are

more complex and more useful for post-processing experimental and numerical

data, but do not add significant insight to the problem at hand.

2.1.1 Extending Myers’ [13] exact disturbance energy equation to gaseous

combustion

Equations 2, 3 and 6 can be multiplied by (H0 − T0s0 − g0), gk0 and T0 re-

spectively and added to the scalar product of equation 4 and m0. This sum is

subtracted from equation 5 and, after considerable algebra that utilises equa-

tions 7 to 11, results in an exact conservation equation for a ‘disturbance

energy’ of the form

∂E

∂t
+ ∇.W = D. (12)

In equation 12, the disturbance energy density E (J/m3) and W (W/m2) flux

vector terms are respectively

E = ρ(H ′ − T0s
′)−m0.u

′ − p′ − ρ
n−1∑
k=1

gk0Y
′
k , (13)
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and

W = m′(H ′ − T0s
′) + m0T

′s′, (14)

where disturbances defined as ()′ = ()− ()0 have been used. The exact source

term D (W/m3) is

D = Dξ +Ds +DQ +DQ∗ +Dψ +Dψ∗ +DYk , (15)

where

Dξ =−m′.[ξ × u− ξ0 × u0],

Ds =−m′.s′∇T0 + s′m0.∇T ′,

DQ =T ′Q′,

DQ∗ =T ′Q∗′,

Dψ =m′.ψ′,

Dψ∗ =m′.ψ∗′,

DYk = g′∇.m′ +
n−1∑
k=1

g′kΩ
′
k,

and Ωk = ωk −∇.(ρVkYk)−∇.(mYk).

Order of magnitude analysis discussed later in subsection 2.2 suggests that

the vorticity term Dξ should be insignificant in most combusting flows, but it

is retained nonetheless. Neglecting viscous stress, viscous dissipation, thermal

diffusion and species diffusion terms, several terms in equation 15 can also be

simplified to

Q =
ω

T
, Q∗ = −

n−1∑
k=1

gkωk/T, ψ = 0, (16)
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with the other terms defined as above.

2.1.2 The linearised disturbance energy equation for equilibrium chemistry

Previous studies of acoustic or disturbance energy transport in combustion

usually make the assumption of equilibrium chemistry (e.g. [3], [9], [11], [1],

[7]). In this case species transport can be ignored, simplifying equation 12

and its linear equivalent. In particular, the mass fraction disturbances Y ′
k in

equation 13 and the terms DQ∗ , Dψ∗ and DYk in equation 15 are all zero.

Disturbances of the form ()′ = () − ()0 are substituted into the exact equa-

tion 12, and only the lowest order terms are retained. In keeping with the

other studies of disturbance energy in isentropic and homentropic flows, e.g.

[12,14,16], the remaining terms are all of second order in the disturbances. Re-

tention of all second order terms in the exact flux vector and source terms re-

sults in a rather complex disturbance energy equation, where much of the com-

plexity is contained in viscous stress, dissipation and heat conduction terms.

Ignoring these terms results in the following linearised disturbance energy

equation,

∂E2

∂t
+ ∇.W2 = D2, (17)

where the linearised disturbance energy density E2, flux vector W2 and source

D2 terms are
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E2 =
p′2

2ρ0c20
+

1

2
ρ0u

′2 + ρ′u0.u
′ +

ρ0T0s
′2

2cp0
, (18)

W2 = (p′ + ρ0u0.u
′)

(
u′ +

ρ′

ρ0

u0

)
+ m0T

′s′, (19)

and

D2 = ρ0u0.(ξ
′ × u′) + ρ′u′.(ξ0 × u0) (20)

− s′m′.(∇T0) + s′m0.(∇T ′)

+

(
ω′T ′

T0

− ω0T
′2

T 2
0

)
.

It is noted that the equilibrium results (H ′ − T0s
′) = p′/ρ0 + u0.u

′ and p′ =

c20ρ0s
′/cp0 + c20ρ

′ have been used to derive equations 18 and 19.

As discussed later, the vorticity terms in equation 20 may be small in some

cases, permitting further simplification. Equation 17 simplifies to other, exist-

ing acoustic energy conservation equations under the condition of homentropic

flow. The energy density E2 and flux W2 terms then become those defined by

Cantrell and Hart [14] for acoustic propagation in a non-stationary medium.

