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A computational approach to steady-state convergence of fluid
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Abstract Many-server queuing networks with general service and abandonment times have
proven to be a realistic model for scenarios such as call centers and health-care systems. The
presence of abandonment makes analytical treatment difficult for general topologies. Hence,
such networks are usually studied by means of fluid limits. The current state of the art, how-
ever, suffers from two drawbacks. First, convergence to a fluid limit has been established
only for the transient, but not for the steady state regime. Second, in the case of general
distributed service and abandonment times, convergence to a fluid limit has been either es-
tablished only for a single queue, or has been given by means of a system of coupled integral
equations which does not allow for a numerical solution. By making the mild assumption
of Coxian-distributed service and abandonment times, in this paper we address both draw-
backs by establishing convergence in probability to a system of coupled ordinary differential
equations (ODEs) using the theory of Kurtz. The presence of abandonments leads in many
cases to ODE systems with a global attractor, which is known to be a sufficient condition
for the fluid and the stochastic steady state to coincide in the limiting regime. The fact that
our ODE systems are piecewise affine enables a computational method for establishing the
presence of a global attractor, based on a solution of a system of linear matrix inequalities.

Keywords Abandonment Queueing Networks · Fluid Limits · Linear Matrix Inequalities

1 Introduction

Like all modeling techniques with a discrete state space representation, queuing networks
with an underlying dynamics based on continuous-time Markov chains (CTMCs) suffer
from the well-known problem of state space explosion. This makes large-scale models with
many jobs and servers very difficult to analyze in practice, since it leads to unfeasibly large
matrices in the case of numerical solutions [35] or to long runtimes when simulation is
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used. There is a vast literature concerned with techniques developed to tackle this issue,
based for instance on the exploitation of the presence of a product form for the stationary
distribution [3].

Another approach, which is the focus of this paper, is represented by studying fluid lim-
its for Markov population processes by means of ordinary differential equations (ODEs) in
the sense of Kurtz [20], known in the area of queueing networks also as the Halfin-Whitt
regime [14]. In this context, it is possible to identify a sequence of CTMCs characterized by
the same network topology but with increasingly larger job and server sizes that converge in
probability to the solution of the ODE system. In practice, this can be seen as an approxima-
tion technique where the CTMC’s state space is approximated by a continuous state-space
dynamics that estimates the average queue lengths in the network.

While the underlying ODE system can be solved much more efficient than the stochas-
tic process using numerical integration [2], a drawback of this approach is that convergence
holds for finite time intervals only. However, due to the theoretical and practical importance
of analyzing models under stationary conditions, there has been considerable interest in
studying when convergence can also be extended to the steady state. A crucial result, rooted
in Poincare’s recurrence theorem, states that the presence of a global attractor for the limit
ODE system ensures convergence [13,38]. This fact has been used to derive steady state re-
sults for different models in the literature, including models of virtualized environments [1],
grid computing [13], garbage collection algorithms [37], and optical packet switches [38].

In this paper we propose a computational method to study steady-state convergence in
the fluid limit for a class of queuing networks. In particular, we study many-server networks
with generally distributed service and abandonment times. We motivate this choice by the
fact that this class has proven to be a realistic model for real-world scenarios such as call
centers [12] and health-care systems [30], where abandonment is related to customer’s im-
patience, and in certain computing systems where instead it can describe the occurrence of
timeouts due, e.g., to network delays [36]. To keep the overall model a Markov population
process, we assume that service- and abandonment-time distributions are Coxian, which
allows us to model a general distribution with arbitrary accuracy (e.g., [8,6]). Moreover im-
portant, the limit ODE system has a piecewise affine vector field. This enables the use of the
theory of linear matrix inequalities (LMI) to conclude that the feasibility of an LMI problem,
which admits a computational treatment, guarantees the presence of a global attractor [33].
In case of exponentially distributed service and abandonment times, we additionally allow
the abandonment distribution to depend on the fact whether a customer is waiting or is being
served. This generalizes the common abandonment policy [28,29] where customers cannot
abandon while being served. As discussed, the feasibility of an LMI problem implies our
desired result of convergence. A positive side effect of a global attractor is that a solution of
the transient regime provides one also with the global attractor itself if the time interval is
chosen long enough.

Our approach is generic and thus can be in principle applied to networks with arbitrary
topologies and Coxian-distributed service and abandonment times. However, the number of
queuing stations and the number of Coxian stages lead to a growth in the number of affine
modes of the ODE vector field. This, in turn, impacts on the computational complexity of
the LMI feasibility problem. Therefore, we complete our study with an empirical evaluation
of our approach using a Matlab implementation. On a set of randomly generated networks,
we show that the LMI problem is feasible in a large fraction of cases for networks with
exponentially distributed abandonments, albeit with a tendency to degrade as the number
of stations or the number of stages grow. In particular, we establish that the LMI approach
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applies also to the common policy where customers cannot abandon while being served [28,
29].

Related work. Due to the lack of closed form solutions for queueing systems with general
service, one usually resorts to efficient numerical algorithms [32] or to fluid and diffusion
models [7]. The situation is similar in the case of abandonment networks, where no ana-
lytical solutions are known even if the service, arrival and abandonment times of those are
assumed to be exponential [28].

Fluid models are rooted in the functional law of large number and are deterministic,
while diffusion models are based on the functional central limit theorem and depend on
higher order moments of the service, arrival and abandonment times [10]. Although there
exists a considerable amount of literature on diffusion models of many-server queuing net-
works and limiting regimes of single-server queues (see [10,17,9] and the references therein
for more on this topic), in the remainder we relate our work to fluid models of many-server
queuing networks, as they are the closest to the topics of this paper.

Mathematically, fluid models are in general described by means of coupled integral
equations and, in the classic setting, they approximate the number of customers present in
the queues of a network; see, for instance, [28,29] which covers Markovian many-server
time-dependent queuing networks with abandonment. In contrast to [28,29], in our model a
customer can abandon while being served. In the case of call centers, this can be motivated
by the fact that a customer has an appointment at a certain time, while in performance re-
lated models customers are jobs/files and abandonment times are timeouts. Because of this,
our fluid limits are not comparable to those in [28] in general. In order to cope with general
service-, arrival- and abandonment-time distributions, one has to keep track of the waiting
times of each customer in queue as well as of the amount of time each customer has been
in service. This idea has been used in [39,24,26] to establish a fluid limit result for a single
queue with general service and abandonment times and yields a deterministic model than
can be solved efficiently. Among stimulating further results for the single queue case [27,
23,22], this works were pivotal for [25,21] in which a fluid model for a time-dependent
general network with abandonment and the underlying numerical algorithm for its solution
were considered. In contrast to [24], however, [25,21] do not establish that the fluid model
is a limit of the stochastic queuing network. By considering a slightly different state de-
scriptor, [19,18] tackle this problem by using a measure valued stochastic process. They
are able to establish a fluid limit which is characterized by a set of coupled integral equa-
tions. In contrast to [25,21], the network is time-homogenous but the routing of internal and
external customers may be different. Unfortunately, the characterization of the determinis-
tic model [18] is implicit and does not allow for a numerical solution; also, it is not clear
whether [18] can be used to prove the convergence in [25], due to the differences in the state
descriptors.

