

77:9 (2015) 1–14 | www.jurnalteknologi.utm.my | eISSN 2180–3722 |

Jurnal

Teknologi

Full Paper

SERVICE-ORIENTED DESIGN MEASUREMENT AND

THEORETICAL VALIDATION

Arafat Abdulgader Mohammed Elhaga,b*, Radziah Mohamada

aDepartment of Software Engineering, Faculty of Computing,

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor,

Malaysia
bDepartment of Computer Science, Faculty of Computer Study,

International University of Africa (IUA), 2469 Khartoum, Sudan

Article history

Received

2 February 2015

Received in revised form

8 October 2015

Accepted

12 October 2015

*Corresponding author
arofei@hotmail.com

Graphical abstract

Abstract

As software systems become more and more complex over time, software quality

accordingly becomes increasingly important. Service-Oriented Computing (SOC)

paradigm is one of the established paradigms used for building and developing

flexible, reusable, rapid and low cost software products. Consequently, the use of

SOC to develop software systems is increasing. Software quality measurement has

considerable importance in the context of SOC since it determines how the quality

requirements for composite service should be achieved. As a result, several quality

metrics for composite service design were proposed. However, these metrics were

constructed based on previous development approaches, give insufficient focus and

need modification to be applied to service-oriented systems. Furthermore, the

existing metrics do not consider the composite service as building blocks and also

they do not consider the indirect relationships. In this paper, a quality measurement

for composite service-oriented design is proposed, with the aim of increasing

reusability and decreasing the complexity of design. The paper begins with proposing

a set of metrics to measure the quality of composite service design. Then, the

proposed metrics are validated theoretically to check its usability and applicability

for composite service. The results show that the proposed metrics are able to

measure the quality of composite service design.

Keywords: Design metrics, coupling; cohesion, complexity, reusability, design metrics,

service principles, design properties, theoretical validation

Abstrak

Seiring dengan sistem perisian yang semakin hari menjadi semakin rumit, kualiti

perisian juga menjadi semakin penting. Paradigma Pengkomputeran Berorientasikan

Servis (SOC) merupakan salah satu daripada paradigma-paradigma yang ada yang

digunakan untuk membina dan membangunkan produk-produk perisian yang

fleksibel, boleh diguna semula, pantas dan kos rendah. Oleh yang demikian,

penggunaan SOC untuk membangunkan sistem perisian ini menjadi semakin

meningkat. Penilaian terhadap kualiti sesebuah perisian dianggap penting dalam

konteks SOC kerana ia dapat menentukan bagaimana sepatutnya kualiti keperluan

untuk servis komposit itu dicapai. Hasilnya, beberapa kualiti metrik untuk reka bentuk

servis komposit dicadangkan. Walau bagaimanapun, metrik-metrik yang dihasilkan

berdasarkan pendekatan pembangunan sebelum ini adalah kekurangan fokus dan

ia memerlukan pengubahsuaian untuk digunakan pada sistem-sistem yang

berorientasikan servis. Tambahan pula, metrik-metrik yang telah ada tidak

mempertimbangkan servis komposit sebagai blok-blok pembinaan dan hubungan

secara tidak langsung juga tidak dipertimbangkan. Kertas ini mencadangkan

sebuah ukuran kualiti, dengan tujuan untuk meningkatkan penggunaan semula serta

mengurangkan kerumitan reka bentuk. Kertas ini bermula dengan mencadangkan

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/78378468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Arafat Abdulgader Mohammed Elhag & Radziah Mohamad / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 1–14

sebuah set metrik untuk mengukur kualiti servis komposit. Setelah itu, metrik yang

dicadangkan telah disahkan secara teori untuk memeriksa kebolehgunaan dan

kesesuaian metrik itu sendiri bagi servis komposit. Keputusan menunjukkan metrik

yang dicadangkan mampu untuk mengukur kualiti servis komposit.

Kata kunci: Metrik reka bentuk, gandingan, perpaduan, kerumitan, boleh gunapakai,

metrik reka bentuk, prinsip-prinsip servis, ciri-ciri reka bentuk, pengesahan teori

© 2015 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

Service-Oriented Computing (SOC) is one of the

established paradigms for developing and building

the software products [1-3] and it has been applied

successfully to develop many types of software

systems [4, 5]. A service is an implementation of

stateless, self-contained and well defined pieces of

functionality, it is published by services provider and

can be used by service consumers when building

and developing different software systems. The

service is designed with interface and operate on

published/discovered mode [1]. Initially, software was

developed using a procedural paradigm. In the

recent past, the procedural paradigm has changed

with Object Oriented Computing (OOC) and

Component-Based Computing (CBC). Nowadays, a

new development paradigm move from previous

paradigms to SOC paradigm [6]. However, SOC is

quite different from CBC and OOC, because the

SOC applying the services as the basic design

concept. In contrast, the component used for CBC,

and class for OOC [7]. So, service is different than

component, because the service functionality is

common and not tightly bound to a single client [8].

Nowadays, there are many software applications,

which are complex enough, but play a more

important role in many areas of our life[9]. To

construct and develop these complex applications

new development approach is required. SOC has

been applied successfully for these applications due

to certain benefits which include flexibility, agility,

and reusability [4]. As software systems becoming

more and more complex over time therefore

software quality is also becoming major concern in

software development [10, 11]. Software quality is

very necessary and essential to many software

systems such as the control system, distributed

embedded real time system, etc. Quality assurance

has a vital role in developing software products

because it provides confidence and lowers the risks

associated with systems implementation.

SOC promises to deliver the software with high

quality due to the advantages such as agility,

flexibility, maintainability and reusability [5]. For this

purpose, the design element of the SOC has to be

designed with many quality attributes. The existing

Service Oriented Design (SOD) methodologies

describe many quality attributes that comprises,

loose coupling, cohesion, autonomy, and reusability.

Theses methodologies consider quality attributes as

important to achieve SOC goals. But, they do not

explain how the design of SOD fulfills these quality

attributes and how can measure the quality of

service oriented design in term of these quality

attributes [12].

SOD has been a very interesting research area

under discussion, but there is a potential to consider

key principles that guide high-quality design of

services. However achieving high-quality design of

services in practice is complicated and many

service-oriented applications suffer from poor quality

and are hard to evolve [13]. The design of software

systems in the SOC is made in an ad hoc manner till

yet and there is no comprehensive and complete

methodology for Service Oriented Architecture (SOA)

[1, 4, 14]. Moreover, the success of SOC design

depends on the experience and skills of designers.

However, measuring the structural properties of

service orientation at design level will aid the

designers to propose software design fulfills many

quality attributes.

Software quality assessment is an important target

of software engineering and has a strong impact in

the context of service-orientation [3, 11]. There are

three approaches to measure the quality of software

design, these are; objective approach, subjective

approach and hybrid approach. The objective

approach measures the structural properties of

software systems like coupling, cohesion, autonomy,

discoverability, and abstraction. In contrast, the

second approach measures the subjective design

data and evaluating the quality attributes of services

design by measuring quality indicators, that represent

the quality attributes and gives value to the current

design to help the developers to make a decision

about the alternative quality attributes. In addition,

the third approach combines first and second

approaches. However, the first approach is discussed

so much and many authors used this approach and

proposed metrics to measure the quality of software.

However, further research work is needed for the

second and third approach.

The quality of a service-oriented product can be

measured when the software product is developed

and released. Therefore, assessing and quantifying

the quality of the completed software systems will

result in the most defined measurements.

Disadvantages of this method are discovered

defects and faults explored at later stage which will

be more costly to fix at the post-production stage.

