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Abstract 

Blast furnace sludge (BFS) was analyzed for mercury (Hg) for the first time. The 

content ranged between 0.006 and 20.8 mg kg–1 (median: 1.63 mg kg–1) for 65 

analyzed samples from seven former BFS dumpsites in Europe. Sequential ex-

traction procedure on 14 of these samples revealed that Hg was mainly present 

in immobile fractions (> 90 %). The ecotoxically relevant fractions were not of ma-

jor significance. Volatilization from BFS (mixed with basic oxygen furnace sludge) 

was low but significant. Mercury release increased with temperature (15 to 

25 °C). However, surprisingly Hg flux at 35 °C was lower than at 25 °C. 

Nevertheless, BFS should be regarded as potential hazardous waste and Hg 

source, respectively, as Hg is bioaccumulative and is considered as one of the 

most important environmental pollutants. 
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Kurzzusammenfassung 

Gichtgasschlämme wurden erstmalig hinsichtlich einer Quecksilberbelastung (Hg) 

untersucht. Die Gehalte in 65 Proben von sieben ehemaligen Oberflächenhalden in 

Europa reichten von 0,006 bis 20,8 mg kg–1 (Median: 1,63 mg kg–1). Eine sequentiel-

le Extraktion an 14 dieser Proben ergab, dass Hg im Wesentlichen in immobilen 

Fraktionen vorlag (> 90 %). Die unmittelbar umweltrelevante Fraktionen waren von 

untergeordneter Bedeutung. Eine Hg-Entgasung aus Gichtgasschlämmen (vermischt 

mit Konverterschlämmen) war signifikant aber niedrig. Die Entweichungsrate stieg 

mit der Temperatur (von 15 auf 25 °C), war jedoch bei 35 °C niedriger als bei 25 °C. 

Trotzdem sollten GGS als Hg-Quelle betrachtet und als potenziell umweltgefähr-

dend eingestuft werden, insbesondere da Hg bioakkumulierend ist und als Um-

weltschadstoff von übergeordneter Bedeutung anzusehen ist. 
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Introduction 

Steel is a widespread basic material in modern societies. The global demand for this 

material has increased over the last decades from an annual crude steel production 

of 716,401∙ 106 megagram (Mg) in 1980 to 1,649,303 ∙ 106 Mg in 2013 (World Steel 

Association, 2014a). In a global perspective, two major commercial processes for 

steel production are applied: the basic oxygen steelmaking, where liquid pig iron and 

scrap steel are maintained, and the electric arc furnace steelmaking, which uses 

scrap steel or direct reduced iron (Fe). According to the (World Steel Association, 

2014d), 69.9 % of the global steel production in 2012 were manufactured using the 

basic oxygen furnace process, whereas 29.3 % were produced using the electric arc 

furnace process. 

The production of steel results in a rise of considerable amounts of solid byproducts 

such as slags, ashes, dusts, scales, and sludge. Data of the actual production of by-

products per Mg crude steel are rare, as the exact amount varies from production 

routes, composition of charge material, and process applications. For the steelmak-

ing route via electric arc furnace the amount is stated at 181.4 kg per Mg crude steel, 

whereas crude steel produced in basic oxygen process results in 424 kg of by-

products per Mg crude steel (World Steel Association, 2014b). These wastes had 

been frequently deposited in uncontrolled landfills until the commencement of strict 

environmental laws in the 1960s and 1970s in Europe and elsewhere. 

Nowadays, the integrated steel making industry has put a lot of effort into finding 

ways of utilizing these undesirable materials, due to both from an economical as well 

as an ecological point of view. Over the last decades, the depositing cost for industri-

al wastes has increased due to increasing environmental restrictions. The World 

Steel Association (2014c) designated a material efficiency of 96 %. However, the tra-

ditional routes of internal recycling of some wastes, especially several slags and 
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sludge, are limited due to relatively low intrinsic monetary value as well as chemical 

(e.g. zinc (Zn), lead (Pb), and alkali metals (Das et al., 2007) and/or physical complex 

compositions (e.g. too fine-grained material (Makkonen et al., 2002)). In addition, the 

reuse in other branches of industry is frequently eliminated due to undesirable ele-

ments or physical properties of the material itself. Consequently, significant amounts 

are nowadays still sent for actual disposal or deposition.  

 

Blast furnace sludge 

Blast furnace sludge (BFS) is one of the typical steel making related wastes. It is 

generated during the wet dust separation of blast furnace gas. Blast furnace gas in 

turn occurs at the melting reduction process to transfer Fe from ores into its ele-

mental form. Therefore, the Fe ores (e.g. wüstite (FeO), hematite (Fe2O3), and mag-

netite (Fe3O4)) in form of pellets or sinter are continuously charged into the blast fur-

nace combined with high carbon (C) fuels (mainly coke) and flux additives (e.g. lime-

stone). In a complex process, C is transferred to carbon monoxide (CO) and carbon 

dioxide (CO2) which further reduce Fe from the different Fe-bearing materials step-

wise to its elemental form. The molten Fe is accumulated as pig iron at the bottom of 

the blast furnace, tapped frequently, and further processed for steel making. 

All reactions in the furnace are enhanced by the countercurrent exchange of the re-

ducing gas streaming up through the furnace and the fresh charge material traveling 

down into the reaction zone. The process gas composition strongly varies as a func-

tion of process applications and the composition of introduced charge material. How-

ever, major constituents are CO, CO2, and nitrogen (N2), whereas hydrogen (H2), 

water vapor, and methane occur in minor amounts. Furthermore, the gas contains 

significant amounts of low melting point elements such as Zn, lead Pb, potassium 

(K), and sodium (Na). Besides the gaseous phases, blast furnace gas contains sus-
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pended, solid phases such as coke, Fe ores, additives, and their reaction products, 

which it drags along. The particles content varies from 5.5 to 40 kg per Mg pig iron 

produced (Remus et al., 2013) depending on process conditions. The gas is dis-

charged at the top of the furnace and subsequent progressively cleaned. After e.g. 

axial cyclones or dust catchers separate off coarse particles, the gas is disburdened 

of fine dust (< 0.1 mm) using electrostatic precipitator and annular gap scrubbers. 

This produces 3.5 to 18 kg of dry dust per Mg pig iron and 2 to 22 kg of sludge per 

Mg pig iron (Remus et al., 2013). Depending on charge material composition and 

water availability, the overflow of the circuit normally varies between 100 and 3,500 L 

process water per Mg pig iron (Remus et al., 2013). The resulting muddy waste is 

referred to as BFS after the separation of solid material from the bulk of process wa-

ter.  

In general, BFS are neutral to alkaline with a pH ranging from 7.1 to 10.7 

(Kretzschmar et al., 2012; Mansfeldt and Dohrmann, 2004; Veres et al., 2012). As 

pointed out by Mansfeldt and Dohrmann (2004), slightly alkaline conditions (< pH 8.5) 

of the BFS can be explained by the presence of carbonates (CaCO3). However, dur-

ing the metallurgical process CaCO3 is converted to burnt lime (CaO) which further 

hydrolyzes to slaked lime (Ca(OH)2) during storage. Both compounds present in BFS 

can raise pH of BFS to alkaline conditions. As a result of the progressively gas purifi-

cation, BFS is a material of rather fine grain-sizes. Blast furnace sludge samples from 

the U.S. Steel Košice s.r.o. (Slovakia) were analyzed for their granulometric distribu-

tion (Veres et al., 2011; Veres et al., 2010; Veres et al., 2012). In one study, the 

analysis yielded a heterogeneous distribution of particle sizes with a fine grained por-

tion (1 – 10 µm) and a coarser fraction (10 – 100 µm), where 90 % of the particles 

were smaller than 50 µm. In the other study, 70 to 75 % of the particles had a grain 

size between 0.9 and 30 µm. The fine-grained particle sizes of BFS result in relatively 
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large surface areas (Brunauer–Emmet–Teller (BET) method). Surface areas ranging 

from 15 to 89 (Mansfeldt and Dohrmann, 2004), 17 and 27 (Lopez-Delgado et al., 

1996), and 31.5 m2 g–1 (Malina and Radenovic, 2014) have been published. Both 

Mansfeldt and Dohrmann (2004) and Lopez-Delgado et al. (1996) proved a decreas-

ing BET with increasing C content. Malina and Radenovic (2014) further determined 

total pore volume (1.7 – 300 nm) and average pore diameter yielding values of 

157 · 10–3 cm3 g–1 and 17.9 mm, respectively. According to IUPAC classification of 

porous solids into three groups (micropores: d < 2 nm; mesopores: 2 < d < 50 nm; 

macropores: 50 nm < d), BFS was considered as mesoporous material. 

The elemental composition of BFS strongly varies as a function of applied charge 

material and their impurities, respectively. It is dominated by C (median: 149 g kg–1; 

min: 69.0 g kg–1; max: 405 g kg–1) and Fe (median: 159 g kg–1; min: 57.9 g kg–1; max: 

275 g kg–1) which are present in form of particles of coke, carbonates, and Fe ore 

(Mansfeldt and Dohrmann, 2004). Further major elements are calcium (Ca), silicium 

(Si), aluminium (Al), Zn, and magnesium (Mg) in descending order ranging from 100 

to 10 g kg–1 (median), which originate from impurities of the charge materials. The 

median concentrations of Pb, manganese (Mn), K, sulfur (S), N, phosphorous (P), 

titan (Ti), barium (Ba), and Na range from 9.83 to 0.590 g kg–1. The clearly elevated 

contents of Zn (up to 100 g kg–1) and Pb (up to 12.0 g kg–1) in BFS are widely de-

scribed in the literature (Borisov et al., 2014; Kretzschmar et al., 2012; Mansfeldt and 

Dohrmann, 2004; Remus et al., 2013; Roederer and Gourtsoyannis, 1996; Veres et 

al., 2011). The enrichment cannot be exclusively explained by mechanical transport 

with the gas stream. In fact, these elements are enriched in BFS due to their relative-

ly low melting points (Zn: 419.5 °C; Pb: 327.5 °C) which leads to a transition to the 

gas phase during the combustion process. Fractions of the evaporated elements 

leave the blast furnace directly, whereas other fractions condense on dust particles 
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due to the decreasing temperature in the upper shaft of the furnace. Particle-

associated Zn and Pb have grain sizes of less than 25 µm and are hence removed 

from blast furnace gas during the wet purification and thus concentrated in BFS 

(Remus et al., 2013). 

From a mineralogical point of view, BFS clearly reflects the blast furnace process. 

Kretzschmar et al. (2012) analyzed 32 samples collected from a former dump site by 

powder X-ray diffraction and Rietveld refinement: the dominated phases were quartz 

(18 – 214 g kg–1), calcite (48 – 208 g kg–1), hematite (9 – 108 g kg–1), kaolinite (0 – 

78 g kg–1), magnetite (10 – 57 g kg–1), graphite (0 – 57 g kg–1), and wüstite (3 – 

49 g kg–1). Besides these crystalline phases, a very large fraction (432 – 798 g kg–1) 

of BFS was X-ray amorphous. Veres et al. (2012) showed similar, but only qualita-

tive, results also finding hematite, magnetite, calcite, quartz, and amorphous com-

pounds. They explained the indistinct signal by the presence of coke and less crystal-

line oxides bearing Al, Zn, Pb, and other metals.  

Workable data concerning the fate of BFS are hard to obtain as several steel produc-

ers publish reports only partial or not at all. Roederer and Gourtsoyannis (1996) most 

comprehensively documented data for the EU without distinguishing between BFS 

and blast furnace dust. According to this roughly two thirds of the waste is re-cycled 

on-site (64 %), one third is landfilled, and minor amounts are either sold, stored, or 

used externally (each with 1 %). Utilizing BFS in the blast furnace process is prefera-

ble under several considerations as the waste contains large amounts of “unused” 

charge material. Increasing the extraction efficiency of the required elements, mainly 

C and Fe, would be more sustainable and cost saving (less initial and disposal 

costs). However, internal recycling of BFS (via e.g. sintering) is currently more diffi-

cult for BFS than dust because of the elevated Zn contents, which can cause opera-

tional difficulties in the blast furnace. Although much effort is put on Zn recovery from 
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steel making related sludge (Cantarino et al., 2012; Langova and Matysek, 2010; 

Trung et al., 2011; Zeydabadi et al., 1997), major amounts of accruing BFS are still 

deposited due to the chemical composition. 

 

Mercury 

Mercury (Hg) is a transition metal of special concern as the element and many of its 

compounds are highly toxic, persistent, and readily released into the environment 

due to their high mobility and volatility. It is considered as one of the most important 

environmental pollutants (WHO, 2005). Overall, Hg occurs naturally in all environ-

mental compartments but rarely as a native metal. The average crustal occurrence is 

stated in the literature as 56 to 80 µg kg–1 (Alekseenko and Alekseenko, 2014; 

Wedepohl, 1995) with significant local variations. Its major abundances in the litho-

sphere are the minerals cinnabar (HgS), corderoite (Hg3S2Cl2), and livingstonite 

(HgSb4S8) with HgS being the most common Hg containing ore. Highest contents of 

Hg and Hg containing ores, respectively, are found in volcanically and/or hydrother-

mically active zones. From the predominant occurrence of Hg in volcanically and hy-

drothermically active zones, the major natural sources of Hg to the atmosphere can 

be deduced: volcanism, geothermal activity, and weathering of geologic deposits. 

Major anthropogenic sources of Hg are the combustion of fossil fuels (basically com-

bustion of coal), artisanal and small-scale gold production, cement production, and 

metal production (> 75 % of anthropogenic Hg emissions). Total emissions to the 

atmosphere were estimated to be approx. 1960 Mg for 2010 (UNEP, 2013). Howev-

er, 60 % of the annual emissions to the atmosphere result from “re-emissions” from 

surface soils and oceans where the original sources cannot be distinguished with 

certainty. As the anthropogenic sources account for 30 % whereas natural geological 
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sources only account for 10 %, it is obvious that anthropogenically released Hg is 

clearly overweighing since the on-set of the industrial era.  

Owing to environmental concerns regarding Hg emissions, the United Nations Envi-

ronmental Programme (UNEP) supports both national and international legislative 

bodies to reduce Hg emissions (UNEP, 2002). Among others these are the Conven-

tion on Long-range Transboundary Air Pollution Protocol on Heavy Metals of the 

United Nations Economic Commission for Europe (UNECE), the North American Re-

gional Action Plan (NARAP) on Mercury under the auspices of the U.S., Canada, and 

Mexico, and recent adoption of the international Minamata Convention on Mercury. 

All these actions have led to a decrease of atmospheric Hg in rural areas from about 

1.35 ng m–3 around 1996 to about 0.9 ng m–3 around 2008 in the southern hemi-

sphere (Cape point, South Africa) and from about 1.75 ng m–3 in 1996 to 1999 to 

about 1.4 ng m–3 in 2009 in the northern hemisphere (Mace Head, Ireland) (Slemr et 

al., 2011). Mercury in the atmosphere exists predominantly as elemental (Hg0), oxi-

dized (Hg2+), and particulate (Hgp) Hg. Elemental Hg is relatively inert and slightly 

soluble which results in a rather long atmospheric lifetime ranging from several 

months to two years (Schroeder and Munthe, 1998; Weiss-Penzias et al., 2003) until 

it is removed via wet or dry deposition. As it is the predominant species (> 95 %) of 

Hg in the atmosphere and it persists in air quite long (Valente et al., 2007; Xu et al., 

2014), Hg0 can be dispersed and transported globally, emphasizing the need for in-

ternational action. Conversely, Hgp and Hg2+ are (highly) reactive and soluble result-

ing in a rapid removal within one day to one week and thus both species are rather 

regionally or locally deposited (Valente et al., 2007). Consequently, chemical trans-

formation between these species directly affects the lifetime of atmospheric Hg and 

deposition rate, respectively, via oxidation to less volatile and more soluble com-

pounds and vice versa. Natural atmospheric deposition rate for preindustrial era in 
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remote regions typically ranged between 2 and 5 µg of Hg m–2 y–1 based on lake sed-

iments, sea sediments, and peat cores analyzes (Leipe et al., 2013; Swain et al., 

1992). However, Bindler (2003) determined even lower natural background deposi-

tion rates (0.5 to 1 µg of Hg m–2 y–1) in the period between 4000 and 500 BP analys-

ing long peat cores in southcentral Sweden. 

Recent deposition rates strongly vary as a function of exposition, season, and loca-

tion. Ettler et al. (2008) showed high deposition rates near a lead smelter in the 

Příbram area, Czech Republic, ranging from 4.7 to 34.4 μg m–2 y–1 in 1999. Grant et 

al. (2014) calculated elevated Hg deposition rates for the Great Lakes, United States 

and Canada, using a comprehensive model evaluation: deposition fluxes ranged 

from 23.1 ± 0.74 μg m–2 y–1 (Lake Superior) to 32.6 ± 0.83 µg m–2 y–1 (Lake Erie) for 

2005. Sediment cores from an urban site at South Reservoir near Boston, United 

States, resulted in a deposition rate of 88 μg m–2 y–1 (Chalmers et al., 2014). An at-

mospheric deposition rate of 16 μg m–2 y–1 was determined by Van Metre (2012) in 

rural Maine, United States, corresponding well with deposition rate of 20 μg m–2 y–1 

for New England, United States (Driscoll et al., 2007). Van Metre (2012) further ana-

lyzed sediment cores from lakes near to (< 50 km) and remote from (> 150 km) sev-

eral major urban areas in the United States finding clearly elevated deposition rates 

for near-urban lakes (68 ± 6.9 μg m–2 y–1) compared to remote lakes (14 ± 

9.3 μg m−2 y−1). In this study, also flux ratios (modern to background) were calculated 

yielding increased deposition rate ratios of 9.8 ± 4.8 for lakes in urban agglomera-

tions and 3.5 ± 1.0 for remote lakes. 

Globally, the open ocean receives 90% of it Hg burden via wet or dry atmospheric 

deposition (Mason et al., 2012). The total Hg burden was stated to be 35,000 Mg (in-

cluding 15 % human impact) for ocean deep water and 7,000 Mg (including roughly 

60 % human impact) for ocean surface water (Selin, 2009).  
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Coverage of concentration measurement of Hg in ocean waters is limited although it 

has been increasing recently. However, Hg concentration in the marine system un-

derlies several spatial (horizontally and vertically) and seasonal variations. Mason et 

al. (2012) summarized numerous data sets, mainly from the Atlantic and Pacific 

Ocean, stating a total Hg concentration between 0.3 and 3 pM (picomolar, 1 pM = 

1012 mol L–1) for open ocean surface (Hammerschmidt and Bowman, 2012; Laurier 

et al., 2004; Mason et al., 1998). Measurements for deep ocean waters showed val-

ues ranging from 0.7 to 2 pM (Gustin et al., 2006; Zhang et al., 2014). Increasing in-

put of Hg to the aquatic environments, mainly from the atmosphere, has led to an 

anthropogenic enhancement in Hg concentration with a factor of 5 to 6 (Zhang et al., 

2014). In the aquatic system, Hg is typically present in three forms: dissolved and 

particulate Hg2+, dissolved gaseous Hg including Hg0 and dimethyl Hg ((CH3)2Hg), 

and dissolved and particulate monomethyl Hg (CH3Hg+) (Ci et al., 2011; Fitzgerald et 

al., 2007). The former is the predominant form of Hg in most marine environments, 

whereas dissolved gaseous Hg0 accounts for less than 30% of total Hg while the lat-

ter is basically present in traces (UNEP, 2013). Among the species, Hg2+ plays the 

key role as it drives numerous complex biogeochemical transformation processes in 

the aquatic system: (i) particulate scavenging of Hg2+ via adsorption and the subse-

quent sinking from surface water to water/sediment interface, (ii) photochemical and 

microbial reduction of Hg2+ to Hg0, and (iii) biotic methylation to the toxic bioaccumu-

lative CH3Hg+ and (CH3)2Hg. All processes result in Hg lost from marine environ-

ments, either via sedimentation on the seafloor or volatilization to the atmosphere. 

Sedimentary burial to the deep-ocean occurs very slowly and accounts for 200 to 

600 Mg of Hg y–1 therefore being the major sink (Mason and Sheu, 2002; Selin et al., 

2008). On a global basis, 89 % of Hg deposited in aquatic systems is re-emitted to 

atmosphere, predominantly in the form of Hg0 (Strode et al., 2007) but also in traces 
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as (CH3)2Hg. However, Hg can be re-suspended and re-mineralized from wa-

ter/sediment interface or re-deposited from the atmosphere completing the oceanic 

Hg cycle.  

Despite the fact that roughly 30 % of Earth’ surface is covered by land surface, 60 % 

of atmospheric Hg is deposited on terrestrial ecosystems (Mason and Sheu, 2002; 

Selin et al., 2008). This basically results from the emissions’ point sources on land 

and the subsequent wet deposition of Hgp and Hg2+ on a rather regional scale. Fur-

thermore, atmospheric oxidation of Hg0 to Hg2+, both in clouds and aerosols, might 

strengthen the disproportionately high terrestrial deposition.  

Estimations based on reported Hg concentrations in aboveground plant compart-

ments reveal the removal of over 1000 Mg of atmospheric Hg per year by the global 

biomass production (Obrist, 2007) being 20 % of total atmospheric Hg burden 

(Mason et al., 1994; Selin et al., 2008) and 40 % of Hg residing in the lower 5 km of 

the troposphere (Banic et al., 2003). Naturally, Hg becomes incorporated into soils 

via litterfall and plant senescence. On a global basis, natural background contents of 

Hg in most soils are suggested to range between 0.15 and 0.2 mg kg–1 (Hooda, 

2010). During the post-industrial era combustion of fossil fuels combined with long-

range atmospheric transport has increased the Hg in soils and sediments by a factor 

of 3 to 10 times (UNEP, 2013). Hence, human enhancement of Hg emissions have 

altered the natural Hg contents throughout global soil profiles to the extent that estab-

lishing ambient or background level for Hg in uncontaminated soils is extremely prob-

lematic if not unrealistic. Mercury in soils is strongly associated with S groups of or-

ganic matter resulting in elevated Hg contents in the upper 15 cm of soils. Selin et al. 

(2008) calculated the total global soil Hg burden to be in the range of 1 · 106 Mg as-

suming a global average soil content of 43 µg kg–1. Mason and Sheu (2002) further 

estimated an additional input of 0.15 · 106 Mg of Hg by anthropogenic influences. 
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However, Hg is re-emitted to the atmosphere both from Hg-enriched and low Hg-

containing substrates. Various authors (Coolbaugh et al., 2002; Engle and Gustin, 

2002; Engle et al., 2001; Gustin et al., 2003; Gustin et al., 2006; Zhang et al., 2003) 

have stated the emissions from soils to contribute substantially to the global Hg load 

of the atmosphere being in the range of 700 to 1000 Mg y–1.  