In this case only the vorticity source terms remain and represent the acoustic

energy generated by unsteady vortical flow if it is assumed that sound features

irrotational velocity disturbances [11].

2.1.3 Comparison with Nicoud and Poinsot’s [7] disturbance energy equation

The recent work of Nicoud and Poinsot [7] derived a linearised equation for

the disturbance energy in a combusting flow, but made the significant simpli-

fication that all mean flow quantities were zero. Their equations bear a close

resemblance to those of Myers [13], but were derived independently from the
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Table 1

Myers’ [13], ‘Extended Myers’ (EM)’ and Nicoud and Poinsot’s (NP) [7] definitions

of the linearised energy density E2, flux vector W2 and source term D2.

Myers E2= p′2

2ρ0c20
+1

2ρ0u
′2+ρ′u0.u′+ρ0T0s′2

2cp0

NP E2= p′2

2ρ0c20
+1

2ρ0u
′2+ 0 +ρ0T0s′2

2cp

Myers W2=(p′ + ρ0u0.u′)(u′ + ρ′

ρ0
u0)+m0T ′s′+ terms in τij , φ and q

NP W2=p′u′ + 0 + 0

EM D2=−s′m′.(∇T0) +s′m0.(∇T ′)+ω′T ′

T0
–ω0T ′2

T 2
0

+ terms in τij , φ and q

NP D2=− p0
Rcp

s′u′.(∇s0)+ 0 +ω′T ′

T0
– 0 + terms in τij , φ and q

earlier work of Chu [10]. Table 1 summarises the equations found in both

works, with vorticity terms ignored. It can be seen that the difference between

the linearised energy density and flux terms arises primarily due to Nicoud

and Poinsot’s assumption of zero mean flow quantities. Table 1 shows an-

other, less significant difference in the last term in the energy density. Nicoud

and Poinsot assumed calorific perfection, hence their use of cp. Myers did not

assume this, and so linearised disturbances in entropy properly include the

specific heat of the mean state cp0.

Table 1 also highlights a conceptual problem with Nicoud and Poinsot’s [7]

formulation. Equation 6 showed that entropy disturbances convect with the

flow. Thus, to make the assumption of zero mean flow means that there can be

no flux of entropy in or out of the domain when thermal and viscous diffusion

are ignored, as Nicoud and Poinsot’s flux term in table 1 shows. This then

means that a bounded steady state value of the disturbance energy density

E2 can only be achieved by disturbances in heat addition ω′ around a zero
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steady state ω0 = 0, i.e. some part of the disturbance is cooling the flow.

This highlights the inadequacy of the assumption of zero mean flow, some-

thing discussed in some detail by Chu [10]. By permitting non-zero mean flow

quantities, Myers [13] allows flux of entropy disturbances in and out of the do-

main, and so avoids this problem. Myers’ formulation can then accommodate

a positive mean heat release rate ω0 around which steady state disturbances

ω′ can occur without ever cooling the domain. This is a correct formulation

for combustion.

Table 1 summarises the source terms of ‘extended Myers’ as well as Nicoud

and Poinsot [7] for the terms expected to be significant in most combust-

ing flows. The phrase ‘extended Myers’ is applied to the disturbance energy

source term with the terms added to account for combustion ω0, ω
′. Nicoud

and Poinsot’s source term −p0s
′u′.(∇s0)/(Rcp) becomes −ρ0s

′u′.(∇T0) un-

der their assumptions of zero mean flow, calorific perfection and ideal gas

behaviour, since then ∇s0 = cp∇T0/T0. Myers’ formulation contains added

source terms due to entropy disturbances, −ρ′s′u0.(∇T0) (part of the first

term) and s′m0.(∇T ′), both of which contain non-zero mean flow quantities

and which are later argued to have significant magnitude. It is interesting

to note that the terms containing entropy disturbances may interfere either

constructively or destructively, so care must be taken in understanding their

individual and combined effects.

Nicoud and Poinsot’s [7] assumption of zero mean flow also means that they

could not have obtained the vorticity terms in equation 20. Of course, table

1 also contains source terms involving heat addition. The extended Myers as

well as Nicoud and Poinsot formulations both contain a term ω′T ′/T0. The

significance of this is discussed later in section 2.3.
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Table 1 also shows that the extended Myers source term contains a term

ω0T
′2/T 2

0 . This term is expected to have significant magnitude and is always

positive and so stabilising. As with the entropy terms above, destructive inter-

ference with the term ω′T ′/T0 could occur. Once again, Nicoud and Poinsot

[7] did not find this term because of their assumption of zero mean flow quan-

tities, and the present authors have not seen any other work in the literature

that puts forward an analogous term.

