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Graphical abstract 
 

 

Abstract 
 

This paper presents perturbation parameters for tuning of multi-objective optimization 

differential evolution and its application to dynamic system modeling. The perturbation of 

the proposed algorithm was composed of crossover and mutation operators.  Initially, a 

set of parameter values was tuned vigorously by executing multiple runs of algorithm for 

each proposed parameter variation. A set of values for crossover and mutation rates were 

proposed in executing the algorithm for model structure selection in dynamic system 

modeling. The model structure selection was one of the procedures in the system 

identification technique. Most researchers focused on the problem in selecting the 

parsimony model as the best represented the dynamic systems. Therefore, this problem 

needed two objective functions to overcome it, i.e. minimum predictive error and model 

complexity.  One of the main problems in identification of dynamic systems is to select the 

minimal model from the huge possible models that need to be considered. Hence, the 

important concepts in selecting good and adequate model used in the proposed 

algorithm were elaborated, including the implementation of the algorithm for modeling 

dynamic systems. Besides, the results showed that multi-objective optimization differential 

evolution performed better with tuned perturbation parameters. 

 

Keywords: Model structure selection; System identification; Multi-objective optimization; 

NSGA-II; Differential evolution 

Abstrak 
 

Kertas kerja ini membentangkan penalaan pengubahan parameter terhadap algoritma 

multi-objective optimization differential evolution dan penggunaannya terhadap 

pemodelan sistem dinamik. Pengubahan algoritma yang dicadangkan terdiri daripada 

pengendali penyilangan dan mutasi. Pada mulanya, satu set nilai-nilai parameter yang 

ditala sebaiknya dengan melaksanakan beberapa simulasi algoritma untuk setiap variasi 

parameter yang dicadangkan. Nilai set untuk kadar penyilangan dan mutasi telah 

dicadangkan dalam melaksanakan algoritma untuk pemilihan struktur model dalam 

pemodelan sistem dinamik. Pemilihan struktur model adalah salah satu prosedur dalam 

teknik pengenalan sistem. Kebanyakan penyelidik memberi tumpuan kepada masalah 
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dalam memilih model teringkas yang terbaik bagi mewakili sistem dinamik. Oleh itu, 

masalah ini memerlukan dua fungsi objektif untuk mengatasinya iaitu meminimumkan 

ramalan ralat dan model kerumitan. Salah satu masalah utama dalam mengenal pasti 

sistem dinamik adalah untuk memilih model yang minimum daripada kemungkinan model 

yang besar yang perlu dipertimbangkan. Konsep-konsep penting dalam memilih model 

yang baik dan mencukupi digunakan dalam algoritma yang dicadangkan dan 

dihuraikan, termasuk pelaksanaan algoritma untuk model sistem dinamik. Keputusan 

menunjukkan bahawa algoritma multi-objective optimization differential evolution 

memberikan prestasi yang lebih baik dengan penalaan pengubahan parameter. 

 

Kata kunci: Pemilihan struktur model; Pengenalan sistem; Pengoptimuman multi-objektif; 

NSGA-II; Differential evolution 

 

© 2015 Penerbit UTM Press. All rights reserved 

  

 

 

1.0  INTRODUCTION 
 

System identification has been studied and applied in 

many fields, such as engineering, biology, chemical, 

economics, agricultural, ecology, and others. 

Identifying the dynamic systems require a set of input-

output data of the system, a type of class models, 

parameter estimation algorithm, and finally, model 

validation [1]. One of the main problems of system 

identification is to find an optimal model, which is the 

simplest model that can adequately represent the 

dynamic systems or a parsimonious model. Basically, 

there are two major sub-problems in system 

identification [2]: (1) to determine the model structure 

describing the functional relationship between the 

input and the output variables of the dynamic system; 

and (2) to estimate the coefficients or parameters of 

model that specify the chosen or selected model 

structure. Besides, Aguirre [3] claims that one of the 

most challenging problems in non-linear system 

identification is structure selection.  

Model structure selection is for selecting the 

significant model terms from a redundant dictionary 

of the candidate regressors to be included in the final 

model [4]. The number of candidate regressors 

depends on the setting of model size parameters, 

such as input and output lags, as well as the degree 

of non-linearity. In other words, the model terms 

increase rapidly as the input and the output lags, as 

well as the degree of non-linearity increased. 