Depending on its association, Hg in soils can be divided into three pools: i) mineral 

Hg which is contained in the soil mineral fraction, ii) Hg associated with organic mat-

ter (OM), and iii) Hg adsorbed to the surface of soil particles. Although the total Hg 

content in any given rock type is no more than 0.05 mg kg–1 on average (Hooda, 

2010) and Hg is only released by weathering over long time scales, the large area 

covered by mineral soils make this the greatest Hg pool of the environmental com-

partments (Gustin et al., 2006; Schlüter, 2000). Mercury in the second pool is mainly 

derived from atmospheric deposition to soils and vegetation. Divalent Hg exhibits a 

strong affinity towards reduced S groups of OM and is hence protected against re-

duction until OM is decomposed or emitted by fire. Besides these strong complexes, 

Hg2+ can also be weakly bounded to negatively charged soil particles. Mercury in this 

third pool can easily be displaced by processes such as cation exchange or water 

addition (Farella et al., 2006). 

Although Hg2+ is the predominant form of Hg in soils, it is widely accepted that Hg 

volatilizing from soils is predominantly in the form of Hg0 and/or (CH3)2Hg, probably 

with minor amounts of CH3Hg+ and soluble Hg(II)-salts (Schlüter, 2000). The former 

are the only Hg species described as volatile species as they are water soluble with 

at least 500 times higher air/water-distribution constant than the non-volatile species 

(Iverfeldt, 1984). Environmental parameters affecting Hg emissions at the soil-

atmosphere interface are controlled by the fundamental soil properties (soil Hg con-

tent, pH, electrical conductivity, organic C, and soil texture), biological processes, and 
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meteorological parameters (incident light, temperature, precipitation, elevated soil 

moisture, interaction with atmospheric ozone, and atmospheric turbulences) and their 

interactions (Coolbaugh et al., 2002; Engle et al., 2005; Engle et al., 2001; Feng et 

al., 2005; Gustin, 2003; Gustin and Stamenkovic, 2005; Gustin et al., 1997; Lindberg 

et al., 1979; Lindberg et al., 1999; Nacht and Gustin, 2004; Poissant et al., 1999; 

Song and Van Heyst, 2005; Zehner and Gustin, 2002).  

Formation and turnover of Hg2+ to Hg0 in soils is controlled by both biotic and abiotic 

reduction (Schlüter, 2000). While abiotic reduction is basically mediated by humic 

acids, fulvic acids, and other reductants, such as Fe2+, biotic reduction is capable 

through Hg resistant soil microorganisms. Ravichandran (2004) reviewed the interac-

tions between Hg and humic and fulvic acids suggesting that dissolved organic mat-

ter (DOM) inhibit a dual role in determining Hg pathway in the geochemistry cycle: 

Both by complexation and reduction. Spectroscopic techniques as well as indirect 

evidence (e.g., inhibition of precipitation and enhanced dissolution of HgS by DOM) 

have confirmed extremely strong ionic bonding between Hg and reduced S sites of 

DOM in soils and aquatic organic matter (Skyllberg et al., 2006; Xia et al., 1999). 

Jiang et al. (2014) used three humic acids (HA) to illustrate abiotic reduction of Hg2+ 

by HA. They showed that increasing HA concentration led to an increase Hg2+ reduc-

tion and Hg0 production, respectively, up to a certain concentration (approximately 

100 mg C L–1) followed by a decline of Hg2+ reduction with excessively large HA con-

centration. Hence, at this point complexation of Hg2+ by HA seemed to be dominant 

and overshadowed the reduction phenomenon. Similar results were reported by Gu 

et al. (2011) and Rocha et al. (2003). Jiang et al. (2014) moreover pointed out the 

effect of visible light on Hg2+ reduction: Compared with samples obtained under dark 

conditions, the reduction process was enhanced by radiation. From their results, the 

authors further suggested Hg0 production by HA and catalyzed by light was similar to 
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the mechanism underlying Fe3+ and Cr6+ photoreduction by humic substances. This 

mechanism mainly consists of two steps: i) organic free radicals, hydroxyl radicals, 

and directive electrons caused by light radiation, and ii) ligand-to-metal charge trans-

fer due to Hg-HA complex formation, in which light radiation could retrieve direct elec-

trons via the charge transfer of Hg-HA complexes to reduce Hg2+ to Hg0. Various au-

thor (Choi and Holsen, 2009; Gillis and Miller, 2000; Gustin et al., 2006; Sigler and 

Lee, 2006) reported strong relations between temperature and Hg emissions from 

soils: Highest emissions rates were measured in afternoon and summertime, while 

emissions significantly decreased during nights and winter. As radiation and soil tem-

perature are strongly linked and biological activity is significantly affected by the tem-

perature, differentiation of these influence factors are hard to separate. However, 

many researches have hypothesized a radiation-induced mechanism separate from 

soil temperature. Photoreduction of Hg2+ is stated as one of the primary mechanisms 

for Hg0 production in nature (Costa and Liss, 1999; Fitzgerald et al., 2007; Rocha et 

al., 2003; Zheng and Hintelmann, 2009). 

By transformation of organic or inorganic Hg2+ to volatile Hg species which subse-

quently evaporate, soil microorganisms detoxify their immediate environment via bio-

tic reduction. Soil bacteria are either able to metabolize organic Hg2+ for their energy 

and C cycle or they enzymatically modify the species (organic and inorganic Hg2+) 

without using it as nutritional source (Schlüter, 2000). Responsible for this ability is 

the bacterial enzyme mercuric reductase (merA) by catalyzing the conversion of the 

thiol-affine Hg2+ to Hg0 with lacks of significant affinity for any functional groups. As 

thiols of proteins in the cytoplasm of the cells also tend to form strong bindings with 

Hg2+, it is essential that merA is an effective competitor with these cellular thiols to 

ensure survival of the cell/organism (Barkay et al., 2003). The metabolism of organic 

Hg2+ rather reflects an indirect reduction insofar that biotic decomposition “remove” 
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OM as a strong binding agent for Hg2+ by converting their substrate to compounds 

such as HA and fulvic acids, which are capable of Hg2+ reduction (Fritsche et al., 

2008; Obrist et al., 2010). 

Another parameter affecting Hg emissions from soils significantly is the water con-

tent. Both Gillis and Miller (2000) and Song and Van Heyst (2005) have demonstrat-

ed that rising water content can promote reduction of Hg2+ and Hg0 with subsequent 

volatilization of Hg. Also the addition of small amounts of water simulating the effect 

of precipitation resulted in increased Hg flux (Gustin and Stamenkovic, 2005). 

Lindberg et al. (1999) suggested three mechanisms being responsible for enhanced 

emissions of Hg from a dry desert soil observed with a rain event: i) physical dis-

placement of Hg0 enriched interstitial soil air by infiltrating water, (ii) replacement of 

Hg0 adsorbed to the soil by water molecules, and (iii) desorption of Hg2+ bound to the 

soil and subsequent reduction to Hg0 through abiotic or biotic factor. A direct relation 

between enhanced emissions as a response to precipitation events and biological 

activity was ruled out by Song and Van Heyst (2005) as the main process, as biologi-

cal reactions require more time to establish, reproduce, and influence emissions. 

 

Scope of this thesis 

As outlined above, Hg is preferentially associated with S groups of OM and hence is 

enriched in coal, being a product of carbonization of peat. As Hg is classified geo-

chemically as a chalcophile element, pyrite (FeS2), mercuric chloride (HgCl2) and 

cinnabar (HgS) are the dominant mineral host phases for Hg in coal. Great variations 

of Hg content in coal are reported in the literature as the Hg content largely depends 

on the geology of coal fields and the type of coal. However, Hg contents mostly vary 

between 0.05 and 1.95 mg kg–1 (Davidson and Claerke, 1996; Wang et al., 2000). 

Coal is transferred to coke in a pyrolytic process where Hg loss is reported (Ma et al., 
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2010) but coke still contains significant amounts of Hg. Further, it is known that Fe 

ores contain Hg as trace impurities. The content varies as a function of the geology of 

Fe ore formation and type of Fe ore. Mercury contents in iron ores from Minnesota 

ranged between 0.017 and 1.31 mg kg–1 (Morey and Lively, 1999) whereas (Fukuda 

et al., 2011) analyzed samples (n = 54) from different countries (Australia, India, Pe-

ru, and South Africa), finding a mean Hg value of 0.031 mg kg–1 and a maximum Hg 

value of 0.108 mg kg–1. 

Besides Fe ores in the form of lumps, pellets, or sinter, coal and coke are the main 

charge material for the production of pig iron in blast furnaces. Altogether they ac-

count for a proportion of up to 95 % (Nogami et al., 2006) of the charge material de-

pending on the individual composition of each material, production conditions, and 

plant devices. Hence, Hg is introduced into the blast furnace in significant amounts, 

however, the fate of Hg in the blast furnace and its by-products has been unknown. 

Great attention should be paid to the study of Hg behavior and fate in the environ-

ment as Hg is one of 189 toxic air pollutants designated by Title III of the Clean Air 

Act Amendments of 1990 (1990) and is classified as one of the most important envi-

ronmental pollutant. It is of major concern as Hg and many of its compounds are ac-

cumulative in living tissues and hence can seriously affect human beings through the 

food chain. Depending on the dose, Hg and its derivatives can cause chronic or 

acute damages to the neurological system.  

The scope of this thesis was hence to study the fate of Hg in BFS as this waste might 

potentially attribute to the global Hg cycle. Therefore, the following preliminary hy-

potheses were formed and addressed in the course of this thesis: 

Hypothesis 1 

 Mercury is enriched in BFS due to its low boiling point and high process tem-

peratures in the blast furnace. 
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Hypothesis 2 

 Similar to “natural” conditions, Hg in BFS is preferentially associated with car-

bon-based sorbents, such as coke particles or graphite. 

Hypothesis 3 

An Hg-specific sequential extraction procedure developed for soils and sedi-

ments can be adopted to BFS to assess the risk potential of Hg in BFS. 

Hypothesis 4 

Mercury in BFS mainly resides in the fraction of “elemental” Hg, mercuric sul-

fides, and Hg in crystalline metal ores and silicates and hence being rather 

immobile under natural conditions. 

 Hypothesis 5 

Blast furnace sludge inhibits a significant potential for Hg volatilization mean-

ing that Hg-fluxes from drying samples is detectable under laboratory condi-

tions.  

 Hypothesis 6 

Volatilization rate of Hg from BFS is largely driven by temperature. 

 

Study sites and applied methods 

To verify or falsify the formed hypotheses, 65 samples from seven different locations 

were studied. The BFS sedimentation ponds were located in Herne and Dinslaken 

(operating) in the Ruhr area (Germany), Eisenhüttenstadt (Germany), Lübeck (Ger-

many), Nowa Huta (Krakow, Poland), Esch-Belval (Luxembourg), and Nancy 

(France).  

Elemental composition was analyzed by wavelength dispersive X-ray fluorescence 

(XRF; Axios, PANalytical) and a CNS-analyzer (Vario EL Cube CNS, Elementar). 
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Further, Hg was detected by means of a direct mercury analyzer (DMA-80, MLS 

GmbH). Soluble Hg was determined according to a modified DIN ISO 19730:2009-07 

(2009) for samples with a total Hg content > 1.8 mg kg–1. Sequential extraction pro-

cedure was conducted on 14 samples according Bloom et al. (2003) and modified by 

Hall et al. (2005).  

For volatilization experiments, a fresh sample of BFS mixed with basic oxygen fur-

nace sludge (a residue of gas purification from steel making, processed simultane-

ously in the cleaning devices of BFS and hence mixed with BFS) was obtained from 

the Ruhr area (Germany) and used for sealed column experiments. The experiments 

were conducted for four weeks in the dark at 15, 25, and 35 °C. Mercury was trapped 

on gold coated sand and subsequently quantified with the DMA. Chemical and min-

eralogical composition of this sample was performed with XRF and CNS-analyzer, 

respectively, and X-ray powder diffraction (XRD). 
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Highlights 

 Blast furnace sludge (BFS) has been analyzed for Hg for the first time 

 The Hg content of BFS varied between 0.006 and 20.8 mg kg–1 (median 

1.64 mg kg–1)  

 In comparison to the charge material, Hg was enriched in BFS  

 Hg correlated with non-calcareous carbon content (coke and graphite)  
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Abstract  

Blast furnace sludge (BFS) is a waste generated in the production of pig iron and was 

dumped in sedimentation ponds. Sixty-five samples from seven BFS locations in Eu-

rope were investigated regarding the toxic element mercury (Hg) for the first time. 

The charge material of the blast furnace operations revealed Hg contents from 0.015 

to 0.097 mg kg–1. In comparison, the Hg content of BFS varied between 0.006 and 

20.8 mg kg–1 with a median of 1.63 mg kg–1, which indicates enrichment with Hg. For 

one site with a larger sample set (n = 31), Hg showed a stronger correlation with the 

total non-calcareous carbon (C) including coke and graphite (r = 0.695; n = 31; 

p < 0.001). It can be assumed that these C-rich compounds are hosting phases for 

Hg. The solubility of Hg was rather low and did not exceed 0.43% of total Hg. The 

correlation between the total Hg concentration and total amount of NH4NO3-soluble 

Hg was relatively poor (r = 0.496; n = 27; p = 0.008) indicating varying hazard poten-

tials of the different BFS. Finally, BFS is a mercury-containing waste and dumped 

BFS should be regarded as potentially mercury-contaminated sites. 
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Introduction 

Blast furnace sludge (BFS) is a waste generated in the production of pig iron and was 

dumped in large surface landfills in industrial areas until the commencement of strict 

environmental laws in the 1960s and 1970s in Europe. During the late 1990s, 6 kg of 

BFS were generated per ton of pig iron produced (Lopez-Delgado et al., 1998), re-

sulting in 6,300,000 Mg of BFS produced in the European Union alone during the 

1990s (World Steel Association, 2013). As these wastes often contain harmful sub-

stances, significant hazards to environmental surroundings may arise from former 

BFS sedimentation ponds. 

Pig iron is commonly produced in blast furnaces by smelting several iron (Fe) ores 

with a high carbon (C) fuel such as coke and flux additives (limestone etc.). Extrac-

tion of Fe from its ores and its conversion to alloys is the most important metallurgical 

process (Coudurier et al., 1985). During the operation, a gaseous phase (top gas) 

leaves the top of the blast furnace. Besides the gaseous phases, it contains dragged 

solid phases such as coke, Fe ores, additives, and their reaction products. For the 

downstream use, the effluent gas was purified from the dust (30 kg of dust per ton of 

pig iron produced (Mansfeldt and Dohrmann, 2004) long before any environmental 

laws were enacted. As a result of wet purification, a muddy waste referred to as BFS 

was generated. Besides Fe and C, other elements are also introduced into the blast 

furnace. Mansfeldt and Dohrmann (2004) investigated 32 samples from an aban-

doned BFS landfill in the Ruhr area of Germany, specifically examining their ele-

mental composition and identifying four main categories: (i) Fe and C with a median 

content of > 100 g kg–1; (ii) elements such as lead (Pb), magnesium (Mg), zinc (Zn), 

aluminum (Al), silicon (Si), and calcium (Ca), with contents ranging from 10 to 

100 g kg–1 in ascending order; (iii) potassium (K), sulfur (S), manganese (Mn), nitro-

gen (N), phosphorous (P), and sodium (Na), with contents ranging from 1 to 
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10 g kg1; and (iv) minor elements with mean contents < 1 g kg–1, such as arsenic 

(As), cadmium (Cd), and many more. All elements were introduced into the process 

by either Fe ores or coke, and to a lesser extent by flux, in which these elements oc-

cur partly as impurities. Due to the presence of significant amounts of As, Cd, Pb, Zn, 

and cyanides, which are formed during the blast furnace operation, BFS can be re-

garded as a harmful waste (Trömel and Zischkale, 1971; Van Herck et al., 2000; 

Mansfeldt and Dohrmann, 2001, 2004; Trung et al., 2011). 

Mercury (Hg) is considered as one of the most important environmental pollutants as 

the element and many of its compounds are highly toxic, persistent, and readily re-

leased into the environment due to its high mobility and volatility (WHO, 2005). Con-

sidering the enrichment with elements such as Zn, Pb, Na, and K, it is postulated that 

BFS is enriched with the highly volatile transition metal Hg as well. AMAP/UNEP 

(2008) estimated a global inventory of Hg to atmosphere to be 1921 Mg. In their 

Global Mercury Assessment report, the UNEP (2013) stated that the primary produc-

tion of ferrous metals contributes 45.5 Mg of Hg to the atmosphere being 2% of the 

global anthropogenic emissions. To the best of our knowledge, no data on Hg in BFS 

have been published yet, so emissions from BFS are most likely missing in the global 

inventory. 

This study aimed at the determination of i) the total Hg content and ii) the easily mo-

bilized fraction of Hg in BFS samples from different locations in Europe. Furthermore, 

iii) the Hg content of some charge materials was investigated in order to estimate a 

possible enrichment with Hg. Overall, the aim of the study is to provide first insights 

about Hg in BFS and in addition to that to provide primary information about potential 

Hg emissions for a future global inventory of Hg including these emissions. Overall, 

this study provides first insights about Hg in BFS and contributes primary information 

to the global inventory of Hg. 
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Material and methods 

Sampling sites, sampling, and sample preparation 

Samples were obtained from six former BFS sedimentation ponds and one operating 

BFS deposit in Europe: Herne and Dinslaken (operating) in the Ruhr area (Germany), 

Eisenhüttenstadt (Germany), Lübeck (Germany), Nowa Huta (Krakow, Poland), 

Esch-Belval (Luxembourg), and Nancy (France) (Figs. 1 and 2). Sampling was per-

formed in three ways: first, near-surface samples (0 to 10 cm) were taken (Lübeck, 

Eisenhüttenstadt, Nowa Huta, Esch-Belval), and second, samples were taken at dif-

ferent depths from fresh pits up to 1.0 m depth (Herne, Nancy).  

 

Fig. 1    Locations of the sampling sites. 

Additionally, core samples from 3.9 to 12 m depth were obtained (Herne). In total, 65 

samples (42 from Herne, 1 from Dinslaken, 4 from Eisenhüttenstadt, 4 from Lübeck, 

3 from Nowa Huta, 6 from Esch-Belval, 6 from Nancy) were collected. The field-moist 

samples were dried at room temperature, sieved to a size fraction < 2 mm, and man-
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ually homogenized. No material > 2 mm was present. For the analysis of element 

contents, subsamples were ground to analytical grain size in an agate ball mill (PM 

400, Retsch). Furthermore, an exemplarily loading of a blast furnace was investigat-

ed for its Hg content: 3 coke samples from Poland (n = 1) and Germany (n = 2), 1 Fe 

ore sample from South Africa, 1 Fe ore pellet sample from Canada, 1 sinter product 

sample, and 4 additive samples (olivine, bauxite, gravel, ilmenite). The samples were 

dried at room temperature and pre-ground by a jaw crusher (BB1, Retsch) before 

grinding to analytical grain size in an agate ball mill (PM 400, Retsch). 

 

Fig. 2    View of former blast furnace sludge sedimentation ponds in Esch-Belval 

(Luxembourg).  
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Chemical analysis 

pH value 

The pH value of the BFS samples was determined in demineralized water and 

0.01 M CaCl2. Approximately 5 g of sample were weighed into a flask and spiked with 

25 mL of solution. The sample were shaken for 1 h in a horizontal shaker (3006, 

GFL) at 200 rpm. The suspension was allowed to settle for 1 h and the pH value of 

the suspension was measured potentiometrically using a calibrated glass electrode 

(Sen TIX 81, WTW).  

 

Elemental composition 

Total C, N, and S were quantified by dry combustion with an elemental analyzer 

(Vario EL Cube CNS, Elementar). The evolved gases CO2, sulfur dioxide (SO2), and 

N2 were measured by thermal conductivity. Samples with a pH value ≥ 6.5 were also 

indirectly analyzed for carbonate-carbon with the same equipment by initially adding 

10% HCl to the sample. Carbonate-carbon was calculated from the difference be-

tween total C and total residual C (TRC). Residual C contains C in the form of coke, 

graphite, and black C. 

Other elements were analyzed by wavelength dispersive X-ray fluorescence (XRF; 

Axios, PANalytical). Powdered samples were mixed with a flux material and melted 

into glass beads. To determine loss on ignition (LOI), 1000 mg of sample material 

were heated to 1030 °C for 10 min. After mixing the residue with 5.0 g of lithium 

metaborate and 25 mg of lithium bromide, it was fused at 1200 °C for 20 min. The 

calibrations were validated regularly by analysis of reference materials and 130 certi-

fied reference materials were used for the correction procedures. In the case of the 

elements Pb, Zn, and As, 50 mg of the samples were mixed with 800 mg of Na2O2 in 

a zircon crucible and heated over an open flame. After fusion, water was added and 
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the crucible was set into a water bath until the melting was dissolved. Hence, concen-

trated HNO3 was added and the solution was transferred into a 100-mL flask, which 

was filled with water. The elemental contents were determined by inductive-coupled 

plasma emission spectrometry (Spectro Ciros CCD, Spectro Analytical Instru-

ments).The samples were digested at low temperature to avoid gaseous loss of 

these elements.  

Mercury was detected by means of a direct mercury analyzer (DMA-80, MLS GmbH). 

The samples were thermally decomposed at 750 °C in a continuous flow of analytical 

grade oxygen (O2) and, hence, combustion products were carried off through a cata-

lyst furnace where chemical interferences were removed. The Hg vapor was trapped 

on a gold amalgamator and subsequently desorbed for the spectrophotometric de-

termination at 254 nm. A certified reference material for soil/sediments (CRM008-

050, Resource Technology Corp., reference value: 0.072 µg kg–1, confidence inter-

val: 0.65 to 0.77 µg kg–1, prediction interval: 0.79 to 0.85 µg kg–1) was used for quality 

control (0.775 ± 0.05 µg kg–1). 

In order to check the solubility of Hg occurring in BFS, extracts with a neutral salt 

were obtained according to a modified DIN ISO 19730:2009-07 (2009) for samples 

with a total Hg content > 1.8 mg kg–1. Therefore, 10 mL of 0.5 mol L–1 ammonium 

nitrate (NH4NO3) solution was added to 1.0 g of dry sample and shaken end-over-

end (3040, GFL) for 24 h at 10 rpm. Subsequently, the extracts were centrifuged for 

15 min at 1,700 g and decanted. Then, the extracts were stabilized by adding 100 µl 

of 0.2 mol L–1 BrCl according to US EPA (1999), and Hg was determined with the 

mercury analyzer mentioned above. We used a 0.5 mol L–1 NH4NO3 solution instead 

of 1.0 mol L–1 solution to reduce the salt amount introduced into the Hg analyzer. 
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Statistical evaluation 

Statistical data evaluation was performed by the software IBM SPSS Statistics (Ver-

sion 21). Basically, the non-parametric Spearman rank correlation coefficient was 

determined as a measure of the statistical dependence between variables. 

