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Abstract 
 

This paper introduces the usage of three controls as a way to reduce the occurrence of 

vector-borne disease. The governing equation of the dynamical system used in this paper 

describes both direct and indirect transmission mode of vector-borne disease. This means 

that the disease can be transmitted in two different ways. First, it can be transmitted 

through mosquito bites and the other is through human blood transfusion. The three 

controls that are incorporated in the dynamical system include a measurement of basic 

practice for blood donation procedure, self-prevention effort and vector control strategy 

by health authority. The optimality system of the three controls is characterized using 

optimal control theory and the existence and uniqueness of the optimal control are 

established. Then, the effect of the incorporation of the three controls is investigated by 

performing numerical simulation.   
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Abstrak 
 

Kertas kerja ini memperkenalkan penggunaan tiga kawalan sebagai satu cara untuk 

mengurangkan kejadian penyakit bawaan vektor. Sistem dinamik yang digunakan dalam 

kertas kerja ini merangkumi kedua-dua mod penyebaran secara langsung dan tidak 

langsung bagi penyakit bawaan vektor. Ini bermakna, penyakit ini boleh disebarkan 

dalam dua cara yang berbeza. Pertama, ia boleh disebarkan melalui gigitan nyamuk dan 

cara kedua adalah melalui pemindahan darah manusia. Tiga kawalan yang 

diperkenalkan dalam sistem dinamik tersebut adalah pengukuran amalan asas untuk 

prosedur derma darah, usaha pencegahan oleh setiap individu dan strategi kawalan 

vektor oleh pihak berkuasa kesihatan. Sistem optimaliti untuk tiga kawalan tersebut 

dicirikan menggunakan teori kawalan optimum dan juga kewujudan dan keunikan 

kawalan optimum ditunjukkan. Kemudian, kesan penggabungan tiga kawalan tersebut 

dikaji dengan melakukan simulasi berangka.   

 

Kata kunci: Model epidemic, penyakit bawaan vector, penyebaran secara langsung, 

kawalan optimum 
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1.0  INTRODUCTION 
 

Vector–borne disease is a kind of disease which is 

transmitted by organisms that carry infectious 

pathogen from one host to another. Some of the 

organisms which serve as vectors include mosquitoes, 

fleas, biting flies, bugs, mites and ticks. There are 

several type of diseases that are caused by this kind of 

transmission including malaria, dengue fever, yellow 

fever, chikungunya and several others. According to 

the World Health Organization (WHO), 17% of the 

estimated global burden of all infectious diseases are 

caused by vector-borne diseases. 
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As far as mathematical modelling is concerned, 

vector-borne disease is often being modelled as an 

interaction between the hosts population, particularly 

between human and vector population. The 

population for each of them is then being classified 

into several distinct classes or also known as 

compartment with each portrays the host and the 

mosquito disease status. Some of the early studies on 

mathematical model for vector-borne disease include 

Feng and Velasco-Hernández [1], Esteva and Vargas 

[2], Ferguson et al. [3], Ngwa and Shu [4], and Esteva 

and Matias [5]. 

Though vector-borne diseases are primarily 

transmitted via vectors, there are several findings 

which indicated the occurrence of virus transmission 

through blood transfusion. This is reported in several 

articles including the one written by Kelly et al. [6], 

Kitchen and Chiodini [7], Tambyah et al. [8], Punzel et 

al. [9] and Stramer et al. [10]. Furthermore, Harif et al. 

[11] did an experimentation to investigate the 

existence of viremia among blood donors, where a 

random serum samples from 360 donors were selected 

from blood donated during the period of December 

2009 to January 2010, in which the period mentioned 

was the time of dengue fever outbreak. Their results 

indicated that 15 of the donors may be in the carrier 

stage of the dengue virus which may eventually lead 

to the possibility of transmitting the virus through blood 

transfusion. 

In consideration of this fact, several studies had 

addressed the situation of vector-borne transmission 

through blood transfusion from the mathematical point 

of view. One of them is Wei et al. [12], who considered 

this situation and denoted it as direct transmission 

mode of vector-borne disease. A mathematical model 

for the transmission was formulated in [12], which 

include both populations, hosts and vectors, and also 

presented a differential-delay model with a discrete 

time delay which accounts for the incubation period 

of the vectors. Then, there is Cai and Li [13] who also 

addressed this issue and formulated two mathematical 

models. Lashari and Zaman [14] extended the model 

in [13] by introducing exposed classes to both host 

and vector populations. Whereas, Cai et al. [15] 

extended the study of [12] with modification on the 

incidence rate of the model. 

