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Abstract Previous studies have shown computation of conformal mapping in which

the exact parameterization of the boundary of the region is assumed known. However

there are regions whose boundaries have no known exact parameterization. Periodic

cubic spline interpolation had been introduced to approximate and obtain the parame-

terization. We present a numerical procedure to generate periodic cubic spline from the

boundary of a 2-dimensional object by using Mathematica software. First we obtain

Cartesian coordinates points from the boundary of this 2-dimensional object. Then

we convert them into polar coordinates form. Finally the cubic spline is generated

based on this polar coordinate points. Some results of our numerical experiments are

presented.
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1 Introduction

Conformal mapping is a mapping with the property that magnitude and direction of the an-
gle between two curves are preserved. A complex analytic function with nonzero derivatives
at any points on a region D is said to be conformal in D. The idea of conformal mapping
is to transform of a complicated boundary to a simpler and more manageable boundary.
Conformal mapping can be applied to various fields such as image processing, mechanics,
electrostatics, heat flow, aerodynamics and others [1, 2]. Integral equation method is an ef-
fective method for numerical conformal mapping besides other methods such as expansion
method, osculation methods, Cauchy-Riemann equation methods [1, 3, 4].

Numerical conformal mappings via integral equations have been discussed in [3–9], in
which the numerical examples involved known exact parameterizations of the boundaries.
However, in applications, there are regions whose boundaries have no known exact param-
eterizations. O’Donnel and Rokhlin [10] have resampled a given boundary into equispaced
nodes using periodic splines under tension as the basis for interpolation but no details were
given. This paper describes in detail the use of periodic cubic spline for numerical conformal
mapping for regions with no known exact parameterizations.

2 Theoretical Framework

2.1 Integral Equation

Kerzman-Stein-Trummer integral equation is a second kind integral equation useful for
computing interior conformal mapping [5, 6]. The kernel of the integral equation is the
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Kerzman-Stein kernel. Murid et al. [4] have constructed an integral equation with the
Kerzman-Stein kernel to compute conformal mapping R̃(z) from an unbounded simply
connected region with smooth counter-clockwise boundary Γ onto the exterior of a disk.
The integral equation is given by

U(z) −
∫

Γ

A(z, w)U(w)|dw| = 1, (1)

where

A(z, w) =











1

2πi

[

T (z)

w − z
− T (w)

w − z

]

, w, z ∈ Γ, w 6= z

0, w, z ∈ Γ, w = z

, (2)

and

U(z) =

√

γR̃′(z). (3)

The kernel A(z, w) is known as the Kerzman-Stein kernel, U(z) is the solution of the integral
equation, and T (z) is the unit tangent to Γ at z. The mapping function R̃ can be expressed
in terms of U by [4]

R̃(z) = −iT (z)
U(z)2

|U(z)|2 , z ∈ Γ. (4)

2.2 Cauchy’s Integral Formula

Let the interior region of Γ be denoted as D+ while the exterior region denoted as D−. If
f(z) is analytic in D−, f(z) can be expressed as [11]

f(z) = f(∞) − 1

2πi

∫

Γ

f(τ )

τ − z
dτ, z ∈ D−. (5)

Since R̃(z) is the exterior mapping function, then

R̃(∞) = lim
z→∞

R̃(z) = ∞.

The Laurant series of R̃ at ∞ has the form of [12]

R̃(z) = γ−1z + k0 + k1z
−1 + · · · , γ > 0, z ∈ D−, (6)

where ki is a constant for each i = 0, 1, 2, . . .. We take

f(z) =
R̃(z)

z
. (7)

From (6), we observe that R̃′(∞) = γ−1 . Therefore

f(∞) = γ−1. (8)

Substitute (7) and (8) into (5) gives

R̃(z) = γ−1z − z

2πi

∫

Γ

R̃(τ )

τ (τ − z)
dτ. (9)



Conformal Mapping and Periodic Cubic Spline Interpolation 3

The formula (9) is suitable to compute R̃(z) for z in the exterior region D−. If z is located
closed to the boundary Γ, the integration is nearly singular. To overcome this problem, we
use the fact that 1

