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Financial institutions form multilayer networks by engaging in
contracts with each other and by holding exposures to common
assets. As a result, the default probability of one institution de-
pends on the default probability of all of the other institutions in
the network. Here, we show how small errors on the knowledge
of the network of contracts can lead to large errors in the probability
of systemic defaults. From the point of view of financial regulators,
our findings show that the complexity of financial networks may de-
crease the ability to mitigate systemic risk, and thus it may increase
the social cost of financial crises.
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Several years after the beginning of the so-called Great Re-
cession, regulators warn that we still do not have a satisfac-

tory framework to deal with too-big-to-fail institutions and with
systemic events of distress in the financial system (1, 2). The
topic is of general societal and scientific interest because assist-
ing financial institutions in recent years has come with a social
cost equivalent to a few percent points of gross domestic product
for Organization for Economic Cooperation and Development
countries (3). In particular, poor estimates of systemic risk are
socially costly because regulators and bank managers end up
keeping aside either insufficient or redundant buffers (4–7). One
of the difficulties is that financial institutions are connected in
multilayer networks both directly, via contracts among each
other (loans, bonds, repurchasing agreement, derivatives, etc.),
and indirectly, via exposures to common assets (8–15). The de-
fault probability of one institution depends therefore on the
default probability of all of the other institutions in the network.
The resulting complexity of the financial system is a potential
source of information asymmetries, collective moral hazard, and
increased systemic risk (16–20) and, hence, requires deeper un-
derstanding. In particular, the determination of the probability
of systemic events has remained an open problem so far (21–25).
Here, we show that, in a network of financial contracts, the
probability of systemic default can be very sensitive to errors on
information about contracts as well as on information about the
complexity of the network structure. Moreover, the sensitivity
depends on the network structure due to a multiplicative in-
terplay of errors along chains of lending. Under certain condi-
tions, network structures with more numerous and longer chains
of lending lead to a stronger amplification of errors. Although
there may be some intuition for this effect in the literature, it has
not been explained analytically or quantified before. Our work
aids an understanding of how to contain errors in the estimation
of the probability of systemic events.

Results
We introduce a general model of a network of credit contracts
among n financial institutions (hereafter, “banks”). Contracts are
over the counter (OTC), i.e., they are not mediated through a
central counterparty. They are also collateralized, i.e., banks have
to post collateral to receive a loan. In addition to making contracts
with each other, banks also hold external assets, i.e., securities that

are not issued by the banks in the system. These external assets are
the only source of stochasticity in the model. An illustration of the
case of three banks connected through credit contracts is sketched
in Fig. 1 (see Methods for the details of the model).

Errors on Contract Characteristics. We consider a first scenario,
named here as “errors on contract characteristics,” in which it is
known which assets and which counterparties each bank is ex-
posed to, but there can be an error, for instance, in the recovery
rate R (i.e., the fraction of the face value of the loan that can be
recovered after the default of a counterparty). We first study how
the systemic default probability Psys varies as a function of pa-
rameter errors in the simplest case of two symmetric banks. We
explore all pairs of parameter values in a range consistent with
empirical evidence on interbank markets (8). In Fig. 2, each pair
of curves with the same color represents the maximum and
minimum value of the default probability as a function of the
deviation in each parameter around a given point. Fig. 2, Left
refers to the case in which the actual value (i.e., with zero error)
of the default probability is 1. For instance, with an error on
recovery rate R of 20%, one may think that the default proba-
bility is 0.4 when it is actually 1. Conversely, Fig. 2, Right refers to
the case in which the actual value of the default probability is 0.
For instance, with an error in the expected asset return μ of 20%,
one may think that the default probability is 1 when it is actually
0. In both cases, the gap between the possible estimates increases
rapidly with the error on the parameters, e.g., an error in pa-
rameters of 10% can lead to an error of 100% in the probability.
Note that this result does not imply that the error in the default
probability is always large compared with errors in the parame-
ters. However, it shows that there exist cases in which the de-
viation can be very large. Next, to illustrate how the effects of
errors on contract characteristics depend also on the structure of
the underlying network of contracts, we focus on errors on a
single parameter, namely the recovery rate R, and we consider
three basic architectures with three nodes: a star, a chain, and a
ring. Fig. 3 shows the sensitivity ∂Psys=∂R of the default proba-
bility on the recovery rate R as a function of the ratio between
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interbank leverage β and the maximal loss eσ that a bank can
withstand on external assets. As we can see, the sensitivity is
highest for the ring network architecture, followed by the chain
and the star architectures. The intuition behind this result is that
the systemic default probability in an interbank network depends
on the multiplicative interplay among the parameters that matter
for the default thresholds. In particular, the multiplication in-
volves the banks located along chains of lending. As a result,
more-numerous and longer chains lead to stronger amplification
of the errors on the parameters. Indeed, as proved in Methods,
∂Psys=∂R is a polynomial in the interbank leverage β, where
the leading power depends on the presence of chains or cycles
in the network. This result, which has not been reported so far in

