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The purpose of this study is to investigate the application of genetic 

algorithm (GA) in modelling linear and non-linear dynamic systems and develop an 

alternative model structure selection algorithm based on GA. Orthogonal least square 

(OLS), a gradient descent method was used as the benchmark for the proposed 

algorithm. A model structure selection based on modified genetic algorithm (MGA) 

has been proposed in this study to reduce problems of premature convergence in 

simple GA (SGA). The effect of different combinations of MGA operators on the 

performance of the developed model was studied and the effectiveness and 

shortcomings of MGA were highlighted. Results were compared between SGA, 

MGA and benchmark OLS method. It was discovered that with similar number of 

dynamic terms, in most cases, MGA performs better than SGA in terms of exploring 

potential solution and outperformed the OLS algorithm in terms of selected number 

of terms and predictive accuracy. In addition, the use of local search with MGA for 

fine-tuning the algorithm was also proposed and investigated, named as memetic 

algorithm (MA). Simulation results demonstrated that in most cases, MA is able to 

produce an adequate and parsimonious model that can satisfy the model validation 

tests with significant advantages over OLS, SGA and MGA methods. Furthermore, 

the case studies on identification of multivariable systems based on real experimental 

data from two systems namely a turbo alternator and a continuous stirred tank reactor 

showed that the proposed algorithm could be used as an alternative to adequately 

identify adequate and parsimonious models for those systems.



Kajian ini dilakukan bertujuan mengkaji penggunaan algoritma genetik (GA) 

dalam pemodelan sistem dinamik linear dan tak linear dan membangunkan kaedah 

alternatif bagi pemilihan struktur model menggunakan GA. Algorithma kuasa dua 

terkecil ortogon (OLS), satu kaedah penurunan kecerunan digunakan sebagai 

bandingan bagi kaedah yang dicadangkan. Pemilihan struktur model mengunakan 

kaedah algoritma genetik yang diubahsuai (MGA) dicadangkan dalam kajian ini bagi 

mengurangkan masalah konvergens pramatang dalam algoritma genetik mudah 

(SGA). Kesan penggunaan gabungan operator MGA yang berbeza ke atas prestasi 

model yang terbentuk dikaji dan keberkesanan serta kekurangan MGA diutarakan. 

Kajian simulasi dilakukan untuk membanding SGA, MGA dan OLS. Dengan 

meggunakan bilangan parameter dinamik yang setara kajian ini mendapati, dalam 

kebanyakan kes, prestasi MGA adalah lebih baik daripada SGA dalam mencari 

penyelesaian yang berpotensi dan lebih berkebolehan daripada OLS dalam 

menentukan bilangan sebutan yang dipilih dan ketepatan ramalan. Di samping itu, 

penggunaan carian tempatan dalam MGA untuk menambah baik algorithma tersebut 

dicadang dan dikaji, dinamai sebagai algoritma memetic (MA). Hasil simulasi 

menunjukkan, dalam kebanyakan kes, MA berkeupayaan menghasilkan model yang 

bersesuaian dan parsimoni dan memenuhi ujian pengsahihan model di samping 

memperolehi beberapa kelebihan dibandingkan dengan kaedah OLS, SGA dan 

MGA. Tambahan pula, kajian kes untuk sistem berbilang pembolehubah 

menggunakan data eksperimental sebenar daripada dua sistem iaitu sistem 

pengulang-alik turbo dan reaktor teraduk berterusan menunjukkan algoritma ini 

boleh digunakan sebagai alternatif untuk memperolehi model termudah yang 

memadai bagi sistem-sistem tersebut.
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INTRODUCTION

1.1 Background of the research

In practice, most control systems are complex, non-linear or time varying. 

Controlling such processes or systems need the knowledge o f the mathematical 

equations o f those processes or systems. Modelling a system is vital especially in the 

field of engineering and science since a major part o f those fields deal with designing a 

system based on mathematical model. It is necessary to use model to describe the 

relationships among the system variables. This can be achieved by developing a 

mathematical model based on the information o f input and output variables available 

from the process. This method of developing a mathematical model is known as “system 

identification”. The study o f system identification is necessary to provide information 

before further analysis and decision can be made to a particular system. In some 

application o f system identification, a mathematical model is developed for controller 

design and to simulate the actual system.