Paper organization. This paper is structured as follows. Section 2 introduces our reference
CTMC model of an open queuing with many-server queues with Coxian distributed ser-
vice and abandonment times. Section 3 develops the fluid limits. We consider the following
cases separately. First we present the case of exponential distributions for both service and
abandonment, in Section 3.1; this represents the simplest case, and allows us to clearly
point out through an example that the feature of abandonment is necessary for our proposed
computational approach to yield feasible LMI problems. Then, Section 3.2 considers the
case of Coxian-distributed abandonments, while Section 3.3 discusses the case of Coxian-
distributed service and abandonment times. This order allows for a concise presentation.
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For each case we discuss their computational complexity which we measure in terms of
number of affine modes of the vector field and matrix sizes. Section 4 presents the main re-
sults concerning the convergence to the fluid limit, while Section 5 shows the results of the
numerical evaluation. In Section 6 we extend our exponential model to the case where cus-
tomer abandonment times in service may differ from the abandonment times of customers
that are waiting. By carrying out a numerical investigation similar to that of Section 5, we
are able to relate our abandonment policy to the common one [28,29]. Finally, conclusions
are drawn in Section 7.

2 Stochastic Model

Here we describe the underlying CTMC of an open queuing network with many-server sta-
tions with Coxian-distributed service and abandonment times. To each station we associate
exactly one queue with infinite capacity. We assume the FCFS policy and that a customer
can abandon while being served. In the case of call centers, this can be motivated by the fact
that a customer has an appointment that he or she cannot miss, while in performance related
models timeouts may not be related to the current work progress. Let n ≥ 1 denote the
number of stations and (ri,j)1≤i,j≤n such that ri,j denotes the probability that a customer
joins queue j after being served at station i. We assume that any two stations of the network
are connected by a path whose probability is nonzero. Let Γ i ≥ 0 denote the intensity of
the independent Poisson arrival process associated to station i (where Γ i = 0 means that
station i has no arrivals) and let ki ≥ 1 be the number of stages of the Coxian-distributed
service times. The corresponding service rates are given by a vector µi = (µik)1≤k≤ki ,
where µik ∈ (0;∞) is the service rate at stage k, and a vector pi = (pik)1≤k≤ki−1 where
pik > 0 is the probability with which a job goes into stage k + 1 after receiving service at
stage k. Naturally, 1 − pik is the probability with which service is completed when at stage
k; a job leaves the station from stage ki with probability 1. In order to simplify later expres-
sions, we define piki := 0. Similarly, the Coxian-distributed abandonment of station i has
li ≥ 1 stages and the underlying parameters are λi = (λil)1≤l≤li , q

i = (qil)1≤l≤li−1 and
qili := 0.

The state of station i is fully characterized by the vector (XSi1 , XCik,l)1≤k≤ki,1≤l≤li
where each element is a nonnegative integer denoting the following:

– XCi1,l
is the population of jobs which are in abandonment-stage l and that are either

waiting for service or which are in service-stage 1;
– XSi1

is the population of servers which are either idle or servicing jobs in service-stage
1 of any abandonment-stage l. That is, the servers XSi1 are shared by XCi1,1 , . . . , XCi1,li

;
– XCik,l

, with k > 1 and 1 ≤ l ≤ li, is the population of jobs in service-stage k and
abandonment-stage l which are served.

From the above state description one readily infers that the number of jobs and servers
in station i is given by

∑ki
k=1

∑li
l=1XCik,l

and XSi1 +
∑ki
k=2

∑li
l=1XCik,l

, respectively. In

particular, the network state descriptor is a vector from N
∑
i(kili+1)

0 in the form

X = (XSi1 , XCik,l
)1≤i≤n,1≤k≤ki,1≤l≤li .

We now define the transition rates of the CTMC, in the customary form of jump vec-
tors and associated transition functions from a generic state X. We denote by q(X,X′) the
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transition rate from state X to state X′. Consider some station 1 ≤ i ≤ n and define, for all
1 ≤ l ≤ li and 1 ≤ j ≤ n,

X+ hi,i1,l = (XCi1,l
− 1, XSi1 − 1, XCi2,l

+ 1, . . .) , (1)

X+ hi,j1,l = (XCi1,l
− 1, X

Cj1,1
+ 1, . . .) , for all j 6= i, (2)

X+ hi,ik,l = (XCik,l
− 1, XCik+1,l

+ 1, . . .) , for all 2 ≤ k ≤ ki − 1, (3)

X+ hi,jk,l = (XCik,l
− 1, XSi1 + 1, X

Cj1,1
+ 1, . . .) , for all 2 ≤ k ≤ ki, (4)

where we use ellipsis to denote all elements of X which are not affected by a jump. Jump (1)
describes a job in service-stage 1 which moves into service-stage 2; (2) describes a job in
service-stage 1 which completes service and moves into another station j; (3) denotes a job
in service-stage k which moves to the next stage, whereas with (4) the jobs complete service
in service-stage k of the Coxian, with the job moving to station j and a server unit becoming
available again at service-stage 1 for a new service.

This defines the jumps induced by the service. For the abandonment and arrivals, instead,
we define for all 1 ≤ i ≤ n

X+ hi,0k,l = (XCik,l
− 1, XCik,l+1

+ 1, . . .) , for all 1 ≤ k ≤ ki, 1 ≤ l ≤ li − 1, (5)

X+ hi,−1,l = (XCi1,l
− 1, . . .) , for all 1 ≤ l ≤ li, (6)

X+ hi,−k,l = (XCik,l
− 1, XSi1 + 1, . . .) , for all 2 ≤ k ≤ ki, 1 ≤ l ≤ li, (7)

X+ hi,+ = (XCi1,1 + 1, . . .), (8)

where jump (5) describes a job which is moving from abandonment-stage l to abandonment-
stage l+1 and (6) - (7) express the fact that a job leaves the queuing network in abandonment-
stage l; finally, (8) describes the arrival of a new job to the network.

