

77:9 (2015) 165–172 | www.jurnalteknologi.utm.my | eISSN 2180–3722 |

Jurnal

Teknologi

Full Paper

ENHANCING A HYBRID PRE-PROCESSING AND

TRANSFORMATION PROCESS FOR CODE CLONE

DETECTION IN .NET APPLICATION

Al-Fahim Mubarak-Ali*, Shahida Sulaiman

Department of Software Engineering, Faculty of Computing,

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor,

Malaysia

Article history

Received

2 February 2015

Received in revised form

8 October 2015

Accepted

12 October 2015

 *Corresponding author

fahimbhai86@gmail.com

Graphical abstract

Abstract

Pre-processing and transformation are the first two common processes that occur in a

code clone detection process. The purpose of these two processes is to transform the

source codes into a more representable form that can be used later on as input for code

clone detection. Main issue arises in both of these processes is the application of the pre-

processing and transformation rules might cause loss of critical information thus affecting

the code clone detection results. Therefore, this work proposes a combination pre-

processing and transformation process that can produce a better source unit

representation of .Net platform source code which is C#. Net and VB.Net by enhancing an

existing work that was done on Java language without affecting the critical information in

the source code. The proposed enhancement was tested and the result showed that the

proposed work was able to produce the expected source unit for the .Net platform

languages together.

Keywords: Pre-processing process, transformation process, code clone

Abstrak

Pra-pemprosesan dan transformasi adalah dua proses pertama yang berlaku dalam

proses pengesanan kod klon. Tujuan kedua-dua proses ini adalah untuk mengubah kod ke

dalam bentuk yang lebih baik supaya ianya boleh digunakan seterusnya sebagai input

untuk pengesanan kod klon. Isu utama yang timbul dalam kedua-dua proses ini adalah

aplikasi teknik pra-pemprosesan dan transformasi yang mungkin akan menyebabkan

kehilangan maklumat kritikal seterusnya menjejaskan keputusan pengesanan kod klon.

Oleh itu, kajian ini mencadangkan satu proses gabungan antara pra-pemprosesan dan

transformasi yang boleh menghasilkan kod unit yang lebih baik bagi kod dari platfom .Net

iaitu C#.Net dan VB.Net dengan menambahbaik hasil penyelidikan sebelum ini yang

menggunakan Java tanpa memberi kesan kepada maklumat yang kritikal dalam kod.

Penambahbaikan yang dicadangkan ini telah diuji dan hasilnya menunjukkan bahawa

kajian ini telah menghasilkan kod unit seperti yang diramalkan bagi kod dari platfom .Net.

Kata kunci: Proses pra-pemprosesan, proses transformasi, kod klon

© 2015 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

Code clone has been known to be an issue during

maintenance of software. Code clone happens

during software maintenance is due lack of awareness

of newbie developers during maintenance of a

software. A preliminary study in understanding

problems in the code clone detection phase and

modification phase among programmers especially

novice programmers shows that most of the novice

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/78378178?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

166 Al-Fahim Mubarak-Ali & Shahida Sulaiman / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 165–172

programmers may not be aware of the existence of

code clones during the software maintenance phase

[1].

Code clone is a common taxonomy used to refer

codes that have been repeated multiple times in a

program. Although code clone is a universal term used

by researchers, yet there are also different terms used

in addressing code clone. These difference occurs due

to the different definition of similarity and associated

level of tolerance allowed for the code clone [2].
 The most commonly used terminology for code
clone is categorized into four types which are Type 1,
Type 2, Type 3 and Type 4. Type 1 is an exact copy of
code without modifications with exception to white
space and comments. Type 2 identifies identical copy
syntactically. It only allows changes to variable, type or
function identifiers. Type 3 is a copy code with further
modifications. Modification involves statements that
are changed, added, or removed. Type 4 is referred to
clones that are modified syntactically [3] [4].

Apart from the mentioned category of code
clones, other taxonomies used to refer code clone.
Table 1 shows the summary of other code clone
detection taxonomies.