the literature, illustrates concretely the impact of financial com-
plexity on the determination of systemic risk.

Errors in the Structure of the Contract Network. Finally, we would
like to investigate how the systemic default probability depends
on the complexity of the network of contracts. To this end, we
consider a second scenario, named here as “errors in network
structure,” in which the information regarding how many con-
tracts a bank has and with which counterparties may be incorrect.
More precisely, we are interested in measuring the error in the
systemic default probability when the arrangement of contracts
(i.e., who trades with whom) is not known and the number of
possible arrangements increases, subject to the constraint of a

Fig. 1. Example of a contract network among three banks. Each bank balance sheet consists of assets and liabilities. The assets of one bank are liabilities of
another bank. Credit contracts are represented as arrows (pale red) from the lender to the borrower. Pale blue arrows represent investment in assets issued by
entities external to the banking system.

Fig. 2. Systemic default probability vs. relative error on the contract’s characteristics. Each pair of curves of a given color represents the minimum and
maximum values of the default probability as a function of the relative error on one given parameter (see figure key). (Left) For instance, with an error on R
(purple curves) larger than 20%, the default probability can take any value between 0.4 and 1. In fact, the maximum value of default probability is 1 for all of
the parameters when the error is large enough. The green dashed curve refers to the case in which all parameters at the same time contain a given relative
error. Shocks are uniformly distributed. Parameter values: β=3, e= 10, σ = 0.005, R= 0.5, P0 = 0.1, and μ=−0.08. (Right) The maximum probability is 1 in this
case. For instance, with a 10% error on β, the default probability can take any value between 0 and 1. Shocks are uniformly distributed. Parameter values:
β= 3, e=10, σ = 0.005, R= 0.2, P0 = 0.4, and μ=−0.01.
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maximum number of possible contracts, referred to as “density
cap” (Methods). In Fig. 4, the green area corresponds to a lower
expected return on external assets μ, and the blue area corresponds
to a higher one. Both areas represent the range of possible values
of the default probability resulting from all possible network con-
figurations compatible with a given density cap. The tip of each
arrow indicates the value of default probability for three specific
network architectures, i.e., the star, the circle, and the complete
graph. For instance, in the case of lower μ (green area), the complete
graph yields values of default probability larger than the star archi-
tecture. In this context, a simple way to capture the complexity
of the network is to count the number of possible network con-
figurations for a given density cap. In Fig. 4, the red curve rep-
resents the entropy ΣðClÞ of the space of possible network
configurations (Methods) for increasing values of the density cap.

