
,



2



3

Title
Multiobjective optimization of New Product Development in the pharmaceutical industry

Abstract
New Product Development (NPD) constitutes a challenging problem in the pharmaceutical industry,
due to the characteristics of the development pipeline, namely, the presence of uncertainty, the high
level of the involved capital costs, the interdependency between projects, the limited availability of
resources, the overwhelming number of decisions due to the length of the time horizon (about 10
years) and the combinatorial nature of a portfolio. Formally, the NPD problem can be stated as
follows: select a set of R&D projects from a pool of candidate projects in order to satisfy several
criteria (economic profitability, time to market) while copying with the uncertain nature of the
projects. More precisely, the recurrent key issues are to determine the projects to develop once
target molecules have been identified, their order and the level of resources to assign. In this context,
the proposed approach combines discrete event stochastic simulation (Monte Carlo approach) with
multiobjective genetic algorithms (NSGA II type, Non-Sorted Genetic Algorithm II) to optimize the
highly combinatorial portfolio management problem. An object-oriented model previously developed
for batch plant scheduling and design is then extended to embed the case of new product management,
which is particularly adequate for reuse of both structure and logic. Two case studies illustrate and
validate the approach. From this simulation study, three performance evaluation criteria must be
considered for decision making: the Net Present Value (NPV) of a sequence, its associated risk
defined as the number of positive occurrences of NPV among the samples and the time to market.
They have been used in the multiobjective optimization formulation of the problem. In that context,
Genetic Algorithms (GAs) are particularly attractive for treating this kind of problem, due to their
ability to directly lead to the so-called Pareto front and to account for the combinatorial aspect.
NSGA II has been adapted to the treated case for taking into account both the number of products
in a sequence and the drug release order. From an analysis performed for a representative case study
on the different pairs of criteria both for the bi- and tricriteria optimization, the optimization strategy
turns out to be efficient and particularly elitist to detect the sequences which can be considered by the
decision makers. Only a few sequences are detected. Among theses sequences, large portfolios cause
resource queues and delays time to launch and are eliminated by the bicriteria optimization strategy.
Small portfolio reduces queuing and time to launch appear as good candidates. The optimization
strategy is interesting to detect the sequence candidates. Time is an important criterion to consider
simultaneously with NPV and risk criteria. The order in which drugs are released in the pipeline is
of great importance as with scheduling problems.

Key words
Portfolio management, New Product Development, Discrete Event Simulation, Multiobjective opti-
mization, Multicriteria Genetic Algorithms
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Titre
Optimisation multiobjectif du Développement de Nouveaux Produits dans l’industrie pharmaceutique

Résumé
Le développement de nouveaux produits constitue une priorité stratégique de l’industrie pharma-
ceutique, en raison de la présence d’incertitudes, de la lourdeur des investissements mis en jeu, de
l’interdépendance entre projets, de la disponibilité limitée des ressources, du nombre très élevé de
décisions impliquées dû à la longueur des processus (de l’ordre d’une dizaine d’années) et de la na-
ture combinatoire du problème. Formellement, le problème se pose ainsi : sélectionner des projets
de R&D parmi des projets candidats pour satisfaire plusieurs critères (rentabilité économique, temps
de mise sur le marché) tout en considérant leur nature incertaine. Plus précisément, les points clés
récurrents sont relatifs à la détermination des projets à développer une fois que les molécules cibles
sont identifiées, leur ordre de traitement et le niveau de ressources à affecter. Dans ce contexte, une
approche basée sur le couplage entre un simulateur à événements discrets stochastique (approche
Monte Carlo) pour représenter la dynamique du système et un algorithme d’optimisation multi-
critère (de type NSGA II) pour choisir les produits est proposée. Un modèle par objets développé
précédemment pour la conception et l’ordonnancement d’ateliers discontinus, de réutilisation aisée
tant par les aspects de structure que de logique de fonctionnement, a été étendu pour intégrer le cas
de la gestion de nouveaux produits. Deux cas d’étude illustrent et valident l’approche. Les résul-
tats de simulation ont mis en évidence l’intérêt de trois critères d’évaluation de performance pour
l’aide à la décision : le bénéfice actualisé d’une séquence, le risque associé et le temps de mise sur
le marché. Ils ont été utilisés dans la formulation multiobjectif du problème d’optimisation. Dans
ce contexte, des algorithmes génétiques sont particulièrement intéressants en raison de leur capacité
à conduire directement au front de Pareto et à traiter l’aspect combinatoire. La variante NSGA II
a été adaptée au problème pour prendre en compte à la fois le nombre et l’ordre de lancement des
produits dans une séquence. A partir d’une analyse bicritère réalisée pour un cas d’étude représen-
tatif sur différentes paires de critères pour l’optimisation bi- et tri-critère, la stratégie d’optimisation
s’avère efficace et particulièrement élitiste pour détecter les séquences à considérer par le décideur.
Seules quelques séquences sont détectées. Parmi elles, les portefeuilles à nombre élevé de produits
provoquent des attentes et des retards au lancement ; ils sont éliminés par la stratégie d’optimistaion
bicritère. Les petits portefeuilles qui réduisent les files d’attente et le temps de lancement sont ainsi
préférés. Le temps se révèle un critère important à optimiser simultanément, mettant en évidence
tout l’intérêt d’une optimisation tricritère. Enfin, l’ordre de lancement des produits est une variable
majeure comme pour les problèmes d’ordonnancement d’atelier.

Mots-Clés
Gestion du portefeuille de produits, Développement de nouveaux produits, Simulation par événe-
ments discrets, Optimisation, Algorithmes génétiques multicritères.
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1.1 General context

Traditionally, Process Systems Engineering (PSE) is concerned with the understanding and devel-
opment of systematic procedures for the design and operation of chemical process systems, ranging
from microsystems to industrial scale continuous and batch processes. This traditional definition of
PSE has been broadened by making use of the concept of the "chemical supply chain" as shown in
Figure 1.1. Process Systems Engineering is now concerned with the improvement of decision making
processes for the creation and operation of the chemical supply chain. More precisely, it deals with
the discovery, design, manufacture and distribution of chemical products in the context of many
conflicting goals. The area of R&D and Process Operations has emerged among the major challenges
in the PSE area: this topics, which has a shorter history than process design and control, expands
upstream to R&D and downstream to logistics and product distribution activities.

To support the expansion to R&D, optimal planning and scheduling for New Product Development
(NPD) need increased attention to coordinate better product discovery, process development and
plant design in the agrochemical and pharmaceutical industries. For downstream applications, areas
that receive increased attention at the business level include planning of process networks, supply
chain optimization, real time scheduling, and inventory control. Due to the increasing pressure for
reducing costs and inventories, in order to remain competitive in the global marketplace, enterprise-
wide optimization (EWO) that might be considered as an equivalent term for describing the chemical
supply chain (see Shapiro [2001]) has thus become the "holy grail" in process industries.

Figure 1.1: Chemical Supply Chain [Grossmann and Westerberg, 2000]

Enterprise-wide optimization is an area that lies at the interface of chemical engineering (Process
Systems Engineering) and operations research. As outlined in Grossmann [2005], a new generation
of methods and tools that allow the full integration and large-scale solution of the optimization
models, as well as the incorporation of accurate models for the manufacturing facilities is needed.
Given the strong tradition that chemical engineers have in process systems engineering and in the
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optimization area (see Biegler and Grossmann [2004] for a recent review), they are ideally positioned
to make significant contributions in EWO. This motivates the research challenges of the thesis work,
which is devoted to the management of the so-called New Product Development management for
pharmaceutical/biotechnology industry. This work is an extension of the investigations previously
dedicated to batch plant design and scheduling which are of major importance for such industries
and which can be considered as part and parcel of the more general topics of NPD management.
Even if this thesis work was not supported by an industrial partnership, it must be highlighted that
we have several fruitful discussions with a French pharmaceutical company to assess the validity
of the examples that will be tackled here and that will serve as a guideline of the methodological
framework.

1.2 Key issues in New Product Development

A fundamental challenge in managing a pharmaceutical or biotechnology company is identifying
the optimal allocation of finite resources across the infinite constellation of available investment
opportunities. In that context, the optimal management of the new product pipeline has emerged
at the forefront of all strategic planning initiatives of a company.

This issue is traditionally identified as a complex one since it integrates various areas such as
product development, manufacturing, accounting and marketing. The complexity of the problem is
mainly attributed to the great variety of parameters and decision-making levels involved. A strategic
investment plan should simultaneously address and evaluate in a proper manner the following four
main issues: product management, clinical trials uncertainty, capacity management and trading
structure. It is also generally viewed as a multistage stochastic portfolio optimization problem. The
main challenge is to configure a product portfolio in order to obtain the highest possible profit,
including any capacity investments, in a rapid and reliable way. These decisions have to be taken in
the face of considerable uncertainty as demands, sales prices and outcomes of clinical tests that may
not turn out as expected.

This kind of problem has recently received attention from the process systems engineering commu-
nity utilizing previous works from the process planning and scheduling area. Schmidt and Grossmann
[1996] proposed various MILP optimization models for the scheduling of testing tasks with no re-
source constraints with a discretization scheme in order to induce linearity in the cost of testing.
Jain and Grossmann [1999] extended these models to account for resource constraints. Subramanian
et al. [2003] proposed a simulation-optimization framework that takes into account uncertainty in
duration, cost and resource requirements and extended this model to account for risk. Maravelias
and Grossmann [2001] proposed an MILP model that integrates the scheduling of tests with the
design and production planning decisions. A literature review of optimization approaches in the
supply chain of pharmaceutical industries can be found in Shah [2004]. The work of Blau et al.
[2004] is based on a mono-objective Genetic Algorithm to optimize product sequence evaluated by a
commercial discrete-event simulator.

This work lies in this perspective: the underlying idea is to use a multiobjective framework as
already initiated by [Aguilar-Lasserre et al., 2007] to model both the conflicting nature of the
criteria (i.e. risk minimization and profitability maximization) and the imprecise nature of some
parameters (demand, operating times,. . .). In that context, this work aims at the development of
an architecture that combines an optimization procedure and a simulation model to represent the
dynamic behaviour of the pipeline with its inherent uncertainty and to help decision-making. The
general objective is thus to propose a general methodology framework to support decisions and
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management of pharmaceutical products involved in their life cycle, from early-stages to mature
sales.

1.3 Portfolio selection

1.3.1 Portfolio management definition

Formally, portfolio management is a dynamic decision process, whereby a business’s list of active
new product and R&D projects is updated and revised. In this process, new projects are evaluated,
selected and prioritized; existing projects may be accelerated, killed or de-prioritized; and resources
are allocated or re-allocated to the active project. The portfolio decision process is characterized
by uncertain and changing information, dynamic opportunities, multiple goals and strategic con-
siderations, interdependencies among projects and multiple decision-makers and locations. Even if
portfolio management is viewed as a very important task in industry, there is no consensus about
the best strategy, perhaps because there are too many different business practices, much confusion
about which strategy is the best, and no easy answers as reported in Cooper et al. [1999].

The work presented here has not the ambition to treat all the issues involved but to give a solution
to the most critical ones.

1.3.2 Risk assessment

A balanced whole portfolio provides the investor with protections and opportunities with respect to
a wide range of contingencies. The investor should build toward an integrated portfolio which best
suits his needs [Markowitz, 1959].

A portfolio analysis starts with information concerning individual securities. It ends with conclu-
sions concerning as a whole. The purpose of the analysis is to find portfolios which best meet the
objectives of the investor [Markowitz, 1959].

Various types of information concerning securities can be used as the raw material of a portfolio
analysis. One source of information is the past performance of individual securities. A second source
of information is the belief of one or more security analysts concerning future performances. When
past performances of securities are used as inputs, the outputs of the analysis are portfolios which
performed particularly well in past. When beliefs of security analysts are used as inputs, the outputs
of the analysis are the implications of these beliefs for better and worse portfolios [Markowitz, 1959].

Uncertainty is a salient feature of security investment. Economic forces are not understood well
enough for predictions to be beyond doubt or error. Even if the consequences of economic conditions
were understood perfectly, non-economic influences can change the course of general prosperity, the
level of the market, or the success of a particular security [Markowitz, 1959].

The subject of risk [Kaplan and Garrick, 1981] has become very popular and is involved in various
fields, far beyond the subject of this thesis: business risk, social risk, economic risk, safety risk,
investment risk, military risk, political risk, etc...
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Distinction between Risk and Uncertainty The notion of risk involves both uncertainty and
some kind of loss or damage that might be received [Kaplan and Garrick, 1981]. Symbolically, it
could be written this as:

risk = uncertainty + damage

This equation expresses the first distinction. As a second, it is great to differentiate between the
notions of "Risk" and "Hazard".

Distinction between Risk and Hazard In the dictionary hazard is defined as "a source of
danger". Risk is the "possibility of loss injury" and the "degree of probability of such loss". Hazard,
therefore, simply exists as a source. Risk includes the likehood of conversion of that source into
actual delivery of loss, injury, or some form of damage [Kaplan and Garrick, 1981]. This idea is
symbolically in the form of an equation:

Risk = hazard

safeguards

This equation also brings out the thought that we may make risk as small as we like by increasing
the safeguards [Kaplan and Garrick, 1981] but may never, as a matter of principle, bring it to zero.
Risk is never zero, but it can be small.

1.3.3 Objectives of a portfolio analysis

A portfolio analysis must be based on criteria which serve as a guide for the decision maker.

The proper choice of a criteria depends on the nature of the investor. For some investors, taxes are
a prime consideration; for others, such as non-profit corporations, they are irrelevant. Institutional
considerations, legal restrictions, relationships between portfolio returns and the cost of living may
be important to one investor and not to another. For each type of investor, the details of the portfolio
analysis must be suitably selected [Markowitz, 1959].

Two objectives, however, are common to all investors:

1. They want "return" to be high. The appropriate definition of "return" may differ from investor
to investor. But, in whatever sense is appropriate, they prefer more of it to less of it.

2. They want this return to be dependable, stable, not subject to uncertainty.

The portfolio with highest "likely return" is not necessarily the one with least "uncertainty of
return". The most reliable portfolio with an extremely high likely return may be subject to an
unacceptably high degree of uncertainty. The portfolio with the least uncertainty may have an
undesirable small "likely return". Between these extremes would lie portfolios with varying degrees
of likely return and uncertainty [Markowitz, 1959]. It must be said at that level that the proper
choice among efficient portfolios depends on the willingness and ability of investor to assume risk.

For this purpose, this work must develop a strategy that separates efficient from inefficient port-
folios, helps the investor and investment manager to carefully select the combination of likely return
and uncertainty that best suit his needs, and finally determines the portfolio which provides this
most suitable combination of risk and return.
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1.3.4 Portfolio selection techniques in industrial practice

No method has a monopoly in the field of portfolio management. It is quite common that a company
uses multiple methods or techniques for portfolio management. These techniques, in rank order of
popularity, are as follows [Cooper et al., 1999]:

• Financial methods, where profitability, return, payback, or economic value of the project is
determined, and projects are judged and rank ordered on this criterion: 77% of businesses use
this approach.

• Business strategy methods, where the business’s strategy is the basis for allocating money for
different types of projects. For example, having decided strategy, different buckets or envelopes
of money for different project types are established and projects are rank ordered within buckets:
64.8% of businesses use a strategic approach.

• Bubble diagrams, where projects are plotted on on X-Y portfolio map (the X-Y axes are various
dimensions of interest, such as reward versus probability of success): 40.6% of businesses employ
bubble diagrams.

• Scoring models, where projects are rated or scored on a number of criteria on scales, then
the ratings are added to yield a project score (this score then becomes the basis as a rank-
ing/prioritizing tool: 37.9% of businesses employ scoring models for portfolio management.

• Checklists, where projects are evaluated via a list of yes/no questions (and each project must
achieve all or a certain percentage of "yes" answers): only 20.9% of businesses use checklists for
project selection and porfolio management.

The percentage cited add up to well over 100% (241.5%), suggesting that, on average, the typical
business relies on about 2.4 times different portfolio management methods. Using multiple methods
-the notion of hybrid approach of portfolio management- appears to be the right answer, however
[Cooper et al., 1999].

Another kind of classification for studies on R&D portfolio management is considered in Wang and
Hwang [2007]. Studies on R&D portfolio management can be divided into three categories: strategic
management tools, benefit measurement methods, and mathematical programming approaches. The
strategic management tools, such as bubble diagram, portfolio map, and strategic bucket method,
are used to emphasize the connection of innovation projects to strategy or illuminate issues of risk or
strategic balances of the portfolio. Benefits measurement methods determine the preferability figure
of each project. A number of approaches, such as the merit-cost value index, the analytical hierarchy
process, net present value, and option pricing theory, have been developed in the literature to estimate
the benefit of an R&D project. The projects with the highest score may be selected sequentially. The
major drawback of most benefits measurements approaches is that neither uncertainty nor resources
interactions among projects can be captured. In recent years, some studies used the criterion of
conditional stochastic dominance or the mean-Gini analysis to make the decisions to handle R&D
uncertainties for risk-averse decision makers.

Mathematical programming models optimize some objective functions subject to constraints re-
lated to resources, project logics, technology, and strategies.

The NPD problem is clearly based on an optimization formulation.

The main contributions in this field are presented below.
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1.4 Related optimization works

1.4.1 General classification

The development of decision support strategies and systems for managing new product portfolios
must be able to provide insights to managers on how to minimize risk while optimizing an objective or
a set of objectives (e.g. maximization of expected net present value, minimization of time to market,
etc.) in the presence of constraints. Moreover, the simultaneous consideration of all candidate
projects is the key aspect in managing a NPD pipeline. The complexity of the problem has led to
the common use of decomposition based strategies, resulting in two completely independent bodies
of decision support literature: strategic/tactical and tactical/operational. Each of the two
branches can be further subdivided according to the characteristics of the model used to support
the decision making process. A taxonomy is proposed in Zapata et al. [2007]. Figure 1.2 shows the
taxonomy of the main criteria to be considered when characterizing the level of detail of the model
used in the decision support strategy for NPD portfolio management.

Figure 1.2: Taxonomy of the level of detail of decision support strategies from Zapata et al. [2007]

The first sublevel reflects the fact that a project can be analyzed in isolation based on certain
company standards (e.g. the net present value (NPV) of the project), or as part of the bigger picture
where the performance is assessed at the portfolio level (e.g. NPV of the portfolio), including all
the interactions between projects. The time dimension is found one level down in the classification.
A dynamic model provides the specific state of the systems along each point of the time horizon
(e.g. number of projects waiting for resource x at time t), while a static one uses average values to
represent the system (e.g. average number of projects waiting for resource x at any time). Within
static and dynamic classes it is possible to choose between deterministic and stochasticmodels.
However, dynamic stochastic models have an additional partition: open loop versus closed
loop. Open loop models only capture the response of the system to inputs from decision makers,
while closed loop models also capture the response of the decision makers to the outcomes from
the system.
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In the strategic decision support systems literature, the different techniques available are shaped by
the type of data used, namely, qualitative and quantitative. Strategies that are based on qualitative
data and do not take into account project interactions are static. They have the main objective
of translating the vagueness of adjectives used in classifications (e.g. excellent, poor, good, etc.)
into structured forms that allow a quantitative comparison of the projects in the portfolio. The
methodologies in this area can be grouped into scoring methods [Cooper et al., 1999, Coldrick et al.,
2005], analytical hierarchy approaches [Calantone et al., 1999, Poh et al., 2001] and fuzzy logic based
approaches [Buyukozkan and Feyzioglu, 2004, Lin and Hsieh, 2004, Lin et al., 2005]. On the other
hand, the methodologies that are based on quantitative information strive to provide a realistic
simulation of the behavior of each individual project along the time horizon considered, in order
to determine what the possible outcomes are in terms of rewards and risk. This group includes
dynamic deterministic strategies such as classical financial models (e.g. NPV, internal rate of return
(IRR), etc.) ([Cooper et al., 1999], as well as dynamic stochastic strategies, both closed loop such as
real options [Copeland and Antikarov, 2001, Loch and Bode-Greuel, 2001, Jacob and Kwak, 2003,
Newton et al., 2004, Santiago and Bifano, 2005], and open loop such as discrete event simulation
[Chapman and Ward, 2002], and neural networks [Thieme et al., 2000]

Most of the approaches that capture project interactions can be classified as dynamic stochastic
open loop methodologies. An important contribution is the work of Blau et al. [2004] which
proposes the use of stochastic optimization: the portfolio is modeled using a discrete event simulation
and the optimization is implemented by a genetic algorithm; Rogers et al. [2002] formulates a real
options decision tree that captures technical and market uncertainty as a stochastic MILP that
relates projects through a budget constraint. Rajapakse et al. [2005] presents a decision support tool
that uses sensitivity and scenario analysis on a discrete event model of the development pipeline.
Finally, Ding and Eliashberg [2002] approaches the problem of determining how many projects, that
are assigned to develop the same product, have to be included in the pipeline to maximize the total
expected profit. For that purpose, they use a static strategy based on a statistical model in which the
outcome of each project follows a binomial distribution. All of the techniques in this group are mainly
focused on time independent decisions (excluding the work by Rogers et al. [2002]) and therefore
do not require closed loop models. Some work has been done to accommodate the higher level of
complexity required by time dependent strategic decisions such as capacity expansion/contraction
[Wan et al., 2006], but the non-Markovian nature of the associated decision problem has limited such
strategies to portfolios with a modest number of projects.

At the operational level, decisions are time dependent. Although their number is substantially
larger and their interactions much more complex than those required at the strategic level, they are
mostly Markovian in nature (i.e. information about the current state of the system is sufficient to
characterize the system and be able to make decisions). This has motivated the development of op-
erational decision support systems exclusively based on quantitative information and with a dynamic
character. These techniques have mainly focused on scheduling and resource allocation. They can
be divided in two main subgroups according to the type of solution strategy, namely conventional
optimization and simulation optimization. In the first subgroup the problem is formulated as a re-
source constrained project scheduling problem (RCPSP) MILP in which the model is deterministic
and the stochastic nature of the system is reflected in the use of expectation in the objective function
and constraints. Along these lines, Honkomp [1998] proposed a discrete time MILP formulation that
maximizes the total expected net present value of the projects in the pipeline and constrains the
allocation of resources based on an overbooking strategy; Jain and Grossmann [1999] presented a
continuous time formulation that minimizes the total expected cost of the portfolio and allows the
inclusion of outsourcing as an additional degree of freedom in the optimization. The second subgroup
determines allocation and scheduling policies by learning from the responses of a discrete event model
of the system to changes implemented by a RCPSP MILP [Subramanian et al., 2001, Varma, 2005],
thus making this technique stochastic.
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This work will be devoted to the development of a dynamic stochastic open loop methodology.

1.4.2 Presentation of classical approaches for dynamic stochastic open loop
methodologies for NPD

Among the classical approaches, three contributions must be mentioned:

• A formal statement of the portfolio optimization problem is as follows [Blau et al., 2004]: select
a set of new drug candidates,and sequence them for the development process in such a way
that the economic return expressed as the expected positive new present value (EPNPV) is
maximized for a given level of risk measured as the probability of losing money. Let us note
at that level that EPNPV is defined as the expected value over the positive axis of the NPV
distribution. The information about the negative part of the distribution will be conveyed by
using a risk measure called probability of losing money the area under the negative axis of the
NPV distribution.
Stated as a mathematical program the portfolio optimization problem is to
Maximize EPNPV (over all available drug selections and sequences)
Subject to
P (NPV < 0) < β (Risk constraint)
where β is the risk of losing money.
The methodology proposed by Blau et al. [2004] involves a commercial discrete event simulation
tool (CSIM) embedded in a mono-objective optimization tool based on Genetic Algorithms. It
can be summarized as follows:

1. An initial list of 10 sequences of drug candidates is generated, some from the bubble chart
using individual drug analysis and other at random.

2. For every sequence, the probability distributions associated with the activities for each of
its selected drug candidates are modified or are "preprocessed" to account for dependencies
between products.

3. The behavior of each sequence is simulated by using a discrete event simulator.
4. The results from these simulations are used by a genetic algorithm to search for improved

drug sequences.

