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Abstract 
 

This paper presents stability analysis and vibration control of a class of negative imaginary 

systems. A flexible manipulator that moves in a horizontal plane is considered and is 

modelled using the finite element method. The system with two poles at the origin is 

shown to possess negative imaginary properties. Subsequently, an integral resonant 

controller (IRC) which is a strictly negative imaginary controller is designed for the position 

and vibration control of the system. Using the IRC, the closed-loop system is observed to 

be internally stable and simuation results show that satisfactory hub angle response is 

achieved. Furthermore, vibration magnitudes at the resonance modes are suppressed 

by 48 dB. 
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1.0  INTRODUCTION 
 

Flexible manipulator offer several advantages over 

rigid robots such as they require less material, light in 

weight, consume less power, require small actuators, 

more maneuverable and transportable, have less 

overall cost and higher payload to robot weight 

ratio. These types of robots are used in a wide 

spectrum of applications starting from simple pick 

and place operations of an industrial robot to micro-

surgery, maintenance of nuclear plants and space 

robotics [1]. However, this type of flexible structures is 

highly resonant system, and consequently, subject to 

high amplitude oscillations in the presence of weak 

disturbances. The oscillations may result in significant 

loss of precision. Therefore there is a need to damp or 

control the oscillations that arise in flexible structures, 

however, control of flexible manipulators to maintain 

accurate positioning is extremely challenging. It has 

been reported that flexible structures with collocated 

actuators and sensors result in Negative Imaginary 

(NI) transfer function matrix [2, 3]. 

The theory of NI systems was first introduced by 

Lanzon and Petersen [4, 5]. NI systems are class of 

systems that belongs to the real rational stable 

system. The transfer function matrix 𝐺(𝑗𝜔) = 𝐷 +
𝐶(𝑗𝜔𝐼 − 𝐴)−1𝐵 is negative imaginary if it satisfies the 

condition for negative imaginariness 𝑗[𝐺(𝑗𝜔) −
𝐺∗(𝑗𝜔)] ≥ 0 for all 𝜔 𝜖 (0,∞) [5-8]. The Bode plot of NI 

systems has phase lag between 0 and − 𝜋 for all 𝜔 > 0 

and their Nyquist plot lies below the real axis as the 

frequency varies from 0 to ∞ [9, 10]. Examples of NI 

systems are DC machines, electrical active filter 

circuits and lightly damped flexible structures [11]. 
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Dynamic model of flexible structures is highly 

resonant with high amplitude oscillation. The vibration 

and oscillation control problems for flexible structures 

are found in many systems such as in large space 

structures and nano-positioning of atomic force 

microscopes. 

NI systems are defined by authors with different 

points of views. Initially, a system is NI system if and 

only if all the poles of 𝐺(𝑗𝜔) lie in the open left half of 

the complex plane [2, 8]. This theory has been 

extended by [12] which allows for the NI systems to 

have  poles in the closed left half of the complex 

plane excluding poles at origin. In [5, 8] systems that 

has poles on the imaginary axis are not regarded as 

NI systems. This definition was later extended in [6, 7] 

where the systems are allowed to have a simple pole 

on the imaginary axis except at the origin. Another 

modification in the definition of NI systems was 

presented by [13] in which the system is allowed to 

have a pole at origin. Furthermore, in [11, 14] the 

definition was extended to allowed for the systems 

with double poles at origin. The definition was 

extended to includes systems with non-rational 

transfer function in [15]. Another category known as 

lossless negative imaginary system are introduced by 

[16-18].  

Stability analyses for interconnected NI systems 

with different approaches are presented in [5, 11, 13, 

14, 19-26]. Spectral conditions for NI systems with 

application to nano-positioning were presented in 

[27-29]. A feedback control utilizing NI controller for 

vibration control was introduced by [8, 30]. Robust 

control of NI systems was introduced in [3, 9, 10]. In 

[31, 32] a methods of enforcing NI properties into the 

systems that are known to be NI systems, but loss 

some of their NI properties especially when the 

system is modeled using system identification 

methods was presented. Strictly Negative Imaginary 

(SNI) lemmas and theorems were presented in [33-

34]. A finite frequency and infinite dimensional NI 

systems were introduced in [7, 35]. 

This paper presents analysis of the stability and 

negative imaginariness property of a single link 

flexible manipulator which is a class of NI systems. It is 

desirable to analysis the system, as it has double 

poles at origin. The negative imaginariness property 

test is based on the theorems and lemmas presented 

in [11, 14]. Subsequently, a SNI controller is designed 

in this paper to add damping to the flexible 

manipulator and control the unwanted oscillations of 

the system during its operations. The control objective 

is to move the flexible manipulator to a desired 

location faster with low end-point vibration. The 

paper is organized as follows: Section 2 introduces 

the theorem use for negative imaginary systems. 