2.1.4 The linearised disturbance energy equation for non-equilibrium chem-

istry

In the exact analysis above, g0 and gk0 multiplied by equations 2 and 3 respec-

tively are additional to Myers [13] original approach, and allow derivation of an

exact disturbance energy equation for non-equilibrium flows that is entirely of

second order in the disturbances if a steady base flow is considered. Linearisa-

tion of the exact equation 12 nonetheless becomes substantially more complex

for a non-equilibrium flow with n species since there are now (n+ 1) indepen-

dent variables in which to expand the exact equation. The exact source term

15 is already second order in the disturbances, and so can be easily written

neglecting the vorticity (later argued to be small), viscous stress, dissipation

and heat conduction terms as
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D2 = ρ0u0.(ξ
′ × u′) + ρ′u′.(ξ0 × u0) (21)

− s′m′.(∇T0) + s′m0.(∇T ′)

+

(
ω′T ′

T0

− ω0T
′2

T 2
0

)

− T ′

T0

n−1∑
k=1

(gk0ω
′
k + g′kωk0)

+m′.[
n−1∑
k=1

(g′k∇Yk0 + gk0∇Y ′
k)]

+ g′∇.m′ +
n−1∑
k=1

g′k[ω
′
k −∇.(m0Y

′
k + m′Yk0)].

Linearisation of the flux vector is also relatively straightforward. Making use

of Gibbs equation in terms of the enthalpy of the mixture,

dh = Tds+
1

ρ
dp+

n−1∑
k=1

gkdYk,

the flux vector is

W2 =m′(H ′ − T0s
′) + m0T

′s′,

=

(
p′ + ρ0

n−1∑
k=1

gk0Y
′
k + ρ0u0.u

′
)(

u′ +
ρ′

ρ0

u0

)
+ m0T

′s′, (22)

where the term containing Y ′
k can be considered the flux of energy associated

with mass fraction disturbances.

The approach to the linearised energy density term is in keeping with the

approach of Myers [13], where expansion in the sensible entropy and density

is used, with a further (n − 1) mass fractions Yk added. Appendix B derives

the energy density
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E2 =
p′2

2ρ0c20
+

1

2
ρ0u

′2 + ρ′u0.u
′ +

ρ0T0s
′2

2cp0
(23)

− p′

ρ0c20

(n−1)∑
k=1

[ρ0RT0

Wk0

+
p0

cv0T0

(gk0 − ek0)
]
Y ′
k ,

+
1

2ρ0c20

(n−1)∑
j=1

(n−1)∑
k=1

[ρ0RT0

Wj0

+
p0

cv0T0

(gj0 − ej0)
][ρ0RT0

Wk0

+
p0

cv0T0

(gk0 − ek0)
]
Y ′
jY

′
k ,

+
(n−1)∑
j=1

(n−1)∑
k=1

ρ0

cv0

(
cpj0 − cvj0 +

R

Wj0

− sj0
)[

(gj0 − ej0) +
R

Yj0Wj0

]
Y ′
j 6=kY

′
k ,

+
(n−1)∑
k=1

ρ0

2cv0

(
cpk0 − cvk0 +

R

Wk0

− sk0
)[

(gk0 − ek0) +
R

Yk0Wk0

]
Y ′2
k ,

+
(n−1)∑
k=1

[RT0

Wk0

+ (γ0 − 1)(gk0 − ek0)
]
ρ′Y ′

k ,

+
(n−1)∑
k=1

ρ0

cv0
(gk0 − ek0)s

′Y ′
k .

As required, equation 23 reduces to the disturbance energy density proposed

by Myers [13] for a gas containing one species. Nonetheless, the terms involv-

ing mass fraction disturbances are very complex and are not clearly positive

definite. It is therefore difficult to see how such an expression can provide

physical insight, even if they have significant magnitude.

