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GRAPHICAL ABSTRACT 
 
 

 
ABSTRACT 
 
In this study, the Robust Heteroscedastic Consistent Covariance Matrix (RHCCM) was proposed in order 
to estimate standard errors of regression coefficients in the presence of high leverage points and 
heteroscedastic errors in multiple linear regression. Robust Heteroscedastic Consistent Covariance Matrix 
(RHCCM) is the combination of a robust method and Heteroscedasticit Consistent Covariance Matrix 
(HCCM).  The robust method is used to eliminate the effect of high leverage points while HCCM is mainly 
used to eliminate the effect of heteroscedastic errors. The performance of RHCCM was assessed through 
an empirical study and compared with results obtained when the original Heteroscedastic Consistent 
Covariance Matrix was used.   
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1. INTRODUCTION 
 
 High leverage points are the observations that have 
extreme values in independent variables (  spaces) and will 
influence the intercept and slope estimation in the method 
of least squares. These high leverage points can be caused 
by a gross error in , a unique priceless observation, or an 
accurate but useless observations [1]. 
 The heteroscedastic errors will mislead the ordinary 
least squares estimate of regression coefficients to become 
inefficient which resulted in the inaccuracy conclusion [2]. 
Heteroscedasticity yielded hypothesis tests that fail to keep 
false rejections at the nominal level; and estimated standard 
errors as well as confidence intervals to become either too 
narrow or too large [3]. 
 Ordinary Least Squares (OLS) method is a well-
known method that is able to provide efficient and unbiased 
parameter estimation when there are no high leverage points 
or heteroscedastic errors in multiple linear regression. 
Nevertheless, the ordinary least squares method does not 
perform well in the presence of high leverage points and 
heteroscedastic errors, resulting in hypothesis tests that are 
liberal or conservative. Ordinary Least Squares Covariance 
Matrix (OLSCM) whose diagonal elements are used to 
estimate the standard error and regression coefficient 
becomes biased and inconsistent due to the effects of 
heteroscedastic errors.     
      

 Furthermore, the presence of high leverage points 
can make all estimation procedures meaningless. None of 
the estimation techniques work well when high leverage 
points and heteroscedastic errors are present at the same 
time in the regression model [3]. 

The main focus in this study is to estimate the 
standard errors of the regression coefficients in the presence 
of high leverage points and heteroscedasticity in multiple 
linear regression. Robust techniques and heteroscedasticity 
consistent covariance matrix (HCCM) will be employed for 
this purpose.  
 
2. METHODOLOGY  
 
2.1 Method  

   
This study is focused on using Least Trimmed of 

Squares (LTS) and Heteroscedasticity Consistent 
Covariance Matrix (HCCM) methods to estimate the 
standard errors in the regression coefficients in the presence 
of high leverage points and heteroscedastic errors in 
multiple linear regression.  LTS is used in order to eliminate 
the effect of high leverage points since OLS is believed to 
be highly influenced by high leverage points while HCCM 
is an alternative and high appealing method in reducing the 
effect of heteroscedasticity.  
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2.2 Robust heteroscedasticity consistent covariance 
matrix 

 
Heteroscedasticity Consistent Covariance Matrix 

(HCCM) estimators are derived from an estimate of 
variance-covariance matrix of the regression coefficient 
∑  which does not assume homoscedasticity.  

Consider a multiple linear regression model: 
 

              (1) 
 

where 
 is the 1 vector of observed values for the response    

variables, 
 is the  of predictor including the intercept, 
 is a 1 vector of regression parameters, and 

  is the 1 vector of errors.  
The covariance matrix of regression coefficient  is defined 
as: 
 

  ∑ 		 	                (2) 
 

	is define as the variance of the error 	  and 
it is a 	  square matrix  where  is an identity matrix 
of order   and  is a positive definite matrix.  

In homoscedasticty assumption , the 
variance-covariance matrix can be defined as: 
 
∑ σ                                                 (3) 

 
In this study, the residuals values were obtained by 

LTS estimator. However when the error is heteroscedastic, 
the variance-covariance matrix can be defined as: 
 
∑ 	 	                     (4) 

 
 is defined as the variance of error 	  from 

heteroscedastic error where  is 	  square matrix 
form by heteroscedastic errors .  

With heteroscedasticty assumption 	the 
estimators of variance-covariance matrix becomes biased 
and the hypothesis tests are either too liberal or 
conservative.  

Over the last 25 years, several heteroscedasticity 
consistent covariance matrices have been developed. There 
are five HCCM estimators developed over the last 25 years 
which are defined as 0, 1, 2, 3and 4.  

