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Abstract- Bootstrap techniques are widely used today in many other fields such as economics, 

Business Administration, Physics, Engineering, Chemistry, Meteorological, Biological Sciences and 

Medicine. This paper is concerned with the estimation of linear regression model parameters in the 

presence of heteroscedasticity using wild bootstrap approaches of Wu and Liu. The empirical 

evidence has shown that these techniques are effective in the presence of heteroscedasticity. However, 

when there are outliers in the data, this method is no longer effective. To overcome this situation, this 

paper proposed robust wild bootstrap estimation methods where heteroscedasticity and outliers occur 

simultaneously. The proposed method is based on the Tukey-redesceding M-estimator which 

incorporate the LTS and LMS estimator, robust scale and location, and the wild bootstrap sampling 

procedures of Liu and Wu. Its performance is compared with other existing robust wild bootstrap 

estimator of MM-estimator using real data and simulation study. The results obtained from this study 

disclosed that the proposed methods offer a substantial improvement over the existing techniques and 

proved to be a good alternative estimator. Copyright © 2015 Penerbit Akademia Baru - All rights 

reserved.  

Keywords: Robust Estimation, Wild Bootstrap, Bias, Standard error and RMS. 

1.0 INTRODUCTION:  

Wild bootstrap method was first proposed by [1] which gives a better performance for 

homoscedastic and heteroscedastic models. However, a better alternative estimation method 

is introduced by [2-3] following the idea of [1] to estimate the regression model parameters. 

The most common bootstrap methods are the residuals bootstrap and the paired bootstrap 

which are defined in [4], and some of their asymptotic properties can be found in [5-7] 

among others. For bootstrap method, [8] proposed a bootstrap procedure based on random 

weight on the loss functions, [9] established a modified form of the residuals bootstrap, and 

[10] considered the validity of paired bootstrap techniques. [11] proposed a modified 

weighted bootstrap estimation method based on LTS. To account for heteroscedasticity [1-3] 

proposed the wild bootstrap techniques by randomly weighting the residuals.  However, 

different attempts have been made to use the procedure of [1-2] wild bootstrap techniques to 

remedy the problem of heteroscedasticity error variance. Others including [12], [13-15] have 

considered the properties of wild bootstrap, but the existing theories of wild bootstrap are all 

based on ordinary least squares (OLS) method they can be seriously affected in the presence 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/78382094?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


            Journal of Advanced Research in Applied Mechanics                                   

                                                                        ISSN (online): 2289-7895 | Vol. 8, No. 1. Pages 13-31, 2015 

 

14 

 

Penerbit

Akademia Baru

of outliers. Recently [16] showed that the result produced from classical wild bootstrap is 

misleading in the presence of outliers. They proposed to replace the Wild bootstrap of OLS 

with a high-breakdown estimator and efficient robust estimator of MM-estimator to estimate 

the robust residuals. 

[17-18] pointed out that the problem of Bootstrap MM-estimator is that the estimator tends to 

vary a lot when the sample size is too small or when the data are contaminated by a large 

number of measurement errors. As an alternative, a precise robust weighted bootstrap method 

with tolerance for high proportion of contaminated measurement errors can be used to 

maintain its robustness. To date, not much work has been devoted to wild bootstrap 

techniques in the presence of heteroscedasticity and outliers with high measurement errors in 

the data for both small and large sample sizes. 

This paper considered the wild bootstrap of least trimmed squares (LTS) estimator [19] and 

the wild bootstrap of least median squares (LMS) estimator [20]. We have discovered a 

number of classical choices of weighted distribution in the wild bootstrap which are invalid 

for small sample size and are not tolerant to large measurement error. The numerical example 

and simulation study on proposed method is examined to demonstrate the relevance of our 

result in finite sample problems. We proposed a simple modification of robust wild bootstrap 

that is capable of handling small sample size and is tolerant to large measurement errors that 

give better performance which is asymptotically correct when the models are homoscedastic 

or heteroscedastic. In section 2, we discussed some existing robust wild bootstrap procedures 

found in the literature. Discussion on the two proposed methods RWBootWu and 

RWBootLiu will be done in Section 3. Results for the comparisons of the proposed methods 

with the existing methods (RBootWuMM, RBootLiuMM, RWBootWuLTS, 

RWBootLiuLTS, RWBootWuLMS, RWBootLiuLMS) through simulation and a real data set 

will be presented in Section 4 and 5. Discussion and conclusion are in Section 6.    

2.0 VARIOUS WILD BOOTSTRAP PROCEDURES: 

Consider the classical linear regression model in the following form                                                                                        

y xβ ε= +              (1) 

where y is a vector of observed values, x is a matrix of dimension (nxp) that contains the p 

vector of explanatory variables, β  is a vector of regression parameter, ε is a vector of errors. 

The error assumes to satisfy a Gaussian distribution with mean zero, and unknown but 

constant variance. However, for many applications, the variance about the error terms are not 

homoscedastic and it is thus required to consider more consistent estimators for the variance 

of β
�

. Various wild bootstrap procedures are briefly discussed in the following section. 

2.1 Robust Wild Bootstrap Techniques Based on Wu 

We describe both robust wild bootstrap based on [1] and robust wild bootstrap based on [2] 

procedures here with a slight modification, that is, instead of MM-estimator for estimating β̂ , 

the LMS and LTS estimator using a Tukey weighting procedure will be used. This is because 

the existing method is greatly affected by large measurement errors and consequently the 

parameter produced from the estimate will be wrong.  
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First, we summarize the existing robust wild bootstrap scheme based on MM-estimate so that 

comparison can be made with the proposed methods. The steps involved are as follows:                        

Step 1: Fit model of 
i i i

y x β ε= +  using MM-estimator to estimate ˆ
MMβ . Step 2: Estimate the 

residuals of MM-estimator given as 

MM

i i i
y yε = −

� �

             (2) 

Step 3: Assign weight to each MM-estimator residual ˆMM

i
ε of equation 2. The weight will be 

equal to                                  

ˆ ˆ1 | | /

ˆ ˆ| | /
ˆ ˆ( | | / )

MM

i MM

ii MM

i MMMM

i MM

if c

w c
if c

ε σ

ε σ
ε σ

 ≤


=
>



        (3)                                

where ˆ
MM

σ  is the square root of the mean squares error of the residuals of MM-estimator 

Step 3. Compute the final weight of MM-estimator. This is obtained by multiplying the 

weight of Equation (3) with the estimate of the residuals of MM-estimator of equation (2). 