The optimization criterion measures how closely the sequence not only maximizes economic per-
formance but also minimizes the probability of losing money. The so-called "fitness" function,
Zk, is calculated for each of the candidate sequences in the current population by normalizing
the EPNPV and risk as follows:

Zk = α( EPNPVk − EPNPVmin
EPNPVmax − EPNPVmin + γ

) + (1− α)( Riskmax −Riskk
Riskmax −Riskmin + γ

)

where k = 1, 2, . . . , n candidate sequences; EPNV Pmin and EPNV Pmax are the minimum and
maximum expected positive NPV, respectively, in the current population; Riskmax and Riskmin
are the maximum and the minimum risk probabilities in the current population; and γ is the
small positive value that prevents division by zero. The nonnegative number α (between zero
and one inclusive) is inversely proportional to the cost per unit violation of the risk constraint,
written at a risk tolerance level of β.
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• Varma et al. [2008] proposed a framework called SIM-OPT as an integrated resource manage-
ment tool with the goals of maximizing the portfolio’s expected net present value (ENPV),
controlling risk and reducing drug development cycle times. The framework includes three key
components: (1) a stochastic simulation of the pharmaceutical work flow process modeled as a
discrete event system, (2) a ”resource manager” based on a mixed integer linear programming
formulation that schedules and allocates resources as a function of demands from the simu-
lated work process and (3) a ”strategy learner” that evaluates the impact of various resource
strategies on the financial and cycle time performance of the simulated pipeline and draws
key learnings. The output is a recommended set of resource management strategies and their
impacts on expected return, risk and cycle time metrics. Stated as a mathematical program
the portfolio optimization problem is to
Maximize ENPV (π)
π ∈

∏
Subject to

Portfolio risk≤ βRisk

ATM≤ βATM (i), ∀i ∈ {1, . . . , N}

where π is the optimal policy over the set of all control policies
∏
. The "portfolio risk" can be

defined either in terms of P (portfolio NPV < M), where M can be an acceptable loss value
or in terms of the standard deviation of the NPV distribution. βRisk is a risk tolerance factor.
The ATMi is the average time to market for the ith drug and βATM (i) is the upper bound on
the launch of drug i in the event of clinical success.

• In Rogers et al. [2002], a stochastic optimization model (OptFolio) of pharmaceutical research
and development portfolio management is presented using a real options valuation approach for
making optimal project selection decisions. In this work, only main phases of pharmaceutical
R&D are considered: three clinical trial phases, FDA (Food and Drug Administration) approval
and product commercialization. According to these researches, one obvious shortcoming of the
NPV approach is that it assumes that all future cash flows are static, neglecting the real-world
choices to stop investing in the project or change course because of market circumstances. Yet
Blau et al. [2004] consider that the Real Options Valuation method has been used effectively
only to evaluate single projects.
The problem solved by Rogers et al. can be stated as follows:
Given a set of candidate drugs in various stages of development, estimates of the probability
of clinical success, duration, and investment required for the remaining stages and forecasts for
the future market values, determine the optimal drug developmental portfolio that maximizes
ROV.
Some significant works for dynamic stochastic open loop methodologies for NPD are summa-
rized in Table 1.1 but concern exclusively monocriterion approaches.

This work will be devoted to a combined approach of simulation of the NPD pipeline and strategy
optimization. It must be highlighted that the multicriterion feature of the NPD problem must be taken
into account and that the various criteria must be thoroughly studied.
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Reference Optimization method Criteria
Blau et al. 2004 Genetic algorithm Maximization of Net Present Value

Varma et al. 2008 MILP Sim-Opt
Maximization of Net Present Value

Risk Minimization
Minimization of average time to market

Rogers et al. 2002 MILP Real Options Valuation (ROV) Real Options Valuation Maximization

Table 1.1: Summary of classical approaches for dynamic stochastic open loop methodologies for
NPD

1.5 Dissertation outline

This introduction (Chapter 1) has presented the key features of the New Product Development
problem, the aims and scope of this PhD dissertation.

Chapter 2 describes the activities involved in the NPD problem and the life cycle of a pharmaceu-
tical product. A typical pharmaceutical R&D pipeline serves as a guideline and will be used in the
following chapters.

Chapter 3 is devoted to the presentation of the discrete event simulator used to model the various
paths and the precedence relations between NPD activities. The simulator extends the previous works
carried out in our research group for batch plant design and scheduling. Two case studies are used
to validate and illustrate the proposed approach. The uncertainty associated to cost and durations
are modeled by probability approaches and Monte-Carlo simulations. The use of a discrete event
simulator is particularly useful for decision criteria evaluation, such as economic and risk metrics.

Chapter 4 deals with imprecision modeling involved in the NPD problem. The objective is to
investigate alternative approaches to represent imprecision in order to determine the final strategy
that could be then selected at the optimization step. An interval-based method is used and the
results are compared with those obtained with the probability approach.

Chapter 5 is the core of the methodology: the discrete event simulator is embedded in an outer
multiobjective optimization loop. The different optimization methods that may be used are briefly
recalled with a special emphasis to Genetic Algorithms (GAs), that are particularly attractive for
treating this kind of problem, due to their ability to directly lead to the so-called Pareto front. The
test bench examples are analyzed and some guidelines for the treatment of new cases are provided.

Chapter 6 concludes this work by summarizing the main development and results. Possible direc-
tions for further research and indications for potential applications are given as well.



Chapter 2

Analysis of New Product
Development process
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2.1 Introduction

Within the scope of Research and Development Pipeline management problem, several New Product
Development (NPD) projects compete for a limited pool of various resource types. The discovery
and development of new drugs is a very lengthy and costly process. Each project product usually
involves a series of testing tasks prior to product commercialization. If the project fails any of these
tasks, then all the remaining work on that product is stopped and the investment in the previous
testing tasks is wasted. In this Chapter, we are attempting to present the different steps involved in
the process in a generic manner. A flow diagram of the activities involved in the development of a
new pharmaceutical product is proposed in Figure 2.1. Although some differences may exist referring
to various industrial practices, we consider it as generic enough to embed various formulations. Our
focus is on providing the key parameters (cost, duration ...) associated with the drug development
process. A typical example will serve as a guideline to illustrate the presentation.

Figure 2.1: Process for drugs development.

2.2 Life Cycle of a Pharmaceutical Product

Basically, three stages are involved in the life cycle of a pharmaceutical product: discovery, devel-
opment and commercialization as it can be seen in Figure 2.1. In the Discovery stage, thousands
of molecules are applied to targets developed to simulate various disease groups. Once an active
molecule, i.e. a molecule that is identified to have a curative effect on the target, is discovered, vari-
ous permutations of the structure of the molecule are tested to see if the activity can be enhanced.
The most active molecule from these structure-activity relationships is tested for toxicological results
on rats or mice. If no particular worrisome toxic endpoints are observed, the molecule is promoted
to the status of "lead" molecule and becomes a candidate for development.

In the Development stage, enormous sums of money and resources are committed to the lead
molecule to first, observe its behavior in healthy volunteers, secondly, in patients smitten with the
disease and finally, in large scale clinical studies conducted in concert with the Food and Drug
Administration (FDA). Coincident with these studies, process research and formulations work is
conducted to both supply the drug for testing purposes as well as to design and construct a commercial
plant if the product is launched. Other parallel studies involve extensive long-term (i.e. two years)
chronic studies in animals to identify any indication of oncogenicity at different dosage levels.
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If the drug is effective in the clinical studies, has no unacceptable side effects and is blessed by the
FDA, it moves to the Commercial Stage. Target markets are identified for a staged launch or "ramp-
up" of the new compound. After a few years, a mature sales level is usually reached and maintained
until patent coverage on the molecule expires and/or competition from generics is realized. Once
generics are available, an attempt is usually made to get approval of the drug for alternative markets
and perhaps in different dosage forms. Regardless, sales are diminished after expiration of the patent.

2.2.1 A typical pharmaceutical R&D pipeline

In what follows, each stage is described in more details. It must be pointed out at that level that
the complexity, creativity and iterative nature of the discovery process make it difficult to describe
this step in a high degree of details. Figure 2.2 is a simplified network flow diagram of the classical
activities involved in the development and commercialization of a new drug candidate.

First human dose preparation (FHDP). This planning activity is relative to the preparation of
administration to healthy volunteers. More practically, it includes pharmaco-kinetic studies involving
adsorption, distribution, metabolism and excretion from the body as well as determining suitable
dose levels.

Phase 1. In this stage, first clinical trials are carried out and drugs are administered to healthy
volunteers. At the same time, acute/chronic and reproductive studies are also conducted in animals
(mice/rats). Positive results will allow to the drug to go on the process where an unacceptable
behaviour in human and animal studies can terminate the study.

Phase 2. Drug is administered to unhealthy human patients with the disease by using the results
of dosing studies from Phase I. Coincident with these studies are long-term oncogenic toxicological
studies in animals and market research to obtain sales estimates. If the compound fails to treat the
disease or is inferior to competitive products, it is de-staged or returned to the discovery phase for
modification.

Phase 3. Large-scale clinical studies are carried out on unhealthy human patients. The FDA is
involved and indicates benchmarks for giving their approval. In addition to confirming the efficiency,
these studies identify drug-drug interactions, human demographics, etc. This most expensive phase of
the development process requires extensive global coordination and cooperation. The results should
confirm what was learned in Phase II but on a much larger scale, otherwise the compound may be
terminated.

First submission for approval. All information (efficacy, toxicology, process, drug-drug inter-
actions, side effects, etc.) obtained is gathered and submitted it to the FDA. Simultaneously, the
marketing strategy is evolving, price negotiations are being conducted with suppliers/distributors,
and promotional materials are being developed. The building of a commercial plant is in progress.
Approval for selling the new drug is the anticipated outcome.
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Figure 2.2: A typical pharmaceutical R&D pipeline.
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Pre-launch activities. This is the final stage before launch-approval has been received from FDA;
a global penetration strategy has been completed; the commercial plant has been built and started-
up; the promotional campaign launched. This phase ends when the new drug is distributed.

Launch activities. The product is launched over a period of years in various global markets until
mature sales levels are reached the ramp-up period. Mature sales are maintained until patents expire
or competition is carried out either from competitors or planned cannibalization.

Product supply chain activities. Sample preparation, process research, process development,
process design and plant construction occur simultaneously with other development activities (see
Figure 2.2). Initial focus is on preparing sufficient sample material for various animal/human studies.
Once the launch prospects appear promising, the emphasis changes to developing a process for
commercialization. This includes a pilot plant which provides data for plant design as well as the
larger quantities of material needed for Phase III clinical trials. During Phase III clinical trials, the
new plant is designed or other arrangements for product manufacture are carried out. Once Phase
III trials are successful, a new plant is needed, existing facilities must be expanded.

2.2.2 An example as a guideline

Typical features

In this section, the example taken from Blau et al. [2004] is considered as a reference and will serve
as a guideline of this presentation. Nine potential new drugs have been identified as lead molecules
by the discovery function and are candidates for entering the new product development pipeline.
From the flow diagram shown in Figure 2.2, historical data from a major pharmaceutical company
were used to represent the parameters with a triangular possibility distribution. The data concerning
both duration and cost of each phase are presented in Table 2.1. For example, the time required for
Phase I testing ranges from minimum (min) of 225 days to a maximum (max) of 375 days with a
most likely (ML) value of 300 days; it can be represented by a triangular distribution as shown in
Figure 2.3. Costs are not distributed between manpower and equipment/clinical costs. This type
of detailed physical resource-based data is generally available and could be used for future resource
planning but is beyond the scope of this work. In the last column of Table 2.1, for example, the
maximum resources available are specified for each activity. If all the leads are advanced at the same
time, the resource levels are exceeded in almost all of the activities. The challenge, therefore, is to
propose a strategy, which will mitigate risk while carrying attractive expected financial, since the
resources are rarely available to develop all these projects at once.

Additional data are provided in Table 2.2. The components of and trends in the costs of pharma-
ceutical innovation are analyzed in what follows. The example illustrates the interest to diversify a
portfolio of new products in order to minimize vulnerability to competitor’s products.

How to obtain economic and technical data

One of the largest components of the overall cost of bringing a new drug to the market is the cost of
product development. Cost of product development can account for as much as 30% to 35% of the
total cost of bringing a new drug to the market [Dimasi et al., 2003, Suresh and Basu, 2008].
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Activity Duration (days) Cost ($MM) Total available
resources $MMMin ML Max Min ML Max

FHDP 300 400 500 72 80 88 275
Sample prep 300 400 500 1.8 2 2.2 10

Phase I 225 300 375 70 80 90 350
Phase II 375 500 625 75 80 85 175
Phase III 575 775 975 150 200 250 250

Process develop I 600 800 1000 7 10 13 16
Process develop II 600 800 1000 7 10 13 16

Design Plant 550 750 950 8 10 12 12
FSA 275 375 475 18 20 22 100

Prelaunch 75 100 125 45 50 55 550
Build Plant 600 750 900 52 62 72 120
Ramp up I 250 350 450 9 12 15 25
Ramp up II 250 350 450 19 22 25 50
Ramp upIII 250 350 450 35 40 45 100
Mature sales 250 350 450 46 53 60 150

Table 2.1: Data for Nine Drug Candidates

Figure 2.3: Triangular distribution example

The technical success factors are generally available from researchers while sales/marketing per-
sonnel can provide estimates for the sales expected if the compound reaches the marketplace.

For instance, there are three different diseases treated by the nine leads. It would be preferable to
treat as many different diseases as possible to minimize the impact of new drugs from competitors
sources. Although the drug candidates have never undergone any actual testing beyond the discovery
stage, it is often possible to extract subjective probability estimates of their anticipated performance
[Morgan and Henrion, 1990, Nutt, 1998] from feedback experience with similar drugs. This remark
is also valid for capital cost estimation for manufacturing a candidate drug from the structure of
the molecule and the chemical or biological process used to manufacture discovery samples. Finally,
market research studies and forecasting practices [Cooper et al., 1999, Kahn, 2002] provide price and
sales estimates for the product at some launch date in the future. Of course, in all three of these
situations, the uncertainty in the estimates is quite large, ranging from 50 to 100 percent of the most
likely values.
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Product
name

Disease
type

Success probabilities Capital cost ($MM) Mature sales ($MM) Degree of
difficulty DoDPhase I Phase II Phase III Min ML Max Min ML Max

D1 III 0.9 0.3 0.9 40 50 60 2675 2800 2950 5
D2 I 0.85 0.2 0.85 20 30 40 1850 1900 1975 2
D3 I 0.95 0.35 0.95 30 45 60 3000 3300 3500 8
D4 II 0.87 0.22 0.8 28 34 40 2000 2250 2500 9
D5 II 0.97 0.36 0.99 38 40 46 1200 1690 2200 3
D6 I 0.83 0.18 0.86 50 60 70 2500 2830 3000 7
D7 I 0.94 0.4 0.94 65 75 90 1800 2150 3000 1
D8 II 0.86 0.2 0.88 60 65 90 1400 1600 1850 4
D9 II 0.98 0.34 0.92 52 62 72 2750 2870 2900 10

Table 2.2: Success probability, capital cost, mature sales and degree of difficulty

Data source. Based on Blau et al. [2004], cost and duration are taken from a major pharmaceutical
company historical data which are used for the simulation. Other practices as market research
studies and forecasting are considered too. Capital estimation is carried out by engineers from their
experience accumulated from the treatment of similar cases. In the same way, success probabilities are
an important parameter considered in NPD evaluation [Morgan and Henrion, 1990]. It is important
to note that success probabilities are linked to every single product. Success probabilities can be
calculated from information about drugs approved by the Food and Drugs Administration or the
European Medicines Agency [Reichter, 2001]. An example about how success probabilities can be
calculated is applied for monoclonal antibodies (mAbs) which are nature’s biological warheads, able
to target and help eliminate foreign or abnormal agents from the body. Table 2.3 shows data ordered
by year and kind of mAbs.

Data were collected from surveys of sponsoring companies, and from public documents. The
percentage of completion is the percentage of products that have been discontinued and approved,
providing an indication of how far trials have progressed. A low value will inevitably reduce the
accuracy of the estimated success rates for that class of mAbs. The percentage of success is the
percentage of mAbs that successfully completed trials and were approved by the US FDA, e.g., in
Table 2.3 for years 1992-1994, the total number of mAbs was 41, the number of mAbs discontinued
was 23 and the number of mAbs approved was 5; then, the percentage of completion is: (number
of mAbs discontinued + number of mAbs approved)/total number of mAbs (23+5)/41= 0.68. For
the percentage of success, this is calculated as follows: number of mAbs approved/(Number of mAbs
approved + Number of mAbs discontinued) 5/(23+5)=0.18.

Success rates (Table 2.4) for phase transitions were calculated as follows: the number of products
that completed a given phase and entered the next phase, divided by the total number of products
that entered the first phase and did not remain in that phase (i.e., all products entering the phase
minus those that remained), e.g., drugs entering (de) to the phase 1:2, drugs completing (dc) the
phase 1: 1; the success rate (sr)=dc/de.

Degree of Difficulty. There is a relationship between activity times and costs in Table 2.1 for
specific drug candidates. For example, new drugs from a class of chemistries products would require
activity resource levels closer to the maximum of the triangular time and cost distributions than
those familiar to a company. This relationship is captured with a simple parameter called the
degree of difficulty (DoD). Subjective estimates of DoD can be obtained from the various principal
investigators, although the values may be different between work processes. However, since the focus
of this thesis is on project selection and sequencing rather than resource planning, the analysis can be
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Initiation of clinical trials (years)
Total number of

mAbs

Number of mAbs

discontinued

Number of mAbs

Approved
% completion % success

1980-1982 2 1 1 100 50
1983-1985 9 8 0 89 0
1986-1988 33 29 2 94 6
1989-1991 34 29 2 91 6
1992-1994 41 23 5 68 18
1995-1997 33 12 0 36 0
1998-2000 34 2 0 6 0

All mAbs (1980-2000) 186 104 10 61 9
Murine mAbs 49 34 1 71 3
Chimeric mAbs 23 13 4 74 24
Humanized mAbs 59 15 5 34 25

Table 2.3: Success rates by year and by product

Initiation of

clinical trials

(years)

Total number of

mAbs

Number of mAbs

discontinued

Number of mAbs

Approved
% completion % success

1980-1982 100 50% 100% 100% 100%
1983-1985 89 67% 50% 50% 0%
1986-1988 94 58% 47% 57% 50%
1989-1991 91 64% 40% 29% 100%
1992-1994 68 85% 55% NA NA
1995-1997 36 77% 55% NA NA
1998-2000 6 90% NA NA NA

Murine mAbs 71 77% 52% 45% 33%
Chimeric mAbs 74 86% 40% 80% 100%
Humanized mAbs 34 84% 72% 75% 100%

NA=Not applicable.

Table 2.4: Success rates by transition phase
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simplified by using a single value of DoD ranging from 1 (very easy) to 10 (very difficult). Table 2.2
lists DoD for a set of new product candidates. The reported DoD values are used as follows: (1) The
minimum and maximum of the triangular distribution remain the same as the values shown in Table
2.1 for all the drug candidates; while (2) the most likely value of the distribution is proportional to
DoD. If DoD is one, for example, the most likely value is set equal to the minimum of the triangular
distribution while the maximum remains the same. Conversely, if DoD is 10 the most likely value is
set to the maximum while the minimum remains the same.

The data concerning the example must not be considered in absolute values but represent yet
common features observed in this kind of industrial activities.

2.2.3 Data analysis

Basic data

Duration. From the data related to operation duration for the considered fifteen stages (see
Table 2.1), a triangular distribution has been deduced for representing uncertainty. Let us consider
for instance the FHDP activity with a minimum value of 300, a mid value of 400 and a maximum
value of 500: 9 possible values are generated (taking into account the number of products to evaluate)
from the triangular distribution.

Manufacturing cost. As for duration, data for costs are represented by a triangular distribu-
tion.

Resources. For each stage, there is a limited level of available resources for developing drugs
projects. This means that the number and order in which drugs projects are initiated then condition
the success of a sequence. It is assumed that this constrained resource is renewed after a project has
been treated in a step.

Disease type. Three disease types are considered (I, II and III) in Table 2.2. Disease of type
I involves drugs D2, D3, D6 and D7. Disease of type II is relative to drugs D4, D5, D8 and D9.
Disease of type III only involves drug D1.

Success probability. Success probability represents uncertainty related to every drug in stages
Phase I, II and III. Given that these stages concern trials, a drug can be rejected or returned for its
reprocessing because of inconvenient results in patients. It must be observed that on the one hand,
probabilities for phases I and III do not exhibit a big difference between them and are even identical
for some drugs. On the other hand, phase II success probability is lower than success probability for
phases I and III (this corresponds to the drug test in patients with a disease and outcomes can not
be always as desired or expected).

Capital cost. Capital cost is represented by a triangular distribution. A value for the capital
cost for a drug will fluctuate between its upper and lower limits established by using a triangular
distribution.
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Mature sales. As for capital cost, sales are represented by a triangular distribution to model
the uncertainty: market behavior is not defined or known in advance due to competition between
drugs designed by the same or other companies.

Product dependencies

Product development is generally influenced by the other products considered in the pipeline and
by competitor products Roberts [1999]. In some instances, it may be advantageous to manage
a candidate drug for early development despite unattractive financial and low technical success
probabilities: the gained experience will provide a knowledge base to forecast the success better for
dependent drug candidates later in the product sequence.

Traditionally, four frequently occurring types of dependencies are taken into account:

Financial return dependencies. Competition between similar products reduces the profit for
each one because of a smaller part of market is gained: this is true for products coming either from
the same company or from other ones. This dependency gives a relation for sales taking into account
the quantity of products that will arrive until the stage Mature Sales (MS). For a given sequence for
the products for the same disease, if two drugs arrive until the stage MS, sales for each drug will be
0.85 of the values for sales reported in Table 2.2 for every drug. If three drugs arrive until stage MS,
sales will be 0.75 of values presented in Table 2.2. Finally, if four drugs arrive until stage MS, sales
will be 0.60 of values in Table 2.2(See Table 2.5).

Technical dependency. This kind of dependency modifies the success probability. If the first
drug in the sequence of drugs targeted for Disease I fails, the probability of technical success for all
succeeding drugs decreases by 50%. On the other hand, if the first in the sequence for testing Disease
I succeeds, the probability of technical success for all succeeding drugs for Disease I increases by
10%. It must emphasized that this technical dependency is not quite common in the pharmaceutical
industry and is even a controversial issue from the fruitful discussions with pharmaceutical managers.
This explains why it has not been taken into account for modelling.

Manufacturing cost dependency. Manufacturing cost dependencies occur when the combined
cost of a development activity for two similar drug candidates is less than the sum of the cost of the
individually considered projects. This has been taken into account in this way: For any sequence of
drugs for Disease I, the 1st drug uses full capital shown in Table 2.5, the 2nd drug in the sequence
uses 1/2 of its individual capital, the 3rd drug uses 1/3 of its capital cost, while the 4th drug uses
1/ 4 of its capital shown in Table 2.5.

Resource dependency. Learning effects frequently lead to resource dependencies. A common
example occurs when the development times are reduced when taking into account the experience
gained by developing two functionally similar drug types one after one.