Therefore, selecting only the best and good model 

terms to be included in the final model structure 

becomes challenging. In fact, many techniques and 

methods have been researched [3, 5-9] in solving 

model structure selection as one of the system 

identification problems. The earlier work on 

determination of subset or model structure selection 

used the deterministic method. One of the famous 

deterministic methods for model structure selection is 

forward regression orthogonal least square (OLS) [8]. 

However, this method has shown disadvantages in 

structure determination of NARMAX (Non-linear 

AutoRegressive  Moving Average with eXogenous 

inputs) model. The disadvantages of OLS algorithms 

are [10]: (1) the high computational load increases 

the number of possible terms and the estimator yields 

different orthogonalisation path. These lead to a 

complex calculation and numerically ill-conditioned 

equation; as well as (2) problem in stopping regression 

with the value of error reduction ratio (ERR) is reduced 

gradually. Beside OLS as deterministic method in 

selection of model structure, Aguirre [3] proposed a 

model structure selection algorithm called term 

clusters. The concept used is similar to OLS, which 

applies ERR criterion as the objective of function for 

selection of the model terms. The difference is the 

possible model terms with the similar characteristics 

that are considered as a group. However, not all 

possible term groups are represented in a certain 

model. If a certain cluster in the possible term groups 

is not required to compose a model, it is said to be 

spurious and invalid model terms. Although the term 

clusters seem better in identification of the dynamic 

system, it still requires an exhaustive search when the 

number of possible terms is huge.  

Recently, differential evolution (DE), one of the EAs 

introduced by Storn and Price [11], was applied to 

MOO problems. Feoktistov [12] claims DE is suitable for 

solving the huge and complex problems with just small 

and simple algorithm. Thus, many works have 

implemented the DE to MOO problems [13-16]. One 

of the earlier works on DE that applied the MOO 

problems were conducted by Abbas and Sarker [17], 

in which Pareto DE (PDE) was introduced. The 

proposed algorithm was compared to SPEA [18] on 

two tests of MOO problems and it had been found 

that PDE was more outstanding. Furthermore, DE was 

extended to MOO problem by [14] calling it Multi-

Objective Differential Evolution (MODE). Meanwhile, 

Babu et al., [14] applied MODE in solving optimization 

problems in chemical engineering. Industrial 

adiabatic styrene reactor was considered as a 

problem to be optimized by considering productivity, 

selectivity, and yield as the main objectives. The results 

were compared with NSGA and it showed superiority. 

Furthermore, Adeyemo and Otieno [13] proposed 
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Multi-Objective Differential Evolution Algorithm 

(MDEA) in solving MOO problems in engineering field. 

The MDEA was tested using well-known test problems 

that was introduced by Zitzler et al., [19]. The 

comparison results showed that MDEA outperformed 

other MOO algorithms.  

Based on these research trends on DE, in this study, 

the applications point was addressed. Although the 

use of DE had become famous in solving MOO 

problems, its use in model structure selection had not 

been studied before. In other words, no previous study 

had used DE for multi-objective model structure 

optimization as far as the authors’ knowledge. In this 

paper, DE was adapted to MOO problem using the 

technique proposed by Deb et al., [20] in order to 

produce the non-dominated solutions. The proposed 

algorithm is named Multi-Objective Optimization using 

Differential Evolution (MOODE). Although some 

reported works used the same technique [16, 21], the 

applications addressed were different. Moreover, 

Peng et al., [16] applied their proposed algorithm 

called non-dominated sorting DE (NSDE) to the multi-

objective optimal model of phasor measurement unit 

(PMU) placement, while Krink  and Paterlini [21] 

proposed an algorithm named DE for multi-objective 

portfolio optimization (DEMPO) to solve multi-

objective portfolio optimization in investment 

management.  

In this paper, MOODE with tuned perturbation 

parameters was applied to determine the set of 

model structures of dynamic systems that had an 

adequate system from the available input-output 

data. The special case of NARMAX model called 

NARX (Non-linear AutoRegressive  with eXogenous 

inputs) model was used to obtain the structure of the 

system considered. The paper is organized as follows. 

Section 2 briefly describes the model representation, 

i.e. the NARX model used.  Section 3 describes the 

proposed algorithm MOODE for selection of model 

structure. Furthermore, section 4 reports the simulation 

studies for perturbation parameter tuning for MOODE. 