Table 1 Taxonomy of clones

Taxonomy Description

Structural clone

 Structural clones are clones that
highlight the similarities in design level
(Hou et al., 2009). These clones reflect
classes that are interrelated that come
from design and analysis space at
architecture level.

Functional
clone

 Functional clones are clones that
occur at function or method level in
software (Rattan et al., 2013).

Induced clone

 Induced clones are clones that are
purposely induced into a program for
certain purposes such as for testing
code clone detection approaches.

Temporal clone

 Temporal clones are clones that
occur from temporary during
development when a program is
executed.

The newbies tend to revise only defective codes

they found first and not to search and revise their

clones instead of looking for the clones in the whole

software [1]. It is difficult for them to decide whether

they should revise the files even if they are able to

search for those files. Apart from that, it is difficult for a

novice programmer to search for his target precisely

with low cost. It is even more difficult to do it in large-

scale legacy software because the target is vast and

the terms are not standardized. Based on the outcome

of the preliminary study done, it shows the newbie

programmers have difficulty maintaining software due

to the lack of knowledge and awareness regarding

code clone. The practice that is adopted by them

clearly does not reduce code clone but might even

more code clones to occur. It is clear that it is hard for

the newbie programmers to track and change code

clones in large scale software systems due to non-

standardization used in that large scale software.

Although code clone has been adopted during

software development and maintenance, yet it has

some residing disadvantages to a software system.

Apart of being beneficial by speeding up

development process [5]; and overcoming reuse

mechanism and programming language [6, 7], the

disadvantages of code clone in software

development and maintenance includes:

1. Increase bugs and introduces new bugs in software

If a code segment that contains a bug is reused by

copy and paste technique without any changes,

the bug of the original segment may remain in the

pasted segments. Therefore, the probability for bug

propagation increases in a system. Furthermore,

new bugs might occur if the structure of duplicated

code is reused without any changes.

2. Bad software design

Due to the lack of good inheritance structure or

abstraction, code cloning may cause bad design.

Consequently, it makes the reuse of the inheritance

or abstraction for future project implementation

impossible thus badly affect maintainability of the

software.

3. Halts system improvement

Additional time and attention in understanding

existing implemented code clone and concerns

that need to be implemented. Therefore, it is

difficult to add changes to the system.

4. Resource requirement escalates

Since code clone increases the size of the

program, hardware specification also needs to be

upgraded. Furthermore, compilation time also has

a detrimental effect on the edit-compile-test cycle

as the compiler need to compile many codes in

order to achieve the output.

 In order to understand the process of code clone
detection, Figure 1 shows a generic code clone
detection process that is used by most researchers [8].
The generic process is through the general unification
of existing steps and approaches that has been used
by existing researchers. Most of the code clone
detection tools adopt partially or fully the processes
mentioned in the generic code clone detection
process.

167 Al-Fahim Mubarak-Ali & Shahida Sulaiman / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 165–172

Figure 1 Generic Code Clone Detection Process [8]

Pre-processing is the first process in any code

clone detection approach. The purpose of this process

is to remove uninteresting parts, determine the source

units and determine the comparison unit [8].

During the pre-processing process, all unwanted

and uninteresting source code that is not for the

purpose of comparison from is removed from this

phase. The remaining source codes are then

partitioned into source units. These source units are not

in order; therefore it cannot be aggregated beyond

the boundaries of the source units. There are several

granularities for source unit such as classes, functions,

methods, blocks and sequence of source code line.

Based on the comparison function of a method, the

source unit might be partitioned again into smaller

units. These units might be divided into lines, or tokens

for comparison purposes. The comparison units can

also be derived from the syntactic structure of the

source unit. Another important aspect of the source

units is the order of the source units. The order of the

source unit is important for comparison purposes.
 Transformation is the second process in the generic
process model and its main function is to transform the
comparison units that were obtained from the previous
process into another representation form that contains
certain comparable properties. These comparable
properties are attributed mainly to the match
detection techniques that will be used for clone
detection. Therefore, different transformation process
yields different comparable properties. Table 2 shows
the transformation approaches that can be used to
extract the comparable properties.