The identification o f unknown system has been studied and literature on system 

identification can be found from various sources (Goodwin and Payne, 1977; Johansson, 

1993; Ljung and Glad, 1994; and Ljung, 1999). Procedures involve in system 

identification (SI) are the acquisition o f data, definition o f model structure, parameter 

estimation and model validation. Basically a model is constructed based on the observed



data. Input and output data from a system is recorded and subject to analysis for 

modelling. The input-output data used to study system identification technique is usually 

obtained either using simulated or real experimental data. The simulated data is 

generated by computer model whereas the real data could come from real process plant. 

In this study, the input and output data used are both generated from simulated systems 

examples and data from real process plants.

In system identification, a model representation is defined to emulate the 

performance of the system to be modelled. The model representations used include 

continuous model, discrete model, parametric and nonparametric models and others. 

Once the model representation has been identified, the determination o f the model 

structure is required. Many model structures identification applicable to linear and non­

linear systems have been discussed and developed (Korenberg et al., 1988; Miller, 1990; 

Veres, 1991; and Li and Jeon, 1993; Mao and Billings, 1997). The main task in model 

structure selection is to determine and select the significant terms to be included in the 

final model. Two design questions in model structure determination are choosing the 

right regressors and choosing the right non-linear mapping of the model. The possible 

choices o f regressors include input and output observed data. A larger regression vector 

sometimes lead to over fitting and therefore an adequate number o f regression terms 

which best describe the system will lower the variance o f misfits is desirable.

There are various techniques o f the non-linear mapping proposed by several 

researchers based on traditional approaches (Haber and Kevicsky, 1978; Billings, 1980 

and Descrochers and Mohseni, 1984). However, simply expanding the system outputs in 

terms of its past input and output to non-linear model is impractical because the number 

of possible terms will be very large especially for complex system. Therefore, it is 

important to use algorithm that can detect only the significant terms to be included for 

model representation to ensure that the fitted model is adequate. There are several ways 

to determine the significant terms to be included in the selected model and various 

approaches had been proposed (Haber and Unbehauen, 1990). One of the most 

successful methods is orthogonal least square (OLS) algorithm (Korenberg et al., 1988).



In this algorithm, the significance o f the terms selected are measured based on error 

reduction ratios (ERR). However, high computational load is required (Mao and 

Billings, 1997).

In the last ten years, genetic algorithm (GA) has emerged as practical and robust 

searching method in optimisation problem. Genetic algorithm has been applied in 

diverse areas such as pattern recognition, robotics, VLSI technology, manufacturing and 

also biological applications (Chaiyaratana and Zalzala, 1997). GA is a stochastic search 

technique that resembles the natural biological evolution. GA is part of the larger class 

o f evolutionary algorithms (EA) that includes evolutionary programming (EP), 

evolutionary strategies (ES) and genetic programming (GP). EA operates on a 

population of potential solutions and applies the principle o f survival of the fittest, 

reproduction and mutation to produce a better approximation to a solution. At each 

generation, a new set o f approximation is created by selecting individuals according to 

their level o f fitness in the problem domain. The history o f EA can be traced back as 

follows:

(i) Genetic algorithm (GA) was proposed by John Holland (Holland, 1975) and 

popularised by David Goldberg (Goldberg, 1989)

(ii) Evolutionary Programming (EP) was proposed by Lawrence Fogel (Fogel, 1963) 

and further developed by his son David Fogel (Fogel, 1992).

(iii) Evolutionary Strategies (ES) was proposed by Ingo Rechenberg (Rechenberg, 

1973) and strongly promoted by Thomas Back (Back, 1996)

(iv) Genetic Programming (GP) was developed by John Koza (Koza, 1992).

One o f EA components, genetic algorithm, is considered in this research as the 

search mechanism in system identification problems particularly for model structure 

selection. GA differs from the traditional searching and optimisation methods in four 

different perspectives (Goldberg, 1989):



• it searches a population o f points in parallel and not at single point

• it uses probabilistic transition rules and not deterministic rules

• it requires the objective function and corresponding fitness level and not the 

derivative information

• it works on an encoding o f the parameter set and not the parameter set itself

The study explored the advantages o f genetic algorithm in solving model 

structure selection in identification of dynamical systems. Initially, the study 

investigated other model structure selection methods and their shortcomings were 

highlighted. Genetic algorithm properties were studied and problems associated with the 

algorithm were examined. The study also includes examining the components of GA to 

improve the convergence performance o f the algorithm.