The weight that corresponds to good observation will have the final weighted residuals as:  

ˆ ˆ1WMM WMM

i i
ε ε= × and the weight that corresponds to bad observation will have the final 

weighted residuals as  ˆ ˆ ˆˆ/ ( / )WMM MM MM

i i MM i
cε ε σ ε= ×   

Step 4: Obtain the bootstrap sample of
*

( , )iy X , where the estimate of 
*

iy is given as 

*
* ˆˆ

(1 )

WMM

i i
i MM

ii

t
y x

h

ε
β= +

−
           (4) 

where -1'( ' )
ii

h x x x x=  is the i-th leverage; the value of ith leverage is used to reduce the 

influence of cases with large leverage point and for each i . The quantity *t is drawn with 

replacement from a distribution with zero mean and unit variance or can be drawn from 

normalized residuals 1 2, ,... na a a , that is 

norm

ˆ ˆmedian ( )

ˆNMAD ( )

WMM WMM
R i i

i WMM

i

a
ε ε

ε

−
=            (5) 

where { }
1

ˆ ˆ| ( ) |
0.6745

MM MM

i iMAD median medianε ε= − . The constant value 0.6745 is called 

the turning constant. It provides an unbiased estimate of 2

MM
σ  for independent observations 

from a normal distribution [16].  

Step 5: Apply the OLS estimation procedure on the bootstrap sample of
*

( , )iy X . This 

estimate is denoted by * 1 1 1 *ˆ ( )R

iX X X yβ −= .                                                                                                                             
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Step 6: Repeat Step 4 and 5 for k times, where k is the required number of bootstrap 

replicates. The bootstrap procedure is called RBootWuMM.  

2.2 Robust Wild Bootstrap Techniques Based on Liu 

The bootstrap MM-estimator based on [2] algorithm was also applied by [16] to estimate the 

parameter of the model. [2] suggested to modify the procedure of generating the t* value. The 

t* is randomly selected from auxiliary distribution that has a third central moment equal to 

one, in addition to the zero mean and unit variance. In this case, Wu shares the usual second 

order asymptotic properties of the classical bootstrap. Put differently, the addition of the 

restriction that the third central moment be equal to one and such kinds of selection are used 

to correct the skewness term in the edge worth expansion of the sampling distribution of 
ˆ'I β , where I  is an n-vector of ones.  

Liu’s bootstrap procedure can be applied as follows: As we want to discuss Step 4 of section 

2.1, Steps 1 through 3 remain the same. 

Step 4a: For each i , the quantity *t is drawn with replacement from auxiliary distribution with  

zero mean and unit variance that has a third central moment equal to one, in addition to the 

zero mean and unit variance. They decided to estimate the value of t* following the 

procedure of [21] which is described as follows: 

* ( ) ( )
ii i i it N M E N E M= − where 1 2, ,..., nN N N are independently and identically distributed 

normal distribution with mean (1/ 2)( 17 / 6) 1 / 6+  and variance1/ 2 . 
1 2
, ,...,

n
M M M  are 

also independently and identically distributed normally with mean (1 / 2)( ( 17 / 6) 1 / 6−  

and have variance of 1/ 2 . ' and 'i iN s M s are independent. 

Step 4b: Form a bootstrap sample of
*( , )iy X , where the estimate of 

*

iy is given as                                      

*
* ˆ

(1 )

WMM

i i
i MM

ii

t
y x

h

ε
β= +

−
           (6) 

Step 5: through 6 remain the same. The wild bootstrap obtained from such procedure is called 

RBootLiuMM. 

3.0 PROPOSED METHODS: ROBUST WILD BOOTSTRAP LTS (RWBLTS) AND 

ROBUST WILD BOOTSTRAP LMS (RWBLMS) 

The proposed robust wild bootstrap methods are based on [1] and [2], but the important 

difference lies in the choice of estimation method, weight distribution and estimation of 

standardized residuals. The existing robust wild method uses MM-estimator, but we use LTS 

and LMS estimators, because both methods have tolerance of large measurement errors 

because of their 50% breakdown point. Instead of estimating our standardized residuals from 

the square root of mean squares error of the residuals of the MM-estimator estimator, we 

estimate our standardized residuals based on median absolute deviation which is more robust. 



            Journal of Advanced Research in Applied Mechanics                                   

                                                                        ISSN (online): 2289-7895 | Vol. 8, No. 1. Pages 13-31, 2015 

 

17 

 

Penerbit

Akademia Baru

The procedure for the proposed wild bootstrap algorithm based on the robust wild bootstrap 

least trimmed squares is summarized as follows:  

Step 1: Fit the regression model ( , )i i LTSy f x β= using the LTS method to the original 

sample of observation to get LTSβ̂ , hence the fitted model becomes  ( , )i i LTSy f x β=   

Step 2: Compute the residuals of the fitted model ˆ ˆLTS

i i iy yε = − . 

Step 3. Estimate the initial weight for all the cases by using the inverse of this absolute fitted    

value obtained in Step 1 and denote as 1iw  where 

11

1 ]')'([ −−= yXXXXw i           (7) 

 

Step 4: Estimate the scaled residuals i
e , using the robust median absolute deviation given as:  

 

ˆ| |LTS

i
ie

MAD

ε
= where  { }1

ˆ ˆ| ( ) |
0.6745

LTS LTS

i iMAD median medianε ε= −  (8) 

 

 It provides an unbiased estimate of LTSσ  for independent observations from a normal 

distribution [22].
 

Step 5: The final weight can be acquired from any robust weighted function procedure; 

however in this study, we used the Tukey bisquare weighted function, defined as: 

 ( )

2

21 ( ) | |

0 | |

i
i

i

i

e
for e c

e c

for e c

ρ

   
− ≤  

=    


>

        (9) 

where ie  is the standardize residual of  LTS obtained from Step 4 and c = 4.685 is the turning 

constant which produces 95% efficiency relative to the sample mean for normal population 

[23]. 