Section 3 describes the flexible manipulator used in 

this work and testing of NI properties. Section 4 

discusses on the controller design and simulation 

result and discussion are presented in section 5. 

Finally the paper is concluded in section 6.  

 

 

2.0  BASIC THEOREMS 
 

In this paper the NI property test was based on the 

theorems and lemmas presented in [11, 14]. These 

theorems and lemmas give rooms for systems with 

double poles at origin to be considered as NI systems. 

The following theorems and lemmas, discuss 

definitions of NI and SNI. 

 

Theorem 1 [14]: A square transfer function matrix  𝐺(𝑠) 
is NI if the following conditions are satisfied: 

1) 𝐺(𝑠) has no pole in 𝑅𝑒[𝑠] > 0. 

2) For all 𝜔 ≥ 0 such that 𝑗𝜔 is not a pole of 
𝐺(𝑠), 𝑗[𝐺(𝑗𝜔) − 𝐺(𝑗𝜔)∗] ≥ 0 

3) If  𝑠 = 𝑗𝜔0, 𝜔0 > 0 is a pole of 𝐺(𝑠) then it is a 

simple pole. 

Additionally, if  𝑠 = 𝑗𝜔0, 𝜔0 > 0 is a pole of 𝐺(𝑠), then 

residual matrix  𝐾 = lim
𝑠→𝑗𝜔0

(𝑠 − 𝑗𝜔0) 𝑗𝐺(𝑠) is positive 

semidefinite Hemitian. If  𝑠 = 0  is a pole of  𝐺(𝑠), then 

it is a simple pole or a double poles. If it is a double 

poles then lim
𝑠→0

𝑠2𝐺(𝑠) ≥ 0. 

 

Theorem 2 [14]: A square transfer function matrix  𝐺(𝑠) 
is SNI if the following conditions are satisfied: 

1) 𝐺(𝑠) has no pole in 𝑅𝑒[𝑠] ≥ 0. 

2) For all 𝜔 > 0, 𝑗[𝐺(𝑗𝜔) − 𝐺(𝑗𝜔)∗] > 0. 

 

Lemma 1 [14]: Consider a square real rational proper 

transfer function matrix 𝐺(𝑠) with the state space 

realization [
𝐴 𝐵
𝐶 𝐷

] such that 𝐷 = 𝐷𝑇 and the transfer 

function matrix �̃�(𝑠) = 𝐺(𝑠) − 𝐷. Then the transfer 

function matrix 𝐺(𝑠) is NI if and only if the transfer 

matrix 𝐻(𝑠) = 𝑠�̃�(𝑠) is positive real assuming all pole-

zero cancellation in 𝑠�̃�(𝑠) is taking care to obtained 

𝐻(𝑠). 
 

Explanation: Suppose that  𝐻(𝑠) is a positive real, then 

𝐻(𝑗𝜔) + 𝐻(𝑗𝜔)∗ ≥ 0  for all 𝜔 𝜖 (−∞,∞) such that 𝑗𝜔 is 

not a pole of 𝐻(𝑠). This shows that 𝑗𝜔(�̃�(𝑗𝜔) −
�̃�(𝑗𝜔)∗) ≥ 0 for all 𝜔 ≥ 0 such that j𝜔 is not a pole of 

𝐺(𝑠). Then (�̃�(𝑗𝜔) − �̃�(𝑗𝜔)∗) ≥ 0 for all such that 

𝜔 𝜖 (0,∞).  
Similarly, 

 

lim
𝑠→𝑗𝜔0

(𝑠 − 𝑗𝜔0) 𝑗𝐻(𝑠) = lim
𝑠→𝑗𝜔0

(𝑠 − 𝑗𝜔0) 𝑠�̃�(𝑠)  

= 𝜔0 lim
𝑠→𝑗𝜔0

(𝑗𝜔0) 𝑗�̃�(𝑠) 

Thus, it can be seen from Theorem 1, �̃�(𝑠) is NI and 

hence 𝐺(𝑠) is NI [14]. 

