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Les Ricochets

Am Ende gibt es einen Stein, der jault

Wenn er beim Spiel über das Wasser springt

Das Wasser zieht bei jedem Aufprall Kreise

Als ob es ruhig rauchend Ringe bliese

Am Ende dieser abgeschliffne Stein, der jault

Wenn er vier-, fünfmal aufzuckt, untergeht

Die Ringe schwappen langsam an das Ufer

Das sich mit kleinen Wellen die trockenen Lippen leckt

Und schwebend sinkt der flache Stein zum Grunde

Er jault nicht mehr und wühlt nur wenig auf

Er legt sich in den Schlamm und liegt sehr lange

Derweil das Wasser oben sich neu bedeckt mit Glätte

Dietrich Lückoff (1957 - 2014)



Contents

Summary 1

Zusammenfassung 2

1 Introduction 3
1.1 The mammalian retina . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Degenerative diseases of the retina . . . . . . . . . . . . . . 5
1.1.2 Age-related macular degeneration . . . . . . . . . . . . . . 6

1.2 Microglia cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.1 Origin of microglia . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Function of microglia . . . . . . . . . . . . . . . . . . . . . 9
1.2.3 Microglia activation . . . . . . . . . . . . . . . . . . . . . 10
1.2.4 Microglia in AMD . . . . . . . . . . . . . . . . . . . . . . 10
1.2.5 Microglia as therapeutic targets . . . . . . . . . . . . . . . 12

1.3 Type I interferons . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.1 Interferon-beta . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.2 IFN-β as therapeutic agent . . . . . . . . . . . . . . . . . . 14
1.3.3 Effect of IFN-β on microglia . . . . . . . . . . . . . . . . . 15

1.4 Aim of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Material and Methods 18
2.1 Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Antibodies and Stains . . . . . . . . . . . . . . . . . . . . 19
2.1.2 Enzymes . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.3 Buffers and Solutions . . . . . . . . . . . . . . . . . . . . . 20
2.1.4 Cell culture and qRT-PCR primers . . . . . . . . . . . . . . 21
2.1.5 Kit systems, Reagents and Chemicals . . . . . . . . . . . . 22
2.1.6 General consumables . . . . . . . . . . . . . . . . . . . . . 24
2.1.7 Mouse Models . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.8 Software and Devices . . . . . . . . . . . . . . . . . . . . . 26

iv



Contents

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.1 Mice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1.1 Mouse husbandry . . . . . . . . . . . . . . . . . 28
2.2.1.2 Genotyping . . . . . . . . . . . . . . . . . . . . 28
2.2.1.3 Tamoxifen administration . . . . . . . . . . . . . 29
2.2.1.4 Interferon beta treatment . . . . . . . . . . . . . 29
2.2.1.5 Anesthesia . . . . . . . . . . . . . . . . . . . . . 29
2.2.1.6 Laser-coagulation . . . . . . . . . . . . . . . . . 29
2.2.1.7 Fundus fluorescein angiography . . . . . . . . . . 30
2.2.1.8 Spectral domain optical coherence tomography . . 30

2.2.2 Histological methods . . . . . . . . . . . . . . . . . . . . . 30
2.2.2.1 Cryo sectioning . . . . . . . . . . . . . . . . . . 30
2.2.2.2 Flat mount preparation . . . . . . . . . . . . . . 31
2.2.2.3 Staining of cryo sections . . . . . . . . . . . . . 31
2.2.2.4 Staining of flat mounts . . . . . . . . . . . . . . . 31
2.2.2.5 Fluorescence microscopy . . . . . . . . . . . . . 31

2.2.3 Cell culture . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.3.1 Maintaining and subculturing cells . . . . . . . . 32
2.2.3.2 Interferon beta stimulation . . . . . . . . . . . . 32

2.2.4 Molecular methods . . . . . . . . . . . . . . . . . . . . . . 32
2.2.4.1 RNA isolation . . . . . . . . . . . . . . . . . . . 32
2.2.4.2 Determination of RNA concentration . . . . . . . 32
2.2.4.3 Reverse transcription . . . . . . . . . . . . . . . 33
2.2.4.4 Quantitative real-time PCR . . . . . . . . . . . . 33
2.2.4.5 Protein isolation . . . . . . . . . . . . . . . . . . 34
2.2.4.6 Determination of protein concentration . . . . . . 34
2.2.4.7 Western Blot . . . . . . . . . . . . . . . . . . . . 35

2.2.5 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . 35

3 Results 36
3.1 Effect of IFNAR knockdown in laser-coagulation model . . . . . . 37

3.1.1 Microglia activation . . . . . . . . . . . . . . . . . . . . . 37
3.1.2 Fluorescein leakage . . . . . . . . . . . . . . . . . . . . . . 39
3.1.3 Choroidal neovascularization . . . . . . . . . . . . . . . . . 40

3.2 The biological activity of human IFN-β in murine cells . . . . . . . 42
3.3 Effect of systemic IFN-β therapy in the laser-coagulation model . . 43

3.3.1 Microglia activation . . . . . . . . . . . . . . . . . . . . . 43

v



Contents

3.3.2 Fluorescein leakage . . . . . . . . . . . . . . . . . . . . . . 45
3.3.3 Choroidal neovascularization . . . . . . . . . . . . . . . . . 45
3.3.4 Edema formation . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Microglia-specific knockdown of Ifnar1 . . . . . . . . . . . . . . . 49
3.4.1 Microglia specificity of Cx3cr1 controlled Cre recombinase 49
3.4.2 Specific knockdown of Ifnar1 . . . . . . . . . . . . . . . . 50

3.5 Effect of microglia-specific IFNAR knockdown in laser-coagulation
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5.1 Microglia activation . . . . . . . . . . . . . . . . . . . . . 52
3.5.2 Fluorescein leakage . . . . . . . . . . . . . . . . . . . . . . 54
3.5.3 Choroidal neovascularization . . . . . . . . . . . . . . . . . 54

4 Discussion 58
4.1 Laser-induced photocoagulation as model for wet AMD . . . . . . . 59
4.2 The murine and human type I interferon system . . . . . . . . . . . 60
4.3 The protective effect of IFNAR on laser-induced AMD-like pathology 61
4.4 The beneficial effect of IFN-β therapy on disease symptoms . . . . 63
4.5 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Attachments i
Danksagung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Erklärung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Lebenslauf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

vi



Summary

Age-related macular degeneration (AMD) is a disease of the retina and the leading
cause of vision loss among the elderly in industrial countries. It is characterized
by progressive impairment of the visual perception and can be categorized into
two distinct forms; wet and dry AMD. Typical hallmarks of wet AMD are chronic
activation of the innate immune system in the retina and the ingrowth of blood ves-
sels from the choroid into the retina termed as choroidal neovascularization (CNV).
Microglia, the immune competent cells of the retina, play a major role in the in-
duction and advancement of chronic inflammation and CNV development observed
during AMD pathogenesis regulating the immune answer and tissue homeostasis.
Therefore, strategies to dampen microgliosis present attractive therapeutic options in
the treatment of AMD and other retinal degenerative disorders.
Interferon beta (IFN-β ), an endogenous cytokine and signaling molecule, is responsi-
ble for essential regulatory functions of the innate immune system and is well known
for its anti-angiogenic and immunomodulatory properties. Consequently, IFN-β is
used as first line treatment of multiple sclerosis, a neuroinflammatory autoimmune
disease of the brain.
However, it was previously unknown whether the protective effect is transferable
to the retina. Hence, to fill this gap the current study endeavored to determine the
effects of IFN-β signaling on microglial activation and choroidal neovascularization
using a reproducible murine laser-coagulation model of wet AMD.
The results presented in this study reveal a crucial role of IFN-β signaling in regulat-
ing microglial reactivity and pathological angiogenesis. Global as well as microglia
specific interferon-α/-β receptor (IFNAR) deletion fortified disease severity and
progression as evidenced by enhanced microglia reactivity, vessel leakage and CNV
development. In contrast, IFN-β therapy resulted in a significant reduction of the
clinical features associated with the murine laser-coagulation model of wet AMD.
In conclusion, this work indicates a protective role of IFNAR signaling in retinal
immune mechanisms and identifies IFN-β as a promising new strategy for future
therapy approaches to modulate chronic inflammation in retinal degenerative dis-
eases.

1



Zusammenfassung

Die altersabhängige Makuladegeneration (AMD) ist eine Erkrankung der Netzhaut,
die zu einer progressiven Beeinträchtigung des visuellen Wahrnehmungsvermögens
führt. In Industrieländern sind fast 70% der Erblindungen auf AMD zurückzuführen,
wobei zwischen der feuchten und trockenen Form unterschieden wird. Zwei typische
Merkmale der feuchten AMD sind zum einen das Einwachsen von choroidalen
Blutgefäßen in die Netzhaut, auch Neovaskularisierung genannt, und zum anderen
die Aktivierung des Immunsystems in Form einer Mikrogliose. Mikrogliazellen,
die immunkompetenten Zellen der Netzhaut, sind in beiden Prozessen maßgeblich
beteiligt, indem sie die Immunantwort und die Homöostase im Gewebe regulieren.
Eine potentielle Behandlungsmöglichkeit der AMD ist das Eindämmen der Mikro-
gliose mit einer immunmodulatorischen Substanz. Auf diese Weise sollen die
neuroprotektiven Eigenschaften der Mikrogliazellen wieder hergestellt werden, um
so der Netzhautdegeneration entgegen zu wirken.
Interferon beta (IFN-β ) ist ein körpereigenes Zytokin und Signalmolekül das für
grundlegende Funktionen im angeborenen Immunsystem verantwortlich ist und
dessen anti-angiogene, als auch immunmodulierende Wirkung bekannt ist. Auf-
grund letzterer Eigenschaft findet IFN-β zum Beispiel Einsatz bei der Behandlung
von Multiple Sklerose, eine neurodegenerative Autoimmunerkrankung des Gehirns.
Bisher unbekannt ist, ob sich diese therapeutischen Eigenschaften von IFN-β auch
auf die Netzhaut übertragen lassen. Das Ziel dieser Arbeit war es daher, den Effekt
von IFN-β auf die Mikrogliaaktivierung und Angiogenese in vivo zu analysieren.
Mithilfe des murinen Laserkoagulation-Modells für feuchte AMD konnte in dieser
Arbeit gezeigt werden, dass der Interferon-α /-β Rezeptor (IFNAR) erheblichen Ein-
fluss auf die Gefäßneubildung und Mikrogliaaktivierung hat. So entwickeln Mäuse,
die kein IFNAR exprimieren bzw. deren IFNAR auf Mikrogliazellen ausgeschaltet
wurde, eine deutlich verstärkte Mikrogliose und choroidale Neovaskularisierung. Im
Gegensatz dazu konnten, im gleichen Modell, größere Schäden der Netzhaut durch
die systemische Behandlung von Mäusen mit IFN-β verhindert werden. Nach einer
14-tägigen IFN-β Therapie sind beide Krankheitssymptome signifikant zurückge-
gangen.
Zusammenfassend lassen die Ergebnisse dieser Arbeit den Schluss zu, dass der
IFNAR-Signalweg eine protektive Wirkung auf die Netzhaut hat. Besonders im
Hinblick auf neue Therapieansätze ist IFN-β damit eine vielversprechende Substanz,
die Anwendung in der Therapie degenerativer Netzhauterkrankungen finden könnte.
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1 Introduction



1 Introduction

1.1 The mammalian retina

Figure 1.1: Anatomy of the mammalian eye and structure of the retina. The retina is the light-
sensitive neuronal layer coating the posterior part of the eye. H&E staining of retinal cross sec-
tion demonstrating distinct structures with schematic overview of different retinal cell types.
Layers - RPE: retinal pigment epithelium, OS: outer segments, IS: inner segments, ONL:
outer nuclear layer, OPL: outer plexiform layer, INL: inner nuclear layer, IPL: inner plexiform
layer and GCL: ganglion cell layer. Cells - black: retinal pigment epithelial cells, green: rod
and cone photoreceptor cells, blue: bipolar cell, grey: ganglion cells, brown: Müller glia cell,
orange: microglia cells. (Eye ball modified from: https://upload.wikimedia.org/wikipedia/
commons/thumb/a/a5/Eye_scheme.svg/220px-Eye_scheme.svg.png, retinal cross section
modified from http://experimentica.com/wp-content/uploads/2013/12/Mouse-retina.-HE.jpg,
schematic retinal cells modified from Karlstetter et al. (2010).)