Step 6: The final weighted residuals of the LTS estimate denoted as LTS

i
w  are obtained by 

multiplying the weight 1iw  with the weight 2iw . The weight that corresponds to good 

observation will have the final weight as 
2

ˆ 1LTS

i iw ε= ×  and the weight that corresponds to bad 

observation will also have the final weight as
2

ˆ 1.345 /LTS

i i i
w eε= ×  

Step 7: The weighted residuals for the LTS estimate denoted as ˆWLTS

i
ε  are obtained by 

multiplying the weights in Step 6 with the residuals of the LTS estimate. Any observation 

that corresponds to good data point has the weighted residuals as
1 1ˆ ˆ1 [ '( ' ) ' ]WLTS LTS

i i
x x x x yε ε − −= × × ; otherwise the weighted residuals is

1 1ˆ ˆ ˆ(1.345/ | |) [ '( ' ) ' ]WLTS LTS

i i i
x x x x yε ε ε − −= × × . However, because of the presence of 

heteroscedasticity in the data, the bootstrap schemes are modified to produce an efficient 
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estimate of the regression parameter. This modified bootstrap method can also be used to 

obtain the standard error, which is asymptotically corrected under heteroscedasticity of 

unknown form.  

Step 8. Construct a bootstrap sample 
*

( , )iy x  where for each i, draw a value *
t , with 

replacement from a distribution with zero mean and unit variance attached to ˆ
iy . For 

obtaining fixed-x-bootstrap values
*b

iy , where  

* *ˆ ˆ( , ) / 1b LTS

i i LTS i iiy f x t hβ ε= + −
                     (10) 

and 
-1

'( ' )iih x x x x=  is the i-th leverage, the value of i-th leverage is used to reduce the 

influence of cases with large leverage point. We modified Wu’s procedure by using the 

robust normalized residuals based on the median and normalized median absolute deviations 

(NMAD) to replace the mean and standard deviation which are not robust. The following 

equation is then obtained as:  

norm

ˆ ˆmedian ( )
* 1,2,...,

ˆNMAD ( )

WLTS WLTS

i i

WLTS

i

t for i n
ε ε

ε

−
= =                 (11) 

The estimate of normalized median absolute deviation of the weighted residuals is given as: 

{ }ˆ ˆmedian median ( ) / 0.6745
WLTS WLTS

i iNMAD ε ε= −                 (12) 

Step 9:  Fit the LTS to the bootstrapped values 
*b

iy on the fixed-x to obtain *ˆ b

LTSβ .  

Step 10: Repeat the procedures in Step 8 and 9 for k times to get *ˆ ˆ,...,bi bk

LTS LTSβ β  where k is the 

number of bootstrap replications. 

Step 11: Estimate the variance of the k vectors of estimated parameter obtained using the 

procedures in Steps 1 to 9.  

The wild bootstrap obtained from such procedure is called RWBootWuLTS. Hence, in this 

study, we also applied the weighted bootstrap LTS based on Liu’s algorithm to estimate the 

parameters of the model. It should be noted that the studies by [1] and [2] differ only in the 

choice of random sample of t*. In this research, the samples were randomly selected, 

following exactly the same procedure as proposed by [16]. The wild bootstrap obtained from 

such procedure is called RWBootLiuLTS. We also apply the same procedure as in LTS to 

LMS to estimate the parameter of the model. The wild bootstrap obtained from such 

procedure is called RWBootWuLMS and RWBootLiuLMS. 

4.0 NUMERICAL EXAMPLE 

To assess the performance of the proposed method, we consider body fat data. This data is 

used by many researchers such as [24] and [25]. It describes the percentage of body fat, age, 

weight, height, and ten body circumference measurements (e.g., abdomen) recorded from 252 
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men.  It consists of the following components: y= PCTBF, x1= Density, x2= Age, x3= 

Weight, x4= Height, x5= Neck, x6= Chest, x7= Abdomen, x8= Hip, x9= Thigh, x10= Knee, 

x11= Ankle, x12= Biceps, x13= Forearm, x14= Wrist.  

0 1 1 2 2 14 14...y x x xβ β β β ε= + + + + +                   (13) 

 

Table 1: Wild Bootstrap Standard Error of the parameters for the Robustness of real data 

(Tukey) 

 

We initially checked on the basis of whether this data contained any outliers or not by using 

standardized residuals of LTS and it is observed that it contained about 10% outliers. We 

applied robust Goldfeld-Quandt test on the data by testing the suspected regressor variable 

with the response variables without the points identified as outliers by the LTS procedures to 

test for the presence of heteroscedasticity. The MGQ test was performed on the basis that the 

people with high percent of body fat will be expected to have higher abdomen circumference. 

The result of modified Goldfeld-Qundl test of MGQ = 10.4591 is compared with the critical 

value for F-Statistics with (n1-c-2k)/2 and (n2-c-2k)/2 degree of freedom, which is F= 0.005 

for the 5% significance level. As a result our alternative hypothesis that there is 

heteroscedasticity in the data was accepted. We applied three robust wild bootstrap 

techniques to the data and the results are presented in Table 1.  This table exhibits the 

standard error of parameter estimate obtained from the robust methods. It is interesting to 

Coef. 
Robust MM-Estimation Robust LMS-Estimation Robust LTS-Estimation 

RBootWu RBootLui RWBootWu RWBootLui RWBootWu RWBootLui 

0β  0.8620 0.7302 0.1806 0.1054 0.1254 0.1377 

1β  0.6358 0.5465 0.1284 0.0741 0.0857 0.0972 

2β  0.0008 0.0006 0.0001 0.0001 0.0001 0.0001 

3β  0.0014 0.0012 0.0003 0.0002 0.0002 0.0003 

4β  0.0031 0.0026 0.0008 0.0005 0.0006 0.0007 

5β  0.0056 0.0048 0.0011 0.0007 0.0008 0.0009 

6β  0.0024 0.0020 0.0005 0.0003 0.0004 0.0004 

7β  0.0025 0.0021 0.0005 0.0003 0.0003 0.0004 

8β  0.0036 0.0030 0.0007 0.0004 0.0005 0.0005 

9β  0.0034 0.0028 0.0007 0.0004 0.0005 0.0005 

10β  0.0059 0.0050 0.0012 0.0007 0.0008 0.0009 

11β  0.0059 0.0053 0.0015 0.0009 0.0010 0.0011 

12β  0.0041 0.0035 0.0008 0.0005 0.0006 0.0006 

13β  0.0051 0.0044 0.0013 0.0008 0.0010 0.0010 

14β  0.0138 0.0110 0.0025 0.0016 0.0019 0.0020 

AV.SE 0.1037 0.0883 0.0214 0.0125 0.0177 0.0163 
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observe that the robust wild bootstrap of MM-estimator have larger standard errors when 