According to this description and notation, the transition rates from any state X are, for
all 1 ≤ i, j ≤ n, as follows:

q(X,X+hi,i1,l)=f(X,h
i,i
1,l) :=p

i
1µ
i
1 max

(
min

(
XCi1,l

, XSi1
−

∑
l+1≤l′≤li

XCi
1,l′

)
, 0
)
, (9)

q(X,X+hi,j1,l)=f(X,h
i,j
1,l) :=ri,j(1− p

i
1)µ

i
1 max

(
min

(
XCi1,l

, XSi1
−

∑
l+1≤l′≤li

XCi
1,l′

)
, 0
)

for j 6= i; moreover, we have

q(X,X+ hi,ik,l) = f(X,hi,ik,l) := pikµ
i
kXCik,l

,

q(X,X+ hi,jk,l) = f(X,hi,jk,l) := ri,j(1− pik)µ
i
kXCik,l

,

q(X,X+ hi,0k,l) = f(X,hi,0k,l) := qilλ
i
lXCik,l

,

q(X,X+ hi,−k,l ) = f(X,hi,−k,l ) := (1− qil)λ
i
lXCik,l

,

q(X,X+ hi,+) = f(X,hi,+) := Γ i,

Apart from the service rates of the service-stage 1 given in (9), all definitions are straight-
forward. To shade more light on the former, let us define

l̃ := min
{
1 ≤ l ≤ li + 1 |

li∑
l′=l

XCi
1,l′
≤ XSi1

}
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and observe that the service rate of service-stage 1 of abandonment-stage l satisfies

µi1 max
(
min

(
XCi1,l

, XSi1
−

li∑
l′=l+1

XCi
1,l′

)
, 0
)
=

=


0 , 1 ≤ l < l̃ − 1

µi1

(
XSi1

−
∑li
l′=l̃

XCi
1,l′

)
, l = l̃ − 1

µi1XCi1,l
, l̃ ≤ l ≤ li

From this we infer that jobs in abandonment-stage l are served after those in abandonment-
stage l′ with 1 ≤ l < l′ ≤ li. For instance, let us assume that we are given ki = 1 and li = 3
with XCi1,1 = 2, XCi1,2 = 3, XCi1,3 = 4 and XSi1 = 5. Then, the service rate of XCi1,3
is µi1 max(min(XCi1,3 , S

i
1)) = 4µi1, the service rate of XCi1,2 is µi1 max(min(XCi1,2 , S

i
1 −

XCi1,3
)) = µi1 and the service rate ofXCi1,1 is µi1 max(min(XCi1,1 , XSi1−XCi1,2−XCi1,3)) =

0. That is, the 5 servers available at station i serve all 4 jobs of abandonment-stage 3, one of
the 3 jobs of abandonment-stage 2 and none of the 2 jobs of abandonment-stage 1.

The CTMC is completely characterized by above transitions and an initial condition

X(0) =
(
XSi1

(0), XCik,l
(0)
)
1≤i≤n,1≤k≤ki,1≤l≤li

.

We denote the CTMC by (X(t))t≥0, where

X(t) =
(
XSi1

(t), XCik,l
(t)
)
1≤i≤n,1≤k≤ki,1≤l≤li

.

Although general initial conditions can be chosen, we require in the sequel that no jobs
are served in Coxian service-stages greater than 1 at time point zero. This is without loss
of generality but simplifies the exposition, because it ensures that the number of servers in
station i satisfiesXSi1(t)+

∑ki
k=2

∑li
l=1XCik,l

(t) = XSi1
(0) for all t ≥ 0, see also Remark 1

and the following discussion.
Let us remark that our model can also cover infinite-server (i.e., delay) stations, by

setting Si1(0) := ∞. (Formally, one has to remove Si1 from the state descriptor and resolve
the minima in the equation (9).)

3 Fluid Limit

We are now ready to develop the fluid limit according to Kurtz [20]. Given a model, we
consider a vector of initial densities in the form

χ(0) =
(
Si1(0), C

i
k,l(0)

)
1≤i≤n,1≤k≤ki,1≤l≤li

with Cik,l(0) = 0 for all 2 ≤ k ≤ ki, Ci1,l(0) ≥ 0 and Si1(0) > 0. Using this initial vector,
we construct a family of CTMCs, {(XN (t))t≥0 | N ≥ 1}, by setting the initial state of the
N -th CTMC to be XN (0) = bN · χ(0)c with probability 1, where b·c is the floor operator
element-wise. Let us remark that N takes the natural interpretation of the system’s size.
With this scaling, the number of servers increases directly proportionally to the number of
jobs for each N , maintaining the relative ratios dictated by the initial densities in χ(0). In
order to keep up with the increasing service capacity, we define Γ i := γiN to be the arrival
rate of the N -th Markov chain (XN (t))t≥0. Then, the following result can be shown.
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Theorem 1 Fix arbitrary T, ε > 0, letH denote the set of all possible jumps of (XN (t))t≥0

from (1) - (8) and let χ(t) be the ODE solution of

d

dt
χ(t) = f(χ(t)) :=

∑
h∈H

h f
(
χ(t),h

)
(10)

Then, it holds that lim
N→∞

P
{

sup
0≤t≤T

∣∣ 1
N

XN (t)− χ(t)
∣∣ > ε

}
= 0.

Proof. Observing that for any h ∈ H the function x 7→ f(x,h) is a sum of linear factors
and minima or maxima thereof, it becomes apparent that x 7→ f(x) is a globally Lipschitz
continuous function. Hence, a direct application of Theorem 3.1 from [20] yields the claim.

That is, the rescaled CTMCs converge in probability, as N → ∞, to the ODE so-
lution χ. The fluid solution can be used as an approximate to the average behavior of a
CTMC with finite size N , e.g. the average number of jobs at station i is approximated by
N
(∑ki

k=1

∑li
l=1 C

i
k,l(t)

)
. Note, however, that the above result ensures convergence only on

finite time intervals, meaning that it does not necessarily imply the interchange of limits

lim
N→∞

lim
t→∞

1

N
XN (t) = lim

t→∞
lim
N→∞

1

N
XN (t)

In the next sections, we tackle this problem by identifying a sufficient condition that can
be evaluated by means of efficient numerical algorithms for many queueing networks under
study. Before doing so, however, we next derive the fluid models of our queuing networks.
In particular, we separately discuss the fluid models of networks where service times or/and
abandonment times are exponentially distributed. In the cases of exponential queuing net-
works, i.e. when ki = li = 1 for all 1 ≤ i ≤ n, the exposition greatly simplifies and the
ideas behind the theory of LMIs become apparent. In particular, we will see that the pres-
ence of abandonments in the network is a necessary condition if one wants to use the LMI
theory to prove that the stochastic steady state coincides with the global attractor of the ODE
system in the limiting regime.

