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ABSTRACT 

 

 

 

              Numerical simulation of laminar nanofluid flow in Three-dimensional (3D) 

straight rectangular microchannel heat sink is carried out. In this study the behavior 

and effect of using pure water and Fe3O4-H2O as working fluids in the microchannel 

are examined. Fe3O4-H2O with volume fraction range of 0.4% - 0.8% are used in this 

simulation to evaluate the cooling performance of microchannel heat sink. Fluent, a 

Computational Fluid Dynamic (CFD) is used as the solver of simulation. A 

rectangular microchannel with hydraulic diameter of 86 µm and length of 10mm 

under the boundary condition of constant heat flux and uniform inlet velocity is set 

on this analysis. The Results of present work show that using Fe3O4-H2O as coolant 

resulted in  to higher efficiency of heat transfer in microchannel heat sink in 

comparison to Pure water. However, using Fe3O4-H2O with 0.8% volume fraction 

provide a high heat transfer enhancement of 30% as compared to 0.4% and 0.6% 

volume fractions of the same Fe3O4-H2O. Numerical results show that increasing the 

thermal conductivity of working fluid can enhanced heat transfer. Therefore, it is 

equally important to note that the presence of nanoparticles could enhance the 

cooling of MCHS. Meanwhile, higher Nusselt number is found as fluid enters the 

channel inlet. This could be anticipated as a   result of the development of thermal 

entry region at the channel and the values of Nusselt number tend to stabilize after 

fully develop region has been achieved. 

 

 

 

 

 

 

 



vi 

 

 

 

 

ABSTRAK 

 

 

 

Kajian simulasi berkaitan pengaliran aliran nano (lamina) berdimensi segi 

empat tepat menerusi penyerap haba saluran mikro dalam Tiga Dimensi (3D) 

dilakukan. Perubahan dan kesan ketika pengunaan air tulen (suling) dan Fe3O4-H2O 

(bendalir kerja) di dalam saluran mikro ini akan dikaji.Simulasi ini akan mengkaji 

pretasi penyejukan penyerap haba saluran mikro dengan mengunakan Fe3O4-H2O 

pada julat yang kecil,iaitu diantara 0.4% - 0.8%. Perisian Fluent, Computational 

Fluid Dynamic (CFD) akan digunakan untuk menjalankan simulasi ini. Analisis ini 

akan dilakukan pada saluran mikro segi empat tepat dengan dimensi, 86 μm diameter 

hidraulik dan 10mm  panjang  pada keadaan sempadan fluks haba yang berterusan 

dengan halaju seragam. Hasil daripada kajian terkini berkaitan penyerap haba saluran 

menunjukan pengunaan Fe3O4-H2O sebagai penyejuk akan memberi kesan 

kecekapan yang lebih tinggi berbanding air tulen (suling) dari segi pemindahan 

haba.Walau bagaimanapun, pengunaan Fe3O4-H2O 0.8% pecahan isipadu akan 

memberi peningkatan pemindahan haba yang tinggi iaitu sebanyak 30% berbanding 

0.4% dan 0.6% pada pecahan jumlah yang sama. Keputusan berangka menunjukkan 

bahawa peningkatan kekonduksian haba bendalir kerja boleh menigkatkan 

pemindahan haba. Oleh itu, adalah mustahak untuk mengambil kira kehadiran 

partikel-partikel nano yang boleh meningkatkan penyejukan MCHS. Sementara itu, 

bilangan Nusselt yang lebih tinggi telah ditemui ketika bendalir mengalir pada 

saluran masuk terusan. Ini dapat dijangkakan akibat 
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                                                       CHAPTER 1 

INTRODUCTION 

1.1     Background of Study 

The severe need by user for greater IC speeds, functionality and minimization 

has fuelled an extraordinary acceleration in chip power dissipation. Amongst all the 

problems facing by the chip and computer designers is none other than more burning 

than the soaring levels of power flowing through the integrated circuits. Thermal 

demands are continuously on the rise. Increasing process speeds (up to 2.5 GHz), 

decreasing product sizes and styling requirements cause higher and higher heat loads 

on the products and consequently thermal management is becoming a critical 

bottleneck to system performance. The National Electronic Technology Roadmap, 

1997 has acknowledge the expectation that the Moore’ law improvements in the 

semiconductor technology will continue into the second decade of the 21
st
 century 

[1]. Due to these enhancements, the chip level heat fluxes have gone up 

tremendously. 