The retina is an approximately 0.2 mm thick neuronal tissue at the posterior part of
the eye (Fig. 1.1 A). Compared to the rest of the eye, the retina and the optic nerve
evolve during embryonic development from outgrowths of the mesencephalon so
that both structures belong next to the brain and the spinal cord to the central nervous
system (CNS). When light passes through the cornea and lens, the light-sensitive
tissue initiates nerve impulses, which are forwarded by the optic nerve to the visual
centers of the brain (Sung and Chuang, 2010).
The retina is organized in several anatomically distinct layers (Fig. 1.1 B). The outer
part of the retina, the photoreceptor layer, contains two types of photoreceptor cells,
rods and cones, which are both directly light sensitive. Rods support mainly scotopic
vision as they function under low light conditions, whereas cones provide photopic
vision including a high visual acuity with color perception. The photoreceptors,
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1 Introduction

which are subdivided in outer (OS) and inner segments (IS), are connected in the
outer plexiform layer (OPL) with the bipolar cells, which make synapses with the
ganglion cells in the inner plexiform layer (IPL). The optic nerve fibers are formed
by the axons of the ganglion cells and process the visual information towards the
midbrain and thalamus, where it becomes converted into a picture. Next to the
vertical signal transduction, there are laterally arranged horizontal and amacrine
cells, providing side-to-side connection. The cell bodies of the above described
cell types are either collected in the inner nuclear layer (INL), the outer nuclear
layer (ONL) or the ganglien cell layer (GCL) (Nicholls et al., 2001, From Neuron to
Brain).
The retinal pigment epithelial (RPE) cells form a monolayer which encloses the
photoreceptor outer segments at the apical side and absorbs scattered or unabsorbed
light. Additionally, the RPE is known for several other crucial functions including
epithelial transport of ions and metabolic end products, phagocytosis of photorecep-
tor debris and secretion of immunosuppressive factors (Strauss, 2005). Beyond that
is the RPE involved in the formation of the blood retina barrier (BRB), a physio-
logical border separating the inner retinal tissue from the blood stream and thereby
establishing an immune privileged area.
Apart from that, two more cell types are part of the retina but do not directly con-
tribute to the neuronal signal processing. Müller glia cells span across the whole
retina, supporting the neuronal survival and maintaining the homeostasis in the
retinal extracellular microenvironment (Bringmann et al., 2006). In contrast, mi-
croglia cells are located in the plexiform layers of a healthy retina and monitor their
microenvironment as they are the immune competent cells of the tissue (Sung and
Chuang, 2010) (see section 1.2 for further information).

1.1.1 Degenerative diseases of the retina

The retina is a complex tissue composed of several specialized components, all with
a certain susceptibility to genetic defects. For that reason retinal dystrophies are a
heterogeneous group of disorders where inherited gene alterations lead to disorga-
nization of the retinal structure causing a defective signal transduction and visual
impairment (Sundaram et al., 2012). Until now, the retinal information network
(RetNet) database lists 314 identified genes or gene loci with mutations related to
retinal dystrophies (https://sph.uth.edu/retnet/disease.htm, May 7th 2016).
On the one hand, there are monogenic diseases like Retinitis Pigmentosa (RP),
caused by a wide variety of gene mutations which finally lead to the apoptosis of
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1 Introduction

photoreceptors (Portera-Cailliau et al., 1994). On the other hand, multifactorial dys-
trophies become more important as they are the leading cause of visual impairment
in industrialized countries. For instance, age-related macular degeneration (AMD) is
a complex disease caused by genetic and environmental risk factors as well as aging
processes (Jager et al., 2008).
In the past years, various animal models have been developed facilitating research to
understand the pathology of degenerative processes but also to develop new thera-
peutic approaches. There are two fundamentally different types of in vivo models:
Hereditary models develop retinal tissue degeneration due to genetic manipulation
such as the retinoschisin-deficient Rs1h-/Y (Weber et al., 2002) or the Fam161GT/GT

mouse (Karlstetter et al., 2014). In Rs1h-/Y mice, retinoschisin knock out leads to a
splitting of the inner retinal layers followed by photoreceptor loss. In Fam161GT/GT

mice, the truncated Fam161a protein initiates shortened connecting photorecep-
tor cilia leading to progressive thinning and degeneration of the retina. Secondly,
inducible models are used to recapitulate morphological and functional changes
of retinal diseases. For example, the laser-coagulation model uses laser injury to
disrupt Bruch’s membrane leading to choroidal neovascularization (CNV) and strong
inflammation of the tissue (Pennesi et al., 2012). Since this model is suitable for
animals at different age, genetic background or therapy applications, it is possible to
test a broad variety of AMD-influencing factors (Lambert et al., 2013).

1.1.2 Age-related macular degeneration

Age-related macular degeneration is a multifactorial degenerative disease of the
retina leading to progressive vision impairment up to blindness in the final stage. In
2013, AMD was next to cataracts and glaucoma the most common reason of vision
loss (Global burden of disease study, 2015). Due to a continuously aging society, it
is expectable that the prevalence of AMD increases in the coming decades.
The disease is subdivided into early and advanced stages. Early age-related macular
degeneration is characterized by pigmentation changes and the formation of drusen,
an accumulation of intra- and extracellular metabolic debris in the subretinal space
of the central retina (Fig. 1.2 A). Later stages of the disease can be classified into
either dry AMD with retinal atrophy in the macula or wet AMD with choroidal
neovascularization. Although only 10 to 15% of patients suffer from the wet form of
AMD, it causes more than 80% of severe visual impairment (Jager et al., 2008). In
severe stages of wet AMD, a dysfunctional RPE can cause the detachment of the
retina, also called retinal atrophy, which is often accompanied by the expression of
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1 Introduction

vascular endothelial growth factor (VEGF) and an increased vascular permeability
occurring as subretinal hemorrhage or edema exudation (Fig. 1.2 B). Since the release
of VEGF stimulates the development of neovessels, choroidal neovascularization
proliferates and expands through a porous Bruchs’s membrane into the retinal tissue
(Fig. 1.2 C) (reviewed in de Jong, 2006).The pathological changes of the retina
additionally comes along with a chronic inflammation, which mediates the activation
and recruitment of microglia cells from the plexiform layers towards the affected
tissue (Karlstetter and Langmann, 2014).

Figure 1.2: Schematic development of wet AMD. In early stages of age-related macular
degeneration drusen accumulate in the subretinal space. Microglia cells become activated,
leave the plexiform layers and migrate towards the outer retina. The dysfunctional RPE
promotes in severe stages the ingrowth of choroidal blood vessels into the retina. Layers
- BM: Bruch’s membrane, RPE: retinal pigment epithelium, OS: outer segments, IS: inner
segments, ONL: outer nuclear layer, OPL: outer plexiform layer, INL: inner nuclear layer,
IPL: inner plexiform layer, GCL: ganglion cell layer. (Scheme modified from Karlstetter
et al., 2010).

The major risk factor for disease onset is increasing age. Therefore AMD most
commonly occurs in people older than 50 years. But also secondary factors like
nutrition, smoking, hypertension, obesity or genetic predisposition influence the
development of AMD. Genomic techniques identified mutations in complement
factor H (CFH), complement factor B (CFB) and factor C3 as well as age-related
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1 Introduction

maculopathy susceptibility 2 (ARMS2) genes as risk factors known to predispose
their carrier to AMD (Jager et al., 2008).
However, there is currently no effective cure for AMD, but the treatment of isolated
clinical symptoms like managing the expansion of CNV can partially restore vision
in patients with wet AMD. The most common therapy to attenuate the neovessel
sprouting are intravitreal antibody injections inhibiting the vascular endothelial
growth factor (VEGF) (Jager et al., 2008). Therefore, potential new therapy options
for the management of both, atrophic and neovascular AMD, are of great interest.

1.2 Microglia cells

Microglia belong among others to the glia cells and are located in the central ner-
vous system (CNS) consisting of the brain, the spinal cord and the retina. Like
macrophages, microglia are mononuclear phagocytes and form the active immune
defense in the CNS. They recognize small potentially pathogenic insults and maintain
the tissue homeostasis by their phagocytic activity. As resident macrophages of the
CNS, they are associated with the pathogenesis of neurodegenerative and inflamma-
tory diseases of the brain and retina (Ginhoux et al., 2010). Approximately 10% of
all cells found in the retina are microglia cells, which are typically distributed all
over the tissue in large non-overlapping regions, monitoring their microenvironment
(Ransohoff and Cardona, 2010).

1.2.1 Origin of microglia

Microglia were first described by del Rio-Hortega as cellular element of the CNS
using silver staining methods. Back then, he already predicted that microglia enter
the brain during early development and that they are of mesodermal origin (del
Rio Hortega, 1932).
By now, it is generally accepted that microglia are distinct tissue-specific mononu-
clear phagocytic cells. They origin from myeloid precursors and represent a distinct
cellular entity, different from other cells in the CNS such as neurons, macroglia
or vascular cells (Kettenmann et al., 2011; Karlstetter et al., 2015). In contrast to
cerebral cells that arise from the primitive neuroepithelium, microglia invade from
the yolk sac into the CNS during very early embryonic development before the blood-
brain (BBB) and blood-retina barrier (BRB) arise (Ginhoux et al., 2010; Schulz et al.,
2012). Both, BBB and BRB are physiological borders formed by endothelial cells,
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1 Introduction

which separate the CNS from the peripheral tissue and tightly control the intracellular
cross-talk and exchange between both compartments (Engelhardt and Liebner, 2014).
Because BBB and BRB prevent an unlimited exchange of blood-derived peripheral
leukocytes protecting the CNS from a potentially harmful immune response (Streit,
2002), the barrier function is essential for maintaining tissue homeostasis (Liebner
et al., 2011). From this the question arises whether microglia cells are a stable, self-
maintaining cell population or rather replaced by blood-derived myeloid precursors
passing the BBB/BRB for cell renewal. For clarification, parabiosis experiments,
in which chimeric mice with differently labeled bone marrow cells share one blood
flow, have been performed (Ajami et al., 2007). The results revealed that bone
marrow-derived progenitor cells from the periphery do not enter the CNS under both,
homeostatic as well as diseased conditions, indicating a slow microglial turnover
rate (Gehrmann et al., 1995).
Meanwhile it is widely accepted that microglia are a self-sustaining cell popula-
tion with a remarkable longevity, which discriminates these cells from peripheral
bone-marrow derived cells (Goldmann et al., 2013).

1.2.2 Function of microglia

Microglia have different physiological functions within the adult CNS primarily
related to immune response as well as maintaining tissue homeostasis. In order
to prevent potentially fatal tissue damage, microglia are equally distributed in the
plexiform layers of the retina, monitor their microenvironment and react to smallest
alterations (see Fig. 1.1 B) (Karlstetter et al., 2010).
Since microglia are the first cerebral immune effector cells, they phagocyte cellular
debris and apoptotic cell material, release pro- and anti-inflammatory factors for
extracellular signaling and act as important antigen presenting cell in the CNS (Nim-
merjahn et al., 2005; van Rossum and Hanisch, 2004; Gehrmann et al., 1995). Once
involved in CNS injury, cytotoxic substances like nitric oxigen (NO) and reactive
oxygen species (ROS) are released to fight infectious triggers (Banati et al., 1993;
Langmann, 2007).
To control microglial neurotoxicity, regulatory ligands like CD200 and C-X3-C motif
chemokine ligand 1 (CX3CL1, also named fractalkine) are expressed by neurons
and provide, when linked to their respective receptors, calming signals maintaining a
homeostatic tissue (Cardona et al., 2006; Combadiere et al., 2007). Both receptors,
CD200R and CX3CR1, are highly expressed on microglia cells and have the ability
to modulate microglial activity and migration (Carter and Dick, 2004; Kettenmann
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1 Introduction

et al., 2011). Furthermore, microglia are involved in healing processes as they secrete
anti-inflammatory mediators and promote synaptic stripping as well as neuronal
regrowth (Gehrmann et al., 1995).

1.2.3 Microglia activation

Microglia are highly dynamic cells which are not only characterized by their diverse
responsibilities but also by their morphological plasticity. They undergo struc-
tural changes and adapt different phenotypes according to their activation status
(Gehrmann et al., 1995; Nimmerjahn et al., 2005). In respond to local conditions or
detected damage/danger-associated molecular patterns (DAMPs) (Kettenmann et al.,
2011; Gao et al., 2011), microglial activation occurs in a graded process (Kreutzberg,
1996). Ramified cells with its small somata and long branching processes transform
into activated, round shaped cells, also referred as reactive microglia (Fig. 1.3 from
left to right). Once activated, the local density of microglia gain by proliferation
to protect and restore tissue homeostasis and the phagocytic activity of the cells
increases (Kettenmann et al., 2011). In the retina, reactivate microglia leave the
plexiform layers and migrate towards site of damage (Gupta et al., 2003).
Apart from that, activated microglia cells also upregulate the expression of various
cell surface molecules such as, major histocompatibility complex proteins II (MHC
class II), cluster of differentiation molecule 11b (CD11b, also named integrin alpha-
M beta-2 (αMβ 2)) or ionized calcium binding adaptor molecule 1 (Iba1, also named
allograft inflammatory factor 1(AIF1)) (Dick et al., 1995; Xu et al., 2007; Ito et al.,
1998; Autieri, 1996), which are amongst others used to immunohistochemistrally
distinguish microglia cells from other cerebral/retinal cells. Especially the classical
microglial marker protein Iba1 is used to image their morphology in detail (Ketten-
mann et al., 2011).