2πi

∫

Γ
1

τ−z
dτ = 0 for z ∈ D−. Thus (9) can be written as

R̃(z) =
γ−1z − z

2πi

∫

Γ
R̃(τ)

τ(τ−z) dτ

1 − 1
2πi

∫

Γ
1

τ−z
dτ

. (10)

Assume the boundary Γ is parameterized by τ = z(t), 0 ≤ t ≤ β. Since the image of R̃(z)
describe the unit circle, then R̃(z(t)) has the form

R̃(z(t)) = eit, 0 ≤ t ≤ β. (11)

Then (10) becomes

R̃(z) =
γ−1z − z

2πi

∫ β

0
eitz′(t)

z(t)(z(t)−z) dt

1 − 1
2πi

∫ β

0
z′(t)

z(t)−z
dt

. (12)

In numerical computation, the denominator in this formula compensates for the error in
the numerator [13]. This approach gives better approximation for z near to the boundary
Γ.

2.3 Cubic Spline Interpolation

In this section cubic spline interpolation, which is most common piecewise-polynomial ap-
proximation, is discussed [14].

Definition 1 Given a function f defined on [x0, xn] and a set of nodes x0 < x1 < x2 <
· · · < xn, a cubic spline interpolant S for f satisfies the following conditions:

(i) S(x) is a cubic polynomial, denoted Si(x), on the subinterval [xi, xi+1] for each i =
0, 1, 2, . . . , n− 1;

(ii) Si(xi) = f(xi) and Si(xi+1) = f(xi+1) for each i = 0, 1, 2, . . . , n− 1;

(iii) Si+1(xi+1) = Si(xi+1) for each i = 0, 1, 2, . . . , n− 2;

(iv) S′
i+1(xi+1) = S′

i(xi+1) for each i = 0, 1, 2, . . . , n− 2;

(v) S′′
i+1(xi+1) = S′′

i (xi+1) for each i = 0, 1, 2, . . . , n− 2;

Definition 1 shows the general condition of cubic spline polynomial. The additional con-
ditions must be imposed in order to generate a unique cubic spline. Given subinterval
[xi, xi+1], where i = 0, 1, . . . , n− 1, the general cubic spline polynomial function is given by

Si(x) = ai + bi(x− xi) + ci(x− xi)
2 + di(x− xi)

3, (13)

where ai, bi, ci, di are constants that need to be determined. In this paper, since Γ is a
simple closed curve, periodic cubic spline is applied. Periodic cubic spline satisfies periodic
end conditions [15]:

f(x0) = f(xn), (14)



4 Lee Khiy Wei, Ali H. M. Murid and Yeak Su Hoe

f ′(x0) = f ′(xn), (15)

f ′′(x0) = f ′′(xn). (16)

Since S(x) is periodic, S(x) can be expressed as

S(x) = S(x + kp), k ∈ Z, p = b− a. (17)

3 Numerical Implementation

3.1 Cubic Spline Interpolation

Parameterization of Γ need to be determined before we can compute conformal mapping.
Some coordinate points (x, y) which lie on a simple Jordan curve Γ were assumed known.
We convert them into polar coordinates (r, θ). The points are then arranged such that
θ0 < θ1 < θ2 < · · · < θn. The task is to find the relationship between r and θ. We assume
the relationship can be expressed in the form similar to (13). For every subinterval [θi, θi+1],
where i = 0, 1, , n−1, r(θ) can be expressed as a piecewise polynomial function which passes
through the set of polar coordinates

{(r(θ0), θ0), (r(θ1), θ1), . . . , (r(θn), θn)},

where r(θn) = r(θ0) and θn − θ0 = 2π. The relationship between r(θ) and θ is given by

r(θ) = Si(θ) = ai + bi(θ − θi) + ci(θ − θi)
2 + di(θ − θi)

3. (18)

The task is to determine the values of ai, bi, ci, di for the cubic polynomials Si. From (18),
we have

Si(θi) = ai. (19)

From condition (iii) of Definition 2.1 and (19), for each i = 0, 1, . . . , n− 2,

ai+1 = ai + bi(θi+1 − θi) + ci(θi+1 − θi)
2 + di(θi+1 − θi)