All these dependencies are summarized in Table 2.5.
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Disease Drug Type of dependency

Disease
I

D2, D3,
D6, D7

Financial
dependency

Drug number in the

pipeline

Percentage reduction of

matures sales

2 0.85
3 0.75
4 0.6

Technical
dependency

Percentage that
decreases the probability
of success if the first
drug in a sequence fails

Percentage that
increases the probability
of success if the first
drug in a sequence
succeeds

50 10

Manufacturing
cost
dependency

Number of drugs Proportion of capital

that is used

1 1
2 1/2
3 1/3
4 1/4

Resources dependency Difficulty reduction of 20% due to learning curve experience

Disease
II

D4, D5,
D8, D9

Financial dependency Total market for drugs of disease II is set at 9000 millions dollars

Technical
dependency

Percentage that
decreases the probability
of success if the first
drug in a sequence fails

Percentage that
increases the probability
of success if the first
drug in a sequence
succeeds

50 10

Manufacturing
cost
dependency

Number of drugs Proportion of capital

that is used

1 1
2 1/2
3 1/3

Resources dependency Difficulty reduction of 20% due to learning curve experience
Disease
III

D1
No dependency

Table 2.5: Dependency analysis for the treated example

2.3 Conclusions

This short chapter aims at presenting the typical formulation of New Product Development in a
pharmaceutical industrial context: an example serves for illustration purpose. Basically, three stages
are involved in the life cycle of a pharmaceutical product: discovery, development and commercial-
ization. Our idea is now to use the potential of discrete event simulation to model the series of
decision points along the drug development pathway. For example, at the end of each phase of clini-
cal trials the probability of clinical success resulted in go/no-go decisions. The goal is now to model
the pharmaceutical enterprise portfolio by using the principles of discrete event simulation and this
is examined in Chapter 3. For this purpose, an object-oriented model structure previously developed
for batch plant scheduling and design is extended to embed the case of product management, which
is particularly adequate for reuse of both structure and logic.



Chapter 3

Development of a discrete event
simulator for the NPD process
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.

3.1 Introduction

The goal of this chapter is to model the various paths and the precedence relations between the
activities involved in New Product Development by discrete event simulation principles used in
previous works for batch plant design [Bérard et al., 2003a,b]. The problem of evaluating and
selecting which new products to develop and then of sequencing or of scheduling them is not a trivial
task due to dependencies between products both in the market place and in the development process
itself. Discrete event simulation is a common tool used to understand how a system works and
would work when changes are implemented, without incurring in expensive trials. This technique
has thus been chosen and it must be highlighted that experience has been gained in our research
group about DES for several years (see for instance the work of Bérard et al. [1999] about batch plant
modelling in the pharmaceutical industry). DES development has shown that its internal structure
and its performances were well fitted for the problem under consideration. This is why DES has
been considered as the basic tool for the present work, even if some modifications and adjustments
are necessary to obtain an efficient tool to tackle the NPD pharmaceutical projects of this study.

Some investigations [Blau et al., 2004, Rajapakse et al., 2005, 2006, Varma et al., 2008] used
commercial simulation software tools based on discrete event simulation (CSIM 1, Simulator Ex-
tended Industry Suite V5, GenSight software2, ...) with specific advantages. However, limitations of
graphically based simulators to interact with other applications, has forced us to develop our own
simulators.

This explains our main motivation to use and adapt the simulator previously developed in the
group, taking into account our background on this topics since 1992 (defense of ten PHD thesis,
more than 22 international publications on the subject). The C++/implemented DES can be easily
modified for modelling the NPD problem considered here. This constitutes the first step of a general
framework for managing NPD projects that will consider the integration of this simulation tool in a
more general-purpose simulation-optimization perspective.

This chapter involves three sections:

• The extension of the DES previously developed for batch plant scheduling to the NPD problem
is first presented;

• A typical simulation analysis is then performed using the example derived from [Blau et al.,
2004] involving nine drugs and three target diseases. The drugs are first analyzed independently
via the so-called bubble chart. Then, the interest of simulation is justified for drug sequences.
The influence of capacity limitation is also highlighted.

• Another example is also considered to show the capability of the model to take into account
various situations [Rajapakse et al., 2006] and to demonstrate its interest as a stand-alone
decision aid tool.

1http://www.mesquite.com
2http://www.gensight.com/Project-Portfolio-Management/Overview/Home.htm
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3.2 From batch plant scheduling (BPS) and design to NPD man-
agement

In a DES, a process is described as it evolves with time and changes take place only a finite number
of times, i.e. event occurrence date. The DES was developed using C++ object-oriented language,
according to the approach proposed by Bérard et al. [1999] (Figure 3.1). It must be emphasized that
object-oriented (OO) techniques have received a lot of attention in recent years and the use of OO
techniques are becoming increasingly common. The power of object oriented techniques lie in the
ability to produce "modular" code (known as classes) that can be "easily" modified and reused. The
ability to contain software complexity into classes and to be able to realistically represent entities
from the real world in software makes OO techniques ideally suited to simulation which is inherently
complex.

In Bérard et al. [1999], a four layer framework was proposed based on the following items engine,
event, object, supervisor, the aim being the development of a standard library for the simulator
classes that are general to any case, thus minimizing the task of treating different study cases or
the variants of a given one (i.e. design or scheduling objectives). In this approach, at the lowest
level, the common engine can be found. Initially, the events in the next level are generic events
common to all batch plant simulations: in this case, the definition must be adapted since we have
to consider the whole life cycle of a project related to a product. In the same way, the objects
taken into account present some similarities but differ in their appreciation: for instance, in batch
plant scheduling problems (BPS), material resources are constituted by equipment whereas in NPD
problems, resources may be viewed more globally. In fact, the main differences at this step occur
from a terminology point of view and this can be easily transposed in the NPD formulation (see
Table 3.1).

Figure 3.1: DES Framework.

In what follows, the description of the basic design of the DES and its operation principles are
presented. Following the classical terminology used in object-oriented approaches, the main so-called
objects of the DES will be described. To treat a particular problem, specific objects should be derived
from this basic structure.
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Batch plant scheduling (BPS) NPD project
Product #i Project related to a product #i (PRP #i)

Equipment item #j Resource of a given step #j
Recipe #k Succession of activities #k (also called recipe)

Unit operation of a recipe #l Activity #l

Table 3.1: Terminology in BPS and NPD project problems

3.2.1 Model classes

Following the classical terminology used in object-oriented approaches, the main so-called objects of
the DES are described. The core of the simulator is the Engine, which has two functions: the former
is to order the Events in its Calendar by their occurrence date whereas the latter is to activate them
if the necessary resources are available; if not, it reports the Event to a next date.

As previously mentioned, an event represents a change of the real system at a given time. The
class Event is a basis class from which the different events must be defined. If resources for this
activity are available, the Event is activated; conversely, if resources are not available, the activity
will be scheduled later.

An Event is characterized by its occurrence date, its action over the system and a type that
enables to give priorities when two or more Events have the same occurrence date. As a general rule,
Events which release resources have priority over the others, and when Events have the same type,
the classical FIFO rule (First In First Out) is applied. This will be useful when different projects
compete for the same resources. The Event Class previously developed was generic enough to embed
the NPD formulation.

Engine, Event and Agenda classes are shown in Figure 3.2 with their associated attributes and
methods.

Figure 3.2: Agenda, Engine and Event classes

Equipment class is the basic class for activity modelling. Product Class is another basic represen-
tation in the system (Figure 3.3).

Loading and Release classes inherit from Event class taking into account that activities as loading
and release are carried out before and after a stage is released. A class stage represents either a
facility or a resource with name and duration as attributes (Figure 3.4). The relationship between
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Figure 3.3: Equipment and Product Classes

classes and system activities is represented in Figure 3.5. For a better representation of the links
between the conceptual and simulation models, tasks are identified by a number. More details are
given in Table 3.2. Let us note at that level that NPV corresponds to the classical Net Present Value
criterion.

Figure 3.4: Stage, Loading and Release Classes

The main classes presented in Figures 3.2, 3.3 and 3.4 are the core of the DES; it must be empha-
sized that class Stage (see figure 3.4) can take into account simultaneously several projects when its
capacity is sufficient.
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Figure 3.5: Relationship classes -system activities.
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Section Conceptual model Simulator model Description

1 Molecule lead
from discovery ef1

This stage is the starting activity (launch) of a
sequence of products or a product (release
time). A product not considered in a given
sequence goes to the stage ef5.

2

First human
dose
preparation-
Sample
preparation

cop1, e1,
e2, ed1

Four classes are involved: cop1, is used for
"‘copying"’ a product (this means that a
product needs parallel activities through Classes
e1 and e2 (with associated name, processing
time, capacity, etc...). The class ed1 is the
result of the parallel activities.

3 Phase I
trials-Process
development 1

cop2, e3,
e4, ed2 id. see Section 2

4 Failure during
phase I trials

ep1, ba1,
ef2

Three classes are involved: Class ep1 involves a
success probability which is compared with the
randomly generated value; computation of NPV
is performed in case of failure (if a product class
ba1) and is allocated to class ef2 in case of
success.

5 Phase II trials
Process
development 2

cop3, e5,
e6, ed3 id. see Sections 2 and 3

6 Failure during
phase II trials ep2 ba2 ef3 id. see Section 4

7 Phase III trials
Design plant

cop4, e7,
e8, ed4 id. see Sections 2, 3 and 5

8 Failure during
phase III trials

ep3, ba3,
ef4 id. see Sections 4 and 6

9

First Submission
for Approval-
Prelaunch-Build
plant

cop5, e9,
e10, e11,
ed4

Decomposition principle identical to the
previous sections

10 Prelaunch 1 e12 Only one activity is carried out in e12

11 Prelaunch 2 e13 Idem
12 Prelaunch 3 e14 Idem
13 Matures sales e15 Idem

14 None ba4 ef5 Computation of the total NPV. A product that
has not been considered is allocated to ef5.

Table 3.2: Relationship conceptual-simulation model.
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3.2.2 Additional classes for NPD modelling

Stage class
The Stage class (Figure 3.6) considers the treatment of several products or projects, with a capacity
as attribute and some adequate methods for information management. More precisely, Attribute
Equipment _previous concerns the previous equipment in the path; Attribute TabTempsb is a table
that contains information about product duration by stage. Attribute _capacity is relative to the
capacity of a given stage, viewed here from a financial viewpoint. Attribute TabSortie _sort concerns
data that will be used in the following stages. Specific methods have been implemented for capacity
management when too many projects compete for the same resource.

Figure 3.6: Modified Stage class

StageN class
This class is considered as an auxiliary class where a product goes through before going to the next
step. The attributes and methods are identical to Class Stage (Figure 3.7).

Figure 3.7: StageN and Copying classes

Copying class
This class is another auxiliary class that creates a copy of a product/project that has been imple-
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mented for the treatment of parallel tasks. Basic parameter are involved in this duplication step
(Figure 3.7).

StageDepA class
This class computes the waiting time of a product/project when several parallel tasks are involved
with different operating times. Attributes and methods for this class are almost similar to these of
a basic Stage class (Figure 3.8).

Figure 3.8: StageDep and DistrProbability classes

DistrProbability class
This class considers failure probability for each product. This value is compared with a randomly
generated value. If this random number is less or equal to the failure probability value, the product
will follow the remaining steps. Besides, the product is eliminated (Figure 3.8).

GeneratorRN class
The GeneratorRN class (Figure 3.9) generates random numbers that are used in Distrprobability class
and also manages dependence relationships. Attributes for this class are min, max, maxnom and
nomSeq: min and max define the bounds of the interval for numbers to generate; maxnom attribute
is used for defining the maximum of random numbers to generate; nomSeq attribute defines the
number of sequences to be evaluated by the simulator. Dependence relationships are defined by
products in a sequence and are precomputed by this class before the dynamic process begins. The
randomly generated values are also managed in this class.

NPV (Net Present Value) class
The NPV class (Figure 3.9) computes NPV when either a product goes out the pipeline (use of a
DistrProbability class) or has completed its processing along all the stages. Relevant attributes for
this class are related to cost and market information. The global NPV computation adds all the
NPV of each product contributing to a sequence.

These significant classes have been used for system modelling. The simulation procedure is now
described below.
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Figure 3.9: Generator and NPV classes

3.3 Simulator validation: application to the 9-drug problem of
Blau et al. [2004]

The use of the DES model can be performed in a 3-stage way, as depicted in Figure 3.10:

• At first, it is interesting to study the individual behavior of each drug to evaluate its potential
contribution to Net Present Value;

• Second, this preliminary phase can help to study the potential of each drug by studying the
compromise between risk and potential gain. A so-called "bubble chart" representation is used
for this purpose. Its principle will be explained in what follows.

• Finally, the interest of the model is much more underlined as far as the interactions between
products are studied.

3.3.1 Simulation for each drug

In this subsection and the three following ones, the simulations are carried with resource capacities
as described in Section 2.2.2 and Table 2.1.

Due to failure probabilities at Phase I, Phase II and Phase III trials, corresponding respectively to
steps 4, 5 and 8 of the schematic process shown in Figure 3.5, the problem is by definition a stochastic
one. So each simulation is repeated a large number of times (300), selecting random sampling values
from a uniform random number generator for defining failure or success. If the generated number
is less than a given probability value (see Table 3.5), the drug succeeds at the considered Phase,
otherwise it fails and is stopped. Probability distributions for various economic and risk indicators,
as well as statistical parameters, can be deduced from results gathering. For each drug launched in
the process, the Net Present Value (NPV) is computed by cumulating each of its intermediate value.

The computation of the Net Present Value can be summarized as follows:

NPVdrug =
∑

m

−cm + rm
(1 + i)dm
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Figure 3.10: Summary of the simulation steps

Where, cm is the cost for a given drug m, rm is the revenue by sales for a drug m, dm is the makespan
for a sequence and i is the interest rate considered in this work.

A reward/loss ratio (A) is obtained by dividing the mean reward (mean of positive values of NPV)
by the mean loss (mean of negative values of NPV). This ratio A gives the attractiveness of the
project under consideration and can be used to refine the decision concerning drugs to be launched.

Figures 3.11 to 3.13 represent relative frequency for NPV values for each of the nine drugs. In all
cases, there is a higher frequency for negative values (loss) than for positive values (reward). This
due to the values of failure probabilities (mainly in Phase II) which entails the stop of the drug before
it reaches the mature sales stage.

In Figures 3.11 to 3.13, the mean NPV corresponds to the mean value of NPV obtained from each
of the 300 simulations. When a drug fails at one of the trial phase, its NPV has a negative value.
The only occurrence of a positive NPV corresponds to a product which succeeds at all phases. So
the NPV distribution presents two modes: one for negative NPV, another for positive NPV. This
distribution being bimodal, there is no real solution corresponding to the global mean value. This
is valid for all the treated examples in the manuscript. When considering the mean NPV in the
remaining chapters of this manuscript, we must be aware that this represents only as a statistical
parameter indicating if real solutions tend toward negative or positive values.

To represent the NPV trends more clearly, Figure 3.14 shows the maximal and mean values for
the NPV related to each drug and can be used to compare the behavior of the various drug. As
mentioned above, another item for choosing a strategy is the attractiveness A defined as the ratio of
mean positive NPV value (reward) and mean negative NPV value (loss) reported in Table 3.3. The
ranking (last line of Table 3.4) is established by performing a trade-off between max NPV, min NPV
and ratio A. The best solution is drug 7, followed by drugs 1, 3, 5; drug 4 is the worst solution.
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Figure 3.11: Relative frequencies for products-projects 1, 2 and 3
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Figure 3.12: Relative frequencies for products-projects 4, 5, and 6.
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Figure 3.13: Relative frequencies for products-projects 7, 8 and 9.
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Figure 3.14: Max and Mean values for the NPV by product

Drug 1 2 3 4 5 6 7 8 9
Pos 404 400 358 217 314 323 575 254 250
Neg 102 101 101 100 100 101 102 101 100
A 3.96 3.96 3.54 2.17 3.14 3.20 5.64 2.51 2.50

Table 3.3: Attractiveness for each drug

Drug 1 2 3 4 5 6 7 8 9
Max NPV 455 393 410 259 403 355 717 291 267
Mean NPV -20 -50 24 -20 20 -55 105 -55 -30

A 3.96 3.96 3.54 2.17 3.14 3.20 5.64 2.51 2.50
Rank 2 5 3 9 4 6 1 8 7

Table 3.4: Drug ranking according to simulation

3.3.2 Bubble chart ranking

The bubble chart is a graphical technique used in pharmaceutical field for ranking projects (see Figure
3.15). Each drug is plotted in a bubble format with capital (investment) cost as diameter, according
to its success probability (x-axis) and attractiveness A (y-axis). Obviously, the best solutions are
located onto the upper-right side of the bubble chart, and must have a diameter as small as possible.

The same example as in the previous section is treated here. The ratio A is reported in the last
line of Table 3.3. Assuming independent success probabilities for Phases I, II and III, the overall
success probability is the product of the three previous ones (see Table 3.5). For defining the bubble
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Figure 3.15: Bubble chart for all product- projects

Product Phase 1 Phase 2 Phase 3 Overall probability
1 0.9 0.3 0.9 0.24
2 0.85 0.2 0.85 0.14
3 0.95 0.35 0.95 0.32
4 0.87 0.22 0.8 0.15
5 0.97 0.36 0.99 0.35
6 0.83 0.18 0.86 0.13
7 0.94 0.4 0.94 0.35
8 0.86 0.2 0.88 0.15
9 0.98 0.34 0.92 0.31

Table 3.5: Success probability by product

size, the middle value of the capital cost is used in this case according to Blau et al. [2004]. The
capital cost, computed following Blau et al. [2004], related to each drug is reported in Table 3.6.

Clearly, the bubble chart shows two groups of solutions: the good ones constituted by drugs 3, 5,
7 and 9, the bad ones involving drugs 2, 4, 6 and 8 and an intermediate one drug 1.

Except for rank one, where it is difficult to conclude among drugs 7, 5 and 3 since they have
practically the same success probabilities, drug 7 is better regarding ratio A, but drug 5 and 3 are
better when considering their capital cost. Finally, we have chosen to rank drug 7 in first position
followed by drug 3. The drug ranking is given in Table 3.7, where it can be highlighted that drug 7
is ranked first for the two types of ranking (simulation and bubble chart), followed by the group 3
and 5, the pair 8 and 4 being the worst solutions. So, the two types of ranking procedures give the
same trends.
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Drug 1 2 3 4 5 6 7 8 9
Capital cost (M$) 50 30 45 34 40 60 75 65 62

Table 3.6: Capital cost for each drug

Drug 1 2 3 4 5 6 7 8 9
Rank 5 6 2 8 3 7 1 9 4

Table 3.7: Drugs ranked according to the bubble chart

3.3.3 Weighted attractiveness

In the two previous sections, attractiveness is used as a criterion for ranking solutions. However, this
ratio does not take into account the frequencies of positive and negative values of NPV. That is why
the weighted attractiveness WA defined by (see Table 3.8) can be used:

WA = [(Freq. > 0 values) ∗ (Mean > 0 NPV )]/[(Freq. < 0 values) ∗ (Mean < 0 NPV )]

The ranking according to simulation (established by performing a trade-off between max NPV,
mean NPV and ratio WA) is reported on the last line of Table 3.9. The best solution is drug 7,
followed by drugs 3, 1, 5; drug 4 is the worst solution. The rankings with ratios A and WA only
differ for drugs 1 and 3 which are permuted.

Drug 1 2 3 4 5
Pos-Freq 404 0.24 400 0.13 358 0.30 217 0.16 314 0.32
Neg-Freq 102 0.76 101 0.87 101 0.70 100 0.84 100 0.68

WA 1.24 0.59 1.52 0.41 1.48
Drug 6 7 8 9

Pos-Freq 323 0.13 575 0.33 254 0.16 250 0.30
Neg-Freq 101 0.87 102 0.67 101 0.84 100 0.70

WA 0.48 2.79 0.48 1.07

Table 3.8: Weighted attractiveness for each drug

The new bubble chart is presented in Figure 3.16 with ratio WA instead of ratio A. For the best
solutions 7, 3, 5 and 9, the two charts are globally the same. Chart 3.16 exhibit more concentrated
worst solutions than in the previous case. The ranking reported in Table 3.7 is still valid when ratio
WA is used.

Drug 1 2 3 4 5 6 7 8 9
Max NPV 455 393 410 259 403 355 717 291 267
Mean NPV -20 -50 24 -20 20 -55 105 -55 -30

WA 1.24 0.59 1.52 0.41 1.48 0.48 2.79 0.48 1.07
Rank 3 5 2 9 4 6 1 8 7

Table 3.9: Drug ranking according to simulation and weighted attractiveness
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In conclusion, it can be emphasized that even if the weighted attractiveness ratio gives more
accurate information, ratio A and WA lead to the same conclusions concerning the drug ranking of
the considered example both by simulation and bubble chart.

Figure 3.16: Bubble chart according to weighted attractiveness

3.3.4 Sequence simulation

Ranking with positivity probability

Contrary to the two previous cases where only one drug was released into the pipe, this section is
related to sequence simulation, where a sequence is defined by a set of drugs launched in a given
order into the pipe. The ten sequences of Table 3.10 were randomly defined. For each row of this
table, every number is the launching rank; a zero means that the drug is not launched. Let us note
that sequence 3 involves drug 7, the best one according to the previous studies in "pole position". In
sequence 4, the two best solutions 7 and 3 are in positions 1 and 2. As in the two previous studies,
each simulation is repeated 300 times, selecting random sampling values from a uniform random
number generator for defining successes or failures.

Sequence P1 P2 P3 P4 P5 P6 P7 P8 P9
1 6 0 4 7 1 0 5 3 2
2 3 9 4 7 1 8 5 6 2
3 5 2 7 8 3 6 1 4 9
4 4 0 2 0 6 5 1 0 3
5 4 1 0 0 0 2 3 5 6
6 4 2 1 3 5 0 0 0 0
7 5 0 4 0 2 3 6 1 0
8 2 3 0 7 1 6 0 5 4
9 1 0 0 0 4 5 0 3 2
10 1 0 3 0 4 0 6 2 5

Table 3.10: Sequences to consider



54 Development of a discrete event simulator for the NPD process

For each sequence, frequencies by drug and by phases of the pipe are displayed in Figures 3.17 to
3.20. The higher failure frequencies are obtained for stage 2. stages 1 and 3 have frequencies located
in the same range of values. This is due to the success probability values which are quite the same
for Phase I and III, while the success probability of Phase II is much lower (see Table 3.5).

The mean for the NPV related to each sequence is plotted in Figure 3.21. Another measure of
performance commonly used is constituted by the positivity probability defined by the number of
times the NPV was positive divided by the total number of runs; it is reported in Table 3.11. The
ranking of sequences (see Table 3.12) is established by performing a trade-off between mean NPV
and positivity probability. The best solutions are sequences 4, 7 and 10, and the worst are sequences
2 and 9.

Sequence 1 2 3 4 5 6 7 8 9 10
PP 0.40 0.35 0.38 0.42 0.33 0.35 0.36 0.35 0.38 0.40

Table 3.11: Positivity Probability (PP)

Sequence 1 2 3 4 5 6 7 8 9 10
Rank 5 10 7 1 8 4 2 6 9 3

Table 3.12: Ranking of the ten sequences

The best solution (sequence 4) involves drugs 7 and 3 in the first and second positions. These
solutions are now identified as the best ones, when drugs were studied individually. On the other
hand, sequence 7 where drug 8, one of the worst solution identified in the previous studies is in
the pole position, in second rank. So it seems difficult to correlate the sequence performances with
the ones of each drug. To refine this conclusion, two other sequences (7, 3, 1, 5) and (6, 9, 8, 4)
corresponding to the best and worst results from individual studies were simulated. For sequence
11 (7, 3, 1, 5), the mean NPV and the positivity probability are respectively 569.58 M$ and 0.62;
the results for sequence 12 (6, 9, 8, 4) are -121.19 M$ and 0.23. The ranking of the 12 sequences is
reported in Table 3.13. Concerning the positivity probability, sequence 11 gives the best result and
sequence 12 the worst one. From the NPV, sequence 12 arrives in last position, while sequence 11
has the fourth rank. With regard to the two items, sequence 11 can be classified in third position
with sequence 10, and sequence 12 in the last position. As a conclusion, it can be emphasized that
when a sequence involves drugs with good (respectively bad) individual performances, its ranking is
good (respectively bad).

Sequence 1 2 3 4 5 6 7 8 9 10 11 12
Rank 6 11 8 2 9 5 3 7 10 4 1 12

Table 3.13: Sequence ranking
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Figure 3.17: Relative frequencies for sequences 1, 2 and 3.
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Figure 3.18: Relative frequencies for sequences 4, 5 and 6.
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Figure 3.19: Frequency for sequences 7, 8 and 9
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Figure 3.20: Frequency for sequence 10

Figure 3.21: Mean values for the NPV by sequence.
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Ranking with Weighted Attractiveness

As in the previous case, the weighted attractiveness (WA) (see Table 3.14) is used instead of positivity
probability (PP) for ranking sequences. Only three sequences according to the previous ranking are
studied: the best one (4), a good one (11) and the worst one (12). The ranking of sequences is now
established by performing a trade-off between mean NPV and WA. Obviously, the ranking remains
the same.