3.1 Networks with exponentially distributed service and abandonment times

In the case where ki = li = 1 for all 1 ≤ i ≤ n, it can be easily shown that the underlying
fluid model is given by

Ċi = −λiCi − µimin(Ci, Si1) +
n∑
j=1

rj,iµ
j min(Cj , Sj1) + γi, 1 ≤ i ≤ n (11)

where we use the dot notation to indicate derivative with respect to time, and drop the explicit
dependence on time in the ODEs.

Let us denote the drift (10) in the case of the above ODE system by f , with concentra-
tions S1

1 , . . . , S
n
1 and rates λi, µi, γi, where 1 ≤ i ≤ n, being fixed. Since f is piecewise

affine, there exist affine functions f1, . . . , fk and a partition {∆1, . . . ,∆k} of Rn such that
f(C) = fi(C) whenever C ∈ ∆i. By expressing each affine function fi in terms of the
underlying matrix Ai ∈ Rn×n and vector b ∈ Rn, that is fi(C) = AiC + bi for all
C ∈ Rn, it can be proven [33] that the ODE system Ċ = f(C) admits a global attractor
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Fig. 1: Pictorial description of a tandem network with Poissonian arrivals and many-server
queues that admit exponentially distributed service and abandonment times.

if there exists a symmetric positive definite matrix P ∈ Rn×n which makes the matrices
PA1 + AT1 P, . . . , PAn + ATnP negative definite. That is, we look for a symmetric matrix
P > 0 which solves the system of linear matrix inequalities (LMIs) PAi+ATi P < 0, where
1 ≤ i ≤ n. If the LMI system does not admit a solution, instead, it is unknown whether the
ODE system has a global attractor or not.

Let us illustrate the procedure in the case of the tandem network given in Figure 1. Since
the underlying ODE system is given by

Ċ1 = −λ1C1 − (1− r1,1)µ1 min(C1, S1
1) + r2,1µ

2 min(C2, S2
1) + γ1

Ċ2 = −λ2C2 + r1,2µ
1 min(C1, S1

1)− (1− r2,2)µ2 min(C2, S2
1) + γ2,

the corresponding sets ∆i are given by

∆1 = {(C1, C2) ∈ R2 | C1 ≤ S1
1 ∧ C2 ≤ S2

1}

∆2 = {(C1, C2) ∈ R2 | C1 > S1
1 ∧ C2 > S2

1}

∆3 = {(C1, C2) ∈ R2 | C1 ≤ S1
1 ∧ C2 > S2

1}

∆4 = {(C1, C2) ∈ R2 | C1 > S1
1 ∧ C2 ≤ S2

1}

Consequently, the underlying matrices are

A1 =

(
−λ1 − (1− r1,1)µ1 r2,1µ

2

r1,2µ
1 −λ2 − (1− r2,2)µ2

)
, A2 =

(
−λ1 0
0 −λ2

)
,

A3 =

(
−λ1 − (1− r1,1)µ1 0

r1,2µ
1 −λ2

)
, A4 =

(
−λ1 r2,1µ

2

0 −λ2 − (1− r2,2)µ2
)
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and the ODE system is guaranteed to have a global attractor if there exists a symmetric
positive definite matrix P ∈ R2×2 such that PAi + ATi P < 0 for all 1 ≤ i ≤ 4. It can be
shown that a single LMI PA+ ATP < 0 has a solution if and only if all eigenvalues of A
have negative real parts [34, Section 1.2]. Consequently, if one of the matricesA1, . . . , An is
not invertible, the LMI system cannot have a solution. This, however, is the case for the LMI
system of the tandem network given in Figure 1 if λ1 = 0 or λ2 = 0. Since this calculation
carries over to networks of arbitrary size and topology, we conclude that queuing networks
with feasible LMI systems need to have abandonment, an observation which is pivotal for
the entire paper.

3.2 Networks with exponentially distributed service times and Coxian-distributed
abandonment times

In the case where ki = 1 for all 1 ≤ i ≤ n, it can be easily shown that the underlying fluid
model is given by

Ċi1 = −λi1Ci1 − µimax
(
min

(
Ci1, S

i
1 −

li∑
l′=2

Cil′
)
, 0
)

+
n∑
j=1

rj,i

lj∑
l=1

µj max
(
min

(
Cjl , S

j
1 −

lj∑
l′=l+1

Cil′
)
, 0
)
+ γi

Ċil = −λ
i
lC
i
l − µ

imax
(
min

(
Cil , S

i
1 −

li∑
l′=l+1

Cil′
)
, 0
)
+ qil−1λ

i
l−1C

i
l−1, 2 ≤ l ≤ li

Together with l̃ := min{1 ≤ l ≤ li + 1 |
∑li
l′=l C

i
l′ ≤ Si1}, the service rate of the l-th

phase satisfies

µimax
(
min

(
Cil , S

i
1 −

li∑
l′=l+1

Cil′
)
, 0
)
=


0 , 1 ≤ l < l̃ − 1

µi(Si1 −
∑li
l′=l̃

Cil′) , l = l̃ − 1

µiCil , l̃ ≤ l ≤ li

Consequently, queue i contributes li + 1 piecewise affine modes, meaning that the overall
number of matrices underlying the drift is equal to

∏n
i=1(li + 1). Moreover, the dimension

of each matrix is (
∑n
i=1 li)× (

∑n
i=1 li).

3.3 Networks with Coxian-distributed service and abandonment times

In order to simplify the exposition, we define qi0 := 0 for all 1 ≤ i ≤ n. Also, recall that
qili := piki := 0. Then, it can be shown that the fluid model is given by the following ODE
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system.

Ċi1,1 = −λi1Ci1,1 − µi1 max
(
min

(
Ci1,1, S

i
1 −

li∑
l′=2

Ci1,l′
)
, 0
)

(12)

+
n∑
j=1

rj,i

lj∑
l=1

[
(1− pj1)µ

j
1 max

(
min

(
Cj1,l, S

j
1 −

lj∑
l′=l+1

Cj1,l′

)
, 0
)

+

kj∑
k=2

(1− pjk)µ
j
kC

j
k,l

]
+ γi,

Ċi1,l = −λ
i
lC
i
1,l − µ

i
1 max

(
min

(
Ci1,l, S

i
1 −

li∑
l′=l+1

Ci1,l′
)
, 0
)
+ qil−1λ

i
l−1C

i
1,l−1,

Ṡi1 = −pi1
li∑
l=1

µi1 max
(
min

(
Ci1,l, S

i
1 −

li∑
l′=l+1

Ci1,l′
)
, 0
)

+

li∑
l=1

ki∑
k=2

(
(1− pik)µ

i
kC

i
k,l + (1− qil)λ

i
lC
i
k,l

)
,

Ċi2,l = −λ
i
lC
i
2,l − µ

i
2C

i
2,l + pi1µ

i
1 max

(
min

(
Ci1,l, S

i
1 −

li∑
l′=l+1

Ci1,l′
)
, 0
)

+ qil−1λ
i
l−1C

i
2,l−1,

Ċik,l = −λ
i
lC
i
k,l − µ

i
kC

i
k,l + pik−1µ

i
k−1C

i
k−1 + qil−1λ

i
l−1C

i
k,l−1,

We make now the following important observation.