Table 2 Transformation Approaches [8]

Transformation

Approach

Description Comparable

Property

Tokenization Each line of the

source is divided

Into tokens. These

tokens correspond

to a lexical rule of

the involved

programming

language. The

token lines are

then formed into

token sequences

for the detection

purposes.

Token or a

group of

tokens

Parsing The entire source

codes of the

software are

parsed into

abstract syntax

tree. The source

unit and

comparison units

are represented in

the form of sub

tree.

Syntax or suffix

tree

Normalizing

identifiers

Usually applied in

most of the

approaches

where the

identifiers of the

source code are

replaced by a

single token in

such

normalizations.

Token

Transformation of

program

elements

Apart from the

normalization of

the identifiers,

several other

transformation

rules might be

applied to the

source code

elements.

Depend on the

applied rules

The issue arises in both of this processes is the use of

pre-processing techniques and transformation rules
might negligence of unneeded in the source codes
such as package names and comments that
influences the code clone detection results. The
information might produce clones with different
information; thus affecting the end result of code clone
[2]. As an example, transformation of package names
applied in CCFinder removes the initials of the
package names in a Java source file. Package names
and imports in Java applications are essential.
Although it is changed by removing the initials, it
doesn’t serve as a clone in any clone granularity since
clones are detected at a function manner. Another
disadvantage of the existing works in Java is
negligence in handling comments. Comment is an
important component in source code. It serves as notes
for developers and future developers when developing

168 Al-Fahim Mubarak-Ali & Shahida Sulaiman / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 165–172

or maintaining software. The applied transformation
rules often disregard the comments importance as it
influences the clone detection processing time.
Furthermore, token based source representations such
as CCFinder [7] divides a source line into multiple
tokens; thus requires longer processing time and larger
memory.
 Therefore, this work aims in enhancing the pre-
processing and transformation process that reduces
the loss information and processing time thus produce
a better pre-processing and transformation process in
improving code clone detection results for .Net
platform programming language. These two processes
are the main focus of this paper since the
aforementioned problem can only be resolved in these
two phases.

2.0 RELATED WORK

Most of the early works in code clone that uses text as
intermediate representation are used in detecting
clones in C source codes. A text to text source
transformation was introduced for clone detection and
change tracking [9]. This work uses this transformation
to produces substrings that later on is used to detect
code clones using substring match detection. The
source transformation rules include in removing all
white space characters, removing all white space
except for line separators, replacing each sequence of
white space characters by a single blank, removing
comments, retaining only comments and replacing
each identifier by an identifier marker. The source
transformation is applied in various combinatorial
manners.

A language independent approach was proposed
to detect C language code clone [10]. This work uses
source code that has gone through source
transformation as the intermediate representation.
Since it uses string based approach for detection
purposes, the source transformation that is done on the
code fragment is minimal so that it stays within the sight
of string manipulation. A code fragment in this work is
referred to a source code line. The transformation
applied in this in removing comments and whitespaces
until a condensed form of C code is obtained. A widely
used token based code clone detection which is
CCFinder [11] applies source transformation to its
targeted Java and C# source files. Source
transformation is the second process in code detection
in this tool. The tokenized code goes through source
transformation by the transformation rule and
parameter replacement step. The transformation and
parameter replacement applied for both Java and C#
applications.

A hybrid technique of pre-processing and
transformation process for code clone detection in
Java language [12]. This work proposes a hybrid
technique for pre-processing transformation process
that transforms Java source code into source units
based on a combination set of pre-processed and
transformation rules. The proposed source units can be
served as input for code clone detection techniques
and approaches. The source units are composed in the
hybrid form of text and tag. Table 3 shows the

comparison of the related work with the proposed
work.

Table 3 Comparison with Related Work

Feature Representation

Output

Language

Text to text [9] String C

Text to String [10] Condensed code C

CCFinder [11] Tokens Java, C++

Hybrid Technique

[12]

String and tags Java

Proposed Work String and tags C#.Net

VB.Net

 Although these works have successfully transforms the
source code, yet there are still disadvantages to the
previously applied transformation rules. The pre-
processing and transformation is highly dependable on
the programming language structure. Most of the
programming language has a different way of
addressing package names and imports. CCFinder [11]
of package transformation is done by removing the
initials of the package names in a Java source file.
Package names and imports in Java applications are
essential. Although it is changed by removing the
initials, it doesn’t serve as a clone in any clone
granularity since clones are detected at a function
manner.

