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Abstract 

 

Hyperspectral imaging technology is a powerful tool for non-destructive quality assessment of fruits. The 

objective of this research was to develop novel calibration model based on hyperspectral imaging to 
estimate soluble solid content (SSC) of starfruits. A hyperspectral imaging system, which consists of a 

near infrared  camera, a spectrograph V10, a halogen lighting and a conveyor belt system, was used in 

this study to acquire hyperspectral  images of the samples in visible and near infrared (500-1000 nm) 
regions. Partial least square (PLS) was used to build the model and to find the optimal wavelength. Two 

different masks were applied for obtaining the spectral data. The optimal wavelengths were evaluated 

using multi linear regression (MLR). The coefficient of determination (R2) for validation using the model 
with first mask (M1) and second mask (M2) were 0.82 and 0.80, respectively. 
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1.0 INTRODUCTION 

 

Starfruit is one of Malaysia’s main exported fruits. Since 1989, 

Malaysia has been the largest exporter of starfruit in the world. In 

2008, 3648.9 metric tons of starfruit were exported to various 

countries in Europe (the Netherlands, France, Germany), Middle 

East (Saudi Arabia, Iran, Bahrain, Turkey), and Asia (Singapore, 

Hongkong, Indonesia). Until June 2009, the export record shows 

that a total of 901.509 metric tons of starfruits had been exported 

[1]. 

  In Malaysia, numerous studies have been carried out to 

enhance the postharvest handling of starfruit to increase the 

consumer acceptance and satisfaction. In spectroscopy area, 

recently, Omar et al. [2][3] conducted a study on nondestructive 

intrisic quality measurement of starfruit such as pH, firmnes dan 

soluble solid content of starfruit using spectrocopy method. In 

image processing field, Abdullah et al.[4] had developed an 

automated quality inspection of starfruit based on the colour of 

starfruit. Mokji [5] had developed an algorithm with 2-

dimensional colour maps to classify starfruits into six maturity 

grades. Meanwhile, Amirulah et al. [1] implemented Mokji’s 

algorithm on Field Programmable Gates Array (FPGA). Other 

reseachers [4][6] have also studied defect detection of starfruit. 

  In recent years, hyperspectral imaging (also called imaging 

spectroscopy) has become a popular tool for quality and safety 

inspection of food and agricultural products [7]. Hyperpectral 

imaging combines spectroscopy and imaging techniques to obtain 

both spatial and spectral information of an object. The 

hyperspectral technique can be used for  inspecting defects in 

fruit, predicting constituents of fruit to estimate its quality, food 

quality evaluation and sorting fruits. In addition, this technique 

can be applied to measure some internal attibutes of fruit 

simultaneously and non-destructively [8]. 

  A number of studies have been reported on the application of 

hyperspectral imaging technique to evaluate quality of various 

fruits.This technique has been successfully used for detecting 

defects in various fruits such as apple [9], citrus [10], and 

cucumber [11][12]. For determining quality attribute 

measurement of fruits such as soluble solid content (SSC) and 

firmness, reseachers  have conducted studies on a number of fruits 

such as apple [13][14][15], strawberry [16], bluberry [17], banana 

[18], grapes [19], pickles [11],  and tart cherries [20]. These 

studies have shown the potential of hyperspectral imaging for fruit 

quality inspection using spatial dan spectral information. 

However, due to its non-circular shape, no study has been 

reported on using hyperspectral imaging for starfruit quality 

inspection. Hence, in this work, two types of region of interest 

(ROI) are introduced for the inspection. 

  The main objective of this study is to investigate the 

potential of hyperspectral  imaging for estimating the soluble solid 

content of starfruit. The specific objectives are (1) to use 

hyperspectral imaging system to acquire the hyperspectral image 
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of starfruit in region between 500 and 1000 nm, (2) to identify 

several significant wavelengths that can be utilized for predicting 

soluble solid content of starfruit, (3) to evaluate the use of 

different area measurement  (region of interest) to obtain the 

spectral data, and (4) to develop a novel calibration model using 

the optimal wavelengths.  

 

2.0  MATERIALS AND METHODS 

 

2.1  Starfruit Samples 

 

A total of 72 samples were obtained from a starfruit farm. The 

samples were selected in such a way that each grade of samples 

could be represented by the same number. This study applied 

maturity standard set by FAMA (Federal Agricultural and 

Marketing Authority), Malaysia, with six indeces. Lower index 

(index 1 and 2) would indicate that the starfruit is verdant while 

higher index (index 5 and 6) would indicate mature fruit. The 

samples were scanned in hyperspectral imaging system using 

image acquistion for determining the soluble solid content (SSC) 

of samples. 