Therefore, several research works have been

3 Arafat Abdulgader Mohammed Elhag & Radziah Mohamad / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 1–14

established to propose quality measurements that

support estimation of software quality of service

oriented early in the Software Development Life

Cycle (SDLC), particularly at design phase. The key

factors in these quality measurements is the structure

of service-oriented design properties namely;

abstraction, autonomy, cohesion, composability,

contract, loose coupling, discoverability, reusability

and statelessness [1, 15, 16]. Consequently, a large

number of metrics have been proposed for

measuring and evaluating the structural properties of

a SOD [3, 7, 8, 15, 17-22]. These metrics were

constructed based on previous development

approaches like OOC and CBC development [23].

Similarly, the existing metrics for the service-oriented

design are still at a preliminary stage [12]. The metrics

development for approaches such as OOC and

CBC, do not work well. These metrics are also not

good for service-oriented systems without

modification due to unique characteristics of service

orientation [7]. In most cases, metrics were used to

calculate the quality attributes of SOD, such as

coupling and cohesion but were unable to establish

relationship between the attributes [19, 24]. The

existing metrics consider the direct relationships to

calculate their values and there is no consideration

for indirect relationships [25]. Furthermore, these

metrics consider the operations only as building block

for service and exclude the composite service which

is a service built from other services to decrease the

outside interactions [23]. However, the result shows

that there is no prominent approach measured all

the criteria or design principles used to control the

quality of service-oriented at design phase.

Therefore, comprehensive and quantitative metrics

for estimating the appropriateness of the service

design are still missing [8].

The reset of this paper is structured as follows:

Section 2.0 introduces the background and related

which contains service-oriented design principles

and service-oriented measurement. The proposed

metrics are introduced in Section 3.0. The design of

the basic metrics for measuring the simple attributes

of composite service design is presented in Section

3.1, which is followed by the design of derived

metrics for composite service design 3.2. The

theoretical validation of the proposed metrics is

presented in Section 4.0. Section 5.0 provides the

discussion of the proposed metrics in order to show its

ability for measuring the quality of composite service

design and how it fills the gap in the previous metrics.

Finally, the conclusion and direction for future works

are presented in section 6.0.

2.0 BACKGROUND AND RELATED WORKS

2.1 Service-Oriented Design Principles

The result of service oriented design phase is the basis

for the implementation phase [17]. So, the ability to

assess the quality of service oriented at the design

phase, will aid in early detection of design flaws

which will lead to decrease the cost and effort of

implementation phase and enhance the quality of

the whole system. In traditional software

development approaches, such as Procedural and

OOC paradigm, the software quality can be

predicted. And as a result, improved early in the

Software Development Lifecycle (SDLC) using metrics

to measure the structural properties of software

designs, such as coupling and cohesion [26] [27]. But,

the prediction of software quality in service

orientation of the initial level in SDLC, exactly in the

design phase is seldom discussed [7].The software

quality attributes are divided in two types internal

and external attributes [28]. There are many internal

and external quality attributes identified for the

services design that should be fulfilled to achieve the

goals related with the service-oriented application.

The external quality attributes covers increased

flexibility [1, 29-31] reusability [1, 22] and

maintainability [7]. The internal quality attributes are

design principles which the design of service-oriented

application should support and range of these

quality attributes covers cohesion, granularity, loose

coupling, design size, discoverability, and autonomy

[8, 15, 17, 32, 33].

SOC has become a distinct design paradigm

which introduces commonly accepted principles

that govern the design of software products [1]. To

produce a service oriented design with high quality,

we must follow a set of service-oriented design

principles. As mentioned in [1] there is no common

definition of SOA and there is no common description

of service-oriented design properties. However, most

common set of principle associated with service-

orientation are listed in Table 1.

According to [1, 15, 16, 33, 34] there are twelve

service-oriented design principles that covers

abstraction, autonomy, cohesion, composability,

contract, loose coupling, discoverability, reusability,

granularity, complexity, design size and statelessness,

as showing in Table 1. The following sentences are

describing the service-oriented design principles and

how they will affect the quality of software [1, 33]:

Coupling as a term means the direct and indirect

interaction and dependency between the

components of service-oriented systems. Individual

services have not direct dependencies between

them. The service-oriented principle is to design the

system loose coupled.

4 Arafat Abdulgader Mohammed Elhag & Radziah Mohamad / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 1–14

Table 1 Principle of service-oriented design

Principles [1] [15] [16] [33] [34]

1 Coupling     

2 Abstraction     

3 Reusability     

4 Autonomy     

5 Composability     

6 Statelessness     

7 Discoverability     

8 Contract     

9 Cohesion     

10 Granularity     

11 Complexity     

12 Design Size     

Abstraction- the logic part of the service has been

hidden from outside of the world. There are three

levels of abstraction in service-oriented system that

are the operations level, implementation level and

the third level is a service. In service-oriented systems,

operations (e.g., OO methods) are aggregated into

implementation elements (e.g., OO classes) that

implements the functionality of a service as exposed

through its service interface [7].

Reusability- A service obtains to improve reusability

by developing the software using reusable pieces of

software functionality called service.

Autonomy- there is many definitions for service

autonomy such as self-controlling, self-contained and

self-governing [35]. Service autonomy confirms the

logics controlled by a service which has a clear exist

in boundary.

Composability- a service can be a composite

service or atomic service. The composite service is a

big service that comprises other atomic services. the

services in service-oriented system should be

composable and designed with mechanisms to

make it easy to compose and control their

functionalities.

Granularity- Granularity refers to the number of

functionality encapsulated in a service. A coarse

grained service would provide numerous different

functions and would have a great number of

consumers.

Cohesion- For any service-oriented system,

cohesion estimates the degree to which the

components of the system belong together and the

strength of relationship between operations in a

service. In other word, cohesion estimates the

difficulty of understanding the relationships between

services and service operations.

Statelessness- to remain loosely coupled, services

do not maintain state information specific to an

activity, such as a service request.

Complexity- complexity is the difficulty of

understanding the interaction and relationships

between the services and services operations. For

any service-oriented system, coupling and cohesion

used to estimate the degree to which the

components of the system belong together and the

strength of the relationship between operations in a

service.

Contract- the interaction between the services in

service-oriented system needs to share only the

formal contract that describes the interact services

and explains the terms of exchanged information.

This means, the services are not need to share all the

information during interaction of services together.

Discoverability- the services in service-oriented

system should be discoverable and designed with

mechanisms to make it easy to discover and

understand their descriptions.

2.2 Service-Oriented Design Measurement

Software companies looking for measuring software

quality at the design phase before it’s going through

the implementation and testing phases. Because,

discovers the software defects after implementation

or released the software to market will be costly more

than in the design phase, and requires more effort

and spend the development time to find and fix the

software fault. In other words, the software defects

and errors discovered during testing needs to

redesign the software system. Consequently, when

the design of software is changing the rest of project

effected. There is a direct correlation between

discovering and fixing the service oriented system's

fault and the time of correcting the software errors.

There are several works in the literature which have

tried to propose some metrics for evaluating and

measuring the compliance of the service design

against some of the design principles. Some of these

studies were reviewed as first step to propose a set of

metrics for measuring the quality of composite

service design. Table 2 shows the metrics proposed to

measure service-oriented design. Moreover, the

discussion of the existing work on quality

measurement for service-oriented design is placed in

the following sentences.

In [15, 22] some metrics proposed to assess the

reusability of service-oriented. These reusability

metrics of service-oriented system have evolved from

CB and OO. This clearly indicates that metrics for

measuring reusability in service-oriented system are

at the early stage and it requires additional work to

propose a complete set of reusability metrics for

service-oriented systems.

Loose coupling lead to improve the reusability,

understandability, flexibility [33] and maintainability

[7, 24] of service-oriented design. In these works [7,

24, 25, 36, 37] a set of metrics were appeared to

measure the coupling of service-oriented design.

These metrics consider only the direct relationships to

calculate their values and there is no consideration

for indirect relationships. Further research would be

focused on proposing a comprehensive set of

coupling metrics for service-oriented.