Remark 1 Note that (12) characterizes the fluid equilibria in full only if the initial condition
is known. In particular, it holds that Ṡi1+

∑ki
k=2

∑li
l=1 Ċ

i
k,l = 0 for all 1 ≤ i ≤ n. However,

by setting Si = Si1 +
∑ki
k=2

∑li
l=1 C

i
k,l, it is possible to characterize the equilibria solely

in terms of ODEs by removing the ODE of Si1 from (12) and by applying Si1 = Si −∑ki
k=2

∑li
l=1 C

i
k,l to each occurrence of Si1, with 1 ≤ i ≤ n.

It is exactly the modified ODE system from Remark 1 to which we will apply our re-
sult from the next section. That is, after fixing the server concentrations in each station and
rewriting the ODE system as in Remark 1, we seek to establish the presence of a global at-
tractor using the LMI theory. In the case this can be done, we infer that the system converges
to the global attractor regardless of the initial concentration of the clients.

We end this section by discussing the complexity of the underlying fluid model. Simi-
larly to the case where only the abandonment times were assumed to be Coxian-distributed,
by setting

l̃ := min
{
1 ≤ l ≤ li + 1 |

li∑
l′=l

Ci1,l′ ≤ S
i −

ki∑
k=2

li∑
l=1

Cik,l

}
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we observe that the service rate of service phase one of abandonment phase l-th satisfies

µi1 max
(
min

(
Ci1,l, S

i −
ki∑
k=2

li∑
l=1

Cik,l −
li∑

l′=l+1

Ci1,l′
)
, 0
)
=

=


0 , 1 ≤ l < l̃ − 1

µi1

(
Si −

∑ki
k=2

∑li
l=1 C

i
k,l −

∑li
l′=l̃

Ci1,l′
)

, l = l̃ − 1

µi1C
i
1,l , l̃ ≤ l ≤ li

Thus, queue i contributes li+1 piecewise affine modes as before, meaning that the size
of the LMI system is equal to

∏n
i=1(li + 1). By making also the service times Coxian-

distributed, however, the size of the ODE system and the matrices increase to
∑n
i=1 liki

and (
∑n
i=1 liki)× (

∑n
i=1 liki), respectively.

4 Analysis of the Steady State Regime

Under the assumption that the ODE system (12) admits a global attractor χ?, we next prove
that the exists a sequence of steady-state measures (πN )N underlying (XN (t)/N)N that
converges, as N → ∞, to χ?. Afterwards, we provide numerical evidence for the fact that
the condition on global attraction holds true for a rich class of queuing networks.

Proof strategy. Due to the fact that the CTMCs (XN (t)/N)N have countable infinite state
spaces, the common proof strategy [38,16] does not apply. We address this by showing first
in Proposition 1 that there exists a sequence of steady-state measures (πN )N underlying
(XN (t)/N)N by using results from the stability theory of Markov processes [31]. Building
on that, we then prove in Theorem 2 that the aforementioned sequence is also tight. Armed
with this, we extend the proof in [38,16] and establish our main result, given as Theorem 3.

Proposition 1 Let (X(t))t≥0 denote an irreducible CTMC with a countable state space in
Nd0 and qv,w be the transition rate from v into w, where we assume that each state v has a
positive, finite number of successors w. Define the drift in v with respect to some measurable
function g : Rd≥0 → R≥0 as dg(v) :=

∑
w:w 6=v(g(w)− g(v))qv,w and assume further that

g satisfies the following conditions.

1. g(v)→∞ as v →∞
2. There exists a finite K ⊆ Nd0 and c, d > 0 such that dg(v) =

∑
w:w 6=v(g(w) −

g(v))qv,w ≤ −cg(v) + d for all v
3. It holds that |dg|(v) :=

∑
w:w 6=v |g(w)− g(v)|qv,w = O(g(v))

Then the CTMC is positive recurrent and the unique steady-state measure π is such that
Eπ[g(X(0))] <∞. Moreover, it holds that 0 =

∑
v π(v)dg(v).

Proof of Proposition 1. The ergodicity of the CTMC and the fact that Eπ[g(X(0))] < ∞
are due to Theorem 7.1 of [31]. Moreover, Theorem 2 of [15] ensures that

Eα[g(X(t))] = Eα[g(X(0))]+Eα
[∫ t

0

dg(X(s))ds

]
= Eα[X(0)]+

∫ t

0

Eα[dg(X(s))]ds

(13)
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if Eα[g(X(0))] < ∞, meaning that Eα[|dg|(X(t))] =
∑
v Pα(X(t) = v)|dg|(v) ≤

c
∑
v Pα(X(t) = v)g(v) = cEα[g(X(t))] for some c > 0. Thus, (13) and Gronwall’s

inequality ensure the existence of some C > 0 such that Eα[g(X(t))] ≤ Eα[g(X(0))] +
C(ect − 1) for all t ≥ 0, which readily implies that s 7→ Eα[dg(X(s))] is integrable on
any compact interval. Hence, the fundamental theorem of Lebesgue calculus and (13) imply
that Ėα[g(X)] = Eα[dg(X)] almost everywhere on R≥0. The last claim then follows from
Ėπ[g(X(t))] = Eπ[dg(X(t))] =

∑
v Pπ(X(t) = v)dg(v) =

∑
v π(v)dg(v).

Using Proposition 1, we can prove that our networks induce a tight sequence of mea-
sures.

Theorem 2 For each N ≥ 1, the N -th queuing network (XN (t)/N)t≥0 has a steady-state
measure πN . Moreover, the sequence (πN )N is tight, meaning that for any ε > 0 there
exists a compact set Kε ⊆ R

∑n
i=1 liki such that πN (Kε) ≥ 1− ε for all N ≥ 1.

Proof of Theorem 2. Recall that the populations XSi1 can be removed from the state de-
scriptor X by fixing an initial server population XSi thanks to the relation XSi = XSi1

+∑ki
k=2

∑li
l=1XCik,l

. Thus, one can assume that X = (XCik,l
)1≤i≤n,1≤l≤li,1≤k≤ki . In the

following, Z and Z′ denote states of (XN (t)/N)t≥0, whereas gCik,l(Z) := ZCik,l
and

g :=
∑
Cik,l

gCik,l
. Further, let FCik,l be the ODE formula which refers to the change of

XCik,l
(t)/N in time, e.g.