A generalize lemma is provided which allows for a 

simple pole or double pole at the origin. Consider a 

linear time invariant system as 

 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)      (1) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)    (2) 

 

Where, 𝐴 ∈  ℜ𝑚×𝑚 , 𝐵 ∈  ℜ𝑚×𝑛 , 𝐶 ∈  ℜ𝑛×𝑚 , and 𝐷 ∈
 ℜ𝑛×𝑛   and 𝑚 × 𝑚 and 𝑚 × 𝑛 are the dimensions of the 

state space. 
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Lemma 2 [14]: Let [
𝐴 𝐵
𝐶 𝐷

] be a minimal realization of 

the transfer function matrix 𝐺(𝑠) for the system in 

Equations (1) and (2). Then 𝐺(𝑠) is NI if and only if 𝐷 =
𝐷𝑇 and there exist a matrix 𝑃 = 𝑃𝑇 ≥ 0 such that the 

Linear Matrix Inequality (LMI) below satisfy the 

condition 

 

𝑃 = 𝑃𝑇 ≥ 0     (3)  

 

[
𝑃𝐴 + 𝐴𝑇𝑃 𝑃𝐵 − 𝐴𝑇𝐶𝑇

𝐵𝑇𝑃 − 𝐶𝐴 −(𝐶𝐵 + 𝐵𝑇𝐶𝑇)
] ≤ 0   (4) 

 

 

3.0 THE FLEXIBLE MANIPULATOR AND NI   
PROPERTIES TEST 

 

This section describes the flexible manipulator 

considered in this study. Figure 1 shows the schematic 

diagram of a single link flexible manipulator system. 

w,ere {𝑂, 𝑋0, 𝑌0} and {𝑂, 𝑋, 𝑌} represent the stationary 

and moving frames respectively. 𝜏 is the torque 

applied at the hub of the manipulator. The rotation 

of frame  {𝑂, 𝑋, 𝑌}  relative to frame {𝑂, 𝑋0, 𝑌0} is 

described by the angle, 𝜃. The displacement of the 

link from the axis 𝑂𝑋 at a distance 𝑥 is designated as 

𝑣(𝑥, 𝑡). 
 

X 0 

Y 0 

X 

 t  

Flexible Link (   E  I, L ) 

 

Y 

Rigid Hub    

v  x , t  

 
Figure1 Schematic diagram of flexible link 

 

 

The flexible link used in this study is made up of a 

piece of thin aluminum alloy. The parameters of the 

system are; length of the flexible link 𝐿 = 1.0 m, Young 

Modulus 𝐸 = 207.87363 × 106  N/m2, width of the link 

12.50 mm, thickness of 1.440 mm, second moment of 

inertia 𝐼 = 5.1924 m4, and mass density per unit 

volume 𝜌 = 2710 kg/m3. The model of the flexible 

manipulator used in this paper is obtained using finite 

element method as presented in [36]. 

The transfer function that relates the hub angle 

𝜃(𝑠) to the input torque 𝜏(𝑠) can be obtained as 

 

G(s) =
1014s4+4553s3+4.235×107s2+2.865×107s+1.178×1010

s2(s4+33.37s3+97260s2+1.164×106s+7.257×108)
   (5) 

 

It is noted in Equation (5) that the system is a type two 

system with double poles at the origin. The transfer 

function can be represented in a state space form as 

 
�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) 
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) 

  

where 

 

𝐴 =

[
 
 
 
 
 
0
0
0
0
0
0

0
0
0

58209
−38548
93918

0
0
0

−27441
16329

−58611

1
0
0
0
0
0

0
1
0

−33
−27
16

0
0
1

−6
4

−6]
 
 
 
 
 

    

 

𝐵 = 

[
 
 
 
 
 

0
0
0

1013.6
−821.0
304.1 ]

 
 
 
 
 

;    𝐶 = [1 0 0 0 0 0];   𝐷 = [0] 

 

Subsequently, the investigation is conducted to 

test whether the flexible manipulator system satisfies 

the condition for NI. To test for the negative 

imaginariness of the system based on the conditions 

in Lemma 2, the value of P should be obtained such 

that 

 

𝑃 = 𝑃𝑇 ≥ 0 and 

 

[
𝑃𝐴 + 𝐴𝑇𝑃 𝑃𝐵 − 𝐴𝑇𝐶𝑇

𝐵𝑇𝑃 − 𝐶𝐴 −(𝐶𝐵 + 𝐵𝑇𝐶𝑇)
] ≤ 0 as in Equations (3) and 

(4).  