Comment is also an important component in a
source code file. Although there are rules applied in
detecting, but it is important to know that the style of
comment writing is different between programming
languages. The hybrid technique done managed to
remove the comments from the Java source file [12]
but the applied transformation rules in other works
often disregard the comments importance as it
influences the clone detection processing time.
Therefore, it is important to know style of commenting
for each programming languages for the effectiveness
of the applied rules. Token based source
representations such as CCFinder [11] divides a source
line into multiple tokens; thus requires longer processing
time and larger memory.

3.0 THE PROPOSED WORK

This work adopts the hybrid technique of pre-
processing and transformation process for code clone
detection that was done in Java language [12]. This
work enhances the hybrid technique by proposing pre-
processing and transformation rules for the .Net
platform language. The flow of this process is shown in
Figure 2.

169 Al-Fahim Mubarak-Ali & Shahida Sulaiman / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 165–172

Figure 2 The flow of the proposed work

 The input used for this technique is C#.Net and
VB.Net applications. .Net platform language
applications include .Net source library, libraries and
extended libraries. Therefore, C#.Net and VB.Net
source files (files that contain the file extension of .cs
and .vb) are extracted out from the application.
 The improved hybrid technique consists of
combination of five rules which are PR-1, PR-2, PR-3,
TR-1 and TR-2. The purpose of these rules is to process
and transform the source files into source units without
losing too much information of the source codes in the
source files. This rules are also to generalize the source
codes so that more variation in the code clone
detection result and analysis [4]. The rules applied
influence the code clone detection results. Therefore,
the rules must not be too rigid so that the information in
the source codes can be sustained for clone
detection purposes. Furthermore, this rules are also
designed to overcome the aforementioned gaps. The
rules applied for the .Net platform language are
described in Table 4.

 The output is function based source units that are

obtained after going through the hybrid technique.

The representation form of this source units are hybrid

of text and token that are stored in a single .Net

source file.

If,

 nF = .Net folder of tested application;
 F = files;
 cSF = C#.Net source file;
 vSF = VB.Net source file;
 cSCL = C#.Net source code line;
 vSCL = VB.Net source code line;
 PR-1 = First pre-processing rule;
 PR-2 = Second pre-processing rule;
 PR-3 = Third pre-pocessing rule;
 TR-1 = First transformation rule;
 TR-2 = Second transformation rule;

Table 4 The Hybrid Rules [12]

Rule# Description

PR-1: Remove
package and
import statements

This rule is designed to remove
the import statements and
package names from the
source file.

PR-2: Remove
comments

This rule attempts to remove
comment lines occur in new
lines.

PR-3: Remove
empty lines

This rule is to remove all empty
lines in the source file.

TR-1:Keywords
regularization with
identifiers

Keywords are words that have
a predefined meaning in a
programming language. The
keywords that are replaced
with unique identifiers in this rule
are:

 string -> [s]

 char -> [c]

 int -> [i]

TR-2: Regularize
function access to
public

This rule regularizes all the
function accesses into a single
function access; which is
public.

.

 Therefore, the pseudocode of the hybrid technique

for the improved hybrid technique of pre-processing

and transformation process for the .Net platform is:

1 Read nF

2 if nF is empty

3 Read next nF

4 else if nF is not empty

5 Read F in cSF and vSF

6 if F is not cSF or vSF

7 Remove F

8 else if F is cSF and vSF

9 for each cSF and vSF

10 Read cSCL and vSCL

11 if cSCL and vSCL is empty

12 Continue to next cSCL and vSCL

13 else if cSCL and vSCL is not empty

14 Apply PR-1

15 Apply PR-2

16 Apply PR-3

17 Apply TR-1

18 Apply TR-2
19 Continue from 9 to 19 for all cSF and vSF

4.0 RESULT

4.1 Experimental Setup

The proposed work was developed and tested using

Netbeans 8.0. The test used a workstation with the

specification of 3.20GHz CPU, 12GB of memory with

•VB.Net source file

• C#.Net source fileINPUT

•Application of PR-1,
PR-2, PR-3, TR-1
and TR-2 in
mentioned order.