1.2.4 Microglia in AMD

In human AMD it has been reported that a large amount of activated microglia cells
are detectable in the subretinal space as well as the outer nuclear layer. A closer view
displayed numerous engulfed photoreceptor particles in these microglia cells (Gupta
et al., 2003). During earlier phases of AMD, enlarged phagocytes, either microglia
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Figure 1.3: Different microglia morphology. From left to right: Ramified microglia cells
form long branched protrusions around a small cell soma to monitor their microenvironment.
Alterations in the tissue homeostasis cause graded morphological changes towards a amoe-
boid shape, characterized by a rounded cell with an enlarged cell body. (Scheme modified
from Kreutzberg, 1996).

or invading macrophages, are also related to subretinal drusen, indicating that they
are attracted by the accumulation of lipids and deposits (Killingsworth et al., 1990;
Penfold et al., 1985).
Furthermore, transcriptome analysis of donor retinas of previously characterized
AMD patients revealed an over-expression of wound response, complement, and
gliogenesis genes. Especially the up-regulation of complement and major his-
tocompatibility complex I genes like human leukocyte antigen (HLA)-A/B/C or
beta-2 microglobulin (B2M) indicates an activation and contribution of microglia/
macrophages during AMD (Newman et al., 2012).
In murine AMD-models, the induction of retinal damage triggers a quick recruitment
and accumulation of monocytes and microglia towards the site of damage before first
indications of CNV are visible (Eter et al., 2008; Ebert et al., 2012). Interestingly,
depleting these cells with a monoclonal MC-21 antibody results in the suppression
of CNV (Liu et al., 2013). The same study reports an enhanced expression of vas-
cular endothelial growth factor in microglia cells accumulated in the lesions sites
compared to adjacent RPE cells. It has not yet been clarified whether microglia
contribute to the overall VEGF production but their drift towards sprouting vessels
is associated with an exacerbation of experimental CNV (Combadiere et al., 2007;
Karlstetter et al., 2015).
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1.2.5 Microglia as therapeutic targets

The previous section 1.2.4 mentioned the multifaceted contribution of microglia cells
to AMD. Limiting the disease-driven destructive changes by targeting microglia may
therefore decelerate the progression of degeneration (Schuetz and Thanos, 2004).
There is growing interest on modulating microglial reactivity towards a regulatory,
homeostatic cell phenotype due to their frequent involvement in those neurode-
generative processes. According to this, one strategy to prevent degeneration is
to counter-regulate the harmful microglia over-activation with immunomodulatory
pharmaceuticals. These include for example the antibiotic minocycline that has
also potent anti-inflammatory capacity or the translocator protein (18 kDA) (TSPO)
ligand XBD173 (Scholz et al., 2015b,a). Furthermore, natural compounds like the
polyunsaturated fatty acid docosahexaenoic acid (DHA), the flavonoid luteolin or the
turmeric component curcumin have been shown to modulate microglia gene expres-
sion profiles towards an anti-inflammatory phenotype without complete blockade
of their functions (Ebert et al., 2009; Dirscherl et al., 2010; Karlstetter et al., 2011).
Microglia targeting with such compounds may dampen the production of diverse
proinflammatory mediators, eventually inhibiting the damaging microglial reactivity.
Also the identification of protective endogenous proteins and their mechanisms of
action are valuable findings, potentially providing new strategies for neuroprotection
(Aslanidis et al., 2015; Karlstetter et al., 2010; Cardona et al., 2006).
In conclusion, the common aim of these therapeutic strategies is rather to modulate
the microglial mode of action to keep its beneficial homeostatic properties than
completely preventing the microglia response (Karlstetter et al., 2015).

1.3 Type I interferons

Type I interferons (IFN) were discovered more than 50 years ago by Isaacs and
Lindenmann as body own signaling molecules inhibiting virus replication in cell
culture (Isaacs and Lindenmann, 1987). They belong, next to chemokines, inter-
leukins, tumor necrosis factors and colony stimulating factors, to the large cytokine
family (Tilg and Diehl, 2000). Acting on regulatory cell surface glycoproteins they
transmit intracellular signaling and communication mechanisms (Tracey and Cerami,
1993). IFNs are especially released in response to viruses, bacteria, parasites, other
cytokines and growth factors triggering the protective immune defense (Parkin and
Cohen, 2001).
The family of IFNs includes 13 different interferon proteins subdivided in three
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groups: Type I IFN, Type II IFN and IFN-like cytokines (Pestka et al., 2004). This
thesis concentrates exclusively on the type I interferon IFN-β .

1.3.1 Interferon-beta

Figure 1.4: Activation of the JAK-STAT pathway. Type I interferon IFN-β binds to the
Interferon-α/β receptor and activates the Janus kinase-signal transducer and activator of
transcription pathway. IFNAR1- and IFNAR2 associated TYK2 and JAK1 phosphorylate
STAT1 and STAT2, which in result heterodimerize forming together with IFR9 the interferon-
stimulated gene factor 3. This complex translocates into the nucleus and activates the
transcription of interferon-stimulated genes by binding the interferon-stimulated response
element. (Scheme modified from Sadler and Williams, 2008).

Interferon beta (IFN-β ) is one out of seven type I interferons (Pestka et al., 2004)
and particularly recognized as a key regulator of the innate immune system (Sadler
and Williams, 2008). The IFN-β gene contains no introns and is in mammalian
species encoded by one single gene located on chromosome 9 in humans, coding for
a pleiotrophic protein of 166 amino acids (reviewed in Pestka et al., 1987).
IFN-β transcription is initiated in response to different transcription factors mainly
the interferon regulatory factors (IRF) and then secreted by the cell. Any infected

13



1 Introduction

nucleated cell is capable to produce IFNs (Pestka et al., 2004) but IFN-β is predomi-
nantly produced by precursors of dendritic cells and fibroblasts (Foster et al., 2000;
Stark et al., 1998).
IFN-β interacts as type I IFN with the Interferon-α/β receptor (IFNAR), a het-
eromeric cell surface receptor, in an auto- as well as paracrine manner (Uze et al.,
2007) and activates the classical JAK-STAT pathway (Fig. 1.4). IFNAR is composed
of two subunits, IFNAR1 and IFNAR2, which are associated with Tyrosine kinase
(TYK) 2 and Janus kinase (JAK) 1, respectively. Signaling downstream, signal trans-
ducer and activator of transcription (STAT) proteins 1 and 2 become phosphorylated
by TYK2 and JAK1 and form a heterodimer. The heterodimer associates with a DNA
binding protein (IFR-9) and forms a complex called IFN-stimulated gene factor 3
(ISGF3). After formation, the ISGF3 complex translocates into the nucleus and
binds to the IFN-stimulated response element (ISRE), which is located upstream of
IFN stimulated genes (ISG) and regulates their transcription (reviewed in Bekisz
et al., 2004).
There are more than 300 different ISGs induced by IFNAR-signaling mediating
biological effects involved in immunity, differentiation, proliferation, apoptosis and
angiogenesis. However, only a few interferon-induced genes have direct anti-viral,
anti-proliferative or immunomodulatory effect. Instead, other effector pathways
like the Mx GTPase pathway, 2’5’oligoadenylate-synthetase-directed ribonuclease L
(OAS RNaseL) pathway or the protein kinase R (PKR) pathway have been identified
to transduce the IFN-β -induced mode of action (reviewed in Sadler and Williams,
2008; Friedman, 2008).

1.3.2 IFN-β as therapeutic agent

Based on their anti-viral, anti-proliferative and immunomodulatory properties IFN-β
have been used for different clinical applications since the early 1970s. Soon after
their discovery by Isaacs and Lindenmann in 1957, it was the antiviral activity of
interferons that made them to promising antiviral drugs. IFN-α was used with suc-
cess to treat chronic hepatitis B virus (HVB) and hepatitis C virus (HVC (Cooksley,
2004; Shepherd et al., 2000). In 1983, Fiblaferon (Rentschler) was the first approved
anti-viral drug on the market.
Soon after type I interferon application showed anti-tumor effects in mice, ex-
periments to treat human tumors including renal cancers (Quesada et al., 1983),
malignant melanomas (Krown et al., 1984), lymphomas, and leukaemias (Louie
et al., 1981) came up (Gresser and Bourali, 1970). Due to the anti-angiogenic effect
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mediated by IFNs, the proliferation rate of the tumor cells was attenuated. Roferon
A (Roche), the first cancer drug was launched 1987.
Of note, interferon was rare and expensive until 1980s and clinical investigations
have been limited. Since the use of recombinant DNA technologies, there are two
main variants of recombinant IFN. IFN-β -1a is produced by mammalian Chinese
hamster ovary (CHO) cells, whereas IFN-β -1b is purified from genetically modified
Escherichia coli cultures. As a consequence, IFN-β -1a is essentially identical to
the natural IFN-β due to its glycosylation pattern, while IFN-β -1b differs from the
native protein structure (Taniguchi et al., 1980) .
The first steps to clinically use the immunomodulatory properties of IFN-β did
Jacobs et al. in 1982 (Jacobs et al., 1982). IFN-β was administered intrathecally
to ten MS patients and then the clinical course was monitored and compared to
untreated MS patients for two years. This was the first time a beneficial effect of
IFN-β on disease progression of MS was shown. Shortly after, IFN-β became the
first line treatment for relapsing-remitting MS, when Betaseron (Bayer) was launched
in 1993.
However, the exact mechanisms of action remain unclear. There are indications
that IFN-β shapes the T-cell function by regulating their activity, proliferation and
migration (Yong et al., 1998). Furthermore, it may modulate the cytokine production
profile towards an anti-inflammatory milieu, which is thought to reduce the neuronal
inflammation (Kieseier, 2011). Finally, IFN-β may inhibit the proliferation of leuko-
cytes and modify their antigen presentation pattern (Yong et al., 1998).
There are several adverse effects induced by IFN-β as the endogenous protein is
produced in order to fight infections. The temporary increase of cytokine expression
causes typical flu-like symptoms, muscle pain, depression, leukopenia, lymphopenia,
injection-site reactions and inflammation (Nikfar et al., 2010).
As described in section 1.3.1, the biological function of IFN-β is mediated by the
expression of ISGs. Of these known functions, the immunomodulatory properties of
IFN-β are considered to be the most relevant transmitting the therapeutic action in
MS.

1.3.3 Effect of IFN-β on microglia

While section 1.2.2 delineates the contribution of microglia cells to neurodegenerative
as well as inflammatory diseases, the purpose of this section is to elucidated the
influence of IFN-β particularly on microglia cells, the main effector cells of the
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innate immune system. In 1997, Chabot and colleges could show in cell culture
studies that IFN-β modulates the interaction between activated T-lymphocytes and
microglia cell, resulting in a reduced production of the proinflammatory cytokine
TNF-α (Chabot et al., 1997). Beyond that, an in vivo study revealed attenuated
experimental autoimmune encephalomyelitis (EAE), a model disease for multiple
sclerosis, with excessive microglia activation in mice lacking the IFN-β gene (Teige
et al., 2003). Prinz and colleagues could show a similar correlation of IFN-β and the
disease severity of EAE: Animals without IFNAR expression developed provoked
clinical disease symptoms characterized by higher inflammation, demyelination and
lethality of the mice. While the IFN-β concentration in the CNS was increased during
EAE, the absence of IFNAR on myeloid cells caused impaired disease symptoms.
Furthermore, the results of recent studies point towards a pivotal role of IFN-β -
signaling during neurodegenerative autoimmune diseases. In vivo studies revealed
that endogenous IFN-β is mainly produced and secreted by microglia cells, which
are additionally associated with the clearance of myelin debris (Kocur et al., 2015).
Also the endogenous induction of IFN-β secretion by intrathecal administration
of polyinosinic-polycytidylic acid (poly I:C), had a protective effect during EAE
(Khorooshi et al., 2015).
So far, there is little known about the regulation of IFNAR-signaling. A recent study
describes ubiquitin-specific protease (USP) 18, an interferon-stimulated gene, as
negative regulator of the IFNAR signaling pathway attenuating microglia activation.
USP18 terminates the IFNAR-signaling by deactivating Stat1 proteins and therewith
inhibiting interferon-induced gene expression (Goldmann et al., 2015).
While the functional results indicate a protective role of IFN-β during cerebral
inflammation, the precise mode of action of IFN-β on microglia remains unclear.
Along with that, the question arises whether the results are readily transferable to
retinal microglia and neurodegenerative conditions. Therefore, the leading topic of
this thesis is the relation between microglia activation and IFN-β signaling during
AMD-like retinal degeneration.
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1.4 Aim of the thesis

It is generally accepted that microglia reactivity as well as pathological angiogenesis
are deconstructive events in the wet form of AMD promoting degenerative processes
leading sooner or later to irreversible vision loss. Thus, understanding the disease
formation on the one hand and attenuating excessive immune response on the other
hand display a promising strategy to diminish disease burden.

It is postulated that a lack of IFNAR signaling in experimental autoimmune en-
cephalomyelitis, a murine model disease for the cerebral disorder multiple sclerosis
(MS), intensifies disease symptoms accompanied by a higher inflammation, demyeli-
nation and lethality. Furthermore, IFN-β treatment is used as immunomodulatory
drug treating MS in humans, without entirely understanding its mode of action.

Therefore there were two aims in this study:

1. Investigating the influence of IFNAR signaling on angiogenesis and microglia
reactivity in the retina, both typical hallmarks of AMD pathogenesis, using the laser
coagulation model in constitutive and conditional Ifnar1 knock out mice.

2. Analyzing the potential immunomodulatory effect of IFN-β on disease symptoms
by treating laser coagulated mice with IFN-β .
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2 Material and Methods

2.1 Material

2.1.1 Antibodies and Stains

Table 2.1: List of primary and secondary antibodies as well as other staining reagents
used for the experiments.

Table 2.1: Antibodies and Stains

Antibody & Stain Solution Manufacturer, Article #

anti-Iba1, rabbit 1:500 Wako; 01-1074
anti-IFN-αR1 1:500 Santa Cruz; sc-53590
(MAR1-1H5), mouse
GAPDH (I-19), goat 1:1000 Santa, Cruz; sc-48166

Alexa Flour 488 1:1000 Thermo Fisher; A-11008
(goat anti-rabbit)
Alexa Flour 594 1:1000 Thermo Fisher; A-11005
(goat anti-mouse)
IgG-HRP (goat anti-mouse) 1:2500 Santa Cruz; sc-2005
IgG-HRP (rabbit anti-goat 1:2500 Santa Cruz; sc-2768

DAPI 0.1 µg/ml Invitrogen; D1306
TRITC-Lectin 0.1 mg/ml Sigma-Aldrich; L5264

2.1.2 Enzymes

Table 2.2: List of the used enzymes.