 

2.2  Hyperspectral Imaging System 

 

A hyperspectral imaging system (Figure 1) developed in the 

computer vision, video and image processing (CVVIP) laboratory, 

Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 

was used for this experiment. The imaging unit consisted of a 12-

bit digital NIR camera and a spectrograph. A MVI 1312 

Photonfocus camera was used. A V10 (Spectral Imaging Ltd, 

Oulu, Finland) spectrograph was attached to the camera to acquire 

hyperspectral images. An illumination unit, which consisted of 

two 150 W halogen lights powered by a DC voltage regulated 

power supply (Line light QDF5072 and DC950H, Dollan Jenner 

Industries, Inc, USA) was positioned at angle of 450 to illuminate 

the camera’s field of view. A conveyor unit with adjustable speed 

was used to move and present the starfruit for imaging.  

Futhermore,a computer with a frame graber (National Instument) 

was used for acquiring and processing the hyperspectral images. 

MATLAB software was used to create a program for image 

acquisiton and analysis. The size of hyperspectral image 

generated by this system was 460X360 pixels with 180 spectral 

bands (wavelengths) from 500  to 1000 nm. 

 

 
 

Figure 1  Hyperspectral imaging system 

 

  Before acquiring the hyperspectral image, spectral and 

reflectance calibration were carried out to ensure accuracy in the 

measurement. The purpose of spectral calibration was to assign a 

discrete wavelength to the hyperspectral image band [8]. This 

calibration was accomplished by using a spectral calibration lamp, 

Hg(Ar) (Oriel Model 6035, Oriel Instruments, Stratford, CT, 

USA). Next, reflectance calibration was also perfomed using a 

white reference with standard reference of 99% (Teflon) to 

compensate the non-linear sensitivity of the camera. 

 

2.3  Collecting Spectral Data 

 

Due to the complex shape and uneven surface of starfuit, two 

approaches were used for collecting the spectral data of each 

starfruit. The first method, M1, was used to utilize the whole 

starfruit area as measurement area or region of interest (ROI). The 

second method, M2 was used to designate only some portion of 

starfruit area as ROI. The binary masks were created using both 

methods. Then, the masks were used for calculating the relative 

reflectance average of ROI of each sarfruit in wavelength range 

between 500 and 1000 nm. 

 

(a) (b)  
Figure 2  (a) a starfruit image at 733.2 nm; (b) the mask M1 

 
 

  Using the first method (M1), image at 733.2 nm (Figure 2a) 

was selected for building the mask. The image gave the maximum 

contrast between the starfruit and the background. Therefore, the 

starfuit and the background could be segmented easily by simple 

thresholding. Also, the image at that wavelength was smoothened 

using an averaging filter to remove the noise. Then, the 

smoothened image was segmented by using Otsu’s method [21]. 

Finally, the morphological operations, such as dilation and 

erosion, were applied to improve the quality of the image. The 

mask generated by this method (M1) is shown in Figure 2b.  

  Mask M1 was then used for creating mask M2. Centre of 

mass (centroid) and bouding box value of white area in Figure 3a 

was computed using Matlab. Accordingly, two rectangles, r1, and 

r2, were build. The size of the rectangles were determined such 

that the position of the rectangles must be in the middle on the left 

and right side of starfruit. Figure 3b shows mask for M2. Mask 

M1 and M2 were used for obtaining the spectral data of each 

sample. Then, the performance of each the masks was evaluated. 

 

(a) (b)  
Figure 3  (a) Mask M1 was used to determine the bounding box and 

cetroir value; (b) Mask M2 
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2.4  Reference Measurement 

 

After acquiring  the spectral images, measurement of soluble solid 

content (SSC) of samples was carried out destructively. The 

samples were crushed using a juice extractor. Then, the juice of 

each samples was measured for its soluble solid content (SSC) 

using a digital hand-held pocket refractometer (PAL-α, Atago 

Co., Ltd., Japan). The SSC values were then used as references 

for developing the calibration model.  

 

2.5  Building The Calibration Model 

 

Partial least square regression (PLSR) was used to build the 

calibration or prediction model. This regression is a technique that 

generalizes and combines all features from principal component 

analysis and multiple regression. Its aim is to predict or analize a 

set of dependent variables from a set of independent variables or 

predictors. In this study, PLSR was developed to find the 

mathematical relationship between the spectra response and one 

attribute of starfruit (soluble solid content). 