On the formulation of optimal control problem, it is 

originally part of the basis in modelling infectious 

disease to understand transmission mechanism and 

investigate the appropriate control strategy [16]. For 

example, one can determine how to optimally 

manage limited resources of vaccines, or treatment 

facilities when there is an outbreak of infectious 

disease. Specifically in the case of vector-borne 

disease, the main objectives can be to reduce the 

number of infected people as well as to eradicate, if 

possible, the vector population so that the virus cannot 

be further circulated. Hence, this paper will investigate 

the usage of optimal control in achieving the 

mentioned objectives. The optimal control problem is 

formulated by modifying the model in [15] with the 

incorporation of three controls. The first control is on 

the practice of blood screening procedure as a way 

to prevent the virus to be transmitted through blood 

transfusion. Second is on the self-prevention effort, 

which is to clean up house compound, to use insect 

repellent, and others, particularly the one who lives at 

the area of high disease occurrence. The third is on 

the effort by health authority, which is on the usage of 

adulticide, larvacide and others. This type of optimal 

control problem with the said controls had been 

addressed in [17] and in [18]. However, the underlying 

dynamical system presented in this paper is slightly 

different from theirs, which then lead to a different 

results. In [17], the authors presented seven classes of 

disease status, in which they introduced an exposed 

class for both host and vector. Whereas, in [18], density 

dependent mortality rates are used for both vector 

and host populations. 

This paper is organized as follows. In Section 2, the 

formulation of optimal control problem is presented, in 

which its existence and characterization are also 

shown. Then, in Section 3, discussion and the results 

from numerical simulation is presented. Finally, the 

conclusion is given in Section 4. 

 

 

2.0  THE FORMULATION OF OPTIMAL CONTROL 
PROBLEM 
 

In this section, a vector-host epidemic model which 

characterizes both direct transmission and the 

conventional way of transmission through vector is 

presented. The dynamical system for both host and 

vector population is governed by a model which is 

formulated in [15]. The dynamical system is as 

presented in (1).  hS t ,  hI t  and  hR t  represent 

susceptible, infected and recovered host population 

size at time t, respectively. On the other hand vector 

population is classified into two subpopulations. These 

are  vS t and  vI t . Accordingly,  vS t  and  vI t  

represent the number of susceptible and infected 

vectors at time t respectively. All parameters are non-

negative, where 1b  and 2b  are the recruitment rate of 

host and vector respectively. The terms    1 h hS t I t , 
   2 h vS t I t  and    3 v hS t I t  denote the occurrence 

of new incidence through blood transfusion, infection 

from infected vector to susceptible host and infection 

from infected host to susceptible vector respectively. 

h  and v  represent the natural death rate for host 

and vector respectively. The host recovery rate is 

denoted by   and   represent the disease induced 

death rate. 
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Accordingly, in this paper the dynamical system of 

(1) is modified by the inclusion of three control 

variables. The three controls introduced are, cost of 

basic prevention practice in blood donation 

procedure,  1u t , self-prevention effort (repellent, clean 

up possible vector breeding sites such as vase, pail 

and others),  2u t , and the cost to reduce the vector 

population by health authority such as adulticide and 

larvacide,  3u t . Also, the recruitment rate in both host 

and vector susceptible population is modified so that it 

will be density dependent [1, 16]. This is denoted as 

follows. 

 1 1 hNb b    , and 2 2 vb b N  , 

which then, transformed the system of (1) to the one in 

(2). Note that   represents the proportionality 

constant showing the impact of density to host 

recruitment rate. If there is no new host recruitment, 

then   will be the per capita birth rate of host [19]. 

( )hN t  denotes the size of total host population at time 

t, in which it is the sum of ( )hS t ,  hI t  and  hR t . On 

the other hand,  vN t  is the sum of  vS t  and  vI t , 

which represents the size of total vector population. 
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  (2) 

It should be noted that there is an addition of new rate 

constant, 0r  in (2) since the mortality rate of both 

susceptible and infected vectors may increase in 

proportion to the third control,  3u t  [19]. The rate of 0r  

is always positive. Then, the objective functional is 

defined as: 

 
     

   

2
1 2 1 1

1 2 3 2 2
2 2 30 3

, ,
h

T
vA I t A N t B u t

J u u u dt
B u t B u t

  
    
  (3) 

which is subject to the system of (2). The parameters 

1A , 2A , 1B , 2B  and 3B  are positive weight constants. 