One of the quality attributes as to a service-

oriented is cohesion, which is a determining factor for

many other desirable features of the software

including reusability, understandability [33, 38] and

5 Arafat Abdulgader Mohammed Elhag & Radziah Mohamad / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 1–14

maintainability [19]. There are many metrics in [8, 15,

18-20, 39] to evaluate the cohesion of service-

oriented design. Most of these studies focus their

attention on common input and output parameters

of service operations in order to estimate the service

cohesion. And consider the operations only as

building block for a service and do not consider the

services.

Complexity is an important aspect for software

quality assessment and must be correctly calculated

in service-oriented design. A set of metrics are

presented in [3, 17] to measure complexity of service-

oriented design.

A set of metrics proposed to measure many

attributes such as autonomy [17], Composability [15],

Discoverability [22], Modularity [20], Granularity [15,

21, 25] but all of this metrics are in initial stage.

Table 2 Quality measurement and its principles

 S
tu

d
ie

s

A
b

stra
c

tio
n

A
u

to
n

o
m

y

C
o

h
e

sio
n

C
o

m
p

le
x

ity

C
o

m
p

o
sa

b
ility

C
o

u
p

lin
g

D
e

sig
n

 size

D
isc

o
v
e

ra
b

ility

G
ra

n
u

la
rity

M
o

d
u

la
rity

R
e

u
sa

b
ility

S
ta

te
le

ssn
e

ss

[36]            
[23]            
[40]            
[41]            
[24]            
[42]            
[33]            
[43]            
[44]            
[30]            

[3]            
[25]            
[15]            
[25]            
[45]            
[18]            
[46]            
[47]            
[48]            
[7]            

[49]            
[20]            
[17]            
[21]            
[20]            
[50]            
[8]            

[22]            
[51]            
[52]            
[53]            
[54]            
[32]            

However, the literature of service-oriented design

metrics shows the missing of comprehensive

measurement to evaluate all service-oriented design

properties.

3.0 THE PROPOSED METRICS

Software quality measurement is a necessary target

of software engineering and, in addition, has

considerable importance in the context of SOD since

it determines how the quality requirements for

composite service should be achieved [3, 11]. As the

metrics are the best method to assess and evaluate

the quality of software, the metrics are needed for

measuring the quality of composite services in SOD.

Therefore, this section is proposing a set of metrics for

estimating the quality of composite services design in

order to aid in early detection of design flaws. The

key factors in these quality measurements are the

structure of SOD properties namely; abstraction,

autonomy, cohesion, composability, contract,

coupling, discoverability, reusability and statelessness

[1, 15, 16].

This research work will propose quality

measurement to evaluate the design of service

oriented principle, which can affect the quality of

service oriented design when it is designed

improperly consequently, the reset development

phases affected. The software quality metrics can be

either basic metrics or derived metrics [55]. A basic

metric is a simple metric defined as a function uses a

single attribute for measuring the quality of software.

While a derived metric is a complicated metric which

defined as a function uses two or more basic metrics

to quantify the quality of software.

3.1 Basic Metrics

The software quality metrics can be either basic

metrics or derived metrics [55]. A basic metric is a

simple metric defined as a function uses a single

attribute for measuring the quality of software used

as a first step to propose the derived metrics. There

are many basic metrics in previous development

paradigm such as OOC and CBC and this section

can extend the basic metrics from previous

paradigm with the characteristic of service-oriented

paradigm. The metrics for previous development

approaches such as OO and CB cannot be blindly

applied to SOD without modification due to the

special characteristics of service orientation [24].

However, the metrics presented in this paper are

designed based on composite service design

modeling (ComSDM) method [56], in order to solve

the limitations in the existing metrics. Following

sections provide the definition of each basic metrics.

1. Number of services (NS):

The number of services (NS) metric is a simple

metric used to count the number of services in

service-oriented system [57]. NS is the first indicator of

system size, which can determine the complexity of

6 Arafat Abdulgader Mohammed Elhag & Radziah Mohamad / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 1–14

the system. The formal definition of this metric is

provided in Equation 1.

𝑁𝑆(𝑆𝑂𝑆) = ∑ 1

𝑛

𝑠∈𝑆𝑂𝑆

 (Eq.1)

This equation means, for each service (s) belong to

the service-oriented system (SOS) increases the

number of services (NS) by one. This metric is a simple

measure used later to calculate the value of design

size which can be used as the first indicator to

estimate the system complexity. This metric is

customized from number of classes metric in OOC

and number of services metric in service-oriented

system [57]. This metric is extended in order to cover

the characteristics of service-oriented system in next

metric due to missing of these characteristics in OOC.

Also, the extensions cover the characteristics of the

composite service because the previous metrics for

measuring the quality of service design consider the

atomic service rather than composite service. The

complexity of system depends on the number of the

services in this system, when the number of services

increases the complexity also gets high. However, the

NS is not only metric used to calculate the complexity

of service-oriented system, but also the interaction

between the services will affect the complexity of

services-oriented design. Based on the service-

oriented design the service can be either atomic or

composite service. Usually, the composite service

contains other basic services but, it’s counted as one

service in the service-oriented system. The atomic

service for each composite service is considered as

internal components of a composite service which

calculate by the metric presented in Equation 2.

𝑁𝑆(𝐶𝑜𝑚𝑆) = ∑ 1

𝑛

𝑠∈𝐶𝑜𝑚𝑆

 (Eq. 2)

Equation 2 means, for each service (s) belong to

the composite service (ComS) in service-oriented

system (SOS) increases the number of services (NS) by

one. This metric counts the number of service only in

composite service and used to calculate the internal

interactions in composite service which determine

the complexity of this service.

2. Number of operations (NO):

The number of operations (NO) is the second

simple metric which counts all the number of

operations as the other indicator for service-oriented

system complexity. The NO in service considered very

important, because its determine the granularity of

services and complexity of system [15]. The service

contains more operations indicates that this service is

coarse granularity, whilst the service considered fine

granularity when it contains fewer operations. The NO

metric for counting the operations in each service is

given in Equation 3.

𝑁𝑂(𝑠) = ∑ 1

𝑛

𝑜∈𝑠

 (Eq. 3)

NO(s) is a set of all operations in a service (s). This

metric counts all the operations in specified service

(s). This Equation means, for each operation (o)

belong to the service (s) increases the number of

operations (NO) in this service by one. This metric is

customized from number of operations metric in

service-oriented system [15]. This metric is extended in

order to cover the characteristics of composite

service in the next metric due to missing of these

characteristics in previous metrics for measuring the

quality of service design. Further, to calculate the

overall NO in service-oriented system a new metric is

given in Equation 4.

𝑁𝑂(𝑆𝑂𝑆) = ∑ 1

𝑛

𝑜∈𝑆𝑂𝑆

 (Eq. 4)

This metric counts all operations in the system from

all the service. This equation means, for each service

(s) belong to the service-oriented system (SOS)

increase the number of operation in the service-

oriented system (NO (SOS)) by adding together the

number of operations (NO(s)) in each service. This

metric is used to calculate the cohesion between the

components of service-oriented system.

3. Provider (P):

The provider (P) is the service or operation that

provides functionality for other services or operations.

This metric is counting all the services or operation

which proposes functionalities and used by other

services or operations in a given services-oriented

system.

𝑃 = {(𝑠, 𝑜) ∈ 𝑃|(𝑠 ∈ 𝑆) ∧ (𝑜

∈ 𝑂) ∧ (𝑠 ∧ 𝑜) ≠ ∅ ∧ (𝑠, 𝑜)

∈ 𝑅 ∧ 𝑅 𝑖𝑠 𝐼𝑛}

(Eq. 5)

provider in service-oriented system which can be A

service (s) or an operation (o) is a provider (P) if and

only if (s) or (o) is provided functionalities and these

functionalities are used by other services or

operations. This metric is for counting the entire used

later in coupling and cohesion metrics.