The final section, section 5, summarizes the 

contribution of the study. 

 

 

2.0  MODEL REPRESENTATION 
 

In a two-component gel, it is easy to modify the 

molecular structure of either of the two components. 

Representing the dynamic non-linear system from the 

acquired input output data needs a type of model 

representation to be defined. Most non-linear systems 

are modelled and identified by using mathematical 

and signal models, block diagram models, and 

simulation models [22]. In this study, the mathematical 

and signal models were considered as model 

representation. A very common polynomial linear 

discrete-time system model representation is the ARX 

(AutoRegressive with eXegenous input) model, 

whereby the system output can be predicted by the 

past inputs and outputs of the system [1]. This model is 

defined as 

 

𝑦(𝑡) = 𝐶 + 𝑎1𝑦(𝑡 − 1) + ⋯ + 𝑎𝑛𝑦
𝑦(𝑡 − 𝑛𝑦) + 

 𝑏1𝑢(𝑡 − 1) + ⋯ + 𝑏𝑛𝑢
𝑢(𝑡 − 𝑛𝑢) + 𝑒(𝑡) (1) 

where the constant, output, input, and noise signal 

are represented by C, y(t), u(t), and e(t) respectively, 

while ny, and nu represent the output and the input 

lags respectively. The coefficients of the model are 

represented by a1 … any
 and b1 … bnu

. The non-linear 

version for ARX model is called NARX model. Chen 

and Billings [23] presented a Non-linear 

AutoRegressive Moving Average with eXogeneous 

inputs (NARMAX) model with the special case as a 

NARX model. This model provides a wide class of a 

non-linear model representation. The NARX model 

can be defined as; 

 
 y(t) = Fl(C, y(t − 1), … , y(t − ny), u(t − 1), … , 

 u(t − nu)) + e(t)                                               (2) 

 
where Fl(. ) is a polynomial non-linear function with l 

degree of non-linearity. The NARX model is 

transformed into a linear regression model, 

represented as  

 

   y(t) = ∑ θi∅i(t) + e(t),   ny ≤ t ≤ N                     M
i=1 (3) 

 

where θi and ∅i(t) are unknown coefficients or 

parameters and non-linear regressors respectively, M 

is the maximum number of terms of the regressors, and 

N is the size of data. The maximum number of possible 

terms, Lt, in the NARX model that expressed in 

equation (2) can be calculated as [23] 

 

Lt = M + 1     (4) 

where M = ∑ ni
l
i=1  and  

ni =
ni−1(ny + nu + i − 1)

i
,    n0 = 1               

 

For example, a NARX model with ny = nu = 2 and l = 2, 

as a second degree of non-linearity order of discrete-

time system, would obtain 15 terms respectively. Thus, 

the possible models need to be considered can be 

calculated as 2L − 1, which is 32, 767. This can be 

stated that an increase in the input output lags, as well 

as the degree of non-linearity increases the maximum 

number of terms of NARX model and possible models 

that need to be searched. Thus, the user defined that 

the parameters, such as input lags, output lags, and 

degree of non-linearity, affected the model structure 

selection. The search space became large and 

impractical when the larger user defined the 

parameters used [5]. Therefore, the need of intelligent 

tools for selecting the significant terms included in the 

final model became challenging and complicated. 

Hence, by employing DE as an alternative method in 

model structure selection, this searching method can 

tackle the larger search space that is involved in 

selecting the significant terms. The proposed 
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algorithm MOODE was assigned in solving system 

identification problems for model structure selection 

particularly. The following section elaborates the 

MOODE in the determination of model structure. 

 

 

3.0  PROPOSED ALGORITHM 

 
3.1  Differential Evolution 

 

DE is a powerful heuristic method that has yielded 

promising results in finding global optimization. Storn 

and Price [11] proposed DE, and designed it with a 

simple structure, easy to apply, convergence 

property, highly quality of solution, and robustness. 