  The predicted value  of the attribute of interest �̂� was 

determined as follows[16] 

�̂� = 𝑋𝑊𝑎𝛽 = 𝑇𝑎𝛽                                      (1) 

𝑊∗ = (𝑊(𝑃′𝑊)−1)                                     (2) 

where 𝑎 is the number of PLS components, P’is the wavelength 

loadings and β is the regression coefficient.  

  The number of PLS components is determined by the 

complexity of the model. The complexity increases with the 

increase of the number of PLS components. In this study, the 

optimum complexity of the model was estimated by using k-fold 

cross validation.The sample set was randomly split into k 

segments. One segment was left out as a validation set. The others 

(k-1 segments) were used as a training set. This procedure was 

repeated k times so that each segment  would all be used as 

validation set in turn. In this experiment, k was set to 10. The 

result was a residual matrix. The mean squred error for validation 

(MSECV) was calculated from the residual matrix.  

𝑀𝑆𝐸𝐶𝑉 =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖 𝐶𝑉)2𝑛

𝑖=1                          (3) 

where 𝑦𝑖 and �̂�𝑖 𝐶𝑉 are the measured and predicted values of 

attribute, while n is the number of sample. 

  The local minimum approach [22] of MSECV was used for 

determining the optimum number of PLS component. This 

approach is used to avoid overfitting. Afterwards, feature 

(variable) selection was done by using PLS-BETA method 

[23][24]. The method applies regression coefficient (β) to identify 

the most influential wavelength. The wavelength that has the 

highest absolute value was considered as the optimal wavelength. 

Otherwise, the wavelengh that has the lowest is negleted because 

it would only contribute little to the model. 

Only selected optimal wavelengths were used to build the multi 

linear regression (MLR) models instead of using the whole 

wavelengths.  The formula of MLR is as follows [18] 

�̂� = 𝑎0 + ∑ 𝑎𝑁𝑅𝜆𝑁
𝑁
𝑁=1                                (4) 

where �̂� is the predicted value of the attibute; N is the number of 

optimal component; 𝑎0 and 𝑎𝑁 are the regression coefficients and 

𝑅𝜆𝑁 is the reflectance intensity at a wavelength.  

  The performance of the calibration model was evaluated 

using MSE and the coeficient of determination (R2), expressing 

the proportion of variance explained by the model. The formula is 

defined as follows[17] 

𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
                                      (5) 

where 𝑇𝑆𝑆 (Total sum of squares) = ∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1 , 

𝑅𝑆𝑆(Residual of squres) is ∑ (𝑦𝑖 − 𝑦�̂�)
2𝑛

𝑖=1 , �̂�𝑖 is the predicted 

value, while 𝑦𝑖 is measurement value. 

3.0  RESULTS AND DISCUSSION 

 

3.1  Reflectance Spectra 

 

Figure 4 and 5 show the reflectance spectra of three starfruits with 

different SSC values (oBrix) using mask M1 and M2, respectively. 

The curve using mask M1 had the same shape as M2 in whole 

wavelength range. However, both curves had different reflectance 

value, especially in range between 708 nm and 1002 nm.  

  The reflectance value of the samples increased when the SSC 

value was increased in wavelength between 590.4 nm and 1002 

nm for M1, and between 621.2 nm and 708 nm for M2. Both 

figures show that reflectance value had significant change at 

682.8 nm for M1 and M2. At this wavelength, a strong 

absorbance was observed clearly, which was due to the change of 

the chlorophyll pigment. Lower SSC value had stronger 

absorbance, meaning that the chlorophyll pigment of starfruit was 

high. As a result, the reflectance value decreased. In contrast, the 

high reflectance value or high SSC value had lower absorbance 

and chlorophyll pigment.  The high reflectrance showed high 

maturity grade of starfruit. This wavelength (682.8 nm), which 

had sensitivity to chlorophyll change, was similiar to the 

wavelength as reported by previous reseachers [16][18]. 