1.2 Statement of the problem

In conventional identification problems, a model structure is selected based on its 

model representation consisting o f full expansion of the equation. The parameters of this 

model are then estimated. The parameter estimation methods used are normally based on 

least mean square or maximum likelihood estimate. The parameters are estimated by 

optimising the objective function based on gradient descent techniques. These methods 

suffer some drawbacks such as the solution may be trapped in local minima (Jacoby et 

al., 1972). Orthogonal least square algorithm has successfully been applied as model 

structure selection tool (Billings et al., 1989; Chen et al., 1989; Mao and Billings, 1997). 

However, there are some disadvantages associated with this method and therefore, the 

study presents the need for developing alternative technique to enhance the proposed 

structure selection method for better identification results.



The main objectives o f this research are:

(i) to develop an alternative model structure selection algorithm based on genetic 

algorithm that selects only the significant terms to be included in a final model 

and gives adequate and parsimonious model

(ii) to improvise the proposed method for better identification results

(iii) to evaluate the performance o f the proposed algorithm for system identification 

in real data application

The rapid development in computer technology has contributed in the 

development o f system identification techniques. The research will explore the use of 

genetic algorithm to solve model structure selection problems and to improve model 

performance. The identified models should have the following features: parsimonious, 

unbiased and high predictive accuracy.

1.4 Scopes and limitation

The research is subjected to the following scopes and limitations:

(i) all the models considered in this study are linear and non-linear in the regression 

model.

(ii) for fitting the regression, least square estimation is considered in the simulation 

studies.

(iii) only systems with white noise are considered.



Throughout the research, few assumptions were adopted:

(i) data is assumed available and reliable

(ii) the application of the proposed algorithm to the jacketed continuous stirred tank 

reactor (CSTR) process begins when the process is already in a steady state 

condition

1.5 Importance of the research

The model representation used to represent a particular system under 

investigation will critically lead to the success of system identification as well as to the 

controller design procedures. Since the number of all possible candidate terms M is large 

as the order o f input and output lags and the order o f non-linearity increases, most model 

structure selection methods are difficult to handle since they require large computation 

time. Although some approaches would guarantee finding the model with high accuracy, 

testing all possible solutions is impractical because the number o f possible paths for a 

model with M  candidate terms is equal to 2M -  1 which will be extremely large if M  is 

large.

An alternative approach for identifying parsimonious model especially for non­

linear structures is needed and therefore being proposed. The algorithm will give 

simplicity to selecting model structure but uses the power o f global characteristic in 

genetic algorithm to search for optimal solution without exhaustively testing every 

possible solution. The findings o f the research will provide alternative ways to deal with 

model structure selection especially for non-linear systems as well as multivariable 

systems. Besides, an improved method for GA searching mechanism is hope to further 

improve the algorithm so that problems encounter in simple GA will be reduced.



The initial stage of the methodology for the study is based on system 

identification procedures:

• acquisition o f either simulated or real data

• selection o f a model structure

• estimation o f parameters

• validation of the identified models

Initially, various model structure selection methods such as orthogonal least 

square (OLS) and GA are investigated to capture their effectiveness and shortcomings. 

Data used for case studies are both simulated and real experimental data. Genetic 

algorithm is adopted as a searching mechanism in finding the model structure. The 

established simple genetic algorithm (SGA) is investigated and problems associated with 

it are highlighted and model structure selection algorithm based on modified GA (MGA) 

is proposed. The identified model structures developed through the algorithm will 

propose model structures for system identification containing a set o f parameters to be 

estimated. For parametric models, the most commonly used parameter estimation 

algorithms are based on gradient descent methods such as least square methods, 

maximum likelihood and others. Least square estimation is the most widely used. 