compared with the robust wild bootstrap estimator for both LTS and LMS methods in the 

presence of outliers and heteroscedasticity in the data. This is not evidence for our final 

conclusion. Based on the results obtained (Table 1), so far, we can say that the MM-estimator 

is affected by the presence of outliers. 

5. 0 SIMULATION RESULTS 

Here, we carry out an extensive simulation study on finite sample to compare the 

performance of RBootWuMM, RBootWuMM, RWBootWuLMS, RWBootWuLMS, 

RWBootWuLTS and RWBootLiuLTS method. We considered data generating procedure 

similar to [16] and [26]. The design of this research involves a linear model of two 

covariates:  

0 1 1 2 2i i i i i
y x xβ β β σ ε= + + +                    (14) 

To generate the covariate values, we consider the sample sizes of n= 20, 60 and 100.  For the 

case of sample size n=20, the covariate observations of ii xandx 21  were generated from N (0, 

1). We replicated these observations three and five times to generate the sample size n=60 

and n=100 respectively. We performed the data generating procedures using 1210 === βββ . 

For all i under homoscedasticity, .1=iσ  Now we obtained heteroscedasticity generating 

procedure following [16] and [27]. The heteroscedasticity generation function is defined as 

)5.15.1exp( 21 iii xx +=σ . The level of heteroscedasticity in this research is measured by 

)min(/)max( 22

ii σσφ = and the degree of heteroscedasticity remains constant for different 

sample sizes. However, for each simulation run and for various sample sizes, '
i

sε were 

drawn from standard normal distribution with mean zero and variance one i.e. N (0, 1) for the 

case of data with no outliers. Our interest is to estimate a regression model that would involve 

outliers. We then start contaminating the data by randomly substituting some limited number 

of good observations with a certain percentage of outliers. In this respect, the points that we 

replaced will produce large residuals and thus identified as outliers in the data set. The 

heteroscedasticity linear model with outliers becomes 

0 1 21 2 ( min )i ii i i conter ated
y x xβ β β σ ε= + + +                  (15) 

and
( min )

( 0,1) (1 ) (5,10)
i conter ated

N Nε α α= + − where α  is selected based on the 

percentage of outliers. In this research we generate 5%, 10%  and 15% outliers, the 95% , 

90% and 85% of '
i

sε  were drawn from N(0,1) and 5%, 10% and 15% outliers were 

generated from N(5,10). The simulation of each sample size was replicated 500 times with 

1000 bootstrap sample replicates. We performed a similar simulation procedure following the 

design of [16] and [21].  
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Figure 1: The average effect of outlier percentage on standard error for the sample size n=20 

 

Figure 2: The average effect of outlier percentage on standard error for the sample size n=60 

 

Figure 3: The average effect of outlier percentage on standard error for the sample size 

n=100 
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Table 2: Root Mean Squares Error for Robust Wild Bootstrap estimation method data N= 20 

 

 

We estimate the bias, root mean squares errors and standard errors of various sample sizes 

with different percentage of outliers. The bootstrap bias of RBootWuMM and RBootLiuMM 

can be obtained by subtracting the difference between the true model and the estimated model 

as: 

Bias = ˆ ˆ
bMM MMβ β−                     (16) 

Here
1 *

1

ˆ ˆ( )
k

b

bMM MM

b

kβ β−

=

= ∑  and the corresponding estimate of bootstrap standard error of 

RBootWuMM and RBootLiuMM can be acquired from the square root of the main diagonal 

of the covariance matrix and is given as 

* * '

( ) ( ) ( ) ( )

1

ˆ ˆ( )( )

ˆ( )
( 1)

k
b b

MM bMM MM bMM

b

bMMSE
k

β β β β

β

− −

=
−

∑
                (17) 

        MM-Estimation        LTS-Estimation      LMS-Estimation 

Outliers Coef. RBootWu RBootLui RWBootWu RWBootLui RWBootWu RWBootLui 

 
0β  0.0864 0.1246 0.1263 0.1555 0.2603 0.1833 

0% 
1β  0.0877 0.1265 0.1426 0.2338 0.1598 0.3424 

 
2β  0.1398 0.1033 0.2385 0.1310 0.3706 0.4014 

 
0β  0.2935 0.4569 0.2924 0.6146 0.3039 0.3299 

5% 
1β  0.4442 0.3829 0.3005 0.3306 0.3857 0.2474 

 
2β  0.3804 0.4317 0.2061 0.4520 0.2907 0.3394 

 
0β  0.4599 0.4635 0.2679 0.4303 0.2726 0.6979 

10% 
1β  0.4028 0.5495 0.2684 0.4673 0.4296 0.6826 

 
2β  0.5032 0.5982 0.2176 0.3918 0.2501 0.6318 

 
0β  0.5964 0.5492 0.1930 0.3641 0.3529 0.3246 

15% 
1β  0.6692 0.8279 0.3364 0.3382 0.3275 0.4918 

 
2β  0.5879 0.7197 0.2584 0.3484 0.2149 0.3466 

 
0β  0.6048 0.6695 0.2945 0.3980 0.3304 0.3258 

20% 
1β  0.8290 0.8791 0.3447 0.2983 0.3480 0.4759 

 
2β  0.8002 0.9519 0.3145 0.3928 0.3270 0.3346 
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Table 3: Root Mean Squares Error for Robust Wild Bootstrap estimation data N= 60 

 

 

Table 4: Root Mean Squares Error for Robust Wild Bootstrap estimation data N= 100 