Table 2.2: Enzymes

Enzyme Manufacturer, Article #

DNAseI, RNase-free Qiagen, 1010394
RevertAid

TM
M-MulLV Thermo Scientifitc, EPO441

Taq Polymerase (PCR) Genaxxon; M3454
Taq Polymerase (qRT-PCR) Qiagen; 105476
Proteinase K Applichem; A3459
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2.1.3 Buffers and Solutions

Table 2.3: List of self-prepared buffers and solutions.

Table 2.3: Buffers and Solutions

Buffer/Solution Formula

1x Running gel 10% 3.0 ml 30% Acrylamide, 2.25 ml 1.5 M Tris pH 8.8,
60 µl 10% APS, 90 µl 10% SDS, 20 µl TEMED
in 10 ml dH2O

1x Stacking gel 5 % 500 µ l 30% Acrylamide, 380 µ l 0.5 M Tris pH 6.8,
32 µl 10% APS, 32 µl 10% SDS, 6 µl TEMED in
3 ml dH2O

10x DNA loading
buffer

10mM Tris-HCL (pH 7,5), 5 mM Sodium Acetate,
2 mM EDTA 10% Glycerin, 0,001% Bromphenol
blue, 0,001% Xylencyanol

10x Running buffer 29.0 g TRIS, 144.0 g Glycine, 10.0 g SDS
in 1 liter dH2O

10x Transfer buffer 144.0 g Glycine, 30 g TRIS in 1 liter dH2O

10x TBE 1 M Tris, 1 M boric acid, 20 mM, EDTA (pH7.5)
in dH2O

10x TBS-T 24.2 g TRIS, 80.0 g NaCL, 10 ml Tween-20
in 1 liter dH2O

30% Sucrose 30% Sucrose in dH2O

Antibody blocking
solution

2% BSA, 0.2% NaN3, 0.1% Triton X-100 in 1x
PBS

Agarose gel 1.5% Agarose in 1x TBE buffer

BLOTTO 1% milk, 0.1% Tween 20 in 1xPBS

DAPI solution 0.1 µg in 1x PBS

Permeabilization
buffer

5% Triton X-100, 5% Tween 20 in 1x PBS

RIPA buffer 150 mM NaCl, 1% NP-40, 0.5% Na-DCA, 0.1%
SDS, 50 mM Tris-HCL pH 7.4, 2 mM PMSF, Pro-
tease Inhibitor in 10 ml dH2O
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2.1.4 Cell culture and qRT-PCR primers

Tables 2.4: Lists of all cell lines, cell culture reagents and media as well as qRT-PCR
probes and primer pairs used for the experiments.

Table 2.4: Cell culture consumables

Cell line Origin

BV-2 Prof. Dr. Lucius; Blasi et al. (1990)
SV40 Reiner et al. (2015)

Cell culture reagent Manufacturer, Article #

DMEM High Glucose Sigma-Aldrich, D5796
Fetal calf serum (FCS) Gibco, 10270-106
Interferon beta (human) AbD Serotec, PMP28Z
Interferon beta (murine) PBL; 12400-1
L-glutamin Gibco, 25030-024
Penicillin/Streptomycin Gibco, 15140-122
RPMI 1640 medium Gibco, 31870

Cell culture media Formula

BV-2 medium RPMI 1640 medium, 2mN L-glutamin, 1%
Penicillin/Streptomycin, 5% FCS and 0.01% β -
Mercaptoethanol

SV40 medium DMEM High Glucose, 10% FCS and 10% Peni-
cillin/Streptomycin
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Table 2.5: List of Roche Library probe numbers and primer pairs used for qRT-PCR .

Table 2.5: Probes and Primers for qRT-PCR

Gene Probe # Primer Sequence

Atp5b #77 F 5’-ggcacaatgcaggaaagg-3’
R 5’-tcagcaggcacatagatagcc-3’

GAPDH #60 F 5’-gcccaatacgaccaaatcc-3’
R 5’-agccacatcgctcagaca-3’

MX1, human #79 F 5’-ttcagcacctgatggccta-3’
R 5’-aaagggatgtggctggagat-3’

Mx1, murine #53 F 5’-ttcaaggatcactcatacttcagc-3’
R 5’-gggaggtgagctcctcagt-3’

Mx2, murine #11 F 5’-cagttcctctcagtcccaagat-3’
R 5’-tgcggttgtgagcctctt-3’

2.1.5 Kit systems, Reagents and Chemicals

Tables 2.6 and 2.7: Lists of used kit systems, reagents and chemicals.

Table 2.6: Kits and Reagents

Kit & Reagents Manufacturer, Article #

DNeasy Blood & Tissue Kit Qiagen; 69504
NucleoSpin R© RNA Mini Kit Macherey-Nagel; 740955
RevertAid

TM
RT Kit Thermo Scientific; K1691

SuperHot Taq PCR Kit Genaxxon; M3306
SuperSignal West Pico Thermo Scientific; 34079
Chemiluminescent Substrate

dNTP Mix, 10 mM each Thermo Scientific; R0132
FastStart Universal Probe Master Roche; 14943600
Fluorescent Mounting Medium Dako; 53023
GeneRuler 1kb DNA Ladder Thermo Scientific; SM0311
PageRuler Protein Ladder Thermo Scientific; 26616
Protease Inhibitor Roche; 11697498001
Roti R©-Quant (Coomassie Roth; K0151
Brilliant Blue-G250)
TissueTek O.C.T. compound Hartenstein; TTEK
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Table 2.7: Chemicals

Chemical Manufacturer, Article #

30% Acrylamide Roth; A124.1
Agarose Biozym; 84004
Ammonium persulfate (APS) Sigma-Aldrich; A3678
β -Mercaptoethanol Sigma-Aldrich; M-7154
Boric acid Sigma-Aldrich; B6768
Bromphenol blue Sigma-Aldrich; B-6131
Bovine Serum Albumin (BSA) Sigma-Aldrich; A9418
Dimethyl sulfoxide (DMSO) Sigma-Aldrich; D5879
Disodium phosphate (Na2HPO4) Merck; 106566
Ethanol AppliChem; A3678
Ethidium bromide Applichem; A0822
Ethylenediaminetetraacetic acid (EDTA) Sigma-Aldrich; E9884
Glycine Applichem; A3561
Goat serum Abcam; ab7481
Isopropanol Merck; 100995
Methanol Chemsolute; 1437.2511
NP-40 Calbiochem; 492016
Paraformaldehyde (PFA) Sigma-Aldrich; P6148
Phosphate buffered saline (PBS) Amaresco; E404
Phenylmethylsulfonyl fluoride (PMSF) Applichem; A0999,0005
Phenylephrin 2.5%/ Tropicamid 0.5% Pharmacy Uni Clinic Cologne
Powdered milk Roth; T145.3
Sodium azide (NaN3) Roth; 4221
Sodium chloride (NaCl) Sigma-Aldrich; S9888
Sodium deoxycholate Sigma-Aldrich; D6750
Sodium dodecyl sulfate Roth; CN30.3
Sucrose Merck; 1.07651
TEMED Roth; 2367.1
TRIS Roth; 4855.3
Triton X-100 Sigma-Aldrich; X100
Tween-20 Sigma-Aldrich; P1379
Xylencyanol Sigma-Aldrich; X-4126
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2.1.6 General consumables

Table 2.8: All basic consumables used for the experiments.

Table 2.8: General consumables

Consumable Manufacturer, Article #

1 ml syringe BD Plastipak
TM

5 ml syringe BD Discardit
TM

1.5 ml cups Sarstedt; 72.690
2 ml cups Sarstedt; 72.689
15 ml Falcon tube Sarstedt; 62.554.502
20G needle BD Microlance

TM
3

30 µl pipette tips Matrix; 7432
50 ml Falcon tube Sarstedt; 62.554.254
6-well culture dish Sarstedt; 83.3911.002
96-well plate Sarstedt; 82.1581.001
Microtome Blades C35 TYPE Feather
Cell scraper Sarstedt; REF 83.1830
Cryomoldes Tissue-TEK R©; 4557
Cover glasses 18x18mm Th.Geyer GmbH
Biophere R© filter tips Sarstedt; 70.762.217 - 211
Gloves Braun; 9205926
Lancet Feather, No.11
MicroAmp Optical 384-well plate Applied Biosystems; 4326270
MicroAmp Optical adhesive films Applied Biosystems; 4311971
Superfrost R© PLUS microscope
slide

Fisher Scientific, 12-550-15

Pasteurpipetten Sarstedt; 86.1172.001
Pipette tips Sarstedt; 70.760.002
PCR stripes Biozym; 711030
T75 culture flask Sarstedt; 83.3911.002
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2.1.7 Mouse Models

Tables 2.9, 2.10 and 2.11: Mouse models, genotyping primer pairs and injection
solutions used for the experiments.

Table 2.9: Mouse strains

Mouse strain Origin Reference

C57BL/6J own breeding Dr. CC Little, 1921
Cx3cr1CreER Prof. Dr. Prinz (Yona et al., 2013)
Ifnar1-/- Prof. Dr. Kalinke (Muller et al., 1994)
Ifnar1flox/flox Prof. Dr. Kalinke (Detje et al., 2009)
R26tomato reporter Prof. Dr. Wunderlich (Soriano, 1999)

Table 2.10: Primers and PCR programs for Genotyping

Mouse strain Primer sequence & PCR program

Cx3cr1CreER forward 5’-cctctaagactcacgtggacctg-3’(wt)
forward 5’-gccgcccacgaccggcaaac-3’ (tg)
revers 5’-gacttccgagttgcggagcac-3’
Predenaturation: 5 min 94◦C | Denaturation/ Annealing/
Elongation: 35x 30 sec 94◦C, 45 sec 58◦C, 45 sec 72◦C |
Final elongation: 5 min 72◦C

Ifnar1-/- forward 5’-aagatgtgctgttcccttcctctgctctga-3’
revers 5’-attattaaaagaaaagacgaggcgaagtgg-3’
Predenaturation: 5 min 94◦C | Denaturation/ Annealing/
Elongation: 35x 30 sec 94◦C, 45 sec 58◦C, 45 sec 72◦C |
Final elongation: 5 min 72◦C

Ifnar1flox/flox forward 5’-caggccactctgcatttcctc-3’ (wt)
forward 5’-ctttttggatatcaagaaagcaaat-3’ (tg)
revers 5’-ctttttggatcgatccataacttcg-3’
Predenaturation: 3 min 94◦C | Denaturation/ Annealing/
Elongation: 35x 30 sec 94◦C, 30 sec 58◦C, 30 sec 72◦C |
Final elongation: 5 min 72◦C

Exon ∆10 forward 5’-ggttaagctccttgctgctatctgg-3’
revers 5’-ttggagatgcaatctgctactcagc-3’
Predenaturation: 4 min 94◦C | Denaturation/ Annealing/
Elongation: 40x 30 sec 94◦C, 30 sec 58◦C, 2 min 72◦C |
Final elongation: 10 min 72◦C
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Table 2.11: Injection solutions

Injection solution Manufacturer, Article #

0.9% NaCl Fresenius Kabi, 06605514
Corn oil Sigma-Aldrich; C8267
Fluorescein 10% Alcon, Novartis
Interferon beta (human) AbD Serotec, PMP28Z
Ketavet (ketaminehydrochloride) Pfizer Animal Health
Tamoxifen Sigma-Aldrich; T5648
Rompun (Xylazinhydrochlorid) Bayer HealthCare

2.1.8 Software and Devices

Tables 2.12 and 2.13: Lists of the main software and devices needed for experiments.

Table 2.12: Software

Software Manufacturer

AlphaEaseFC
TM

Alpha Innotech
CSl Adobe Creative Suite Adobe Systems
EndNote X7 Thomson Reuters
GraphPad PRISM 6 GraphPad Software, Inc.
Spectralis HRA+OCT Software Heidelberg Engineering
Intas GDS 3.39 sofware IntasScience Imaging
LATEX Leslie Lamport, LATEX Project Team
ImageJ Wayne Rasband, NIH
Office Suite Microsoft Corporation
RQ Manager 1.2.1 Applied Biosystems
SDS 2.3 Applied Biosystems
Zen 2012 Zeiss
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Table 2.13: Devices

Device Manufacturer

7900 HT Fast Real-Time PCR System AB Applied Biosystems
Adventurer

TM
Pro balance Ohaus R©

ApoTome.2 Zeiss
AxioCam ICc 1 camera Zeiss
AxioCam MRm camera Zeiss
Centrifuge 5415 R Eppendorf
Centrifuge Mini Star VWR International
Cryostat CM3050 Leica
Explorer R© Ex 124 balance Ohaus R©

Imager.M2 microscop Zeiss
Intas Gel iX20 Imager Intas
Infinite F200 Pro plate reader Tecan
Neubauer counting chamber OptikLabor
HERAcell 240I incubator Thermo Scientific
Heraeus Labofuge 400 R Thermo Scientific
HRA+OCT Spectralis Heidelberg Engineering
MSC-Advantage hood Thermo Scientific
NanoDrop 2000 Spectrophotometer Thermo Scientic
Ophthalas R© 532 EyeLite

TM
Laser Alcon R©

peQSTAR 2x cycler peQlab
See-saw rocker SSL4 Stuart R©

Thermomixer compact Eppendorf
TissueLyser LT Qiagen
Vortex-genie R© Scientific Industries

TM
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2.2 Methods

2.2.1 Mice

2.2.1.1 Mouse husbandry

The animals used for this work were housed in an air-conditioned environment at
22 ◦C on a 12 hours light-dark schedule and had access to phytoestrogen-free food
and water ad libitum. Tail tips were obtained with an age of 21 days and PCR
analysis was used to determine the genotype of the animals. The health status of
the animals was monitored on a regular basis and all experiments were approved
by the governmental body responsible for animal welfare in the state of North
Rhine-Westphalia (Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-
Westfalen, Germany) with the permission number Az 84-02-04-2014-A466.
Ifnar1-/- (Muller et al., 1994), Ifnar1flox/flox (Detje et al., 2009) and R26tomato
reporter (Soriano, 1999) mice were on C57BL6/J background, whereas Cx3cr1CreER

(Yona et al., 2013) were on C57BL6/N background.
The required animals were sacrificed by cervical dislocation.