Sequence 4 11 12
Pos-Freq 2046 126 1398 186 978 69
Neg-Freq 301 174 862 114 449 231

WA 4.92 2.65 0.65

Table 3.14: Weighted attractiveness for each sequence

3.3.5 Conclusion

On this example, the DES gives correct trends, but a strict comparison with the solutions obtained
by Blau et al. [2004] was not able to be carried out as a result of the lack of some data in this article.

Concerning the release of only one drug into the pipe, the simulation with statistical indicators
like mean NPV and attractiveness gives the same results as the bubble chart ranking method either
with attractiveness or weighted attractiveness.

When sequences of drugs are launched into the process, the mean NPV can be considerably
increased compared to the one obtained for only one drug (see Figures 3.14 and 3.21). However, the
NPV may vary strongly from a sequence to another (Figure 3.22). Sequences are ranked according
to two pairs of indicators (mean NPV PP) and (mean NPV WA): the obtained results are identical.
Sequences with all the drugs launched (2 and 3) give bad results, and the best ones are obtained for
sequences 4, 7, 10 and 11 involving respectively 6, 6, 6, and 4 drugs. Furthermore, when a sequence
involves drugs with good (respectively bad) individual performances, its ranking is good (respectively
bad).

Taking into account the combinatorial nature of the problem, all the sequences cannot be exhaus-
tively evaluated. As it is shown in Chapter 5, there are 951,744 potential solutions for the problem
under consideration. If each sequence is simulated 300 times, requiring a mean CPU time of 10
seconds, the total CPU time for an exhaustive enumeration would be 2700 days! So, the only way
to obtain optimal or quasi-optimal solutions is to implement efficient scanning algorithms, as it is
presented in Chapter 5.

3.4 Resource capacity management

For analyzing the impact of changing resource capacities at each stage of the system, two cases are now
considered. First, the case which will be considered throughout this work unless other conditions are
explicitly mentioned considers a limited capacity by stage (see section 2.2.2): resource is reallocated
only once a drug gets out from the stage; this study has been carried out in the previous section. In
the new case, there is no limited capacity for stages (unlimited capacity). As in the previous cases,
the simulations are repeated 300 times.
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First the sequence (1, 2, 3, 4, 5, 6, 7, 8, 9) is launched in that order into the pipe. For the sake
of illustration, a particular sequence was selected amongst the 300 sequences simulated. The results
are ported in Figure 3.22. Only two drugs (1 and 9) completed all the processes with positive NPV.
In the Gantt chart located on the top, some spaces between tasks represent waiting times for an
available resource before going to the next step. Drug 9 being launched in the last position, its
waiting time is the most important because some processing steps are occupied by drugs launched
before, so its makespan is the highest one. The NPV of this solution is M$ -335.25, with a mean
makespan of 3733 days.

The same sequence was studied again without limitation on resource capacity (see Figure 3.23).
In that case, drugs do not wait for a resource considering its capacity. As shown on the Gantt
chart, four drugs (1, 5, 7 and 9) have now positive NPV values. Because of unlimited resources, the
makespan globally decreases. The new NPV of this solution is M$ 113.57, with a mean makespan of
3100 days. Obviously, performances increase when constraints are relaxed.

Figure 3.22: Simulation with capacity constraints

A statistical analysis is now performed on sequences 4, 11 and 12 defined in the previous sub-
section (the best one, a good solution and the worst one), and sequence 13 defined by drugs 1, 2, 3,
4, 5, 6, 7, 8, 9 launched in this order. The results obtained from 300 simulations with and without
limitations on capacities are respectively reported in Tables 3.15 and 3.16, where for each sequence:

• Mean NPVpos in the mean value of positive NPV;

• Npos is the number of positive NPV obtained;

• Mean NPVneg in the mean value of negative NPV;

• Nneg is the number of negative NPV obtained;
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Figure 3.23: Simulation without capacity constraints

Sequence MeanNPVpos Npos MeanNPVneg Nneg MeanNPV PP
4 2046 126 -301 174 685 0.42
11 1398 186 -862 114 539 0.62
12 978 69 -449 231 -121 0.23
13 1040 101 -606 199 -52 0.33

Table 3.15: Results with capacity limitation

• Mean NPV is the global mean, computed for all negative and positive values of NPV;

• PP is the positivity probability defined in sub-section 3.3.4.

It can be observed in Tables 3.15 and 3.16 that when the system becomes unconstrained, pos-
itive terms (NPV and frequencies) and negative NPV globally increase while numbers of negative
NPV decrease. The mean NPV and the positivity probability increase too, except for the last case
concerning the positivity probability. With regard to the variations of all these terms, it can be em-
phasized that limitations on system capacity plays an important role on its performances. However,
the unlimited capacity does not change sequence ranking.
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Sequence MeanNPVpos Npos MeanNPVneg Nneg Mean NPV PP
4 2120 144 -280 156 872 0.48
11 1512 216 -840 84 853 0.72
12 1048 105 -422 195 92 0.35
13 1240 87 -483 213 17 0.29

Table 3.16: Results without capacity limitation

3.5 Simulator Validation. Application to Rajapakse et al. [2006]
problem

3.5.1 Problem description

The case study is an adaptation of the example presented in Rajapakse et al. [2006]. It involves
a portfolio of six potential monoclonal antibodies (MAbs) that are ready for clinical development.
Monoclonal antibodies are nature’s biological warheads, able to target and help eliminate foreign or
abnormal agents from the body.

The goal is to use again the discrete event simulation to model the series of decision points along
the drug development pathway. In this new example, at the end of each phase of clinical trials,
the probability of clinical success results in go/no-go decisions. Further decision points include those
made at each manufacturing stage which could be carried out in-house or by a contract manufacturer
(CMO, contract manufacturer organization); this was determined as a function of the available
capacity at a particular time. Figure 3.24 shows the main decisions and the options available for a
drug process development, established from the work of Rajapakse et al. [2006]. Even if the CMO
option is considered, the model is simpler than in the example of Blau et al. [2004]. The main
activities, Phase I, Phase II and Phase III, are involved but a delay and a failure due to technical
reasons are added. So, before stage Phase I, a delay in material deliverance is considered, followed
by the clinic trials for finalizing with a failure probability or transition between Phase I and Phase
II for the outcomes from the Phase I trials. These activities are repeated for the Phase II but after
the transition, a failure probability is considered. This failure is due to technical reasons and is
considered only in this part of the system. For Phase II, a delay in material deliverance, Phase II
trials and a transition probability are considered. Another failure probability is taken into account;
it is related to the fact that a drug must be approved before arriving to the market by the related
department of public health. A set of potential products are given, each of which must undergo a set
of testing tasks. Each task has an associated duration, cost, and probability of success. Given the
income for each product as a function of the time of product introduction, the problem is to model
tasks scheduling while computing the traditional Net Present Value (NPV) economic criterion.
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Figure 3.24: General diagram of the drug development process.

3.5.2 Project management by Discrete event simulation

For implementing the DES, the relationships between the classes and system activities are shown in
Figure 3.25. Table 3.17 presents general information about the six drugs in the portfolio that are
ready for clinical development.
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Figure 3.25: Relationship between classes-system activities.

Drug candidate MAb type Market share Uncertainty
A Chimeric High Medium
B Humanised Low Very low
C Chimeric Medium Medium
D Murine Very high High
E Chimeric Low Medium
F Chimeric Low Low

Table 3.17: General information about drugs in the portfolio

3.5.3 Problem data

Given the finite level of resources available, the simultaneous development of the six products can
not be carried out. The interest of the simulation approach is to provide decision-makers with an
explicit view of the best product mix in order to satisfy performance indicators. Probabilities were
assigned to reflect the level of uncertainty related to the considered drugs (see Table 3.17). They
are representative of the kind of information available from experts in the pharmaceutical industry.
The probability distributions assigned to key risk factors for drugs relevant with differing levels of
uncertainty are given in Table 3.18.

The phase transition probabilities reported in Reichter [2001] from a large data collection and
analysis for 186 antibodies entering clinical studies were considered for this case study and are shown
in Table 3.19.

The probability of failure due to technical reasons was set again according to the uncertainty level
assigned to a particular drug candidate (Table 3.20). Drug B was modeled as a new indication for
an existing drug and hence there was no technical uncertainty associated with it.
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High uncertainty drug Medium uncertainty drug Low uncertainty drug
Value Probability Value Probability Value Probability

Ph I Development time
(Months)

12 20 9 20 6 10
18 30 12 50 9 70
24 50 15 30 12 20

Ph II Manufacturing
time (Months)

12 20 9 20 6 10
18 40 30 30 9 70
24 30 50 50 12 20

Ph III Clinical trial
time (Months)

18 20 12 20 12 10
24 30 18 50 15 70
36 50 24 30 18 20

Market manufacturing
cost (COG) ($ g-1)

750 10 1125 30 1200 20
1000 20 1500 50 1600 70
1250 70 1875 20 2000 10

Product yield (%)
30 40 30 30 30 10
50 30 50 50 50 20
70 30 70 20 70 70

Delay in material
delivery (Months)

0 20 0 50 0 70
3 30 3 30 3 20
6 50 6 20 6 10

Table 3.18: Risk factors and probability distributions for drugs with levels of uncertainty

Monoclonal
antibody type

Phase I to II
(%)

Phase II to III
(%)

Phase III to
review (%)

Review to
approval (%)

Murine MAbs 77 52 45 33
Chimeric MAbs 86 40 80 100
Humanised MAbs 84 72 75 100

Table 3.19: General information about drugs in the portfolio

Drug
candidate

Probability of failure due to
technical reasons at Phase III (%)

Market value
($M)

A 20 523
B 0 427
C 10 410
D 30 1029
E 5 31
F 15 49

Table 3.20: General information about drugs in the portfolio
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Three scenarios are considered based on level of resources for drug development (see Table 3.21).
Scenario 1 considers all six drugs in the portfolio and unlimited levels of resources, thus establishing
a base case against which to compare the results from resource-constrained simulations. Next, two
resource levels of 500M$ and 750M$ were defined as constraints with a lower number of drugs to be
developed.

All the considered sequences are presented in Table 3.22 where 20 sequences are related to three
drugs and 15 to four drugs and only one to six products. For each sequence number 1 indicates a
drug present in the sequence and 0 indicates a drug absent in the sequence.

Resource level (M$) Number of drugs per
sequence

Number of possible
sequences

Unconstrained 6 1
500 3 20
700 4 15

Table 3.21: Resources levels and drugs in the portfolio

Sequence
Product 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
B 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0
C 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1
D 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1
E 0 0 1 0 0 1 0 1 0 1 0 1 1 1 0 1 1 0
F 0 0 0 1 0 0 1 0 1 1 0 0 0 0 1 1 0 1

Sequence
Product 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

A 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1
B 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1
C 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1 1
D 0 1 1 0 0 1 1 0 1 1 0 1 1 1 0 1 1 1
E 1 1 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1
F 1 1 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 1

Table 3.22: Sequences considered for simulation

3.5.4 Simulation results

As in the previous cases, each sequence simulation is repeated 300 times, where successes or failures
at trial phases are determined by generating random values. The economic objective function is the
mean NPV computed over the 300 simulations. Besides this criterion, Rajapakse et al. [2006] define
two other indicators: the former Risk1 is the frequency of negative NPV obtained by simulating
300 times each sequence (it is the same type of indicator than the positivity probability defined at
section 3.3), and the latter Risk2 is the standard deviation of the NPV. The results obtained for the
36 sequences defined in Table 3.22 are displayed in Figure 3.26 (respectively 3.27) for the pair of
objectives (NPV-Risk1) (respectively, NPV-Risk2).
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Figure 3.26: Simulation outcomes for ENVP Risk1.

Sequence Drug ENVP Risque1
5 A C D 247.28 0.231
2 A B D 227.63 0.224
36 All products 74.29 0.542

Table 3.23: Sequences with ENPV and Risk1

For objectives (NPV-Risk1), two sequences of three products are particularly attractive for the
decision maker: sequence 5 (A, C, D) and sequence 2 (A, B, D). Furthermore, Figure 3.28 shows
that diversifying the portfolio is not recommended for generating profits: sequences with four, five
and six drugs exhibit globally low performances. For illustration, NPV and Risk1 are reported in
Table 3.23 for the two best sequences (2 and 5) and one worst, sequence 36, with six products. This
behavior can be explained by the high number of product failures at trial phases, which is directly
linked to the number of products reaching the commercialization phase.

For a given risk (Risk1 or Risk2), Rajapakse et al. [2006] define the so-called ’Efficient Frontier’,
which is a set of preferred solutions. The Efficient Frontier is made up by sequences located on the
left frontier of the set of points of the graphs NPV vs. Risk. This is a set of solutions with minimal
risk. For Risk1, the two first elements of the Efficient frontier are sequences 5 and 2. For Risk1,
sequence 5 has the best NPV but a higher risk than sequence 2.

The interpretation of Figure 3.27 is less easy. In the studied example, the Efficient Frontier contains
four sequences, they are listed in Table 3.24.

In Rajapakse et al. [2006] work, solutions belonging to the Efficient Frontier for Risk2 are 1, 2, 12
and 13 (see Table 3.25). Sequence 2 has the highest NPV but the highest Risk1 too. On the other
hand, sequences 12 and 13 present the lowest NPV and Risk1. The sequence 1 shows intermediate
values for NPV and risks. All these sequences are constituted of three drugs.
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Figure 3.27: Simulation outcomes for ENVP Risk2.

Sequence Drug NPV Risk2
5 A C D - 247.28 74.86
8 A D E - 188.96 57.57
27 A C D E 145.43 52.13
29 A C E F 16.58 44.9
36 All products 74.29 54.28

Table 3.24: Sequences on Efficient Frontier

For results from the DES developed in this work for the same system, the solutions on the Efficient
Frontier are sequences 5 and 2 (Table 3.23) for Risk1, with 3 drugs per sequence. Considering Risk
2 (Table 3.24), sequences containing three and four drugs are located on the Efficient Frontier.
Sequences with three drugs are riskier but with a better NPV. The sequence with six drugs is one
of the worst taking into account either Risk1 or Risk2. The same conclusions were obtained in
Rajapakse et al. [2006] work.

Results from Rajapakse et al. [2006] and from this work are constituted mainly of three antibodies.
Difference in drugs between solution sequences is due to uncertainty in values considered for each
antibody. For example, for drug D with the best value for sales (Table 3.20), uncertainty for its
development is considered as high (Table 3.17), while for drug B uncertainty is defined as very low,
but sales are at least two times lower that drug B.

According to Rajapakse et al. [2006], Risk2 for a sequence is the standard deviation of NPV
computed over the 300 simulations. However, as indicated in Section 3.3, the population being
bimodal, if the global mean value does not correspond to existing sequences, it can be nevertheless
used as a statistical indicator. A statistical interpretation of the global standard deviation is more
difficult to carry out. The global standard deviation always takes very large values because it takes
into account all the positive and negative terms, whose range is important. So, conclusions obtained
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Figure 3.28: Number of products reaching the market.

Sequence Antibodies
1 ABC
2 ABD
12 BCE
13 BCF

Table 3.25: Sequences on Efficient Frontier for Risk2 [Rajapakse et al., 2006]

from Risk2 can be unreliable. It would have been more judicious to use a weighted mean (by the
number of values) of NPV corresponding to positive and negative values.
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3.6 Conclusions

In the first part of this chapter, a Discrete Event Simulator (DES) previously developed in C++ in
our research group for Batch Plant Scheduling (BPS), is adapted to the New Product Development
(NDP) problem considered in this study. C++ programming has the ability to produce, with the
notion of class, modular code that can be easily modified. Among the four layers of the DES, layers
’Engine’ and ’Events’ are the same for the two types of problems. However, some existing objects
and classes must be adapted to the NPD problem, and more specific classes have to be designed.

Then, the DES is evaluated on a recently published work concerning the portfolio management
of nine drugs for treating three diseases, four drugs for disease I, four drugs for disease II, and only
one for disease III. At least one drug per disease must be produced. In all the numerical studies, the
problem being by definition stochastic, each simulation is repeated a large number of times (300),
selecting random sampling values from a uniform random number generator for defining failure or
success for drugs at trial phases. In this evaluation section, the simulations are carried out with
limitation on resource capacities as defined in Chapter 2. On this example, the DES gives correct
trends, but a strict comparison with the solutions obtained by Blau et al. [2004] was not able to be
performed as a result of the lack of some data in this article.

First, each of the nine drugs is launched alone into the pipe in order to evaluate individual per-
formances by means of three ranking methods. The first one is based on the mean NPV and the
attractiveness A defined as the ratio of mean positive NPV to mean negative NPV. Then, the classical
bubble chart ranking commonly used in pharmaceutical field, is implemented. Each drug is plotted
in a bubble format, with attractiveness vs. success probability, the diameter of a given bubble being
its investment cost. Previous both studies are performed again, by using the weighted attractive-
ness WA instead of A. For computing WA, numerator and denominator of A are weighted by the
number of positive, respectively negative, NPV values. It can be observed that even if the weighted
attractiveness ratio gives more accurate information, ratios A and WA lead to the same conclusions
concerning drug ranking for the considered example both by simulation and bubble charts.

Different sequences of drugs (12) are then investigated. In that case, the mean NPV can be
considerably increased compared to the one obtained for only one drug. However, the NPV may
vary strongly from a sequence to another. Sequences are ranked according to two pairs of indicators
(mean NPV-PP) and (mean NPV -WA), and the results are identical (PP is the positivity probability
defined as the ratio of the number of positive NPV to the total of runs per sequence (300)). Sequences
with all the nine drugs launched together give bad results, and the best ones are obtained for sequences
involving respectively six, six, six and four drugs. Furthermore, when a sequence involves drugs with
good (respectively bad) individual performances, its ranking is good (respectively bad). Taking into
account the highly combinatorial nature of the problem (about one million of sequences), all the
sequences cannot be exhaustively evaluated. So, the only way to obtain optimal or quasi-optimal
solutions is to implement efficient scanning algorithms, as it will be presented in Chapter 5.

All the studies of the present work are carried out under constraint on limitation of resource
capacities. This constraint is relaxed and an example with no limited capacity for stages (unlimited
capacity) is studied for four sequences: the best one, a good solution and the worst one of the previous
section and a last one involving the nine drugs 1 to 9, launched in that order. The Gantt charts
displayed for the last sequence show that some waiting times for an available resource disappear for
the unconstrained problem, leading to better performances concerning both the mean NPV and the
makespan. For the three other sequences, performances also increase when the problem becomes
unconstrained, but the ranking remain the same as in the limited resource capacity case.
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The DES is evaluated again on another recently published work [Rajapakse et al., 2006] concerning
the portfolio management of six monoclonal antibodies. Thirty six sequences involving three, four
and six antibodies are evaluated by simulation (300 runs) and compared on the basis of pair criteria
(mean NPV-Risk1) and (mean NPV-Rik2), where Risk1 is the frequency of negative NPV obtained
by carrying out 300 simulation runs by sequence (it is the same type of indicator as the positivity
probability defined in the previous example), and Risk2 is the standard deviation of the NPV. In
both cases, a sequence with three drugs is the best one and the sequence involving all the antibodies
exhibits bad results.

According to Rajapakse et al. [2006], Risk2 for a sequence is the standard deviation of NPV.
However, as indicated in the Blau et al. [2004] example, the population being bimodal, if the global
mean value does not correspond to existing sequences, it can be nevertheless used as a statistical
indicator. A statistical interpretation of the global standard deviation is more difficult. So a sequence
ranking based on Risk2 can be unreliable.

Finally, it must be emphasized that several criteria, i.e., the Net Present Value of a sequence,
its associated risk (equivalently measured by an attractiveness ratio or by the so-called positivity
probability) and the makespan are important to evaluate a sequence quality and must be considered
simultaneously for decision making.
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Chapter 4

Imprecision modelling with interval
analysis
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4.1 Introduction

Uncertainty, imprecision and multiple criteria are important factors to take into account in decision
making. This applies particularly in the problem of portfolio selection problem, as it typically
involves multiple objective functions (net present value, risk and makespan) including uncertainties
and imprecision in several parameters, as described in the previous chapter.

This chapter is devoted to imprecision modelling involved in the NPD problem. A first solution was
to use interval bounds to model some imprecise parameters associated with a probability distribution
within a Monte Carlo framework. The concept of Degree of Difficulty, the so-called DoD was also
used to reflect the more or less difficulty to carry out a process task. In this chapter, the objective is
to investigate alternative approaches to represent imprecision in order to determine the final strategy
that could be then selected at the optimization step.

This chapter is organized as follows: first, a literature review on imprecision modelling is proposed.
The principles of interval arithmetic that has been studied in addition to a probabilistic method are
then briefly recalled, with a special focus to the operations involved in the implementation within
the DES simulator. Then, typical results are presented and analyzed. Guidelines are then provided
for the optimization phase.

4.2 Imprecision modelling

4.2.1 Introduction

As extensively discussed in Klir and Wierman [1999], uncertainty can be considered by the result of
some information deficiency: the information to form the basis of a certain model may be incom-
plete, imprecise, fragmentary, not fully reliable or vague . . . As a result, these various information
deficiencies are associated with different types of uncertainty, which can be modeled by different well-
established theories. Let us cite for instance classical set theory, fuzzy set theory, probability theory,
possibility theory . . . In the problem considered in this chapter, our analysis is restricted to impre-
cision modelling, which is prevalent in the problem definition and which occurs due to partial lack
of information. Traditionally, two classes of methods of imprecision representation have become im-
portant: probability theory and non-probabilistic uncertainty modelling. The former class attempts
to model uncertain parameters as random variables. The latter class includes interval computation
and fuzzy set theory. The fuzzy theory has indeed been considered as a powerful alternative for sev-
eral years, with many applications in various fields Buckley and Hayashi [1998], Yang et al. [2000],
Kuroda and Wang [1996]: the idea is to quantify uncertain model parameters by using fuzzy num-
bers and to trace the propagation of the uncertainties through the system by using fuzzy arithmetic.
The advantage of this approach over the method of interval computation is to express parametric
imprecision by fuzzy numbers, representing the more or less possible values of some parameters.

4.2.2 Probability methods

According to the theory of probability, the uncertain model parameters are represented by random
variables and quantified by probability density function. The computation of the probability density
function of the model outputs is then performed in a numerical way by using Monte-Carlo methods:
this means that the models are evaluated for a large number of combinations for the parameter
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values, generally randomly according to the predefined distribution. However, the application of
probability theory assumes that historical data exist for each unknown parameter involved in the
process. This may be not true in the case of New Product Development since this phase is by
definition at a preliminary stage. Moreover, probability measures are not well-suited to express the
intrinsic fuzziness of natural language that is used to verbally quantify imprecise information. Yet,
they have been used in the simulation study of the NPD problem. The results have been presented
in detail in the previous chapter.

4.2.3 Interval modelling and fuzzy methods

Interval modelling

Interval modelling is a very popular and elementary non-probabilistic uncertainty model. It is gen-
erally applied in this form:

X = [xl, xr] = {x ∈ R‖xl ≤ x ≤ xr}

Intervals represent an appropriate model to mathematically describe uncertainty in those cases
where only a possible value range between crisp bounds xl and xr is known for the uncertain quantity
and no additional information concerning variations, fluctuations, value frequencies, preferences, etc.
between interval bounds is available nor any clues as how to specify such information, respectively.

The respective limitation of information may be associated with a lack of knowledge, imprecision,
or vagueness.

A sound theoretical basis has been developed for the mathematical treatment of interval-valued
quantities Alefeld and Herzberger [1983], Moore [1966]. This represents the fundamental means for
extending engineering computations to dealing with intervals. Generally, interval analysis connotes
the mapping of interval input quantities Xi to interval result quantities Zj ,

{X1, ..., Xn} → {Z1, ..., Zm}

In this mapping, the dependency between crisp input values xi ∈ Xi and crisp result values zj ∈ Zj
from respective intervals is given by a deterministic algorithm,

f : x→ z, x = (x1, . . . , xi, . . . , xn),

z = (z1, . . . , zj , . . . , zm), xi ∈ Xi, zj ∈ Zj

This deterministic algorithm may be referred to as the mapping model (see Figure 4.1).