        MM-Estimation          LTS-Estimation        LMS-Estimation 

Outliers Coef. RBootWu RBootLui RWBootWu RWBootLui RWBootWu RWBootLui 

 
0β  0.1079 0.0483 0.0957 0.0546 0.0675 0.0614 

0% 
1β  0.0856 0.1583 0.0746 0.0404 0.0713 0.0539 

 
2β  0.1487 0.0695 0.1098 0.0416 0.0532 0.0434 

 
0β  0.1324 0.1740 0.1094 0.0395 0.1245 0.0992 

5% 
1β  0.1648 0.4070 0.1130 0.0935 0.0993 0.1174 

 
2β  0.1359 0.1302 0.0974 0.0454 0.1013 0.0907 

 
0β  0.2449 0.1538 0.0815 0.0482 0.1171 0.0788 

10% 
1β  0.2569 0.1767 0.1118 0.0549 0.1307 0.0868 

 
2β  0.2785 0.2154 0.1270 0.0491 0.1789 0.0942 

 
0β  0.3273 0.2398 0.1293 0.0555 0.1660 0.1469 

15% 
1β  0.4496 0.2563 0.1893 0.0529 0.2953 0.0976 

 
2β  0.2651 0.2783 0.1415 0.0726 0.1857 0.1466 

 
0β  0.2442 0.2482 0.1665 0.1078 0.1720 0.2773 

20% 
1β  0.4500 0.5492 0.1446 0.0805 0.1264 0.1084 

 
2β  0.3735 0.2700 0.1651 0.0950 0.2222 0.2891 

  MM-Estimation LTS-Estimation          LMS-Estimation 

Outliers Coef. RBootWu RBootLui RWBootWu RWBootLui RWBootWu RWBootLui 

 
0β  0.0668 0.0563 0.0247 0.0517 0.0578 0.0504 

0% 
1β  0.0902 0.0635 0.0661 0.0404 0.0823 0.0571 

 
2β  0.1622 0.0512 0.0537 0.0512 0.0795 0.0526 

 
0β  0.1242 0.1014 0.0671 0.0685 0.1042 0.1058 

5% 
1β  0.1603 0.2571 0.0816 0.0656 0.1060 0.1163 

 
2β  0.1160 0.2512 0.0758 0.0623 0.1027 0.0767 

 
0β  0.1297 0.1116 0.0930 0.0612 0.2144 0.0724 

10% 
1β  0.1845 0.1119 0.1093 0.0775 0.2580 0.1461 

 
2β  0.1404 0.1295 0.1180 0.0860 0.1130 0.0802 

 
0β  0.1522 0.1248 0.1123 0.1072 0.1337 0.1268 

15% 
1β  0.3773 0.2375 0.1221 0.0923 0.1132 0.1441 

 
2β  0.1852 0.1330 0.1084 0.0917 0.1283 0.1652 
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Table 5: Bias Measurement for Robust Wild Bootstrap estimation method data N=20 

            Table 6: Bias Measurement for Robust Wild Bootstrap estimation method data N=60 

 
0β  0.1575 0.1270 0.1143 0.0823 0.1296 0.1524 

20% 
1β  0.2215 0.1512 0.1379 0.1053 0.1407 0.1415 

 
2β  0.2000 0.1341 0.1413 0.1194 0.1209 0.1820 

  MM-Estimation LTS-Estimation  LMS-Estimation 

Outliers Coef. RBootWu RBootLui RWBootWu RWBootLui RWBootWu RWBootLui 

 
0β  0.0203 0.0186 -0.0020 -0.0986 0.2044 -0.0434 

0% 
1β  0.0423 0.0287 0.0645 -0.1159 0.0711 -0.2747 

 
2β  0.0199 0.0175 0.0473 -0.0662 0.2539 0.3666 

 
0β  -0.1188 0.0092 -0.1615 -0.5769 0.1960 0.0348 

5% 
1β  -0.2246 -0.2518 -0.1245 -0.0905 0.3523 -0.0679 

 
2β  0.0579 -0.2252 0.0474 0.3961 -0.0316 -0.0614 

 
0β  0.0598 -0.0089 -0.0274 -0.3217 0.1076 -0.6192 

10% 
1β  0.1120 -0.1022 -0.0520 -0.3756 0.3419 -0.6075 

 
2β  0.1965 -0.3833 -0.0772 0.2406 0.1474 0.5387 

 
0β  0.0831 0.0190 0.0687 -0.0022 0.0090 0.1041 

15% 
1β  -0.0262 0.5002 -0.0316 0.2198 -0.0318 0.0598 

 
2β  -0.2529 0.1976 -0.0782 -0.0688 0.0965 -0.1533 

 
0β  0.0530 0.1822 0.0280 -0.0478 0.0572 0.0516 

20% 
1β  0.2412 0.7196 0.2053 0.0183 0.1896 0.0095 

 
2β  -0.3332 0.1319 -0.0371 0.0036 -0.0070 0.0226 

   MM-Estimation  LTS-Estimation LMS-Estimation 

Outliers Coef. RBootWu RBootLui RWBootWu RWBootLui RWBootWu RWBootLui 

 
0β  0.0952 -0.0271 -0.0731 -0.0066 0.0394 -0.0157 

0% 
1β  0.0564 -0.1496 0.0384 0.0023 0.0305 -0.0038 

 
2β  -0.1395 -0.0518 -0.0966 0.0030 0.0123 -0.0019 

 
0β  -0.0130 0.1213 -0.0341 -0.0155 -0.0202 -0.0246 

5% 
1β  0.0482 -0.3849 0.0202 -0.0842 -0.0054 -0.0956 

 
2β  -0.0412 0.0510 0.0249 0.0313 -0.0606 0.0678 

 
0β  0.0217 0.0146 0.0152 -0.0098 -0.0352 -0.0236 

10% 
1β  -0.1932 0.0270 0.0060 0.0141 -0.0168 0.0078 

 
2β  -0.1019 -0.0702 -0.0105 -0.0206 0.0551 0.0639 

 
0β  0.0187 0.0627 -0.0335 -0.0044 -0.1120 0.0620 

15% 
1β  0.3685 -0.1247 0.1697 0.0053 0.2564 0.0170 

 
2β  -0.0251 -0.1363 0.0105 0.0439 -0.1095 -0.1023 
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Table 7:  Bias Measurement of Robust Wild Bootstrap estimation method data N=100 