White in 1980 was proposed substituting the 
squares error into the  row of diagonal of the  matrix, 

making diag ε  to be the diagonal matrix of the 
squares of OLS residuals [4]. However, in this study, LTS 
residuals replaced the OLS residuals so that the errors were 
not affected by high leverage points. Therefore the 0 
estimator is defined as: 
 

0 ′ ′                          (5) 

where the main diagonal of 0 are the estimated squared 
standard errors of regression coefficients. The biasness of 

0 increases when the sample sizes are decreased. 1 
proposed by Hinkley in 1977 is a simple degree of freedom 
adjustment of 0 and every squares residuals is multiplied 
by  [5].  

 
1 ′ ′      (6) 

 
2 was introduced by Mackinnon and White in 

1985 [6]. For 2, the 	 squared residuals is weighted by 
1  instead of a degree of freedom correction. 	are 

the leverage values obtained from the diagonal elements in 
the "hat" matrix which define as 
 
                                                           (7) 

 
However HC2 will produce bias due to the high leverage 
points in explanatory variables.  
 

2 ′ ′                     (8) 

 
     3 was proposed by Davidson and Mackinnon in 

1993 [7]. 3 weighted each squares of residuals by  

. Besides that, 3 is always recommended because it can 
keep test sizes at nominal level regardless with the presence 
or absence of heteroscedasticity. Its performance is 
dependent to some extent on the presence or absence of high 
leverage points.  
  

3 ′ ′                   (9) 

 
4 is the most recent proposal of HCCM estimator, 

derived by Cribari-Neto in 2004 with the explicit aim of 
taking high leverage points as consideration in standard 
errors estimation [8]. 	
 

4 ′ ′              (10) 

where 

4,                                  (11) 

 
The exponent  controls the level of "discounting" for the 

observation, and with the truncation point at 4. 4 
outperformed 3 in terms of test size control when there 
are high leverage points and non-normal errors [8].  
 
3. RESULTS & DISCUSSION 
 
3.1     Simulation example  
 

A simulation study was designed to investigate 
Robust Heteroscedasticity Consistent Covariance Matrix 
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(RHCCM). The following multiple regression model was 
considered:- 
 

10 2 2.5 3  
where  

 is uniformlly distributed on [0,1],   is normally 
distributed on [0,1] , and   from chi square distribution. 
  The random errors 's were drawn from normal 
distribution where ~ 0, , i=1,2,...,n and j = 1, 2, 
...,g where g is the number of error groups in each sample 
and each group consisted of 10 random errors. 

In order to generate the heteroscedastic errors, 50 
random errors were generated by taking the first 10 random 
errors from 	 0,1 , the second 10 random errors 
from		 	 0,2 , the third 10 random errors from	 	 0,3 , the 
fourth 10 random errors from 	 0,4  and the fifth 10 
random errors from 	 0,5 .  Thus the errors that were 
generated have a zero mean and non-constant variance.  
 
3.2 Numerical example 
 

In this section, a modified education expenditure 
data taken was from Chatterjee and Price in 1997 which 
state at chapter 4 and page 97 [9]. The data represent the 
relationship between response variable and three 
independent variables for 30 states in United State of 

America. The data was used to evaluate the performance of 
robust heteroscedaticity consistent covariance matrix 
(RHCCM). The variables of the data are as shown as the 
followings:- 

 
: Per capita income on education  projected for  1975 
: Per capita income in 1973 
:Number of residents per thousand under  18 years of 
age in 1974 
:	Number of residents per thousand  living in urban areas 
in 1970 

 
The original data set is modified in order to contain 

high leverage points and heteroscedastic errors in the data 
set. Some of the explanatory variables  had been modify 
to contain high leverage point while the error of the data 
been modify to obtain the heteroscedatic error. Therefore 
the new data set is present in the high leverage point and 
heteroscedastic errors. 

 
3.3 Discussion 
 
 In this paper, the performance comparison between 
HCCM and RHCCM was done with the presence of high 
leverage points and heteroscedastic errors. 
     

 
 

Table 1 Summary of Standard Errors Estimation by using HCMM for Simulation Data 
 

HCCM 

Methods 
Statistical 
Analysis 

Coefficients  

    SE (Res) 

OLS Values 157.626 -0.1734 -0.106 0.04856 26.9700 

OLSCM SE 4.5282 0.3188 0.8938 0.0399  

HC0 SE 4.5236 0.1572 0.66331 0.0315  

HC1 SE 4.7161 0.1639 0.66 0.03287  

HC2 SE 4.7893 0.2047 0.8349 0.0413  

HC3 SE 5.2016 0.2825 1.1257 0.05486  

HC4 SE 6.72 0.6458 2.2126 0.1007  

 
 

Table 2 Summary of Standard Errors Estimation by using Robust HCMM for Simulation Data 
 

ROBUST HCCM 

Methods 
Statistical 
Analysis 

Coefficients  

    
SE 

(Res) 