4. Consumer (C):

The consumer (C) is the service or operation which

is using the functionality that provided by other

operations or services. This metric is counting all the

services and operations which used or invoked the

functionalities of other services or operations to

achieve their tasks.

𝐶(𝑝) = {(𝑠, 𝑜) ∈ 𝐶|(𝑠 ∈ 𝑆) ∧ (𝑜 ∈ 𝑂) ∧ (𝑝
∈ 𝑃) ∧ ((𝑠 ∪ 𝑜) ∧ 𝑝)
∈ 𝑅 ∧ 𝑅 𝑖𝑠 𝑂𝑢𝑡}

(Eq. 6)

A service (s) or an operation (o) is a consumer (C)

which consumes the functionalities provided by the

provider (p): if and only if (s) or (o) is consuming the

7 Arafat Abdulgader Mohammed Elhag & Radziah Mohamad / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 1–14

functionalities provided by other services or

operations. This metric is for counting the entire

consumer in service-oriented system which can be

used later in coupling and cohesion metrics.

3.2 Weighting the Components of SOD

The service-oriented system contains many

components among them services, operations and

relationships. The service is the main component of

service-oriented system and its structure is more

complicated comparing with operations structure.

Since the service can be atomic or composite

services and contains many components such as

operations and basic service. Some service-oriented

system components are more importance than other

due to their structure and interactions with other

system components. Therefore, the weight method is

used to distinguish between different components in

service-oriented system by assigning different scale

for components based on their importance.

ComSDM method defined two types of interactions

between service-oriented design components which

are internal and external interaction.

Firstly, interaction between internal components of

service which are interaction between two

operations in the same services (IOR), the interaction

between service and operation in the same service

(IOSR) and interaction between two services in the

same service (ISR). Secondly, interaction between

external components of services, which cover the

interaction between two operations belong to

different services (EOR), interaction between

operation and service belong different services

(EOSR) and interaction between tow services belong

to different services (ESR). The degree of interactions

among services is higher than degree of interaction

among operations. The service invocation leads to

interact with more than one element within service,

whereas calling operation only single unit

communicate with other system components. The

interactions among different services in service-

oriented system are stronger than the interactions

among operations with services as well as

interactions among operations themselves. Thus, the

interaction among services should be weighted

higher, then the interaction between services and

operations weighted medium and lastly the

interactions among operations should be weighted

lower as shown Table 3.

5. Importance of provider (IP):

Importance of provider (IP) is metric used to give

weight for the operations and services. This metric is

counting all the consumers, which depend on the

provider by invoking its functionalities.

𝐼𝑃(𝑝) = ∑ 𝐶(𝑝) ∗ weight value

𝑐

𝑖=1

 (Eq. 7)

This metric is very significant and can used as a

weight factor in the services and operations in

service-oriented system. This metric gives the

importance of the services and operations,

according to the calls from other services or

operations. The high value of IP (p) means the

provider p is very important because many

consumers use its functionalities. During the design of

important provider the designers should take care

because many services and operations are

depending on it.

Table 3 Interaction weight

Internal

Relationship

External

relationship

Weight

scale

Weight

value

ISR ESR Higher 3

IOSR EOSR Medium 2

IOR EOR Lower 1

3.3 Derived Metrics

3.3.1 Coupling Metric

Coupling in service-oriented is defined as the

interaction and dependency between the services in

service-oriented systems. Coupling metrics measure

the interaction dependency between the services

and operations and it are calculated just by counting

all direct relationships between services and its

operations in service-oriented system and there is no

consideration of indirect relationships (e.g. A service

s1 calls service s2 but service s2 also call another

service s3, in this case s1 calls s2 directly and calls s3

indirectly).

I. Direct coupling (DC):

The direct coupling is the direct interactions

between the providers and consumers in a service-

oriented system and calculated by counting the

entire direct consumer for specific provider as

appear in Equation 8.

This means for each provider (p) counts all the

direct call from all consumers (C).

II. Indirect coupling (IC):

The indirect coupling is the interactions between

providers with direct and indirect consumer in

service-oriented design. This metric is calculated by

counting the direct consumers and then assume that

all the consumers are providers and calculates their

coupling.

𝐼𝐶(𝑝) = 𝐷𝐶(𝑝) + ∑ 𝐼𝐶(𝑐(𝑝))

𝑐(𝑝)∈𝑃

(Eq. 9)

Equation 8 shows the indirect coupling metric. This

metric gives a better result than direct coupling

because it takes into account both direct and

indirect relationships and the result of coupling is

more accurate than the previous metrics.

III. Coupling factor (CoupF):

The indirect coupling gives the result as a number

and this number could not interpret by its self

because this number may be gives a good indicator

𝐷𝐶(𝑝) = 𝐶(𝑝) (Eq. 8)

8 Arafat Abdulgader Mohammed Elhag & Radziah Mohamad / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 1–14

if the system is big or worse if the system is small.

However, new metric provided in Equation 9

compare the result of (IC) with service-oriented

system size is needed to understand the value of this

metric. Let f = NS (SOS) + NO (SOS) then:

𝐶𝑜𝑝𝐹(𝑝) =
𝐼𝐶(𝑝)

𝑓2 − 𝑓
 (Eq. 10)

The principle of service-oriented system the design

should be loosed coupling and the coupling will

affect the complexity of the system. The results of

these metrics give the designer indicator to the

design coupling and how can improve the design to

avoid the complexities. These metrics consider both

direct and indirect interaction between the service-

oriented system elements.

3.3.2 Cohesion Metrics

For any service-oriented system, cohesion estimates

the degree to which the components of the system

belong together and the strength of the relationships

between operations in a service. In other word,

cohesion estimates the difficulty of understanding the

relationships between services and service

operations.

a) Cohesion metric (CM):

This metric is measuring the degree of cohesion for

specific service (s) in service-oriented system design.

The border of this metric is only the service (s).

𝐶𝑀(𝑠)

= {𝑐(𝑝)|(𝑐 ∈ 𝐶) ∧ (𝑝 ∈ 𝑃) ∧ (𝑐 ∧ 𝑝) ∈ 𝑠}
(Eq. 11)

This means for each service (s) belong to service-

oriented system counts all the consumers c (p) and

consume the functionalities provided by providers

(p). Which consumers (c) or providers (p) are

belonging to this service (s).

b) Cohesion factor (CohF):

The cohesion metric gives the result as a number

and this number could not interpreted by its self

because this number may be gives good indicator if

the system is big or bad if the system is small.

However, new metric compare the result of (CM)

with service-oriented system size is needed to

understand the value of this metric. This metric is

provided in Equation 11. Let f = NS(s) + NO(s) then

𝐶𝑜ℎ𝐹(𝑠) =
𝐶𝑀(𝑠)

𝑓2 − 𝑓
 (Eq. 12)

The principle of service-oriented system the design

should be tied cohesion and the cohesion will affect

the complexity of the system. The results of these

metrics give the designer indicator to the design

cohesion and how can improve the design to avoid

the complexities. These metrics consider the service

to build the other services.

3.3.3 Complexity Metrics

Complexity measures the difficulty of understanding

the interaction and relationships between the

services and services operations.

1) Total complexity metric for a service:

For any service-oriented system, coupling and

cohesion used to estimate the degree to which the

components of the system belong together and the

strength of the relationships between operations in a

service. This metric calculates the complexity for a

specific service (s).

𝑇𝐶𝑀(𝑠) =
𝐼𝐶(𝑠) + 𝑁𝑆(𝑠) + 𝑁𝑂(𝑠)

𝐶𝑀(𝑠)
 (Eq. 13)

2) Complexity factor (ComF):

This metric calculates the complexity factor from

coupling and cohesion factor to give a better

understanding of the complexity metric for a system.