Table 8:  Standard Error for the Robust Wild Bootstrap estimation method data N= 20 

 
0β  -0.0281 0.0077 0.0003 -0.0411 0.0363 -0.2281 

20% 
1β  0.2113 0.4509 0.0333 0.0039 -0.0620 -0.0297 

 
2β  -0.1228 0.0911 -0.0300 0.0559 -0.1207 0.2558 

  MM-Estimation LTS-Estimation  LMS-Estimation 

Outliers Coef. RBootWu RBootLui RWBootWu RWBootLui RWBootWu RWBootLui 

 
0

β  -0.0406 0.0192 0.0028 0.0154 0.0392 0.0164 

0% 
1β  -0.0802 -0.0365 0.0200 -0.0169 -0.0669 0.0410 

 
2β  -0.1513 -0.0267 0.0123 0.0232 -0.0499 0.0127 

 
0β  -0.0438 -0.0045 -0.0064 0.0082 -0.0078 0.0703 

5% 
1β  0.1215 0.2388 0.0047 -0.0164 -0.0401 -0.1005 

 
2β  -0.0219 0.2291 0.0118 0.0301 0.0558 -0.0108 

 
0β  -0.0022 -0.0087 -0.0049 -0.0023 -0.1821 0.0061 

10% 
1β  0.1223 -0.0159 0.0119 -0.0112 -0.2366 0.1157 

 
2β  0.0471 0.0375 0.0075 0.0080 0.0514 -0.0004 

 
0β  -0.0435 0.0541 -0.0045 -0.0248 0.0395 -0.0921 

15% 
1β  -0.3435 0.1822 0.0535 -0.0377 0.0243 0.1060 

 
2β  0.1134 -0.0659 0.0064 0.0505 -0.0609 0.1390 

 
0β  0.0170 -0.0022 -0.0466 -0.0141 -0.0010 -0.1188 

20% 
1β  0.1308 0.0420 0.0271 -0.0507 -0.0032 -0.0953 

 
2β  0.1176 -0.0221 0.0832 -0.0607 -0.0045 -0.1473 

  MM-Estimation LTS-Estimation LMS -Estimation 

Outliers Coef. RBootWu RBootLui RWBootWu RWBootLui RWBootWu RWBootLui 

 
0β  0.084 0.1232 0.1263 0.1203 0.1611 0.1781 

0% 
1β  0.0768 0.1232 0.1272 0.2031 0.1431 0.2044 

 
2β  0.1384 0.1018 0.2338 0.113 0.2699 0.1636 

AV.SE  0.0997 0.1161 0.1624 0.1455 0.1914 0.1820 

 
0β  0.2684 0.4568 0.2438 0.2119 0.2322 0.3281 

5% 
1β  0.3832 0.2885 0.2735 0.318 0.157 0.2379 

 
2β  0.376 0.3683 0.2006 0.2178 0.289 0.3338 

AV.SE  0.3425 0.3712 0.2393 0.2492 0.2261 0.2999 

 
0β  0.456 0.4634 0.2665 0.2858 0.2505 0.322 

10% 
1β  0.3869 0.5399 0.2633 0.2781 0.2601 0.3113 

 
2β  0.4632 0.4592 0.2034 0.3092 0.2021 0.3302 

AV.SE  0.4754 0.4874 0.2444 0.2910 0.2376 0.3212 

 
0β  0.5906 0.5489 0.1804 0.3641 0.3528 0.3075 
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Table 9: Standard Error for the Robust Wild Bootstrap estimation method data N= 60 

 

Table 10: Standard Error for the Robust Wild Bootstrap estimation method data N= 100 

15% 
1β  0.6687 0.6597 0.3349 0.257 0.326 0.4882 

 
2β  0.5307 0.692 0.2463 0.3415 0.192 0.3109 

AV.SE  0.5967 0.6335 0.2539 0.3209 0.2983 0.3689 

 
0β  0.6025 0.6442 0.2932 0.3951 0.3254 0.3217 

20% 
1β  0.7931 0.5049 0.2769 0.2977 0.2918 0.4758 

 
2β  0.7275 0.9427 0.3123 0.3928 0.3269 0.3338 

AV.SE  0.7077 0.6973 0.2941 0.3619 0.3147 0.3771 

  MM-Estimation LTS-Estimation LMS-Estimation 

Outliers Coef. RBootWu RBootLui RWBootWu RWBootLui RWBootWu RWBootLui 

 
0β  0.0507 0.0400 0.0617 0.0542 0.0548 0.0594 

0% 
1β  0.0644 0.0519 0.0639 0.0403 0.0645 0.0538 

 
2β  0.0514 0.0464 0.0523 0.0415 0.0518 0.0434 

AV.SE  0.0555 0.0461 0.0593 0.0453 0.0570 0.0522 

 
0β  0.1318 0.1247 0.1039 0.0363 0.1228 0.0961 

5% 
1β  0.1576 0.1323 0.1112 0.0406 0.0992 0.0681 

 
2β  0.1295 0.1198 0.0942 0.0329 0.0812 0.0603 

AV.SE  0.1396 0.1256 0.1031 0.0366 0.1011 0.0748 

 
0β  0.2439 0.1531 0.0801 0.0472 0.1117 0.0752 

10% 
1β  0.1693 0.1746 0.1116 0.0531 0.1296 0.0864 

 
2β  0.2592 0.2036 0.1266 0.0446 0.1702 0.0692 

AV.SE  0.2236 0.1771 0.1061 0.0483 0.1372 0.0769 

 
0β  0.3268 0.2315 0.1249 0.0553 0.1225 0.1332 

15% 
1β  0.2575 0.2239 0.0839 0.0526 0.1465 0.0961 

 
2β  0.2639 0.2426 0.1411 0.0578 0.1500 0.105 

AV.SE  0.2827 0.2327 0.1166 0.0552 0.1393 0.1114 

 
0β  0.2426 0.2481 0.1665 0.0997 0.1681 0.1576 

20% 
1β  0.3973 0.3135 0.1407 0.0804 0.1102 0.1042 

 
2β  0.3527 0.2542 0.1624 0.0768 0.1865 0.1347 

AV.SE  0.3309 0.2719 0.1565 0.0856 0.1549 0.1322 

   MM-Estimation  LTS-Estimation  LMS-Estimation 

Outliers Coef. RBootWu RBootLui RWBootWu RWBootLui RWBootWu RWBootLui 

 
0β

 
0.0530 0.0529 0.0245 0.0494 0.0425 0.0477 

0% 
1β
 

0.0412 0.0519 0.0630 0.0367 0.0480 0.0397 
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6.0 RESULTS AND DISCUSSION 