3. (20)

By setting hi = θi+1 − θi for each i = 0, 1, . . . , n− 1 and an = r(θn), (20) becomes

ai+1 = ai + bihi + cih
2
i + dih

3
i . (21)

From (21), differentiate Si(θ) with respect of θ gives

S′
i(θ) = bi + 2ci(θ − θi) + 3di(θ − θi)

2. (22)

This implies S′
i(θi) = bi. By setting S′

n−1(θn) = bn, for each i = 0, 1, . . . , n − 1, applying
condition (iv) gives

bi+1 = bihi + cih
2
i + dih

3
i . (23)

From (22), differentiate S′
i(θ) with respect of θ give

S′′
i (θ) = 2ci + 6di(θ − θi). (24)

This implies S′
i(θi) = 2ci. By setting S′′

n−1(θn) = 2cn for each i = 0, 1, . . . , n− 1, applying
condition (v) gives

ci+1 = ci + 3dihi, (25)
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and express di as

di =
ci+1 − ci

3hi
. (26)

Substitute (26) into (21) gives

ai+1 = ai + bihi + cih
2
i +

ci+1 − ci
3

h2
i . (27)

Thus bi is given by

bi =
1

hi
(ai+1 − ai) +

hi

3
(2ci + ci+1). (28)

Replacing the index i by i− 1, (28) becomes

bi−1 =
1

hi−1
(ai − ai−1) +

hi−1

3
(2ci−1 + ci). (29)

Substitute (26) to (23) and replace i by i− 1, we get

bi = bi−1 + hi−1(ci−1 + ci), i = 1, 2, . . . , n− 1. (30)

Substitute (29) and (29) into (30) gives, for each i = 1, 2, . . . , n − 1, the system of linear
equations

hi−1ci−1 + 2(hi−1 + hi)ci + hici+1 =
3

hi
(ai+1 − ai) −

3

hi−1
(ai − ai−1). (31)

Since x(p) is periodic, we have
an = a0, (32)

an+1 = a1, (33)

bn = b0, (34)

bn+1 = b1, (35)

cn = c0, (36)

cn+1 = c1, (37)

hn = h1. (38)

Condition (ii) of Definition 1 implies

ai = Si(pi) = xi. (39)

Linear equation (31) with i = 1 gives

h0c0 + 2(h0 + h1)c1 + h1c2 =
3

h1
(a2 − a1) −

3

h0
(a1 − a0). (40)

Apply (36) to (40) gives

2(h0 + h1)c1 + h1c2 + h0cn =
3

h1
(a2 − a1) −

3

h0
(a1 − a0). (41)
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Linear equation (31) with i = n gives

hn−1cn−1 + 2(hn−1 + hn)cn + hncn+1 =
3

hn
(an+1 − an) − 3

hn−1
(an − an−1). (42)

Substitute (32), (33),(37) and (38) into (42) gives

h0c1 + hn−1cn−1 + 2(hn−1 + h0)cn =
3

h0
(a1 − a0) −

3

hn−1
(a0 − an−1). (43)

From (31) with i = 1, 3, . . . , n−1, (41) and (43), the linear system is constructed asMc = g,
where

M =





















2(h0 + h1) h1 0 · · · 0 h0

h1 2(h1 + h2) h2 0

0 h2
. . .

. . .
...

...
. . .

. . . hn−2 0
0 hn−2 2(hn−2 + hn−1) hn−1

h0 0 · · · 0 hn−1 2(hn−1 + h1)





















,

c =











c1
c2
...
cn











, g =











3
h1

(a2 − a1) − 3
h0

(a1 − a0)
3
h3

(a3 − a2) − 3
h1

(a2 − a1)
...

3
h0

(a1 − a0) − 3
hn−1

(a0 − an−1)











.

The matrix M is the n× n cyclically tridiagonal matrix. The linear system with cyclically
tridiagonal matrix can be solved by using the algorithm in [16] or Mathematica solver.