𝐶𝑜𝑚𝐹(𝑠) =
𝐶𝑜𝑝𝐹(𝑠)

𝐶𝑜ℎ𝐹(𝑠)
 (Eq. 14)

3) Total complexity metric in a system:

This metric calculates the complexity of the entire

system.

𝑇𝐶𝑀(𝑆𝑂𝑆) = ∑ 𝑇𝐶𝑀(𝑠) ∗ 𝐶𝑜𝑚𝐹(𝑠)

𝑠∈𝑆𝑂𝑆

 (Eq. 15)

This means for each service (s) in service-oriented

system add the result of total complexity metric

(TCM) multiple complexity factor (ComF(s)).

3.3.4 Reusability Metric

The services in service-oriented system should be

designed in a way through which the reusability of

the system is increased. The reusability in service-

oriented system is affected by two factors which are

the direct consumers for the service and the degree

of cohesiveness of the operations in the service [15].

The services have less direct interactions with other

service components and higher cohesiveness

between its operations are more reusable. Therefore,

the direct coupling metric is used to measure the

reusability of system by calculating the direct

consumers of each service. The Equation 16 shows

the calculation of Reusability Metric (RM) for each

provider (p).

DC(p) = C(p) (Eq. 16)

1. Reusability Factor

The reusability factor used to compare the

reusability values with the system size by measuring

the cohesion of operations. The Equation 17

represents the Reusability Factor (ResF) metric:

𝑅𝑒𝑠𝐹 =
𝐶𝑀(𝑆𝑂𝑆)

𝐷𝐶(𝑆𝑂𝑆)
 (Eq. 17)

9 Arafat Abdulgader Mohammed Elhag & Radziah Mohamad / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 1–14

4.0 VALIDATION

The theoretical validation of the software metrics

normally uses the property-based approaches to

ensure that the attributes supposed to be calculated

by metrics is measured [55]. In this work the property-

based software engineering measurement

framework proposed by Briand et. al. [28, 58] is used.

This approach was chosen for validation the

proposed measurement theoretically in this thesis for

some reasons among them, it is based on

measurement theory and applied successfully by

other researchers [59, 60]. In addition, it is

comprehensive framework which defines the

structural properties of software system

mathematically which matches with the

methodology of the proposed metrics in this thesis.

However, to validate the proposed metrics

theoretically using property-based approach there

are six properties each metric has to satisfy these

properties [28]. These properties include

Nonnegative, Normalization, Null Value,

Monotonicity, Marging of Services and Disjoint

Service Additivity. Following subsection provides the

result of these properties for the proposed metrics to

demonstrate its satisfaction.

4.1 Theoretical Validation Results

The NS(SOS) and NS(ComS) metrics properties are

verified theoretically using the properties-based

approach. The result of these metrics is nonnegative,

because the system in SOD and composite service

design either has a set of service then the services

counted and be positive or there is no service in the

system which means the NS is zero never can be

negative (Nonnegative). Similarly, the NO(SOS),

NO(S), providers and consumers metrics never can

be negative (Nonnegative). Likewise, for the derived

metrics the DC, IC, CoupF, CM, and CohF metrics

never can be negative (Nonnegative). In the same

way, the complexity and reusability metrics never

can be negative (Nonnegative).

4.1.1 Coupling Metrics Validation

PROPERTY COUPLING.1: Nonnegativity [28]. The

proposed metrics for measuring coupling in this thesis

depend on the external interactions between the

components of system. When the servics in service-

oriented system system have external interactions

then the coupling should be positive. The DC, IC and

CoupF are satisfied this property since the values

obtained by these metrics can be zero when there is

no external interaction between the components of

system. However, under all circumstances the results

of these metrics never can be negative. The

mathematical demonstration of nonecative of the

coupling metrics is provided as follow:

 DC(p) = C(p).

 If C(p) = Ø then DC(p) is zero, or more when

C(p) is greater than Ø.

 Consequently, DC(p) ≥ 0.

 Accordingly, IC(p) and CoupF ≥ 0.

However, the coupling metrics provided in this

research work are nonnegative.

PROPERTY COUPLING.2: Null Value [28]. DC, ID, and

CoupF are null if there are no consumers (c) for each

of the providers (p) in service-oriented system, which

means there are no external interactions between

the services in service-oriented system. The

mathematical demonstration of null value of the

coupling metrics is provided as follow:

 𝑇ℎ𝑒 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝐶(𝑝) = Ø ⇒ 𝐷𝐶, 𝐼𝐶 𝑎𝑛𝑑 𝐶𝑜𝑢𝑝𝐹 = 0.

The Null Value property is satisfied, since all the

coupling metrics provide null value when there are

no interactions between the system components.

PROPERTY COUPLING.3: Monotonicity [28]. The

coupling values do not decreased by adding more

external interactions or dependencies between

services and operations in service-oriented system.

This property is satisfied in coupling metrics which the

coupling between system components is increased

by adding new external interactions (Monotonicity).

PROPERTY COUPLING.4: Merging of Services [28]. The

real name of this property is Merging of Modules, but

changed in this research work for Merging of Services

because the system in service-oriented has services

instead of modules. The result of coupling metrics

obtained by integrating two or more services in one

service (composite service) is less than or equal the

sum of coupling metrics result of the two or more

original services since some dependencies between

the services may have disappeared (Merging of

Services). The proposed metrics satisfied this property

of Merging of Services.

PROPERTY COUPLING.5: Disjoint Service Additivity [28].

The real name of this property is Disjoint Module

Additivity, but changed in this research work to

Disjoint Service Additivity for same reason above. The

result of coupling metrics obtained by composing

two or more discrete services in composite service is

equal to the sum of coupling metrics result of the two

or more original services which are composed

together (Disjoint Service Additivity). In other words,

composing unrelated services which have not

interactions among themselves in a composite

service will not decrees the overall coupling of

composite service because the composition is not

reduced the external interactions that can affect the

coupling of service. The proposed metrics satisfied

this property of Disjoint Service Additivity, because

the metrics results show that the coupling is reduced

only when the related services are composed

together.

PROPERTY COUPLING.6: Normalization. Normalization

means the values of metrics are normalized between

0 and 1 in order to provide meaningful comparisons

which can facilitate the understanding the values of

10 Arafat Abdulgader Mohammed Elhag & Radziah Mohamad / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 1–14

the metrics, since they belong to the same system.

The normalization property is proposed to validate

the cohesion in [28], but in this section used to

validate the coupling because coupling the results of

coupling and cohesion metrics are same. This

property is satisfied since CoupF metric is normalized

between 0 and 1 (Normalization).

4.1.2 Cohesion Metrics Validation

PROPERTY COHESION.1: Nonnegativity and

Normalization [28]. The proposed metrics for

measuring cohesion in this thesis depend on the

internal interactions between the components of

services in the system. When the service has internal

interaction then the cohesion should be positive. The

CM and CohF are satisfied this property since the

values obtained by these metrics can be zero when

there is no internal interaction between the

components of system. However, under all

circumstances the results of these metrics never can

be negative (Nonnegative). The metric CohF is

normalized between 0 and 1 (Normalization). The

mathematical demonstration of nonnegative and

normalization of the cohesion metrics is provided as

follow:

 𝐶𝑀(𝑠) = {𝑐(𝑝)|(𝑐 ∈ 𝐶) ∧ (𝑝 ∈ 𝑃) ∧ (𝑐 ∧ 𝑝) ∈ 𝑠}
 If C(p) = Ø then CM(s) is zero, or more when

C(p) is greater than Ø. C(p) is the internal

interactions between the consumer (c) and

provider (p), which they are belong to

service (s).

 Consequently, CM(s) ≥ 0.

 Accordingly, CohF ≥ 0.

 The CohF is normalized by divided the result

of cohesion metric on the maximum

expected cohesion.

