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1. INTRODUCTION 

 

1.1 Aujeszky's disease virus – Pseudorabies 

 

Pseudorabies virus (PRV, also called Aujeszky's disease virus or Suid 

herpesvirus 1) is a neurotropic alphaherpesvirus, member of the genus 

Varicellovirus of family Herpesviridae and subfamily Alphaherpesvirinae. The 

virus was first characterized by Hungarian veterinarian Aladár Aujeszky in 1902 

[1] as an infectious agent causing rabies-like symptoms in dogs, cattle and 

swine. The only natural reservoir host of the virus is swine, where infection is 

fatal in piglets, and causes respiratory disease in adult animals, as it is shown to 

inhibit the functions of alveolar macrophages [2, 3]. While the virus infects a 

wide range of mammals, human and tailless monkeys do not contract the 

pathogen, which makes it an important model organism for studying neuronal 

tracing [4, 5, 6] and viral transcriptional regulation [7, 8].    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Phylogenetic tree of alphaherpesviruses (from [9]) 
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1.2 Virion structre 

 

Herpesviruses share the same virion structure and basic genome composition, 

with the closest relatives of PRV being Bovine- and Equine herpesviruses, 

Varicella zoster, and Herpes simplex 1 and 2. (Fig1). The 143kbp-long dsDNA 

genome is contained within the icosahedral capsid consisting of 162 capsomers, 

surrounded by a tegument layer and the viral envelope acquired from the host 

cell lipid membrane, and spiked with viral glycoproteins (Fig. 2). 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. A: Virion structure of PRV. B: Basic genome composition of PRV.(from 

[10]) 

 

1.3 Genome composition 

 

The organization of protein-coding genes is also shared among herpesvirus 

families, with genes forming polycistronic clusters which occur in various 

permutations across species. Based on the widely-referenced PRV composite 

genome, created from six PRV strains [11], ~70 protein-coding genes were 

recognized, arranged in several overlapping gene clusters. Two unique genomic 

sequences are designated Unique Short (US) and Unique Long (UL), while two 

copies of the major Inverted Repeat (IR) form the Internal and Terminal Repeat 
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Sequences (IRS and TRS), flanking the US region in opposite orientations. The 

extreme GC-content of PRV (73.6%) is also a unique characteristic, and 

provides methodological benefits, as well as drawbacks during sequencing 

studies. 

 

1.4 Viral life cycle 

 

The duality of lytic (productive) and latent infectious cycles is also a common 

trait shared by herpesviruses. In the case of PRV, latency is established in the 

trigeminal ganglia of the pig host, resulting in persistent infection, and 

subsequent reactivation may occur in response to stress or immune suppression. 

PRV infection is initiated by binding to the host cell surface through the 

interaction of viral glycoproteins gC and gD with cellular receptors nectin 1 and 

2, CD55, heparan sulfate and PILR-alpha [12, 13, 14]. The presence of multiple 

interactors is in accordance with the broad host range of the virus. The fusion of 

the viral envelope and cellular plasma membrane is mediated by glycoproteins 

gB, gH and gL. While gD is required for PRV penetration, it is not essential for 

cell-to-cell spread of the virus [15]. Transportation of the capsid to the nucleus 

is facilitated by the attachment to the dynein motor molecule and its movement 

along microtubules. Following nuclear entry, the cellular machinery is utilized 

to initiate viral transcription and translation. DNA replication is thought to 

switch rapidly from theta structure to the rolling-circle mechanism, producing 

concatameric genome copies [16]. In the following, highly coordinated process, 

DNA is cleaved into monomeric, linear form, and loaded into the assembled 

viral capsids through the pUL6 portal protein [17, 19]; at least six viral proteins 

are known to interact in this process. Primary envelopment occurs during 

nuclear egress, followed by de-envelopment, and the attachment of tegument 

proteins to the bare capsids in the cytoplasm. Viral particles then go through 

secondary envelopment on the cytoplasmic face of a Golgi-derived specialized 

compartment, which then also facilitates the transport of mature virions to the 

cell surface [18, 20]. 
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1.5 Gene expression cascade 

 