The terms  1 hA I t ,  2 vA N t  denote the cost associated 

in reducing the infected host and vector population 

respectively. Also,  2
1 1B u t ,  2

2 2B u t  and  2
3 3B u t  

represent the cost associated with the basic practice 

of blood donation procedure, self-prevention effort by 

host, and vector control, respectively. The purpose is 

then to find an optimal control triplet *
1u , *

2u  and *
3u  

which satisfy: 

 
 

 
1 2 3,

* * *
1 2 3 1

,
2 3, , min , ,

u u u
J u u u J u u u




U
 

where 

      

 
1 2 3, , | : 0 , 0 ,

1,2,3, u  is Lebesgue measurable

i i i

i

u u u u t u t m t T

i t
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  

 
U  

Accordingly, the existence and characterization of its 

optimal control for the above formulation will be 

shown in the following section. The Hamiltonian 

function, H with respect to 1u , 2u  and 3u  is defined as 

follows: 
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2.1  Existence of Optimal Control 

 

Theorem 2.1: Consider the objective functional of (3) 

with  1 2 3, ,u u u U subject to the controlled system of (2)

. There exists  * * * *
1 2 3, ,u u u u U  such that 

 
   

1 2 3

* * *
1 2 3 1 2 3

, ,
min , , , ,

u u u
J u u u J u u u


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U
 

Proof: Stated in [20], the following conditions should be 

satisfied as to ensure the existence of optimal control. 

i. the set of controls and corresponding state 

variables is nonempty 

ii. the control set U  is convex and closed 

iii. the right hand side of the state system is 

bounded by a linear function in the state and 

control variables 

iv. the integrand of the objective functional is 

convex on U   

v. the integrand of the objective functional is 

bounded below by  2 2

1 1 3 2
22

2

b

c u u u c   , 

where 1c  and 2c  are positive constants and 

1b  . 

To verify these properties, the result from Lukes [21] is 

used to give the existence of solutions for the state 

system of (2) with bounded coefficients, which gives 

Condition i. The control set is closed and convex by 

definition, hence satisfies Condition ii. The right hand 

side of system (2) satisfies Condition iii since the state 

solutions are bounded. The integrand of our objective 

functional is clearly convex on U , which then gives 

Condition iv. Also, there are 1 2, 0c c   and 1   

satisfying 
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because the state variables are bounded.  □ 

 

2.2  Characterization of Optimal Control 

 

Pontryagin's maximum principle [22] is used to derive 

the necessary conditions for the optimal control triplet. 

The Lagrangian, which is the Hamiltonian augmented 

with penalty terms for the control constraints is defined 

as follows. 
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where 11 12 21 22 31 32, , , , , 0w w w w w w   are penalty multipliers 
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Theorem 2.2: Given optimal controls of 
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with the transversality condition of 
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 
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  

 (6) 

Proof: The form of the adjoint functions and 

transversality conditions are standard results from 

Pontryagin's Maximum Principle [22]. The Lagrangian is 

differentiated with respect to states, 

,  ,  ,   and  h h h v vS I R S I  respectively, which resulted in the 

following adjoint functions. 
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with zero transversality conditions. The characterization 

of the optimal control (6) is obtained by solving 

   

   

   
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Solving for each of the optimal control, 
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Then, to determine an explicit expression for *
1u without 

11w and 12w , the following three cases should be 

considered. 

i.    On the set  *
1 1| 0t u m  we have  

   * *
11 1 12 1 1 11 120 0w u w m u w w       

       Hence, the optimal control is 
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11
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h hS I
u
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Combining these three cases, the optimal control of 
*
1u can be characterized by 
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Using similar argument, the optimal control of *
2u and 

*
3u are obtained as follows 

 

 

2 2 1*
2 2

2

4 2 0 5 0*
3 3

3

max 0,min ,  and
2

max 0,min ,
2

h v

v v v

S I
u m

B

b N r S r I
u m

B

  

 

  
   

  

   
   

  

 □ 

 

 

3.0  NUMERICAL RESULTS AND DISCUSSION 
 

In this section, the optimal solution to the vector host 

model (2) is solved numerically using forward-

backward sweep method introduced in [23]. The 

optimality system, which consisted of the state 

equations of (2), the adjoint equations (4) and controls 

characterization (6), is solved using iterative method of 

fourth-order Runge-Kutta scheme. The algorithm 

started with the initial guess for the control variables. 

The state variables are solved forward in time using 

fourth-order Runge-Kutta method by considering the 

initial conditions. With the output of the state variables, 

and also considering the transversality conditions of (5)

, the adjoint variables are solved backward in time 

also using the fourth-order Runge-Kutta method. The 

control variables were then being updated with the 

insertion of the current value of the state and adjoint 

variables. The process is repeated until they converge 

sufficiently. 

The initial conditions, which represent the initial 

population size of each classes are assumed to be 
 0 200hS  ,  0 50hI   and  0 80hR  , where they are 

the susceptible, infected and recovered population 

for host respectively. On the other hand, for the 

population of vectors, they are assumed to be 
 0 500vS   and  0 100vI  . These values of initial 

conditions are extracted from [24]. Table 1 presents 

the value of parameters used in the numerical 

simulation. 