Discussion
The complexity of the financial system is a source of potential
information asymmetries and collective moral hazard (16, 20).
Indeed, if the default of some financial institutions has an impact
on the system that is possibly very large but difficult to compute
exactly, those institutions are more likely to enjoy a bailout with
public funds; they tend therefore to count on being rescued in case
of downturn and take more risk than they would otherwise. In
other words, such moral hazard leads to a more fragile financial
system and to an implicit public subsidy. Therefore, the estimation
of the probability of individual and systemic events in a network of
contracts is crucial to improve the stability of the financial system.
However, the interdependence among asset values and probability
of default of all institutions poses conceptual and computational
challenges, and little progress has been made in this direction so
far. Many previous works on systemic risk build on the approach à
la Eisenberg and Noe (8, 26−28) in which a clearing vector of
payment and a recovery rate on defaulting banks’ assets is de-
termined endogenously. However, the reason why the recovery
rate can be determined endogenously in those works is that the
valuation is carried out ex post (i.e., at the maturity of the

contracts) and that, in case of default, there is a successful and
immediate asset liquidation of the external assets with full re-
covery. In contrast, asset liquidation implies legal settlements that,
in practice, take several months or years, whereas, in the short run
(e.g., weeks), the recovery rate is likely to be significantly smaller
than in the Eisenberg−Noe approach and to be sensitive to reg-
ulators’ interventions. For these reasons, it is important to study
the impact of errors on the recovery rate. Moreover, and even
more importantly, here we are interested in the valuation that can
be carried out ex ante, i.e., before the maturity, given the in-
formation available. Therefore, we assume that banks lend to each
other against a collateral and that the recovery rate on the loans to
defaulted banks is smaller than 1 and exogenous (25). Finally,
similar to refs. 9, 18 , and 19, we intentionally leave aside, at this
stage, the question of which configurations and parameters would
arise from banks’ dynamic choice, because our method encom-
passes all possible configurations, including those arising from the
uncoordinated individual investment strategies.
On the one hand, the ability of a bank to make contracts with

any other bank in the system increases its ability to diversify the
risk. On the other hand, the resulting complexity comes with the
price that “everybody knows less.” Indeed, either a higher com-
plexity of the individual contracts or a higher complexity of the
structure of contracts implies that market participants and regu-
lators know less precisely the probability of individual and systemic
default. Although there are individual incentives to be part of a
complex financial network, this work shows quantitatively the
existence of so-called “negative externalities,” which eventually
translate into potential social costs.
More generally, our results show that higher interdependence

on the credit market among banks decreases the ability to make
estimates on default probabilities and hence to correctly price
debt instruments. One possible approach to this problem could
be to increase the complexity of the regulation in order to match
the complexity of the financial market. However, here we have
shown that there are intrinsic limitations in the accuracy of es-
timating the probability of default, which implies that increasing

Fig. 3. The sensitivity of the probability of systemic default is amplified by the network structure. Curves represent the asymptotic limit of the sensitivity as a
function of the ratio between the interbank leverage and the maximal loss on the external assets.
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the complexity of regulation may not be an appropriate way to
address market complexity (29). Hence, a potential tradeoff
emerges between financial stability and market complexity.

Methods
We consider a financial network with OTC contracts among n banks, in-
cluding secured credit contracts. We distinguish between contracts within
the banking system itself (“interbank”) and contracts of banks on securities
outside the banking system (“external”).

Model Timing. The timing of the model is as follows. At time 1, banks raise
funds and make investments in external and interbank assets. At time 2, the
values of the external assets are shocked and updated. Although the shock
distribution is known at time 1, shocks are only observed at time 2. At time 2,
the interbank contracts mature, and their value is also updated depending on
the shocks that have occurred. Fig. 1 sketches the structure of our model. For
each bank i, the main quantities are the following.