 

Results and discussion 

Elemental composition 

The pH value of the BFS varied between 5.2 and 11.5 with a mean of 8.2 in CaCl2-

solution and between 5.3 and 11.7 with a mean of 8.4 in demineralized water (Ta-

ble 1). The median of 8.2 and 8.4, respectively, indicated that weakly alkaline condi-

tions dominated in dumped BFS. This is caused by carbonates added during the 

production process. Samples with a slightly acidic pH value presumably resulted from 

a modified composition of charge materials. During the production processes of these 

samples, the addition of calcareous charge materials was at least partially replaced 

by siliceous charge material. Strongly alkaline conditions of BFS are presumably 

caused by the presence of caustic lime (CaO). 

The elemental composition of BFS was largely dominated by C (median 133 g kg–1), 

Fe (median 149 g kg–1), and O (median 240 g kg–1) (Table 1), which resulted from the 

application of the charge material coke and Fe oxides. The air, which was blown 

through the blast furnace, dragged along coke and Fe ore particles, and thereby BFS 

reflects the process of pig iron production. However, C was also introduced by the 

addition of calcareous fluxes (e.g. limestone). The carbonate-carbon varied between 

0.001 and 43.5 g kg–1 with a median of 17.7 g kg–1, and the mean of carbonate-

carbon with respect to total C was 16.2%.  

 Further elements were detected in BFS with contents ranging from 100 to 10 g kg–1 

(median): in descending order, Si, Ca, Zn, Al, Mn, Pb, and Mg (Table 1). These ele-
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ments originated from impurities of the charge material which were mainly transport-

ed by the preheated air in the form of particles. However, the contents of Zn and Pb 

were clearly enriched in BFS (median 26.2 and 8.21 g kg–1, respectively) as a result 

of their partial reduction in the vapor phase (Mansfeldt and Dohrmann, 2004). Due to 

the high temperatures at the bottom of the blast-furnace and their relatively low melt-

ing point, parts of the evaporated elements leave the blast furnace directly and hence 

are enriched in BFS. The median concentrations of K, N, Na, P, Ti, and S ranged 

from 6.29 to 0.640 g kg–1 (Table 1). Similarly to Zn and Pb, K, and Na were enriched 

in BFS due to their low melting points (63.4 and 97.7 °C, respectively).  

Table 1    Chemical composition of blast-furnace sludge samples (n = 65) 

Element Unit Mean Median Min Max 

pHCaCl2 

pHH2O 

  8.2 

8.4 

5.2 

5.3 

11.5 

11.7 

LOIa g kg–1 275 277 5.80 563 

O  248 240 45.1 518 

C  157 133 1.08 480 

   TCCb     18.3    17.7    < 0.01    43.5 

   TRCc     139    111    1.44    473 

Fe  154 149 5.32 623 

Si  91.3 79.9 6.87 434 

Ca  73.8 79.8 1.15 144 

Zn   45.6 26.2 0.018 424 

Al  33.2 33.9 0.320 63.6 

Mn  12.8 4.47 0.070 217 

Pb   10.7 8.21 0.015 66.9 

Mg  10.6 10.7 0.640 23.2 

K  8.45 6.29 0.230 37.3 

S  6.45 3.39 0.390 33.2 

N  3.60 2.50 0.100 26.5 

Na  1.97 1.23 < 0.01 6.16 
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Table 1   
Continuation 

 

Element Unit Mean Median Min Max 

P g kg–1 1.68 1.60 0.180 5.86 

Ti  0.773 0.640 0.010 2.86 

Ba mg kg–1 887 647 < 59.0 7951 

Sn  485 197 16.0 4912 

Sr  188 169 10.0 651 

Rb  175 117 6.00 816 

Cr  164 79.0 8.00 4421 

As  158 112 7.00 1454 

Cu  155 58.0 < 7.00 1941 

V  102 73.0 10.0 418 

Bi  98.3 44.0 < 3.00 999 

Cs  90.0 70.0 27.0 448 

Ce  62.9 61.0 18.0 136 

Zr  50.2 31.5 < 6.00 229 

Sb  46.2 31.0 < 5.00 203 

Ni  43.4 24.0 3.00 364 

Th  38.6 35.0 < 4.00 91.0 

W  38.5 14.0 < 5.00 159 

La  38.4 35.5 14.0 78.0 

Cd  36.2 33.5 5.60 95.3 

Sm  33.8 33.0 < 18.0 53.0 

Nd  30.0 30.0 < 13.0 33.0 

Mo  28.9 22.0 < 3.00 293 

Y  28.9 27.5 16.0 57.0 

Ga  27.0 22.0 < 3.00 71.0 

Hf  14.0 14.0 < 5.00 14.0 

Co  13.1 11.0 3.00 33.0 

Nb  9.90 8.50 < 2.00 49.0 

Ta  9.00 9.00 < 5.00 < 21.0 

Sc  8.50 6.00 3.00 25.0 

U  8.10 8.00 < 4.00 13.0 

a
 Loss on ignition  

b
 Total carbonate-carbon  

c
 Total residual carbon 
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Mercury in charge material  

Mercury is a highly volatile element, which is readily transferred to the gaseous 

phase at low temperature (melting point: –38.8 °C). Consequently, Hg contained in 

any charge material may be enriched in the BFS. 

Coke, as one of the major charge materials in blast furnaces, is processed by heating 

of coal in the absence of O2 in coke ovens. It is well known that coal contains Hg in 

significant contents. The average Hg content of most coals varies between 0.05 and 

0.1 mg kg–1 (Davidson and Claerke, 1996), but great variations are reported in the 

literature. Related to the geology of coal fields and the type of coal, Meij (1991) and 

Wang et al. (2000) reported values up to 1.95 mg kg–1 for coal from China (province 

of Shanxi), up to 1.78 mg kg–1 for coal from Poland, up to 0.95 mg kg–1 for Australian 

coal, up to 0.51 mg kg–1 for coal from the eastern U.S., and 0.16 mg kg–1 for German 

coal. However, it should be taken into account that during the coke oven operation 

there is a significant loss of Hg. Ma et al. (2010) reported that 25 to 28% of Hg was 

retained in coke after the coking process, 9 to 17% was present in byproducts such 

as tar and ammonia, and 55 to 66% was released into the atmosphere. This deple-

tion is reflected in the current study, since the Hg content of the analyzed coke sam-

ples from Germany and Poland varied between 0.015 and 0.093 mg kg–1 (Table 2), 

which is well below the amount found in coal.  

Additionally, it is known that Fe ores, another major charge material in the blast fur-

nace operation, contain Hg as trace impurities. Similar to coke, the Hg contents vary 

as a function of the geology of Fe ore formation and type of Fe ore. Morey and Lively 

(1999) reported the Hg content of iron ores from Minnesota. The Hg contents of the 

samples (n = 191) ranged from 0.017 to 1.31 mg kg–1, having a mean value of 0.0792 

mg kg–1. Fukuda et al. (2011) analyzed samples (n = 54) from different countries 

(Australia, India, Peru, and South Africa), finding a mean Hg value of 0.031 mg kg–1 
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and a maximum Hg value of 0.108 mg kg–1. Samples analyzed in this study had Hg 

contents of 0.047 and 0.02 mg kg–1 for the Fe ores and 0.02 mg kg–1 for the sinter, 

which are within the natural range of variation reported in the literature (Table 2).  

Mercury contents of the additives varied in a similar range to those of the Fe oxides. 

Olivine ((Mg,Fe)SiO4) had the lowest Hg content, with 0.015 mg kg–1, followed by 

ilmenite (FeTiO3), with 0.023 mg kg–1, and gravel (SiO2), with 0.049 mg kg–1
. Bauxite 

(Al(OH)3, AlO(OH), Fe2O3, FeO(OH)) yielded the maximum value, with 0.068 mg kg-1.  

Table 2    Mercury contents in different materials [mg kg–1] 

 Number of 
samples 

Mean Median Min. Max. Enrichment 
factor 

Coke    3 0.059 0.062 0.014 0.097 1.05 

Fe ores 

Sinter 

   2 

   1 

0.035 

0.019 ± 0.0015a 

0.044 

 

0.019 

 

0.048 

 

0.625 

0.339 

Additives 

   Olivine  

   Bauxite 

   Gravel 

   Ilmenite 

 

   1 

   1 

   1 

   1 

 

0.015 ± 0.0017 

0.068 ± 0.0018 

0.049 ± 0.0029 

0.023 ± 0.002 

    

0.268 

1.21 

0.875 

0.411 

Blast furnace 
sludge  

   65 3.08 1.64 0.006 20.8 50 

NH4NO3-
soluble Hg in 
blast furnace 
sludge 

   28 0.006 

0.747b 

0.002 

0.239 

0.0001 

0.0197 

0.053 

6.322 

– 

– 

a Standard deviation
         b 

In µg L
–1           

 

Mercury in blast furnace sludge 

The total Hg content in BFS varied between 0.006 and 20.8 mg kg–1 with a median of 

1.63 mg kg–1 (Table 2). The sample from the operating deposit site had a relatively 

high value of 10.3 mg kg–1. Overall, Hg contents showed a quite large variability. To 
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the best of our knowledge no data on Hg in BFS have been published yet, so any 

comparison is hard to undertake. In comparison to the charge material, BFS was ra-

ther enriched with Hg, which was presumably a result of the accumulation of Hg in 

the vapor phase. This can be inferred from the enrichment factor (EF) which was cal-

culated for Hg in BFS and charge materials compared to the abundance in the 

Earth’s crust stated by Wedepohl (1995) (0.056 mg kg–1). The EF for the charge ma-

terials ranged between 0.625 for Fe ores and 0.339 for the sinter product, 0.696 for 

the additives, and 1.05 for coke, while EF for the BFS samples was 50 (min.: 0.11; 

max.: 390). The lower EF for the sinter product in comparison to the Fe ores resulted 

from the production process: While the Fe ores were directly introduced to the blast 

furnace, the sinter educts were preheated between 800 and 1,400 °C depending on 

the ore composition. The correlation of Hg versus C (Fig. 3, illustrated in dark grey) 

for one site with a larger set of samples (Herne, Germany) showed a strong signifi-

cance (r = 0.673, p ≤ 0.001, n = 31), indicating the function of coke as a major adsor-

bent. Mercury and TRC (Fig. 3, illustrated in light grey) showed a stronger correlation 

of r = 0.695 (p ≤ 0.001, n = 31), while the correlation of Hg versus TIC was negative 

(r = –0.542, p ≤ 0.001, n = 31). It can be assumed that compounds with a high frac-

tion of residual C (e.g. coke, graphite) were hosting phases for Hg. Mansfeldt and 

Dohrmann (2004) found graphite contents in BFS up to 60 g kg–1 with a median of 

27 g kg–1 by using Rietveld refinement of XRD analysis. A correlation of the Hg con-

tent versus the graphite content yielded a correlation coefficient of r = 0.614 (p = 

0.02, n = 14). It is well described in the literature that Hg preferentially resides with 

organic matter in soils and sediments (Louchouarn et al., 1993; Dmytriw et al., 1995). 

Carbon-based sorbents are found to be most effective for the removal of Hg from flue 

gas. In comparison to metal sorbents, silica-alumina- or calcium-containing sorbents, 

and alkaline sorbents (De et al., 2013), carbon-based sorbents result in a removal of 
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more than 90% of total Hg (Lee and Park, 2003; Yan et al., 2003; McLarnon et al., 

2005), which is mainly Hg0 in gaseous phases.  

 

Fig. 3 Relationship between total mercury (Hg) and total carbon (TC, illustrated 

in dark grey) and total residual carbon (TRC, illustrated in light grey), re-

spectively, (Herne, Germany). The Spearman correlation coefficient for Hg 

vs. TC is 0.69 (n = 32, p < 0.001) and that for Hg vs. TRC is 0.71 (n = 32, 

p < 0.001). 

Activated carbon possesses an extended surface area and high surface reactivity 

(Diamantopoulou et al., 2010), but the Hg adsorption is not fully understood. As X-ray 

absorption fine structure (XAFS) spectroscopy showed, the adsorption of Hg on the 

sorbents’ surface is dominated by anionic species, such as sulfides, chlorides, ox-

ides, and iodides, which were present within the matrix or bound to the surface of the 

sorbent (Huggins et al., 2003). It was further suggested that chemisorption may be 

the primary adsorption mechanism. The XAFS results indicated that little or no Hg0 
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was present after sorption, indicating oxidation processes by Hg bonding to anionic 

species of iodine, chlorine, sulfur, or oxygen on the carbon surface. Indeed, a signifi-

cant correlation of Hg vs. S (r = 0.501; p = 0.003; n = 31) might underline this. 

Sasmaz et al. (2012) studied the bulk and chemical composition of brominated car-

bon surface reacted with Hg0 by using extended XAFS and X-ray photoelectron spec-

troscopy (XPS). They found the oxidation state to be Hg2+ and that Hg2+ was bonded 

to two bromine atoms inside the C matrix with no detectable bonding to O. All this 

emphasizes the preference of Hg for C. 

However, correlations of Hg versus C, TRC, and TIC of samples from all locations 

were relatively poor (Hg vs. C: r = 0.222, p = 0.075, n = 65; Hg vs. TRC: r = 0.193, 

p = 0.123, n = 65; Hg vs. TIC: r = 0.039, p = 0.151, n = 65). This leads to the as-

sumption that although the same product was produced at all locations, a variety of 

charge materials, pre- and post-treatment processes, and production conditions were 

applied. Additionally, conditions of deposition and storage, such as climatic effects, 

may have affected the distribution of Hg in BFS during the last decades due to con-

stant leaching and potential volatilization. 

 

Soluble mercury in blast furnace sludge 

The soluble Hg was determined in samples with total Hg contents > 1.8 mg kg–1 (n = 

27) due to the fact that the soluble Hg of samples with lower contents (n = 38) was 

below the detection limit of the analytical equipment. Ammonium nitrate is the extract-

ing agent of the standard national protocol in Germany for the determination of the 

mobile fraction of trace elements in soils (BBodSchV, 1999). This fraction should in-

clude the water-soluble and exchangeable Hg. Soluble Hg varied between 0.0197 

and 6.321 µg L–1 with a median of 0.232 µg l–1, corresponding to 0.0001 and 

0.053 mg kg–1 with a median of 0.0017 mg kg–1 (Table 2). The correlation between 



Mercury in dumped blast furnace sludge  36 

 

soluble Hg and total Hg (Fig. 4) yielded a rather low but statistically significant rela-

tion (r = 0.496; n = 27; p = 0.008).  

  

Fig. 4 Relationship between total mercury and NH4NO3-soluble mercury (Herne, 

Germany). The Spearman correlation coefficient is 0.525 (n = 28, p = 

0.004). 

It is known from coal fly ashes that leaching of Hg typically occurs only in small 

amounts (Graydon et al., 2009). Similar, the solubility of Hg in BFS was rather low 

and did not exceed 0.43% of total Hg. Nevertheless, BFS poses special concern 

even after decades with regard to the potentially mobilized Hg. According to the 

WHO (2005), the guideline value for Hg in drinking water is 0.006 mg L–1. Indeed, 

only one sample out of 27 exceeded this value, but due to constant leaching into the 

groundwater in the vicinity of the disposal sites, the groundwater may be contaminat-

ed with Hg, especially from a long-term perspective.  
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Conclusions 

Blast furnace sludge can be regarded as hazardous waste since besides other ele-

ments Hg is significantly enriched in this waste, as proven in this study. Consequent-

ly, BFS poses a certain environmental threat, especially considering potential volati-

lization and leaching of toxic Hg species. Mercury in BFS deposit sites mainly resides 

with compounds with a high fraction of TRC. The adsorption processes of Hg on 

these compounds are still unknown and further studies should be undertaken.  
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Abstract 

Blast furnace sludge (BFS) is an industrial waste with elevated mercury (Hg) contents 

due to the enrichment during the production process of pig iron. To investigate the 

potential pollution status of dumped BFS, 14 samples with total Hg contents ranging 

from 3.91 to 20.8 mg kg–1 from five different locations in Europe were sequentially 

extracted. Extracts used included demineralized water (Fraction 1, F1), 0.1 mol L–1 

CH3COOH + 0.01 mol L–1 HCl (F2), 1 mol L–1 KOH (F3), 7.9 mol L–1 HNO3 (F4), and 

aqua regia (F5). The total recovery ranged from 72.3 to 114%, indicating that the 

procedure was reliable when adapted to this industrial waste. Mercury mainly resided 

in the fraction of “elemental” Hg (48.5–98.8%) rather being present as slightly soluble 

Hg species associated with sludge particles. Minor amounts were found as mercuric 

sulfide (F5; 0.725–37.3%) and Hg in crystalline metals ores and silicates (F6; 2.21–

15.1%). The ecotoxically relevant fractions (F1 and F2) were not of significance (F1: 

< limit of quality; F2: 0.509–9.61%, n = 5). Thus, BFS dumped for many years has a 

rather low environmental risk potential regarding Hg.  
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Introduction 

Blast furnace sludge (BFS) is a waste generated in the production of pig iron. During 

the metallurgical process, charge material, such as iron (Fe) ores, high carbon (C) 

fuels (e.g. coke), and flux additives, are smelted in the blast furnace at temperatures 

up to 2200 °C. By combusting the coke, both the required melting temperature and 

the formation of reaction gases are accomplished. The reaction gases, mainly emerg-

ing carbon monoxide (CO) and molecular hydrogen (H2), reduce the Fe from the ore 

and change it into its metallic form. During combustion, the reaction gases drag along 

solid phases of the charge material and their reaction products and leave the top of 

the blast furnace. These are composed of roughly 49% molecular nitrogen (N2), 22% 

carbon dioxide (CO2), 23% CO, 3% H2, and 3% water (H2O) (Peacey and Davenport, 

1979). Furthermore, the gases contain significant amounts of lead (Pb), potassium 

(K), sodium (Na), and zinc (Zn) (Trömel and Zischkale, 1971; Van Herck et al., 2000; 

Mansfeldt and Biernath, 2001; Mansfeldt and Dohrmann, 2004; Trung et al., 2011), 

which cannot be exclusively explained by a mechanism based on mechanical 

transport by reaction gases (Mansfeldt and Dohrmann, 2004) but rather results from 

internal enrichment. These elements are partially reduced during the metallurgical 

process due to the high temperatures and their relatively low melting point. As a con-

sequence, the effluent gases are enriched in volatile elements.  

As the effluent gas has a calorific value of 3300 to 4000 kJ m³ (Mansfeldt and 

Dohrmann, 2004), it is reused for generating electricity. Therefore, and because 

30 kg of dust per Mg of pig iron are generated, the gases must be purified from the 

dust. As a result of wet purification, a muddy waste is generated which is referred to 

as BFS. Lopez-Delgado et al. (1998) stated that 6 kg of BFS per Mg of pig iron were 

produced during the late 1990s. Based on that and on an annual worldwide produc-

tion of 1,168 ∙ 106 Mg pig iron (World Steel Association, 2014), approximately 
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7 ∙ 106 Mg of BFS are sent for actual disposal or deposition. Nevertheless, this waste 

was dumped in large surface landfills in industrial areas until the commencement of 

strict environmental laws in the 1960s and 1970s in Europe. However, this might be 

an ongoing procedure in countries with less strict environmental laws. As these 

wastes often contain harmful substances as outlined above, significant hazards to 

environmental surroundings may arise from former BFS sedimentation ponds.  

Mercury (Hg) is considered as one of the most important environmental pollutants, as 

the element and many of its compounds are highly toxic, persistent, and readily re-

leased into the environment due to their high mobility and volatility (WHO, 2005). Be-

sides artisanal and small-scale gold production, coal combustion is the largest point 

source of anthropogenic Hg, as coal always contains some Hg (the average content 

of most coal varies between 0.05 and 0.1 mg kg–1 (Davidson and Claerke, 1996) and 

due to the major role of coal combustion (40% of the total primary energy consump-

tion (International Energy Agency, Coal Information 2014) for the global energy pro-

duction. 

Considering the enrichment with elements such as K, Na, Pb, and Zn it was postulat-

ed that BFS is enriched with the highly volatile transition metal Hg as well. 

In our previous work (Foeldi et al., 2014), we analyzed 65 BFS samples from seven 

different locations in Europe, proving the enrichment of Hg in most samples. The con-

tent ranged from 0.006 up to 20.8 mg kg–1 (median: 1.63 mg kg–1; mean: 

3.08 mg kg1) while the calculated enrichment factor was 50 (min: 0.11; max: 390). 

This factor was calculated by comparing the Hg content of each BFS sample with the 

Earth´s crust abundance of Hg (0.056 mg kg–1) as stated by Wedepohl (1995). How-

ever, this data does not provide any information about potential mobilization of Hg 

and, hence, the potential environmental risk. 
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Sequential extraction procedures (SEP) are frequently used to determine the associ-

ation of potentially toxic elements with specific phases such as mineral and organic 

matter. Although SEPs have several disadvantages (lack of selectivity of reagents, 

re-adsorption and redistribution of elements previously solubilized, incomplete disso-

lution, non-homogeneity of samples) as summarized by Bacon and Davidson (2008), 

the merits of SEP dominate: They facilitate the evaluation of the potential mobility of 

the elements and their environmental accessibility, as well as their plant available 

fraction. However, most of the SEPs for metals and semimetals are not suitable for 

Hg. Therefore, Bloom et al. (2003) developed an Hg-specific procedure for soils and 

sediments by cross-checking already published SEPs. Based on extraction kinetics 

and the effects of solid-to-liquid ratios, they developed and validated a five-step Hg-

specific SEP. This procedure makes it possible to distinguish inorganic Hg into op-

erationally defined behavioral classes. Despite the fact that this procedure was de-

veloped for soils and sediments, it was also conducted on other solid matrices and 

wastes. For instance, coal (Yuan et al., 2010), coal fly ash, and slag (Wei et al., 

2011) were analyzed for Hg fractionation, yielding reliable and repeatable data. The 

objective of this study is the differentiation of inorganic Hg compounds into various 

biochemical fractions (behavioral classes) to assess the risk potential of Hg in BFS. 

 

Materials and methods 

Sampling sites, sampling, and sample preparation 

Sampling sites and sampling were illustrated in detail previously (Foeldi et al., 2014). 

Briefly, 14 samples out of 65 samples from six former BFS sedimentation ponds and 

one operating BFS deposit in Europe were studied: Herne and Dinslaken (operating) 

in the Ruhr area (Germany), Eisenhüttenstadt (Germany), Lübeck (Germany), Nowa 

Huta (Krakow, Poland), and Nancy (France). The field-moist samples were dried at 
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room temperature, sieved to a size fraction < 2 mm, and manually homogenized. No 

material > 2 mm was present. For the analysis of element contents, subsamples 

were ground to analytical grain size in an agate ball mill (PM 400, Retsch). 

  

Chemical analysis 

pH value 

The pH value of the BFS samples was determined in 0.01 M CaCl2. Approximately 

5 g of sample were weighed into a flask and 25 mL of solution was added. The sam-

ples were shaken for 1 h in a horizontal shaker (3006, GFL) at 200 rpm. The suspen-

sion was allowed to settle for 1 h and the pH value of the suspension was measured 

potentiometrically using a calibrated glass electrode (Sen TIX 81, WTW).  