The Nonnegative and Normalization property is

satisfied, since all the cohesion metrics provide

nonnegative value and the CohF metric is

normalized between 0 and 1.

PROPERTY COHESION.2: Null Value [28]. CM and CohF

are null if there are no consumers (c) for each of the

providers (p) in service (s), which means there are no

internal interactions between the components

belonging to the same service. The mathematical

demonstration of null value of the cohesion metrics is

provided as follow:

 𝑇ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 C(p) = Ø ⇒ CM and CohF = 0.

The Null Value property is satisfied, since all the

cohesion metrics provide null value when there are

no interactions between the system components.

PROPERTY COHESION.3: Monotonicity [28]. The

cohesion metrics values do not decreased by adding

more internal interactions or dependencies between

the components belonging to the same service in

service-oriented system. This property is satisfied in

cohesion metrics which the cohesion between

service components is increased by adding new

internal interactions (Monotonicity). For example,

suppose that S1 (si, Ss1, Os1, Rs1) and S2 (si, Ss2, Os2, Rs2)

are two composite services and the cohesion of S1 is

equal to the cohesion of S2. When adding new

internal interaction between the components of the

service S1 then [Cohesion(S1) ≥ Cohesion(S2)].

PROPERTY COHESION.4: Cohesive Service [28]. The

real name of this property is Cohesive Module, but

altered in this research work to Cohesive Service for

same reason above. The result of cohesion metrics

obtained by composing two or more discrete

services in composite service is not greater than the

sum of cohesion metrics results of the two or more

original services which are composed together

(Disjoint Service Additivity). In other words,

composing unrelated services which have not

interactions among themselves in a composite

service will not increase the overall cohesion of the

composite service because the composition is not

increase the internal interactions but increase the

number of internal components of the service which

negatively affected the cohesion of service. The

proposed metrics satisfied this property of Cohesive

Service, because the metrics results show that the

cohesion is increased only when the related services

are composed together.

4.1.3 Complexity Metrics Validation

PROPERTY COMPLEXITY.1: Nonnegativity [28]. The

proposed metrics for measuring complexity in this

thesis depend on the interactions between the

components of the system. When the system has

interactions between its components then the

complexity should be positive. The complexity metric

for a service, ComF and complexity metric in a

system are satisfied this property since the values

obtained by these metrics can be zero when there is

no interaction between the components of the

system. However, under all circumstances the results

of these metrics never can be negative. The

mathematical demonstration of nonnegative of the

complexity metrics is provided as follow:

 If IC(s) and CM(s) = Ø then TCM(s) is zero

because there is no interactions in this

system, or more when the interaction on the

system is greater than Ø.

 Accordingly, TCM(SOS) and ComF ≥ 0.

However, the complexity metrics provided in this

thesis are nonnegative.

PROPERTY COMPLEXITY.2: Null Value [28]. The total

complexity metric for a service ComF and total

complexity metric in a system are null if there are no

consumers (c) for each of the providers (p), which

means there are no interactions between the

components of the system. The mathematical

demonstration of null value of the complexity metrics

is provided as follow:

 C(p) = Ø ⇒ TCM(s), ComF(s)and TCM(SOS) = 0.

11 Arafat Abdulgader Mohammed Elhag & Radziah Mohamad / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 1–14

The Null Value property is satisfied, since all the

complexity metrics provide null value when there are

no interactions between the system components.

PROPERTY COUPLING.3: Monotonicity [28]. The

complexity metrics values do not decreased by

adding more interactions or dependencies between

services and operations in service-oriented system.

This property is satisfied in complexity metrics which

the coupling between system components is

increased by adding new interactions

(Monotonicity).

PROPERTY COMPLEXITY.4: Disjoint Service Additivity

[28]. The real name of this property is Disjoint Module

Additivity, but changed in this research work to

Disjoint Service Additivity for same reason above. The

result of complexity metrics obtained by composing

two or more discrete services in composite service is

equal to the sum of complexity metrics results of the

two or more original services which are composed

together (Disjoint Service Additivity). In other words,

composing unrelated services which have not

interactions among themselves in a composite

service will not decrese the overall complexity of

composite service because the composition is not

reduced the interactions that can affect the

complexity of service. The proposed metrics satisfied

this property of Disjoint Service Additivity, because

the metrics results show that the complexity is

reduced only when the related services are

composed together.

PROPERTY COMPLEXITY.5: Merging of Services [28].

The real name of this property is Merging of Modules,

but altered in this research work for Merging of

Services because the system in service-oriented has

services instead of modules. The results of complexity

metrics obtained by integrating two or more services

in one service (composite service) is less than or

equal the sum of complexity metrics results of the two

or more original services since some dependencies

between the services may have disappeared

(Merging of Services). The proposed metrics satisfied

this property of Merging of Services.

4.1.4 Reusability Metrics Validation

PROPERTY REUSABILITY.1: Nonnegativity. The

reusability metrics are validated theoretically using

the properties proposed for validating the complexity

metrics because there no proposed properties for

reusability in [28]. The proposed metrics for measuring

reusability in this thesis depend on the direct external

interactions between the components of system with

specific service (s) and the internal interactions

between its components. When the system has

interaction then the reusability should be positive. The

RM and ReuF are satisfied this property since the

values obtained by these metrics can be zero when

there is no interaction between the components of

system. However, under all circumstances the results

of these metrics never can be negative. The

mathematical demonstration of nonnegative of the

coupling metrics is provided as follow:

 RM(s) = C(s).

 If C(s) = Ø then RM(s) is zero, or more when

C(s) is greater than Ø.

 Consequently, ReuF(SOS) ≥ 0.

However, the reusability metrics provided in this thesis

are nonnegative.

PROPERTY REUSABILITY.2: Null Value. RM(s) is null if

there are no consumers (c) for each of the service (s)

which means there are no external interactions

between the service(s) and the other components in

service-oriented system. Further, the ReuF(SOS) is null

if the reusability of all the services in system is null. The

mathematical demonstration of null value of the

coupling metrics is provided as follow:

 ∀ 𝑆𝑒𝑟𝑣𝑖𝑐𝑒(𝑠) ∈ 𝑆𝑂𝑆, C(s) = Ø ⇒ RM(s) and ReuF(SOS) = 0.

The Null Value property is satisfied, since all the

reusability metrics provide null value when there are

no interactions between the system components.

PROPERTY REUSABILITY.3: Monotonicity [28]. The

reusability metrics values do not decreased by

adding more external interactions or dependencies

for service(s) and adding more internal interactions

between the components of service(s). This property

is satisfied in reusability metrics which the reusability

of services is increased by adding new external

interactions for the service (Monotonicity).

PROPERTY REUSABILITY.4: Merging of Services [28]. The

result of reusability metrics obtained by integrating

two or more services in one service (composite

service) is greater than or equals the sum of

reusability metrics results of the two or more original

services since some dependencies between the

services may have disappeared (Merging of

Services). The proposed metrics for reusability are

satisfied this property of Merging of Services.

PROPERTY REUSABILITY.5: Disjoint Service Additivity

[28]. The result of reusability metrics obtained by

composing two or more discrete services in

composite service is less than the sum of reusability

metrics results of the two or more original services

which are composed together (Disjoint Service

Additivity). In other words, composing unrelated

services which have not interactions among

themselves in a composite service will not increases

the overall reusability of composite service because

the composition is not reduced the external

interactions that can affect the reusability of service.

The proposed metrics satisfied this property of Disjoint

Service Additivity, because the metrics results show

that the reusability is increased only when the related

services are composed together.

12 Arafat Abdulgader Mohammed Elhag & Radziah Mohamad / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 1–14

5.0 DISCUSSION

Software quality measurement is a necessary target

of software engineering and, in addition, has

considerable importance in the context of SOD since

it determines how the quality requirements for

composite service should be achieved [3, 11]. As the

metrics are the best method to assess and evaluate

the quality of software, the metrics are needed for

measuring the quality of composite services in SOD.