Comprehensive analysis, investigation and identification o f problems associated with the 

proposed method are conducted and hybrid method using GA and local search called 

memetic algorithm (MA) is proposed for fine-tuning the search. To verify the identified 

models, the final stage in system identification is model validation. The purpose is to 

ensure that the model adequately represents the true system. The technique used 

involves statistical analysis between the residuals and the input. Finally, the proposed 

algorithm is applied to the identification o f real experimental data obtained from 

multivariable systems. Two systems are investigated namely, a turbo alternator and a 

chemical process. Figure 1.1 summarises the methodology o f the research study.





The main contribution of the research is to provide an alternative approach for 

model structure selection in system identification. In order to explore the benefit o f 

genetic algorithm in system identification problems, GA is used to optimise the search 

by automatically selecting the best model among all the possible models. For searching 

towards highly predictive model, a new selection strategy is proposed in order to find an 

effective search space in GA and it is called MGA.

Due to the randomness of GA operation, it is sometimes difficult to predict its 

performances. A new method that combines GA with other techniques is introduced to 

improve the problem of premature convergence in the algorithm and for better 

approximations in modelling the systems. The algorithm is hybridised with local search 

technique in order to fine-tune the genetic algorithm-based search and is called memetic 

algorithm (MA).

The developed model structure selection based on MA, which was originally 

derived for single-input single-output (SISO) systems, is extended to the identification 

o f multi-input multi-output (MIMO) dynamic systems. A turbo alternator and a chemical 

process namely jacketed CSTR were chosen as case studies and real experimental data 

from these systems was used for validation o f the algorithm.

1.8 Outline of the thesis

The thesis is composed o f seven chapters. This chapter provides the introduction 

and background of the thesis while the rest o f the chapters are described in the following 

paragraphs.



Chapter 2 reviews the non-linear system identification and genetic algorithm. 

The procedure involves in system identification such as the definition o f model 

structure, parameter estimation and model validity tests are reviewed. Different types o f 

model structure used as well as model structure selection tools for system identification 

problems are discussed and compared. Next, the development o f genetic algorithm is 

also presented and the current researches on GA control parameters as well as the 

applications of GA in SI problems are also reviewed.

Chapter 3 studies genetic algorithm, its properties and its application in system 

identification. Initially, the description of polynomial model is presented to provide 

overview for model structure selection. This chapter also describes the working principle 

of GA and presents a procedure for model structure selection using GA. Finally, the 

design and development o f the research study is presented and validation of the 

proposed algorithm is described.

Chapter 4 presents the development of modified genetic algorithm (MGA) and 

the simulation studies conducted using the proposed algorithm. Initially, issues 

encountered in simple genetic algorithm (SGA) are discussed to provide basis for the 

development of the proposed algorithm. Next, it describes the properties o f MGA and 

step-by-step procedure o f the algorithm. Three simulation studies were conducted and 

the results are discussed. First, the effect of different combinations o f MGA operators on 

the performance of the model developed was studied. Secondly, the comparative studies 

between the identification using SGA and MGA were also conducted. Finally, the 

performance of the proposed algorithm was also compared to the model developed using 

orthogonal least square (OLS) algorithm. The adequacy of the developed models was 

tested using model validation tests to show that the proposed algorithm can be employed 

as an algorithm for model structure selection.

Chapter 5 introduces the integration of genetic algorithm with local search 

technique for fine-tuning the search. Memetic algorithm, an evolutionary algorithm 

incorporating local search technique for selecting model structure, is investigated in this



chapter and proposed to further improve the search ability in MGA. Comparative studies 

between MGA, OLS and MA for the selection o f the model structure using a few case 

studies are also presented.

Chapter 6 studies the identification o f multivariable dynamic discrete-time non­

linear system using memetic algorithm. Model structure selection based on memetic 

algorithm, which was originally derived for single-input single-output systems, is 

extended to multi-input multi-output non-linear systems. The justification of the 

algorithm is presented using some simulated examples. This chapter also studies the 

application o f the proposed algorithm in identifying adequate model structure of turbo 

alternator and a continuous stirred tank reactor or CSTR based on their observed data. 

The identified models are validated using correlation based model validity tests and the 

simulation results are presented.

Finally, chapter 7 summarises and concludes the work done in this study and 

discusses the possible extension of the studies for future research work.
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