Similar with other EAs, DE evolves the population that 

represents the candidate solutions by using genetic 

operators, i.e. mutation and crossover, as well as 

selection operators. The special issue in DE was 

compared to other EAs is the creation of mutation 

vector (so-called chromosome) by calculating the 

weighted difference vector of two randomly selected 

individuals, which were scaled down and added to 

the third randomly selected individual in the 

population. The mutant vector went through another 

genetic operator, which was crossover operator in 

producing a new population. The mutation operator 

in DE consisted of four strategies or schemes that were 

proposed by Storn [24]: 

 

Scheme DE/rand/1   

v_(i,G+1)=x_(r1,G)+F.(x_(r2,G)-x_(r3,G))  (5)          

 

Scheme DE/best/1   

v_(i,G+1)=x_(best,G)+F.(x_(r1,G)-x_(r2,G)) (6)  

 

Scheme DE/best/2   

v_(i,G+1)=x_(best,G)+F.(x_(r1,G)+x_(r2,G)-x_(r3,G)-

x_(r4,G))                                                             (7)  

 

Scheme DE/rand-to best/1  

v_(i,G+1)=x_(i,G)+λ.(x_(best,G)-x_(i,G))+F.(x_(r2,G)-   

x_(r3,G))                                                             (8) 

 

where v_(i,G+1) is mutant vector for the next 

generation at index i=1,2,3,…,NP; NP is population size;  

x_(r1,G) is target vector for the current generation at 

random index integer r_1; r_1,r_2,r_3,r_4  ∈ {1,2,…,NP}; 

F is a real and constant rate ∈[0,2], so-called mutation 

rate, MR, that control the amplification of the 

differential variation of (x_(r2,G)-x_(r3,G))[11], whereas 

λ=F; x_(best,G) is the best vector of the population 

and x_(i,G) is vector at index i at the current 

generation. The value of F depends on the problem 

that is to be solved. Resulting in the use of larger values 

of F is the generated population in becoming more 

diverse and slower convergence, whereas using the 

lower values causes faster convergence. The 

perturbation of vectors in DE was continued by 

applying the crossover operator. The crossover 

operator functioned as parameter mixing between 

the target vector and mutant vector to yield the trial 

vector.  According to Storn and Price [11], the trial 

vector is formed as in the following 

 

 

 

 

 

(9)   

 

 

where u_(ji,G+1) is the trial vector at index j and 

i=1,2,3,…,NP; D is the size of vector or called 

dimensional vector. CR is an abbreviation of crossover 

rate ∈[0,1] that has to be chosen by the user; whereas 

rand(j) is the output of a uniform random number 

generator in the range of [0,1], and ranr(i) is a 

randomly chosen index in the range of [1,2,…,D] that 

is taken from the mutant to ensure that the trial vector 

does not duplicate all the target vector,x_(ji,G), in 

order to get at least one parameter from the mutant 

vector, v_(ji,G+1). The type of this crossover operator is 

one-point crossover.  

After producing the trial vector, the so-called 

offspring vector, the comparison between the trial 

vector and the target vector was performed by using 

the greedy criterion. If the trial vector, u_(i,G+1), yields 

a better objective function value compared to the 

target vector, x_(i,G), then the trial vector is selected; 

whereas if otherwise, the target vector is retained. The 

following equation shows the selection process in D 

 

 

(10) 

 

 

where f(.) denotes as an objective function for a 

particular vector. The selection process is repeated 

until specified termination criterion is achieved. 

However, in this study, the proposed algorithm 

MOODE was not used in this selection process. The 

MOODE algorithm has its own selection process that is 

suitable to select a set of solutions instead of single 

optimal solution. The next sub-section elaborates the 

MOODE for determination of model structure. 

 

3.2  MOODE 

 
The MOODE algorithm is the combination of DE and 

NSGA-II. There are two major parts of the proposed 

algorithm: the first one is partly based on DE and the 

second one is inspired by the NSGA-II by Deb et al., 

[20]. The main difference was compared to single-

objective optimization of DE [11] to produce a set of 

possible solutions instead of a single solution. The set of 

solutions was represented in the points of the Pareto-

optimal front. The Pareto-optimal front is a dense set 

of the selected solutions between two contradicting 

objective functions, i.e. model predictive error and 

model complexity that were considered in the 

selection of model structure. Therefore, the algorithm 
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was designed to generate the population of possible 

solutions that has to be scattered along the points of 

Pareto-optimal front and adequate in both objective 

functions under consideration. In MOO, this approach 

is typical for ease of user to select the potential 

solutions. Details of the implementation of the MOODE 

for NARX model structure selection, which modelled 

the dynamic system, are listed in the following: 

 

Step 1:NARX model representation. The model 

parameters, such as input and output lags, nu 

and ny, as well as degree of nonlinearity, l are 

specified. Available input-output data set 

was loaded before creating the regressor of 

the NARX model. The regressor was formed 

based on the pair of input-output data, while 

the size of regressor was based on the 

specified model parameters that were 

calculated from equation (4). 