 

Elemental composition 

Total C, nitrogen (N), and sulfur (S) were quantified by dry combustion with an ele-

mental analyzer (Vario EL Cube CNS, Elementar). The evolved gases CO2, sulfur 

dioxide (SO2), and N2 were measured by thermal conductivity. Samples with a pH 

value ≥ 6.5 were also indirectly analyzed for total carbonate-carbon with the same 

equipment by initially adding 10% hydrochloric acid (HCl) to the sample. Carbonate-

carbon was calculated from the difference between total C and total residual C 

(TRC). Residual C contains C in the form of coke, graphite, and black C.  

Other elements were analyzed by wavelength dispersive X-ray fluorescence (XRF; 

Axios, PANalytical). Powdered samples were mixed with a flux material and melted 

into glass beads. To determine loss on ignition (LOI), 1000 mg of sample material 

were heated to 1030 °C for 10 min. After mixing the residue with 5.0 g of lithium 

metaborate (Li2B4O7) and 25 mg of lithium bromide (LiBr), it was fused at 1200 °C for 
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20 min. The calibrations were validated regularly by analysis of reference materials 

and 130 certified reference materials were used for the correction procedures. 

 

Sequential extraction procedure 

The SEP for soils and sediments developed by Bloom et al. (2003) and modified by 

Hall et al. (2005) was adapted to BFS samples. Samples with rather high total Hg 

contents were chosen for the SEP to ensure quantifiable Hg contents values in the 

fractions. This procedure allows inorganic Hg to be assigned into operationally de-

fined behavioral classes (Table 1): water soluble Hg, “human stomach acid” soluble 

Hg, organo-chelated Hg, “elemental” Hg, and mercuric sulfides. An additional sixth 

fraction was received by composting (see below) the residual representing Hg in 

crystalline metal ores and silicates. For F1 to F5 the following solutions were pre-

pared (Table 1) using chemicals of analytical grade: F1, demineralized water; F2, 

0.1 mol L–1 CH3COOH + 0.01 mol L–1 HCl; F3, 1 mol L–1 KOH; F4, 7.9 mol L–1 HNO3; 

and F5, aqua regia (conc. HCl : conc. HNO3, 10:3). The original protocol was slightly 

modified by Hall et al. (2005) for F4 by reducing the concentration from 12 to 

7.9 mol L–1 HNO3. Demineralized water used for dilution was generated by reverse 

osmosis (min. 18.2 MΩ), and stored in PET bins for at least one week. In the follow-

ing, this is referred to as Hg-free water. All the vials, bottles, and storage bins used 

for the procedure were prepared using special cleaning protocols: After cleaning by a 

laboratory washing machine, all vessels were binned in an acid bath (Hg-free water 

and HNO3, pH≤1) for at least 24 hours, flushed out with Hg-free water, and stored 

with stabilized water (0.1 µl BrCl L–1). Bromine monochloride (BrCl) was prepared for 

stabilization of Hg according to the US EPA (1999). Briefly, 2.7 g of potassium bro-

mide (KBr) were dissolved in 250 ml of conc. HCl, and stirred for 1 h under a fume 

hood. Then, 3.8 g of potassium bromate (KBrO3) were slowly but continuously added 
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to the acid mixture. The solution should change from yellow to red to orange. The 

bottle was loosely capped, and stirred for another hour before tightening the lid. 

Table 1    Sequential extraction scheme including behavioral classes of mercury ac-

cording to Bloom et al. (2003) and modified by Hall et al. (2005) 

 
Extracting agent  Behavioral classes 

F1 Hg-free water  water soluble Hg 

F2 “human stomach acid” 0.1 mol L–1 CH3COOH  

+ 0.01 mol L–1 HCl 

“human stomach ac-
id” soluble Hg 

F3 potassium hydroxide 1 mol L–1 KOH organo-chelated Hg & 
calomel 

F4 nitric acid 7.9 mol L–1 HNO3 “elemental” Hg 

F5 aqua regia conc. HCl : conc. HNO3 (10:3) mercuric sulfide 

F6 residual  Hg in crystalline met-
al ores & silicates 

 

Extractions were carried out by weighing 0.4 ± 0.04 g of sample in 50 ml vials. An 

aliquot of 40 ml of the respective extractant was added to the sample, shaken in an 

end-to-end shaker (3040, GFL) for 18 ± 4 h, centrifuged at 1,600 g (Rotina 46, Het-

tich) for 20 min, and the supernatant liquid was decanted for vacuum filtration through 

a 0.4 µm cellulose nitrate filter. The extractions were placed into 125 ml trace metal 

clean borosilicate bottles with PTFE-lined caps and immediately stabilized using 

1.25 ml of 0.2 mol L–1 BrCl. Deviating from that, F3 was oxidized by the addition of 

10.0 ml BrCl due to the high acid neutralizing capacity of the specific extractant. 

Then, the BFS residues were refilled with the same extractant, shaken vigorously to 

resuspend, re-centrifuged, and filtered as before. This rinse step was then added to 

the extract from the same sample, diluted to 125 ± 1 ml with Hg-free water, and 

stored at 4 °C in a refrigerator until analysis. Afterwards, the next extractant was 

added to the sample residue and the described procedure was repeated. For F5, 

10 ml of conc. HCl and 3 ml of conc. HNO3 were added to the remaining BFS pellet 
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from F4. The vials were loosely capped and allowed to digest overnight under a fume 

hood. Then, the pellets and extractants were diluted to 40 ml with Hg-free water. As a 

significant residue remained after digestion, the extractant was filtered through quali-

tative filter paper (medium filtration rate, particle retention: 5 to 13 µm, Sartorius). 

While the liquid phase represented F5, the residual fraction remained in the filter, was 

dried, carefully scraped from the filter paper, and Hg in this fraction (F6) was deter-

mined in the solid phase.  

Mercury in all fractions and total Hg were analyzed by means of a direct Hg analyzer 

(DMA-80, MLS GmbH). The samples were thermally decomposed at 750 °C in a con-

tinuous flow of analytical grade oxygen (O2) and, hence, combustion products were 

carried off through a catalyst furnace where chemical interferences were removed. 

The Hg vapor was trapped on a gold amalgamator and subsequently desorbed for 

the spectrophotometric determination at 254 nm. The SEP was conducted in three 

replications per sample, and the determination of Hg was carried out in four replica-

tions per sample. Limit of quality (LOQ) was calculated by the mean value of ten 

blanks added to the nine-fold standard deviation. Repeatability was determined for 

sample #2116 with F4 (mean 3.43 mg kg–1 Hg), F5 (0.32 mg kg–1 Hg), and F6 

(0.22 mg kg–1 Hg) (the other fractions were below LOQ) at four subsequent days and 

standard deviations were found to be 0.22 (relative standard deviation 6.7%), 0.05 

(16.1%), and 0.02 (9.2%) mg kg–1 Hg. A certified reference material for 

soil/sediments (REF; CRM008-050, Resource Technology Corp., reference value: 

0.72 mg kg–1, confidence interval: 0.65 to 0.77 mg kg–1, prediction interval: 

0.79 to 0.85 mg kg–1) was used for quality control both in the SEP (F4: 0.655 ± 

0.063 mg kg–1; F6:0.020 ± 0.001 mg kg–1; other fractions below LOQ) and for analy-

sis of total Hg (0.775 ± 0.05 mg kg–1).  
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Statistical evaluation 

Statistical data evaluation was performed by the software IBM SPSS Statistics (Ver-

sion 21). Basically, the non-parametric Spearman rank correlation coefficient was 

determined as a measure of the statistical dependence between variables.  

 

Results and discussion 

Elemental composition 

The pH value of the BFS analyzed in this study varied between 6.1 and 10.2 with a 

mean of 8.3 (Table 2). The median of 8.1 indicated that weakly alkaline conditions 

dominated in the dumped BFS. This is caused by carbonates added during the pro-

duction process. Samples with a slightly acidic pH value presumably resulted from a 

modified composition of charge materials. During the production processes of these 

samples, the addition of calcareous charge materials was at least partially replaced 

by siliceous charge material. Strongly alkaline conditions of BFS are presumably 

caused by the presence of caustic lime (CaO). 

The elemental composition of BFS was largely dominated by C (median 114 g kg–1) 

and Fe (median 83 g kg–1) (Table 2), resulting from the charge material coke and Fe 

oxides. The air that was blown through the blast furnace dragged along coke and Fe 

ore particles, and thereby BFS reflects the process of pig iron production. However, 

C was also introduced by the addition of calcareous fluxes (e.g. limestone). Car-

bonate-carbon varied between 4.21 and 37.1 g kg–1 with a median of 15.1 g kg–1, and 

the mean of carbonate carbon with respect to total C was 31.8%.  

 Further elements were detected in BFS with contents ranging from 100 to 5 g kg–1 

(median): in descending order, silicon (Si), calcium (Ca), aluminum (Al), Zn, Pb, 

magnesium (Mg), K, and manganese (Mn) (Table 2). These elements originated from 
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Table 2    Selected chemical characteristics of blast furnace sludge  
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impurities of the charge material which were transported by the preheated air in the 

form of particles as already mentioned above. However, the contents of Zn and Pb 

were clearly enriched in the BFS (median 27.2 and 10.2 g kg–1, respectively) as a 

result of their partial reduction in the vapor phase as outlined above. The median 

concentrations of S, N, phosphorus (P), Na, and titanium (Ti) ranged from 3.79 to 

0.500 g kg–1 (Table 2). Similarly to Pb and Zn, K, and Na were enriched in the BFS 

due to their low melting points (63.4 and 97.7 °C, respectively). 

 

Sequential extraction procedure 

The total Hg content of the BFS samples ranged from 3.91 to 20.8 mg kg–1 with a 

median of 5.15 mg kg–1 (Table 3). The recovery of Hg obtained as the sum of Hg in 

each fraction was between 72.3 and 114%. As this method was originally designed 

for soils and sediments, this range indicates that the method can be successfully 

used to assess the fraction of inorganic Hg in BFS. Lower recoveries may result from 

hydrophobic characteristics of several samples. After the addition of Hg-free water, 

several samples partially separated into a fraction of material floating in the vial and a 

fraction that settled at the bottom or remained in suspension, respectively. During 

filtration after each step, the floating fraction was captured in the filter membranes 

and, hence, the Hg potentially contained could not be determined in the subsequent 

extraction steps. Unfortunately, the captured floating fraction contained too little ma-

terial for further analyzes. Most likely, this fraction was dominated by hydrophobic C 

rich compounds (e.g. char or graphite). Graphite was previously determined in BFS 

by (Mansfeldt and Dohrmann, 2004). As C rich compounds are known as effective 

Hg sorbent, Hg sorbed onto the floating fraction was eliminated from the potential Hg 

pool. As Al-Abed et al. (2008) showed in the floating fraction of flue gas desulphuriza-

tion (FGD) residue, the lighter fraction was less than 0.01 wt. % but was  
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Table 3    Total Hg and different Hg fractions in blast furnace sludge 
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enriched with Hg almost 100 times (115 mg kg1). As the flue gas temperature de-

creases along the combustion process, the fine particles act as condensation nuclei 

for Hg, thereby enriching their Hg content. Also their high surface area provides high 

potential for physical and chemical adsorption of Hg. Similar processes are conceiv-

able and reasonable during the metallurgical process yielding BFS. However, not all 

samples with low recovery showed a hydrophobic characteristic and vice versa.  

Although the obtained data provided only limited information about the binding forms 

of Hg in BFS, it yielded some useful details about the mobility and bioavailability 

(Fig. 1). Mercury in BFS primarily resided in F4, which accounted for a median of 

91.1% (4.16 mg kg–1, n = 15), ranging from 48.5 up to 98.8% (2.56 to 18.2 mg kg–1; 

Tab. 3). It is known from coal post-combustion flue gas that Hg exists in three princi-

pal forms: particulate Hg, elemental Hg (Hg0) in gas phase, and gas phase oxidized 

Hg (Hg2+) (Galbreath and Zygarlicke, 2000). During the combustion of coal, all forms 

of Hg are vaporized through thermal decomposition and hence converted to Hg0. As 

the coal flue gas cools, Hg0 can be oxidized under appropriate conditions and is po-

tentially absorbed into fly ash (Galbreath and Zygarlicke, 2000). Similar processes 

can be expected in blast furnace gas and it’s cooling, respectively, as it is well known 

that carbon based sorbents are most effective for Hg adsorption (McLarnon et al., 

2005). During the wet purification the particles are washed out and captured in BFS, 

resulting in elevated Hg contents in BFS. However, it is rather unlikely that Hg ex-

tracted in F4 is actually Hg0 as BFS remained in the sedimentation ponds for dec-

ades and it is known to easily vaporize at room temperatures. Consequently, Hg0 

would have already degased during the deposition period. Most likely, Hg extracted 

in F4 was present as inorganic Hg2+ compounds and adsorbed Hg1+ und Hg2+ spe-

cies (Liu et al., 2006). 
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Fig. 1    Extraction fingerprint in blast furnace sludge from different locations in Eu-

rope (Lübeck: #2076; Dinslaken: #2153, Herne: #2116 to #2188; Eisenhüt-

tenstadt: #2225; Nowa Huta: #2230; Nancy: #2241 to #2245)  

Sulfide-Hg (F5) accounted for from 0.725 to 37.3% (0.051 to 7.41 mg kg–1) with a 

median of 7.34 % (0.848 mg kg–1; n = 10), whereas the residual fraction (F6) ac-

counted for up to 15.1% (0.951 mg kg–1) with a median of 4.25% (0.227 mg kg–1; n = 

13). Mercury in these three fractions is not hazardous to the environment because of 

its low mobility and bioavailability under natural water regime conditions.  

The first fractions (F1 – F3) contributed nothing or little to the total Hg in BFS: 

Whereas F1 and F3 were below the LOQ (0.134 and 3.89 µg kg–1, respectively) in all 

samples, F2 ranged between 0.509 and 9.61% (0.032 to 0.452 mg kg–1; median: 
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0.802% and 0.061 mg kg–1, respectively; n = 5). Both fractions represent ecotoxically 

relevant amounts of Hg in BFS as these correspond theoretically to diluted acid and 

water extractable Hg, such as Hg(II) chloride (HgCl2), Hg(II) sulfate (HgSO4), Hg(II) 

nitrate (Hg(NO3)2), and Hg(II) oxide (HgO). Both scenarios, the input of weak acids 

and salts via precipitation or wet deposition, are prevalent under natural conditions. 

Low proportions of these fractions either indicate a rather low environmentally haz-

ardous potential of BFS or that these fractions were already leached out during dep-

osition and storage at the dumpsites. Also, the volatilization of Hg from the dumped 

BFS is reasonable. This SEP was also used by Yuan et al. (2010) to fractionate Hg in 

ten coal samples from China, yielding a similar distribution pattern (dominance of F4 

and F5) and total recoveries (86 to 116%). However, they found notable amounts of 

organic matter-bounded Hg (5.5 to 30%) in the coal. During the subsequent coking 

pyrolysis or at latest during combustion of coke in the blast furnace, organic matter-

bounded Hg was most likely translated to Hg0 or particulate Hg, resulting in minimum 

values of F3. As the input of chlorine (Cl) to the pig iron production process was lim-

ited, and more than 95% of Cl present in coal was liberated as HCl gas during the 

coking process (Shao et al., 1994), it is reasonable that there was no presence of F3 

in BFS.  

Mercury in coal fly ash and slag amongst others was sequentially extracted by Wei et 

al. (2011) using the same procedure as in this study. For the coal fly ash, Hg0 was 

the dominating fraction (85.3–90.6%), followed by from 6.0 to 13.2% of Hg in F5, and 

less than 2.6% for organo-chelated Hg and 0.9% for human stomach acid soluble Hg, 

respectively. Fractionation patterns in slag were different: Hg existed primarily in the 

sulfidic fraction (59%), whereas 23.1% was found in F4 and 15.4% in F3. Although 

these wastes differ significantly in their chemical composition from BFS (Li et al., 

2014; Shaheen et al., 2014), they have in common the highest abundance of Hg ei-
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ther in F4 or F5. In addition, the minor relevance of the ecotoxically fractions F1 and 

F2 in all materials is obvious.  

While we could show a strong significance between total Hg and C and total residual 

C, respectively, in our previous work (Foeldi et al., 2014), such correlations were not 

found to be significant with this set of samples. We expected high correlations be-

tween fractional Hg with elements such as Fe, S, or C indicating a certain binding 

form, but no such correlation was given. As we concluded in our previous work, this 

may be attributed to the variation of charge material, pre- and post-treatment pro-

cesses, and/or production and deposition conditions. However, we found a significant 

(significance level: 0.05) correlation between F6 (%) vs. Si (r = 0.645, p = 0.032, n = 

11). Blast furnace sludge mainly consists of calcite (CaCO3), hematite (α-Fe2O3), 

magnetite (Fe3O4), wüstite (FeO), and quartz (SiO2). In minor amounts, the mineral 

composition includes graphite, α-Fe, dolomite (CaMgCO3), siderite (FeCaO3), and 

maghemite (γ-Fe2O3) (Van Herck et al., 2000; Mansfeldt and Dohrmann, 2004; Das 

et al., 2007; Trung et al., 2011). It is known that crystalline metal ores such as bauxite 

(Al(OH)3, AlO(OH), γ-Fe2O3, FeO(OH)), and α-Fe2O3 remained after aqua regia di-

gestion (Bloom et al., 2001). The same also applies for silicates like SiO2. Conse-

quently, Hg contained in these mineral phases was released in F6.  

 

Conclusions 

Blast furnace sludge contains a significant amount of Hg and consequently has an 

environmental risk potential, as revealed in an earlier study. The results of this study 

showed that Hg in BFS mainly resided in F4 and in minor amounts as mercuric sul-

fides and residual Hg, respectively. As these fractions are rather immobile under nat-

ural conditions, the long-term risk is rather low, particularly taking into account the 

low amount of Hg measured in the ecotoxically relevant fractions (water and human 
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stomach acid soluble fractions). However, it must be considered that the analyzed 

BFS samples had been dumped partly for up to 80 years before sampling. Hence, Hg 

in mobile fractions might already have been leached out or volatilized. Our results 

show that BFS dumped for up to several decades does not pose a significant envi-

ronmental risk. It remains questionable if this waste never in fact possessed ecotoxi-

cally relevant Hg or if it is lacking due to leaching or volatilization. In order to make a 

precise and explicit statement for a detailed environmental risk assessment, fresh 

BFS should be studied by sequential extraction procedures before deposition.  
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Environmental impact 

Mercury (Hg) is considered as one of the most important environmental pollutants, as 

the element and many of its compounds are highly toxic and bioaccumulative. Blast 

furnace sludge (BFS) is an industrial waste with elevated Hg contents due to enrich-

ment during the production process of pig iron. This study is the first to analyze Hg 

volatilization from BFS and the effect of temperature on Hg fluxes. The results are of 

significant implications as this waste has long been dumped in large surface landfills 

in Europe, which might be an ongoing procedure in countries with less strict environ-

mental laws. Hence, volatilization potential of Hg from this waste is of special envi-

ronmental concern. 
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Abstract 

Blast furnace sludge (BFS) is a waste with elevated mercury (Hg) content due to en-

richment during the production process of pig iron. To investigate the volatilization 

potential of Hg, fresh samples of BFS mixed with basic oxygen furnace sludge 

(BOFS; a residue of gas purification from steel making, processed simultaneously in 

the cleaning devices of BFS and hence mixed with BFS) were studied in sealed col-

umn experiments at different temperatures (15, 25, and 35 °C) for four weeks (total 

Hg: 0.178 mg kg–1). The systems were regularly flushed with ambient air (every 24 h 

for the first 100 h, followed by every 72 h) for 20 min at a flow rate of 0.25 ± 

0.03 L min1 and elemental Hg vapor was trapped on gold coated sand. Volatilization 

was 0.276 ± 0.065 ng (x̅m: 0.284 ng) at 15 °C, 5.55 ± 2.83 ng (x̅m: 5.09 ng) at 25 °C, 

and 2.37 ± 0.514 ng (x̅m: 2.34 ng) at 35 °C. Surprisingly, Hg fluxes were lower at 35 

than 25 °C. For all temperature variants, an elevated Hg flux was observed within the 

first 100 h followed by a decrease of volatilization thereafter. However, the back-

ground level of ambient air was not achieved at the end of the experiments indicating 

that BFS mixed with BOFS still possessed Hg volatilization potential. 

 

 

 

 

 

 

 

Keywords: Blast furnace sludge, Basic oxygen furnace sludge, Mercury, Steel mak-
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Introduction 

Blast furnace sludge (BFS) and basic oxygen furnace sludge (BOFS) are typical 

steelmaking-related wastes. Both are generated during the wet purification process of 

effluent gases. While BFS occurs in the cleaning of blast furnace top gas, BOFS is a 

residue of gas purification from steel making in so-called basic oxygen furnaces, 

more popularly known as Linz-Donauwitz (LD) converters. The latter converts molten 

pig iron into low carbon steel via lancing pure oxygen (O2) in a mixture of pig iron, iron 

(Fe) scrap, ferroalloys, lime, and Fe ores. During the blowing process, large amounts 

of fumes and gases are generated containing fine particles of the charge materials. 

Pig iron is produced in blast furnaces by transferring Fe from ores into its elemental 

form. Thereby, charge material, such as Fe ores, high carbon (C) fuels (e.g. coke), 

and flux additives, are smelted in the blast furnace at temperatures up to 2200 °C. 

During the combustion process, the blast furnace gas drags along solid phases of the 

charge material and their reaction products. Both effluent gases are progressively 

cleaned in, for example, axial cyclones or dust-catchers to separate out coarse parti-

cles, while fine particles are removed using electrostatic precipitators or annular gap 

scrubbers. After the separation of solid material from the bulk of the process water, 

the resulting muddy waste is referred to as BFS and BOFS, respectively. 

To reduce financial expense for virgin raw material and depositing costs, the inte-

grated steel-making industry has put in a lot of effort to find ways of utilizing its by-

products, especially as many of the byproducts still contain high amounts of the de-

manded C and Fe compounds. However, due to the high temperatures in both pro-

cesses, low melting point elements, such as lead (Pb), potassium (K), sodium (Na), 

and zinc (Zn) are partially vaporized. In the effluent gas, they are either present in 

their gaseous phase or associated with fine particles. Hence, these elements are ac-
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cumulated and enriched in BFS and BOFS, respectively (Das et al., 2007; Gargul 

and Boryczko, 2015; Makkonen et al., 2002; Mansfeldt and Dohrmann, 2004; Trung 

et al., 2011; Van Herck et al., 2000). These elements among others (sulfur (S), cad-

mium (Cd), and cyanides) inhibit the utilization of BFS and BOFS in the integrated 

steel industry as they can cause operational difficulties in the blast furnace (Das et 

al., 2007). Also, the rather fine grain size character of this waste hinders the internal 

recycling as feed for the sintering process (Hyoung-Ky et al., 1995). 