The SOD is the key phase, and assessing the quality at

this level is very essential to reduce the cost and

effort of the implementation phase and enhance the

quality of software applications.

In order to assess the quality of SOD many metrics

are proposed in the literature but these metrics are

constructed based on the characteristic of the

previous development approaches such as OOC

and CBC [23]. Similarly, the existing metrics for the

service-oriented design are still at a preliminary stage

[12]. The metrics development for approaches such

as OOC and CBC, do not work well. These metrics

are also not good for service-oriented systems

without modification due to unique characteristics of

service orientation [7]. Therefore, this chapter is

proposing a set of metrics for estimating the quality of

composite services design in order to aid in early

detection of design flaws. The proposed metrics take

into account the characteristics of the previous

development approaches as well as the composite

service in service-oriented system. The key factors in

these quality measurements are the structure of SOD

properties namely; abstraction, autonomy, cohesion,

composability, contract, coupling, discoverability,

reusability and statelessness [1, 15, 16].

Further, the previous metrics do not consider the

service that is built from other services (composite

services) and only consider the operations as building

blocks for service-oriented system [23]. Furthermore,

these metrics are not able to measure the quality of

composite service design. The proposed metrics

consider the atomic services and composite services

as building blocks for the design of service-oriented

system.

In addition, the previous do not consider the

indirect relationships between service-oriented

elements to measure the quality of composite service

and only the direct interactions are considered [25].

The indirect relationships are very important to give

more accurate results in measuring the coupling

between composite services in service-oriented

system. The proposed metrics produce new

equations to consider the indirect interactions

between the elements of service-oriented system as

well as the direct relationships.

In most cases, metrics were used to calculate the

quality attributes of SOD, such as coupling and

cohesion but were unable to establish relationships

between the attributes [19, 24]. The proposed metrics

have been succeeded to establish relationships

between the attributes of service-oriented design to

measure the reusability and complexity of the system

from coupling and cohesion attributes.

6.0 CONCLUSION

Service-Oriented has been applied successfully in the

development of many types of software. Therefore,

many metrics are proposed to assess and evaluate

the SOD in order to improve the quality of service-

oriented systems. This studies was described the

features of SOD and principles to facilitate the

measurement of the quality of composite service

design and defined the component of service-

oriented system. This paper defines two types of

software metrics which are basic and derived

metrics. In this paper a set of basic metrics is

proposed and used for proposing derived metrics to

evaluate the coupling, cohesion, complexity and

reusability of composite service design. The result of

this study shows how these metrics calculate their

values and why these metrics are important. These

metrics add a new contribution to assess the quality

of composite service design mainly for coupling,

cohesion, complexity and reusability. These metrics

are validated theoretically. The results show that

these metrics are able to measure the quality of

composite service design. Moreover, the proposed

metrics can be used as a first step to propose a

quality measurement model for composite service

design by proposing design style selection method

for composite service in the next stage.

Acknowledgement

We would like to thank Universiti Teknologi Malaysia

for sponsoring the research through the RUG grant

with vote number 05H83 and providing the facilities

and support for the research.

References

[1] Erl, T. 2005. Service-oriented Architecture: Concepts,

Technology, and Design. Prentice Hall PTR.

[2] Kim, T., C. K. Chang, and S. Mitra. 2010. Design of Service-

Oriented Systems Using SODA. Services Computing, IEEE

Transactions on. 3(3): 236-249.

[3] Zhang, Q. Q. and X. K. Li. 2009. Complexity Metrics for

Service-Oriented Systems. 2009 Second International

Symposium on Knowledge Acquisition and Modeling:

Kam. 3: 375-378.

[4] Mohamad, R., et al. 2012. Service Identification Guideline

for Developing Distributed Embedded Real-time Systems.

Software, IET. 6(1): 74-82.

[5] Aziz, M., et al. 2013. Service Based Meta-model for the

Development of Distributed Embedded Real-time Systems.

Real-Time Systems. 49(5): 563-579.

[6] McHeick, H. and Q. Yan. 2012.Quality Attributes and

Design Decisions in Service-oriented Computing. In

Innovations in Information Technology (IIT), 2012

International Conference on.

13 Arafat Abdulgader Mohammed Elhag & Radziah Mohamad / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 1–14

[7] Perepletchikov, M. and C. Ryan. 2011. A Controlled

Experiment for Evaluating the Impact of Coupling on the

Maintainability of Service-Oriented Software. Software

Engineering, IEEE Transactions on. 37(4): 449-465.

[8] Daghaghzadeh, M., A. B. Dastjerdi, and H.

Daghaghzadeh. 2011. A Metric for Measuring Degree of

Service Cohesion in Service Oriented Designs.

International Journal of Computer Science. 8.

[9] Elhag, A. A. M., et al. 2013. Problems and Future Trends of

Software Process Improvement in Some Sudanese

Software Organizations. In Computing, Electrical and

Electronics Engineering (ICCEEE), 2013 International

Conference on.

[10] Goeb, A. and K. Lochmann. 2011. A Software Quality

Model for SOA. ACM.

[11] Nematzadeh, H., et al. 2014. QoS Measurement of

Workflow-Based Web Service Compositions Using Colored

Petri Net. The Scientific World Journal. 2014: 14.

[12] Gebhart, M. and S. Abeck. 2011. Quality-oriented Design

of Services. International Journal on Advances in Software.

4(1 and 2): 144-157.

[13] Feuerlicht, G. 2011. Simple Metric for Assessing Quality of

Service Design Service-Oriented Computing, E. Maximilien,

et al., Editors. Springer Berlin / Heidelberg. 133-143.

[14] Kruger, I. H. and R. Mathew. 2004. Systematic

Development and Exploration of Service-oriented

Software Architectures. In Software Architecture, 2004.

WICSA 2004. Proceedings. Fourth Working IEEE/IFIP

Conference on.

[15] Sindhgatta, R., B. Sengupta, and K. Ponnalagu. 2009.

Measuring the Quality of Service Oriented Design Service-

Oriented Computing. L. Baresi, C.-H. Chi, and J. Suzuki,

Editors. Springer Berlin / Heidelberg. 485-499.

[16] Reddy, V., et al. 2009. Evaluating Legacy Assets in the

Context of Migration to SOA. Software Quality Journal.

17(1): 51-63.

[17] Rostampour, A., et al. 2011. Measures of Structural

Complexity and Service Autonomy. IEEE.

[18] Rostampour, A., et al. 2010. A Metric for Measuring the

Degree of Entity-centric Service Cohesion. In Service-

Oriented Computing And Applications (SOCA). 2010 IEEE

International Conference on.

[19] Perepletchikov, M., C. Ryan, and K. Frampton. 2007.

Cohesion Metrics for Predicting Maintainability of Service-

Oriented Software.

[20] Kazemi, A., et al. 2011. An Information Retrieval Based

Approach for Measuring Service Conceptual Cohesion. in

Quality Software (QSIC). 2011 11th International

Conference on.

[21] Alahmari, S., E. Zaluska, and D.C. De Roure. 2011. A

Metrics Framework for Evaluating SOA Service Granularity.

in Services Computing (SCC). 2011 IEEE International

Conference on.

[22] Si Won, C. and K. Soo Dong. 2008. A Quality Model for

Evaluating Reusability of Services in SOA. In E-Commerce

Technology and the Fifth IEEE Conference on Enterprise

Computing, E-Commerce and E-Services, 2008 10th IEEE

Conference on.

[23] Perepletchikov, M., et al. 2007. A Formal Model of Service-

Oriented Design Structure. In Software Engineering

Conference, 2007. ASWEC 2007. 18th Australian.