Figures 1-3 described the influence of outliers on the standard errors of various robust wild 

bootstrap methods. The average standard errors of regression parameter are plotted at 

different percentage level of outliers for different wild bootstrap. The results disclosed that 

the performances of different robust wild bootstrap methods are fairly close to each other at 

0% level of contamination. It appeared that the average standard errors of RBootWuMM, 

RBootLiuMM, and the proposed RWBootWuLTS, RWBootLiuLTS, RWBootWuLMS and 

RWBootLiuLMS are closer to each other. However, when the percentage of outliers is 

introduced to 5%, 10%, 15% and 20% levels of contaminated data, the RBootWuMM and 

RBootLiuMM estimate becomes large. It is curious to observe that not much outlier influence 

is feasible for the modified RWBootLiuLTS, RWBootWuLMS and RWBootLiuLMS 

methods at different percentage levels of outlier. In contrast, it is observed that at n=20 

sample size, the average standard errors of RWBootLiuLTS and RWBootWuLMS are 

smaller than the RWBootLiuLMS and RWBootLiuLTS. When the sample size is increased to 

n=60, and n= 100 the RWBootLiuLMS and RWBootLiuLTS have the least average standard 

errors. 

The simulation results of different robust wild bootstrap techniques are described in Table 2- 

10. Our focus is to investigate the effect of outliers and heteroscedasticity on the coefficient 

of regression model by looking at the bias and the standard errors as well as their root mean 

squares errors. Different interesting points can be seen in these tables. The results presented 

 
2β

 
0.0584 0.0437 0.0523 0.0456 0.0619 0.0510 

AV.SE  0.0509 0.0495 0.0466 0.04329 0.0508 0.0461 

 0β
 

0.1162 0.1013 0.0668 0.0680 0.1039 0.079 

5% 
1β
 

0.1046 0.0952 0.0815 0.0635 0.0981 0.0586 

 
2β

 
0.1139 0.1031 0.0749 0.0545 0.0862 0.0759 

AV.SE  0.1116 0.0999 0.0744 0.0620 0.0961 0.0712 

 
0β

 
0.1297 0.1113 0.0929 0.0612 0.1132 0.0721 

10% 
1β
 

0.1381 0.1108 0.1087 0.0767 0.1028 0.0892 

 
2β

 
0.1323 0.1239 0.1178 0.0856 0.1006 0.0802 

AV.SE  0.1334 0.1153 0.1065 0.0745 0.1055 0.0805 

 
0β

 
0.1458 0.1125 0.1122 0.1043 0.1277 0.0872 

15% 
1β
 

0.1562 0.1523 0.1098 0.0842 0.1106 0.0976 

 
2β

 
0.1464 0.1155 0.1082 0.0765 0.1129 0.0892 

AV.SE  0.1495 0.1268 0.1101 0.0883 0.1171 0.0913 

 
0β

 
0.1566 0.1270 0.1044 0.0811 0.1296 0.0954 

20% 
1β
 

0.1787 0.1453 0.1352 0.0923 0.1407 0.1046 

 
2β

 
0.1618 0.1323 0.1142 0.1028 0.1208 0.1069 

AV.SE  0.1657 0.1349 0.1179 0.0920 0.1304 0.1023 
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in Table 2-10 described the bias and root mean squares error for small and large sample size 

of the proposed method with the existing methods. It was observed that for different sample 

size, the robust wild bootstrap method of RBootWuMM and RBootLiuMM does not perform 

well when compared with the proposed method of RWBootWuLTS, RWBootLiuLTS, 

RWBootWuLMS and RWBootLiuLMS in case of contaminated data.  The RBootWu and 

RBootLiu performed well but the performance is not up to expectations when compared with 

our proposed method for all sample sizes. On the other hand, it is also observed that the 

RWBootWuLTS, RWBootLiuLTS, RWBootWuLMSm and RWBootLiuLMS provide the 

least standard error among all and reduces further with increased sample size. As the 

percentage of outliers increase to 10%, one can notice that the increase in bias and standard 

errors for RBootWuMM and RBootLiuMM is much larger than the increase in bias and 

standard errors for RWBootWuLTS, RWBootLiuLTS, RWBootWuLMS and 

RWBootLiuLMS. The proposed method appeared to be more resistant to outliers among the 

three estimation methods with respect to their bias, root mean squares errors and standard 

errors. The error measures of RWBootWuLTS, RWBootLiuLTS, RWBootWuLMS and 

RWBootLiuLLMS were consistently smaller for all sample sizes and in different percentage 

of outliers. It was observed that as the percentage of outlier’s increases both the 

RBootWuMM and RBootLiuMM perform badly when compared with the proposed method 

as their bias, root mean square errors and standard errors would increase significantly. 

Finally, the results of this analysis clearly show that our new wild bootstrap method is very 

robust and is proven to be more resistant to outliers in the data since it will not easily be 

influenced by the presence of even large numbers of outliers.  As shown, it produced the least 

standard errors, bias and root mean squares errors in both simulation and numerical 

examples. Hence, it becomes a robust wild bootstrap alternative to existing wild bootstrap 

techniques. 