The accurate amount of sludge per Mg of pig iron varies from plant to plant. Howev-

er, based on an annual worldwide production of 1.168 106 Mg of pig iron (World Steel 

Association, 2014a) and the stated 6 kg of BFS per Mg of pig iron (Lopez-Delgado et 

al., 1998) approximately 7 106 Mg of BFS are generated each year. As 70 % of the 

annual crude steel production of 1.600 106 Mg (World Steel Association, 2014b) are 

produced via the basic oxygen furnace process with an estimated 17.0 to 22.8 kg of 

BOFS per Mg of crude steel (Cantarino, 2011), roughly 31 106 Mg of BOFS are gen-

erated globally per year. 

Consequently, large amounts of this industrial waste need to be deposited. Despite 

their toxic properties, BFS and BOFS have long been deposited in large surface land-

fills in industrial areas in Europe, which still might be an ongoing procedure in coun-

tries with less strict environmental laws. 

In our previous study (Földi et al., 2014), we proved the enrichment of the volatile 

element Hg in BFS with contents ranging from 0.006 up to 20.8 mg kg–1 (median 

(x̅m): 1.64 mg kg–1; mean (x̅a): 3.08 mg kg–1). Mercury is considered to be one of the 

most important environmental pollutants, as the element and many of its compounds 

are highly toxic, persistent, and readily released into the environment due to their 

high mobility and volatility (WHO, 2005). Anthropogenic activities have led to a signif-



Volatilization of elemental mercury from fresh blast furnace sludge mixed with  
basic oxygen furnace sludge under different temperatures 65 

 

icant increase in Hg concentration in all environmental compartments (UNEP, 2013). 

Besides anthropogenic release, re-emission of “natural and anthropogenic” Hg from 

the Earth’s surface contributes significantly to the global Hg cycle (approximately 

60 %) (UNEP, 2013). Whereas re-emissions from oceans have undergone recent 

scientific interest, little is known about the amounts, species, and the factors causing 

Hg volatilization from the land’s surface.  

Although oxidized Hg (Hg2+) is the predominant form of Hg in soils, it is widely ac-

cepted that Hg volatilizing from soils is predominantly in the form of elemental Hg 

(Hg0) and/or dimethyl Hg, probably with minor amounts of monomethyl Hg and solu-

ble Hg(II)-salts (Schluter, 2000). The former are the only Hg species described as 

volatile species as they are water soluble with at least 500 times higher air/water-

distribution constant than the non-volatile species (Iverfeldt, 1984). Formation and 

turnover of Hg2+ to Hg0 in soils is controlled by both biotic and abiotic reduction 

(Schluter, 2000). While abiotic reduction is basically mediated by humic acids, fulvic 

acids, and other reductants, such as Fe2+, biotic reduction is capable through Hg re-

sistant soil microorganisms. 

Several key factors besides total Hg content and speciation were identified as influ-

encing Hg degassing from soils. Besides solar radiation, temperature, and elevated 

soil moisture, interactions with atmospheric ozone and turbulences significantly affect 

Hg fluxes. Previous work showed that Hg emissions from soils correlate positively 

with ambient air temperature, soil surface temperature, and solar radiation, while they 

are negatively correlated with relative humidity and soil wetness (Choi and Holsen, 

2009). As soil surface temperature is basically a result of ambient air temperature 

and solar radiation, both these factors are the main key factors driving Hg emissions 

at a given Hg content. 
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Even less is known about Hg emissions from industrial wastes and their disposal 

sites, respectively. Few publications deal with Hg fluxes from municipal solid waste 

landfill sources, emphasizing the importance for the global Hg cycles (Li et al., 2010; 

Lindberg et al., 2005; Southworth et al., 2005). Mercury in the atmosphere exists 

predominantly as elemental (Hg0), oxidized (Hg2+), and particulate (Hgp) Hg with Hg0 

typically making up more than 98 % of total gaseous Hg (Gustin and Jaffe, 2010). We 

henceforth use Hg to refer to elemental Hg vapor. 

However, to our knowledge, no data has been published about the degassing of Hg 

from metallurgical wastes such as BFS or BOFS. In this study, our objectives were (i) 

to study if any Hg is degassed from the described wastes, (ii) to quantify the amount 

of volatizing Hg, and (iii) to determine the effect of temperature on the Hg flux by ex-

cluding other known parameters affecting Hg degassing. 

 

Material and methods 

Sampling site, sampling, and sample preparation 

One sample of BFS mixed with BOFS, henceforth referred to as BFS/BOFS, was 

taken from after the settling tank as the integrated steel plant in Germany, to be most 

cost effective, uses a joint cleaning process for both effluent gases. Unfortunately, 

pure BFS was not available. The sample was transferred into 10-litre buckets made 

of high-density polyethylene (HDPE) and homogenized. The buckets were complete-

ly filled, sealed with Teflon tape, directly transported to the laboratory, and stored in 

the refrigerator (4 °C) until used. The buckets, as all other equipment used in the col-

umn experiments, were previously washed with detergent, soaked several days with 

10 % nitric acid (HNO3), and rinsed with milli-Q Millipore water. A subsample was 
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dried at room temperature and ground to analytical grain size in a mixer mill (MM400, 

Retsch) with zirconium oxide grinding tools. 

 

Material characterization 

Elemental composition 

Total C, nitrogen (N), and sulfur (S) were quantified by dry combustion with an ele-

mental analyzer (Vario EL Cube CNS, Elementar). The evolved gases carbon dioxide 

(CO2), sulfur dioxide (SO2), and nitrogen (N2) were measured by thermal conductivity. 

Total carbonate-carbon (TCC) was determined by the suspension method using a 

DIMATOC® 100 liquid analyzer (Dimatec Corp.) Total residual C (TRC) was calcu-

lated from the difference between total C and TCC. Residual C contains C in the form 

of coke, graphite, and black C. 

Other elements were analyzed by wavelength dispersive X-ray fluorescence (XRF; 

Axios, PANalytical). Powdered samples were mixed with a flux material and melted 

into glass beads. To determine loss on ignition (LOI), 1.0 g of sample material was 

heated to 1030 °C for 10 min. After mixing the residue with 5.0 g of lithium metabo-

rate (Li2B4O7) and 25 mg of lithium bromide (LiBr), it was fused at 1200 °C for 20 min. 

The calibrations were validated regularly by analysis of the reference materials and 

130 certified reference materials were used for the correction procedures. 

Total Hg was analyzed by means of a direct Hg analyzer (DMA-80, MLS GmbH). The 

sample was thermally decomposed at 750 °C in a continuous flow of analytical grade 

O2 and, hence, combustion products were carried off through a catalyst furnace 

where chemical interferences were removed. The Hg vapor was trapped on a gold 

amalgamator and subsequently desorbed for spectrophotometric determination at 

254 nm. The instrument was calibrated with 7 levels of concentrations for each “ab-



Volatilization of elemental mercury from fresh blast furnace sludge mixed with  
basic oxygen furnace sludge under different temperatures 68 

 

sorbance cell” of the detector (low concentration “absorbance cell” ranged up to 2 ng, 

higher concentration “absorbance cell” ranged from 2 to 22 ng). Mercury solutions for 

calibration were prepared by serial dilution from 1000 ± 2 mg L–1 Hg standard solu-

tion (CertiPur Merck, traceable to SRM from NIST) in 2 mM BrCl. The coefficient of 

determination was 0.9989 for the low concentration “absorbance cell” and 0.9999 for 

higher concentration “absorbance cell”. The instrument did not have to be recalibrat-

ed every day as no significant instrumental parameter had to be replaced. In every-

day operation, analytical quality was assured by measuring the same liquid standards 

as used for the calibration prior, during and after sample analyses. The amount of 

detected Hg in the standards was chosen for the range of experimental values (0.1 

ng (σrel = 9.1 %), n = 108; 1 ng (σrel = 3.75 %), n = 54; and 10 ng (σrel = 4.16 %), n 

= 36). 

 

Mineralogical composition 

X-ray powder diffraction (XRD) patterns were recorded using X-ray diffraction (X’Pert 

PRO MPD theta–theta, PANalytical) with Co-Kα radiation generated at 40 kV and 

40 mA. The device was equipped with a variable divergence slit (20 mm irradiated 

length), primary and secondary sollers, diffracted beam monochromator, a point de-

tector, and a sample changer (sample diameter 28 mm). The samples were investi-

gated from 1° to 80° 2Θ with a step size of 0.03° 2Θ and a measuring time of 

10 s per step. 

For specimen preparation, the back-loading technique was used. Phase identification 

was made by reference to patterns in the International Center for Diffraction Data 

(ICDD) PDF-2 database, released in 2009. 
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Column experiments 

To study the gaseous release of elemental Hg under different temperatures, column 

experiments were conducted. The column installation consisted of a borosilicate 

glass flux chamber with one outlet and four inlets according to Rinklebe et al. (2009), 

a PVC cylinder with a height of 6 cm and a diameter of 11.5 cm, a column frame to 

seal the column base, and a gas sampler (GS 212, Desaga) (Fig. 1). Aliquots of 

BFS/BOFS (500 to 800 g fresh material) were transferred into the columns in four 

replicates; the flux chambers were fixed on the cylinders, and sealed tightly using 

Teflon tape. Re-homogenization was not carried out before sampling for each tem-

perature variant to avoid further contact with O2. The column installations were 

placed in an incubator (KB 400, Binder) at 15, 25, and 35 °C for 28 days. Inlets and 

outlets, respectively, of the flux chamber were sealed with blind plugs made of boro-

silicate glass. Experiments were conducted in the dark to exclude solar radiation and 

hence possible photocatalytic reduction of soluble Hg2+ to volatile Hg0 at the surface. 

The lowest temperature variant was chosen to be 15 °C as it is the annually-

averaged temperature across global land and ocean surfaces for 2014 (14.59 °C) 

(NOAA National Climatic Data Center, 2015). However, as the BFS/BOFS was black, 

it exhibits a rather lower albedo (< 15 %) and hence the surface can easily be 

warmed at temperatures higher than the ambient air. That is why we chose tempera-

ture variants of 25 and 35 °C. 
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Fig. 1 Scheme of experimental design for sampling elemental Hg 

To determine Hg volatilization, four gold traps were connected in line directly to the 

flux chamber’s outlet. The gold traps were heated at 110 °C using a heating band 

(HS, Horst GmbH) and thermostat (HT22, Horst GmbH) to avoid water re-

condensing. To close the circulation, the gold traps were further connected to the gas 

sampler and tubing lines were connected between the gas sampler and the four in-

lets of the flux chamber using borosilicate glass, Tygon, and Teflon tubings, respec-
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tively. Ambient air was pumped through the closed circulation system using the gas 

sampler for 20 min at 0.25 ± 0.03 L min–1, as these parameters had been shown to 

be the most effective in preliminary experiments. Sampling was undertaken after 24, 

48, 72, 96, and then every 72 h resulting in 12 sampling events. Blanks of ambient air 

were taken at the beginning of the experiment by connecting four gold traps to the 

gas sampler and sucking air through the traps for 20 min with a flow rate of 

0.25 L min–1. Sampling blanks were found to be 0.0433 ng on average. This value 

was subtracted from the quantities of Hg collected on the traps during the experi-

ments. 

To reduce the Hg capacity of the gold coated sand (GCSI; Timmerman gold trap, 

Symalab) to an effective measuring range of the DMA-80, GCSI was mixed with 

quartz powder (pro analysis, Merck) with a weight-to-weight ratio of 1 to 50, referred 

to as GCSII hereafter. Gold traps consisted of borosilicate glass tubings filled with 1 g 

GCSII and fixed with quartz wool. Each gold trap was stored in a separate borosili-

cate vessel with a Teflon-lined cap and was measured within 3 days using the DMA-

80.  

Three procedural standards were processed with the column and analyzed with 

known amounts of 1, 10, and 100 g Hg resulting in recoveries of 80.6, 64.3, and 

73.3 %, respectively. 

Water content at the beginning and the end of each experiment was calculated by 

mass using the following formula: 

 

𝑤𝑎𝑡𝑒𝑟 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 [%] =
𝑚𝑎𝑠𝑠 (𝑎) −  𝑚𝑎𝑠𝑠 (𝑏)

𝑚𝑎𝑠𝑠 (𝑎)
 ∗ 100 

   water contentstart: a = massstart; b = mass105 °C 

   water contentend: a = massend; b = mass105 °C 
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For mass at 105 °C, the residue of each column was dried for one week at room 

temperature; a subsample of each column was weighed (15 g) and dried for 24 h at 

105 °C. Further, the factor of each subsample at 105 °C to the mass of each column 

at room temperature (start and end, respectively) was calculated and considered for 

the water content. 

All measured Hg values were calculated on a dry mass basis (mass105 °C) to ensure an 

accurate comparison. 

 

Results and discussions 

Material characterization 

Elemental composition 

The elemental composition of BFS and BOFS differed significantly due to the applied 

raw materials and byproducts (Földi et al., 2014; Gargul and Boryczko, 2015; 

Kretzschmar et al., 2012; Mansfeldt and Dohrmann, 2004; Trung et al., 2011; Veres 

et al., 2010). The composition of the analyzed sample was clearly dominated by C 

(60.6 g kg–1) and Fe (564 g kg–1) reflecting the metallurgical production process (Ta-

ble 1). The higher proportion of Fe was typical for BOFS as it is known that it may 

contain from about 50 to as much as 75 % Fe (Gargul and Boryczko, 2015). In fact, 

since two-thirds of the sludge was made up of Fe it might be a potential raw material 

to be recycled in the sintering process. High Fe content indicated a dominance of 

BOFS in the studied sample as Fe content in BFS mainly ranged from around 100 to 

300 g kg–1 (Földi et al., 2014; Kretzschmar et al., 2012; Mansfeldt and Dohrmann, 

2004; Veres et al., 2010). In addition, the rather low C content of the sample under-

lined this, as C in BFS normally ranged between an average of 160 and 190 g kg1 
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(Földi et al., 2014; Mansfeldt and Dohrmann, 2004; Veres et al., 2010). However, 

TCC in respect to total C was 16.8 %, in the same range as BFS. 

Table 1 Chemical composition of blast furnace sludge mixed with basic oxygen 

furnace sludge 

element unit value 

C g kg–1 60.6 

TCCa  10.2 

TRCb  50.4 

S  2.34 

Fe  564 

O  280 

Ca  45.2 

Zn  14.8 

Si  10.6 

Mn  9.12 

Al  2.65 

Mg  2.29 

Pb  1.06 

Cr mg kg–1 665 

P  524 

Ti  444 

K  340 

Cu  286 

Ni  207 

Hg  0.178 

Na  <0.01 

LOIc [%] 5.70 
a
 Total carbonate-carbon  

b
 Total residual carbon   

c
 Loss on ignition 

 

The chromium (Cr), titanium (Ti), copper (Cu), and nickel (Ni) contents ranged from 

665 to 207 mg kg–1 and were considered to be low. However, the Zn content of 
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14.8 g kg–1 was significantly higher being rather in the range stated for BOFS (Trung 

et al., 2011) than for BFS (Földi et al., 2014; Kretzschmar et al., 2012; Mansfeldt and 

Dohrmann, 2004; Veres et al., 2011). As stated by Makkonen et al. (2002) the Zn 

content in BOFS was generally around 2 mass-% but could be increased to 25 mass-

% if scrap was recycled in the converter. Consequently, the Zn content of the sample 

in this study suggested a rather low recycling fraction of scrap. Moreover, the elevat-

ed Zn value most likely inhibited direct recycling of this material to the sintering pro-

cess as was suggested before. The Zn content entering the blast furnaces should not 

exceed 120 g Zn per Mg of pig iron as its compounds may form solids on the furnace 

walls, which in turn cause operational difficulties in the blast furnace operation (Veres 

et al., 2011). The maximum loading would be reached with only 8 kg of the material 

under study. Common loadings of Fe-making blast furnaces range between 576 and 

1320 kg of sinter and 351 and 734 kg of pellets per Mg of pig iron (Nogami et al., 

2006). As a consequence, BFS/BOFS needed either to be used as landfill or further 

processed to reduce the Zn content. The processing of steelmaking dust, such as 

electric arc furnace dust, by hydrometallurgical or pyrometallurgical methods has at-

tracted recent scientific interest. However, for BFS and BOFS further processing is 

far more complicated due to the relatively low Zn content compared with electric arc 

furnace dust (Trung et al., 2011). 

The total Hg content of the sample was 178 ± 3.26 µg kg–1 (n = 4). In our previous 

study the Hg content of 65 dumped BFS samples from seven locations varied be-

tween 0.006 up to 20.8 mg kg–1 with a x̅m of 1.64 mg kg–1 (x̅a: 3.08 mg kg–1). Conse-

quently, the analyzed sample was rather low in Hg content, which most likely resulted 

from the addition of the BOFS to the BFS during the cleaning process. In fact, soils 
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with a similar Hg content (between 0.15 and 0.2 mg kg–1) would be regarded as re-

flecting the natural background content of Hg (Hooda, 2010). 

 

Mineralogical composition 

The phase composition of BFS/BOFS (Fig. 2) revealed the presence of different Fe 

phases, such as magnetite (Fe3O4), wüstite (FeO), hematite (Fe2O3), and α-Fe. Fur-

thermore, quartz (SiO2), calcite (CaCO3), and perovskite (CaTiO3) were detected by 

XRD. Other phases, as indicated by the chemical composition, could not be clearly 

identified either as a result of their minor amounts and/or their vanishing in the back-

ground of the XRD pattern. Despite the elevated Zn content of 14.8 g kg–1, no Zn-

bearing phase was detected. Trung et al. (2011) summarized several approaches for 

the lack of identified Zn phases. According to these authors, Zn might be distributed 

in various phases such as zincite (ZnO), franklinite (ZnFeIIIO4), and solid solutions of 

franklinite and hence their diffraction could vanish into the background of the pattern. 

Furthermore, they pointed out that amorphous fractions as well as present C in-

creased the background signal, intensifying the vanishing of certain peaks. However, 

Kretzschmar et al. (2012) identified five major types of Zn in BFS using a combination 

of synchrotron XRD, micro-XRF, and X-ray adsorption spectroscopy at the Zn K-edge 

for solid phase. These were (i) Zn in the octahedral sheets of phyllosilicates, (ii) Zn 

sulfide minerals (ZnS, sphalerite, or wurtzite), (iii) Zn in a KZn−ferrocyanide phase 

(K2Zn3[Fe(CN)6]2·9H2O), (iv) hydrozincite (Zn5(OH)6(CO3)2), and (v) tetrahedrally co-

ordinated adsorbed Zn occurring in variable amounts. Zincite was detected only in 

traces, while ZnFeIIIO4 was not detected at all. Another approach explained the lack 

of Zn phases by the isomorphic structures of identified ferrites and the resulting diffi-

culties in distinguishing the diffraction peaks, e.g. Fe3O4 and ZnFeIII
2O4. In addition, 
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the structural substitution of Fe by Zn in Fe3O4 is reasonable. The increasing baseline 

between 30 and 45 °2Θ in this pattern indicated the significant presence of X-ray 

amorphous phases underlying this statement. Various authors have shown the pres-

ence of significant amounts of XRD amorphous phases in BFS, mainly being coke- 

and graphite-bound C (Kretzschmar et al., 2012; Mansfeldt and Dohrmann, 2004; 

Veres et al., 2012). 

 

 

Fig. 2 Powder X-ray diffraction (XRD) pattern of a mixture of blast furnace sludge 

and basic oxygen furnace sludge. The black line represents the experi-

mental XRD pattern, the dotted black line the calculated Rietveld pattern, 

and the baseline is given as the approximately horizontal line below (light 

grey). C: calcite; H: hematite; I: α-Fe; M: magnetite; P: perovskite; Q: 

quartz; W: wüstite; w: weak signal 
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Column experiments 

The water content of the columns was 53.1 ± 1.5 % (Table 2; x̅m: 53.7 %; n = 4) for 

15 °C, 51.4 ± 1.0 % (x̅m: 51.4 %; n = 4) for 25 °C, and 44.6 ± 3.2 % (x̅m: 43.6 %; n = 

4) for 35 °C at the beginning of the experiment as a suspension was formed during 

storage.  

Table 2 Weight and water content specification of the columns and the tempera-

ture variants 

  column I column II column III column IV 

15 °C massstart 750 688 799 858 

 massend  653 610 717 785 

 mass105 °C 347 318 377 425 

 water contentstart [%] 54.2 54.1 53.3 51.0 

 water contentend [%] 47.2 48.2 47.8 46.3 

25 °C massstart 665 553 515 530 

 massend  613 519 460 479 

 mass105 °C 319 273 251 268 

 water contentstart [%] 52.6 51.1 51.8 50.2 

 water contentend [%] 48.4 47.9 45.9 44.7 

35 °C massstart 582 604 584 611 

 massend  519 554 543 550  

 mass105 °C 330 344 342 313 

 water contentstart [%] 43.7 43.5 42.0 49.2 

 water contentend [%] 36.7 38.3 37.6 43.4 

 

For all temperature ranges, the columns were not fully dewatered due to the limited 

headspace and resulting water vapor pressure. However, water content of the col-

umns after four weeks was 47.4 ± 0.8 % (x̅m: 47.5 %; n = 4) for 15 °C, 46.7 ± 1.7 % 

(x̅m: 46.9 %; n = 4) for 25 °C, and 39.0 ± 3.0 % (x̅m: 37.9 %n = 4) for 35 °C. This rep-

resented a decrease of 5.7 ± 1.0 % (x̅m: 5.7 %; n = 4) for 15 °C, 4.7 ± 1.2 % (x̅m: 4.8 
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%; n = 4) for 25 °C, and 5.6 ± 1.1 % (x̅m: 5.5 %; n = 4) for 35 °C. As the samples 

were not re-homogenized before each individual experiment variant, higher bulk den-

sity and hence lower water content are reasonable for the later experiments. 

Figure 3 shows the averaged vapor phase Hg release from the columns at different 

temperatures. Within the first 100 h, daily Hg flux was 0.297 ± 0.077 ng (x̅m: 

0.301 ng) for the 15 °C temperature variant. Afterwards, trapped Hg release was 

0.266 ± 0.061 ng (x̅m: 0.284 ng). However, the sampling period after the first 100 h 

was on 72 h instead of daily bases. Consequently, volatilization was elevated during 

the first days and decreased slightly thereafter. In total, less than 0.001 % of total Hg 

of the BFS/BOFS degassed within 4 weeks. The background level of ambient air 

(0.0433 ± 0.0035 ng per 5.2 L), however, was not achieved at the end of the experi-

ment, indicating that BFS/BOFS still possessed the potential for Hg volatilization after 

storage at 15 °C. To exclude Hg saturation in the headspace and hence reduced Hg 

volatilization, saturation concentration of Hg at 15 °C was calculated using data from 

the Occupational Safety & Health Administration (2010) and was approximately 

9 µg L–1. With respect to the headspace volume of 0.65 L, this would result in a max. 