 

 

 

 
 
Figure 4  Reflectance spectra of three samples with different SSC values 
using mask M1 

 

 

 
Figure 5  Reflectance spectra of three samples with different SSC values 
using mask M2 

 

3.2  Optimal Wavelength Selection 

 

Two PLS calibration models were build using the whole spectral 

range consisting of 180 wavelengths. The first model was 

established using mask M1, while the second model was created 

using mask M2 as ROI. To find the optimal wavelength for each 

model, the same procedure was applied to both models. Before 

optimal wavelengths selection was done, the optimum number for 

each of the model was determined using the local minimum 

approach based on MSE value. Figure 6 and 7 show the plot of 

MSE versus PLS components for M1 model and M2 model, 
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respectively. Although using different ROIs, both models had a 

similar local minimum at n = 5. 

 

 
Figure 6  MSE plot of the PLS model using mask M1 

 

 
Figure 7  MSE plot of the PLS model using mask M2 

 

  Figure 8 and 9 show the regression coefficient (β)  plot 

versus the wavelength of both models using the optimal 

component (n = 5). The PLS-BETA method was used to find the 

significant wavelengths. By using Matlab, the maxima and 

minima of β values for both models were selected. The optimal 

wavelengths for M1 model  were 565.2, 657.6, 702.4, 741.6, 

859.2 and 943.2 nm (six wavelengths), respectively. Meanwhile, 

the optimal wavelengths for M2 model were 565.2, 677.2, 736, 

873.2 and 943.2 nm (five wavelengths), respectively. The results 

showed that M2 model had lesser amount of wavelengths than M1 

model despite having the same number of PLS components. 

 
Figure 8  Regression coefficient plot of M1 model  with n=5 

 

 
Figure 9  Regression coefficient plot of M2 model with n=5 

 

3.3  The Performance Of The Model Using The Optimal 

Wavelengths 

 

The optimal wavelengths, which were selected using PLS, were 

evaluated using multi linear regression (MLR) for predicting the 

SSC value of starfruit. Table 1 shows the performance of the 

models built by using MLR and the optimal wavelengths. The 

performance was evaluated via cross validation (CV). Figure 10 

and 11 show the plot of the predicted and measured SSC values 

for calibration and validation. In general, the model created using 

mask M1 had better performance than the model created using 

M2, although the performance of both models had small 

differences. For MSE value, the M1 model was lower than the M2 

model for calibration and validation. Meanwhile the R2 of M1 

model was higher than that of the M2 model. However, M2 model 

had smaller number of wavelengths than M1. Both  models have 

shown good performance because R2 values are high (0.82 and 

0.80 out of scale of 1).   The following equations were derived 

based (2); 

 

�̂� = 7.06 − 4.63𝑅(565.2) −  3.43𝑅(657.6) + 17.62𝑅(702.4) 

         − 23.51𝑅(741.6) + 12.86𝑅(859.2) + 3.81𝑅(943.2) (6) 

  

�̂� = 7.40 − 0.77𝑅(565.2) + 9,01𝑅(677.2) − 17.35𝑅(736) 

      + 12.722𝑅(873.2) −  2.07𝑅(943.2)                                   (7) 

 

             

 

where �̂� is the predicted SSC value; R(λ)is the reflectance intensity 

at λ. Equation (6) was used for estimating the SSC value using 

mask M1. Meanwhile, (7) was used for estimating the SSC value 

using mask M2. These equations can be used for multispectral 

application. For simpler application, the model with mask M2 and 

five wavelengths could be considered for predicting the SSC 

value of starfruit non-destructively. 

 
Table 1  The performance of the model using MLR and the optimal 
wavelength 

 
ROI Wavelength 

(nm) 

MSECal MSEVal R2
Cal R2

Val 

M1 565.2, 657.6, 702.4, 
741.6, 

859.2 and 943.2 

0.228 
 

0.274 
 

0.85 
 

0.82 
 

M2 565.2, 677.2, 736, 

873.2 and 943.2 

0.259 

 

0.305 

 

0.83 

 

0.80 

 

 

 

 
Figure 10  The predicted and measured SSC values of the model created 
using MLR, mask M1 and optimal wavelengths 
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Figure 11  The predicted and measured SSC values of the model created 
using MLR, mask M2 and optimal wavelengths 

 

 

4.0  CONCLUSION 

 

In this study, a hyperspectral imaging system was used to acquire 

hyperspectral images of starfruit. This system was successfully 

applied to predict the soluble solid content (SSC) of starfruit. The 

models were built using different ROI, and the optimal 

wavelengths were evaluated. The model created using mask M1 

showed better performance. For simpler application, the model 

created using mask M2 could be considered for estimating the 

SSC value of starfruit. 
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