Other parameters values are taken from [17, 18, 19] 

in which they are arbitrarily assumed. These are,

0.00285  , 1 0.0004  , 2 0.0006  , 3 0.009  , 0.15v   

and 0 0.02r  . As for the weights in the objective 

functional of (3), they are assumed with the value of 

1 0.1A  , 2 0.05A  , 1 50B  , 2 20B   and 3 40B  . The 

value of 1A  and 2A  are chosen in that particular way 

so as to show that the minimization of the infected host 

population is given more importance as compared to 

the reduction of vector population. Whereas, the 

weights of 1B , 2B  and 3B  indicate the cost associated 

with the controls, considering the fact that the cost for 
 2u t  is lower than  3u t  and the cost of  3u t  might be 

lower than  1u t . Also, the control variables,  1u t , 
 2u t  and  3u t  may vary from 0 to 1. 

Considering the estimated value of parameters and 

initial conditions mentioned, the results from the 

numerical simulation is presented in Figure 1 – 6.  Figure 

1 shows the dynamic of infected host population with 

and without controls. It can be seen from the figure, 

without the controls, the size of population will increase 

and eventually reduced to 0. On the other hand, with 

the controls, the population size of infected host never 

increase and eventually reached 0 in a time faster 

than the one without the controls. Whereas, the 

population dynamic of susceptible vector is shown in 

Figure 2. From the figure, it can be seen that the 

population size with the controls reached the size of 0 

in a slower time as compared to the one without the 

controls. This means that the controls allow less vector 

to be infected with the virus and causing the size of 

susceptible vector population to be slowly reduced to 

0. Figure 3 shows the population dynamic of infected 

vector with and without the controls. Rationally, Figure 

2 and Figure 3 are directly related since once 

susceptible vector acquired the virus, it will move to 

the class of infected vectors. As can be seen from 

Figure 3, the population size without the controls 

increased higher than with the controls. Eventually, 

both populations, which are with and without the 

controls reached 0 but the one with the controls 

reached to 0 in a faster time. Also, the rate of each of 

the three controls over time are shown in Figure 4, 

Figure 5 and Figure 6. From Figure 4, during the initial 

outbreak of the disease, full rate of control for blood 

screening procedure need to be enforced. This 

enforcement need to be undertaken until it reaches 

the time between day 30-35, in which afterward the 

rate of control can gradually be reduced. In relation 

with the disease status, as what is presented in Figure 

1, this is the time when the infected host population 

started to be zero. Full enforcement rate of control 

also need to be implemented for self-prevention effort 

and pesticide control during initial disease outbreak. 

This enforcement need to be implemented until it 

reaches the time between day 40-45. Afterward, both 

rate of control can steadily be reduced and 

eventually reached to the point of no controls are 

needed. 

 

Table 1 Estimated value of parameters 

 

Parameter Description Estimated Value Reference 

1b  Recruitment rate of susceptible host 2.5 per day [25] 

2b  Recruitment rate of susceptible vector 0.4 per day [26] 

h  Host natural death rate 0.0000457 per day [2] 

  Host recovery rate 0.1428 per day [2] 

  Disease induced death rate 0.01 per day [26] 
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Figure 1 Infected host population 

 

Figure 2 Susceptible vector population 

  
Figure 3 Infected vector population Figure 4 Blood screening procedure 

  
Figure 5 Self-prevention effort Figure 6 Pesticide control 

 

 

4.0  CONCLUSION 
 

This paper has introduced an optimal control 

problem to a dynamical system of vector-borne 

disease with direct transmission. By direct 

transmission, it means that the disease can also be 

transmitted directly from one host to another apart 

from the conventional way of its transmission through 
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vector. This particularly occurred through blood 

transfusion in which real life cases have been 

reported in several studies. As a way to reduce or if 

possible to eradicate the disease, three controls 

have been introduced in this study. One is to perform 

blood screening procedure during blood transfusion 

process. The other control is to do self-prevention 

effort, for example by cleaning up house compound   

and wearing insect repellent. The last control is the 

responsibility of the health authority to provide 

adulticide and lavarcide as a method to reduce the 

size of vector population. With the said controls, and 

its underlying dynamical system, the optimal control 

problem is formulated, with the objective to reduce 

the size of infected host population and also the size 

of vector population. Eventually, the optimality 

system is derived using the Pontryagin's maximum 

principle. Then, numerical simulation is performed to 

observe the impact of the controls to the population 

dynamic of both host and vector. Based on the 

results, it can be said that the introduction of the 

controls have caused the population dynamic of 

host and vector to reform in a positive way. It should 

be noted that several modification can be done to 

the dynamical system. Firstly, instead of using 

constant population for both host and vector, one 

can change it to variable population such as the one 

done by [4] and [27]. Also, the incidence rate can be 

changed to bilinear and saturation incidence as 

were done by [5] and [28]. This subject matter is also 

under consideration by the authors. 
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