2.2 Order of magnitude analysis for chemical equilibrium

The order of magnitude of each source term in the linearised disturbance

energy equation 20 can be estimated using several assumptions and basic

reasoning. First, the flow is assumed to be of low Mach number such that s′ ∼

cp0ln(T ′/T0+1) and ρ′/ρ0 ∼ T ′/T0. The mean heat release is ω0 ∼ ρ0u0cp0T
′/l0

from the mean energy equation, where l0 (m) is a mean flow lengthscale and

the temperature disturbance is assumed to scale with the mean temperature
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change over the flame. It is also reasoned that the fluctuating heat release

should be ω′ ∼ ω0 by the hydrodynamic motion of the flame.

Denoting turbulent fluctuations by velocity ut and length lt scales and the

flame thickness by lf results in the following scalings for the most significant

terms in equation 20;

D2ξ ∼
ρ0u

3
0

l0

ut
u0

( l0
lt

ut
u0

+
T ′

T0

)
,

D2s∼
cp0ρ0u0T0

l0

T ′

T0

ln
(T ′

T0

+ 1
)[(ut

u0

+
T ′

T0

)
+
l0
lf

]
,

D2Q∼
cp0ρ0u0T0

l0

(T ′

T0

)2(
1 +

T ′

T0

)
.

Several results from these scalings are noteworthy. First, the term l0/lf in D2s

arises from the ∇T ′ term in equation 20 because the disturbance temperature

gradient should scale with the flame thickness. If this is the case and the

disturbances are favourably phased, this term dominates the other term in

D2s which is proportional to ∇T0. Second, the term T ′/T0 in D2Q arises from

the ω0T
′2/T 2

0 term in equation 20. Surprisingly, given favourable phasing once

again, this new term should dominate the term ω′T ′/T0 found by Nicoud and

Poinsot [7] and which was earlier argued to be analogous to the traditional

Rayleigh term.

Using estimates for all quantities suggests that D2s should be at most an

order of magnitude larger than D2Q. This supports Nicoud and Poinsot’s [7]

argument that entropy disturbances should significantly affect combustion sta-

bility, although in the present case this is due to the term s′m0.(∇T ′) in equa-

tion 20, which Nicoud and Poinsot did not find. Clearly, such uncertainty can

only be resolved by experimental and numerical validation. Further, D2ξ is ex-
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pected to be several orders of magnitude smaller than D2Q, and so should be

ignored in most cases. This clearly distinguishes the fundamental mechanisms

involved in combustion stability and combustion generated noise from those

in aerodynamically generated sound [17].

The anticipated large amplitude disturbances T ′/T0 and ω′/ω0 also suggest

that the linearised disturbance energy equation (equation 17) may not close

on a typical flames. The term DQ in equation 15 does not have finite order

in the disturbances, unlike Ds which is of second order exactly. Whilst this

must be investigated further, if it is true, then the utility of linear studies of

combustion stability is limited.

Further, whilst order of magnitude analysis of the terms associated with chem-

ical non-equilibrium in equation 21 is more complex, these terms look to be

significant. Closure of these equations on various test cases will determine this

conclusively.

2.3 Towards a general stability criterion for gaseous combustion

The equations presented earlier featured several significant terms not found

in the Rayleigh criterion. First, the ‘extended Myers’ source term, like that of

Nicoud and Poinsot [7], contains a term ω′T ′/T0 (table 1). Nicoud and Poinsot

correctly argue that this term is analogous but not equivalent to the traditional

‘Rayleigh term’ ω′p′ in equation 1. For example, a calorifically perfect, inviscid,

and non-heat conducting flow can feature linearised temperature disturbances

that contain both acoustic and convective (due to entropy disturbances) terms

[15]. It is only the first of these terms that couples with the linearised pressure
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disturbance such that T ′ = p′/(cp0ρ0) iff s′ = 0.

This calls into question whether the ‘Rayleigh term’ ω′p′ should appear at all

in a stability criterion of combusting flows. The temperature disturbances in a

turbulent flame are strongly dependent on hydrodynamic motion. In this case

the temperature and heat release disturbances should be strongly correlated,

causing significant ω′T ′/T0 even though ω′p′ could be small.

Equations 15 and 20 also contained apparently significant source terms con-

taining entropy fluctuations and a previously unreported term that was pro-

portional to the mean heat release. This is further strong evidence against the

completeness of a combustion stability criterion that features only the tradi-

tional Rayleigh term ω′p′ as a source term. Indeed, this paper formally shows

that ignoring viscous and diffusive effects, the Rayleigh term is only exact for

linear disturbances in a stationary and homentropic mean flow at chemical

equilibrium.