Step  2: Parameter setting. The DE parameters, such  

as population size, NP, crossover rate, CR, 

differentiation rate (so-called mutation rate), 

MR, lower boundary, L, upper boundary, H 

and maximum generation, Gen, were 

specified, except the value of vector size, D, 

which was equal to the size of regressor that 

was previously generated. The values of lower 

and upper boundaries were set to create the 

individuals of vector of the population. 

Step  3: Create initial population with size NP.  

Random vectors were generated, so-called 

chromosomes of the population that were 

based on the value of lower boundary, L, and 

upper boundary, H. Let the values of L and H 

be 0.1 and 0.4, respectively, then a vector of 

the population was created randomly as 

[0.1636; 0.1052; 0.2708; 0.3540; 0.3522; 0.2344; 

0.3899] where the vector size, D, was seven. 

This vector represented a possible model 

structure with the model parameters nu, ny, 

and l were 3, 3, and 1, respectively, which had 

been in equation (1), the full ARX model could 

be expressed as 

 

y(t)=〖C+a〗_1 y(t-1)+a_2 y(t-2)+a_3 y(t-3)+ 

b_1 u(t-1)+b_2 u(t-2)+b_3 u(t-3)+e(t) 

 

where the maximum number of possible terms, Lt, as 

in equation (4); seven and equaled to D. If the 

variables, so-called genes of the vector were equal or 

more than 0.3, it means the particular terms in the full 

model existed, while if otherwise, the terms were 

excluded. Therefore, back to the early example of the 

vector, the model structure could be represented as  

 

y(t)=a_3 y(t-3)+b_1 u(t-1)+b_3 u(t-3)+e(t) 

 

where only the fourth, fifth, and seventh of vectors 

were equal or more than 0.3. Thus, the fourth, fifth, and 

seventh terms in the full model existed in presenting 

the model structure of dynamic system. 

 

Step 4: Define two objective functions. The two  

objective functions used in this study were: the 

first was model predictive error using MSE, 

OFn1, while the second was model complexity, 

OFn2. These objective functions were inspired 

by Zakaria et al., [25]. To calculate the OFn1, 

which is MSE, the selected term of the 

identified model would go through the 

parameter estimation. A simple parameter 

estimation method was used in this study; least 

square estimation (LSE) algorithm. The LSE can 

be expressed as [26] 

 

θ_i=〖(∅^T∅)〗^(-1).∅^T Y                             (11)    

 

where θ_i is parameter or coefficient of identified 

term; ∅ is the regressors, and Y is the actual output 

data. Thus, the OFn1 can be calculated as 

 

OFn1= 1/N ∑_(i=1)^N▒〖(y_i-y ̂_i)〗^2    ,i=1,2,…,N     (12) 

 

where y ̂_i=θ_i.y_i is predicted output, and N is the 

number of data. As for OFn2, the model complexity 

can be computed as   

 

OFn2=∑_(i=1)^D▒newvar_i    ,i=1,2,…,D               (13)                                         

 

where the summation of the value of new variables 

was equal to the model complexity. Both objective 

functions would be aligned along the variables of the 

vector, for example: [0.1636; 0.1052; 0.2708; 0.3540; 

0.3522; 0.2344; 0.3899; OFn1; OFn2]. This strategy had 

been useful for the next step. 

 

Step 5: Produce parent population, P_t, with size NP.  

Each vector of the population had its own 

objective functions (OFn1 and OFn2), which 

had been evaluated in Step 4. Based on these 

objective functions, each vector of the 

population was ranked and crowding 

distance of vectors was calculated. Details on 

ranking and calculating of crowding distance 

of solutions are shown in Deb [27]. The vectors 

of the parent population were sorted, that was 

based on its rank and the value of crowding 

distance. This sorting is priority for the number 

of rank; the first top one (so-called non-

dominated solution) was numbered as one, 

the second top one was numbered as two, 

and so on. If the ranking of the vectors had 

been the same; the value of crowding 

distance was considered to sort them, which 

was the priority for higher value of crowding 

distance. 