By using the LMI Matlab Toolbox the value of P can 

be obtained as 

 

 

𝑃 =

[
 
 
 
 
 

0.0149
−0.6630
−0.0061
−0.0101
−0.0120
0.0014

−0.6630
300.9641
−25.4759
3.5785
4.2026

−0.5465

−0.0061
−25.4759
16.1161
0.0310
0.0452
0.0074

−0.0101
3.5785
0.0310
0.0543
0.0628

−0.0079

−0.0120
4.2026
0.0452
0.0628
0.0741

−0.0093

0.0014
−0.5465
0.0074

−0.0079
−0.0093
0.0014 ]

 
 
 
 
 

     (6)

 

 

The eigenvalues of P are obtained as 

 

[0.0002, 0.0006, 0.0070, 0.0134, 13.8772, and 303.3266]  

 

As all the eigenvalues of P are positive, 𝑃 = 𝑃𝑇 ≥ 0 

and the conditions in Equations (3) and (4) are 

satisfied. In addition, 𝐷 = 𝐷𝑇 = 0. Thus, the system can 

be proved as a NI system.  
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Figure 2 shows the open loop frequency response 

plot of the system. The frequency response plot shows 

that the phase angle lags between 0 to -𝜋 for all 𝜔 >
0 which implies that the system is a NI system. Figure 3 

shows the root locus plot and open loop poles 

location with two poles at the origin. 

 

 

 

4 0  CONTROLLER DESIGN 
 

As the flexible manipulator has been shown to be a 

NI system, the SNI controller can be designed for 

position control and vibration suppression. In this 

paper an Integral Resonant Controller (IRC) as shown 

in Figure 4 is considered. The IRC consists of two 

blocks, namely a resonant controller (RC) block 

designed using the resonant frequencies and 

damping ratios of the system to add damping and 

suppressed the vibration and an integral control 

block, designed to cancel steady state error.  

 

 
Figure 3 Root Locus Plot 
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As the flexible manipulator has been shown to be a 

NI system, the SNI controller can be designed for 

position control and vibration suppression. In this 

paper an Integral Resonant Controller (IRC) as shown 

in Figure 4 is considered. The IRC consists of two 

blocks, namely a resonant controller (RC) block 

designed using the resonant frequencies and 

damping ratios of the system to add damping and 

suppressed the vibration and an integral control 

block, designed to cancel steady state error.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4 IRC Block Diagram 

 

 

A Resonant Controller has a general transfer function 

as 

 

 

𝐶𝑖
𝛼 = ∑

𝛼𝑖𝑠
2

𝑠2 + 2𝛿𝑖𝑤𝑖 + 𝑤𝑖
2

𝑁

𝑖=1

                                   (6) 

 

where N is the number of resonant modes of the 

flexible manipulator, 𝛿𝑖  and 𝑤𝑖 are the damping ratios 

and resonant frequencies respectively. The variable 

𝛼𝑖 lies between 

 0 ≤ 𝛼𝑖 ≤ 1. 

In this work, experimental results of resonant 

frequency and damping ratio reported in [35] are 

used for controller design. Table 1 shows resonance 

frequencies and their corresponding damping ratios 

obtained experimentally.  

 

 
Table 1 Resonance frequency and damping ratio 

 

N 𝒘𝒊(𝒓𝒂𝒅/𝒔𝒆𝒄) 𝜹𝒊 

1 79.3354 0.007 

2 202.4442 0.015 

3 309.6637 0.314 

 

 

5.0  RESULTS AND DISCUSSIONS 

 
This section presents the simulation results obtained 

using Matlab and discusses on the controller 

performance. The flexible manipulator is required to 

move to a desired angle of 1 rad. Hub angle 

response in time and frequency domains are 

monitored for assessment of the controller 

performance. Figure 5 shows the Nyquist plot of the 

controller function, which only touches the real axis 

at 0 and ∞. This implies that the controller is SNI 

controller. The Nyquist plot of the closed loop system 

is shown in Figure 6 which indicates that the overall 

closed loop system is NI. 
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Figure 5 Nyquist Plot for the Controller 

 

 

Figure 7 shows the hub angle response of the 

system with IRC. It is noted that a satisfactory hub 

angle tracking of 1 rad with settling time of 1.36 

seconds is observed. Moreover, the manipulator 

moves to the desired location without overshoot. The 

controller has successfully added damping to the 

system and suppressed vibration to achieve precise 

hub angle positioning. The controller performance is 

further demonstrated in Figure 8 that shows the 

frequency response of the open loop and closed 

loop systems. At the resonance frequencies, a 

reduction of 48 dB of magnitude can be observed 

which implies lower system vibration.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Nyquist Plot for the Closed loop System 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7 Closed Loop Step Response 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8 Closed-loop and Open-loop Bode Plots 

 

 

6.0  CONCLUSION 
 

A stability analysis and negative imaginariness 

property test has been successfully conducted on a 

single link flexible manipulator system. It is found that 

the flexible manipulator satisfied all the conditions of 

negative imaginariness. An IRC which has also been 

tested to be an SNI controller has been designed to 

control vibration and precise positioning of the 

system. The results show that the controller 

successfully adds damping to the system. Satisfactory 

hub angle response has been achieved with 

vibration reduction of 48 dB. In future this control will 

be implemented on a real system. 
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