Once the solution ci has been computed, bi is calculated by using (28) and di is calculated
by using (26). Relationship of r and θ is obtained in the form of

r(θ) =























S0(θ), θ0 ≤ θ ≤ θ1

S1(θ), θ1 ≤ θ ≤ θ2
...

Sn−1(θ), θn−1 ≤ θ ≤ θn

. (44)

The domain of this function is θ ∈ [θ0, θn]. In our numerical computation, we want to work
with the domain θ ∈ [0, 2π]. So we rewrite (44) as

r(θ) =































Sn−1(θ + 2π), 0 ≤ θ ≤ θ0

S0(θ), θ0 ≤ θ ≤ θ1

S1(θ), θ1 ≤ θ ≤ θ2
...

Sn−1(θ), θn−1 ≤ θ ≤ 2π

. (45)
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3.2 Numerical Conformal Mapping

Suppose we have z(r, θ) = r(θ)eiθ where r(θ) is given as in (45). Replacing θ by t, then z
can be expressed as

z(t) = r(t)eit, (46)

Conformal mapping of a region exterior to a smooth Jordan curve in the complex plane onto
the exterior of the unit disk is computed by using (1). Using the parametric representation
z(t) of Γ, (1) becomes

φ(t) −
∫ 2π

0

K(t, s)φ(s) ds = ψ(t), (47)

where
φ(t) = |z′(t)|1/2U(z(t)),

U(z(t)) =

√

γR̃′(z(t)),

K(t, s) = |z′(t)|1/2|z′(s)|1/2A(z(t), z(s)),

ψ̃(t) = |z′(t)|1/2.

Since the functions φ,K, ψ are 2π−periodic, an appealing numerical method for solving
(47) is using the Nystrom’s method with trapezoidal rule [17]. Trapezoidal rule will give
most accurate values for integration of periodic functions [18]. Taking n equidistant collo-
cation points ti = (i − 1)2π/n for i = 1, 2, . . . , n and Nystrom’s method with trapezoidal
rule to discretize (47), we obtain

φ(ti) −
2π

n

n
∑

j=1

K(ti, tj)φ(tj) = ψ(ti), (48)

Defining the n× n matrix B where Bij = 2πK(ti, tj)/n and xi = φ(ti) , yi = ψ(ti), take x

and y to be the vectors with elements xi and yi respectively, where i = 1, 2, . . . , n. Hence
(48) can be rewritten as an n× n system

(I − B)x = y. (49)

Since (47) has a unique solution, then (49) also has a unique solution, as long as n is
sufficiently large [17]. Once xi = φ(ti) have been computed, the mapping function R̃(z(t)),
the boundary corresponding function θ̃(t) and the capacity γ can be computed by using the
following formulas [4]:

R̃(z(t)) = −iT (z(t)) φ2(t)
|φ2(t)| ,

θ̃(t) = Arg(−iφ2(t)z′(t)),

γ =
∫ 2π

0
|φ(t)|2dt.

To compute the interior values of the conformal mapping function in the region D− we use
(12). Since the integrand is 2π−periodic, trapezoidal rule will give most accurate solution.
Taking n equidistant collocation points ti = (i− 1)2π/n for i = 1, 2, . . . , n and Nystrom’s
method with trapezoidal rule to discretize (12), we obtain

RMC(z) =
γ−1z − z

ni

∑n
j=1

eitj z′(tj)
z(tj)(z(tj)−z)

1 − 1
ni

∑n
j=1

z′(tj)
z(tj)−z

, (50)
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where z ∈ D− and RMC(z) is an approximation of R̃(z).

4 Numerical Examples

In this section, we consider two test regions.

4.1 Exterior of Oval of Cassini

The region is represented by |z − 1‖z + 1| > α2, α > 1, and the complex parametric
representation of an oval of Cassini is given by

Γ : z(t) =

√

cos(2t) +

√

α4 − sin2(2t)eit, 0 ≤ t ≤ 2π. (51)

The exact mapping function is given by [19]

R̃(z) =

√
z2 − 1

α
. (52)

The boundary points of oval of Cassini for n = 128, α = 1.11 are shown in Figure 1.
Suppose the points of the exterior region are denoted as (rk, θk) where k = 1, 2, . . . , m.
Since the parameterization of boundary can be expressed in the form given by (45), the
points in exterior region can be determined using the inequality rk > r(θk). Figure 2 shows
exterior region of oval of Cassini. Figure 3 shows the transformed image from Figure 2.