This paper therefore supports Nicoud and Poinsot’s [7] argument for a new

combustion stability criterion. However, it has also been argued that nonlin-

earity is expected to be significant in most combusting flows, especially in the

heat release terms, meaning that an appropriate equation on which to base

this criterion may be equation 12. Application of Gauss’ theorem shows that

∂E/∂t > 0 when

∫∫∫
V
D dV >

∫∫
A
W.dA, (24)

where V (m3) and A(m2) are the volume and surface area vector of the combus-

tion chamber and the chamber surface outward normal respectively. However,
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E is not positive definite, and so such a criterion has no clear physical mean-

ing. In cases where nonlinearity can be ignored, such as perhaps the stability of

some laminar flames, this problem can be avoided; terms that are not positive

definite in equation 23 can simply be moved to the source term. It remains to

be seen whether such an approach is useful in practice.

2.4 Combustion stability and thermoacoustic stability

Because the proposed disturbance energy densities contain entropy and species

disturbances, a general stability criterion based on these equations cannot

be considered ‘thermoacoustic’ even in the linear limit. This paper therefore

deliberately discusses ‘combustion stability’ in which instability may feature

growth of any or all of the pressure, velocity, entropy or species disturbances. It

is conceivable, for example, that this form of combustion instability results in

increased turbulence within the combustor but little change in the acoustics.

Whether this form of unstable combustion is also thermoacoustically unstable

can only be determined by further analysis based on an acceptable definition

of acoustic energy for (usually nonlinear) combusting flows. As argued in the

Introduction, derivation of such an energy is an outstanding problem.

3 Conclusions

An analysis of the energy transported the disturbances in gaseous combustion

has been presented. This built upon the previous work of Myers [J. Fluid Mech.

226 (1991) 383–400], who derived exact and linearised conservation equations

for a ‘disturbance energy’ in a viscous, rotational and heat conducting fluid
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with varying entropy and specific heats but without combustion. This paper

added to Myers’ results by including species and chemical reaction, and so

derived exact and linearised equations describing the transport of disturbance

energy in gaseous combustion. In particular:

(1) Simplification of the general, linearised disturbance energy equation re-

covered the equation of Nicoud and Poinsot [Combust. Flame 142 (2005)

153–159]. By including a non-zero mean flow, the presented equations

resolved conceptual problems of Nicoud and Poinsot’s formulation in

combusting flows, and provided several additional terms in a complete

disturbance energy conservation equation.

(2) An order of magnitude analysis supported Nicoud and Poinsot’s claim

that source terms containing entropy disturbances are significant, and

could even be the main source of disturbance energy in combusting flows.

This in turn suggested a new criterion for combustion stability, with the

newly identified terms rendering a linear criterion complete.

(3) Terms that are analogous to the traditional ‘Rayleigh term’ were pre-

sented. When linearised, a new term proportional to the mean heat re-

lease was found and which does not appear to have been previously iden-

tified. The proposed linear combustion stability criterion only became the

Rayleigh criterion if all mean flow quantities were zero and the flow was

homentropic. These conditions are likely to be poor approximations in

turbulent combustion in particular.

(4) When post-processing data, the difference between the exact, simplified

and linearised disturbance energy equations on a given flame or com-

bustion chamber allows objective evaluation of the relative importance

of all terms. Nonlinearity in particular is expected to be significant in

21



most cases, and this may limit the utility of linear stability arguments on

practical combustors.
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A Equations of motion

The following equations of motion ignore body forces. The momentum equa-

tion can be derived from the more common form,

∂uj
∂t

+ ui
∂uj
∂xi

+
1

ρ

∂p

∂xj
=
∂τij
∂xi

,

where ui (m/s) is the component of the velocity vector u in direction xi,

ρ (kg/m3) is the density, p (Pa) is the static pressure and τij (Pa) is the ijth

component of the viscous stress tensor. It is first noted that the convective

acceleration can be written as

ui
∂uj
∂xi

= ∇(
1

2
|u|2) + ξ × u,

where ξ (1/s) = ∇×u is the vorticity. Gibbs’ equation for a reacting mixture

of n species can be written as
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de = Tds− pd(
1

ρ
) +

n−1∑
k=1

gkdYk,

where e (J/kg) is the internal energy, s (J/kgK) is the entropy whilst gk (J/kg)

and Yk are the Gibbs free energy and mass fraction of the kth species. It is

noted that gk is equal to the chemical potential µk of that species [18]. Gibbs’

equation and the definition of the enthalpy h = e + p/ρ, can be combined to

show that

∇p
ρ

= ∇h− T∇s−
n−1∑
k=1

gk∇Yk.