Assets and Liabilities. Assets and liabilities of i on the external markets are
denoted as aEi and ℓEi . Assets and liabilities of i on the interbank credit market
are denoted as aBi and ℓBi . Total liabilities are denoted as ℓi. At time 1, each
bank i allocates its external assets in a portfolio of securities on the external
market, Eik, denoting the fraction of i’s external assets invested at time 1 in
the security k. The unitary value of the external security k is xEk . Without loss
of generality, at time 1, xEk ð1Þ= 1 for all k, and xEKð2Þ is a random variable
drawn from a given distribution. At time 2, then, the external assets of bank
i is a sum of random variables, aEi ð2Þ= aEi ð1Þ

P
kEikx

E
Kð2Þ. For our purposes, it is

sufficient to assume that we can express the external assets of bank i as
follows: aEi ð2Þ= aEi ð1Þð1+ μ+ σ   uiÞ, where ui is a random variable drawn from
a given distribution with mean zero and finite variance, the parameter μi is
the expected return of the portfolio, and σi is a scaling factor controlling the
effective magnitude of the shocks. We also assume to know the joint
probability distribution pðu1, . . . ,unÞ.

At time 1, each bank i allocates its interbank assets among the other
banks, Bij, denoting the fraction of i’s interbank assets invested at time 1 in
the liability of bank j. These investments are secured via collateralization, i.
e., bank j posts as collateral for the loan an asset that bank i will collect in
case bank j defaults. In spirit, this approach is similar to ref. 19, although, for
the purpose of our study, we exclude rehypothecation, i.e., assets used as
collateral are kept aside and cannot be reused. The value of the collateral is
assumed to stay constant during the two periods, and it can be ignored in
the default condition described in Default Condition.

The unitary value of the interbank liability of bank j to other banks is xBj .
Without loss of generality, at time 1, xBj ð1Þ=1 for all j. The liabilities of bank j
are constant in value from the perspective of bank i, i.e., the debt agreed

upon in the contract at time 1. However, from the point of view of coun-
terparties of j, xBj ð2Þ= 1 if bank j honors its obligation, and xBj ð2Þ=Rj oth-
erwise, where Rj is the recovery rate, i.e., the fraction of the interbank asset
that is covered by the collateral and that the lender can recover after the
default of j. Accordingly, at time 2, the interbank assets of bank i are
aBi ð2Þ= aBi ð1Þ

P
jBijxBj ð2Þ. Notice that this approach differs from previous

models (26, 28) that are based on the determination ex post of the clearing
vector of payments.

Default Condition. The standard balance sheet identity in financial accounting
states that equity of bank i, ei, is the difference between assets and liabilities.
Hence, eið2Þ= aEi ð2Þ+aBi ð2Þ− ℓi = aEi ð1Þð1+ μ+ σ   uiÞ+ aBi ð1Þ

P
jBijxBj ð2Þ− ℓi. It is

also standard to assume that the default of bank i occurs when equity
becomes negative, i.e., if eið2Þ< 0. In the following, we are interested in the
probability of default of individual banks. Notice that we assume eið1Þ> 0,
and thus eið2Þ< 0 iff ½eið2Þ�=½eið1Þ�< 0. It is then convenient to write the
default condition as «ið1+ μ+ σ   uiÞ+ βi

P
jBijxBj ð2Þ− λi < 0, where the param-

eter «i = ½aEi ð1Þ�=½eið1Þ�measures the leverage with respect to external assets,
i.e., the magnitude, per unit of initial equity of bank i, of the investments of
bank i in external assets (30). Similarly, the parameter βi = ½aBi ð1Þ�=½eið1Þ�
measures the interbank leverage, i.e., the magnitude, per unit of initial
equity, of i’s investments in interbank assets (30), and the parameter
λi = ½lið1Þ�=½eið1Þ� measures the magnitude, per unit of initial equity, of i’s
total liabilities. Let us define a default indicator χ i, with χi = 1 in case of
default of bank i and χi = 0 otherwise. Because the only variable that is ex-
ogenously stochastic is the shock ui on each bank’s external assets, we finally
write the default condition as follows:

ui < θi ≡
1
«iσ

 
λi − 1− μi − βi

X
j

Bijx
B
j

�
χj

�!
, [1]

where θi denotes the default threshold. Notice that we have dropped the
time in the notation, and we have emphasized in the formula that the value
of the interbank liability of a counterparty j, xBj , depends on the default
indicator of j, χ j, to recall that it is xBj ðχ j = 0Þ= 1 and xBj ðχ j = 1Þ=Rj. Thus,
depending on the magnitude and sign of the shocks ui that hit all banks,
some of them can default on their obligations, possibly causing other banks
to default. We can now express the default indicators χi of all banks as a
system of equations