One main advantage of viral gene expression studies is the compact nature of 

the examined genomes, which, due to evolutionary pressure, function as tightly-

regulated machineries with highly compressed and optimized genetic 

components and program. 40 protein-coding genes are shared between all alpha- 

beta- and gammaherpesviruses, encoded in the UL region. These core genes 

coordinate the major viral functions of infection, capsid assembly, replication 

and egress. The cascade-like gene expression during lytic alphaherpesviral 

infections can be divided into four main temporal categories: immediate-early 

(IE), early (E), early/late (E/L), and late (L) genes. Although recent RT-qPCR 

experiments have shown that such a classification is simplified, and the borders 

between temporal gene classes are more continuous [21], this system still 

provides a broad overview of transcriptional kinetics. The IE class of genes are 

the first to be transcribed during infection and act as transactivators for the 

remaining classes, which require transcription factors for expression, and are 

sensitive to protein translation inhibitors, such as cycloheximide. While in the 

most well-studied relative of PRV, HSV-1, there are five IE genes (icp0, icp4, 

icp22, icp27 and icp47) controlling gene expression and inhibiting antigen 

presentation [22, 23, 24], in PRV ie180 (homolog of icp4) is the sole IE-class 

transactivator, affecting the activity of several viral promoters. PRV genes early 

protein 0 (ep0, homolog of icp0) and ul54 (icp27 homolog) are expressed as E-

class genes, along with us1 (icp22 homolog), one of the most abundantly 

expressed mRNAs of the virus. During the productive infectious cycle, ie180 is 

expressed by 40 mins post infection (p.i.), and protein synthesis lasts until ~2.5 

h p.i. The E-class genes appear at ~1h p.i, with peak levels ~3-4h, and primarily 

encode nucleotide metabolism and DNA replication-related protein products. L-

class genes appear ~2.5h p.i, and mainly produce structural and scaffolding 

proteins [16]. 

When latency is established in neurons, the viral genome is thought to be almost 
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completely silenced, with the exception of the latency-associated transcript 

(LAT), encoded on the opposite strand to the ep0 locus, with the second exon of 

the Long Latency Transcript (LLT) being similarly antisense to the ie180 gene 

[26, 27], therefore possibly blocking their expression through antisense activity. 

The LAT promoter (LAP) is also shown to be highly neuron-specific, and inhibit 

apoptotic processes, thus ensuring long term latency of the virus [28]. 

 

1.6 Transcriptional interference in viruses 

 

The term “transcriptional interference” (TI) is the mechanism by which one 

transcriptional process interferes with another in cis, and implies the collision of 

the RNA polymerase (RNAP) machineries [29, 30]. TI has been observed in a 

wide range of model organisms, including S. cerevisiae, E. coli and also higher-

order species [31, 32, 33, 34]. It is hypothesized that the ubiquitous non-coding 

transcription observed in most branches of life, while not producing translational 

products, may in fact serve to coordinate the expression of coding genes by 

blocking their overlapping promoters and regulatory elements [31]. Both 

elongating and pausing polymerases form obstacles for transcription, thus 

slowing or hindering mRNA expression of downstream or oppositely oriented 

gene clusters. As the human genome is reported to be transcribed in >90% in 

specific cases [35], the issue of TI is becoming more and more of a hot topic in 

life sciences.  On the basis of this phenomenon, the Transcriptional Interference 

Network (TIN) hypothesis was put forward [7], which formulates that gene 

expression machineries may act as an independent self-regulatory system, and 

that viruses, with their condensed and relatively simple genomes may serve as 

ideal candidates for modeling such interference networks. The main interactions 

that the TIN hypothesis considers are between the following overlapping gene 

clusters:  tandemly overlapping genes (waterfall model), divergently or 

convergently overlapping genes, with 5' or 3' UTR overlaps (seesaw model and 

extension), and promoter competition model, for bidirectional promoters [7]. 
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1.7 Short-and long-read sequencing technologies 

 

1.7.1 Illumina sequencing by synthesis 

 

With molecular biology stepping into the post-genomic era, the use of so-called 

“next-generation” -or 2nd generation- DNA sequencing is becoming a routine 

procedure in a wide range of investigations [36, 37, 38, 39], also setting up the 

path for new and even more powerful methods, such as single-molecule 

sequencing or nanopore technologies [42, 43]. The methodological benefits 

include single-base resolution and customizable coverage per base, hypothesis-

free discovery of novel genomic elements and transcripts, and flexibility of 

sample preparation, ensuring that the range of applications may constantly grow, 

similarly to those of PCR techniques. Since the initial introduction of the Roche 

454 pyrosequencing platform in 2005, the advancements in read length, cost per 

base and ease of library preparation have granted wider popularity for the 

Illumina sequencing-by-synthesis approach (originally introduced in 2006) [40]. 