Step 6: Create new vectors. This step was partly based  

on the DE technique in producing new 

generation of vectors. From the parent 

population, three vectors of the population 

were chosen randomly, which had been 

evolved to create new vectors through two 

genetic operators: mutation and crossover. 

The mutation scheme used in this study is as in 
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equation (5). The trial vector was generated 

from the mutant vector that would go through 

the crossover operator. The boundary of the 

variable for the vector was confirmed before it 

went through the evaluation process of the 

new vectors. 

Step 7: Create offspring population, Q_t, with size NP.  

After the new vectors were produced in the 

population, Step 4 was repeated in order to 

define the objective functions for the new 

vectors. The production of offspring population 

had been the same as the parent population 

in Step 5. Each vector of the offspring 

population was sorted based on its rank and 

the value of crowding distance. 

Step 8: Create new generation of population,  

P_(t+1),  with size NP. This step was inspired by 

Deb et al., [20]. The parent population and the 

offspring population were combined, R_t= 

P_t∪Q_t, and became size 2NP. This combined 

population would be through the non-

dominated sorting and calculation of the 

crowding distance value as in Steps 5 and 7. 

Set P_(t+1) and vectors of R_t were counted 

until size NP. This counting was based on rank 

and the value of crowding distance of each 

vector of R_t. Lastly, the final population of 

P_(t+1) was selected by using the crowded 

tournament selection and Step 6 is taken until 

the maximum number of generation, Gen, was 

reached. 

Step 9: Illustrate the solutions of a set of possible  

model structures that were minimized to two 

objective functions: model predictive error 

and model complexity (OFn1 and OFn2) by 

plotting in one graph with OFn2 versus OFn1. 

The graph shows the trade-off between the 

objective functions. The set of possible model 

structures represents as the points of Pareto-

optimal front in order to help the user to 

choose the potential models before going 

through the validation test. 

 

The flowchart of the NARX model structure 

determination that was formulated by using MOODE 

is shown in Figure 1. This flowchart summarizes the 

details of the implementation of MOODE to select a 

set of model structures. From this implementation, the 

significant concepts in selecting good and adequate 

model in the MOODE were: 

 

i. the model representation used to represent 

the behavior of dynamic system; 

ii. the objective functions used to analyze the 

candidate of model structures and choose 

a set of potential models; 

iii. the selection algorithm used to select the 

potential solutions to be considered in the 

next generation. 

The main difference compared to the approach 

proposed by Loghmanian et al., [28] that used NSGA-

II was the generation of new candidate solutions, 

which used the operators of DE instead of operators of 

GA. Furthermore, the model representation used in 

the MOODE was changed to the real number in the 

range of [0.1, 0.4] as in Step 3, whereas NSGA-II was 

used as bit-string representation. The use of real 

number to represent the model structure seemed 

more dynamic and suitable for the larger search 

space. Therefore, this resulted in a better solution for 

model structure selection. 

 

 

4.0  RESULTS AND DISCUSSION 
 

The parameter setting for MOO using evolutionary 

algorithms (MOEAs) was crucial for identifying the best 

performance of the algorithms. Numerous works for 

parameter tuning had looked into variation operators 

in evolutionary algorithms, such as crossover and 

mutation operator [29]. These parameters are very 

sensitive in driving the algorithms to the best 

performance, as well as in finding good results. In 

MOEAs, parameter tuning was very important before 

the algorithms were executed. Parameter tuning 

refers to finding good parameter values, which were 

fixed at the initialization stage. These parameter 

values were unchanged while executing the MOEAs 

[30]. However, many studies have shown that finding 

good parameter values for the MOEAs is a hard task 

[29-32]. In fact, most studies showed that different 

parameter values were needed for different test 

problems. Therefore, the need of parameter tuning 

had been important when different test problems 

were considered. Hence, the parameters of variation 

operators considered in this study had been based on 

Storn and Price’s [11]. The parameters used in this 

study are listed in Table 1. 