∀i χ i =Θ½ui − θiðχ1, . . . , χnÞ�, [2]

where Θ denotes the step function or Heaviside function (i.e., equal to 1 if
the argument is positive, and zero otherwise). A solution of the system,
denoted as χ*, depends on the vector of shocks u and on the initial condition
χ0, which represents the initial belief of the banks in other banks’ defaults.

Complete

Circle

Star

Fig. 4. The probability of systemic default as a function of the maximal network density. We consider all feasible network configurations for a given cap on
link density: The green and blue areas represent the range of possible values of probability of systemic default for two parameter sets. Three benchmark
configurations are highlighted: out-star, circle, and complete graph. The red curve represents the network entropy. Shocks are uniformly distributed. Pa-
rameter values are as follows: (blue area) β= 3, e= 10, δ= 3, σ = 0.08, R= 0.5, P0 = 0.1, and μ=−0.03; (green area) β=3, e= 10, δ= 3, σ = 0.05, R= 0.5, P0 =0.1, and
μ=−0.08.
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The existence and uniqueness of the solution is discussed in Existence and
Uniqueness of Solutions.

The determination of the fixed point of the map above can become com-
putationally cumbersome if we want to sample, at a fine resolution, the shock
space of an arbitrary number of banks. However, in the default condition of the
counterparties j of bank i, we can simplify the computation by replacing the
value of the second-order counterparties’ credit obligations (i.e., the obliga-
tions of neighbors of order 2 in the contract network) with their expected
value. In other words, we replace the stochastic variable xBk with its expected
value E½xk �=RPk + ð1− PkÞ, where Pk is the default probability of bank k. In-
deed, expected values are commonly used in banking practice to estimate the
future value of assets. Notice also that this approximation does not remove
the effects of correlations across shocks on banks.

Default Probability. The probability Pi of default at time 2 of bank i is then
simply the integral over the shock space of the default indicator

∀i Pi =
Z

χ i*
�
u, χ0

�
pðuÞdu, [3]

where pðuÞ denotes the joint density function of the shocks and accounts for
possible correlations across shocks. Finally the probability of systemic
default is

Psys =
Z

χsys
h
χ*
�
u, χ0

�i
pðuÞdu, [4]

where χsys is the systemic default indicator. The choice of the systemic de-
fault identification can vary, and there is no consensus on what should be
defined as a systemic event. For the sake of simplicity, here we consider the
extreme but intuitive case of all banks defaulting, i.e., χsys =Πiχ i*.

Existence and Uniqueness of Solutions. In our model, banks’ default conditions
are described by a system of nonlinear equations, χ =Θðu, χÞ, for which no
closed-form solution exists. However, finding all of the solutions of such a system
is equivalent to studying, for any point u of the shock space and for any initial
condition on χ, the deterministic map of the finite set f0,   1gn in itself:
Θ : f0,   1gn → f0,   1gn. Because the map is deterministic and the set is finite, for
any given initial condition, the map must have either a unique fixed point or a
limit cycle; otherwise the set would have to be nonfinite (31). If banks only make
regular credit contracts with each other, then there is a unique solution. Indeed,
the default state of a bank can only be affected adversely by the default of some
counterparty. Hence, the default state of each bank is a nondecreasing function
of the default states of the other banks. As a result, the map cannot enter a cycle
involving more than one state. Otherwise, the default state of at least one bank
would have to revert from default to no default, which is not possible, by as-
sumption. Hence, the fixed point is unique for any given initial condition on χ.