2.2.1.2 Genotyping

For DNA extraction the mouse tail tips were digested with proteinase K at 56◦C for
4 hours. The DNA was precipitated with isopropanol, then washed with 70% ethanol
and dissolved in 100 µl purified water.

Genotyping the mice was performed with polymerase chain reaction (PCR), a stan-
dard method to amplify DNA (Kleppe et al., 1971). For that purpose template DNA
was mixed with forward and revers primers, taq DNA-polymerase, deoxynucleotide
triphosphates (dNTPs) and 10x PCR buffer containing 15 mM MgCl2. A PCR is a
cyclic reaction and divided in three steps: denaturation, annealing and elongation.
The denaturation causes the disassociation of the DNA double strand by disrupting
its hydrogen bonds. During the annealing phase, the respective primers hybridize to
the single stranded DNA so that the DNA-polymerase in a third step elongates the
primers according to the template DNA. The used primer pairs and PCR programs
are listed in Table 2.10.

Gel electrophoresis was used to separate the amplified DNA according to its molec-
ular weight. A 1.5% agarose gel was prepared by solving agarose in TBE buffer and
10 µ l ethidium bromide was added before the gel polymerized to visualize the DNA.
After PCR, the DNA was mixed with DNA loading buffer and loaded together with
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a 1 kb DNA ladder on the gel. 120 V were applied to the gel and the DNA, which is
negatively charged, run towards the positive pol.
As ethidium bromide intercalates in DNA, UV light was used to visualize the DNA
fragments. The agarose gel was documented using a Intas gel documentation station
equipped with the Intas GDS 3.39 sofware.

2.2.1.3 Tamoxifen administration

To induce the Cre recombinase activity, Ifnar1flox/flox:Cx3cr1CreER and respective
control mice were treated with 4 mg tamoxifen dissolved in 200 µl corn oil. The
solution was injected two times subcutaneously at intervals of two days.

2.2.1.4 Interferon beta treatment

The animals were treated with recombinant human interferon beta 1a, produced in
CHO cells with a dose of 10,000 Units diluted in phosphate-buffered saline (PBS).
100 µl of the solution were injected i.p. every other day from day 0 until either day
three, seven or 14.

2.2.1.5 Anesthesia

For anestheisa, 150 µ l ketamine hydrochloride (final concentration: 100 mg/kg) and
Xylazinhydrochlorid (final concentration: 5 mg/kg) diluted in 0.9% sodium chloride
were injected intraperitoneally (0.1 ml per 10 g body weight).

2.2.1.6 Laser-coagulation

The experiments were conducted with 6 to 10 weeks old animals. For laser-
coagulation of the retina a slit lamp mounted diode laser system was used. To
enlarge the insight into the retina, Phenylephrin 2.5% - Tropicamid 0.5% was applied
on the cornea of the animals dilating their pupils. Three laser spots with a single
spot size of 100 µm were induced to both retinas of the animals with an energy level
of 125 mW and a duration of 100 ms. The laser spots were applied at 9, 12 and 3
o’clock of the retina and the formation of a bubble indicated the rupture of Bruch’s
membrane.
The animals were randomly divided into groups and examined after three, seven or
14 days.
This method was performed in cooperation with PD Dr. Albert Caramoy.
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2.2.1.7 Fundus fluorescein angiography

For fundus fluorescein angiography (FFA) the animals were again anesthetized and
the pupils were dilated. 100 µ l of 2.5% fluorescein diluted in 0.9% sodium chloride
was injected intraperitoneally. Infrared and fluorescent pictures were taken by using
the Spectralis

TM
HRA device of the Spectralis

TM
HRA+OCT 10 min after injection.

Analysis of FFA
The choroidal neovascularization was quantified by measuring the mean pixel inten-
sity of the fluorescent leakage per eye. The fluorescence in two regions of interest
(ROI) within and one ROI outside every single laser spot was measured using the
image processing program ImageJ. The single values were averaged and background
fluorescent was subtracted so that one value per eye represented the relative vascular
leakage.
Retinas with fused lesion sites or a fusion between lesion site and optical nerve head
(ONH) as well as eyes with hemorrhage caused by the laser administration were
excluded from analysis.
This method was performed in cooperation with PD Dr. Albert Caramoy.

2.2.1.8 Spectral domain optical coherence tomography

Spectral domain optical coherence tomography (SD-OCT) was performed with anes-
thetized and pupil-dilated animals. Per scan were 24 images recorded with 40,000
A-scans per seconds and a wavelength of λ=870 nm using the SD-OCT function of
the Spectralis

TM
HRA+OCT.

To analyze the edema formation in the laser spots the retinal thickness was measured
using the software of the Spectralis

TM
HRA+OCT provided by Heidelberg Engineer-

ing.
This method was performed in cooperation with PD Dr. Albert Caramoy.

2.2.2 Histological methods

2.2.2.1 Cryo sectioning

Enucleated eyes were first fixated with 4% paraformaldehyde for four hours and
then dehydrated in 30% succrose over night. Subsequently, eyes were embedded in
TissueTek O.C.T., quick-frozen on dry ice and stored at -80◦C. 14 µm thick cryo
sections were cut with a CryoMicrotom and mounted on Menzel Superfrost R© PLUS
microscope slides. The cross sections were stored at -80◦C before further use.
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2.2.2.2 Flat mount preparation

The enucleated eyes fixated in 4% paraformaldehyde for four hours before the retina
and RPE/choroid were separated by using a micro stitch scissors. The tissue was
washed and stored in 1x PBS before further processing.

2.2.2.3 Staining of cryo sections

The cryo sections were thawed at room temperature and rehydrated with distilled
water for 10 minutes. In a next step, section were blocked with BLOTTO for 1 hour
and incubated with the primary antibody or lectin at 4◦C overnight. The section were
covered with Parafilm, a plastic paraffin film, to avoid dehydration. Samples were
then washed three times with 1x PBS and incubated with the corresponding secondary
antibody for 1 hour at room temperature, again followed by three washing steps.
The nuclei were stained with 0.1 µg/ml DAPI for 10 minutes at room temperature.
Before mounting, section were three times washed and then embedded with Dako
fluorescent mounting medium.
The primary antibodies were diluted in antibody-blocking solution and the secondary
antibodies were diluted in 1x PBS.
The used primary and secondary antibodies and their dilutions are listed in table 2.1.

2.2.2.4 Staining of flat mounts

In a first step, prepared and fixed retinal and RPE/choroidal tissue was permeabilized
in a 5% Triton-X/ 5% Tween-20 dilution on a shaker at 4◦C over night. Followed
by the same staining and embedding procedure described in the section above. The
nuclei in retinal as well as RPE/choroidal flat mounts were left unstained.

2.2.2.5 Fluorescence microscopy

The images were acquired with an Imager.M2 microscope equipped with ZEN
software at 5x or 20x magnification. For the recording of z-stack images, the
embedded ApoTome.2 device was used.

Analysis of images
The number of round-shaped activated microglial cells was counted within a region
of 200 µm diameter around the laser spot. Microglia morphology was analyzed
using a grid system to determine grid crossing points per cell (Chen et al, 2012).
CNV areas in RPE/choroidal flat mounts were quantified with the spline function of
the graphic tool of ZEN software.
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2.2.3 Cell culture

2.2.3.1 Maintaining and subculturing cells

The murine BV-2 (Blasi et al., 1990) and the human SV40 (Reiner et al., 2015)
cell lines were cultured in T75 flasks at 37◦C and 5% CO2 humidity. BV-2 cells
were culture in RPMI, whereas SV40 cells were cultured in DMEM Gigh Glucose
medium. The used cell culture media are listed in table 2.4. Both cell lines were split
every second day in a ration one to three by scratching them off the flask bottom and
transferred in a new cell culture flask provided with new medium.

2.2.3.2 Interferon beta stimulation

For IFN-β stimulation 100.000 cell were transferred in a 6-well plate one day before
stimulation started and stimulated with 1000 U/ml human or murine IFN-β for 24
hours. Before harvesting the RNA, cells were washed with 1x PBS.

2.2.4 Molecular methods

2.2.4.1 RNA isolation

For RNA purification the silica-membrane technology of the NucleoSpin R© RNA Kit
was used. Therefore, the old culture medium was discarded, the cells were washed
with 1x PBS and subsequently lysed with the provided RA1 lysis buffer. Following
isolation steps were carried out according to the manufacturer’s protocol. Finally,
the RNA was eluted with 40 µ l nuclease-free water and stored at -80◦C until further
processing.

2.2.4.2 Determination of RNA concentration

The RNA concentration and purity was measured spectrophotometrically using a
NanoDrop 2000 device. For quantification, the absorbance at 260 nm and 280 nm
was measured and the concentration was calculated using the Beer-Lambert law (Eλ

= ε· d · c with E = extinction at wavelength λ , ε = molar extinction coefficient, d =
thickness of sample and c = concentration of sample). RNA with an A260/280 ratio
of 2.0 or higher was considered as pure and used for experiments.

32



2 Material and Methods

2.2.4.3 Reverse transcription

For real time PCR analysis single stranded RNA needs to be rewritten into double-
stranded also referred as complementary DNA (cDNA). The synthesis of 1 µg
RNA was performed using the RevertAid

TM
RT Kit according to the manufacturer’s

protocol.

2.2.4.4 Quantitative real-time PCR

The quantitative real-time PCR (qRT-PCR) is based on the PCR but additionally
monitors the amplification of targeted DNA sequences via a fluorescence signal. To
increase the specificity of qRT-PCR, the TaqMan technology was used (Holland
et al., 1991). This method uses probes carrying a fluorophore linked reporter at
the 5’ end and a quencher at the 3’ end, which are complementary to the targeted
DNA sequence. The fluorescence emitted by the fluorophore in response to a light
stimulus is inhibited as long as fluorophore and quencher are in close proximity
to each other. Once the Taq polymerase synthesizes the cDNA strand, the probes,
which are annealed to the target sequence, become degraded. This process causes the
release of the fluorophore and abrogates its close proximity to the quencher allowing
fluorescence of the fluorophore. The fluoresence intensity increases exponentially
with every PCR cycle and is equivalent to the amount of DNA sample applied for
PCR.
The analysis was performed in 10 µ l reaction mixtures containing 50 ng cDNA (2.5
µl), 5 µl 2x TaqMan Gene Expression Mastermix, 200 nM forward and reverse
primers (1 µl each), 0.125 µl fluorescent-labeled probe and 0.375 µl nuclease-free
water. Roche Library Probe numbers and primer pairs are listed in table 2.5. The
PCR protocol included 40 cycles (Denaturation: 40 sec 95◦C, annealing: 60 sec 60◦C
and elongation: 2 min 72◦C) and the results were analyzed with the RQ Manager
software using the ∆∆Ct method for relative quantification.

∆∆Ct quantification
The amount of fluorescence directly depends on the amount of cDNA sample applied
during PCR. If the amount of PCR cycles increases the detected fluorescent increases
directly proportional. Once the fluorescence intensity crosses a certain threshold, the
qRT-PCR device starts recording the amount of cycles needed to reach the threshold.
This resulting parameter is referred as Ct (Cycle threshold) value.
The ∆∆Ct analysis for quantification of qRT-PCR is a frequently used algorithm to
calculate the relative changes in gene expression. It requires, next to the expression
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analysis of the gene of interest, the recording of a house keeping gene, which is
equally expressed in all samples. The relative expression changes are then deter-
mined by comparing the expression levels of both reactions. First, the mean Ct
values of the reactions, which are performed in duplicates, are calculated. In a next
step, the recorded Ct values are normalized to the house keeping gene. This enables
the comparison of relative gene expression between two genes, as the expression
level of the house keeper in both samples should be similar. The house keeping gene
used for the human cell line was GAPDH and for the murine assay ATPase was used.
In a third step, one untreated sample is set to one as calibrator. The Ct values and the
relative quantification were determined using the RQ 2.1 Manager software.

The detailed calculation is demonstrated in the following list:

1. Calculation of mean Ct value
Ct avg

2. Nomalization to the house keeper gene
∆Ct avg = Ct avg gene - Ct avg house keeper

3. Setting calibrator as reference
∆∆Ct avg = ∆Ct avg sample - ∆Ct avg calibrator

4. Relative difference of gene expression
2-∆∆Ct avg

2.2.4.5 Protein isolation

To isolate whole protein, the neuronal retina was homogenized in 50 µ l RIPA buffer
using a TissueLyser LT (1 min/, 40/sec). The solved proteins were separated from the
remaining tissue by centrifugation for 5 minutes at 5000 g. All steps were performed
on ice and RIPA buffer and centrifuge were previously cooled down to avoid protein
degradation.