The major beneficial feature of interval modelling concerns the enabling of best and worst case
studies in absolute terms at a reasonable numerical cost as a result of the direct search for these cases.
In interval analysis, an envelope is obtained for the results which definitely includes all possibilities
resulting from the full range of input uncertainty.
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Figure 4.1: Interval analysis scheme

This feature further provides a basis for considering coarsely specified parameters in design prob-
lems and for deriving decision margins that are completely verified.

Also, an indication of sensitivities and robustness, respectively, may be gained by evaluating the
width of input and result intervals with respect to one another Moens and Vandepitte [2007]. Al-
together, a variety of useful new insights are obtained via interval modelling within the process of
engineering analysis and design.

A limitation of the interval model is, however, its binary treatment of information. An element
either belongs to the interval, or it does not belong to the interval. A gradual assignment of elements
to the interval or a weighting of elements within the interval, respectively, cannot be accounted for.
Consequently, a degree of confidence that a particular event occurs - as needed, for instance, in safety
assessments - cannot be deduced with the aid of interval quantities alone. However, useful results
can be obtained by including interval quantities in computations based on other uncertainty models.
For example, safety assessments may be extended by an interval formulation of limit states.

The developments in interval modelling represent a sound basis for numerical processing of un-
certainty within the framework of extended and generalized uncertainty models (see Muhanna et al.
[2007], for instance). The formulation of these uncertainty models with a structure that contains the
interval as a component makes the interval model a special case.

Fuzzy set modelling

A direct generalization and enhancement of the interval model is a fuzzy set. This represents an
extension of the interval by a component of gradual assignment; the interval internal values x ∈ [xl, xr]
are assessed or weighted with the aid of membership values µ(x), from a continuous scale. The
semantics of these membership values µ(x), may generally be categorized in three groups to express
similarity, preference, or uncertainty.

This semantics of µ(x) is relevant, for example, in the fields of fuzzy control, regression analysis.

An understanding of membership degrees as preference utilizes a numerical expression of the
intensity of being in favor of the associated elements x of the fuzzy set. The membership values µ(x)
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serves also as the basis for subsequent considerations. An association with possibility theory exists,
insofar, as the membership values µ(x) may be understood as the degree of possibility, with which
the underlying uncertain quantity may take on the associated values x. That is, the membership
values reflect a subjective assessment. They express a degree of subjective confidence that particular
values x actually occur. Also, µ(x) may be understood as the degree of compliance of relevant values
x with an underlying condition for being assigned to the uncertain quantity.

The membership scale is usually normalized with the bounds zero for no membership and unity
for full membership. Specifically, a normalized fuzzy set is described by

X̃ = {(x, µ(x))|x ∈ R, 0 ≤ µ(x) ≤ 1}

The concept of fuzzy sets in its present form was initially formulated about forty years ago (see
Zadeh [1965]), after which considerable developments have been reported and summarized in com-
prehensive books such as Dubois and Prade [1980], Zimmermann [1992], Bandemer and Gottwald
[1995], Dubois and Prade [1986]. In basic mathematical literature, the connection of fuzzy sets X̃i

to produce fuzzy results Z̃i which is referred to as fuzzy analysis

{
X̃1, . . . , X̃n

}
→
{
Z̃1, . . . , Z̃m

}

is solved with the aid of the extension principle. This includes both the mapping model f for
computing result values zi ∈ Z̃j from input values xi ∈ X̃j and a rule for specifying the membership
values of the result values.

In the processing of fuzzy quantities through engineering computations, the original form of the
extension principle has been revealed as being unsuitable for implementation in numerical algo-
rithms. Thus, an alternative method of solution for fuzzy analysis has been developed based on
α-discretization and use of α-cuts. This method yields results equivalent to those from the extension
principle with the application of the min-max operator. For a selected α-level αk ∈ (0, 1] the α-level
set

Xαk = x ∈ X̃|µ(x) ≥ αk,

is obtained from the fuzzy set X̃. If X̃ is a convex fuzzy set, as can generally be assumed in
engineering applications, its α-level are intervals Xαk = [Xαkl, Xαkr] which are assessed in terms of
a minimum membership. Vice versa, this enables the representation of the fuzzy set X̃ of its α-level
sets,

X̃ = {(Xαk, µ(Xαk))|µ(Xαk) = αk,∀αk ∈ (0, 1]}

4.2.4 Selection of the imprecision modelling technique: interval modelling vs.
fuzzy set concepts for NPD problem

As presented in Chapter 2, the NPD process has been modeled via a discrete event simulator.
The integration of fuzzy set theory in discrete event system simulation in order to cope with the
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representation of qualitative uncertainty has been proposed in Nguyen and Le [1997], Grieco et al.
[2003], Azzaro et al. [1997]. In Nguyen and Le [1997], fuzzy and temporal logics are combined to
establish a temporal logic-based simulation system that is capable of handling possibilistic values
of both system state variables and event occurrence times. In Grieco et al. [2003], the problem of
processing fuzzy data within a discrete event simulation process is discussed and new methods, able
to avoid time paradox problems, are proposed.

Previous works in our research team were devoted to the development of a discrete event simulation
model of an industrial production system using fuzzy concepts to represent uncertainties in the
performance of people (time and duration of their intervention). The work has been focused in
semiconductor manufacturing but can be applied to other kinds of batch processes presenting similar
features. A solution to the problems related with the management of fuzzy uncertainty in discrete
event simulation is proposed. Recently, fuzzy uncertain durations have been considered in Zhang
et al. [2005]. The fuzzy ranking measure is merged with an activity scanning simulation algorithm for
performing fuzzy simulation time advancement and event selection for simulation experimentation.

Another investigation concerned batch plant design with imprecise demands modeled by using
fuzzy concepts. A new approach to the design problem was proposed, based on a multiobjective
genetic algorithm, taking into account simultaneously maximization of the net present value and
two other performance criteria, i.e. the production delay/advance and a flexibility criterion. The
methodology provides a set of scenarios that are helpful to the decision maker at product development
stage. Besides, a hybrid selection method Pareto rank-tournament was proposed and showed a better
performance than the classical Goldberg’s wheel, systematically leading to a higher number of non-
dominated solutions Dietz et al. [2008].

Although many types of fuzzy sets [Zadeh, 1965] have been used to describe uncertainties, tri-
angular and trapezoidal fuzzy sets (Figure 4.2) are very often used in the applications (e.g., fuzzy
controllers and managerial decision-making) because the parameters defining them can be easily
specified in linguistic terms [Bojadziev and Bojadziev, 1997]. In our previous works on batch plant
scheduling, trapezoidal fuzzy sets are applied to describe uncertain activity duration.

Figure 4.2: Triangular and trapezoidal fuzzy numbers

Fuzzy ranking problem usually deals with determining the best ordering procedure fitting a fixed
objective. In our work, a ranking algorithm involved in the simulation environment to represent any
feasible system evolution was used.

It must be yet emphasized that data gathering (a four-tuple for each duration) was a hard task
in a production environment. This is all the more true for NPD management problem for which the
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degree of imprecision may be higher. Hence subjectivities in selecting distributions and estimating
related parameters are unavoidable. This explains why only an interval analysis has been performed
and preferred to a fuzzy method. It must be also highlighted that the imprecision through probability
success parameters have not been taken into account in this imprecision analysis.

4.3 Combining discrete event simulation (DES) and interval anal-
ysis (IA)

4.3.1 Introduction

The combination of interval analysis with discrete event simulation to handle subjectivity, vagueness
or imprecision in estimating activity duration and capital costs in the NPD problems is presented
in what follows. In particular, the application to the control of interval-time advancement and
event selection for the simulation experiment of discrete event simulation is described. Illustrations
on the interval analysis (IA) with discrete event simulation and an example that compares the IA
discrete event simulation with the traditional Monte-Carlo based simulation are also provided. IA
discrete event simulation focused on considering time values as intervals instead of crisp numbers. In
other words, processing time and arrival time of entities are influenced by ill-defined uncertainty and
event occurrence is represented by interval analysis. From a theoretical point of view, no difference
exists between classical and interval analysis simulation because only the formalism used to represent
variables (e.g. event occurrence time) changes.

• Initiation of a start event or activation of an activity, where the start time of an activity is
determined; T S(i) = maxj=1,...,JT

A(i, j), where J is the total quantity of the entities (i.e.
resources and logical dependencies) required by activity i; T s is the start time of activity i;
TA(i, j) is the available time of entity j at activity i.

• Determination of the due time of an end event, which should equal the start time of the current
activity plus its activity duration; TEE(k) = T S(i) + D(i), where TEE(k) is the due time of
end event k, recorded in the end event list; D(i) is the duration activity i.

• Simulation advancement and end event selection, that is, the simulation is updated from the
current time to the time of next one or more end events that will happen. The earliest and
the end events that are due at the updated simulation time will be selected for initiation;
m_Now = mink=1,...,KT

EE(k), where m_Now is the simulation time and K is the number of
end events recorded in the end event list.

When intervals are used to represent activity durations, all the times in the above operations
become intervals. Hence the above operations can be expressed in interval arithmetic.

4.3.2 Interval arithmetic

As with fuzzy theory, intervals theory has a well-developed specific arithmetic where main arithmetic
operations are defined on real arithmetic operations and applied to interval bounds.
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Basic operations on intervals

Given a, b ∈ R, where a < b. Then, the subset {x ∈ R|a ≤ x ≤ b} is an interval of real values or
simply an interval that will be represented by X = [a, b] = {x ∈ R|a ≤ x ≤ b}.

Let A = [a, b] and B = [c, d] be two interval numbers. The basic arithmetic operations of addition,
subtraction, multiplication, and division of these two interval numbers are defined as follows:

[A] + [B] = [a, b] + [c, d] = [a+ c, b+ d]

[A]− [B] = [a, b]− [c, d] = [a− d, b− c]

[A]× [B] = [a, b]× [c, d] =

[min (a× c, a× d, b× c, b× d) ,max (a× c, a× d, b× c, b× d)]

[A]÷ [B] = [a, b]×
[1
d
,
1
c

]
si 0 /∈ [c, d]

Max (A,B) = a+ b+ |a− b|
2

Min (A,B) = a+ b− |a− b|
2

4.3.3 Illustration examples

For the sake of illustration, let us consider A = [5, 12] and B = [7, 15]:

Addition (Figure 4.3)

[A] + [B] = [5, 12] + [7, 15] = [5 + 7, 12 + 15]

[A] + [B] = [12, 27]

Figure 4.3: Addition of A and B
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Subtraction (Figure 4.4)

[A]− [B] = [5, 12]− [7, 15] = [5− 15, 12− 7]
[A]− [B] = [−10, 5]

Figure 4.4: Subtraction of A and B

Multiplication (Figure 4.5)

[A]× [B] = [5, 12]× [7, 15] =
[min (5× 7, 5× 15, 12× 7, 12× 15) ,max (5× 7, 5× 15, 12× 7, 12× 15)]

[A]× [B] = [5, 12]× [7, 15] = [min (35, 75, 84, 180) ,max (35, 75, 84, 180)]

[A]× [B] = [35, 180]

Figure 4.5: Multiplication of A and B

Division (Figure 4.6)

[A]÷ [B] = [5, 12]×
[ 1

15 ,
1
7

]
=
[ 5

15 ,
12
7

]
[A]÷ [B] = [0.333, 1.714]

Figure 4.6: Division of A and B
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Maximum

Max (A,B) = (12, 15) = 12 + 15 + |12− 15|
2 = 15

Minimum

Min (A,B) = (5, 7) = 5 + 7− |5− 7|
2 = 5

The DES model has thus been adapted to take into account imprecision modeled by interval
concepts. The main concepts are now presented.

4.4 Extension of the Discrete event simulator for NPD formula-
tion with interval analysis

4.4.1 Duration and cost modeled as intervals

Imprecise data embedded in the NPD problem used in the previous chapter concern, on the one
hand, duration and operating cost for each stage, and mature sales and capital cost for each drug, on
the other hand. All these parameters have been represented by a triangular representation, based on
the experience of pharmaceutical managers; for the second group of parameters related to each drug,
the concept of Degree of Difficulty (DoD) was used to reflect the more or less difficult way to develop
a drug. This DoD was defined based on the work presented by Blau et al. [2004]. Let us recall that it
takes on values ranging from one (low difficulty) to ten (high difficulty). The resources required for a
drug candidate with a degree of difficulty of five represent an average value. The degree of difficulty
is then used to scale the resource cost distributions in a linear fashion. The example which serves
here as an illustration is the 9-case drug portfolio presented and analyzed in detail in the previous
chapter. The aforementioned parameters have been designed as intervals A = [a, b] as follows:

• For duration and operating cost for each stage, the bounds of the interval A have been taken
equal to the average value of the initial data ±4%;

• For mature sales and capital cost for each drug, the bounds of the interval A have been taken
equal to the value deduced from DoD ±4%.

The value of ±4% has been considered first to examine the effect of imprecision propagation along
the pipeline process and to verify that this is not redhibitory with result interpretation and decision
making.

This procedure leads to the following interval parameters relative to drug 1 for the considered
example (see Table 4.1).

4.4.2 Parallel activities

Although the NPD problem is mainly linear, some parallel stages are involved (see the conceptual
model diagram in Figure 3.5 of Chapter 3) for which the following stage can start only when all
parallel stages have finished.
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Drug 1
Stage Interval value for duration (Days) Interval value for cost (M$)
First human dose preparation [384 ,416] [1.9 ,2]
Sample preparation [384,416] [1.9,2]
Phase I [288,312] [76,83]
Process development 1 [768,832] [9.4,10.5]
Process development 2 [768,832] [9.4,10.5]
Phase II [480,520] [76,83]
Phase III [744,806] [190,210]
Design plant [720,780] [10.48,9.5]
FSA [360,390] [19,20]
Built plant [720,780] [59,64]
Prelaunch [96,104] [47,52]
Launch I [336,364] [11.4,12.6]
Launch II [336,364] [21,23]
Launch III [336,364] [41,38]
Mature sales [336,364] [50,55]

Table 4.1: Example of interval data design for drug 1

Figure 4.7: Parallel steps with interval durations

Let us consider two parallel stages P1 and P
′

1 and their associated end dates t1 = [a1, b1] and
t
′

1 =
[
a
′

1, b
′

1

]
(See Figure 4.7).

The earliest date t2 at which the following stage P2 can begin can be computed as follows:

t2 = max[(a1, b1), (a′1, b
′

1)] = [max(a1, a
′

1),max(b1, b
′

1)]

The waiting time WT of one parallel item can thus be computed in the following way.

Either,
WT = max (t1, t

′

1)− t1 = max (0, t′1 − t1)

or,
WT = max(t1, t

′

1)− t′1 = max(t1 − t
′

1, 0)
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t1 − t
′

1 = (a1, b1)− (a′1, b
′

1) = (a1 − b
′

1, b1 − a
′

1)

Finally,

WT = max[(0, 0), (a1 − b
′

1, b1 − a
′

1)] = [max(0, a1 − b
′

1),max(0, b1 − a
′

1)]

4.4.3 Net Present Value computation

The computation of the Net Present Value can be summarized as follows:

NPVseq =
∑

drug

∑
m

−(c−m, c+
m) + (r−m, r+

m)
(1 + i)d−m,d+

m

Where,

NPVseq is the Net Present Value of a given sequence
m represents a step of the NPD pipeline relative to a drug

[c−m, c+
m] represents the costs (interval) for a drug at step m

[r−m, r+
m] represents the sales (interval) for a drug at step m

[d−m, d+
m] represents the duration interval for a drug at step m

i is the actualization rate

In this expression,

(1 + i)d
−
m,d

+
m = [(1 + i)d

−
m , (1 + i)d

+
m ]

4.5 Simulation example

The simulation example which serves as a test bench (see Chapter 3) is investigated here in an
interval-based fashion. The objective is to compare the results obtained from both analysis ap-
proaches : (a)- using interval discrete event simulation (b)- using traditional simulation with stochas-
tic parameters. The idea is to see if the interval approach is sound in the NPD problem, meaning that
it does not induce too large uncertainties at the end of the simulation of the whole process, which is
often considered as a major drawback for both fuzzy and interval-based approaches. Consequently,
under such information, it is difficult for the decision maker to conclude.

4.5.1 Ideal simulation for each drug (success probabilities equal to 1)

Some preliminary simulation runs were performed considering a success probability equal to unity at
each critical step of the NPD pipeline (Phases I, II and III). The results are displayed in Figure 4.8
and in Table 4.2. Each bar represents the interval NPV contribution to the global NPV at each step
of the process. It must be highlighted that the spread of uncertainty is highest for the step relative
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Figure 4.8: Interval NPV contribution to the global NPV at each step of the process for each drug

to sales involved at the final stage of the process: this can be explained by the cumulated uncertainty
influence of time and cost at the latest stage of the process.

Drug Phase 1 NPV (M$) Phase 2 NPV (M$) Phase 3 NPV (M$) Mature sales NPV (M$)
1 [-111,-107] [-125,-119] [-168,-159] [343,428]
2 [-110,-105] [-132,-126] [-179,-169] [328,405]
3 [-111,-107] [-119,-113] [-157,-149] [287,380]
4 [-111,-107] [-117,-111] [-154,-146] [157,232]
5 [-110,-106] [-130,-123] [-175,-166] [179,404]
6 [-111,-107] [-121,-115] [-161,-152] [249,350]
7 [-109,-105] [-134,-128] [-182,-171] [382,737]
8 [-110,-106] [-127,-121] [-172,-162] [181,286]
9 [-111,-107] [-114,-109] [-150,-142] [210,251]

Table 4.2: Interval NPV contribution to the global NPV at each step of the process for each drug

The results are also compared with those obtained with the probability approach. The interval
results relative to each phase (I, II, II and mature sales) are positioned with the mean NPV deduced
from the probability approach NPVprob (red dots) (see Figures 4.9, 4.10, 4.11 and 4.12). It can clearly
be observed that NPVprob corresponds approximately to the average value of the interval bounds.
Figure 4.12 also indicates the lower and upper values of the set of all the values generated by the
stochastic approach. The results of the probabilistic approach obtained in the previous chapter are
summarized in Table 4.3.
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Drug Phase 1 NPV (M$) Phase 2 NPV (M$) Phase 3 NPV (M$) Mature sales NPV (M$)
1 -109 -122 -163 384
2 -107 -129 -173 364
3 -109 -116 -153 331
4 -109 -114 -150 193
5 -108 -126 -170 286
6 -109 -118 -156 297
7 -107 -131 -176 550
8 -108 -124 -167 231
9 -109 -112 -146 229

Table 4.3: NPV for 9 drugs obtained from the probabilistic approach

Figure 4.9: Comparison between interval and probabilistic approach for each drug at phase I
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Figure 4.10: Comparison between interval and probabilistic approach for each drug at phase II

Figure 4.11: Comparison between interval and probabilistic approach for each drug at phase III
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Figure 4.12: Comparison between interval and probabilistic approach for each drug at mature sales

4.5.2 Ideal simulation for 10 sequences (success probabilities equal to 1)

In this section, the 10 sequences that have been previously investigated in the previous chapter have
been considered for simulation with interval data. The results are displayed in Figure 4.13, with a
special emphasis to Phases I, II, II and mature sales, where the respective contribution of each drug
to the portfolio of the sequence is illustrated. Such diagrams are imported to detect the major sources
of uncertainty in a given sequence. For example, it can be seen that drug 7 contributes largely to
the uncertainty.

4.5.3 Simulation for 10 sequences with success probabilities

In this section, the simulation of the 10 sequences has been carried out taking into account the success
probability. Since this parameter has not been modeled with an interval, a sampling set of simulations
has been performed. Of course, this hybrid method combining interval and probabilistic approaches
is time consuming, but the objective here is to see if the interval concepts need to be investigated
in more details. As previously, 300 simulations were run. The lower (respectively upper) bound
of the resulting interval was taken equal to the minimal (respectively maximal) value of the lower
(respectively maximal) bounds over the 300 simulation interval values. The results are presented in
Figure 4.14 and Table 4.4. A distinction is performed according to the positive and negative part
of the interval (P and N-intervals), in order to mimic what happens with the bimodal distribution
when considering a probabilistic approach. The same approach as aforementioned is used to build the
two intervals corresponding to a sequence. Let us mention that when an interval overlaps negative
and positive values, it has been allocated to the negative section. A first comment can be made
concerning the mean values obtained from the probabilistic approach. They all are located in the
interval. Figure 4.14 also indicates the average value obtained over all values, either positive or
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Figure 4.13: Evaluation of 10 sequences with an interval-based approach
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Figure 4.14: P-Intervals and N-Intervals for each sequence relative to NPV

negative. For sequence 8, it can be seen that the average is slightly higher that the upper bound
of the so-called positive interval. This situation is not paradoxical since the spread of imprecision
has not been considered equivalent for both methods. A lower spread was considered for intervals in
order to examine the consistency of this approach for NPD problems.

Sequence NInterval for NPV Mean NPV <0 (prob.) PInterval for NPV Mean NPV >0 (prob.)
1 -793 -3 -358 11 1111 911
2 -996 -62 -406 8 1092 926
3 -1009 -34 -447 28 711 1018
4 -704 -4 -267 1 1583 1333
5 -751 -2 -378 38 1619 626
6 -638 -29 -257 126 1242 916
7 -936 -1 -324 1 2870 1342
8 -796 -14 -417 49 1051 1105
9 -634 -4 -351 160 1076 732
10 -900 -84 -282 4 2042 1422

Table 4.4: Comparison between interval-based and probabilistic approaches for 10 sequences with success
probabilities (M$)

From all these simulation results, it can clearly be seen that the propagation of uncertainty along
the pipeline process is too important and disturbs decision making. The interest of the probabilistic
approach is to clearly highlight the two-peaked distribution which is typical of new drug development.
Such information is lacking for the intervalbased approach. Moreover, the concept of risk may be
difficult to appreciate. For all these reasons, the examination of the interval-based approach has not
been more investigated. Even if this result may be considered as negative, we found it important to
report this study since either interval or fuzzy based approaches are attractive candidates to account
for imprecision. At this level of presentation, it must be said that the typical nature of the problem
makes their application difficult.
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4.6 Conclusions

The aim of this chapter was to compare various approaches to model the uncertainty embedded in the
NPD problem. Several levels of uncertainty can be identified: on the one hand, they are associated
with cost and activity durations, on the other hand, they concern the success probabilities involved
at three steps of the NPD pipeline (the socalled Phases I, II and III). Two approaches have been
used, a classical probability approach and an interval-based one. The former implies to carry out
simulations many times to consider a representative sampling of the problem. The latter may be
attractive for the optimization phase of the NPD problem that will be tackled in the following part
of this work. Both approaches have been illustrated by a numerical example which has shown that
the tendencies obtained by the interval-based approach may be difficult to interpret for the decision
maker, due to the growing uncertainty along the pipeline. Besides, the risk, which is taken into
account via failure probability of some stages and which is strongly involved in the NPD process
must be part and parcel of the modelling approach. At this level, it was difficult to model this
parameter by an interval and the repetitive use of simulation with representative sampling was the
adopted procedure to address this issue. All these reasons explain why there is no need to develop
a proper interval-based framework for NPD problem with uncertainty. A more accurate analysis of
an intervalbased optimization method as an outer loop of the discrete event simulation model for
NPD has not been developed. The following chapter now addresses the optimization of the product
portfolio.



Chapter 5

Multiobjective optimization strategies
for the NPD process
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5.1 Introduction

This chapter divided into three sections is particularly devoted to the bicriteria and tricriteria opti-
mization of the New Product Development (NPD) problem. The previous chapters have shown that
the NPD problem involves multi-stage decisions under uncertainty. The recurrent key issues are:

• What are the projects to develop once target molecules have been identified?

• In what order?

• Which is the level of resources to assign?