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 1: Boundary Points of Oval of Cassini

We list the sup-norm error ‖θ̃(t) − θ̃n1
(t)‖∞ and ‖θ̃(t) − θ̃n2

(t)‖∞, where θ̃(t) is the
exact boundary correspondence function, and θ̃n1

(t) is the approximation obtained at the
collocation points by using the exact parameterization and θ̃n2

(t) is the approximation
obtained at the collocation points by using the approximated parameterization (periodic
cubic spline). Table 1 shows the numerical results for the errors.
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-2 -1 1 2

-2

-1

1

2

Figure 2: Exterior Region of Oval of Cassini

-1.5 -1.0 -0.5 0.5 1.0 1.5

-2

-1

1

2

Figure 3: The Transformed Image From Figure 2
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Table 1: The error norm for α = 1.11

n ‖θ̃(t) − θ̃n1
(t)‖∞ ‖θ̃(t) − θ̃n2

(t)‖∞
32 5.97(-6) 2.4(-4)

64 9.8(-11) 7.4(-6)

128 8.9(-16) 2.7(-7)

256 - 9.3(-9)

4.2 Exterior of a Boat

We inserted the boat image into Mathematica and obtain the boundary points of the boat
by using the drawing tools of Mathematica. Figure 4 shows the boat image and cubic spline
that interpolates all points on the boundary. The way of selected points for exterior region
is similar as in Section 4.1. Figure 5 shows the exterior region of a boat. Figure 6 shows
the transformed image from Figure 5.

-300 -200 -100 0 100 200 300

-200

-100

0

100

200

Figure 4: Boat Image

We compute the fluid flow around the boat by using conformal mapping. Take w =
R̃(z(t)) as the conformal mapping function that maps the exterior of the boat onto the
exterior of the unit disk in the w−plane. Let W = g(w) = w+1/w be the mapping function
that maps the exterior region of the unit disk in the w−plane to the whole W−plane. We
assume the flow is horizontal in the W−plane, i.e. Im(W ) = k, where k is any given
constant. The fluid flow on the w−plane can be represented by

Im(g(w)) = k. (53)

Therefore the flow around the boat has the representation

Im(g(R̃(z(t)))) = k. (54)

Figure 7 shows the computed fluid flow around the boat.
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-400 -200 200 400

-400

-200

200

400

Figure 5: Exterior Region of a Boat

-1.0 -0.5 0.5 1.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 6: The Transformed Image From Figure 5
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Figure 7: Fluid Flows Around the Boat

5 Conclusion

This study has presented a method for numerical conformal mapping of unbounded simply
connected region by means of integral equation and approximating the boundary of the
region using periodic cubic spline. The presented method is useful for numerical conformal
mapping for regions with no known exact parameterizations. The numerical results have
shown that accuracy increases as more nodes are chosen on the boundary.

Acknowledgemnts

This work was supported in part by the Malaysian Ministry of Education (MOE)
through the Research Management Centre (RMC), Universiti Teknologi Malaysia
(GUPQ.J130000.2526.04H62). This support is gratefully acknowledged.

References

[1] Henrici, P. Applied and Computational Complex Analysis Vol. 1. New York: John
Wiley. 1974.

[2] Schinzinger, R. and Laura, P. A. A. Conformal Mapping: Methods and Applications.
Amsterdam: Elsevier Science Publishers B. V. 1991.

[3] Trefethen, L. N. Numerical Conformal Mapping. Amsterdam: North Holland. 1986.

[4] Murid, A. H. M., Nashed, M. Z. and Razali, M. R. M. Numerical conformal mapping
for exterior regions via the Kerzman-Stein kernel. Journal of Integral Equations and

Applications. 1998. 10(4): 517–532.



Conformal Mapping and Periodic Cubic Spline Interpolation 13

[5] Kerzman, N. and Stein, E. M. The Cauchy kernel, the Szegö kernel, and the Riemann
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