2.2.4.6 Determination of protein concentration

The protein concentration was measured spectroscopically by using Bradford assay
(Bradford, 1976). This method is based on an spectral absorbance shift as the red
form of Coomassie Brilliant Blue G-250 dye changes into it its bluer form when
attached to proteins. The more protein binds, the bluer the dye. For Bradford assay
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the Roti R©-Quant solution was used according to the manufacture’s protocol and the
spectral absorption was monitored using a Tecan plate reader equipped with a 595nm
filter.

2.2.4.7 Western Blot

Western blotting was used to specifically detect Ifnar1 proteins in tissue samples of
homogenized retinas. In a first step, the dissolved proteins were separated by using
gel electrophoresis. For this purpose, 30 µg of each sample were loaded together
with a ladder on a 10% SDS-PAGE (sodium dodecyl sulfate - polyacrylamide gel
electrophoresis) and 100 V voltage were applied to segregate the proteins according
to its molecular weight. In a next step, proteins were transferred to a 0.45 µm
nitrocellulose membrane. After blocking unspecific binding sites with 5% milk
powder in 1x PBS for 1 hour, the membrane was incubated with the primary antibody
overnight at 4◦C. The membrane was three times washed with TBS-T buffer and
incubated with a horseradish peroxidase (HRP)-tagged secondary antibody for 1 hour
at room temperature. To visualize the western blot signal SuperSignal West Pico was
used as a oxidizing agent and the emerging chemiluminescence was detected with a
Multiimage II system.

2.2.5 Statistical analysis

The statistical analysis was performed by using the program GraphPad Prism 6. Two
diffenrent groups were compared with the unpaired Student’s t-test and more than
two groups were anlayzed via one-way ANOVA followed by Tukey’s post-test. The
values presented in this work indicate the mean ± standard deviation (SD). P-values
less than 0.05 were considered as significant.
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3.1 Effect of IFNAR knockdown in

laser-coagulation model

A previous in vivo study showed exacerbated clinical disease symptoms in mice
lacking the IFN-α/β receptor (Ifnar1-/-) during experimental autoimmune encephalo-
myelitis (EAE), an induced multiple sclerosis model (Prinz et al., 2008). Furthermore,
Ifnar1-/- mice developed higher cerebral inflammation, demyelination and lethality
compared to controls.
However, since very little was known about the role of IFNAR signaling on age-
related macular degeneration (AMD) pathogenesis features such as microglial ac-
tivation and angiogenesis, the current study sought to fill this gap using a murine
laser-coagulation model. All animals were laser-treated at experiment onset and the
three key events induced by the model namely microglia activation, vascular leakage
and choroidal neovessel formation (CNV) were analyzed 3, 7 and 14 days post laser
damage (Fig. 3.1). The earlier time point ensures the detection of activated microglia
cells, the intermediate time point showed the clearance of the inflammation and
development of the CNV, whereas the late time point captured the ongoing CNV
formation and eventual wound healing processes.

Figure 3.1: Experimental Setup. Laser coagulation was performed in Ifnar-/- and C57BL6/J
control mice and analyzed 3, 7 and 14 days later. (Figure published in Lueckoff et al. (2016))

3.1.1 Microglia activation

To characterize the microglial activation status and their reactivity, retinal and
RPE/choroidal flat mounts were performed 3 and 7 days post laser damage.
First, retinal flat mounts were stained with Iba1, a specific marker for microglial
cells, to compare the amount and morphology of microglia cells in the laser spot.
Analyzing the confocal images of the retinal flat mounts revealed a mixed ramified
and amoeboid cell population at the lesion site 3 days post laser damage (Fig. 3.2
A). In contrast, the major population of microglia cells in the laser spots in Ifnar1-/-
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Figure 3.2: Immunohistological characterization of microglia cells in laser spot. Representa-
tive confocal images of Iba1 stained retinal flat mounts of C57BL6/J control (A) and Ifnar-/-

mice (B) analyzed 3 days post laser treatment. For quantification the total amount (C) and
the amount of amoeboid-shaped (D) microglia cells was count. The microglial morphology
was analyzed using a grid image analysis system (E). Scale bar: 20 µm. Values show mean
± SD. (Total count: n = 3; Amoeboid-shaped: n = 11-12 retinas; Cell morphology: n =
42-62 cells; unpaired Student’s t-test; Figure published in Lueckoff et al. (2016))

mice was obviously amoeboid shaped (Fig. 3.2 B).
The quantification of the Iba1 stainings revealed a significantly higher amount of
amoeboid microglia cells in mice lacking Ifnar1 (14 ± 1.9 cells/spot) compared
to wild type controls (4.5 ± 1.2 cells/spot) (Fig. 3.2 D, ***p ≤ 0.0004), pointing
towards a more reactive cell population. The total number of microglial cells within
the laser spots did not significantly differ in both groups of animals (Fig. 3.2 C)
Also a grid cross analysis, elaborating the morphological constitution of the mi-
croglial cells by counting the number of crossing points per cell, showed less grid
cross points in Ifnar1-/- mice compared to controls (2.4 ± 0.2), identifying highly
activated microglia cells. In contrast, the microglia cells in C57BL6/J wild type had
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6.2 ± 0.4 grid crossing points per cell (Fig. 3.2 E, ***p ≤ 0.0001). These results
indicate a strong influence of Ifnar1-deficiency shifting the cell morphology in the
affected tissue towards an amoeboid, reactive phenotype.

3.1.2 Fluorescein leakage

In a next step we investigated whether the IFNAR signaling has an influence on the
severity of the laser-induced neovessel formation. To capture that, the late phase of
the fluorescein leakage was measured by fundus fluorescein angiography (FFA) as a
parameter for choroidal neovascularization at an early, intermediate and late time
point (Fig. 3.3 A-F). Ifnar1-deficiency had no major effect on the vascular leakage at
day 3 and 7. Remarkably, significant differences in vascular leakage were detected
14 days post laser damage with Ifnar1-/- animals exhibiting enhanced leakage when
compared to wild type controls (Fig. 3.3 G, ***p ≤ 0.0001).

Figure 3.3: Fundus fluorescein analysis of retinal leakage. The fluorescent leakage in
C57BL6/J and Ifnar-/- mice was compared using late phase fluorescent images. (A-F)
Representative images of both groups 3, 7 and 14 days post laser treatment. (G) Quantification
of vascular leakage by analyzing pixel intensity. Values show mean ± SD. (n = 14-22 eyes;
One-way ANOVA followed by Tukey’s post-test; Figure published in Lueckoff et al. (2016)).
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3.1.3 Choroidal neovascularization

To image the CNV size histologically, retinal pigment epithelia was stained with
lectin (Fig. 3.4 A-D). Ifnar-deficient animals showed significant increased total CNV
area 14 days after laser damage when compared to the wild type control animals
(Fig. 3.4 E, *p ≤ 0.0281).
Furthermore, retinal cross sections analyzed at day 3 revealed an increased amount
of microglia cells in the subretinal space co-labeled with lectin in Ifnar1-/- mice
compared to wild type controls (Fig. 3.5 A, B).
In addition, flat mounted retinas and RPEs at day 7 post laser damage revealed
notably more reactive Iba1 labeled microglia cells in the laser spots and the subretinal
space of Ifnar1 deficient mice (Fig. 3.6 A, B). Together, these findings indicate that
a constitutive loss of Ifnar1 signaling provokes a higher accumulation of reactive
microglia cells in the site of damage and an enlarged CNV formation, both enhancing
disease severity.

Figure 3.4: Choroidal neovascularization in Ifnar-/- and C57BL6/J mice. Retinal pigment
epithelium were stained with lectin to label the newly built blood vessels 7 and 14 days post
laser treatment. Images of C57BL6/J (A, B) and Ifnar-/- (C, D) mice were quantified by
analyzing the stained area (E). Dashed lines indicate CNV areas and the asterisks mark the
central optic nerve head. Scale bar: 200 µm. (n = 4-11 RPE/choroidal flat mounts; One-way
ANOVA followed by Tukey’s post-test; Figure published in Lueckoff et al. (2016)).
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Figure 3.5: Immunohistological analysis of microglia accumulation and CNV in the sub-
retinal space. Representative images of Iba1 and lectin co-stained retinal cross sections 3
days post laser treatment in C57BL6/J wild type (A) and Ifnar1-/- (B) mice. The white boxes
indicate the spot where the laser hit the retina. Nuclei are DAPI stained. Scale bar: 50 µm.
(Figure published in Lueckoff et al. (2016))

Figure 3.6: Immunohistological analysis of microglia accumulation and CNV in the sub-
retinal space. Representative images of Iba1 stained retinal flat mounts and Iba1 and lectin
co-stained RPE/choroidal flat mounts 7 days post laser-coagulation in C57BL6/J (A) and
Ifnar1-/- (B) mice. Scale bar: 50 µm. (Figure published in Lueckoff et al. (2016))
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3.2 The biological activity of human IFN-β in

murine cells

To pretest the functionality of human IFN-β in a murine system, the murine mi-
croglia cell line BV-2 was stimulated with 1000 U/ml human IFN-β for 24 hours.
The expression of two classical IFN-β target genes myxovirus resistance 1 and 2
(Mx1 and Mx2) was measured by quantitative real-time PCR (qRT-PCR), the results
indicating a 385.3 fold induction of Mx1 and 36.5 fold induction of Mx2 compared
to unstimulated cells (Fig. 3.7 A, B), implying good biological activity of human
IFN-β in a murine cell line.
The biological activity of the human IFN-β was also validated using human SV40 im-
mortalized microglia cell line, with similar results on Mx1 induction being achieved
(Fig. 3.7 C).

Figure 3.7: Testing the bioactivity of human IFN-β in murine cell line. Murine BV-2 were
stimulated for 24 hours with either human or murine IFN-β (A, B). Human SV40 cells
were stimulated for 24 hours with human IFN-β (C). The expression of the classical IFN-β
induced genes Mx1 and Mx2 was analyzed using qRT-PCR. (Figure published in Lueckoff
et al. (2016)).
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3.3 Effect of systemic IFN-β therapy in the

laser-coagulation model

Based on the Ifnar1-/- data set, which demonstrated that disease symptoms were
more severe in animals lacking Ifnar1, a potential therapeutic effect of the Ifnar-
ligand IFN-β during laser induced retinal damage in mice was hypothesized. To
test this hypothesis, laser damage was performed in C57BL6/J animals followed by
subsequent treatment with 10,000 units human IFN-β every other day for 3, 7 or 14
days. Microglial activity, fluorescent leakage and choroidal neovascularization were
then analyzed as shown in Fig. 3.8.

Figure 3.8: Experimental Setup. Laser coagulation was performed in IFN-β treated
C57BL6/J and untreated control mice and analyzed 3, 7 and 14 days later. (Figure published
in Lueckoff et al. (2016)).

3.3.1 Microglia activation

Changes in the microglial activation status were examined 3 and 7 days post laser
damage in flat mounted retinas and RPEs as well as 3 days post laser-coagulation
in retinal cross sections by Iba1 staining (Fig. 3.9 A, B). The amount of amoeboid
shaped microglia cells was significantly lower in the laser spots of IFN-β treated
animals compared to untreated C57BL6/J controls (Fig. 3.9 D, ***≤ 0.0003). In-
deed, IFN-β treated groups showed a highly ramified microglial cell morphology
characterized by a small soma and long cellular processes (Fig. 3.9 E, p ≤ 0.0001).
In addition, the total number of Iba1 positive cells within the laser spots did not
change in the IFN-β treated group (Fig. 3.9 C).
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Figure 3.9: Immunohistological characterization of microglia cells in the laser spot. Repre-
sentative confocal images of Iba1 stained retinal flat mounts of untreated C57BL6/J control
(A) and IFN-β treated C57BL6/J (B) mice analyzed 3 days post laser treatment. For quan-
tification the total amount (C) and the amount of amoeboid-shaped (D) microglia cells was
counted. The microglial morphology was analyzed using a grid cross image analysis system
(E). Scale bar: 20 µm. Values show mean ± SD. (Total count: n = 3; Amoeboid-shaped: n =
7-10 retinas; Cell morphology: n = 42-62 cells; unpaired Student’s t-test; Figure published
in Lueckoff et al. (2016)).
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3.3.2 Fluorescein leakage

Figure 3.10: Fundus fluorescein analysis of retinal leakage. The fluorescent leakage in
IFN-β treated C57BL6/J and untreated control mice was compared using late phase images.
(A-F) Representative images of both groups 3, 7 and 14 days post laser treatment. (G)
Quantification of vascular leakage by analyzing pixel intensity. Values show mean ± SD. (n
= 8-12 eyes; One-way ANOVA followed by Tukey’s post-test; Figure published in Lueckoff
et al. (2016)).

Comparing the vascular leakage 3, 7 and 14 days post laser-coagulation in untreated
versus IFN-β -treated C57BL6/J mice using fundus fluorescent angiography, the
IFN-β treated groups showed a considerably improved disease course (Fig. 3.10
A-F), as shown by a strong reduction in fluorescent exudate leaking into the retinal
tissue (Fig. 3.10 G, ***p ≤ 0.0004).

3.3.3 Choroidal neovascularization

Histological analysis of the CNV formation by lectin staining revealed that IFN-β
treatment had a remarkable influence in reducing the total CNV area of the lesion 14
days post laser damage (Fig. 3.11 A-E, **p ≤ 0.0038).
Similar results were obtained for the analysis of retinal cross sections at day 3
(Fig. 3.12 A, B) and of retinal and RPE/choroidal flat mounts at day 7 (Fig. 3.13
A, B), with IFN-β treated animals exhibiting weaker Iba1-lectin co-staining. These
results indicate a less pronounced immune activation with concomitant decrease in
CNV formation following IFN-β treatment.
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Figure 3.11: Choroidal neovascularization in IFN-β treated C57BL6/J and untreated control
mice. Retinal pigment epithelium were stained with lectin to label the newly built blood
vessels 7 and 14 days post laser treatment. Images of untreated C57BL6/J (A, B) and IFN-β
treated C57BL6/J (C, D) mice were quantified by analyzing the stained area (E). Dashed
lines indicate CNV areas and the asterisks mark the central optic nerve head. Scale bar:
200 µm. (n = 18-22 RPE/choroidal flat mounts; One-way ANOVA followed by Tukey’s
post-test; Figure published in Lueckoff et al. (2016)).