HYBRID
PROCESS

• Function based
source unitsOUTPUT

170 Al-Fahim Mubarak-Ali & Shahida Sulaiman / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 165–172

Windows 8.1 as its operating system. Dataset for

evaluation of proposed work is a challenge as current

benchmark dataset available is from Bellon’s

benchmark data [2] that consist of C and Java only. A

total of six applications were used to test the

workability of the proposed work. Three of the

application files were C#.Net project files and the

other three application files were VB.Net project files

from open source code and project repository [13, 14].

Table 5 and 6 shows the details of each project files

respectively.

Table 5 C# .Net dataset

Project Language Source

File

Folder

Size

(MB)

Satsuma 0.1alpha

[14]

C#.Net 62 0.5

NClass v2.04 [14] C#.Net 540 3.7

SharpDevelop

5.1.0.4936 [14]

C#.Net 11515 71.9

Table 6 VB .Net dataset

Human Resource

Management

System [13]

VB.Net 70 8.05

Hotel Management

System [13]

VB.Net 99 4.16

Medical Information

System [13]

VB.Net 133 2.18

The result obtained is evaluated on two aspects

which are the representation of the source units and

the runtime performance of this process.

4.2 Source Units

Figure 3 shows the sample C#.Net source code while

Figure 4 shows the sample VB.Net source code taken

from the data set. The C#.Net source code in Figure 3

contains a function that starts with ‘protected’, empty

lines and comments between the line of codes. The

sample VB.Net source code shown in Figure 4 contains

package name, comments, empty lines and keyword

of ‘string’. Both of the sample codes in Figure 3 and

Figure 4 are common view of source code in a .Net

platform language.

Figure 3 C#.Net sample source code

Figure 4 VB.Net sample source code

Figure 5 shows the application result of the improved

hybrid technique on C#.Net while Figure 6 shows the

application result of the hybrid technique on VB.Net.

The package names, comments and empty lines from

both of the C#.Net and VB.Net source code is gone

due the application of the rules. The keyword in Figure

4 has also been changed according to the applied

rules.

171 Al-Fahim Mubarak-Ali & Shahida Sulaiman / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 165–172

Figure 5 C#.Net sample source code output

Figure 6 VB.Net sample source code output

4.3 Runtime Performance

Runtime performance refers to the overall time taken

to complete the process. Figure 7 shows the runtime

performance taken by the proposed work for C#.Net

source code applications.

Figure 7 Runtime performance for C#.Net application

Satsuma 0.1alpha has the lowest runtime

performance which is 11 milliseconds compared to

SharpDevelop 5.1.0.4936 which has 15 milliseconds.

NClass v2.04 has the highest runtime performance with

44 milliseconds.

Figure 8 shows the runtime performance taken by

the proposed work for VB.Net source code

applications.

Figure 8 Runtime performance for VB.Net application

Medical Information System has the lowest runtime

performance compared to other VB.Net applications

with 67 milliseconds compared to Hotel Management

System which has 88 milliseconds. Human Resource

Management System has the highest runtime

performance with 139 milliseconds.

5.0 DISCUSSION

Based on the experiments and results, the proposed
work was able to produce function based source unit
from the enhancement of the hybrid process of pre-
processing and transformation. The proposed work
which was enhanced from a previous work [12],
currently able to produce a better .Net platform
languages source representation for code clone
detection purposes. Although there are improvements
based on the experimental results, yet there are issues
that can deter the validity of the results.

 Sample data used for experiments are three C#.Net

and three VB.Net applications. The size and structure of

the source code for these six applications are not same

and vary each other. Each application has different

amount of line of codes (LOC) and source files. The

results might vary with more sample data with a bigger

amount of the LOC and source files. The lack of

172 Al-Fahim Mubarak-Ali & Shahida Sulaiman / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 165–172

standardisation of data set is one of the biggest threats

to the validity of the data.