Chapter 2 was specifically related to the modelling of new product development pipeline. The
proposed modelling approach is based on a discrete event simulator which is particularly useful for
decision criteria evaluation, such as economic and risk metrics. As previously shown, this kind of
problem involves several criteria, the Net Present Value of a sequence, its associated risk (measured
by an attractiveness ratio or by the so-called positivity probability)and the makespan that must
be optimized simultaneously. Section 1 is first devoted to the formulation of the multiobjective
optimization problem. The different optimization methods that may be used are briefly recalled
with a special emphasis to Genetic Algorithms (GAs), that are particularly attractive for treating
this kind of problem, due to their ability to directly lead to the so−called Pareto front. Among the
various GAs, a discussion is then performed to select the most appropriate variant. Section 2 then
applies the selected NSGA II algorithm to the treated case. Section 3 analyses and discusses the test
bench examples and provides with some guidelines for the treatment of new cases.

5.2 Multiobjective optimization problem formulation

Real engineering design problems are generally characterized by the presence of many often conflicting
objectives. This raises the issue about how different objectives should be combined to yield a final
solution and to search for optimal solutions to the considered problem.

5.2.1 General multiobjective optimization problem formulation

A general multiobjective design problem is expressed by next equations.

f(x) = (f1(x), f2(x), · · · , fk(x))T

s.t. x ∈ S

x = (x1, x2, · · · , xn)T

where f1(x), f2(x), · · · , fk(x) are the k objective functions, (x1, x2, · · · , xn) are the n optimization
parameters and S ⊂ Rq ×N r : q + r = n is the solution or parameter space.
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Obtainable objective vectors F (x)| x ∈ S are denoted by Y, so F : S 7→ Y , S is mapped by F onto
Y → F is non−linear and multi−modal and S might be defined by nonlinear constraints containing
both continuous and discrete variables. f∗1 , f∗2 , . . . , f∗k will be used to denote the individual minima
of each respective objective function, and the utopian solution is defined as F ∗ = (f∗1 , f∗2 , · · · , f∗k )T .
It simultaneously minimizes all objectives, it is an ideal solution that is rarely feasible.

Figure 5.1 provides a visualization of the nomenclature. In this formulation, minimize F(x),
lacks clear meaning as the set F(x) for all feasible x lacks a natural ordering, whenever F(x) is
vector−valued. In order to determine whether F (x1) is better then F (x2), and thereby order the set
F(x), the subjective judgment from a decision-maker is needed.

Figure 5.1: Parameter/solution and attribute space nomenclature for a two dimensional problem
with two objectives.

One property commonly considered as necessary for any candidate solution to the multiobjective
problem is that the solution is not dominated. The Pareto set consists of solutions that are not
dominated by any other solutions. A solution x is said to dominate y if x is better or equal to y in
all attributes, and strictly better in at least one attribute. Considering a minimization problem and
two solution vectors x, y ∈ S, x is said to dominate y, denoted x < y , if:

∀i ∈ {1, 2, . . . , k} : fi(x) ≤ fi(y) and ∃j ∈ {1, 2, . . . , k} : fi(x) < fi(y) (5.1)

The space in (Rv ×Nw : v+w = k) formed by the objective vectors of Pareto optimal solutions is
known as the Pareto optimal frontier, P: any final design solution should preferably be a member of
the Pareto optimal set. Pareto optimal solutions are also known efficient solutions when scalarization
methods are used.

If the final solution is selected from the set of Pareto optimal solutions, there would not exist any
solutions that are better in all attributes.

In practice, the decision maker has to select a single solution by searching among the whole Pareto
front, and it may be difficult to pick one "best" solution out of a large set of alternatives. Branke
et al. [2004], Taboada and Coit [2006] suggest to pick the knees in the Pareto front, that is to say,
solutions where a small improvement in one objective function would lead to a large deterioration in
at least one of the other objectives.
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5.2.2 General optimization methods

A great variety of applications, drawn from a wide range of investigation areas, can be formulated
as complex optimization problems. This large number of optimization problems arises from models
that have to enable, for industrial requirements, a truly realistic representation of the system they
account for. Consequently, these models tend to show an increasing sophistication degree that derives
into a higher complexity and, thus, solution difficulties. The complexity of the formulated models
is basically due to the nature of the functions and of the variables involved in the optimization
problem. The former ones may be not only nonlinear, but moreover, they also often prove to be
nonconvex, which is a strongly penalizing characteristic in the typical minimization case. Then, for
a constrained problem, determining the feasible space turns out to be a really difficult task. With
regard to variable nature, most engineering problems consider both continuous and discrete variables,
introducing discontinuities in the objective function and in the search space: those are called mixed-
integer problems. Furthermore, the discrete variables induce an important combinatorial effect: this
point is emphasized with NP-hard problems, for which no algorithm leading to polynomial solution
times is known. In order to face these problems, a significant investigation effort has been carried
out to develop efficient and robust optimization methods. At the beginning, this aim was pursued
specially in the operational research and artificial intelligence areas. But, this trend was subsequently
followed by the process system engineering community, since this one provides a wide number of
applications formulated as complex optimization problems. A typical reference is constituted by
design problems: heat or mass exchanger networks [Zamora and Grossmann, 1998], supply chain
design [Guillén et al., 2006], and multi product [Ravemark and Rippin, 1998] or multipurpose [Dedieu
et al., 2003] batch plant design or retrofitting [Montagna and Vecchietti, 2003]. As a consequence, a
great diversity of optimization methods was implemented to meet the industrial stakes and provide
competitive results. But, if they prove to be well-fitted to the particular case they pursue, the
performance of these techniques cannot be constant whatever the treated problem is. Actually, a
method efficiency for a particular example is hardly predictable, and the only certainty we have is
expressed by the No Free Lunch theory [Wolpert and Macready, 1997]: there is no method that
outdoes all the other ones for any considered problem. This feature generates a common lack of
explanation concerning the use of a method for the solution of a particular example, and usually, no
relevant justification for its choice is given a priori.

Optimization methods could be divided into derivative and non-derivative methods, as illustrated
in Figure 5.2. The derivative or scalarization procedures aim at transforming the multiobjective
optimization problem into a nonobjective one and solving it with classical NLP or MINLP tools.
Non-derivative methods are particularly interesting for general engineering design problems. One
reason is that non-derivative methods do not require any derivatives of the objective function in order
to calculate the optimum. Therefore, they are also known as black box methods where numerical
values of various objectives and/or constraints according to a given entrance vector x, are returned
by computer codes. Another advantage of these methods is that they are more likely to find a
global optimum, and not be trapped on local optima as gradient methods might do insofar as some
degradations in objective functions can be admitted during the search.

For a general design problem, it is hard to express objective functions in terms of the design
variables directly, which is particularly the case in our problem, since the performance functions are
evaluated from a discrete event simulator. Therefore, there is no straightforward way of calculating
the derivatives of the different objective functions.

Another incentive to use non-derivative methods particularly Genetic Algorithms is that they are
well-suited to tackle highly combinatorial problems.
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Figure 5.2: A classification of optimization methods in derivative and non-derivative methods with
examples of some common non-derivative methods.

5.2.3 Multiobjective optimization road map

As mentioned earlier real engineering design problems are usually characterized by the presence
of many conflicting objectives that the design has to fulfill. Therefore, it is natural to look at
the engineering design problem as a multiobjective optimization problem (MOOP). References to
multiobjective optimization could be found in Deb [2004],Fonseca and Fleming [1993],Rowe et al.
[1996],Zitzler and Thiele [1999] and with engineering applications in Deb and Goel [2000],Gen and
Cheng [2000].

As most optimization problems are multiobjective to there nature, there are many methods avail-
able to tackle these kind of problems. Generally, the MOOP can be handled in three different ways,
as shown in Figure 5.3, depending on when the decision-maker articulates his or her preference on
the different objectives, never, before, during or after the actual optimization procedure.

Figure 5.3: Ways to perform multiobjective optimization.

Priori articulation of preference information. These methods involve the most easy and
perhaps most widely used method, i.e. the weighted-sum approach Steuer [1986], goal programming,
ε-constraint approach, lexicographic approaches.

Progressive articulation of preference information. These methods include the STEM-
Method or STEP-method Benayoun et al. [1971], and Steuer method.
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Posteriori articulation of preference information. There are a number of techniques which
enables to first search the solution space for a set of Pareto optimal solutions and present them to the
decision-maker. The big advantages with these type of methods is that the solution is independent of
the decision maker’s (DM) preferences. The analysis has only to be performed one, as the Pareto set
would not change as long as the problem description is unchanged. However, some of these methods
suffer from a large computational burden. Another disadvantage might be that the DM has too
many solutions to choose from. There are however methods that support in screening the Pareto set
in order to cluster optimal solutions, see Morse [1980], Rosenman and Gero [1985].

In the following, a set of approaches is presented which are particularly attractive for engineering
problems.

5.2.4 Genetic algorithms

Genetic algorithms (GAs) and the closely related evolutionary strategies are a class of non-gradient
methods which has grown in popularity ever since Holland [1975] first published their in the early
70’s. The basic idea of GAs is the mechanics of natural selection. Each optimization parameter,
(xi), is coded into a gene as for example a real number or string of bits. The corresponding genes
for all parameters, x1, ..xn, form a chromosome, which describes each individual. A chromosome
could be an array of real numbers, a binary string, a list of components in a database, all depending
on the specific problem. Each individual represents a possible solution, and a set of individuals
form a population. In a population, the fittest are selected for mating. Mating is performed by
combining genes from different parents to produce children, called a crossover. Finally the children
are inserted into the population where some mutations are randomly performed, and the procedure
starts over again, thus representing an artificial Darwinian environment, depicted in Figure 5.4. The
optimization continues until the population has converged (non evolution of statistical parameters
like means, standard deviations, or domination ranks) or until a maximum number of generations
predetermined has been reached.

Figure 5.4: A simple genetic algorithm.

The popularity of genetic algorithms has grown tremendously under recent years and they have
been applied to a wide range of engineering problems Dietz et al. [2005], Yoshikawa and Terai [2005],
Deb and Srinivasan [2005], Altiparmak et al. [2009]. There is also a large variety of genetic algorithms
such as simple GA, steady state GA, GA with multiple populations, GA with crowding and sharing
techniques (see Zitzler et al. [2000] for a complete set of references). The different GAs all have
different features in order to solve various types of problems.

There are also a number of multiobjective genetic algorithms which aim at converging the popu-
lation on the Pareto optimal front instead of on just one single optimal point.
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5.2.5 Short notes on comparisons of the different non-derivative methods

As already mentioned, there is no simple answer to which optimization methods is the best for any
given problem.

In most comparison studies, the way how the different methods have been tuned to fit that partic-
ular problem is a recurrent issue. Comparative studies of different types of non-derivative methods
could be found in for instance Borup and Parkinson [1992], Jansson [1994],Mongeau et al. [1998],
Hajela [1999]. An interesting question that one should keep in mind when comparing different meth-
ods are the times spent on optimizing the different methods before they are compared. If a method
is five percent faster then another one, but takes three times as long to implement and parameterize,
it might not be worth the effort.

GAs seems to be most suitable to handle multi modal function landscapes and to identify multiple
optima in a robust manner. GAs are however associated with a high computational cost.

Since 1975, many evolutionary procedures appear. For example, one can cite genetic algorithms
[Holland, 1975], simulated annealing [Kirkpatrick et al., 1983], artificial immune systems [Farmer
et al., 1986], ant colonies [Dorigo, 1992, Monmarché et al., 2009], particle swarms [Kennedy and
Eberhart, 1995], artificial bee colonies [Nakrani and Tovey, 2004] and artificial neural networks [Ang
et al., 2007]. All these algorithms can be adapted to the multiobjective case, and as it can be observed
in the list of references proposed by Coello [2009]. The two most popular methods in the chemical
engineering field are MOGA (MultiObjective Genetic Algorithm, see Konac et al. [2006]), and MOSA
(MultiObjective Simulated Annealing, see Shu et al. [2004], Smith et al. [2004], Bandyopadhyay et al.
[2008]). None of these two methods is perfect and selecting one depends on the requirements of the
particular design situation considered. From the literature survey [Veldhuizen and Lamont, 2000,
Branke et al., 2004, P.J. Turinsky and and Abdel-Khalik, 2005, Mansouri et al., 2007] it appears that
MOGA is generally preferred to MOSA.

Lately, there has been a large development of different types of multiobjective genetic algorithms,
which is also reflected in the literature. The big advantage of genetic algorithms over other methods
is that a GA manipulates a population of individuals. It is therefore tempting to develop a strategy in
which the population captures the whole Pareto front in one single optimization run. For an overview
on genetic algorithms in multiobjective optimization, see Fonseca and Fleming [1995a]. Literature
surveys and comparative studies on multiobjective genetic algorithms are also given in Coello [1996],
Bäck et al. [1997], Tamaki et al. [1996], Zitzler and Thiele [1999].

Multiobjective genetic algorithms are generally divided in non-Pareto and Pareto based approaches:

Non-Pareto based approaches The first multiobjective genetic algorithm was VEGA (Vector
Evaluating Genetic Algorithm) developed by Schaffer [1985]. VEGA uses the selection mechanism
of the GA to produce non-dominated individuals. Each individual objective is designated as the
selection metric for a portion of the population. However, it is reported that the method tends to
crowd results at extremes of the solution space, often yielding poor coverage of the Pareto frontier.

Fourman [1985] presents a genetic algorithm using binary tournaments, randomly choosing one
objective to decide each tournament. Kurasawe [1991] further developed this scheme by allowing
the objective selection to be random, fixed by the user, or to evolve with the optimization process.
Crowding techniques, dominance, and diploid to maintain diversity in the population were also added.
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All of these non-Pareto techniques tend to converge to a subset of the Pareto-optimal frontier,
leaving a large part of the unexplored Pareto set. Maintaining diversity is a required quality of
multiobjective methods, often implemented, [Harik, 1995, Grueninger and Wallace, 1996].

Pareto based approaches Goldberg [1989] introduced non-dominated sorting to rank a search
population according to Pareto optimality. First, non-dominated individuals in the population are
identified. They are given the rank 1 and are removed from the population. Then the non-dominated
individuals in the reduced population are identified, given the rank 2, and then they are also removed
from the population. This procedure of identifying non-dominated sets of individuals is repeated until
the whole population has been ranked. Goldberg also discusses using niching methods and speciation
to promote diversity so that the entire Pareto frontier is covered.

• In the multiobjective GA (MOGA) presented by Fonseca and Fleming [1995b, 1998] each
individual is ranked according to a degree of dominance. The more population members that
dominate an individual, the higher ranking the individual is given. An individual’s ranking
equals the number of individuals that it is dominated by plus one. Individuals on the Pareto
front have a rank of 1 as they are non-dominated. The rankings are then scaled to score
individuals in the population. In MOGA both sharing and mating restrictions are used in
order to maintain population diversity.

• The niched Pareto GA (NPGA) by Horn and Nafpliotis [1993] is Pareto-based but does not use
ranking methods. Rather, Pareto domination tournaments are used to select individuals for the
next generation. For binary tournaments, a subset of the population is used as a basis to assess
the dominance of the two contestants. If one of the contestants is dominated by a member in
the subset but the other is not, the non-dominated one is selected to survive. If both or neither
are dominated, selection is based on the niche count of similar individuals in the attribute
space. An individual with a low niche count is preferred to an individual with a high count
to help maintain population diversity. Zitzler and Thiele [1999] developed a multiobjective
genetic algorithm called the strengthen Pareto evolutionary algorithm (SPEA). SPEA uses
two populations, P and P’. Throughout the process, copies of all non-dominated individuals
are stored in P’. Each individual is given a fitness value, fi, based on Pareto dominance. The
fitness of the members of P’ is calculated as a function of how many individuals in P they
dominate.
The individuals in P are assigned their fitness according to the sum of the fitness values for
each individual in P’ that dominate them plus one. Lower scores are better and ensure that the
individual spawns a larger number of offspring in the next generation. Selection is performed
using binary tournaments from both populations until the mating pool is filled. In this algo-
rithm, fitness assignment has a built-in sharing mechanism. The fitness formulation ensures
that non-dominated individuals always get the best fitness values and that fitness reflects the
crowdedness of the surroundings.

• The non-dominated sorting GA (NSGA) of Srinivas and Deb [1995] implements Goldberg’s
concepts about the application of niching methods. In NSGA, non-dominated individuals in
the population are identified, given a high initial individual score and are then removed from
the population. These individuals are considered to be of the same rank. The score is then
reduced using sharing techniques between individuals with the same ranking. Thereafter, the
non-dominated individuals in the remaining population are identified and scored lower than the
lowest one of the previously ranked individuals. Sharing is then applied to this second set of
non-dominated individuals and the procedure continues until the whole population is ranked.
Sharing is performed in the parameter space rather than in the attribute space. This means
that the score of an individual is reduced according to how many individuals there are with
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similar parameters, regardless of how different or similar they might be based on objective
attributes.
Over the years, the main criticisms of the NSGA approach have been as follows:

1. High computational complexity of non dominated sorting;
2. Lack of elitism;
3. Need for specifying the sharing parameter.

• All of these issues have been addressed in the improved version of NSGA, called NSGA II.
From the simulation results on a number of difficult test problems, it has been found that that
NSGA II outperforms two other contemporary MOEAs: Pareto-archived evolution strategy
(PAES) [Connor and Tilley, 1998] and strength- Pareto EA (SPEA) [Goldberg, 1989] in terms
of finding a diverse set of solutions and in converging near the true Pareto-optimal set. The
way constraints are treated is briefly recalled in what follows.

Constraints handling Constrained multiobjective optimization is the most common kind of prob-
lem in engineering applications. In general, three kinds of constraints are considered: simple inequal-
ity (≤), strict inequality (<), and equality:

g(x) ≤ c1
r(x) < c2
h(x) = c3

}
⇔
{ constr1(x) = c1− g(x) ≥ 0

constr2(x) = c2− r(x) > 0
constr3(x) = c3− h(x) = 0

(5.2)

where (g, r, h) are real-valued functions of a decision variable x = (x1, . . . , xn) on an n-dimension
decisional search space U , and (c1, c2, c3) are constant values. In the more general case, these con-
straints are written as vectors of the type:

constr1(x) = ((c1− g(x))1, · · · , (c1− g(x))n1) = (contr1(x)1, · · · , contr1(x)n1) ≥ 0,
constr2(x) = ((c2− r(x))1, · · · , (c2− r(x))n2) = (contr2(x)1, · · · , contr2(x)n2) > 0, (5.3)

constr3(x) = ((−|c3− h(x)|)1, · · · , (−|c3− h(x)|)n3) = (contr3(x)1, · · · , contr3(x)n3) = 0,

where n1, n2, and n3 are respectively, the number or inequality, strict inequality and equality
constraints. This constraint formulation implies that each constraint value will be negative if and
only if this constraint is violated. The conversion of Eq. (5.2), that is a classical representation
of constraints set, to Eq. (5.3) representation constitutes the first step of an unified formulation of
constrained-optimization problems. In practice, due to round-off error on real numbers, the equality
constraint constr3 was modified as follows.

constr3(x) = (−|c3− h(x)|1 + ε1, · · · ,−|c3− h(x)|n3 + εn3) = contr3(x) + ε

ε = (ε1, · · · , εn3),∀i ∈ {1, · · · , n3} , εi ∈ R

ε is called a "precision vector" of the equality vector, and takes low values (less than 10−6 for
example). This approximation is not necessary when equality constraint involves only integer or
binary variables.
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From Eq.(5.2) and (5.3), the constraint satisfaction implies the maximization of violated constraints
in vectors constr1, constr2, and constr3. According to Fonseca and Fleming [1998], the satisfaction
of a number of violated inequality constraints is, from Eq. (5.2), a multiobjective maximization
problem. From a theoretical point of view, a constrained multiobjective optimization problem can
be formulated as a two-step optimization problem. The first step implies the comparison of constraint
satisfaction degrees between two solutions, using the Pareto’s domination definition of Eq. (5.1), but
a more simple solution consists in comparing the sum of values of violated constraints only, as in
NSGA II algorithm of Deb et al. [2002], which implies there are no priority rules between constraints.
This step is performed first, before the second one, which concerns the comparison of the objective
function vectors.

Constrained multiobjective optimization is important from the point of view of practical problem
solving, but little attention has been paid so far. Constraint handling was the focus on some previous
works developed in our reseach team [Ponsich et al., 2008].

On four problems chosen from the literature [Deb et al., 2002], NSGA II has been compared with
another recently suggested constraint-handling strategy proved to be more efficient. These results
lead us to apply NSGA II to our problem.

For all these reasons, NSGA II has been chosen as the multiobjective strategy. Its principles are
now recalled.

5.2.6 Principles of Non-Sorted Genetic Algorithm II (NSGA II)

Initially, a random parent population Po of size N is created. The population is sorted based on the
non domination principle. Each solution is assigned a fitness (or rank) equal to its non domination
level (1 is the best level, 2 is the next-best level, and so on). Thus, maximization of fitness is
assumed. At first, the usual binary tournament selection, recombination, and mutation operators
are used to create an offspring population Qo of size N. Since elitism is introduced by comparing
current population with the previously best found non dominated solutions, the procedure is different
after the initial generation. The step-by-step procedure illustrated in Figure 5.5 shows that NSGA II
algorithm is simple and straightforward. First, a combined population Rt = Pt U Qt is formed. The
population Rt is of size 2N. Then, the population is sorted according to non domination.If the size
of F1 is smaller then N, we definitely choose all members of the set F1 for the new population Pt+1.
The remaining members of the population Pt+1 are chosen from subsequent non dominated fronts
in the order of their ranking. Thus, solutions from the set F2 are chosen next, followed by solutions
from the set F3, and so on. This procedure is continued until no more sets can be accommodated.
Say that the set Fl is the last non dominated set beyond which no other set can be accommodated.
In general, the number of solutions in all sets from F1 to Fl is greater than the population size.

To choose exactly population members, we sort the solutions of the last front using the crowded-
comparison operator in descending order and choose the best solutions needed to fill all population
slots. The new population Pt+1 of size N is now used for selection, crossover, and mutation to create
a new population Qt+1 of size N. It is important to note that we use a binary tournament selection
operator but the selection criterion is now based on the crowded-comparison operator. Since this
operator requires both the rank and crowded distance of each solution in the population, these
quantities are calculated while forming the population Pt+1, as shown in the following algorithm.
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Figure 5.5: NSGA II Reproduction
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5.2.7 Combinatorial aspects of the NPD problem and search space definitions

As above mentioned, evolutionary procedures, and particularly GAs, are well-suited for handling
highly combinatorial problems. One of the objectives of the NPD optimization being the determi-
nation of the best sequence of products, this item introduces a very combinatorial aspect in the
problem. For example, as it is shown below, for a simple problem involving three diseases, two drugs
for disease I, two for disease II and one for disease III, it exists 240 possible sequences, and this
number grows up to 951,744 for the problem under consideration.

Given a problem involving MD diseases. For each disease dii (i = 1,MD), ndi therapeutic axis
involving ndi drugs can be considered.

A sequence is thus constituted by the union of sub-sequences of drugs, each devoted to a disease.

A drug related to a disease dii (i = 1,MD) is denoted with p = 1, . . . , ndi . An integer value p is
allocated to each drug in a partial sequence ranging from 1 to ndi .

The drugs can be arranged as follows:

[1, . . . , nd1 ]︸ ︷︷ ︸
M1

[1, . . . , nd2 ]︸ ︷︷ ︸
M2

[
1, . . . , ndMD

]
︸ ︷︷ ︸

MD

Let us consider the set S of all the possible sequences in which the number of products can vary
between MD (at least one drug per disease) and nd1 + nd2 + ndMD and in which all the permutations
can be considered:

Card(S) = (nd1 + nd2 + . . .+ ndMD )!
+
∑nd1 +nd2 +...+ndMD−MD
p=1 (nd1 + nd2 + . . .+ ndMD − p)!× (

∑
i,j,...,k C

i
ndi
Cj
ndj

. . . Ck
ndk

)
i+ j + . . .+ k = nd1 + nd2 + . . .+ ndMD − p;
i ≤ nd1 , j ≤ nd2 , . . . , k ≤ ndMD

The combinatorics related to an example involving drugs A and B for the disease I, C and D for
the disease II and F for disease III is presented in Table 5.1.