FCi1,l
(Z) = −µi1 max

(
min

(
ZCi1,l

, ZSi −
ki∑
k=2

li∑
l=1

ZCik,l
−

li∑
l′=l+1

ZCi
1,l′

)
, 0
)

− λilZCi1,l + qil−1λ
i
l−1ZCi1,l−1

Note that the fluid approximation is given by the equation∑
Z′:Z′ 6=Z

(gCik,l
(Z′)− gCik,l(Z))qZ,Z′ = FCik,l

(Z)

Similarly, it can be shown that
∑

Z′:Z′ 6=Z |gCik,l(Z
′)−gCik,l(Z)|qZ,Z′ arises from FCik,l

(Z)

by turning any minus into a plus. Note that the latter implies the third condition of Proposi-
tion 1. The former, instead, induces∑

Cik,l

FCik,l
(Z) =

∑
Cik,l

∑
Z′:Z′ 6=Z

(gCik,l
(Z′)− gCik,l(Z))qZ,Z′

=
∑

Z′:Z′ 6=Z

∑
Cik,l

(gCik,l
(Z′)− gCik,l(Z))qZ,Z′

=
∑

Z′:Z′ 6=Z

(g(Z′)− g(Z))qZ,Z′ = dg(Z).

Consequently, it suffices to find some c, d > 0 such that
∑
Cik,l

FCik,l
(Z) ≤ c

∑
Cik,l

ZCik,l
+

d for all Z in order to infer the second condition of Proposition 1. For this, we observe that∑
Cik,l

FCik,l
(Z) ≤ −(1− q)λ

∑
Cik,l

ZCik,l
+ γΣ = −(1− q)λ · g(Z) + γΣ
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where q := max{qil | 1 ≤ i ≤ n ∧ 1 ≤ l ≤ li}, λ := min{λil | 1 ≤ i ≤ n ∧ 1 ≤ l ≤ li}
and γΣ :=

∑n
i=1 γ

i. Since g satisfies also the first condition of Proposition 1, we can apply
the latter to infer the existence of πN . To see the second part of the claim, we define Kε :=
[0; 1/ε]

∑n
i=1 liki and observe that for any η > 0 there exists a sufficiently small ε > 0 such

that dg(Z) ≤ −(1−q)λ·g(Z)+γΣ = −(1−q)λ·‖Z‖1+γΣ ≤ −η+(η+γΣ)·1Kε(Z) for all
Z. This yields

∑
Z πN (Z)dg(Z) ≤ −η+(η+γΣ)πN (Kε). Thanks to Proposition 1, it holds

that
∑

Z πN (Z)dg(Z) = 0 and we can use the idea from [11] to infer η
η+γΣ

≤ πN (Kε).
Since the choice of ε does not depend on N , the proof is complete.

Armed with Theorem 2, we are able to extend the proof strategy used in [38,16] to the
case of our networks.

Theorem 3 Let us assume that the ODE system underlying the network family ( 1
NXN (t))t≥0

has a unique global attractor χ?. Then, for any δ > 0, it holds that

lim
N→∞

lim
t→∞

P
{∣∣∣ 1
N

XN (t)− χ?
∣∣∣ > δ

}
= 0

Proof. The following proof is a modification of the proofs given in [38,16] which, in turn,
are based on [4]. Let χx(t) denote the ODE solution subject to χx(0) = x. Further, for
any A ⊆ R

∑
i kili

≥0 , we define χ−1
A (t) := {x ∈ R

∑
i kili

≥0 | χx(t) ∈ A}. Thanks to the The-
orem 2, we know that there exists a sequence of steady-state measures (πN )N underlying
( 1
NXN (t))t≥0 that is tight. Hence, we can use Prokhorov’s theorem to fix a subsequence

(πNi)i of (πN )N which converges weakly against some measure π. Next, we show that π
is a steady-state measure for χ(t), that is π

(
χ−1
A (t)

)
= π(A) for any Borel-measurable set

A of R
∑
i kili

≥0 and t ≥ 0. Obviously, π
(
χ−1
A (t)

)
= π(A) is equivalent to∫

R
∑
i kili
≥0

1A(χx(t))π(dx) =

∫
R

∑
i kili
≥0

1A(x)π(dx) (14)

To show the above equation, one first proves that∫
R

∑
i kili
≥0

g(χx(t))π(dx) =

∫
R

∑
i kili
≥0

g(x)π(dx) (15)

holds true for any bounded uniformly continuous function g : R
∑
i kili

≥0 → R. The corre-
sponding proof can be taken verbatim from [16]. Having this, we observe that, for any ε > 0,
gε(·) := min

(
1, d(·, A)/ε)

)
is a bounded uniformly continuous function, where d(x, A) :=

inf{d(x,a) | a ∈ A} denotes the Euclidian distance between x and A. This holds true be-
cause |d(x, A) − d(y, A)| ≤ d(x,y). (To see this, note that d(x,a) ≤ d(x,y) + d(y,a)
for any a ∈ A; taking infimum over a ∈ A yields then the inequality.) Thus, by applying
the theorem of dominated convergence, we infer that

∫
gε(x)π(dx) →

∫
1A(x)π(dx) as

ε → 0. This and (15) implies the desired equation (14). Let us denote in the sequel the
closed ball around χ? with radius ε > 0 by Bε(χ?). Thanks to the fact that χ? is a unique
global attractor, for any ε > 0 and any compact set K ⊆ R

∑
i kili

≥0 there exists a t > 0 such
that χK(t) := {χx(t) | x ∈ K} ⊆ Bε(χ

?). Since this implies K ⊆ χ−1
Bε(χ?)

(t) and, by
Theorem 1.4 from [5], there exists for any η > 0 a compact setKη such that π(Kη) ≥ 1−η,
we infer that for any ε, η > 0 there exists a t > 0 with π

(
χ−1
Bε(χ?)

(t)
)
≥ 1− η. Noting that

this and (14) imply π
(
Bε(χ

?)
)
≥ 1 − η for all ε, η > 0, this yields π = δχ? , i.e. (πN )N

converges weakly to the Dirac measure δχ? . This and the proof of Theorem 5 in [38] yield
then the claim.
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Note that if χ̇ = F (χ) admits a global attractor, then F (χ) = 0 has a unique solution,
namely the global attractor itself. Although the converse is not true in general (consider,
for instance, the single ODE ẋ = x), it is interesting to ask whether our ODE system is
such that F (χ) = 0 has always a unique solution. We study this question in the case of
exponentially distributed service and abandonment times. The next proposition states that
there exists always a solution; uniqueness, instead, is shown under an additional assumption.