The heat dissipated by silicon chips has increased from 10-15 W/cm
2
 in the 

year 2000 to 100 W/cm
2 

in the year 2006. High heat fluxes of the order of 10
2
-10

3 

W/cm
2
 are also found in opto-electronic equipment, high performance super

 

computers, power devices, electric vehicles and advanced military avionics[2]. As 

now the thermal design power of the last versions of
 
processors for high performance 

calculation is about 100-130 W/cm
2
. 
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These significant developments of power of microprocessors and other 

electronic components by simultaneous reduction of their surface area contribute to 

critically high the heat flux generation. An increase in the heating density of these 

components has been a serious problem affecting the performances and reliability of 

the electrical devices. The advance cooling technology using microchannels were 

proposed by [3] for cooling very large scale integrated (VLSI) circuitry. The concept 

of microchannel heat sink applied in cooling system is important due to high-density 

electronics packaging requires new advancement in thermal management. 

Cooling becomes one of the top technical challenges facing high-tech 

industries. Since conventional methods of cooling such as forced convection air 

cooling fails to dissipate away the astronomical volumetric heats from the very small 

surfaces of electronic chips and circuits, new solution need to be present to overcome 

these matter. The small physical size of electronic equipment and limitations of air 

cooling systems have caused an increase of interest in high-performance liquid 

cooling systems. A liquid coolant is pumped through the microchannels of the hea 

sink so as to extract the heat from the source such as electronic chip on which it I 

mounted. In most cases, water is used as a coolant. But water is well known as hea 

transfer fluids which have low thermal conductivity that greatly limits the hea 

exchange efficiency. Other base fluids like engine oil and ethylene glycol also have 

low thermal conductivity. 

Promising result was obtained if using nanofluids as a coolant. Nanofluidscan 

be used to improve heat transfer and energy efficiency by addition of solid phase into 

the base fluid. Nanofluids can be considered to be next generation heat transfer fluids 

as they offer exciting new possibilities to enhance heat transfer compared to pure 

liquids. Nanofluids are expected to have superior properties compared to 

conventional heat transfer fluid. 
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1.2 Problem Statement 

The used of nanofluids as a coolant for microchannel heat sink on 

semiconductor and electrical field is found out more effective and researches on this 

application are increase from time to time. Before nanofluids was first discovered, 

most of the researches focus  on conventional methods of cooling such as forced 

convection air-cooling and using fin to dissipate away the excessive heats from the 

microchannel heat sink. Most of the researches focused on the material properties of 

microchannel heat sink can enhance the heat transfer. There are a few journals and 

papers discuss about heat transfer mechanism and research on material properties of 

the microchannel using Fe3O4-H2O. This study will focus on heat transfer 

enhancement Using Fe3O4-H2O in Microchannel. 

1.3 Objectives of the Study 

Before the research is carried out the objectives of the study has to be 

defined. However the main objectives regarding this simulation study are:  

1. To study the fluid behaviour along the rectangular  microchannel 

2. To analyse the heat transfer performance in microchannel using Fe3O4-

H2O 

1.4 Scope of the Project 

 To achieve the stated Objectives above the  scope of this study are liminted 

to the following: 

1. The mode of heat transfer is internal forced convection  
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2. The working fluids in microchannel heat sink consist of pure water 

and Fe3O4. Using volume fractions 0.4% - 8% 

3. Fluid flow and heat transfer are in steady state. 

4. Fluid is in single phase and incompressible flows are investigated.  

5. The microchannel is in constant diameter, constant shape design and 

constant heat flux applied.  

6. The study covered laminar flow only. 

7. The simulation is conducted using FLUENT. 
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