Hg release of approximately 6,000 ng, being far higher than the actual measured 

values. Besides, reduced air pressure was avoided by using headspaces with air cir-

culation systems as described by Rinklebe et al. (2009). The continuous gas move-

ment over the sample’s surface virtually eliminated reduced air pressure. 

The saturation concentration for 25 °C (20 µg L–1, which corresponds to about 15 µg 

Hg release to the headspace volume of 0.65 L) was also higher than the measured 

Hg values: Hg fluxes was 8.45 ± 3.01 ng (x̅m: 7.23 ng) per day within the first 100 h 

and decreased from 6.20 to 2.82 ng per 72 h thereafter (4.10 ± 1.24 ng; x̅m: 3.48 ng), 

resulting in volatilization of 0.25 % of the total Hg. Hindersmann et al. (2014) ana-
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lyzed Hg volatilization from undisturbed floodplain soil samples with a total Hg con-

tent of 9.2 ± 0.2 mg kg–1 at 20 °C using similar column installations. Mercury flux 

ranged between 0.4 ng and 411 ng per 72 h. Hence, Hg volatilization from 

BFS/BOFS can be described as rather low for this temperature range. It is known 

that two predominant factors control emissions from Hg-enriched soils, being soil Hg 

content and incident radiation (Gustin et al., 2006). Most likely, the significant higher 

Hg content of the floodplain soils was the main factor resulting in the vastly elevated 

Hg flux from soils compared with BFS/BOFS. 

 

Fig. 3 Averaged vapor phase Hg release from the columns at different tempera-

tures (blue, 15 °C; purple, 25 °C; red, 35 °C). Note the different scale at 

the y-axis. Error bars were calculated from four replications. 

 

Mercury flux at 35 °C showed similar trends as observed for 15 and 25° C: Hg re-

lease was 1.82 ± 0.330 ng (x̅m: 1.75 ng) per 24 h within 100 h and decreased thereaf-
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ter being 2.64 ± 0.337 ng ((x̅m: 2.60 ng)  per 72 h. Mercury flux was below the satura-

tion concentration of 43 µg L1. Surprisingly, the Hg fluxes at 35 °C were significantly 

lower than at 25 °C. Various research groups have confirmed that temperature fa-

vored Hg desorption from soils due to the increase in Hg vapor pressure with increas-

ing temperature. Gillis and Miller (2000) showed that Hg emissions in low-Hg, fine 

sandy loam soils could be largely explained by variations in surface soil temperature 

and the Hg concentration gradient between the soil and the ambient air. This tem-

perature dependence had also been observed in both diurnal (Gustin et al., 2006) 

and seasonal studies (Sigler and Lee, 2006). Choi and Holsen (2009) investigated 

the impact of solar radiation and soil surface temperature on Hg emissions fluxes 

using, among others, native deciduous soils (DS) and sterilized deciduous soils 

(SDS). Experiments conducted in the dark gave high correlations with Hg emissions 

from both DS and SDS. The average Hg emissions increased from 10 ng m–2 h–1 at 

25 °C to 120 ng m–2 h–1 at 35 °C for DS and from < 5 ng m–2 h–1 at 23 °C to 

15 ng m2 h–1 at 30 °C for SDS. They assumed that the differences between emis-

sions from DS and SDS at the same temperature resulted from differences in biologi-

cal Hg reduction, mediated by soil microbes. However, this is in contrast with our 

finding of 25 and 35 °C temperature variants. An explanation of the decreasing Hg 

flux with increasing temperature from 25 to 35 °C in our experiments might be the 

water content of the BFS/BOFS sample. Pannu et al. (2014) comprehensively sum-

marized the effect of varying water-filled pore space (WFPS) on soil respiration, indi-

cating that a soil water content equivalent to 60 % of a soil’s water holding capacity 

delineated the point of maximum aerobic microbial activity. In their study, they found 

that the maximum mass of cumulative Hg0 was formed at 60 % WFPS and the lowest 

at 15 % WFPS. Further research reported likewise: Gustin and Stamenkovic (2005) 
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observed increased Hg emissions for low-Hg soils with increased water content. A 

threefold increase in Hg volatilization rate was also described in a field study from 

November to March (soil moisture increased from 2.8 to 8.4 %) in Hungry Valley, Ne-

vada (Gustin et al., 2006). Besides bacterial activity, chemical and physical interac-

tions were suggested for enhanced Hg emissions with rising soil moisture: i) physical 

displacement of Hg0 enriched interstitial soil air by infiltrating water, (ii) replacement 

of Hg0 adsorbed to the soil by water molecules, and (iii) desorption of Hg2+ bound to 

the soil and subsequent reduction to Hg0 through abiotic or biotic factors (Lindberg et 

al., 1999). Most likely, BFS/BOFS exhibited vastly limited microbial communities 

compared to soils, hence biological processes should be inhibited. However, we have 

no proof for or against biological activity. 

Further, it must be stated that column IV at 35 °C had similar water content to all the 

columns at 25 °C (Table 2) but showed no higher Hg flux; the decreased volatilization 

rate at 35 °C cannot be solely explained by the water content. At the moment, this 

phenomenon remains unclear. 

As is known for soils and was recently shown by Wang et al. (2014b) for baghouse 

filter dust (BFD), Hg emissions from surface material were affected by the Hg content 

in the upper few centimeters and hence by the air exchange surface area. Extrapolat-

ing volatilization from the columns’ diameter yielded total Hg emissions of roughly 

500 ng per m2 and 4 weeks for 25 °C. Assuming a linear correlation between total Hg 

and the volatilization rate from BFS/BOFS (0.25 % within 4 weeks at 25 °C), this 

would have led to Hg flux of 0.410 µg per m2 and 4 weeks (x̅m Hg content of BFS: 

1.64 mg kg–1) and to Hg flux of 5.2 mg per m² and 4 weeks (max. Hg content of BFS: 

20.8 mg kg–1) for the previously studied BFS (Földi et al., 2014). 
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However, transferring this data to other BFS or BFS/BOFS samples can be done only 

with caution. As Huggins et al. (1999) have shown by X-ray absorbance spectrosco-

py, Hg formed a variety of surface species on unburned C. Thus, differences in C 

levels of the charge material may affect the speciation of Hg and hence the release of 

these species. 

Furthermore, it must be stated that various research groups have shown that a signif-

icant proportion of gaseous Hg from industrial locations may comprise oxidized Hg, 

such as HgBr2 and HgCl2. Wang et al. (2014a) recently studied Hg emissions in flue 

gases of three cement plants in China, showing that oxidized Hg was the major spe-

cies of total Hg in flue gas (61 to 91 %). Moreover, Wang et al. (2014b) determined 

Hg concentration and speciation in BFD from a cement kiln in the State of Florida. 

They found that the concentration of oxidized Hg ranged between 62 and 73 %. Also, 

in coal-fired flue gas, oxidized Hg species have a significant presence. The fraction of 

oxidized Hg in the flue gas of a particular power plant largely depends on the coal 

type, combustion efficiency, and the pollution control equipment used. However, as 

oxidized Hg species are water soluble and the BFS/BOFS had already passed a wet 

cleaning process, most of these species should already be removed. Hence, volati-

lization of oxidized Hg from BFS/BOFS should be significantly lower or below the de-

tection limit. 

 

Conclusions 

Blast furnace sludge mixed with BOFS contained a significant amount of Hg. Volati-

lization of Hg from BFS/BOFS was proved for the first time. Despite rather low volati-

lization of Hg from fresh BFS/BOFS for all temperature ranges, emissions of Hg to 

the atmosphere are of environmental concern due to its long atmospheric lifetime and 
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the bioaccumulation after deposition. However, in countries with less strict environ-

mental laws, pure BFS or BFS/BOFS with significantly higher Hg content may be 

used in landfill and hence vastly contribute to the global Hg cycle via volatilization. As 

only elemental Hg vapor was determined in this study, but as oxidized Hg species 

may be present as well, experiments quantifying these species (e.g. with potassium 

chloride denuders) also should be conducted to quantify the environmental exposure 

by volatilization from BFS and/or BOFS. Further, the potential sunlight driven reduc-

tion of oxidized Hg to elemental Hg should be studied, as this may influence Hg 

emissions. 
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General discussion 

The aim of this thesis was to give first insights about Hg in BFS as no data has been 

published before. Therefore, analytical methods were chosen and applied to falsify or 

verify the hypotheses formed in chapter 1 (scope of the study). These hypotheses will 

be discussed in the following:  

Hypothesis 1 

 Mercury is enriched in BFS due to its low boiling point and high process tem-

peratures in the blast furnace. 

The fundamental hypothesis on which this thesis was based on was the assumption 

that Hg would be enriched in BFS like elements such as Zn and Pb. As pointed out 

by Mansfeldt and Dohrmann (2004) high contents of both elements in BFS cannot be 

exclusively explained by a mechanism based on mechanical transport. They further 

stated that Zn and Pb are partially reduced to their elemental form in the vapor phase 

due to high process temperatures and relatively low boiling points of the elements. In 

the upper shaft of the blast furnace, Zn and Pb partially condense on particles in the 

effluent gas due to the decreasing temperature. Hence, Zn and Pb are discharged 

with the effluent gas and “captured” by the wet cleaning process generating BFS.  

Mercury is a highly volatile transition metal with a boiling point of roughly 357 °C. 

Theoretically, at process temperatures of up to 2200 °C any Hg contained in the 

charge material should be transferred to its elemental form being gaseous. Similar to 

Pb and Zn, to some extent Hg should condense on solid phases in the upper shaft 

where temperature decreases and Hg should leave the blast furnace with effluent 

gas.  

The analyzes auf 65 BFS samples from seven different dumping sites in Europe re-

vealed elevated Hg contents verifying Hypothesis 1. The content ranged from 0.006 
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to 20.8 mg kg1 with a median of 1.63 mg kg–1 and mean of 3.08 mg kg–1. For a 

rough risk assessment, precautionary and trigger values of the German Federal Soil 

Protection and Contaminated Sites Ordinance (BBodSchV, 1999) from 12 July 1999 

were considered. Precautionary values are defined as values which, if exceeded, 

normally mean there is a reason that concern for a harmful soil change exists, taking 

geogenic or wide spread, settlement related pollutant content into account. The pre-

cautionary values are differentiated by the main soil type and metal: the values for Hg 

are 0.1 mg kg–1 for sand, 0.5 mg kg–1 for loam/silt, and 1 mg kg–1 for clay. As grain 

size distribution of BFS was described to be dominated by the silt fraction (Veres et 

al., 2011; Veres et al., 2010; Veres et al., 2012), precautionary value for loam/silt 

were chosen for a risk assessment. The vast majority of BFS samples (58 out of 65) 

exceeded the precautionary value of 0.5 mg kg–1. Hence, environmental concerns 

arising from BFS are not possible to dismiss. For instance, the abandoned BFS land-

fill in the Ruhr area (Germany) had long been used as a recreational area – remedia-

tion and sealing have started recently. In a worst-case scenario the landfill must be 

regarded as a playground for playing children. In this case, trigger values of the Ger-

man Federal Soil Protection Act (BBodSchG, 1998) for the direct exposure pathway 

solid matrix → human have to be considered. This value is 10 mg kg–1 for Hg being 

exceeded by three samples. Trigger values are defined as values which, if exceeded, 

shall mean that investigation with respect to the individual case in question is re-

quired, taking the relevant soil use into account, to determine whether a harmful soil 

change or site contamination exists.  

For a further risk assessment, the soluble fraction of Hg in blast furnace sludge was 

determined using a slightly modified version of the German Federal Soil Protection 

Act. The trigger value for the assessment of the soil → groundwater pathway for Hg 

is 1 µg L–1. Five out of 27 analyzed samples exceeded this value. However, it must 
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be taken into consideration that most of the BFS were already dumped for decades 

and hence might have (partially) leached out already. Hence, the exceedance of the 

trigger value is even more significant and potentially soluble Hg species are still de-

tectable and might contaminate the dumpsites vicinity even after decades of deposi-

tion. It is known from soils that Hg easily forms complexes with chloride ions (Cl–) 

resulting in water soluble mercury chlorides (HgCl2, Hg2Cl2) or tetrahedral coordina-

tion complexes ((HgCl4)
2–). Also Hg(II) sulfate (HgSO4), Hg(II) nitrate (Hg(NO3)2), and 

Hg(II) oxide (HgO) are water soluble Hg species being reasonable as soluble Hg 

species in BFS. These compounds can contaminate lower layers through vertically 

infiltration-induced leaching or even leak into groundwater tables.  

In fact, BFS and its deposition can undergo pedological processes, however, BFS 

and its deposition sites shall not be regarded as soils in a legal sense. The German 

Federal Soil Protection Act and the German Federal Soil Protection and Contaminat-

ed Sites Ordinance were only considered to give an impression of potential environ-

mental hazards.  

For a further approach of assessing Hg contamination in BFS, enrichment factors 

(EF) based on Earth’s crust abundance of Hg (0.056 mg kg–1) stated by Wedepohl 

(1995) were calculated. They varied between 0.107 and 371 with a mean of 49.9 and 

a median of 29.1, respectively, for BFS. As EF for analyzed charged material was in 

the range of 0.268 (olivine) and 1.21 (bauxite), elevated Hg content in BFS and EF 

for BFS displayed the internal enrichment during the metallurgical process as already 

stated for Pb and Zn and previously assumed for Hg.  

Hypothesis 2 

 Similar to “natural” conditions, Hg in BFS is preferentially associated with car-

bon-based sorbents, such as coke particles or graphite. 
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Once the enrichment of Hg in BFS was proved, the question arose on which particles 

Hg condenses during metallurgical process and cooling/cleaning of the effluent gas, 

respectively. The affinity of Hg towards carbon-based sorbents, such as activated C, 

is well described in the literature and for instance used for Hg removal from flue gas-

es (De et al., 2013; Diamantopoulou et al., 2010; Galbreath and Zygarlicke, 2000). 

Spearman correlation between total Hg and total C (TC) was undertaken to show if 

Hg in BFS is also preferentially associated with C-based sorbents. Correlation of all 

samples, however, was relatively poor (r = 0.222, p = 0.075, n = 65). Furthermore, 

correlation of Hg vs. total inorganic C (TIC) and total residual C (TRC) showed low 

significance (TIC: r = 0.039, p = 0.151, n = 65; TRC: r = 0.1093, p = 0.123, n = 65). In 

contrast, the correlation of Hg vs. TC for one site with a larger set of BFS samples 

(Herne, Germany, n = 31) revealed a statistical significance with coefficient of 0.673 

(p < 0.001). Also Hg vs. TRC showed a strong correlation (r = 0.695, p < 0.001) for 

the same set of samples. This indicates that, at least for dumped BFS at the Herne 

site, Hg is associated with sorbents having a high fraction of residual C (e.g. coke, 

graphite). Rietveld refinement of XRD analysis conducted by Mansfeldt and 

Dohrmann (2004) for the same sample set found graphite contents in BFS up to 

60 g kg–1 with a median of 27 g kg–1. A correlation of the Hg content versus the 

graphite content yielded a correlation coefficient of r = 0.614 (p = 0.02, n = 14).  

An explanation for the low correlation of Hg vs. TC and TRC, respectively, for all 

samples might be variations in the applied charge materials, pre- and post-treatment 

processes, and production conditions at each individual plant. Additionally, conditions 

of deposition and storage, such as climatic effects, may have affected the distribution 

of Hg on carbon-based sorbents during the last decades due to constant leaching 

and potential volatilization.  
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However, more reasonable might be the deposition of other steel making related 

wastes, such as basic oxygen furnace sludge (BOFS), on the same dumps sites or 

even a process related mixture of BFS with BOFS or other metallurgical wastes. Two 

samples from Nowa Huta (Krakow, Poland) previously declared as BFS had extraor-

dinarily high Fe contents (617 and 623 g kg–1, respectively) and C content (6.46 and 

7.55 g kg–1, respectively) far below the median of BFS (133 g kg1). The elemental 

composition of both samples encourages the assumption that they are rather BOFS 

than BFS. Correlation of Hg vs. TC for all other samples, however, still revealed a low 

coefficient (r = 0.244, p = 0.054, n = 63). Hence, the preferential association of Hg 

with carbon-based sorbents in BFS could not be clearly verified or falsified. 

Hypothesis 3 

An Hg-specific sequential extraction procedure developed for soils and sedi-

ments can be adopted to BFS to assess the risk potential of Hg in BFS. 

Determining the chemical speciation and fractionation, respectively, of a certain pollu-

tant is essential for an accurate risk assessment. In general, various techniques have 

been developed and applied to determine speciation of Hg in geochemical samples, 

ranging from sequential extraction procedure (SEP), sequential thermal decomposi-

tion, electron microprobe analysis, to X-ray absorption spectroscopic analysis. 

Among these, SEP has been widely adopted, in part because of the simplicity, effi-

ciency, and reproducibility of the procedure (Kim et al., 2003). However, inherent dis-

advantages of this technique exist: besides a potential transformation of Hg species 

during the extraction steps, the lack of selectivity of reagents, and non-homogeneity 

of samples are such limitations. Nevertheless, SEP developed by Bloom et al. (2003) 

for inorganic Hg in soils and sediments was tested on BFS to provide further infor-

mation about the distribution of Hg in different operationally defined behavioral clas-
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ses. It was shown before by various authors that Hg fractionation of other solid mate-

rials and wastes was successful using the SEP by Bloom et al. (2003). For instance, 

coal (Yuan et al., 2010), coal fly ash, and slag (Wei et al., 2011) were analyzed for 

Hg fractionation, yielding reliable and repeatable data. In their studies they revealed 

recoveries of the total Hg content between 79.6 and 90.8 % for coal fly ash, 75 % for 

slag from coal-fired thermal power plants, and 72.6 % and between 86 and 115 %, 

respectively, for coal.  

Sequential extraction was conducted on 14 BFS from five locations in Europe having 

total Hg contents from 3.91 to 20.8 mg kg–1. Total recoveries obtained as the sum of 

Hg in each fraction ranged between 72.3 and 114 %. Standard deviations for the re-

coveries for each sample (three replicants per sample) were below 5 %. Repeatability 

was exemplarily determined at four subsequent days for one sample (#2116) with a 

total content of 4.41 mg kg–1. Standard deviations were found to be 0.22 mg kg–1 for 

F4 (relative standard deviation: 6.7 %), 0.05 mg kg–1 for F5 (16.1 %), and 

0.02 mg kg–1 for F6 (9.2 %). Other fractions were below the limit of quality. These 

data indicate a reliable adoption of the soil and sediment specific SEP for BFS.  

Hypothesis 4 

Mercury in BFS mainly resides in the fraction of “elemental” Hg, mercuric sul-

fides, and Hg in crystalline metal ores and silicates and hence being rather 

immobile under natural conditions. 

The SEP developed by Bloom et al. (2003) allows a distinction of inorganic Hg into 

operationally defined behavioral classes. Based on extraction kinetics and the effects 

of solid-to-liquid ratios, the authors developed and validated this five-step procedure. 

Extracts used include demineralized water (F1) representing water soluble Hg, 

0.1 mol L–1 CH3COOH + 0.01 mol L–1 HCl (F2) as the fraction of “human stomach 
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acid” soluble Hg, 1 mol L–1 KOH (F3) as extractant for organo-chelated Hg and calo-

mel, 12 mol L–1 HNO3 (F4) for “elemental” Hg, and aqua regia (F5) soluble fraction 

being mercuric sulfide. Extractant for F4 was slightly modified according to Hall et al. 

(2005). They proved that 7.9 mol L–1 HNO3 was sufficient to dissolve non-sulfide 

forms of Hg without a partially dissolution of mercuric sulfides which actually sup-

posed to be extracted afterwards.  

Further, a sixth fraction was revealed by measuring the solid residue of F5 directly 

with a total Hg analyzer. Bloom et al. (2003) stated that a significant residue may re-

main after aqua regia digestion in the case of crystalline metal ores such as bauxite 

and Fe2O3. Such a procedure was not necessary as the DMA-80 is able to detect Hg 

in solid phases as well. So the solid residue of F5 was dried and measured with the 

DMA to obtain Hg in crystalline metal ores and silicates. 

Distribution of Hg in the particular fractions revealed a clear trend: low amounts of Hg 

in the first three fractions and more than 90 % of extracted Hg being present in the 

last three fractions. In detail, F1 and F3 were below LOQ (0.134 and 3.89 µg kg–1, 

respectively) in all 14 samples whereas only five samples of F2 exceeded the LOQ 

(0.135 µg kg–1). Mercury in this fraction ranged between 0.509 and 9.61 % (median: 

0.802 %). Minor amounts of Hg were determined as mercuric sulfides (F5) with a 

median of 7.34 % (0.848 mg kg–1, n = 10) ranging from 0.725 to 37.3 % (0.051 to 

7.41 mg kg–1) and in F6 (Hg in crystalline metal ores and silicates) with a median of 

4.25 % (0.227 mg kg1) and values up to 15.1 % (0.951 mg kg–1). The majority of Hg 

in BFS was present in the fraction of “elemental” Hg with a median of 91.1 % 

(4.16 mg kg1) and contents between 2.56 and 18.2 mg kg–1 (48.5 to 98.8 %).  

To support the established behavioral classes, Bloom et al. (2003) conducted “ex-

traction fingerprints” by dispersing pure Hg compounds in powdered kaolin and se-

quentially extracting these materials. Compounds with relatively high water solubility 
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such as HgCl2, HgO, and HgSO4 were leached in the first two fractions with propor-

tions higher than 97 %. In most studied BFS samples, none of these compounds 

were present as measured values were mostly below the LOQ in both fractions. 

However, this was reasonable as BFS were dumped for years up to decades and 

hence highly water soluble Hg compounds were already able to migrate into deeper 

layers or groundwater as a consequence of filtrating precipitation. Samples exceed-

ing LOQ for F2 were none-surface samples, meaning that they were covered by oth-

er BFS samples or even other material. Either these compounds have not been 

leached out due to oversaturation of the interstitial solution, their initial content was 

extraordinarily high and was not totally leached out, or these compounds were 

leached out from upper layers and precipitated in these particular layers for unknown 

reasons. However, #2241 to #2245 represented a set of samples taken at the same 

spot but in different depths (20 to 145 cm below surface) with #2241 being the up-

permost layer and #2245 being the lowest layer. The distribution pattern of high water 

soluble compounds yielded no clear pattern in terms of decreasing contents with 

depth for this set of BFS. It varied with 0.207 ± 0.006 mg kg–1 for #2241, 0.452 ± 

0.031 mg kg–1 for #2243, 0.035 ± 0.005 mg kg–1 for #2244, and 0.061 ± 

0.005 mg kg1 for #2245. Sample 2242 was below LOQ. Hence, initially extraordinari-

ly high contents of water soluble Hg compounds were suggested which had not 

leached out completely at the time of sampling. Further, variations of the contents 

were believed to result from process’ or charge materials’ variations. Most likely, a 

higher proportion of coal instead of coke was applied to the blast furnace generating 

these particular BFS samples. As 95 % of Cl in coal is liberated as HCl gas during 

the coking process (Shao et al., 1994), the Cl input increases in blast furnaces with 

increasing proportions of coal as a charge material. Gale et al. (2008) summarized 

the fundamental mechanisms governing the fate of Hg in coal flue gas. They pointed 
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out that unburned C can effectively catalyze Hg0 oxidation by reacting with gaseous 

HCl and forming chlorinated-C sites, which then react with Hg to form HgCl. These 

oxidized Hg species can further react with either Cl– or Cl2 to form HgCl2. Similar re-

actions are reasonable in blast furnace gas and hence higher proportions of F2 in 

BFS were interpreted as a result of increased coal proportions of the charge material. 