The total number of possibilities can be computed as follows:

5! + (4!)(2C1
2C

1
1 ) + (3!)(2C1

2C
1
1 ) = 5! + (4!)4 + (3!)4 = 240

This can be applied to the example which serves as a test bench (see Chapter 2) involving 3
diseases (4 drugs for d1; 4 drugs for d2; 1 drug for d3).

Card(S) = (9)! + (8)!(2C3
4C

4
4C

1
1 ) + (7)!(2C4

4C
2
4C

1
1 + 2C3

4C
3
4C

1
1 ) + (6)!(2C3

4C
2
4C

1
1 )

+(5)!(2C2
4C

2
4C

1
1 ) + (4)!(2C1

4C
2
4C

1
1 ) + (3)!(2C1

4C
1
4C

1
1 )

The total number of possibilities for this example is 951,744. This means that 951,744 possible
portfolio drugs can be considered, taking into account that portfolios with less than 3 drugs are not
possible due to the constraints defined for the model, at least one drug per disease.
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Number of drugs released
5 4 3

5! 4!

A C D E

3!

A C E
B C D E A D E
A B C E B C E
A B D E B D E

Table 5.1: Example of combinatorial calculation

5.3 Implementation of the NSGA II key procedures for NPD
modelling

The methodology used for solving NPD problems involves a two-step approach:

• At the lower level, the previously developed discrete event simulator is used to evaluate the
product development sequences, according to different criteria: Net Present Value, risk metrics
and makespan.

• At the upper level, a multiobjective procedure based on NSGA II principles is used to determine
both the number of drug products in the sequence and the order in which the drugs are released
in the pipeline.

5.3.1 Coding, crossover and mutation

Sequence generation. A sequence is modeled by use of two types of chromosomes with an identical
number of genes, equal to the number of products to consider in the global portfolio.

To each product Pi corresponds an index i which is the chromosome position i:

• The first chromosome Chrom1 is related to the product order in a sequence. Genes are integer
variables, ranging from 1 to the total number of products in a sequence. The value of each
gene may occur only once in the chromosome. For a position i of a gene, its value corresponds
to the product position i in the sequence.

• The second chromosome Chrom2 is only constituted by binary variables, the unity value of
a gene in position i (respectively 0) corresponding to the presence (respectively absence) of a
product.

The chromosome corresponding to each sequence is then obtained by multiplying each gene of
Chrom1 with the corresponding one of Chrom2, locus by locus. It must be highlighted that this
coding is not unique which may introduce some bias in the search. Yet, a more attractive alternative
would be to directly code the chromosomes representing a sequence with variable length in function
of the product number in the sequence. Yet, this approach may lead to unfeasible individuals in the
crossover phase, with a larger size than the one corresponding to the effective number of products in
the sequence. The efficiency of the former procedure has been tested successfully through the studied
examples and has thus been selected in this work. Figure 5.6 illustrates the used coding representing



Multiobjective optimization strategies for the NPD process 107

Figure 5.6: Coding for generating a sequence

a solution that is then evaluated by the simulator for 5 products. Crossover and mutation have been
carried out by specific procedures for each type of chromosome.

Chromosomes dedicated to product order are haploid, yet, all the integer genes must be different,
ranging from 1 to the total number of products in a sequence.

For this purpose, a crossover operator with respect to genotype constraints without clone generation
in the offspring genetic code has been carried out, the so-call MPX operator (Maximal Preservative
X) [Andersson, 1999]. Its principle is recalled below.

MPX Crossover (Maximal Preservative X): This crossover has been proposed by Mülhenbein
[9] and [10] for the traveling salesman problem. This operator’s idea is to insert a segment of parent’s
chromosome in the chromosome of the other parent so that the resulting crossover is closer to his
parents. It is a two-point crossover. The two sons are obtained in a symmetrical manner. The
following example illustrates this process:

The zone of crossover lies between the positions Point 1 and Point 2 .

First, the crossover zone of parent1 (parent2) is copied into son1 (son2).
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Then, the son’s gene that is not in the zone of crossover is completed in the following way:

The ith gene of parent2 is copied on the ith gene of son1.

Otherwise, the ith gene of the parent1 is copied on the ith gene of son1 if it does not create any
duplicates. If the two previous cases cannot apply, the ith gene of the son1 receives a gene of the
crossover zone of the parent2 (the first one is not taken).

Mutation We choose a mutation that randomly permutes two genes of a chromosome. This
operator is applied to the individuals derived from crossover with an adapted rate (preferably 0.5).
Then, we place the new offspring in a new population Pi+1.

For mutation, two steps are involved

1. Two points are calculated

2. The gene value in locus 1 is copied into locus 2, and conversely.
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5.3.2 Optimization parameters

The optimization parameters are presented in Table 5.2.

Optimization parameters
Number of generations 200

Number of individuals per generation 80
Number of simulations per individual 300

Table 5.2: Optimization parameters

5.3.3 Optimization criteria

The optimization criteria are evaluated by use of the previous developed discrete event simula-
tor,involving:

• the global Net Present Value of a sequence, classically computed from the average value of net
present values of the samples. An actualization rate of 15% has been chosen:

f1 :

∑n
j=1

[∑W
i=1 NPV

]
j

n

• the risk, corresponding to the number of times a negative value of NPV is observed among
the total number of samples. Note that risk f2 is the complementary risk on the Positivity
Probability defined in section 3.3:

f2 :

∑n
j=1

[∑W
i=1 NPV

]
j
< 0

n

• the makespan of a sequence is computed from the average makespan of the samples:

f3 :
∑n

j=1(dur)j
n

Where
W → number of drugs in the sequence
n→ number of runs by sequence;
dur →Makespan for a sequence;

5.3.4 Constraints

It must be emphasized that the resource constraints have already been taking into account in the
capacity requirements of each task in the pipeline within the discrete event simulator. The constraints
that are considered here are related to the presence of at least one drug targeting a therapeutic axis.
They can be formulated as follows:∑

mp
di
≥ 1 with p = 1, ..., ndi

For the example, 3 diseases and 9 molecules have been considered.
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• Disease M1 : Products P2, P3, P6, P7 ;

• Disease M2 : Products P4, P5, P8, P9 ;

• Disease M3 : Product P1 ;

This can be illustrated for the example which serves as a guideline for the proposed methodology.
These constraints involve at least one gene value equal to 1 for chromosome Chrom2 in the loci
corresponding to the genes of the products of the given disease gi, that is:

g2 + g3 + g6 + g7 ≥ 1

g4 + g5 + g8 + g9 ≥ 1
g1 > 1

5.4 Result presentation and discussion

The case study results are discussed in the following sections, focusing on analyzing the Pareto front
generated and identifying trends concerning portfolio composition. In all the optimization runs,
unless explicitly mentioned, the initial population was generated randomly.

5.4.1 Introduction

Optimization runs were first carried out in a bicriteria way and then analyzed from a tricriteria
viewpoint.

To take into account the stochastic nature of the Genetic Algorithm, each optimization run is
repeated 5 times (at least). The CPU time of each optimization run is difficult to evaluate, due to
combined effects : first, it depends on the number of products in the sequence, second, the stochastic
aspect of the Monte-Carlo approach used through simulation may lead to premature stop of the
evaluation of a candidate. An optimization run takes around 36 hours for this study with 9 drugs
for 3 diseases.

5.4.2 Bicriteria Optimization Net Present Value-Risk

A first study concerns the Net Present Value and Risk to optimize simultaneously. The general
behavior of the whole population (16000 individuals) is displayed in Figure 5.7.

The improvement of the procedure can be observed through the evolution of the population along
the progression of the algorithm through the generations 40, 80, 120, 160 and 200, as presented in
Figures 5.8 to 5.9 where only an optimization run is illustrated. As might be expected, random ini-
tialization of the population has resulted in a dispersion of the various solutions. It can be seen in this
example that the convergence of the algorithm can be tracked visually. The optimization procedure
was considered to be converged when general progression of the Pareto front was insignificant.

It can be observed that the risk variation lies between 10 and 40%. No solution exists for risk
values greater than 40%. An interesting result concerns the number of drugs in the portfolio :
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Figure 5.7: Whole population for the case Net Present Value/Risk

• For risk values comprised between 12 and 20%, the number of drugs in the sequences is equal
to 4 and the drugs that can be systematically found are [P1 ∧P2 ∧P5 ∧P7] with an NPV value
comprised between 1400 and 1700 M$.

• For risk values between 27% and 39% the number of drugs in the portfolio is equal to 6 and
the products that can be systematically observed are [P1∧P2∧P3∧P5∧P6∧P7] with an NPV
value comprised between 1800 and 2000 M$.

The results are also presented in Tables 5.3 (4 drugs) and 5.4 (6 drugs).

As it can be seen in Figure 5.10, a first comment concerns the Pareto front solution. For all of
them, the higher the risk, the higher the Net Present Value. Second, it can be highlighted that several
solutions (solutions 1, 3, 4) are found several times (P2 ∧P7 ∧P5 ∧P1) and (P2 ∧P7 ∧P5 ∧P1 ∧P1).
Furthermore in the coding of the GA, a sequence is not represented by an unique chromosome.

Although some significant differences are observed above all for the risk criterion, these solutions
can be considered as particularly attractive since the procedure has identified them several times as
Pareto candidates.

The individuals of the first generation are positioned at the lower part of the figure, with a lot
of solutions exhibiting poor performances (high values for risks and negative values for net present
values). This behavior is strongly improved along the generations: for the first generations, it can
be observed that both criteria are improved simultaneously (a gain of 2000 $ for NPV whereas the
worst value for risk is improved by 30%). Then, the risk ratio seems stabilized and from generation
160, only the NPV criterion seems slightly improved till the end of optimization.
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Figure 5.8: Behavior for generations 1, 40 and 80. Net Present Value/Risk case
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Figure 5.9: Behavior for generations 120, 160 and 200. Net Present Value/Risk case
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Solutions NPV
(M$) Risk (%) Makespan by

simulation
Release order

1,3,4 1546-1730 14-20 3721 P2 P7 P5 P1
2 1683 17 4055 P7 P5 P2 P1
5 1507 13 3604 P5 P7 P2 P1
6 1472 12 3721 P5 P2 P7 P1

Table 5.3: Net Present Value and Risk for 4-drug sequences (9 drug-portfolio optimization)

Solutions NPV
(M$) Risk (%) Makespan by

simulation
Release order

1 2206 39 5155 P6 P1 P3 P2 P7 P5
2 2203 37 4878 P6 P2 P1 P7 P5 P3
3 2097 36 4914 P2 P6 P1 P7 P5 P3
5 1900 28 4928 P7 P6 P3 P2 P5 P1
4,6 1887-2077 27-29 4869 P3 P6 P7 P2 P5 P1

Table 5.4: Net Present Value and Risk for 6-drug sequences (9 drug-portfolio optimization)

The union of the Pareto fronts obtained from the optimization runs, can be visualized in Figure
5.10 due to both the stochastic nature of the NPD model (a sequence is evaluated 300 times) and to
the GA. This figure displays the non-dominated individuals obtained from 5 optimizations. In these
figure, are illustrated sequences for 4 drugs (P1, P2, P5, P7) but, other sequences for 4 drugs were
found containing drugs P1, P3, P5 and P9 from later optimizations. That’s why drugs P1, P3, P5,
P9 are evaluated by simulation.

Figure 5.10: Pareto Front. Net Present Value/Risk
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For these two distinct behaviors, the solutions can be distinguished by the product order in the
sequence. A closer look at these solutions indicate that the optimization strategy tends to eliminate
long sequences, reproducing the the so-called attrition phenomenon occurring in NPD problems. It
is also observable that the positioning of the solutions found by NSGA II in the objective space and
even their occurrence within the optimized population is not so intuitive from the bubble charts
presented in Chapter 3 (Figures 3.15 and 3.16). This is due to the complexity that is inherent in the
model of the pharmaceutical drug development pathway and of the interactions between the various
drugs. It is difficult to predict this behavior without the use of a numerical tool. Let us recall that
in Chapter 3 (section 3.3.4), ten sequences randomly selected plus two other ones were simulated
for fixed release orders. For the 12 sequences evaluated by simulation, the same behavior as in the
present section for sequences with four and six drugs, was already observed. The NPV varied from 80
to 685 M$ and the risk was in the range (0.77 -0.38). The efficiency of the genetic algorithm improves
considerably the performances. Another important observation is that strategies with differences in
either drug selection, timing, can compete with similar reward versus risk profiles. Hence it is useful
for the decision maker to identify and closely examine the different options that can yield the desired
return and acceptable risk.

An additional analysis has thus been performed to refine the search for 4 and 6-product sequences.

Since two groups of products for a 4-product sequence are systematically found after the Pareto
front procedure of the last generation, a validation step was performed with these two groups of
products with enumerative simulations of the 24 possible sequences. As it was mentioned before, the
4-drug sequences found by the optimization runs are now evaluated by simulation: they are relative
to sequences involving on the one hand drugs 1, 2, 5, 7 and on the other hand drugs 1, 3, 5, 9.

The objective is to see if the release order for the non-dominated solutions can be found by
simulation. The solutions obtained by simulations are then ranked by a Pareto-sort procedure.

The comparison of both Pareto fronts is illustrated in Figure 5.11. The non-dominated individuals
lie between 1308 and 1726 M$ for the NPV (respectively between 13-23 % for the Risk). These
values exhibit the same order of magnitude as the values for the case of Figure 5.10 (see also Table
5.3). The values for NPV and Risk are presented in detail in Table 5.5. The same sequences as
those previously found for the 9-product optimization are found, which validates the optimization
procedure. This also validates the coding phase, for which an individual is not represented by a
unique chromosome.

Solutions Net Present Value (M$) Risk (%) Release order
1 1726 23 P2 P7 P5 P1
2 1683 17 P7 P5 P2 P1
3 1654 17 P5 P7 P2 P1
4 1581 17 P7 P5 P2 P1
5 1563 15 P5 P2 P7 P1
6 1454 14 P5 P7 P2 P1
7 1308 13 P7 P5 P2 P1

Table 5.5: Net Present Value and Risk for 4-drug sequences (4-drug portfolio simulation)

The same approach was carried out for the P1, P3, P5, P9-drug set.

For sequence 1, 3, 5, 9, the NPV ranges between 573 and 1016 M$ (respectively between 14 and
28% for Risk), as it is reported in Table 5.6. The Pareto fronts for the two 4-drug sequences evaluated
by simulation are displayed in Figure 5.12, where it can be observed that sequence P1, P2, P5, P7
exhibits always better performances according to both criteria, NPV and Risk.
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Figure 5.11: Comparison between 9-drug portfolio optimization and 4 drug simulation (1, 2, 5, 7)

Figure 5.12: Comparison between and 4 drug portfolio simulation (P1, P2, P5, P7) and (P1, P3,
P5, P9)

Optimization with 9-drug sequences in the first generation

An optimization run was then performed in order to study the influence of the number of products
in the first generation. The idea is to initialize the AG with sequences containing exactly 9 drugs, in
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Solutions Net Present Value (M$) Risk (%) Release order
1 1016 28 P9 P3 P1 P5
2 1008 27 P1 P9 P3 P5
3 1000 26 P1 P3 P9 P5
4 968 25 P1 P3 P9 P5
5 953 21 P9 P3 P1 P5
6 892 21 P1 P3 P9 P5
7 851 20 P1 P9 P3 P5
8 819 19 P1 P9 P3 P5
9 801 19 P9 P3 P1 P5
10 791 18 P9 P1 P3 P5
11 764 17 P1 P9 P3 P5
12 689 16 P1 P9 P3 P5
13 679 15 P1 P9 P3 P5
14 657 15 P1 P9 P3 P5
15 612 14 P9 P1 P3 P5
16 573 14 P9 P3 P1 P5

Table 5.6: Net Present Value and Risk for 4-drug sequences.(4-drug portfolio simulation)

order to examine how the number of products evolves naturally along the generations. The results
are presented in Table 5.7 for generations 1, 40, 80, 120, 160 and 200. It can be clearly observed that
the sequences with a low number of products are favored in the optimization process.

Number of drugs in the sequence
Generation 1 2 3 4 5 6 7 8 9

1 0 0 0 0 0 0 0 0 80
40 0 0 0 0 0 11 69 0 0
80 0 0 0 0 0 30 50 0 0
120 0 0 0 0 0 45 35 0 0
160 0 0 0 24 0 31 25 0 0
200 0 0 0 21 0 35 24 0 0

Table 5.7: Evolution of the number of drugs by sequence

Figure 5.13 presents the typical evolution for some generations. It must be observed that the initial
generation exhibits solutions that are not as dispersed as those obtained with a random initialization
procedure. Once more, the optimization procedure seems efficient to improve both criteria. Figure
5.14 displays the Pareto front in which sequences with 4, 6 and 7 products can be found. It must be
emphasized that 7-drug sequences were not found in the previous optimization runs: this may be due
to the fact that the number of generations needs to be increased. Table 5.8 presents the numerical
values of NPV and risk as well as the release order. Finally, the main result here is that the natural
evolution of the algorithm is towards the elimination of long sequences.



118 Multiobjective optimization strategies for the NPD process

.
.
.
.
.
.

.
.
.
.
.
.

Figure 5.13: Evolution for the optimization Net Present Value/Risk for 9-drug initialized portfolio
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Solutions Net Present Value (M$) Risk (%) Release order
1 798 22 P7 P1 P3 P5
2 783 21 P7 P3 P5 P1
3 690 18 P7 P1 P5 P3
4 782 19 P7 P3 P5 P1
5 700 19 P7 P3 P5 P1
6 992 23 P7 P1 P3 P5
7 1857 30 P7 P3 P6 P5 P2 P1
8 1592 26 P7 P3 P6 P5 P2 P1
9 1722 28 P1 P7 P6 P5 P2 P3
10 1696 28 P7 P1 P6 P5 P2 P3
11 1355 24 P6 P7 P1 P5 P9 P2 P3
12 1379 26 P7 P1 P6 P5 P9 P2 P3
13 1343 24 P7 P1 P6 P5 P9 P2 P3

Table 5.8: Results of Net Present Value and Risk for 9-drug initialized portfolio (Pareto front
solutions)

Figure 5.14: Pareto front for the optimization Net Present Value/Risk for 9-drug initialized portfolio

Optimization with 9-drug sequences in the optimized portfolio

To confirm once more that long sequences are not interesting, an optimization is performed under
the constraint of a 9-drug portfolio along the algorithm evolution. Here, the first population was gen-
erated randomly (without taking into account the constraint). The results exhibit bad performances
for both criteria as compared with those previously obtained (Figure 5.15).
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Figure 5.15: Evolution for the optimization Net Present Value/Risk for 9-drug optimized portfolio

This is confirmed by the Pareto front (Figure 5.16) only constituted of 3 sequences with an NPV
between 1171 and 1313 M$. and a risk value between 35 and 44 %. The numerical values of NPV
and Risk for each non-dominated individual as well as the release order are presented in Table 5.9.
As a conclusion, the results indicate that long sequences are not representative of attractive values
both for NPV and risk. This explains why 9-drug individuals are eliminated from the Pareto front
in the previous bicriteria optimization.

Solutions Net Present Value (M$) Risk (%) Release order
1 1314 44 P9 P2 P3 P6 P4 P7 P5 P1 P8
2 1305 37 P9 P2 P3 P6 P4 P7 P5 P1 P8
3 1172 35 P9 P2 P3 P6 P4 P7 P5 P1 P8

Table 5.9: Results of Net Present Value and Risk for 9-drug optimized portfolio (Pareto front
solutions)
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Figure 5.16: Pareto front for the optimization Net Present Value/Risk for 9-drug optimized portfolio

Bicriteria optimization (Net Present Value-Risk) for a 6-drug portfolio

The study concerning the 6-drug portfolio identified as a good candidate (P1, P2, P3, P5, P6, P7)
was carried by optimization instead of analyzing the enumerative simulation pathway. The evolution
is presented in Figure 5.17 for generations 1, 40, 80, 120, 160 and 200 and the Pareto front. The
numerical values are presented in Table 5.10. A first comment is that the previous 4-drug portfolio
which has been identified as a potential candidate is a subset of the 6-drug solutions.

Solutions Net Present Value (M$) Risk (%) Release order
1 2555 38 P3 P5 P6 P7 P2 P1
2 2512 35 P3 P5 P6 P7 P2 P1
3 2476 31 P3 P5 P6 P7 P2 P1
4 2340 29 P3 P5 P6 P7 P2 P1
5 2330 28 P3 P5 P6 P7 P2 P1
6 1658 26 P3 P5 P7 P6 P2 P1
7 1647 25 P3 P5 P7 P6 P2 P1
8 1553 24 P3 P5 P7 P6 P2 P1

Table 5.10: Net Present Value and Risk for 6-drug sequences (6-drug optimization)

Two sequences are found several times (P3, P5, P7, P6, P2, P1) and (P3, P5, P6, P7, P2, P1) with
the same products and only a permutation between products 6 and 7, they have also been identified
in the 9-drug optimization (Figure 5.18).

5.4.3 Bicriteria optimization Net Present Value-Makespan

The second optimization study is based on Net Present Value-Makespan (expressed in days). As for
the NPV-Risk optimization, the general behavior is illustrated in Figure 5.19 at the top.
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Figure 5.17: Optimization results for Net Present Value/Risk criteria for 6 drugs (P1, P2, P3, P5,
P6, P7) Pareto Front
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Figure 5.18: Relationship 9 and 6 drug optimization (P1, P2, P3, P5, P6, P7)

The improvement of the strategy along the generations is presented in Figures 5.19, 5.20 and 5.21.
After generation 80, the behavior is almost stabilized and there is a slight (respectively negligible)
improvement for NPV (respectively for duration).

The results relative to this pair of criteria are presented in Figure 5.22. Solutions with negative
values for net present values are found, which correspond to very low values of the time horizon, that
obviously will not be considered by the decision maker.

It can be highlighted that an important number of sequences with 3 or 4 products are found again.
Among the 3-product sequence, the corresponding drugs are [P1 ∧ (P2 ∨ P6) ∧ (P5 ∨ P8)]. The
4-product portfolio involves the drugs [P1 ∧ P2 ∧ P5 ∧ P7], that have been already identified as
potential candidates for net present value-risk optimization (see Tables 5.11 and 5.12).
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Figure 5.19: Whole population and behavior for generations 1 and 40. Net Present Value-Makespan
case
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Figure 5.20: Behavior for generations 80, 120 and 160. Net Present Value-Makespan case
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Figure 5.21: Behavior for generation 200. Net Present Value-Makespan case

Figure 5.22: Pareto Front. Net Present Value/Makespan
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Solutions NPV
(M$)

Makespan
(Days)

Risk by
simulation

Release order

1 1312 3739 54 P1 P5 P2
2,3,5 57-713 2850-3402 33 P5 P2 P1
4 136 3043 50 P8 P2 P1
6 11 2848 69 P1 P8 P2
6 2 2846 55 P5 P1 P2
7 -35 2827 73 P2 P1 P8

Table 5.11: Net Present Value and makespan for 3-drug sequences

Solutions NPV
(M$)

Makespan
(Days)

Risk by
simulation

Release order

1 1752 4017 39 P5 P7 P2 P1
2 1357 3845 22 P2 P5 P7 P1
3,7 413-1253 3241-3691 39 P5 P1 P2 P7
4,5 856-1423 3587-3878 47 P7 P5 P2 P1
6 152 3107 45 P2 P1 P5 P7

Table 5.12: Net Present Value and makespan for 4-drug sequences

5.4.4 Bicriteria optimization makespan-risk

As before, all the individuals evaluated along the generations are presented in Figure 5.23. The
progression of the algorithm is illustrated in Figures 5.24 and 5.25. As for the previous cases (NPV-
Risk,NPV-Duration), an important improvement is observed from generation 1 to generation 40.

Figure 5.23: Whole population for the case Risk/Makespan
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Figure 5.24: Behavior for generations 1, 40 and 80. Risk/Makespan case
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Figure 5.25: Behavior for generations 120, 160 and 200. Risk/Makespan case
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Figure 5.26: Pareto Front Makespan/Risk.