Figure 3.12: Immunohistological analysis of microglia accumulation and CNV in subretinal
space. Representative images of Iba1 and lectin co-stained retinal cross sections 3 days post
laser treatment in untreated C57BL6/J (A) and IFN-β treated C57BL6/J (B) mice. The white
boxes indicate the spot where the laser hit the retina. Nuclei are DAPI stained. Scale bar: 50
µm. (Figure published in Lueckoff et al. (2016)).
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Figure 3.13: Immunohistological analysis of microglia accumulation and CNV in subretinal
space. Representative images of Iba1 stained retinal flat mounts and Iba1 and lectin co-
stained RPE/choroidal flat mounts 7 days after laser coagulation in untreated C57BL6/J (A)
and IFN-β treated C57BL6/J (B) mice. Scale bar: 50 µm. (Figure published in Lueckoff
et al. (2016)).
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3.3.4 Edema formation

Following laser administration, interstitial fluid, called edema, often congregates in
the subretinal space and thickens the retina. To validate whether IFN-β also has an
effect on edema formation, the retinal thickness was measured by optical coherence
tomography 7 and 14 days after laser damage. OCT analysis of the laser-treated area
revealed that IFN-β therapy mediated a faster regression of the subretinal edema
(Fig. 3.14, *** p ≤ 0.0079), indicating a supportive wound healing processes.

Figure 3.14: Edema formation in IFN-β -treated animals. Representative optical coherence
tomography images show the edema in C57BL6/J control (A) and IFN-β treated (B) animals.
The edema formation was quantified by measuring the retinal thickness 7 and 14 days (C)
post laser-coagulation.

48



3 Results

3.4 Microglia-specific knockdown of Ifnar1

After demonstrating the protective effect of the IFN-β therapy, the next aim was

to investigate whether the protective effects observed following IFN-β therapy and

in animals expressing Ifnar versus Ifnar-/- mice were mediated purely by microglia

cells or whether other retinal cells are involved in the protective cascade. To test this,

experiments were performed using the Cre-Lox system, a genetic tool to generate cell

specific knockouts in mice. For that purpose, Ifnar1flox/flox mice, carrying two loxP

recognition sites in the Ifnar1 gene, were crossed with Cx3cr1CreER mice carrying

a tamoxifen inducible Cre recombinase under the control of the microglia specific

Cx3cr1 promoter. Notably, the long longevity and limited self-renewal nature of

microglia cells when compared to other myeloid cells enabled the induction of Ifnar1

knockout specifically in microglia cells upon tamoxifen application. The infiltrating

myeloid cells with higher turnover rate lose the Cre activity without the activating

tamoxifen, which was administered 4 weeks before the laser damage procedure.

3.4.1 Microglia specificity of Cx3cr1 controlled Cre
recombinase

Figure 3.15: Cre activity in retinal microglia. Representative images of retinal flat mounts
of Cx3cr1CreEr:R26tomato mice co-stained with Iba1 four weeks after tamoxifen injection
showing microglia specificity of the Cx3cr1-promoter controlled recombinase. The tomato
signal (A) and the Iba1 staining (B) co-localize (C) indicating a high recombination efficiency.
(Figure published in Lueckoff et al. (2016)).

The microglia specificity of the Cre recombinase was tested by crossing Cx3cr1CreER

mice with R26tomato Cre reporter mice and treating them with tamoxifen. Retinal flat
mounts of these animals showed a distinct co-localization of the tomato signal with
Iba1 staining. This finding indicated a high recombination efficacy in microglial
cells (Fig. 3.15 A-C).
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3.4.2 Specific knockdown of Ifnar1

Figure 3.16: Knockdown of Ifnar1 in Cx3cr1CreEr:Ifnarflox/flox mice. The Ifnar1 gene lo-
cus in schematically shown for C57BL6/J wild type, Ifnarflox/flox and tamoxifen treated
Cx3cr1CreEr:Ifnarflox/flox mice. To confirm the conditional knockout of Ifnar1, PCR analysis
were performed with genomic DNA from retina samples. Amplification of a floxed exon
10 resulted in a 1160 bp fragment, while the excision of exon 10 (∆10) leads to a 339 bp
fragment (A). Western blot analysis confirmed reduced Ifnar1 expression in retinal protein ex-
tracts of tamoxifen-treated Cx3cr1CreEr:Ifnarflox/flox mice (B). (Figure published in Lueckoff
et al. (2016)).

In a next step, Cx3cr1CreEr:Ifnar1flox/flox mice were generated. To confirm the Cre-
mediated excision of exon 10 of the Ifnar1 gene, PCR analysis was performed with
genomic DNA from retina samples. The PCR strategy shows the localization of the
primer. Amplification and gel electrophoresis of a floxed exon 10 resulted in a 1160
bp fragment, while the excision of exon 10 (∆10) leads to a 339 bp fragment. A 1092
bp fragment was displayed in C57BL6/J mice carrying no loxP sites (Fig. 3.16 A).
Western blot analysis with an antibody directed against Ifnar1 confirmed the re-
duced Ifnar1 expression in whole retina extracts of tamoxifen treated Cx3cr1CreEr:
Ifnar1flox/flox mice (Fig. 3.16 B).
Additionally, co-staining of retinal cross sections with antibodies directed against
Ifnar1 and Iba1 show no Ifnar1 signal in Ifnar1-/- mice (Fig. 3.17 B) and a weaker
Ifnar1 signal in Cx3cr1CreEr: Ifnar1flox/flox mice (Fig. 3.17 C). Co-staining the cross
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Figure 3.17: Immunohistological characterization of Ifnar1 knockdown in C57BL6/J,
Ifnar1-/- and Cx3cr1CreEr:Ifnar1flox/flox mice. Retinal cross sections were co-stained with anti-
bodies targeting Iba1 and Ifnar1 comparing Ifnar1 expression signal and Iba1 co-localization
in C57BL6/J (A), Ifnar1-/- (B) and Cx3cr1CreEr:Ifnar1flox/flox (C) animals. (Figure published
in Lueckoff et al. (2016)).

section with Iba1 revealed a clear co-localization of both, the Ifnar1 and Iba1 signals
in C57BL6/J control animals (Fig. 3.17 A).
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3.5 Effect of microglia-specific IFNAR

knockdown in laser-coagulation model

Laser-induced coagulation experiments were performed with Cx3cr1CreEr:Ifnar1flox/flox

mice. Cx3cr1CreEr and Ifnar1flox/flox mice carrying either the Cre-recombinase or the
floxed Ifnar allele were used as controls. To only target long living microglia cells
with a slow turnover rate, mice were injected twice with 4 mg tamoxifen four weeks
before starting the experiment. To later compare the results with the previously
obtained data sets, the experimental setup was left unchanged (Fig. 3.18).

Figure 3.18: Experimental setup. Laser coagulation was performed in Cx3cr1CreEr:
Ifnar1flox/flox, Cx3cr1CreEr and Ifnar1flox/flox mice four week after tamoxifen treatment. The
animals were analyzed 3, 7 and 14 days later. (Figure published in Lueckoff et al. (2016)).

3.5.1 Microglia activation

Retinal microglia lacking Ifnar1 expression displayed a more reactive phenotype com-
pared to Iba1+ cells located into the lesion site from Cx3cr1CreEr and Ifnar1flox/flox

mice (Fig. 3.19 A-C), indicating a reactive phenotype.
Also counting the amount of amoeboid microglia cells attested a significantly higher
number of activated microglia cell in Cx3cr1CreEr:Ifnar1flox/flox mice (Fig. 3.19 E,
**p ≤ 0.0044, ***p ≤ 0.0003), which additionally showed significantly less rami-
fications in the grid cross analysis system (Fig. 3.19 F, ***p ≤ 0.0001). The total
amount of Iba1+ cell did not change after excising Ifnar1 (Fig. 3.19 D).
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Figure 3.19: Immunohistological characterization of microglia cells in the laser spots. Rep-
resentative confocal images of Iba1 stained retinal flat mounts of Cx3cr1CreEr:Ifnar1flox/flox

(A), Cx3cr1CreEr (B) and Ifnar1flox/flox (C) mice analyzed 3 days post laser treatment. For
quantification the total amount (D) and the amount of amoeboid-shaped (E) microglia cells
was counted. The microglial morphology was analyzed using a grid cross image analysis
system (F). Scale bar: 20 µm. Values show mean ± SD. (Total count: n = 3; Amoeboid-
shaped: n = 16-28 retinas; Cell morphology: n = 44-52 cells; unpaired Student’s t-test;
Figure published in Lueckoff et al. (2016)).
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3.5.2 Fluorescein leakage

Figure 3.20: Fundus fluorescein analysis of retinal leakage. The fluorescent leakage in
Cx3cr1CreEr:Ifnar1flox/flox, Cx3cr1CreEr and Ifnar1flox/flox mice was compared using late phase
images. (A-I) Representative images of both groups 3, 7 and 14 days post laser treatment. (J)
Quantification of vascular leakage by analyzing pixel intensity. Values show mean ± SD. (n
= 5-12 eyes; One-way ANOVA followed by Tukey’s post-test; Figure published in Lueckoff
et al. (2016)).

The disease progression was monitored by comparing the vascular leakage at day 3, 7
and 14 days post laser treatment (Fig. 3.20 A-I). Cx3cr1CreER: Ifnar1flox/flox animals
developed, compared to their control counterparts carrying only Cre recombinase or
floxed Ifnar1 alleles, a more robust vascular leakage by day 7, reaching its peak after
14 days (Fig. 3.20 J, **p ≤ 0.0032 and *p ≤ 0.0247).

3.5.3 Choroidal neovascularization

Quantification of lectin stained RPE/choroidal flat mounts revealed a significant
increase in total CNV area in mice lacking Ifnar1 in microglia cells 14 days after
laser treatment, when compared to Cx3cr1CreER and Ifnar1flox/flox controls (Fig. 3.21
A-G, *p ≤ 0.043, ***p ≤ 0.0007).
Furthermore, the temporal correlation of Iba1 stained microglia with CNV lesions in
retinal cross sections at day 3 and RPE/choroidal flat mounts at day 7 in all three
analyzed groups (Fig. 3.23 A-C) revealed a clear overlap of amoeboid microglia cells
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with increased lectin signal in Cx3cr1CreER:Ifnar1flox/flox animals when compared
to Cx3cr1CreER and Ifnar1flox/flox controls groups at both time points (Fig. 3.23
A-C). Taken together, these results display an essential role of Ifnar1-signaling in
the activation state of microglia and that loss of Ifnar1 enhances the formation of
laser-induced CNV lesions.

Figure 3.21: Choroidal neovascularization in Cx3cr1CreEr:Ifnar1flox/flox, Cx3cr1CreEr and
Ifnar1flox/flox mice. Retinal pigment epithelium were stained with lectin to label the newly
built blood vessels 7 and 14 days post laser treatment. Images of Cx3cr1CreEr:Ifnar1flox/flox

(A,B), Cx3cr1CreEr (C,D) and Ifnar1flox/flox (E,F) mice were quantified by analyzing the
stained area (F). Dashed lines indicate CNV areas and the asterisks mark the central optic
nerve head. Scale bar: 200 µm. (n = 10-12 RPE/choroidal flat mounts; One-way ANOVA
followed by Tukey’s post-test; Figure published in Lueckoff et al. (2016)).
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Figure 3.22: Immunohistological analysis of microglia accumulation and CNV in the sub-
retinal space. Representative images of Iba1 and lectin co-stained retinal cross sections 3
days post laser treatment in Cx3cr1CreEr (A), Ifnar1flox/flox (B) and Cx3cr1CreEr:Ifnar1flox/flox

(C) mice. The white boxes indicate the spot where the laser hit the retina. Nuclei are DAPI
stained. Scale bar: 50 µm. (Figure published in Lueckoff et al. (2016)).
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Figure 3.23: Immunohistological analysis of microglia accumulation and CNV in the sub-
retinal space. Representative images of Iba1 stained retinal flat mounts and Iba1 and lectin
co-stained RPE/choroidal flat mounts 7 days after laser-coagulation in Cx3cr1CreEr (A),
Ifnar1flox/flox (B) and Cx3cr1CreEr:Ifnar1flox/flox (C) mice. Scale bar: 50 µm. (Figure pub-
lished in Lueckoff et al. (2016)).
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In this work the influence of type I interferon receptor (IFNAR) signaling on retinal
microglia function and angiogenesis in a murine laser-coagulation model was ana-
lyzed. The aim was to investigate the potential immunomodulatory effect of IFNAR
and IFN-β treatment in the pathogenesis and progression of AMD.
It is postulated that a lack of IFNAR signaling in other neurodegenerative disorders
such as experimental autoimmune encephalomyelitis (EAE), a murine model disease
for the cerebral disorder multiple sclerosis (MS), leads to an intensified disease
progression accompanied by a higher inflammation, demyelination and lethality.
On the other hand, IFN-β is used in humans as an immunomodulatory drug in the
treatment of MS, without entirely understanding its mode of action.