Furthermore, the naming convention, code

structure, amount of functions, system architecture and

coding styles vary between these sample applications.

Since it is vary between the applications, the runtime

performance is affected by these variants.

 Another rising issue to validity of the results is the

hardware specification. Hardware specification that is

used for this experiment support current sample data.

As the technology improves and updates, the

improved hardware specification will result in better

runtime performance.

6.0 CONCLUSION

This paper explains the proposed work which is the
enhancement of hybrid process of pre-processing and
transformation with an aim to produce better source
units for C#.Net and VB.Net source codes without
jeopardizing the information of a source file. The
experimental results show that the hybrid process
managed to produces expected source units.
As for future work, the hybrid process will be refined to
support other structural and procedural programming
language detect code clone for the purpose of code
clone detection analysis.

Acknowledgement

The authors acknowledge Fundamental Research

Grant Scheme (FGRS) under the Ministry of Education,

Cost Centre 4F263 that partially supports this work.

References

[1] Kawaguchi, S., Yamashina, T., Uwano, H., Fushida, K., Kamei,

Y., Nagura, M., et al. 2009. SHINOBI: A Tool for Automatic

Code Clone Detection in the IDE. Presented at the Reverse

Engineering, 2009. WCRE '09. 16th Working Conference on,

2009.

[2] Bellon, S., Koschke, R., Antoniol, G., Krinke, J., and Merlo, E.

2007. Comparison and Evaluation of Clone Detection Tools.

IEEE Transactions on Software Engineering. 33: 577-591,

[3] Roy, C. K. 2009. Detection and analysis of near-miss software

clones. In IEEE International Conference on Software

Maintenance. 447-450.

[4] Mubarak-Ali A.-F., Syed-Mohamed S.-M., and Sulaiman S.

2011. An Enhanced Generic Pipeline Model for Code Clone

Detection. In 5th Malaysian Conference in Software

Engineering (MySEC). 434-438.

[5] Hou, D., Jacob F., and Jablonski P. 2009. Exploring the

Design Space of Proactive Tool Support for Copy-and-Paste

Programming. Presented at the Proceedings of the 2009

conference of the Centre for Advanced Studies on

Collaborative Research (CASCON '09), Toronto, Ontario,

Canada.

[6] Kapser, C. J. and Godfrey, M. W. 2006. Supporting the

Analysis of Clones in Software Systems. Journal of Software

Maintenance and Evolution: Research and Practice. 18: 61-

82.

[7] Kapser, C. J. and Godfrey, M. W. 2008. Cloning Considered

Harmful Considered Harmful: Patterns of Cloning In

Software. Empirical Software Engineering. 13: 645-692,

[8] Roy, C. K. and Cordy, J. R. 2007. A Survey on Software Clone

Detection Research. SCHOOL OF COMPUTING TR 2007-541.

QUEEN’S UNIVERSITY. 115.

[9] Johnson, J. H. 1994. Substring Matching for Clone Detection

and Change Tracking. In International Conference on

Software Maintenance. 120-126.

[10] Ducasse, S., Rieger, M., and Demeyer, S. 1999. A Language

Independent Approach for Detecting Duplicated Code.

Presented at the Proceedings of the IEEE International

Conference on Software Maintenance.

[11] Kamiya, T., Kusumoto, S., and Inoue, K. 2002. CCFinder: A

Multilinguistic Token-based Code Clone Detection System

for Large Scale Source Code. IEEE Transactions on Software

Engineering. 28: 654-670.

[12] Mubarak-Ali A.-F. and Sulaiman S. 2014. A Hybrid Technique

in Pre-Processing and Transformation Process for Code

Clone Detection. In Software Engineering Conference

(MySEC), 2014 8th Malaysian. 102-107.

[13] FreeStudentsProjects. 2014. FreeStudents Projects. Available:

http://www.freestudentprojects.com/.

[14] Sourceforge.net. 2014. Sourceforge.net. Available:

http://sourceforge.net/home.html.

http://www.freestudentprojects.com/
http://sourceforge.net/home.html