Combined with the momentum equation and the vector form of the convective

acceleration above, this results in a modified form of Crocco’s theorem for an

unsteady, viscous and combusting gas,

∂u

∂t
+ ζ + ∇H − T∇s = ψ +ψ∗, (A.1)

where ζ = ξ×u, ψ = 1
ρ

∂τij
∂xi

and ψ∗ =
∑(n−1)
k=1 ngk∇Yk. It is relatively straight

forward algebraically to show that the enthalpy, entropy and Gibb’s free energy

in this equation can be considered as either sensible or total quantities.

The energy equation can be written [5]

∂

∂t
(ρH − p) + ∇.(mH)−m.ψ = TQ, (A.2)

where m = ρu is the mass flux vector, H (J/kg) is the sensible stagnation

enthalpy and T (K) is the static temperature. Q includes the thermal and
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species diffusion flux vector q (W/m2), viscous dissipation φ (W/m3) and

combustion heat release ω (W/m3) terms. Assuming Fourier’s law of conduc-

tion with thermal conductivity λ (W/mK), Q can be written as

Q =
1

T
(∇.q + φ+ ω),

where

∇.q=−∇.(λ∇T ) + ρ
∂

∂xi

n∑
i=1

hkYkVk,i,

φ= τij
∂uj
∂xi

,

ω=−
n∑
i=1

∆h0
f,kωk.

The entropy transport equation also starts with Gibbs’ equation above, now

written with the substantial derivative,

ρT
Ds

Dt
= ρ

De

Dt
− p

ρ

Dρ

Dt
− ρ

n−1∑
k=1

gk
DYk
Dt

.

Here, the first term on the right hand side is the energy equation in terms of

the internal energy. The second term can be shown to be equal to −p(∇.u).

Application of the species transport equation to the last term then finally

yields the sensible entropy transport equation

D(ρs)

Dt
= Q+Q∗, (A.3)

where
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Q∗ = −
n−1∑
k=1

gkωk +
n−1∑
k=1

gk
∂ρVk,iYk
∂xi

and gk is the sensible Gibbs free energy of the kth species. All the equations

required for extending Myers’ [13] to gaseous combustion are now in an ap-

propriate form.

B The linearised energy density for non-equilibrium chemistry

Equation 13 states the exact energy density,

E= ρ[H ′ − T0s
′]−m0.u

′ − p′ − ρ
n−1∑
k=1

gk0Y
′
k , (B.1)

= ρe+
1

2
ρu.u− ρe0 −

ρ

ρ0

p0 −
1

2
ρu0.u0 − ρT0s

′ −m0.u
′ − p0

−ρ
n−1∑
k=1

gk0Y
′
k ,

where e (J/kg) is the sensible internal energy. The term ρe is then expanded

as a (n+1) dimensional Taylor series in ρ′, s′ and Y ′
1 . . . Y

′
n−1 to second order,

ρe= ρ0e0 +
(∂ρe
∂ρ

)
0
ρ′ +

(∂ρe
∂s

)
0
s′ +

n−1∑
k=1

(∂ρe
∂Yk

)
0
Y ′
k (B.2)

+
(∂2ρe

∂ρ2

)
0

ρ′2

2
+
(∂2ρe

∂s2

)
0

s′2

2
+

n−1∑
k=1

(∂2ρe

∂Y 2
k

)
0

Y ′2
k

2
+
( ∂2ρe

∂ρ∂s

)
0
ρ′s′

+
n−1∑
k=1

[( ∂2ρe

∂ρ∂Yk

)
0
ρ′Y ′

k +
( ∂2ρe

∂s∂Yk

)
0
s′Y ′

k +
n−1∑
j=1

( ∂2ρe

∂Yj∂Yk

)
0
Y ′
j 6=kY

′
k

]
.