4.1 Laser-induced photocoagulation as model

for wet AMD

Unlike the laser-induced photocoagulation model, age-related macular degeneration
(AMD) is a spontaneously appearing and progressive condition caused by several
risk factors. These notwithstanding, a lot of insights and knowledge on the disease
have been acquired through the use of this well-established experimental model for
wet AMD.
Rupturing Bruch’s membrane with laser administration enables the ingrowth of
blood vessels from the choroid through the Bruch’s membrane and into the avascular
subretinal space (Lambert et al., 2013). This process initiates both, microgliosis
and angiogenesis, two main hallmarks of pathological processes involved in the
wet AMD and hence, the use of laser-coagulation model mimics these pathological
features of AMD (Tobe et al., 1998).
The suitability of this model is enhanced by the easy accessibility of the retina and
the experimental setup which offers the opportunity to administer different potential
therapeutic substances or compounds, including neutralizing antibodies, siRNA
or drugs via various methods (Saishin et al., 2003; Sabatel et al., 2011; Lueckoff
et al., 2016). Consequently, the laser-induced photocoagulation model is frequently
used for analyzing the effect of new drugs or therapy targets. Drugs which have
been tested using this model include the vascular endothelial growth factor receptor
(VEGFR) trap (Saishin et al., 2003), anecortave acetate (Slakter, 2006) and miR-21
a microRNA (Sabatel et al., 2011). While the model is also established in rats and
monkeys (Shen et al., 1998; Ryan, 1979), experimenting with mice allows the use of
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transgenic animals (Luhmann et al., 2012; Tobe et al., 1998) to elucidate specific
molecular mechanisms related to a genetic basis.
This model is however not without limitations. There exist fundamental differences
between the model disease and human AMD, limiting the transferability of the exper-
imental results. Mice, which are the preferred species of choice in this model,are used
as inbred lines with poor genetic diversity and kept in a pathogen-free environment
with constant exterior conditions like temperature and food. This contrasts AMD
development in human patients where genetic predisposition as well as nutrition
and lifestyle are some of the main risk factors contributing to disease onset (Gong
et al., 2015). Moreover, in the current model laser-coagulation is responsible for the
formation of microgliosis and CNV (Lambert et al., 2013) as opposed to the aging
process of the retinal tissue or other age-dependent changes such as the formation of
drusen in human patients.
Furthermore, the induction of the model disease requires a traumatic injury to rupture
Bruch’s membrane, which provokes a wound-healing reaction relying heavily on
inflammation (Lambert et al., 2013; Espinosa-Heidmann et al., 2003; Sakurai et al.,
2003). This inflammatory response causes the contribution of inflammatory cells
like microglia and macrophages (Liu et al., 2013; Apte et al., 2006) and results in a
spontaneous disease regression after approximately 14 days (Lambert et al., 2013).
Also compared to AMD, where the disease trigger and course varies from patient to
patient, the model displays rather a homogenous disease with little variance between
single experimental animals.
Further limitations of the model include the lack of a macula in mice and the require-
ment of pigmented mice for laser-reactions (Lambert et al., 2013).
However, despite these limitations, the performed experiments were able to show
that the laser-coagulation model can be employed to accurately analyze the influence
of IFNAR-signaling in retinal microglia following an AMD-like pathogenesis.

4.2 The murine and human type I interferon

system

In contrast to several new drugs and target options tested directly on murine models
like EAE or the laser-induced coagulation model, the therapeutic effect of IFN-β
was primarily shown in human trials (Paty and Li, 2001). It therefore raises the
question whether the effect of IFNAR-signaling observed in mice can be simply
transferred to the human situation.
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However, the type I interferon system of both species consists of 13 different IFN-α
subtypes and one IFN-β . In humans, additional type I interferons are IFN-ω and
IFN-κ , both having similar biological functions and bind the same interferon-α/-
β receptor (IFNAR) as other type I interferons (Hardy et al., 2004). In mice, an
additional type I IFN has recently been identified and named IFN-like 1 or limitin
(Oritani et al., 2000).
IFNAR is a transmembrane receptor consisting of two subunits, IFNAR1 and IF-
NAR2 (Uze et al., 2007), and transduces extracellular signals into the nucleus by
activating the JAK-STAT signaling pathway (Pestka et al., 2004). Humans and mice
produce IFN-β in a host of different cell types such as fibroblasts, dendritic and
microglia cells (Liu, 2005; Kocur et al., 2015). In both these species, anti-viral, anti-
tumoral and immunomodulatory activities are related to type I interferon signaling
(Friedman, 2008). Indeed, animals lacking IFN-β exhibit a spontaneous Parkinson-
like neurodegeneration (Ejlerskov et al., 2015), underlining the immunomodulatory
role of this cytokine.
Moreover, the similarities in the type I interferon system point towards a comparable
function in CNS health of both species so that in this work, the use of human IFN-β
for treatment experiments seems plausible. Moreover, human IFN-β has a great
relevance because it is frequently used as human therapeutic compound. In research
applications, it has been previously used in murine BV-2 cell assays (Goldmann
et al., 2015) and in a CNV model in rabbits (Yasukawa et al., 2002), clearly pro-
voking effects. This is in line with the results of the performed BV-2 and SV40
cell stimulation assays to test the bioactivity of human IFN-β in a murine system,
before elaborating it’s effects on laser-induced microgliosis and CNV (see Fig. 3.7):
quantitative RT-PCR showed a comparable upregulation of typical IFN-β -signaling
marker genes Mx1 and Mx2 (myxovirus resistance 1 and 2) in the murine as well as
human cell line. Therefore, treating mice with human IFN-β caused a significantly
ameliorated disease course, which supports the conclusion that IFN-β derived from
both species mediates similar effects.

4.3 The protective effect of IFNAR on

laser-induced AMD-like pathology

Ifnar1-/- animals, lacking the Ifnar1 subunit of the receptor (Muller et al., 1994), show
a stronger and prolonged disease course, with an elevated accumulation of amoeboid
microglia cells at the lesion sites and an increased CNV formation. These results
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fully correspond with previous studies reporting that interferon-β /IFNAR-signaling
has immunomodulatory effects on experimental autoimmune encephalomyelitis
(EAE), a model for autoimmune brain inflammation and multiple sclerosis (Prinz
et al., 2008): Mice lacking Ifnar1 expression developed exacerbated clinical disease
symptoms accompanied by higher inflammation, demyelination and lethality (Prinz
et al., 2008). This negative influence of Ifnar1-deficiency on EAE was not seen upon
Cre-mediated deletion of Ifnar in B-cells or T-cells but was fully recapitulated by
LysM-Cre directed deletion of Ifnar in myeloid cells (Prinz et al., 2008). In line with
that disrupting the gene of the Ifnar ligand Interferon beta (IFNß) also leads to an
augmented and sustained CNS inflammation and demyelination in EAE (Teige et al.,
2003).
Microglia evolved from distinct primitive yolk-sac progenitor cell (Kierdorf et al.,
2013), are the primary innate immune effector cells in the CNS and are involved
in degenerative pathologies of the brain and the retina (Kettenmann et al., 2011;
Nimmerjahn et al., 2005; Langmann, 2007; Karlstetter et al., 2015; Zhao et al.,
2015).
To specifically analyze the role of Ifnar1 signaling in retinal microglia function, the
experiments were repeated using a tamoxifen-inducible Cx3cr1CreER mouse. This
mouse model was established to target microglia in vivo, facilitating inducible gene
deletion in adult animals after tissue and cell maturation (Goldmann et al., 2013;
Yona et al., 2013). Beyond that, it is capable of distinguishing microglia cells from
other myeloid cells expressing chemokine C-X3-C motif receptor 1 (Cx3cr1) by their
longevity and ability of self-renewal, both unique features of microglia (Wieghofer
et al., 2015). It remains uncertain if other long-living resident mononuclear phagocyte
populations located in proximity to the retina such as choroidal tissue macrophages
are also potentially targeted by this system (McMenamin, 1999). Tamoxifen-induced
Cx3cr1CreERT2:Ifnar1flox/flox mice showed the same significantly enhanced disease
pathology like Ifnar1-/- mice compared to controls expressing functional Ifnar1 on
microglia cells. Thus, the influence of Ifnar1 signaling on disease formation seems to
be primarily mediated by microglia cells, pointing towards a significant contribution
of this cell type to increase choroidal neovascularization in the laser-coagulation
model.
In addition, unpublished data of our lab revealed typical IFNß-stimulated genes like
interferon-related developmental regulator 1 (Ifr1), interferon-induced GTP-binding
protein Mx1 (Mx1) and signal transducer and activator of transcription 2 (Stat2) to
be upregulated in Rs1h-/y and Fam161aGT/GT mice (Weber et al., 2002; Karlstetter
et al., 2014), both genetic models for retinal degenerations, underlining the essential
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role of IFNAR-signaling in retinal pathologies and microglial activation.
In conclusion, the results display an essential role of Ifnar-signaling, specifically in
microglia cells during AMD-like retinal pathology.

4.4 The beneficial effect of IFN-β therapy on

disease symptoms

Since interferon beta is the first-line drug to treat relapsing remitting multiple scle-
rosis (RRMS) (Steinman et al., 2012) and inhibits the model disease EAE via
different cellular and humoral mechanisms (Inoue and Shinohara, 2013), the aim of
this approach was to analyze the immunomodulatory potential of IFN-β in retinal
pathologies. Using again the laser-coagulation model, our data clearly revealed
decreased microgliosis, as there is a smaller amount of activated microglia cells in
the lesion sites as well as CNV formation. These findings are in line with another
IFN-β therapy study, in which systemic IFN-β administration was tested in a rabbit
CNV model (Yasukawa et al., 2002). In this study, neovascularization was triggered
by subretinal injection of gelatin microspheres containing basic fibroblast growth
factor (bFGF). A following systemic therapy with diethylenetriaminepentaacetic
acid (DTPA)-dextran conjugated IFNß has an inhibitory effect on CNV formation
on early time points but did not affect CNV progression in later phases (Yasukawa
et al., 2002). In contrast, these results show a remarkable therapeutic effect of
IFN-β especially in the late phase 14 days post laser damage. The crucial difference
between both therapy studies could be the way CNV formation was triggered. The
laser-coagulation model triggers CNV formation by inducing focal inflammatory
sites into the retina by rupturing the Bruch’s membrane, whereas the bFGF-induced
model triggers angiogenesis by forming neovascular membrane scars. In accordance
to this methodical distinction, IFN-β treatment ameliorated laser-induced CNV in
rabbits (Kimoto et al., 2002) and monkeys (Tobe et al., 1995). Of note, a patient suf-
fering MS and punctate inner choroidopathy could significantly profit from systemic
IFN-β therapy and was subsequently free of CNV (Cirino et al., 2006).
Moreover, it has been published that IFN-β treatment has a protective effect on ex-
perimental autoimmune uveoretinitis (EAU), a model disease for human intraocular
inflammation, by suppressing Th1 and Th17 cells (Sun et al., 2011). Also primary
cell culture experiments underline the protective effect of IFNß counteracting the
neurotoxic activation state of microglial cells (Jin et al., 2007).
As the vascular endothelial growth factor (VEGF) is the main mediator of CVN
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formation (Noel et al., 2007), anti-VEGF therapies are currently the therapy standard
to treat the wet form of AMD (Rofagha et al., 2013; Rosenfeld et al., 2006). An
ongoing challenge in these days is that there is currently no reliable therapy option
for dry AMD (Jager et al., 2008). However, anti-VEGF therapy does not achieves the
same anti-angiogenic effects in all patients and there are up to 30% non-responders
(Amoaku et al., 2015; Otsuji et al., 2013). Hence, an alternative therapy option would
be particularly interesting for anti-VEGF non-responders. Based on the results of
this work, IFN-β treatment is a conceivable new therapy option as it operates in an
immunomodulatory mode of action.
To sum up, IFN-β therapy significantly prevented microglial reactivity, and CNV
formation. Hence, the protective mechanism of IFN-β treatment might be an inter-
esting new therapy option to especially treat AMD and other chronic inflammatory
and degenerative diseases of the retina in an immunomodulatory manner.
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4.5 Perspectives

In conclusion, findings of this study demonstrate for the first time the use of IFN-β
treatment as an alternative therapy option to ameliorate an AMD-like retinal pathol-
ogy.
However, despite the depth of the current study which went as far as clearly underlin-
ing the beneficial effect of the IFNAR-signaling cascade on the disease course, the
underlying molecular mechanisms still remain unclear. Thus, further experiments to
identify possible mechanisms of action would be helpful in understanding how the
IFNAR signaling pathway works to mediate the observed protective effects during
experimentally induced wet AMD.
In addition, further independent in vivo models are necessary to verify the effect of
IFN-β therapy reported in this work. In line with this, the retinopathy of prematurity
(ROP) model which also combines both, microgliosis and angiogenesis features,
would be suitable for such verification (Smith et al., 1994).
Working with the tamoxifen-inducible Cx3cr1CreER mice enables discrimination
between microglia cells and other Cx3cr1-expressing monocytic cells due to their
longevity. Despite of this difference, additional experiments differentiating more
precisely between resident microglia, long-living macrophages and other Cx3cr1-
expressing cells could help clarifying the actual contribution of retinal microglia to
AMD-like retinal degeneration.
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bFGF Basic fibroblast growth factor
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DNA Deoxyribonucleic acid
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F Forward
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Fig Figure
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h Hours
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NaOH Sodium hydroxide
nm Nanometre
NO Nitric oxide
NTC Non Template Control
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ROS Reactive oxygen species
rpm Revolutions per minute
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