However, extraction fingerprints of HgCl2 revealed a primary extraction of this com-

pound in the first instead of the second fraction. 

As already mentioned, Hg in BFS mainly resided in F4 as “elemental” Hg with a me-

dian of 91.1 %. However, it remained questionable if Hg extracted in this fraction was 

indeed Hg0, which is why it was enclosed in quotation marks. Though all Hg is vapor-

ized and converted to Hg0 through thermal decomposition, it is known from cooling 

coal flue gas that Hg0 can be oxidized under appropriate conditions (see above). Ox-

idation to Hg2+ is capable via homogenous (gas-gas) or heterogeneous (gas-solid, 

surface catalyzed) pathways (Wilcox et al., 2012). It is hence either present in flue 

gas as Hg0, Hg2+, or adsorbed on solid phases such as fly ash particles (Galbreath 

and Zygarlicke, 2000) or activated carbon (Diamantopoulou et al., 2010). The amount 

of Hg0 being oxidized largely depends on the coal type, in particular its chemical 

composition, combustion efficiency, and pollution control devices. Detailed infor-

mation about potential oxidation and its occurrence is not at hand for cooling of blast 

furnace gas. Nevertheless, similar processes as for the coal flue gas are reasonable 

for blast furnace gas. However, Hg0 is the most difficult species to capture as it is 

highly volatile and low water soluble. Hence, such a dominance of Hg being present 

as Hg0 in BFS is rather unlikely. 

Furthermore, studied BFS samples have been dumped for years, partially up to dec-

ades. Even if Hg0 was present in BFS due to the massive use of process water and 

subsequent dissolution of Hg0 species, it would have been in minor amounts and 
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most likely already degassed during deposition. Though Bloom et al. (2003) suggest-

ed a quick coating with a gas-impervious layer of microscopic balls of Hg0 preserving 

the droplets from further oxidation and/or diffusion, no such balls were found neither 

on macroscopic nor microscopic scale for samples with highest total Hg contents. 

Consequently, Hg residing in F4 were rather interpreted as Hg compounds such as 

Hg(I), Hg associated with amorphous organo-sulfur, Hg–gold amalgams, and Hg as-

sociated with crystalline Fe/Mn oxide phases which were shown to be dissolved in F4 

as well (Bloom et al., 2003). 

Although this data provided only limited information about the exact binding forms of 

Hg in BFS, however, it yielded some useful details about the mobility and hence the 

potential risk arising from Hg in dumped BFS. Mercury mainly resided in fractions 

being immobile under natural conditions, hence the long-term risk arising from Hg is 

rather low, particularly taking into account the low amount of Hg in ecotoxically rele-

vant fractions. However, it must be noted that Hg in mobile fractions might already 

have been leached out or volatilized during deposition.  

Hypothesis 5 

Blast furnace sludge inhibits a significant potential for Hg volatilization mean-

ing that Hg-fluxes from drying samples is detectable under laboratory condi-

tions.  

As previously studied BFS were partially dumped for decades and hence Hg might 

have already been volatilized during that time, the volatilization potential should be 

studied on fresh samples. However, state-of-the-art integrated steel plants use joint 

cleaning devices for gas purification of effluent gases from both blast furnaces and 

so-called basic oxygen furnaces to be most cost effective. In basic oxygen furnaces 

pig iron, Fe scrap, ferroalloys, lime, and Fe ores are converted into low carbon steel 
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via lancing pure O2 into the cast. During the blowing process, large amounts of fumes 

and gases are generated containing fine particles of the charge materials. Wet purifi-

cation of the effluent gas results in so-called basic oxygen furnace sludge. 

Unfortunately, fresh and pure BFS samples were not available for this reason. 

Hence, a mixture of fresh BFS with BOFS was taken from after the settling tank. De-

tailed information about the proportion of both effluent gases generating the studied 

sample, henceforth referred to as BFS/BOFS, was not given either. However, ele-

mental composition, in particular Fe and C content, indicated a higher proportion of 

BOFS. Further, the Hg content of 0.178 mg kg–1 might suggest a minor proportion of 

BFS as previous BFS samples had a median Hg content of 1.63 mg kg–1. 

To study the volatilization potential of Hg from BFS/BOFS, sealed column experi-

ments were conducted for four weeks in an incubator at controlled temperatures (15, 

25, and 35 °C). For all temperature variants an increased volatilization rate was ob-

served within the first 100 h (sampling took place on a daily basis) followed by a 

slightly decrease of trapped Hg (sampling on a 72 h basis). However, background 

level of the ambient air was not achieved at the end of experiment. Hence, 

BFS/BOFS still possessed potential for Hg degassing after four weeks.  

Total Hg released within four weeks varied between 3.31 (15 °C) and 66.6 ng per kg 

(25 °C). However, Hg emissions are mainly influenced by Hg contents in the upper 

few centimeters of soils (Gillis and Miller, 2000) and Wang et al. (2014) recently 

showed similar results for Hg emissions from baghouse filter dust. Extrapolating vo-

latilization from the columns’ diameter yielded total Hg emissions ranging from 28.5 

(15 °C) and 436 ng per m2 and 4 weeks (25 °C). Comparing this flux with Hg re-

leased from soils yielded very low rates. Mean Hg fluxes from 13 floodplain ecosys-

tems at the Elbe River (Germany) ranged between 138 and 711 ng per m2 and h 

(Rinklebe et al., 2009; Rinklebe et al., 2013) being 92.7 and 478 µg per m2 and h. 
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However, it should be stated that the analyzed soil samples were regarded as con-

taminated sites with total Hg content ranging from 0.54 and 16.7 mg kg–1 (median: 

3.89 mg kg–1). Soils are considered to be Hg enriched with contents higher than 

0.1 mg kg–1. Hence, Hg fluxes from BFS/BOFS should be rather compared with low 

Hg soils. The Hg volatilization rate from theses soils reported in the literature ranged 

from –2 to 12 ng per m2 and h (Carpi and Lindberg, 1998; Ericksen et al., 2006; Kim 

et al., 2003; Yao et al., 2006; Zhang and Lindberg, 1999a; Zhang et al., 2001) being 

up to 8 µg per m2 and 4 weeks and hence significant higher than rates from 

BFS/BOFS. 

Despite BFS/BOFS possessed a rather low volatilization rate at studied temperature 

variants, it should be considered as a significant Hg source to the global Hg cycle as 

steel is still a mandatory material for modern mankind civilization and related by-

products or wastes has been and will further be generated in large amounts. Quanti-

fying Hg degassing from dumped BFS, BOFS, and their mixture, respectively, on a 

global basis is hard to establish as required data are not available. Neither repre-

sentative studies of Hg content in this metallurgical waste are published nor reliable 

details about spatial extent of dumpsite, their frequency, and intensity of use are 

available. 

Hypothesis 6 

Volatilization rate of Hg from BFS is largely driven by temperature. 

Unlike other trace metals, Hg exhibits a relatively high vapor pressure (0.16 Pa at 

20 °C). Besides the total Hg content, this predominantly determines the potential vo-

latilization rate. With increasing temperature, kinetic energy increases and more Hg 

can volatilize hence resulting in increasing vapor pressure.  
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Various research groups have confirmed a temperature related increase of Hg de-

sorption with subsequent volatilization from soils and sediments. Variations of Hg 

emissions from low-Hg soils (0.214 ng kg–1) were explained by variations in surface 

soil temperature and Hg content gradient between soil and ambient air surface (Gillis 

and Miller, 2000). Further, temperature dependence was demonstrated in both diur-

nal (Gustin et al., 2006) and seasonal studies (Sigler and Lee, 2006).  

As initially expected, Hg flux increased from an averaged 0.300 ng kg–1 per 24 h for 

15 °C to an averaged 8.45 ng kg–1 per 24 h for 25 °C within the first 100 h. Also the 

lower Hg rate thereafter was higher for the 25 °C variant (4.10 ng kg–1 per 72 h) as 

for 15 °C (0.284 ng kg–1 per 72 h). However, Hg emissions at 35 °C were surprisingly 

lower than for 25 °C both within the first 100 h (1.82 ng kg–1 per 24 h) and thereafter 

(2.60 ng kg–1 per 72 h). Factors which have been correlated with Hg0 from soils, be-

sides total Hg content and temperature, are atmospheric oxidants and ozone, respec-

tively, (Engle et al., 2005), meteorological conditions (Gustin et al., 2006; Gustin et 

al., 1997; Poissant et al., 1999; Schlüter, 2000; Zhang and Lindberg, 1999b), and soil 

moisture (Gustin and Stamenkovic, 2005). Variations in atmospheric ozone and me-

teorological conditions as a reason for lower volatilization from BFS/BOFS at 35 °C 

were excluded as experiments were conducted under identical laboratory conditions. 

However, water contents at the start and end of experiments, respectively, at 35 °C 

were significantly lower than for both other temperature variants: contents decreased 

during the performance of experiments from 53.7 to 47.1 % (median of 15 and 25 °C) 

in contrast to a decrease from 44.6 to 39 % for 35 °C. Decreasing water content was 

determined to result in decreased Hg flux in low-Hg soils (Gustin and Stamenkovic, 

2005). A threefold increase in Hg flux was observed in a field study with increasing 

soil moisture from 2.8 to 8.4 % (Gustin et al., 2006). Also Lindberg et al. (1999) de-

scribed similar results. They further suggested chemical and physical interactions for 
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enhanced Hg emissions with rising soil moisture: i) physical displacement of Hg0 en-

riched interstitial soil air by infiltrating water, (ii) replacement of Hg0 adsorbed to the 

soil by water molecules, and (iii) desorption of Hg2+ bound to the soil and subsequent 

reduction to Hg0 through abiotic or biotic factors. Similar mechanisms are reasonable 

for BFS/BOFS. Consequently, decreased water content in BFS/BOFS could have 

resulted in countervailing interactions and hence in lower Hg fluxes at 35 °C.  

However, it must be stated that column IV at 35 °C exhibited similar water contents 

both at the start of the experiment (49.2 %) and at the end of the experiment (43.4 %) 

as water contents of the other temperature variants. Nevertheless, Hg flux of this par-

ticular column was not significantly higher as the other columns at 35 °C. Hence, a 

decreased Hg volatilization from BFS/BOFS at 35 °C cannot be solely explained by 

lower water content.  

 

Future prospects 

This thesis should be rather understood as a first approach of describing Hg distribu-

tion and mobility of Hg in BFS than a complete and detailed description of Hg in BFS. 

Hence, further research should be undertaken for a full understanding of Hg in this 

industrial waste. The following aspects should be taken into consideration: 

 Nothing is known about species distribution of Hg in blast furnace gas, which 

therefore should be studied. Most likely a proportion of Hg is present as Hg0. 

Hence, a significant amount of Hg is not captured by gas purification process-

es generating BFS. The fate of this Hg is unclear.  

 Only limited information about the exact binding forms of Hg in BFS was re-

vealed by the SEP. Further research in this filed should be undertaken. For in-

stance near edge X-ray absorption fine structure spectroscopy or wave dis-
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persive X-ray microprobe spectroscopy might give further information. Howev-

er, high limits of analytical detection might prevent this approach. 

 In modern integrated steel plants, BFS and/or BOFS are sent to open settling 

tanks to separate solid material from most of the bulk water. Mercury volatiliza-

tion potential from these tanks should be determined as it might be an un-

known Hg source to the global Hg cycle. 

 To quantify Hg fluxes from BFS/BOFS on a global basis, a representative data 

set of total Hg content in this material and accruing quantities should be col-

lected.  

 Effects of varying water contents of BFS on Hg fluxes should be studied as 

this waste is most likely dumped in open surface landfills in countries with less 

strict environmental laws. Hence, rainfall might increase Hg volatilization as it 

is known for soils.  

 As background level of ambient air was not achieved after four weeks in 

sealed column experiments, longtime studies should be conducted till no fur-

ther Hg is released. Further, sampling with higher temporal resolution would 

reveal more details about primarily elevated Hg fluxes. 

 



References  103 

 

 

 

 

 

 

Chapter 6 References 



References  104 

Alekseenko V, Alekseenko A. The abundances of chemical elements in urban soils. 
Journal of Geochemical Exploration 2014; 147: 245-249. 

Banic CM, Beauchamp ST, Tordon RJ, Schroeder WH, Steffen A, Anlauf KA, et al. 
Vertical distribution of gaseous elemental mercury in Canada. Journal of 
Geophysical Research: Atmospheres 2003; 108. 

Barkay T, Miller SM, Summers AO. Bacterial mercury resistance from atoms to 
ecosystems. FEMS Microbiology Reviews 2003; 27: 355-384. 

BBodSchG. Federal Soil Protection Act (Bundes-Bodenschutzgesetz - BBodSchG) 
from 17.03.1998. BGBl. I pp. 502-510, 1998. 

BBodSchV. Federal Soil Protection and Contaminated Sites Ordinance (Bundes-
Bodenschutz- und Altlastenverordnung - BBodSchV) from 12.07.1999. BGBl. I 
pp. 1554-1582, 1999. 

Bindler R. Estimating the natural background atmospheric deposition rate of mercury 
utilizing ombrotrophic bogs in southern Sweden. Environmental Science & 
Technology 2003; 37: 40-46. 

Bloom NS, Preus E, Katon J, Hiltner M. Selective extractions to assess the 
biogeochemically relevant fractionation of inorganic mercury in sediments and 
soils. Analytica Chimica Acta 2003; 479: 233-248. 

Borisov VV, Ivanov SY, Fuks AY. Factory Tests of a Technology for Recycling 
Metallurgical Sludge that Contains Iron and Zinc. Metallurgist 2014; 58: 3-10. 

Cantarino MV, de Carvalho Filho C, Mansur MB. Selective removal of zinc from basic 
oxygen furnace sludges. Hydrometallurgy 2012; 111: 124-128. 

Carpi A, Lindberg SE. Application of a Teflon (TM) dynamic flux chamber for 
quantifying soil mercury flux: Tests and results over background soil. 
Atmospheric Environment 1998; 32: 873-882. 

Chalmers AT, Krabbenhoft DP, Van Metre PC, Nilles MA. Effects of urbanization on 
mercury deposition and New England. Environmental Pollution 2014; 192: 
104-112. 

Choi H-D, Holsen TM. Gaseous mercury emissions from unsterilized and sterilized 
soils: The effect of temperature and UV radiation. Environmental Pollution 
2009; 157: 1673-1678. 

Ci Z, Zhang X, Wang Z, Niu Z. Phase speciation of mercury (Hg) in coastal water of 
the Yellow Sea, China. Marine Chemistry 2011; 126: 250-255. 

Clean Air Act Amendments of 1990. Pub. L. No. 101-549, sec. 701, § 113, 104 Stat. 
2399, 2672-80 (codified at 42 U.S.C. § 7413 (1994)), 1990. 

Coolbaugh MF, Gustin MS, Rytuba JJ. Annual emissions of mercury to the 
atmosphere from natural sources in Nevada and California. Environmental 
Geology 2002; 42: 338-349. 

Costa M, Liss PS. Photoreduction of mercury in sea water and its possible 
implications for Hg0 air-sea fluxes. Marine Chemistry 1999; 68: 87-95. 

Das B, Prakash S, Reddy PSR, Misra VN. An overview of utilization of slag and 
sludge from steel industries. Resources, Conservation and Recycling 2007; 
50: 40-57. 

Davidson R, Claerke L. Trace Elements in Coal. IEA Coal Research, London, 1996. 



References  105 

De M, Azargohar R, Dalai AK, Shewchuk SR. Mercury removal by bio-char based 
modified activated carbons. Fuel 2013; 103: 570-578. 

Diamantopoulou I, Skodras G, Sakellaropoulos GP. Sorption of mercury by activated 
carbon in the presence of flue gas components. Fuel Processing Technology 
2010; 91: 158-163. 

Driscoll CT, Han Y-J, Chen CY, Evers DC, Lambert KF, Holsen TM, et al. Mercury 
contamination in forest and freshwater ecosystems in the Northeastern United 
States. Bioscience 2007; 57: 17-28. 

Engle MA, Gustin MS. Scaling of atmospheric mercury emissions from three naturally 
enriched areas: Flowery Peak, Nevada; Peavine Peak, Nevada; and Long 
Valley Caldera, California. Science of the Total Environment 2002; 290: 91-
104. 

Engle MA, Gustin MS, Lindberg SE, Gertler AW, Ariya PA. The influence of ozone on 
atmospheric emissions of gaseous elemental mercury and reactive gaseous 
mercury from substrates. Atmospheric Environment 2005; 39: 7506-7517. 

Engle MA, Gustin MS, Zhang H. Quantifying natural source mercury emissions from 
the Ivanhoe Mining District, north-central Nevada, USA. Atmospheric 
Environment 2001; 35: 3987-3997. 

Ericksen JA, Gustin MS, Xin M, Weisberg PJ, Fernandez GCJ. Air-soil exchange of 
mercury from background soils in the United States. Science of the Total 
Environment 2006; 366: 851-863. 

Ettler V, Navratil T, Mihaljevic M, Rohovec J, Zuna M, Sebek O, et al. Mercury 
deposition/accumulation rates in the vicinity of a lead smelter as recorded by a 
peat deposit. Atmospheric Environment 2008; 42: 5968-5977. 

Farella N, Lucotte M, Davidson R, Daigle S. Mercury release from deforested soils 
triggered by base cation enrichment. Science of the Total Environment 2006; 
368: 19-29. 

Feng XB, Wang SF, Qiu GA, Hou YM, Tang SL. Total gaseous mercury emissions 
from soil in Guiyang, Guizhou, China. Journal of Geophysical Research: 
Atmospheres 2005; 110. 

Fitzgerald WF, Lamborg CH, Hammerschmidt CR. Marine biogeochemical cycling of 
mercury. Chemical Reviews 2007; 107: 641-662. 

Fritsche J, Obrist D, Alewell C. Evidence of microbial control of Hg0 emissions from 
uncontaminated terrestrial soils. Journal of Plant Nutrition and Soil Science - 
Zeitschrift für Pflanzenernährung und Bodenkunde 2008; 171: 200-209. 

Fukuda N, Takaoka M, Doumoto S, Oshita K, Morisawa S, Mizuno T. Mercury 
emission and behavior in primary ferrous metal production. Atmospheric 
Environment 2011; 45: 3685-3691. 

Galbreath KC, Zygarlicke CJ. Mercury transformations in coal combustion flue gas. 
Fuel Processing Technology 2000; 65: 289-310. 

Gale TK, Lani BW, Offen GR. Mechanisms governing the fate of mercury in coal-fired 
power systems. Fuel Processing Technology 2008; 89: 139-151. 

Gillis AA, Miller DR. Some local environmental effects on mercury emission and 
absorption at a soil surface. Science of the Total Environment 2000; 260: 191-
200. 



References  106 

Grant SL, Kim M, Lin P, Crist KC, Ghosh S, Kotamarthi VR. A simulation study of 
atmospheric mercury and its deposition in the Great Lakes. Atmospheric 
Environment 2014; 94: 164-172. 

Gu B, Bian Y, Miller CL, Dong W, Jiang X, Liang L. Mercury reduction and 
complexation by natural organic matter in anoxic environments. Proceedings 
of the National Academy of Sciences of the United States of America 2011; 
108: 1479-1483. 

Gustin MS. Are mercury emissions from geologic sources significant? A status report. 
Science of the Total Environment 2003; 304: 153-167. 

Gustin MS, Coolbaugh MF, Engle MA, Fitzgerald BC, Keislar RE, Lindberg SE, et al. 
Atmospheric mercury emissions from mine wastes and surrounding 
geologically enriched terrains. Environmental Geology 2003; 43: 339-351. 

Gustin MS, Engle M, Ericksen J, Lyman S, Stamenkovic J, Xin M. Mercury exchange 
between the atmosphere and low mercury containing substrates. Applied 
Geochemistry 2006; 21: 1913-1923. 

Gustin MS, Stamenkovic J. Effect of watering and soil moisture on mercury 
emissions from soils. Biogeochemistry 2005; 76: 215-232. 

Gustin MS, Taylor GE, Maxey RA. Effect of temperature and air movement on the 
flux of elemental mercury from substrate to the atmosphere. Journal of 
Geophysical Research: Atmospheres 1997; 102: 3891-3898. 

Hall GEM, Pelchat P, Percival JB. The design and application of sequential 
extractions for mercury, Part 1. Optimization of HNO3 extraction for all non-
sulphide forms of Hg. Geochemistry: Exploration, Environment, Analysis 2005; 
5: 107-113. 

Hammerschmidt CR, Bowman KL. Vertical methylmercury distribution in the 
subtropical North Pacific Ocean. Marine Chemistry 2012; 132: 77-82. 

Hooda PS. Trace Elemnts in Soils. West Sussex: John Wiley & Sons Ltd, 2010. 

Iverfeldt Å. Structural, thermodynamic and kinetic studies of mercury compounds; 
applications within the environmentlal mercury cycle. (PhD). University of 
Göteborg, 1984. 

Jiang T, Wei S-Q, Flanagan DC, Li M-J, Li X-M, Wang Q, et al. Effect of Abiotic 
Factors on the Mercury Reduction Process by Humic Acids in Aqueous 
Systems. Pedosphere 2014; 24: 125-136. 

Kim CS, Bloom NS, Rytuba JJ, Brown GE. Mercury speciation by X-ray absorption 
fine structure spectroscopy and sequential chemical extractions: A comparison 
of speciation methods. Environmental Science & Technology 2003; 37: 5102-
5108. 

Kretzschmar R, Mansfeldt T, Mandaliev PN, Barmettler K, Marcus MA, Voegelin A. 
Speciation of Zn in Blast Furnace Sludge from Former Sedimentation Ponds 
Using Synchrotron X-ray Diffraction, Fluorescence, and Absorption 
Spectroscopy. Environmental Science & Technology 2012; 46: 12381-12390. 

Langova S, Matysek D. Zinc recovery from steel-making wastes by acid pressure 
leaching and hematite precipitation. Hydrometallurgy 2010; 101: 171-173. 

Laurier FJG, Mason RP, Gill GA, Whalin L. Mercury distributions in the North Pacific 
Ocean - 20 years of observations. Marine Chemistry 2004; 90: 3-19. 