Proposition 2 Let χ̇ = F (χ) denote the ODE system of (11). Then, the system of equations
F (χ) = 0 admits a solution. Moreover, if mini ri,i = p, then F (χ) = 0 admits a unique
solution if 2(1− p)maxi µ

i < mini λ
i.

Proof. Together with RT = (rj,i)i,j , TC = (µ1 min(|C1|, S1), . . . , µnmin(|Cn|, Sn)),
λ−1(X) = (X1/λ1, . . . , Xn/λn) and γ = (γ1, . . . γn), the equation F (C) = 0 rewrites to
λ−1((RT − I)TC + γ) = C. Let us consider the function

Θ : Rn → Rn, C 7→ λ−1((RT − I)TC + γ
)

Thanks to Schauder’s fixed point theorem, Θ has a fixed point, meaning that F (χ) = 0
admits a solution. Further, it holds that

‖Θ(C)−Θ(C′)‖1 = ‖λ−1((RT − I)(TC −TC′)
)
‖1

= ‖λ−1((RT − I))(TC −TC′)‖1

≤ ‖λ−1((RT − I))‖1‖TC −TC′‖1

≤ maxi µ
i

mini λi
‖RT − I‖1‖C−C′‖1,

meaning that Banach’s fixed point theorem ensures the existence of a unique equilibrium if
the assumption is fulfilled.

For instance, if a customer is redirected to the same queue after being served in at least
75% of all cases, then the condition in Proposition 2 rewrites to maxi µ

i < 2mini λ
i which

says, essentially, that the average patience of a customer lasts twice as long as the average
service time.

Note that the assumptions made in Proposition 2 are used to invoke Banach’s fixed point
theorem, thus they do not provide one with further insights to the model but are merely a
sufficient condition for the proof of the proposition to go through. At the same time, however,
all models that have been considered by the authors seemed to have unique equilibrium
points. Although it would be interesting to extend Proposition 2 to networks with Coxian
service or abandonment times, the proof seems not to generalize.

5 Numerical Assessment

In this section we provide numerical evidence that the existence and uniqueness of a global
attractor can be successfully established through an LMI feasibility problem.

Before doing so, however, we first demonstrate our approach on the queueing network
depicted in Figure 2. Its 2-Coxian services are given by the rates (µ11, µ

1
2) = (2.0, 0.2),

(µ21, µ
2
2) = (1.0, 0.2), (µ31, µ

3
2) = (0.5, 0.2), (µ41, µ

4
2) = (1.0, 0.2), (µ51, µ

5
2) = (0.5, 0.2)

and the probabilities p11 = 0.1, p21 = 0.2, p31 = 0.3, p41 = 0.2, p51 = 0.3. Instead, the
2-Coxian abandonments are given by (λi1, λ

i
2) = (0.2, 0.2) and qi1 = 1.0, where 1 ≤
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Fig. 2: Case study queueing network with 2-Coxian service and abandonment times.
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Fig. 3: ODE solutions underlying the network from Figure 2. Solid lines, dashed lines and
dash-dot lines refer to initial conditions a), b) and c), respectively. The trajectories of all
three initial conditions converge to a common attractor.
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Exp / Exp 2-Cox / Exp Exp / 2-Cox 2-Cox / 2-Cox

# Queues Feas. Time Feas. Time Feas. Time Feas. Time

3 99% 0s 98% 0s 91% 0s 83% 0s
4 99% 0s 98% 0s 92% 0s 69% 2s
5 99% 0s 98% 0s 66% 1s 44% 31s
6 99% 0s 98% 0s 48% 10s - -
7 99% 0s 96% 1s 41% 75s - -
8 98% 0s 89% 5s - - - -
9 89% 1s 83% 24s - - - -

10 88% 4s 81% 75s - - - -
11 88% 16s - - - - - -

Table 1: Percentage of queuing networks for which global attraction could be established
through an LMI feasibility problem. The header row shows which combination of service-
and abandonment-time distribution was considered.

i ≤ 5. The arrival rate to station one was set to 5.0, while the initial concentrations of
the servers were chosen to be S1

1(0) = 1.0, S2
1(0) = 2.0, S3

1(0) = 3.0, S4
1(0) = 2.0,

S5
1(0) = 3.0. We remark that if Y Si and Y Ai denote the random variables describing the

service and abandonment times in station 1 ≤ i ≤ 5, respectively, the above parameters
yield E[Y S1 ] = 1, V[Y S1 ] = 5, E[Y S2 ] = 2, V[Y S2 ] = 10, E[Y S3 ] = 4, V[Y S3 ] = 20,
E[Y S4 ] = 2, V[Y S4 ] = 10, E[Y S5 ] = 4, V[Y S5 ] = 20 and E[Y Ai ] = 10, V[Y Ai ] = 50, as can
be easily shown by invoking the Laplace transform [35, Section 7.6.7].

The fluid model (12) of our network has 25 ODEs. However, as discussed in Remark 1,
by fixing the initial server concentrations, the ODE system can be rewritten into one of size
20 by eliminating the ODE variables S1

1 , . . . , S
5
1 . The remaining ODE variables are thus

those of the clients (Ci1,1, C
i
1,2, C

i
2,1, C

i
2,2)1≤i≤5. Figure 3 depicts the total client concen-

tration Ci1,1 + Ci1,2 + Ci2,1 + Ci2,2 present in station i, where 2 ≤ i ≤ 5, for the following
three initial conditions:

a) C1
1 (0) = 1.0, C2

1 (0) = 2.0, C3
1 (0) = 3.0, C4

1 (0) = 4.0, C5
1 (0) = 5.0 and 0 otherwise.

b) C1
1 (0) = 1.0, C2

1 (0) = 1.0, C3
1 (0) = 3.0, C4

1 (0) = 5.0, C5
1 (0) = 5.0 and 0 otherwise.

c) C1
1 (0) = 1.0, C2

1 (0) = 0.5, C3
1 (0) = 3.0, C4

1 (0) = 6.0, C5
1 (0) = 5.0 and 0 otherwise.

The trajectories in Figure 3 suggest that the ODE system admits a global attractor. Indeed,
using the Robust Control Toolbox version 5.2 of Matlab version R2014b, it is possible to
show that the LMI system underlying the ODE system is feasible, i.e. has a solution. (The
underlying LMI solution is in R20×20 and is omitted due to space reasons.) This ensures
that the attractor found by solving the ODE system for a), b) or c) is a global attractor and
that any initial client concentration will converge to it. More importantly, Theorem 3 allows
us to conclude that the sequence of steady-state measures converges to the global attractor.