The results of the bicriteria optimization makespan-risk are presented in Figure 5.26. From these
results, it can be seen that a decrease in risk has a strong impact in the pipeline duration, that can
be quantified. Risk ranges from 13% to around 70% when the duration decreases from 11,5 to 7,7
years. The sequences for which risk lies between 13 and 18% are exclusively composed of 3 products
[P1∧ (P2∨P7)∧ (P5∨P8)]. The sequences for which risk is comprised between 21 and 73% involve
4 products [P1 ∧ P2 ∧ P5 ∧ P7]. There is a small overlapping zone from 18 to 21% with mixed
sequences of 3 and 4 products (the same ones as those previously found). Once more, the higher
number of solutions presented relative to the combinatorial aspect of the problem is due to slight
variations for clones, due to the stochastic aspects of the problems (See Tables 5.13 and 5.14).

Solutions Risk (%) Makespan
(Days)

NPV by
simulation

Release order

1 40 3389 628 P7 P5 P1
2 35 3458 603 P7 P1 P5
3 30 3608 461 P1 P5 P2
4 25 3757 532 P2 P1 P5
5 21 3906 554 P5 P2 P1
6 18 3973 474 P1 P2 P5

Table 5.13: Risk and Duration for 3-drug sequences
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Solutions Risk (%) Makespan
(Days)

NPV by
simulation

Release order

1,2,3 17-21 3889-4090 1375 P2 P5 P7 P1
4,5 16-17 4101-4105 1379 P7 P5 P2 P1

6,7,10,12,13 14-19 4038-4204 769 P5 P7 P2 P1
8 16-20 3922-4110 953 P5 P2 P7 P1
11 15 4150.48 584 P7 P2 P5 P1

Table 5.14: Risk and Duration for 4-drug sequences

As a partial conclusion of this bicriteria study involving time as a criterion, it can be said that
decisions on timing are an important constituent of the portfolio development strategy as they are
used to favorably organize cash flows. This is particularly important when having to consider the
probability that a project will succeed, i.e. the financial impact of failed projects.

5.5 Tricriteria optimization NPV-Duration-Risk

5.5.1 Study presentation

In this study, the tricriteria optimization is performed NPV-Duration-Risk. To make the interpreta-
tion easier, the results relative to a given pair of criteria are presented as a projection on a 2D-axis
(see Figures 5.27, 5.28 and 5.29). Globally, it can be said that the same trends as the bicriteria
approaches are observed, that is a small number of products in the portfolio favours the best com-
promise between the criteria. A closer examination at the evolution of NPV vs. risk needs some
additional comments. Figure 5.27 shows that for risk values corresponding to a 15-35 % range, it
seems that an increase in risk leads to an increase in NPV. This trend is no more observed when ex-
ploring riks values between 35-70 %, where the higher the risk, the lower the NPV. This phenomenon
can be now attributed to a strong decrease in makespan which is optimized simulatneously in this
case.

Since the bicriteria study has shown that the solution set is different according to the pair of criteria
considered, the tricriteria analysis seems more consistent to find the most interesting solutions.
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Figure 5.27: Tricriteria solutions projection for NPV Risk

Figure 5.28: Tricriteria solutions projection for NPV Duration
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Figure 5.29: Tricriteria solutions projection for Risk Duration

From the solutions obtained from the 3-criteria Pareto front, the decision maker can select a
sequence, from a risk level that seems acceptable for him. The results presented in Table 5.15 all
constitute potential candidates.

Solutions Risk (%) Net Present Value (MM$) Duration (Days) Release order
1 16 1316.29 4141.52 P7 P2 P5 P1
2 20 1620.7 4110.4 P2 P5 P7 P1
3 25 1280.99 3952.73 P5 P2 P7 P1
4 30 721.11 3709.74 P5 P2 P1
5 35 850.35 3645.91 P5 P7 P2 P1

Table 5.15: Some interesting solutions from tricriteria optimization

A closer examination of the solutions presented in Table 5.15 is presented in Figures 5.30 and
5.31 where relative frequency is plotted vs. net present value. This kind of representation is more
meaningful since the analysis of simulation results of some sequences in Chapter 3 has shown that they
exhibit a bimodal behavior. The mean net present value is interesting from an optimization viewpoint
since the objective is to shift towards positive values for NPV: the interpretation is consistent here
since mean NPV is combined with a risk criterion as measured by the ratio of the number of positive
values for NPV to the total number of NPV evaluations. This two-peaked phenomenon is still
observed for these 5 sequences, with more dispersed values for the 3−drug portfolio.
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Figure 5.30: Frequency and behavior for non−dominated tricriteria optimization
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Figure 5.31: Frequency and behavior for non−dominated tricriteria optimization

Solutions 1 and 2 are equivalent from the makespan criteria, but differ significantly from the risk
and NPV criteria. Solution 2 exhibits some peaks higher than 9000 M $. The decision maker has to
decide if the higher risk induced by Solution 2 is justified. Solution 3 must be investigated if the time
criterion is important to consider at that level, even if risk and NPV are lower than for solutions 1
and 2. Solutions 4 and 5 show the same order of magnitude for mean NPV and durations (risk is
higher for solution 4). Yet, Solution 4 concerning the 3−drug sequence has poor performances (no
peak higher than 3600 M$) and may be finally discarded by the decision maker. At this level of
discussion, it is difficult to say more since the example has just a didactic value.
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5.5.2 Conclusion of the bi and tricriteria study

As a conclusion of this bicriteria analysis performed on the different pairs of criteria and of the
tricriteria optimization, it can be highlighted that:

• Among the constellation of potential candidates, the optimization strategy seems efficient to
detect the sequences which can be considered by the decision makers. Only a few sequences
are detected.

• Among theses sequences, large portfolios cause resource queues and delays time to launch and
are eliminated by the bicriteria optimization strategy.

• Small portfolio reduces queuing and time to launch appear as good candidates. The optimiza-
tion strategy, based on NSGA II, that is particularly elitist, is interesting to detect the sequence
candidates.

• Time is an important criterion to consider simultaneously with NPV and risk criteria.

• The order in which drugs are released in the pipeline is of great importance as with scheduling
problems.

• The use of a decision analysis method as TOPSIS will allow to select a sequences according
to the decision maker preferences. This method is as an alternative to ELECTRE. The basic
concept of this method is that the selected alternative should have the shortest distance from
the negative ideal solution in geometrical sense [Pirdashti et al., 2009].

5.6 Optimization of a 20-drug portfolio

A larger case study involving 20 drugs (called the "20−drug case") is proposed to evaluate the impact
of various scheduling and resource allocation policies on pipeline performance.

Tables 5.16 and 5.17 show activity and drug data for this case. The DES was adapted to this case.
It must be said that all the stages involved in the pipeline network remain exactly the same as in
the 9-drug case. Data that will be updated or modified are relative to:

• Duration by stage;

• Cost by stage;

• The number of drugs by disease;

• Available resources;

• Capital cost by drug;

• Sales by drug;

• Success probabilities;

• No dependency is considered between drugs.
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The main difference is that the four types of interdependencies analyzed in Blau et al. [2004]
and presented in Table 2.5 in Chapter 2, that are financial, technical, manufacturing and resource
based are not taken into account. The only dependency considered here is relative to the capacity
constraint for each step. It must be also mentioned that capital costs are not any more represented by
a triangular distribution(this representation is yet still valid for sales): this means that the concept
of degree of difficulty is not considered here because stage duration and cost are not identified as
triangular distributions but as crisp values.

Activity Duration (days) Cost (M$) Available resources M$
FHDP 400 80 752

Sample prep 800 2 20
Phase I 300 80 752
Phase II 500 80 755
Phase III 775 200 2000

Process develop I 800 10 34
Process develop II 750 10 61

Design Plant 750 10 94
FSA 375 20 109

Prelaunch 100 50 140
Build Plant 750 62 120
Ramp up I 350 12 58
Ramp up II 350 22 82
Ramp up III 350 40 108
Matures sales 400 53 548

Table 5.16: Data for 20 drugs

Drug
name

Success probabilities Capital cost (M$) Mature sales (M$)
Phase I Phase II Phase III Min ML Max

D1 0.9 0.3 0.9 50 1675 1800 1950
D2 0.85 0.2 0.85 30 850 900 975
D3 0.95 0.35 0.95 45 2000 2300 2500
D4 0.87 0.22 0.8 34 1000 1250 1500
D5 0.97 0.36 0.99 40 200 690 1200
D6 0.83 0.18 0.86 60 1500 1830 2000
D7 0.94 0.4 0.94 75 800 1150 2000
D8 0.86 0.2 0.88 65 400 600 8500
D9 0.98 0.34 0.92 62 1750 1870 1900
D10 0.9 0.4 0.92 62 800 1000 1200
D11 0.9 0.45 0.92 60 400 500 600
D12 0.98 0.2 0.92 65 1200 1400 1600
D13 0.9 0.45 0.92 70 200 400 600
D14 0.98 0.25 0.92 62 800 1000 1200
D15 0.90 0.40 0.92 65 500 700 900
D16 0.98 0.15 0.92 70 1200 1500 1800
D17 0.9 0.35 0.92 65 600 800 1000
D18 0.98 0.3 0.92 62 900 1100 1300
D19 0.9 0.5 0.95 60 300 500 700
D20 0.98 0.2 0.9 60 1100 1400 1700

Table 5.17: Success probabilities, capital cost and mature sales
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Figure 5.32 shows the reward/risk bubble plot for the 20−drug case.

Figure 5.32: Bubble chart for the 20drug portfolio case

The bubble chart is used as before for having an idea about the best drugs according toReward/Risk
ratio, probability of technical success and capital cost.

A first optimization run was carried out with imposing that one drug targets one disease, meaning
that the sequences must be of constant size (20 drugs). The induced optimization problem is to find
the order in which the drugs must be released in the pipeline, thus leading to a scheduling problem
with a high combinatorial aspect (20! possibilities, about 2.431018). The same GA parameters as
those used for the 9-drug case have been selected (see Table 5.2). For this kind of problem, the
bubble chart gives no direct answer.

The results are not satisfying at all, since no positive solutions for NPV were found.

This is why the following optimization runs involve as previously both the number of drugs in
the portfolio and their order in the sequence as decision variables. Due to the high computational
time induced by the problem combinatorics, only the NPV-risk pair of criteria has been investigated.
The evolution of the generations is presented in Figures 5.33 and 5.34. It can be shown that the
first generation exhibits very poor solutions. Yet, the optimization procedure leads rapidly to better
solutions: from the 40th generation, individuals present positive values for the Net Present Value
and lower values for the Risk. After this generation, a radical change in values for optimization
criteria is no more observed. In Figure 5.35, the NPV (respectively risk) ranges between 99 and 111
M$ (respectively between 27 and 31 %). The sequences that have been identified after the Pareto
procedure are presented in Table 5.18. From the constellation of possibilities, the optimization
procedure turns out ot be very elitist.

The results also suggest that R&D managers need to consider resource sharing between competing
drug projects as a viable alternative to the standard decision-making norm of just prioritizing projects
for resource allocation. In summary, this last result calls for the development of tools that can
monitor and track the impact of resource allocations on activity durations as well as the ones that
yield optimal resource allocations with respect to financial and cycle time criteria.
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Figure 5.33: Behavior for generations 1, 40 and 80. Optimization of Risk/NPV for the case or the
20-drug case
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Figure 5.34: Behavior for generations 120, 160 and 200. Optimization of Risk/NPV for the 20-drug
case
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Figure 5.35: Pareto Front Risk/NPV for the 20-drug case

Sequence NPV (M$) Risk (%) Makespan by simulation Release order
1 109 28 4592 P3 P9 P7
2 111 31 4596 P3 P7 P9
3 104 27 4571 P3 P9 P7
4 99 27 4601 P7 P9 P3

Table 5.18: NPV and Risk for sequences for the 20-drug case

5.7 Conclusions

The development of a multiobjective Genetic Algorithm optimization framework coupled with a
discrete event simulator has been presented that addresses two key decisions simultaneously: portfolio
management and scheduling of drug development and manufacturing. Two case studies were used
to illustrate the capabilities of the framework and also highlighted that the scope of decisions that a
drug developer may be confronted with can be vast and complex.

Our analysis on both case studies suggests that optimizing project priorities taking into account
resource allocations yields a significantly improved portfolio performance, rather than a simple use
of a bubble chart that can not take into account the interdependencies between projects. Due
to the complexity of this problem, a contribution of this work is in demonstrating a formulation
based on techniques from evolutionary computation employed for an efficient search of the decision
space and of the objective space. All the results tend to highlight that pharmaceutical product
development strategies in the real world may be better analyzed when considering the impact of
decisions holistically rather than only individually.
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6.1 Conclusions

The main motivation of this work was to propose an optimization framework to select a set of R&D
projects from a pool of candidate projects in order to maximize the expected benefits while coping
with the uncertain nature of the projects. This is a challenging problem due to the characteristics of
the development pipeline, namely, the presence of uncertainty, the interdependency between projects,
the limited availability of resources, the overwhelming number of decisions due to the length of the
time horizon and the combinatorial nature of a portfolio.

The proposed approach combines discrete event stochastic simulation with multiobjective genetic
algorithms to optimize the highly combinatorial portfolio management problems facing pharmaceu-
tical businesses.

The typical formulation of New Product Development in a pharmaceutical industrial context was
first presented with a case study for illustration purpose. This analysis shows the necessity to account
for the interdependencies between products along the pipeline. The R&D pipeline consists of four
stages of development Early Stage Development, Phase I, Phase II and Phase III, before plant design
and drug commercialization. Each stage is associated with several development activities related by
precedence arcs. From this description it is clear that each stage requires significant physical resources
such as manpower, manufacturing and testing equipment resources. At any point in time the pipeline
has drugs in each development and compete for resources. In that context, discrete event simulation
is a common tool used to understand how a system works and how the different items interact
each other. It must be said that discrete event simulation has been mostly confined to production
systems (batch plant scheduling for production debottlenecking, batch plant design etc), but the
trend in many industries of moving towards an integrated approach for supply chain management
has expanded the areas in which this technology can be used. The analysis also highlights that all the
processes involved in New Product Development are characterized by uncertainty at various levels
of the pipeline: imprecise parameters for activity cost and durations as well as success probabilities
at Phases I, II and III of the pipeline. In our research group, the development of discrete event
simulators for batch plant design and scheduling has been a constant focus for the past decade.
Moreover, on the implementation side, it is not so easy to use commercial simulators capable of
interacting with optimization packages or user written code.

A major incentive to use discrete event simulation is that processes characterized by uncertainty
and suitable for probabilistic modelling can be easily analyzed and synthesized using discrete event
simulation by use of a Monte Carlo approach.

An object-oriented model structure previously developed for batch plant scheduling and design
was then extended to embed the case of product management, which is particularly adequate for
reuse of both structure and logic.

Hence, we focused on developing a simulation decision support tool that uses probabilistic data in
the form of durations of activities, resource requirements (modeled as capital and operating costs),
clinical success probabilities and product sales, and computes a schedule. The resulting schedules and
resource allocation levels can be used to infer efficient project prioritization and resource allocation
policies under uncertainty. Two examples illustrate and validate the methodology.

Before considering a portfolio of products, it is interesting to examine the behavior of each indi-
vidual drug candidate. Using net present value (NPV) with an internal rate of return of 15 percent
as the economic criterion, the behavior of each drug can be simulated by using the discrete event
simulator. To take into account the imprecise nature of some parameters, NPV distribution was ob-
tained from a sufficiently large number of Monte Carlo trials. A two-peaked distribution is observed
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which is typical of a new drug candidate in the pharmaceutical industry. The first peak corresponds
to the loss of money in those instances when the drug fails to pass all the clinical trials. The second
distribution corresponds to the returns following a successful product launch. Due to this bimodal
distribution, the economic criterion must be clearly defined and necessarily associated with a risk
criterion to evaluate the quality of sequence: it must be pointed out that the Expected Net Present
value that is commonly used for project evaluation must be considered carefully. It corresponds
to a mean value between the positive and negative parts of the distribution. If considered at the
optimization step, it represents a pessimistic value of the NPV but evolves in the same direction of
the ENPV. The risk is appreciated by the computation of the positive values of NPV over the total
number of samples that have been evaluated. Moreover, the makespan that is the time to market is
also a criterion that needs to be considered at portfolio selection.

This analysis allows to define the most important criteria that must be taken into account to define
the best drug portfolio.

A special emphasis has then been devoted to uncertainty modelling in NPD. A first solution was to
use interval bounds to represent some imprecise parameters associated with a probability distribution
within a Monte Carlo framework. The concept of Degree of Difficulty initiated by Blau et al. [2004]
was also used to reflect the more or less difficulty to carry out a process task. An alternative approach
based on interval analysis was investigated in order to determine the final strategy that could be
then selected at the optimization step.

The former implies to carry out simulations many times to consider a representative sampling of
the problem. The latter may be attractive for the optimization phase of the NPD problem that is then
tackled. Both approaches have been illustrated by a numerical example. The results obtained by the
interval-based approach turn out to be difficult to interpret for the decision maker, due to the growing
uncertainty along the pipeline. Besides, the risk, which is taken into account via failure probability
of some stages and which is strongly involved in the NPD process must be part and parcel of the
modelling approach. At this level, it was difficult to model this parameter by an interval and the
repetitive use of simulation with representative sampling was the adopted procedure to address this
issue. All these reasons explain why there is no need to develop a proper interval-based framework for
NPD problem with uncertainty. A more accurate analysis of an interval-based optimization method
as an outer loop of the discrete-event simulation model for NPD has thus not been developed.

However, even if it is particularly useful for decision criteria evaluation, such as economic and
risk metrics, the use of discrete event simulation as a stand-alone technology considerably limits the
number of system configurations that can be considered. This has motivated the use of a hybrid
simulation-optimization strategy that not only accurately captures the dynamics of the system but
also provides a structured way to search for the optimal configurations according to several objective
functions in a constrained space.

New Product Development (NPD) problem can clearly be viewed as multiobjective problem with
multi-stage decisions under uncertainty. The recurrent key issues are:

• What are the projects to develop once target molecules have been identified?

• In what order?

• Which is the level of resources to assign?

Several criteria, the Net Present Value of a sequence, its associated risk and time to market must
be optimized simultaneously. Among the different multiobjective optimization methods that may be
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used, Genetic Algorithms (GAs) are particularly attractive for treating this kind of problem, due to
their ability to directly lead to the so-called Pareto front and to account for the combinatorial aspect.
Among the various GAs, a discussion was then performed to select the most appropriate variant,
NSGA II which has been adapted to the treated case for taking into account both the number of
products in a sequence and the drug release order. From a bicriteria analysis performed on the
different pairs of criteria and of the tricriteria optimization, it can be highlighted that:

• Among the constellation of potential candidates, the optimization strategy seems efficient to
detect the sequences which can be considered by the decision makers. Only a few sequences
are detected.

• Among theses sequences, large portfolios cause resource queues and delays time to launch and
are eliminated by the bicriteria optimization strategy.

• Small portfolio reduces queuing and time to launch appear as good candidates. The optimiza-
tion strategy, based on NSGA II, that is particularly elitist, is interesting to detect the sequence
candidates.

• Time is an important criterion to consider simultaneously with NPV and risk criteria.

• The order in which drugs are released in the pipeline is of great importance as with scheduling
problems.

6.2 Perspectives

The development of sophisticated optimization and decision support tools is needed to help explore
and analyze alternatives among the constellation of drug candidates for the NPD process, and predict
actions for the operation of the supply chain so as to yield overall optimum economic performance.

• Multiobjective optimization and multi-criteria decision making (MCDM). This work has shown
that a multiobjective optimization framework is needed which is particularly greedy in compu-
tational time, even if the induced computation time is particularly short as compared to the
time scale of the involved phenomena : it must be emphasized that simulation and optimization
are the only way to tackle NPD issue that are difficult to appreciate by an intuitive manner.
An improvement would be to consider directly other optimization criteria that would be more
appropriate to account for the bimodal distribution of the NPV: it would be interesting to
simultaneously maximize the expected positive net present value (EPNPV), which is defined
as the expected value over the positive axis of the NPV distribution, minimize the negative
part of the distribution, minimize the risk defined as the number of positive occurrences of
NPV over the total number of samples and minimize NPD makespan. Of course, this would
require a systematic procedure to help decision aid from the Pareto set generated at the end
of the multiobjective procedure. It is well-known that the number of compromise solutions in-
creases with the number of objectives to consider. The use of a multi-criteria decision making
(MCDM) approach can thus be suggested: Analytical Hierarchy Process (AHP), ELECTRE,
PROMETHEE, TOPSIS may be powerful candidates. A review is proposed in Pirdashti et al.
[2009].

• Computational Grid. Solving the NPD problem requires significant computational effort. Ad-
vances in algorithms and modelling must go hand-in-hand with advances in toolkits that enable
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algorithms to harness computational resources. One promising approach that has emerged over
the last decade is to deliver computational resources in the form of a computational grid, which
is a collection of loosely-coupled, (potentially) geographically distributed, heterogeneous com-
puting resources. For instance, Grid’5000, is a nation-wide infrastructure for research in grid
computing (see http://www.grid5000.org). It is designed to provide a scientific tool for com-
puter scientists similar to the large-scale instruments used by physicists, astronomers, and
biologists. Grid’5000 is a large-scale experimental tool, with a deep reconfiguration capability,
a controlled level of heterogeneity and a strong control and monitoring infrastructure. The
Grid’5000 platform is distributed over nine sites in France has been used for some optimization
runs of this application. Its use needs to be generalized and to such problems. The gridification
will be particularly interesting since NPD application is parallel and multi-parametric.

• Uncertainty challenge. Uncertainty is a critical issue in supply chain operations, namely for
NPD. Furthermore, it is complicated by the fact that the nature of the uncertainties can be
quite different (e.g., success probabilities, activity cost and duration). How to better account
for variations in order to effectively handle the effect of uncertainties (e.g., demands, success
probabilities)? Major issues here are the development of novel, meaningful and effective tools.

• Integration of strategic and tactical decision support strategies in NPD. This work did not
discuss the dynamic nature of the portfolio. As selected projects evolve from early phases
towards completion, more data on projects are collected. Moreover, new project opportunities
may arise which must be evaluated and added to the portfolio that must be updated. An
extension of this work would be to carry out strategic and tactical levels reconciliation.

• Extensions to other industrial fields. Although illustrated for the pharmaceutical industry, this
work can be extended readily to any industry such as aerospace, semiconductors, agrochem-
ical, or biotechnology that is regulated highly and loses new product candidates during the
development process.

To conclude, the proposed framework is just a piece of the New Product Development optimization
puzzle.
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7.1 Nomenclature

Acronym Meaning
A Attractiveness ratio
BPS Batch Plant Scheduling
CDR Complementary Determining Region
COG Cost Of Goods
CSIM Commercial discrete-event simulation software
DES Discrete Event Simulator
DM Decision Maker
DoD Degree of Difficulty
ENPV Expected Net Present Value
EPNPV Expected Positive Net Present Value
EWO Entreprise−Wide Optimization
FDA Food and Drug Administration
FHDP First Human Dose Preparation
FIFO First In First Out
FSA First Submission for Approval
GA Genetic Algorithm
IA Interval Analysis
mAbs Monoclonal antibodies
MeanNPVpos Mean Net Present Value Positive
MeanNPVneg Mean Net Present Value Negative
MINLP Mixed Integer Nonlinear programming
MOGA Multiobjective Genetic Algorithm
MOOP Multiobjective Optimization Problem
MOSA Multiobjective Simulated Annealing
NLP Nonlinear Programming
NPD New Product Development
NPGA Niched Pareto Genetic Algorithm
NPV Net Present Value
NSGA Non−Sorted Genetic Algorithm
PAES Pareto−Archived Evolution Strategy
PP Positivity probability
PSE Process Systems Engineering
RCPSP Resource Constrained Project Scheduling Problem
ROV Real Options Valuation
SPEA Strength Pareto Evolution Strategy
WA Weighted Attractiveness
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