 
Table 1  Parameters used in the MOODE 

 
Parameters Values 

Population size 50 

Maximum generation 100 

Crossover rate (CR) 0.9/0.7/0.6/0.5 

Mutation rate (MR) 0.5/0.3/0.2/0.1 

 

 

The parameters (crossover and mutation rate) were 

studied with four different values for each. For each 

setup, the algorithms were performed at one hundred 

runs and the average of both objective functions 

(OFn1 and OFn2) against the number of generation 

was plotted. The algorithm investigated was based on 

the following simulated dynamic systems [33]: 

 

Model 1: y(t) = 0.797y(t − 1) − 0.237y(t − 3) +
0.441u(t − 1) + 0.105y(t − 4)u(t − 4) + 0.333u(t −
3)u(t − 5) + e(t) 

 

Model 2:  y(t) = 0.3u(t − 1)u(t − 2) − 0.8y(t − 2)u2(t −
1) − 0.1u2(t − 1)u(t − 2) + e(t) 
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where input u(t) is a random sequence [-0.5,0.5] and 

e(t) is random white noise [-0.01,0.01]. Both models 

were generated till four hundred data points were 

generated and used to identify a NARX model 

adequately representing the data set. The illustration 

of the input-output of models can be seen in Figures 2 

and 3. The values of input and output lag in estimating 

Model 1 were five and second degree of non-linearity 

order. Thus, the total candidate terms had been 66 

and 266 – 1 = 7.38×1019, which were the total possible 

models to choose from. As for Model 2, the values of 

input and output lag used were two and third degree 

of non-linearity respectively. Hence, the total possible 

terms were 35 and 235 – 1 = 3.44×1010, which was the 

total number of possible model structures to choose 

from. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 The flowchart of MOODE 

 

The structure of the models is known where Model 1 

and Model 2 consisted of five and three terms 

respectively. Therefore, the proposed algorithm was 

needed to find at least one correct model structure 

from the huge number of possible model structures to 

choose from. 
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Figure 2  Input and output data for Model 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3  Input and output data for Model 2 

 

 

 

In this simulation, by varying the mutation and the 

crossover rates, the convergence of the algorithm 

with respect to two objective functions had been 

observed. The average of each objective function 

was considered, as the algorithm was executed in one 

hundred runs. The averages of two objective functions 

were calculated as follows: 

 

Average of OFn1 =  
1

r
∑ (

1

NP
∑ OFn1j

NP
j=1 )

i

r
i=1           (14)                

 

 

 

Average of OFn2 =  
1

r
∑ (

1

NP
∑ OFn2j

NP
j=1 )

i

r
i=1             (15) 

 

where r and NP are the number of runs and size of 

population, respectively. This task was investigated to 

set the appropriate values of CR and MR that were 

used for identification of the dynamic systems. The 

results are shown in Figures 4-11 for the convergence 

test, while Tables 2 and 3 list the average values of 

both objective functions for Model 1 and Model 2, 

respectively. 
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Figure 4 Convergence curve of varied MR for Model 1 with fixed CR = 0.9: (a) average of MSE (OFn1); (b) average of 

complexity (OFn2) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5 Convergence curve of varied MR for Model 1 with fixed CR = 0.7: (a) average of MSE (OFn1); (b) average of 

complexity (OFn2) 
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Figure 6 Convergence curve of varied MR for Model 1 with fixed CR = 0.6: (a) average of MSE (OFn1); (b) average of 

complexity (OFn2) 

 

 

 
 

Figure 7 Convergence curve of varied MR for Model 1 with fixed CR = 0.5: (a) average of MSE (OFn1); (b) average of 

complexity (OFn2) 
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Figure 8 Convergence curve of varied MR for Model 2 with fixed CR = 0.9: (a) average of MSE (OFn1); (b) average of 

complexity (OFn2) 

 
 

 
 

Figure 9 Convergence curve of varied MR for Model 2 with fixed CR = 0.7: (a) average of MSE (OFn1); (b) average of 

complexity (OFn2) 
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Figure 10 Convergence curve of varied MR for Model 2 with fixed CR = 0.6: (a) average of MSE (OFn1); (b) average of 

complexity (OFn2) 

 

 
 

Figure 11Convergence curve of varied MR for Model 2 with fixed CR = 0.5: (a) average of MSE (OFn1); (b) average of 

complexity (OFn2) 