Contract Errors. By contract errors, wemean that the estimates of the contract
characteristics available to the regulator who computes the systemic default
probability deviate from the actual value. We define the relative error on a
given parameter p, the ratio Δp = ð~p−p*Þ=p*, i.e., the relative deviation of
the regulator’s estimation, ~p, from the actual value p* of the variable p. For a
given level of deviation Δp*, we consider a realistic number giving a Δp

precision of 5% around the original value p*: Δp ∈ ½p* −Δp*,p* +Δp*�. For
instance, a deviation of 10% on the interbank leverage β (i.e., Δβ*= 0.1) will

yield Δβ ∈ f−10%, − 9%, . . . , 0, . . . , 10%g. For each value of Δβ, we compute
the corresponding probability of systemic default using ~β= β*ð1+ΔβÞ, and
we record the minimum and the maximum values. Additionally, we consider
the effect of combined errors where more than one parameter is subject to
changes at the same time. Take as an example the leverage parameters «

and β. As ~« and ~β can each take 21 different values, we have 212 combina-
tions. In the spirit of what has been done previously, we compute all
probabilities of systemic default using all possible combinations of ~« and ~β

given a level of deviation Δð«, βÞ*.

Analytical Example. To understand how the uncertainty of specific parameters
can be amplified by the network structure, consider the following three basic
architectures with three nodes: a star, a chain, and a ring. Herewe compute the
probability Psys of the event in which all banks default under the assumption that
the shocks hitting the banks are independent and drawn from the same
uniform distribution in the space ½−1,   1�. Denote by θ+i the specific value of the
threshold θi in Eq. 1 in the case that all of the counterparties of a given
bank i default. Conversely, denote by θ−i the case of no defaulting coun-
terparties. In particular, if a bank has no counterparties (e.g., a leaf node
in a tree network structure), then it has θi = θ−i . The computation yields
Psys,star = ð1=23Þð1+ θ+1 Þð1+ θ−2 Þð1+ θ−3 Þ; Psys,chain = ð1=23Þð1+ θ+1 Þð1+ θ+2 Þð1+ θ−3 Þ;
and Psys,ring = ð1=23Þð1+ θ+1 Þð1+ θ+2 Þð1+ θ+3 Þ. Note that θ+i ≥ θ−i because a bank
needs more positive shocks on its external assets to survive when counterparties
on the interbank have defaulted. It follows that Psys,ring ≥ Psys,chain ≥ Psys,star.
It also follows that the sensitivity of the default probability on the re-
covery rate R depends on the network structure ∂Psys,ring=∂R∝ ½β=ðe  σÞ�3;
∂Psys,chain=∂R∝ ½β=ðe  σÞ�2; and ∂Psys,star=∂R∝ β=ðe  σÞ. In this example, as long as
β=ðe  σÞ> 1, which is empirically plausible in many cases, the sensitivity on
errors on the recovery rate can be much larger in the ring than in the star.

Network Errors. By network errors, we mean that the regulator does not have
information on the arrangement of the contracts among banks but only their
maximum number. We denote by Cl the cap on the maximum number of
possible contracts in the market (i.e., the network density). By increasing the
cap Cl, the total number of possible configurations grows as follows:
�NðClÞ=

PCl
l=0ðnðn− 1Þ=lÞ. For a given Cl, we inspect all possible configurations

of links arrangement and compute the probability of systemic default. As a
measure of the market complexity we take the so-called network entropy,
relative to a given density cap (32), i.e., the logarithm of the number of
configurations normalized by the number of nodes, ΣðClÞ= ð1=nÞ  log �NðClÞ.

Available Code and Data. Analyses and figures can be reproduced using Py-
thon, Matlab and C++ scripts and data files available in the public GitHub
repository (https://github.com/troukny/price-of-complexity) following the
instructions provided.
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