References  107 

Leipe T, Moros M, Kotilainen A, Vallius H, Kabel K, Endler M, et al. Mercury in Baltic 
Sea sediments-Natural background and anthropogenic impact. Chemie der 
Erde - Geochemistry 2013; 73: 249-259. 

Lindberg SE, Jackson DR, Huckabee JW, Janzen SA, Levin MJ, Lund JR. 
Atmospheric emission and plant uptake of mercury from agricultural soils near 
the Almadén mercury mine. Journal of Environmental Quality 1979; 8: 572-
578. 

Lindberg SE, Zhang H, Gustin M, Vette A, Marsik F, Owens J, et al. Increases in 
mercury emissions from desert soils in response to rainfall and irrigation. 
Journal of Geophysical Research: Atmospheres 1999; 104: 21879-21888. 

Lopez-Delgado A, Perez C, Lopez FA. The influence of carbon content of blast 
furnace sludges and coke on the adsorption of lead ions from aqueous 
solution. Carbon 1996; 34: 423-431. 

Ma JJ, Yao H, Luo GQ, Xu MH, Han J, He XM. Distribution of Hg, As, Pb, and Cr in a 
Coke Oven Plant. Energy & Fuels 2010; 24: 5289-5290. 

Makkonen HT, Heino J, Laitila L, Hiltunen A, Poylio E, Harkki J. Optimisation of steel 
plant recycling in Finland: dusts, scales and sludge. Resources, Conservation 
and Recycling 2002; 35: 77-84. 

Malina J, Radenovic A. Kinetic Aspects of Methylene Blue Adsorption on Blast 
Furnace Sludge. Chemical and Biochemical Engineering Quarterly 2014; 28: 
491-498. 

Mansfeldt T, Dohrmann R. Chemical and mineralogical characterization of blast-
furnace sludge from an abandoned landfill. Environmental Science & 
Technology 2004; 38: 5977-5984. 

Mason RP, Choi AL, Fitzgerald WF, Hammerschmidt CR, Lamborg CH, Soerensen 
AL, et al. Mercury biogeochemical cycling in the ocean and policy implications. 
Environmental Research 2012; 119: 101-117. 

Mason RP, Fitzgerald WF, Morel FMM. The Biogeochemical Cycling of Elemental 
Mercury - Anthropogenic Influences. Geochimica et Cosmochimica Acta 1994; 
58: 3191-3198. 

Mason RP, Rolfhus KR, Fitzgerald WF. Mercury in the North Atlantic. Marine 
Chemistry 1998; 61: 37-53. 

Mason RP, Sheu GR. Role of the ocean in the global mercury cycle. Global 
Biogeochemical Cycles 2002; 16. 

Morey GB, Lively RS. Background levels of mercury and arsenic in Paleoproterozic 
rocks of the Mesabi iron range, northern Minnesota. Minnesota Geological 
Survey Information Circular 1999; 43. 

Nacht DM, Gustin MS. Mercury emissions from background and altered geologic 
units throughout Nevada. Water, Air, & Soil Pollution 2004; 151: 179-193. 

Nogami H, Yagi J-i, Kitamura S-y, Austin PR. Analysis on material and energy 
balances of ironmaking systems on blast furnace operations with metallic 
charging, top gas recycling and natural gas injection. Isij International 2006; 
46: 1759-1766. 

Obrist D. Atmospheric mercury pollution due to losses of terrestrial carbon pools? 
Biogeochemistry 2007; 85: 119-123. 



References  108 

Obrist D, Fain X, Berger C. Gaseous elemental mercury emissions and CO2 
respiration rates in terrestrial soils under controlled aerobic and anaerobic 
laboratory conditions. Science of the Total Environment 2010; 408: 1691-
1700. 

Poissant L, Pilote M, Casimir A. Mercury flux measurements in a naturally enriched 
area: Correlation with environmental conditions during the Nevada Study and 
Tests of the Release of Mercury From Soils (STORMS). Journal of 
Geophysical Research: Atmospheres 1999; 104: 21845-21857. 

Ravichandran M. Interactions between mercury and dissolved organic matter - a 
review. Chemosphere 2004; 55: 319-331. 

Remus R, Monsonet MAA, Roudier S, Sancho LD. Best Available Techniques (BAT) 
Reference Document for Iron and Steel Production, Luxembourg, 2013. 

Rinklebe J, During A, Overesch M, Wennrich R, Staerk H-J, Mothes S, et al. 
Optimization of a simple field method to determine mercury volatilization from 
soils-Examples of 13 sites in floodplain ecosystems at the Elbe River 
(Germany). Ecological Engineering 2009; 35: 319-328. 

Rinklebe J, Wennrich R, Du Laing G, Staerk HJ, Mothes S. Mercury emissions from 
flooded soils and sediments in Germany are an underestimated problem: 
challenges for reliable risk assessments and management strategies. 
Proceedings of the 16th International Conference on Heavy Metals in the 
Environment 2013; 1. 

Rocha JC, Sargentini E, Zara LF, Rosa AH, dos Santos A, Burba P. Reduction of 
mercury(II) by tropical river humic substances (Rio Negro) - Part II. Influence 
of structural features (molecular size, aromaticity, phenolic groups, organically 
bound sulfur). Talanta 2003; 61: 699-707. 

Roederer C, Gourtsoyannis L. Technical steel research - Coordinated study 'steel-
environment'. European Commission Directorate-General XII Science, 
Research and Development, Luxembourg, 1996. 

Schlüter K. Review: evaporation of mercury from soils. An integration and synthesis 
of current knowledge. Environmental Geology 2000; 39: 249-271. 

Schroeder WH, Munthe J. Atmospheric mercury - An overview. Atmospheric 
Environment 1998; 32: 809-822. 

Selin NE. Global Biogeochemical Cycling of Mercury: A Review. Annual Review of 
Environment and Resources 2009; 34: 43-63. 

Selin NE, Jacob DJ, Yantosca RM, Strode S, Jaegle L, Sunderland EM. Global 3-D 
land-ocean-atmosphere model for mercury: Present-day versus preindustrial 
cycles and anthropogenic enrichment factors for deposition. Global 
Biogeochemical Cycles 2008; 22. 

Shao DK, Hutchinson EJ, Cao HB, Pan WP, Chou CL. Behavior of chlorine during 
coal pyrolysis. Energy & Fuels 1994; 8: 399-401. 

Sigler JM, Lee X. Gaseous mercury in background forest soil in the northeastern 
United States. Journal of Geophysical Research: Biogeosciences 2006; 111. 

Skyllberg U, Bloom PR, Qian J, Lin CM, Bleam WF. Complexation of mercury(II) in 
soil organic matter: EXAFS evidence for linear two-coordination with reduced 
sulfur groups. Environmental Science & Technology 2006; 40: 4174-4180. 



References  109 

Slemr F, Brunke EG, Ebinghaus R, Kuss J. Worldwide trend of atmospheric mercury 
since 1995. Atmospheric Chemistry and Physics 2011; 11: 4779-4787. 

Song XX, Van Heyst B. Volatilization of mercury from soils in response to simulated 
precipitation. Atmospheric Environment 2005; 39: 7494-7505. 

Strode SA, Jaegle L, Selin NE, Jacob DJ, Park RJ, Yantosca RM, et al. Air-sea 
exchange in the global mercury cycle. Global Biogeochemical Cycles 2007; 
21. 

Swain EB, Engstrom DR, Brigham ME, Henning TA, Brezonik PL. Increasing Rates 
of Atmospheric Mercury Deposition in Midcontinental North-America. Science 
1992; 257: 784-787. 

Trung ZH, Kukurugya F, Takacova Z, Orac D, Laubertova M, Miskufova A, et al. 
Acidic leaching both of zinc and iron from basic oxygen furnace sludge. 
Journal of Hazardous Materials 2011; 192: 1100-1107. 

UNEP. Global Mercury Assessment, UNEP Chemicals Branch, Geneva, Switzerland 
2002. 

UNEP. Global Mercury Assessment 2013, Sources, Emissions, Releases and 
Environmental Transport, UNEP Chemicals Branch, Geneva, Switzerland, 
2013. 

Valente RJ, Shea C, Humes KL, Tanner RL. Atmospheric mercury in the Great 
Smoky Mountains compared to regional and global levels. Atmospheric 
Environment 2007; 41: 1861-1873. 

Van Metre PC. Increased atmospheric deposition of mercury in reference lakes near 
major urban areas. Environmental Pollution 2012; 162: 209-215. 

Veres J, Jakabsky S, Lovas M. Zinc recovery from iron and steel making wastes by 
conventional and microwave assisted leaching. Acta Montanistica Slovaca 
2011; 16: 185-191. 

Veres J, Jakabsky S, Sepelak V. Chemical, Physical, Morphological and Structural 
Characterization of Blast Furnace Sludge. Diffusion Fundamentals 2010; 12: 
88-91. 

Veres J, Lovas M, Jakabsky S, Sepelak V, Hredzak S. Characterization of blast 
furnace sludge and removal of zinc by microwave assisted extraction. 
Hydrometallurgy 2012; 129: 67-73. 

Wang J, Hayes J, Wu C-Y, Townsend T, Schert J, Vinson T, et al. Characterization of 
Vapor Phase Mercury Released from Concrete Processing with Baghouse 
Filter Dust Added Cement. Environmental Science & Technology 2014; 48: 
2481-2487. 

Wang Q, Shen WG, Ma ZW. Estimation of mercury emission from coal combustion in 
China. Environmental Science & Technology 2000; 34: 2711-2713. 

Wedepohl KH. The composition of the continental crust. Geochimica et 
Cosmochimica Acta 1995; 59: 1217-1232. 

Wei Z, Wu G, Su R, Li C, Liang P. Mobility and contamination assessment of mercury 
in coal fly ash, atmospheric deposition, and soil collected fron Tianjin, China. 
Environmental Toxicology and Chemistry 2011; 30: 1997-2003. 



References  110 

Weiss-Penzias P, Jaffe DA, McClintick A, Prestbo EM, Landis MS. Gaseous 
elemental mercury in the marine boundary layer: Evidence for rapid removal in 
anthropogenic pollution. Environmental Science & Technology 2003; 37: 
3755-3763. 

WHO. Mercury in drinking-water. Background document for develoment of WHO 
Guidelines for drinking-water quality. Geneva: World Health Organisation 
(WHO/SDE/WSH/05.08/10), 2005. 

Wilcox J, Rupp E, Ying SC, Lim D-H, Negreira AS, Kirchofer A, et al. Mercury 
adsorption and oxidation in coal combustion and gasification processes. 
International Journal of Coal Geology 2012; 90: 4-20. 

World Steel Association. Crude steel production, 1980-2013, published online 
November 2014, retrieved on September 12, 2015 from 
http://www.worldsteel.org/dms/internetDocumentList/statistics-
archive/production-archive/steel-archive/steel-annually/steel-annually-1980-
2013/document/steel%20annually%201980-2013.pdf  2014a. 

World Steel Association. Fact Sheet - Steel industry by-products, published online 
October 2014, retrieved on September 12, 2015 from 
http://www.worldsteel.org/publications/fact-
sheets/content/01/text_files/file/document/Fact_By-products_2014.pdf, 2014b. 

World Steel Association. Sustainable steel - Policy and indicators 2014, published 
online October 2014, retrieved on September 12, 2015 from 
http://www.worldsteel.org/dms/internetDocumentList/bookshop/2014/Sustaina
ble-indicators-2014/document/Sustainable%20indicators%202014.pdf.  2014c. 

World Steel Association. World Steel in Figures 2014, published online May 2014, 
retrieved on September 12, 2015 from 
http://www.worldsteel.org/dms/internetDocumentList/bookshop/World-Steel-in-
Figures-
2014/document/World%20Steel%20in%20Figures%202014%20Final.pdf, 
2014d. 

Xia K, Skyllberg UL, Bleam WF, Bloom PR, Nater EA, Helmke PA. X-ray absorption 
spectroscopic evidence for the complexation of Hg(II) by reduced sulfur in soil 
humic substances. Environmental Science & Technology 1999; 33: 257-261. 

Xu L, Chen J, Yang L, Yin L, Yu J, Qiu T, et al. Characteristics of total and methyl 
mercury in wet deposition in a coastal city, Xiamen, China: Concentrations, 
fluxes and influencing factors on Hg distribution in precipitation. Atmospheric 
Environment 2014; 99: 10-16. 

Yao AJ, Qing CL, Mu SS, Reardon EJ. Effects of humus on the environmental activity 
of mineral-bound Hg: Influence on Hg volatility. Applied Geochemistry 2006; 
21: 446-454. 

Yuan CG, Li QP, Feng YN, Chang AL. Fractions and leaching characteristics of 
mercury in coal. Environmental Monitoring and Assessment 2010; 167: 581-
586. 

Zehner RE, Gustin MS. Estimation of mercury vapor flux from natural substrate in 
Nevada. Environmental Science & Technology 2002; 36: 4039-4045. 

Zeydabadi BA, Mowla D, Shariat MH, Kalajahi JF. Zinc recovery from blast furnace 
flue dust. Hydrometallurgy 1997; 47: 113-125. 



References  111 

Zhang H, Lindberg S, Gustin M, Xu XH. Toward a better understanding of mercury 
emissions from soils. In: Cai Y, Braids OC, editors. Biogeochemistry of 
Environmentally Important Trace Elements. 835, 2003, pp. 246-261. 

Zhang H, Lindberg SE. Processes influencing the emission of mercury from soils: A 
conceptual model. Journal of Geophysical Research-Atmospheres 1999a; 
104: 21889-21896. 

Zhang H, Lindberg SE. Processes influencing the emission of mercury from soils: A 
conceptual model. Journal of Geophysical Research: Atmospheres 1999b; 
104: 21889-21896. 

Zhang H, Lindberg SE, Marsik FJ, Keeler GJ. Mercury air/surface exchange kinetics 
of background soils of the Tahquamenon River watershed in the Michigan 
Upper Peninsula. Water, Air, & Soil Pollution 2001; 126: 151-169. 

Zhang Y, Jaegle L, Thompson L. Natural biogeochemical cycle of mercury in a global 
three-dimensional ocean tracer model. Global Biogeochemical Cycles 2014; 
28: 553-570. 

Zheng W, Hintelmann H. Mercury isotope fractionation during photoreduction in 
natural water is controlled by its Hg/DOC ratio. Geochimica et Cosmochimica 
Acta 2009; 73: 6704-6715. 

 

 

 

 

 



Summary  112 

 

 

 

 

 

 

Chapter 7 Summary 



Summary  113 

Mercury (Hg) is considered as one of the most important environmental pollutants as 

the element and many of its compounds are highly toxic, persistent, and readily re-

leased into the environment due to their high mobility and volatility. Among others, Hg 

occurs naturally in the charge materials of pig iron production, mainly coke and iron 

ores. Similar to elements such as zinc (Zn), lead (Pb), sodium (Na), and potassium 

(K), Hg evaporates in the blast furnace during the melting production process due to 

its low boiling point. Hence, it is present in the effluent gas both in its gaseous form 

and associated with particles of the charge material. Subsequently, Hg is enriched in 

the sludge generated by the wet cleaning process of the effluent gas, referred to as 

blast furnace sludge (BFS). Despite its ecotoxicological potential arising from trace 

metal contamination (mainly Zn and Pb), BFS has long been dumped in sedimenta-

tion ponds. Sixty-five samples from seven former BFS dumpsites in Europe were in-

vestigated regarding mercury (Hg) for the first time. The total Hg content in BFS 

ranged between 0.006 and 20.8 mg kg1 with a median of 1.63 mg kg–1. The 

NH4NO3-solubility of Hg in the samples was rather low and did not exceed 0.43 % of 

total Hg.  

To investigate the potential pollution status of BFS, a set of 14 samples from the for-

mer BFS dumpsites in Europe with total Hg contents ranging from 3.91 to 

20.8 mg kg−1 were sequentially extracted. Total recovery ranged between 72.3 and 

114 % indicating that the Hg-specific procedure for soils and sediments was reliable 

when adopted to this industrial waste. Mercury mainly resided in the fraction of “ele-

mental” Hg (48.5–98.8 %) rather being present as slightly soluble Hg species associ-

ated with sludge particles. Further, minor amounts were found as mercuric sulfide 

(0.725–37.3 %) and Hg in crystalline metal ores and silicates (2.21–15.1 %). The 

ecotoxically relevant fractions were not of major significance (F1, <limit of quality; F2, 

0.509–9.61 %, n=5).  
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As these samples were dumped for years up to decades and hence mobile Hg might 

already have been leached out or volatilized, a fresh sample of BFS mixed with basic 

oxygen furnace sludge (BOFS; total Hg: 0.178 mg kg−1) was studied for Hg volatiliza-

tion. Basic oxygen furnace sludge is a residue of gas purification from steel making, 

which is often processed simultaneously in the cleaning devices of BFS. Sealed col-

umn experiments were conducted for four weeks at three temperatures (15, 25, and 

35 °C).  

Volatilization ranged between 0.366 and 0.151 ng at 15 °C, between 12.9 and 

2.82 ng at 25 °C, and between 3.16 and 1.52 ng at 35 °C. Surprisingly, Hg fluxes 

were lower at 35 than 25 °C. For all temperature variants, an elevated Hg flux was 

observed within the first 100 h followed by a slight decrease of volatilization after-

wards. However, background level of ambient air was not obtained at the end of the 

experiments indicating that BFS mixed with BOFS still possessed a potential of Hg 

volatilization. 

Blast furnace sludge can be regarded as potential hazardous waste since among 

other elements Hg is significantly enriched in this waste. Mercury mainly resides in 

fractions being immobile under natural conditions, hence the long-term risk is rather 

low, particularly taking into account the low amount of Hg in ecotoxically relevant 

fractions. Despite low volatilization of Hg from fresh BFS/BOFS for all studied tem-

perature ranges, emissions of Hg to the atmosphere are of global, environmental 

concern due to the long atmospheric lifetime and the bioaccumulation after deposi-

tion. 
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Quecksilber (Hg) und viele seiner Verbindungen werden auf Grund ihrer hohen Toxi-

zität, Mobilität und Volatilität als Umweltschadstoff von übergeordneter Bedeutung 

eingestuft. Neben anderen Spurenelementen ist auch Hg geogen in den Ausgangs-

stoffen der Roheisenproduktion, im Wesentlichen Koks und Eisenerze, enthalten. Auf 

Grund seines geringen Schmelz- bzw. Siedepunktes verflüchtigt sich Hg, ähnlich wie 

Zink (Zn), Blei (Pb), Natrium (Na) und Kalium (K), während des Schmelzvorganges 

im Hochofen und gelangt so in die Abluft. Hier ist Hg sowohl in der Gasphase als 

auch als sorbierte Spezies an Partikel der Ausgangsstoffe vorhanden. Durch die 

Nassreinigung der Abluft des Hochofens reichert sich Hg in den anfallenden 

Schlämmen an. Diese werden als Gichtgasschlämme (GGS) bezeichnet.  

Trotz der bereits bekannten Kontamination (v.a. mit Zn und Pb) wurden GGS wäh-

rend des 20. Jahrhunderts in Oberflächenhalden deponiert. Einige (n = 7) dieser 

ehemaligen Deponien in Europa wurden beprobt (n = 65) und erstmalig hinsichtlich 

einer Hg-Kontamination untersucht.  

Der Hg-Gehalt der untersuchten Schlämme schwankte zwischen 0,006 und 

20,8 mg kg1, der Median lag bei 1,63 mg kg–1. Der NH4NO3-lösliche Anteil an Hg 

wurde mit maximal 0,43 % des Gesamtgehalts als eher gering eingestuft. Um das 

Gefährdungspotenzial der GGS abzuschätzen wurden 14 Proben der ehemaligen 

Deponien mit Gesamtgehalten von 3,91 bis 20,8 mg kg−1 sequentiell extrahiert. Eine 

Wiederfindungsrate zwischen 72,3 bis 114 % deutet auf eine verlässliche und sichere 

Anwendung der Hg-spezifischen Methode für Böden und Sedimente auf die unter-

suchten Industrieschlämme hin. Quecksilber wurde überwiegend (48,5–98,8 %) in 

der Fraktion des „elementaren“ Hg nachgewiesen. Hierbei handelt es sich vermutlich 

eher um schwach lösliche Spezies, welche mit Schlammpartikeln assoziiert waren. 

Desweitern wurden geringe Anteile zum einem als Hg-Sulfide (0.725–37.3 %) und 

zum anderem als Hg in kristallinen Eisenerzen und Silikaten (2,21–15,1 %) extra-
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hiert. Die direkt umweltrelevanten Fraktionen waren von untergeordneter Bedeutung 

(F1 < Nachweisgrenze; F2: 0,509–9,61 %, n=5).  

Allerdings befanden sich alle Proben bereits seit Jahren bzw. Jahrzehnten auf Ober-

flächendeponien wonach potentiell vorhandenes, mobiles Hg bereits ausgewaschen 

oder entgast sein könnte. Um eine mögliche Hg-Verflüchtigung einzuschätzen, wurde 

eine frische Probe von GGS vermischt mit Konverterschlämmen (KS) untersucht 

(Gesamt-Hg: 0.178 mg kg−1) – KS sind ein Abfallprodukt der Abgasreinigung in der 

Stahlerzeugung, welche häufig zeitgleich und in situ mit der Gichtgasreinigung 

durchgeführt wird. Für die Untersuchung wurden geschlossene Säulenversuche bei 

drei Temperaturstufen (15, 25 und 35 °C) für jeweils vier Wochen durchgeführt. 

Die Hg-Entgasung betrug zwischen 0,151 und 0,366 ng bei 15 °C, zwischen 2,82 

und 12,9 ng bei 25 °C, und zwischen 1,52 und 3,16 ng bei 35 °C. Unerwarteter Wei-

se, lag die Hg-Flussrate bei 35 °C unter der Rate von 25 °C. Allen Temperaturstufen 

gemein war eine anfänglich erhöhte Hg-Entgasung innerhalb der ersten 100 h gefolgt 

von einer leichten Abnahme. Hintergrundgehalte der Raumluft wurden jedoch bei 

allen drei Varianten nicht erreicht. Hier raus lässt sich ableiten, dass auch noch nach 

vier Wochen ein Entgasungspotenzial vorhanden war. 

Gichtgasschlämme sind als umweltgefährdend zu klassifizieren, da sie neben Hg 

ebenfalls auch mit anderen Elementen angereichert sind. Unter natürlichen Bedin-

gungen liegt Hg überwiegend in immobiler Form vor, daher ist eine langfristige Ge-

fährdung eher als gering zu bewerten. Belegt wird dies durch die geringen Hg-

Gehalte in den unmittelbar umweltgefährdenden Fraktionen. Trotz einer eher als ge-

ring zu betrachtenden Hg-Entgasung von frischen GGS/KS in allen untersuchten 

Temperaturstufen ist diese Hg-Quelle durch die lange Verweildauer in der Atmosphä-

re und der bioakkumulierenden Wirkung nach seiner Deposition von einem starken 

umweltrelevantem Interesse.   
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