Since Theorem 3 can be applied only in the presence of a global attractor, we next
provide numerical evidence that the existence and uniqueness of a global attractor can be
successfully established through an LMI feasibility problem. For this, we constructed LMI
systems of 100 queuing networks with randomly chosen parameters for a fixed network size,
which we varied from 3 to 11. For each network we randomly generated the mean service
and abandonment times such that 1/E[Y Si ] ∼ U(1.0; 3.0) and 1/E[Y Ai ] ∼ U(0.001; 2.0),
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where U(a; b) denotes the uniform distribution on interval (a; b). This means that the av-
erage patience of a customer lasted twice as long as the average service time. Then, we
considered the four possible combinations of the service time distributions for service and
abandonments, obtained by choosing from an exponential and a two-stage Coxian, with
coefficient of variation drawn from the uniform distribution U(0.5; 10.0). The routing prob-
ability mass ri ∼ U [0.7; 1.0] was spread randomly across ri,1, . . . , ri,n. Here, we would
like to point out that two-stage Coxians allow to approximate a rich class of distributions.
In particular, if E, V > 0 are such that V/E2 ≥ 0.5, a two-stage Coxian random variable Y
can be constructed [35, Section 7.6.7] such that E[Y ] = E and V[Y ] = V .

Our findings are summarized in Table 1, grouped in columns according to the combi-
nation of service- and abandonment-time distribution considered, where each rows shows
the statistics for a given network size. The table lists the percentage of networks which in-
duce a feasible LMI system (and hence proving the presence of a global attractor) and the
average time to run the analysis for a single network. This was measured on an ordinary
laptop equipped with an Intel Core i5-3210M processor and 8 GB RAM. Entries in the table
indicated by ‘-’ refer to cases where either an out-of-memory error was produced, or where
the analysis of a single network exceeded 180 s, an arbitrarily chosen time bound.

These results confirm the increased computational cost of the analysis due to the matrix
sizes and/or the number of linear modes in the ODEs, as discussed in Sections 3.1–3.3. For
a fixed combination of service- and abandonment-time distribution, increasing the number
of ODE linear modes leads to a decrease in the percentage of feasible LMI problems. We
explain this phenomenon with the growing number of LMI equations that have to admit a
common solution.

6 Mixed Abandonment Policy

In this section we extend our exponential model (11) and allow the abandonment distribution
to depend on the fact whether a customer is waiting or being served. While this usually does
not apply to computer systems where clients are jobs and abandonment is timeout, in the
case of call centers, this can be explained by the changed mindset of a customer that entered
service. We think that this policy is more flexible than the common abandonment policy [28]
according to which a customer cannot abandon while being served.

In particular, instead of considering the fluid model (11) where the abandonment rate
while waiting and while being served in station i is in both cases λi, we study the situation
where the former is equal to λiw and the latter is given by λis. It can be easily seen that the
abandonment policy of [28] can be extended to such a case and gives rise to the ODE system

Ċi = −µimin(Ci, Si1) +
n∑
j=1

rj,iµ
j min(Cj , Sj1)

− λiwmax(Ci − Si1, 0)− λismin(Ci, Si1) + γi, (16)

where 1 ≤ i ≤ n. Exactly as in Section 3.1, we first ask ourselves whether the LMI system
underlying (16) can be feasible. With∆1, . . . ,∆4 andA1, . . . , A4 as in Section 3.1, the LMI
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µi ∼ U(1.0; 3.0)
λiw ∼ U(0.001; 2.0)

λis = 0

µi ∼ U(1.0; 3.0)
λiw ∼ U(0.001; 2.0)

λis ∼ U(0.0001; 0.002)

# Queues Feas. Time Feas. Time

3 97% 0s 97% 0s
4 96% 0s 97% 0s
5 95% 0s 96% 0s
6 94% 0s 95% 0s
7 93% 0s 96% 0s
8 93% 1s 93% 0s
9 67% 2s 85% 2s

10 64% 9s 79% 5s
11 66% 27s 79% 20s

Table 2: Percentage of queuing networks for which global attraction could be established
through an LMI feasibility problem. The header row shows which combination of service-
and abandonment-rates has been studied.

system of (16) for n = 2 is

A1 =

(
−λ1s − (1− r1,1)µ1 r2,1µ

2

r1,2µ
1 −λ2s − (1− r2,2)µ2

)
, A2 =

(
−λ1w 0
0 −λ2w

)
,

A3 =

(
−λ1s − (1− r1,1)µ1 0

r1,2µ
1 −λ2w

)
, A4 =

(
−λ1w r2,1µ

2

0 −λ2s − (1− r2,2)µ2
)

As in Section 3.1, we note that λ1w, λ2w > 0 is necessary for the feasibility of the LMI
system. Since this means that waiting customers should be able to abandon, we infer that
the common abandonment policy satisfies the necessary condition. Note, however, that the
common abandonment policy implies also that λ1s = λ2s = 0. Consequently, if the service
rates µ1, µ2 are too small, the LMI system could become infeasible.

Following a similar route as in Section 5, we investigated the relation between the like-
lihood of feasibility and the mean abandonment times during service. To this end, we gener-
ated for each network size 3 ≤ n ≤ 11 randomly 100 queueing networks and calculated the
average computation time and the underlying percentage of feasibility. The routing proba-
bilities were generated as in Section 5. The results are depicted in Table 2 and allow to draw
three important conclusions. First, the LMI approach applies well to the common abandon-
ment policy where customers cannot abandon while being served. This can be observed by
studying the first column of Table 2. Second, already very large mean abandonment times
in service substantially improve the chances of feasibility. This is underpinned by column
two of Table 2. Third, by decreasing the mean abandonment times in service, the feasibil-
ity can be further improved. This can be seen by comparing the second column of Table 2
with the first column of Table 1, whose rates were drawn according to µi ∼ U(1.0; 3.0) and
λiw, λ

i
s ∼ U(0.001; 2.0).
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7 Conclusion

In this paper we proposed a computational method to study the convergence in the steady
state to the fluid limit in the sense of Kurtz for queuing networks with Coxian-distributed
service and abandonment times. This is made possible by the fact that the limit ODE system
has a piecewise affine vector field. Thus, the existence of a unique global attractor, which is
a sufficient condition for convergence in the steady state, can be established by setting up a
feasibility problem for LMIs. An empirical evaluation on a collection of queuing networks
with randomly generated parameters has shown its applicability in practice. In particular, our
analysis has highlighted that the presence of abandonment is necessary for feasibility. Future
work will aim at producing a tool implementation to support the findings herein presented.
Moreover, we want to investigate the possibility of extending mixed abandonment times to
non-exponential queueing networks.
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