7.0 CONCLUSION  

The presence of heteroscedasticity and outliers in the data required a comprehensive 

investigation of both regression and bootstrap methods. In this paper, we examined the finite 

sample behaviour of new bootstrap procedures namely RBootWuMM, RBootWuMM, 

RWBootWuLMS, RWBootWuLMS, RWBootWuLTS and RWBootLiuLTS in linear 

regression model in the presence of outliers and heteroscedasticity using numerical examples 

and simulation study. The results obtained from both numerical example and simulation 

study have revealed several important results. In our simulation study, this estimator 

performed as well as its robust competitors when there are no outliers. In the presence of 

outliers and heteroscedasticity, the results shows that robust bootstrap methods of 

RWBootWuLTS, RWBootLiuLTS, RWBootWuLMS and RWBootLiuLMS techniques have 

consistently outperformed both the robust bootstrap of RBootWu and RBootLiu when the 

percentage of outliers increases. It appeared that the Tukey bisquares weighted function and 

wild bootstrap procedures applied on RWBootWu, RWBootLiu, RWBootWuLMS and 

RWBootLiuLMS have improved the performance of robust wild bootstrap method. Finally, 

the RWBootWuLTS, RWBootLiuLTS, RWBootWuLMS and RWBootLiuLMS estimators of 

regression model have proven to be good alternative to other robust wild bootstrap 

procedures particularly when the data contain high percentage of outliers.    

REFERENCES 



            Journal of Advanced Research in Applied Mechanics                                   

                                                                        ISSN (online): 2289-7895 | Vol. 8, No. 1. Pages 13-31, 2015 

 

29 

 

Penerbit

Akademia Baru

[1] C.F.J. Wu. Jackknife, Bootstrap and other resampling methods in regression analysis, 

The Annals of Statistics 14 (1986) 1261-1350. 

[2] R.Y. Liu, Bootstrap procedures under some non- i.i.d. Models, The Annals of Statistics 

16 (1988) 1696-1708. 

[3] R. Beran, Prepivoting test statistics: a bootstrap view of asymptotic refinements,      

Journal of the American Statistical Association 83 (1988) 687-697. 

[4] B. Efron, R. Tibshirani, Bootstrap methods for standard errors,  confidence  intervals,  

and other measures of statistical accuracy, Statistical Science 1 (1986) 54-77. 

[5] J. Shao, D. Tu, Jackknife and bootstrap, New York, Springer, (1986). 

[6] E. Ammen, When does bootstrap work? Asymptotic results and Simulation, New York, 

Springer, (1991). 

[7] E. Flachaire, A better way to bootstrap pairs, Economics Letters 64 (1999) 257-262. 

[8] C.R. Rao, L.C. Zhao, Approximation to the distribution of M-estimates in linear models 

by randomly weighted bootstrap, Samkhya 54 (1992) 323- 331. 

[9] S.N. Lahiri, Bootstraping M-estimators of a multiple linear regression parameter, 

Annals of Statistics 20 (1992) 1548-1570. 

[10] K. Knight, Asymptotic fot L1 –estimators of regression under heteroscedasticity, 

Canadian Journal of Statistics 27 (1999) 497-507. 

[11] S. Alamgir, A. Ali, Split Sample Bootstrap Method World Applied Science Journal 21 

(2013) 983-993. 

[12] Z. Hongtu, G.I. Joseph, S.P. Bradley, A Statistical Analysis of Brain Morphology 

Using Wild Bootstrapping, IEEE Transactions on Medical Imaging 26 (2007) 954-966. 

[13] A.C. Davidson, E. Falchaire, The wild bootstrap tame at last, Journal of Econometrics 

146 (2008) 162- 169. 

[14] M.R. Norazan, M. Habshah, A.H.M.R. Imon, Estimating Regression Coefficient using 

Weighted Bootstrap with Probability, WSEAS Transactions on  Mathematics 8 (2009) 

362-371. 

[15] F. Xingdong, X. He, J. Hu, Wild Bootstrap for Quantile Regression, Biometrika 98 

(2011) 995-999. 

[16] R. Sohel, M. Habshah, A.H.M.R. Imon, Robust wild bootstrap for stabilizing the 

variance of parameter estimates in heteroscedastic regression models in the presence of 

outliers, Mathematical Problems in Engineering 2012 (2012) 1-14. 

[17] C.L. Cheng, J. Riu, On estimating linear relationships when both variables are subject 

to heteroscedastic measurement errors, Technometrics 48 (2006) 511. 



            Journal of Advanced Research in Applied Mechanics                                   

                                                                        ISSN (online): 2289-7895 | Vol. 8, No. 1. Pages 13-31, 2015 

 

30 

 

Penerbit

Akademia Baru

[18] A.R. Bello, A. Robiah, S. Ehsan, D. Kafi, Application of robust wild bootstrap 

estimation of linear model, Econometric International Journal of Applied mathematics 

and Statistics 53 (2015) 82-101. 

[19] J.P. Rousseeuw, A.M. Leroy, Robust Regression and Outlie Detection, Wiley Series in 

Probability and Mathematical Statistics: Applied Probability and Statistics, John Wiley 

& Sons, New York, NY, USA (1987). 

[20] P.J. Rousseeuw, Least median of squares regression, Journal of the American Statistical 

Association  79 (1984) 871-880. 

[21] F. Cribari-Nato, S.G. Zarkos, Bootstrap methods for heteroscedastic regression models: 

evidence on estimation and testing, Econometric Reviews 18 (1999) 211-228. 

[22] M. Habshah, R. Sohel, A.H.M. Rahmatullah Imon, The performance of robust weighted 

least squares in the presence of outliers and heteroscedastic errors, WSEAS 

Transactions on Mathematics 8 (2009) 351- 361. 

[23] A.R. Bello, A. Robiah, S. Ehsan, D. Kafi, Robust weighted least squares  estimation of 

regression parameter in the presence of outliers and heteroscedastic errors, Journal of 

technology 71 (2014) 11–18. 

[23] K.W. Penrose, A.G. Nelson, A.G. Fisher, Generalized body composition prediction 

equation for men using simple measurement techniques, Medicine and Science in 

Sports and Exercise 17 (1985) 189. 

[25] R.W. Johnson, Fitting percentage of body fat to simple body measurements, Journal of 

Statistics Education 4 (1996). 

[26] H. White, J.G. Mackinnon, Some heteroscedasticity-consistent covariance matrix 

estimators with improved finite sample properties, Journal of Econometrics 29 (1985) 

305-325. 

[27] F. Cribari-Neto, Asymptotic inference under heteroscedasticity of unknown form, 

Computational Statistics & Data Analysis 45 (2004) 215-233. 