[24] Perepletchikov, M., et al. 2007. Coupling Metrics for

Predicting Maintainability in Service-Oriented Designs. In

Software Engineering Conference, 2007. ASWEC 2007.

18th Australian.

[25] Qian, M., et al. 2009. Evaluating Service Identification with

Design Metrics on Business Process Decomposition. In

Services Computing, 2009. SCC '09. IEEE International

Conference on.

[26] Chidamber, S. R., D. P. Darcy, and C. F. Kemerer. 1998.

Managerial Use of Metrics for Object-oriented Software:

An Exploratory Analysis. Software Engineering. IEEE

Transactions on. 24(8): 629-639.

[27] Fenton, N. E. and M. Neil. 2000. Software Metrics:

Roadmap. In Proceedings of the Conference on The

Future of Software EngineeringACM: Limerick, Ireland. 357-

370.

[28] Briand, L. C., S. Morasca, and V. R. Basil. 1996. Property-

Based Software Engineering Measurement. Software

Engineering, IEEE Transactions on. 22(1): 68-86.

[29] Erl, T., Soa. 2008. Principles of Service Design. 1. Prentice

Hall.

[30] Hirzalla, M., J. Cleland-Huang, and A. Arsanjani. 2009. A

Metrics Suite for Evaluating Flexibility and Complexity in

Service Oriented Architectures. Service-Oriented

Computing - Icsoc 2008 Workshops. 5472: 41-52.

[31] Krafzig, D., K. Banke, and D. Slama. 2005. Enterprise SOA:

Service-oriented Architecture Best Practices. Prentice Hall

PTR.

[32] Perepletchikov, M., C. Ryan, and Z. Tari. 2010. The Impact

of Service Cohesion on the Analyzability of Service-

Oriented Software. Services Computing. IEEE Transactions

on. 3(2): 89-103.

[33] Bingu, S., et al. 2008. A Design Quality Model for Service-

Oriented Architecture. In Software Engineering

Conference, 2008. APSEC '08. 15th Asia-Pacific.

[34] Moayerzadeh, A. and E. Yu. 2009. A Goal-oriented

Representation of Service-oriented Software Design

Principles.

[35] Ma, Y.-F., H.X. Li, and P. Sun. 2007. A Lightweight Agent

Fabric for Service Autonomy. In Service-Oriented

Computing: Agents, Semantics, and Engineering. Springer.

63-77.

[36] Perepletchikov, M., C. Ryan, and K. Frampton. 2006.

Towards the Definition and Validation of Coupling Metrics

for Predicting Maintainability in Service-Oriented Designs

on the Move to Meaningful Internet Systems 2006: OTM

2006 Workshops. R. Meersman, Z. Tari, and P. Herrero,

Editors. Springer Berlin/Heidelberg. 34-35.

[37] Kazemi, A., et al. 2011. Measuring the Conceptual

Coupling of Services Using Latent Semantic Indexing. in

Services Computing (SCC). 2011 IEEE International

Conference on.

[38] Bansiya, J. and C. G. Davis. 2002. A Hierarchical Model for

Object-oriented Design Quality Assessment. Software

Engineering, IEEE Transactions on. 28(1): 4-17.

[39] Daghaghzadeh, M., A. B. Dastjerdi, and H.

Daghaghzadeh. A Metric for Measuring Degree of Service

Cohesion in Service Oriented Designs. International

Journal of Computer Science. 8.

[40] Si Won, C., H. Jin Sun, and K. Soo Dong. 2007. QoS Metrics

for Evaluating Services from the Perspective of Service

Providers. in e-Business Engineering, 2007. ICEBE 2007. IEEE

International Conference on.

[41] Perepletchikov, M., C. Ryan, and K. Frampton. 2007.

Cohesion Metrics for Predicting Maintainability of Service-

Oriented Software. In Quality Software, 2007. QSIC '07.

Seventh International Conference on.

[42] Rossi, P. and Z. Tari. 2007. Software Metrics for the Efficient

Execution of Mobile Services. In Emerging Web Services

Technology. Springer. 135-152.

[43] Dimitoglou, M. J. M. G. 2008. A Service Oriented

Architecture Complexity Metric, Based on Statistical

Hypothesis Testing.

[44] Hofmeister, H. and G. Wirtz. 2008. Supporting Service-

Oriented Design with Metrics. In Enterprise Distributed

Object Computing Conference, 2008. EDOC '08. 12th

International IEEE.

[45] Bakhshi, M., F. Mardukhi, and N. Nematbakhsh. 2010. A

Fuzzy-based Approach for Selecting the Optimal

Composition of Services According to User Preferences. In

Computer and Automation Engineering (ICCAE). 2010 The

2nd International Conference on.

[46] Gebhart, M. and S. Abeck. 2011. Metrics for Evaluating

Service Designs Based on Soam. International Journal on

Advances in Software. 4(1 and 2): 61-75.

14 Arafat Abdulgader Mohammed Elhag & Radziah Mohamad / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 1–14

[47] Gebhart, M., et al. 2010. Evaluation of Service Designs

Based on SoaML. In Software Engineering Advances

(ICSEA), 2010 Fifth International Conference on.

[48] Meeyeon, L., et al. 2010. A Design-Phase Quality Model of

U-Service Ontology for Evaluating Dynamic Service

Composition. In Multimedia and Ubiquitous Engineering

(MUE), 2010 4th International Conference on.

[49] Feuerlicht, G. 2011. Simple Metric for Assessing Quality of

Service Design. In Service-Oriented Computing. Springer.

133-143.

[50] Kazemi, A., et al. 2011. A Metric Suite for Measuring

Service Modularity. In Computer Science and Software

Engineering (CSSE), 2011 CSI International Symposium on.

[51] Kai, Q., L. Jigang, and F. Tsui. 2006. Decoupling Metrics for

Services Composition. In Computer and Information

Science, 2006 and 2006 1st IEEE/ACIS International

Workshop on Component-Based Software Engineering,

Software Architecture and Reuse. ICIS-COMSAR 2006. 5th

IEEE/ACIS International Conference on.

[52] Karhikeyan, T. and J. Geetha. 2012. A Metrics Suite and

Fuzzy Model for Measuring Coupling in Service Oriented

Architecture. In Recent Advances in Computing and

Software Systems (RACSS), 2012 International Conference

on.

[53] Khoshkbarforoushha, A., et al. 2010. Towards a Metrics

Suite for Measuring Composite Service Granularity Level

Appropriateness. In Services (SERVICES-1), 2010 6th World

Congress on.

[54] Mohammed Elhag, A. A. and R. Mohamad. 2014. Metrics

for Evaluating the Quality of Service-oriented Design. In

Software Engineering Conference (MySEC), 2014 8th

Malaysian.

[55] Montagud, S., S. Abrahão, and E. Insfran. 2012. A

Systematic Review of Quality Attributes and Measures for

Software Product Lines. Software Quality Journal. 20(3-4):

425-486.

[56] Elhag, A. A. M., et al. 2015. A Systematic Composite

Service Design Modeling Method Using Graph-Based

Theory.

[57] Gao, H., et al. 2009. Service-Oriented Modeling Method

for the Development of an E-Commerce Platform. In E-

Business and Information System Security, 2009. EBISS'09.

International Conference on. IEEE.

[58] Briand, L.C., et al. 1998. A Comprehensive Empirical

Validation of Design Measures for Object-Oriented

Systems. In Software Metrics Symposium, Metrics 1998.

Proceedings. Fifth International.

[59] Rossi, P. and G. Fernandez. 2003. Definition and Validation

of Design Metrics for Distributed Applications. In Software

Metrics Symposium, Proceedings. Ninth International.

[60] Morasca, S. 1999. Measuring Attributes of Concurrent

Software Specifications in Petri Nets. In Software Metrics

Symposium, 1999. Proceedings. Sixth International.