 

Table 2 Values of average of OFn1 and OFn2 for Model 1 

 
CR     

 

MR 

0.9 0.7 0.6 0.5 

Average 

of OFn1 

Average 

of OFn2 

Average 

of OFn1 

Average 

of OFn2 

Average 

of OFn1 

Average 

of OFn2 

Average 

of OFn1 

Average 

of OFn2 

0.5 1.1×10-3 15.69 6.0×10-4 14.16 3.0×10-4 16.07 3.0×10-4 13.64 

0.3 6.0×10-4 9.45 2.0×10-4 7.59 1.5×10-3 7.08 7.0×10-4 7.90 

0.2 1.0×10-4 8.57 7.0×10-4 7.80 6.0×10-4 7.59 7.0×10-4 8.32 

0.1 1.0×10-4 10.15 3.0×10-4 8.74 5.0×10-4 7.69 1.0×10-4 8.03 
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Table 3 Values of average of OFn1 and OFn2 for Model 2 

 
CR     

 

MR 

0.9 0.7 0.6 0.5 

Average 

of OFn1 

Average 

of OFn2 

Average 

of OFn1 

Average 

of OFn2 

Average 

of OFn1 

Average 

of OFn2 

Average 

of OFn1 

Average 

of OFn2 

0.5 1.0×10-4 6.88 5.2×10-5 8.26 4.5×10-5 8.28 3.5×10-5 7.39 

0.3 4.1×10-5 5.12 4.2×10-5 6.71 3.8×10-5 8.12 4.0×10-5 8.15 

0.2 4.4×10-5 7.61 4.5×10-5 7.08 3.3×10-5 7.79 4.9×10-5 7.10 

0.1 4.4×10-5 9.32 3.2×10-5 8.70 3.8×10-5 7.76 3.4×10-5 7.97 

 
 

In the investigation of the convergence of the 

algorithm, each combination of different values of the 

parameters gave different curves of convergence. 

Considering both Model 1 and Model 2, the values of 

MR of 0.3 and 0.2 at each value of CR showed the 

advantages compared to the values of MR of 0.5 and 

0.1, as shown in Figures 4-11. The advantages were the 

curve of convergence that was smooth and fast 

convergence. Moreover, they were more likely 

converged to the lower values of the objective 

functions under consideration. Thus, these can be 

assured by looking at Tables 2 and 3. The values of 

average OFn1 that were listed showed that there was 

no much difference for each combination of MR and 

CR. Meanwhile, most of the values of average OFn2 

had shown lower value at 0.3 and 0.2 of MR for each 

value of CR, except CR = 0.6 for Model 2.  

The value of crossover rate, CR, kept larger, which 

was more than 0.5, particularly to solve the larger 

search space of problem. The larger CR was required 

for huge-dimensional problems that was influenced 

for the number of individuals to be mutated in 

generating the offspring population [34]. From this 

simulation, a generalization cannot be made due to 

the different results that had been obtained. 

Therefore, these results indicated that the acceptable 

range for MR was [0.3, 0.2], while CR was [0.9, 0.6], 

respectively. However, the user had to decide the 

parameter values that had been preferred to be 

used, which were fixed in the initialization stage, while 

the algorithm was executed. In this study, based on 

the acceptable range that was stated earlier, the 

parameter values that were decided to use had been 

MR = 0.3 and CR = 0.7, respectively. These values had 

been confirmed to be used in executing MOODE in 

order to find an optimal model structure for dynamic 

system modelling. 

 

 

5.0 CONCLUSION 
 

A new application of MOODE was described for 

model structure selection in system identification 

problem. The study had focused on selecting the 

compact model structure that best represented the 

measured input-output data. It had shown that the 

proposed algorithm was capable in fulfilling the 

objectives of the study: to produce a good and an 

adequate model with minimal number of term and 

good predictive accuracy. The main study in this 

paper had been on perturbation parameter tuning of 

the MOODE and its application to dynamic system 

modelling, which has remained as an open issue. The 

authors had decided to use the values of 0.7 and 0.3 

in CR and MR, respectively. However, the proper 

selection for DE operators depends on the problem 

faced by a user. MOODE was performed better in 

minimizing both objective functions, i.e. MSE and 

complexity of the model structure with rightly chosen 

perturbation parameters. 
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