Evaluation of the partial derivatives in B.2 first requires deviation of several

exact differentials. Those derivatives not involving Yk are presented in My-

ers [13] and are true at chemical equilibrium, whilst derivatives involving Yk

27



require use of non-equilibrium differentials given in appendix C,

(∂ρe
∂ρ

)
0
=h0,

(∂ρe
∂s

)
0

= ρ0T,
(∂ρe
∂Yk

)
0

= ρ0gk0,
(∂2ρe

∂ρ2

)
0

=
c20
ρ0

, (B.3)

(∂2ρe

∂s2

)
0
=
ρ0T0

cv0
,

(∂2ρe

∂Y 2
k

)
0
=
ρ0

cv0

(
cpk0 − cvk0 +

R

Wk0

− sk0
)[

(gk0 − ek0) +
R

Yk0Wk0

]
,

( ∂2ρe

∂ρ∂s

)
0
= γ0T0,

( ∂2ρe

∂ρ∂Yk

)
0
=
[RT0

Wk0

+ γ0gk0 − (γ0 − 1)ek0
]
,

( ∂2ρe

∂s∂Yk

)
0
=
ρ0

cv0
(gk0 − ek0),( ∂2ρe

∂Yj∂Yk

)
0
=
ρ0

cv0

(
cpj0 − cvj0 +

R

Wj0

− sj0
)[

(gj0 − ej0) +
R

Yj0Wj0

]
.

Substitution of equation B.2 into equation B.1 then yields the linearised energy

density which contains only second order terms,

E2 =
p′2

2ρ0c20
+

1

2
ρ0u

′2 + ρ′u0.u
′ +

ρ0T0s
′2

2cp0
(B.4)

− p′

ρ0c20

(n−1)∑
k=1

[ρ0RT0

Wk0

+
p0

cv0T0

(gk0 − ek0)
]
Y ′
k ,

+
1

2ρ0c20

(n−1)∑
j=1

(n−1)∑
k=1

[ρ0RT0

Wj0

+
p0

cv0T0

(gj0 − ej0)
][ρ0RT0

Wk0

+
p0

cv0T0

(gk0 − ek0)
]
Y ′
jY

′
k ,

+
(n−1)∑
j=1

(n−1)∑
k=1

ρ0

cv0

(
cpj0 − cvj0 +

R

Wj0

− sj0
)[

(gj0 − ej0) +
R

Yj0Wj0

]
Y ′
j 6=kY

′
k ,

+
(n−1)∑
k=1

ρ0

2cv0

(
cpk0 − cvk0 +

R

Wk0

− sk0
)[

(gk0 − ek0) +
R

Yk0Wk0

]
Y ′2
k ,

+
(n−1)∑
k=1

[RT0

Wk0

+ (γ0 − 1)(gk0 − ek0)
]
ρ′Y ′

k ,

+
(n−1)∑
k=1

ρ0

cv0
(gk0 − ek0)s

′Y ′
k .
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C Exact differentials for non-equilibrium chemistry

Gibbs equation states an exact differential for the sensible internal energy e

in terms of the entropy, density and mass fractions,

de = Tds+
p

ρ2
dρ+

n−1∑
k=1

gkdYk.

Since

e =
∫ T

T0

cvdT −
RT0

W
, (C.1)

where R is the ideal gas constant and W = 1/(Σn−1
k=1Yk/Wk) is the molecular

mass, de can also be written as

de = cvdT +
n−1∑
k=1

ekdYk. (C.2)

Equating equations C.3 and C.2 then gives an exact differential for the tem-

perature

dT =
1

cv
[Tds+

p

ρ2
dρ+

n−1∑
i=1

(gk − ek)dYk].

Similar working yields exact differentials for the pressure, enthalpy of the

mixture and the Gibb’s free energy of species k,
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dp=
p

cv
ds+

γp

ρ
dρ+

n−1∑
i=1

[
ρRT

Wk

+
ρR

Wcv
(gk − ek)], (C.3)

dh=Tds+
γp

ρ2
dρ+

n−1∑
i=1

[
RT

Wk

+ γgk − (γ − 1)ek]dYk,

dgk =
(
cpk − cvk +

R

Wk

− sk
)T
cv
ds

+
RT

ρW

[W
cv

(cpk − cvk +
R

Wk

− sk) +
W

Wk

]
dρ (C.4)

+
1

cv

(
cpk − cvk +

R

Wk

− sk
) (n−1)∑

k=1

[
(gk − ek) +

R

YkWk

]
dYk. (C.5)
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