LTS Values 6.041 1.913 3.137 3.084 2.5160 

LTSCM SE 124.5254 8.7668 24.5797 1.0977  

HC0 SE 164.03 12.1226 44.1093 3.466  

HC1 SE 171.0131 12.6387 45.9871 3.6135  

HC2 SE 246.6036 17.9311 61.7509 5.4379  

HC3 SE 382.3588 27.4772 87.9515 8.7538  

HC4 SE 994.6921 70.71093 190.8772 23.9862  
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Table 3 Summary of Standard Errors Estimation by using HCMM for Numerical Example 
 

HCCM 

Methods 
Statistical 
Analysis 

Coefficients  

    SE (Res) 

OLS Values 215.8626 0.0017 -0.0384 0.1111 59.1000 

OLSCM SE 9.9240 0.6987 1.9589 0.0875  

HC0 SE 39.9367 0.0056 0.0316 0.0475  

HC1 SE 41.6369 0.0058 0.0330 0.0495  

HC2 SE 39.9353 0.0056 0.0316 0.0475  

HC3 SE 60.9905 0.0146 0.0479 0.0670  

HC4 SE 127.0706 0.0429 0.0745 0.1407  
 

 
Table 4 Summary of Standard Errors Estimation by using Robust HCMM for Numerical Example 

 
ROBUST HCCM 

Methods 
Statistical 
Analysis 

Coefficients  

    
SE 

(Res) 

LTS Values 177.2824 0.01413 -0.20811 0.14409 27.7600 

LTSCM SE 12.232 0.8612 2.4144 0.1078  

HC0 SE 51.1350 0.0119 0.1214 0.0663  

HC1 SE 53.3119 0.0124 0.1265 0.0691  

HC2 SE 47.6717 0.0088 0.0388 0.0541  

HC3 SE 116.9089 0.0348 0.2597 0.1241  

HC4 SE 127.0706 0.0429 0.0745 0.1407  

 
 

The main interest in this study was to estimate the 
standard errors in multiple linear regression inthe presence 
of high leverage points and heteroscedastic errors by using 
RHCCM which is the combination of LTS and HCCM 
method. LTS was able to estimate the parameter without the 
influence by high leverage point while HCCM was able to 
estimate the parameter in the presence of heteroscedastic 
error accurately.  

Table 1 shows the results of standard errors 
estimation in simulation data by using HCCM, while Table 
2 shows the standard errors estimation in simulation data by 
using RHCCM. Both tables show the standard errors 
estimation by the family of heteroscedasticity consistent 
covariance matrix from 0 to	 4.  

The standard error of residuals obtained from both 
HCCM and RHCCM in simulation data are 26.9700 and 
2.5160 respectively. The estimated values of regression 
coefficients obtained from RHCMM are closer to the true 
values and the estimated standard errors are also smaller 
than HCCM. However, the standard errors obtained from 
RHCCM are larger than HCCM. Therefore the parameters 
that estimate from RHCCM are more accurate than the 
HCCM method and overall performance of RHCMM is 
better than HCCM in standard errors estimation.  

Furthermore, the standard error of regression 
coefficients obtained from 0 until 4 through HCCM 
and Robust HCCM are shown in Table 1 and Table 2. The 

results obtained from 4 in RHCCM are more reliable 
compared to the other HCCM estimator since it was 
reported that 4 will be less influenced by the high 
leverage points and RHCCM performed better than HCCM 
[8].  

Table 3 and Table 4 show the standard error 
estimations obtained by HCCM and RHCCM when used in 
our numerical example. The standard errors of residuals 
obtained from HCCM and RHCCM are 59.1000 and 
27.7600 respectively. This shows that the standard error of 
residuals obtained from RHCCM is smaller compared to 
HCCM which indicates that the RHCCM is more accurate 
than HCCM in parameter estimation in the presence of high 
leverage point and heteroscedastic error and the 
performance of RHCCM is better in parameter estimation 
in the presence of high leverage point and heteroscedastic 
error.  

The results of the standard errors that were obtained 
using 4 in HCCM and RHCCM are the same. It shows 
that 4  was not influenced by high leverage points as 
stated by Cribari-Neto [8]. Therefore, the standard errors 
that was obatined by 4	in RHCCM is the most accurate 
compared to other family of heteroscedasticity consistent 
covarince matrix and HCCM.  

As the overall conclusion, the performanceof 
RHCCM in standard errors estimation was better compared 
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to the HCCM especially using 4 in the family of 
heteroscedasticity consistent covariance matrix.  
 
4. CONCLUSION  
 
  The main interest in this study is standard errors 
estimation using HCCM and RHCCM in the presence of 
high leverage points and heteroscedastic errors in multiple 
linear regression model. According to the results obtained 
from HCCM and RHCCM, the RHCCM performed better 
than HCCM when high leverage points and heteroscedastic 
errors are present in the data. 
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