Sequencing by synthesis utilizes the ligation of universal adapter sequences to 

fragmented DNA or cDNA molecules, by which fragments are bound to 

washable slides (flow cells). During sequencing, reversible dye terminators [41] 

react with the immobilized DNA fragments, and are washed out after imaging 

by a fluorescent microscope, in order to enable up to 300 repeated cycles (and 

sequenced bases per fragment). Sequencing is also possible in a paired-end 

manner, where the given fragments are read from each end, thus providing more 

useful sequence information, in which case the sequencing “blind spot” (the 

insert) between the paired ends is set to an approximate length during the 

fragmentation procedure. Sample multiplexing is achieved by the use of indexed 

primers, where 6-bp “barcode” sequences are read before each DNA fragment 

to serve demultiplexing computationally. The resolution of homopolymer 

stretches, a common challenge in genome reconstruction, is resolved by the 

application of dye terminators, so that the sequencing reaction can only be 

extended by one base per cycle. >99.9% accuracy is ensured by the robust 
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chemistry and high copy numbers of the sequenced fragments. However, the 

relatively shorter read length (>2x300bp) limits the applications in structural 

genomics, the study of gene expression and splicing kinetics, or  metagenomics, 

where large fragment sizes or complete mRNA sequences are more desirable. 

 

1.7.2 Pacific Biosciences RS II 

 

Pacific Biosciences (PacBio) applies a single-molecule real-time sequencing 

approach, which makes its RS II platform presently the most popular so-called 

“third generation” sequencer [40]. It is distinguished from other platforms by 

the ability to read unprocessed, unamplified DNA fragments, and that the 

sequencing process is continuously monitored by CCD cameras rather than 

creating snapshots, such as in a fluorescent microscope. DNA or cDNA strands 

are loaded onto sample plates which are arrays of 100 nm wells (Zero Mode 

Waveguide, ZMW), with immobilised DNA polymerase molecules on the 

bottom. The DNA strands are then processed by the polymerase in the presence 

of fluorescently-labeled nucleotides. Since random sequences of single-

molecule reactions have to be recorded in motion, fluorescent background noise 

is minimized by ZMWs that are illuminated in trans through apertures smaller 

than the wavelength of illuminating light, thus labeled nucleotides are excited 

by epifluorescence, with minimal background lighting (Fig.3.). Although the 

accuracy of a single read is only ~80%, the error rate is compensated by the 

circularization of molecules, which are then read through several times (Circular 

Consensus Sequencing, CCS) [48], whereby the random read errors cancel each 

other out and provide a consensus accuracy >99%. In this manner, single read 

lengths can reach ~60 kb, which can be used e.g. in scaffolding, while consensus 

read lengths reach up to ~5 kb. Besides longer read lengths, the technology can 

be used to decipher epigenetic modifications of DNA, as the time required for 

the incorporation of each labeled nucleotide by the polymerase is proportional 

to the type of modification on the template strand (polymerase stalling). This 

information is currently used to characterize 5-methyl-cytosine (5-mC) patterns 
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in eukaryotes and 4-methyl-cytosine/ 6-methyl-adenine in microbial DNA [47]. 

 

 

Fig.3. Overview of Pacific Biosciences Single-Molecule Real-Time Sequencing 

technology (from [45]) 

 

1.8 Bioinformatic analyses of sequencing data 

 

The cost- and time-efficient generation of such a wealth of information on the 

genetic content of various organisms poses a great challenge on the side of 

digestion and interpretation of the data. With next-generation sequencing 

technologies, sophisticated algorithms became necessary for data analysis, and 

nowadays detailed pipelines should be integral parts of study design. Primary 

sequence analysis consists of the read-out of fluorescent images from the 

instruments, together with basic quality control, score assignments [44], and 

usually conversion of results to the popular fastq format, in which each 

sequencing read maintains its unique identifier, sequence readout and per-base 

quality score. Secondary analysis consists of demultiplexing barcodes, trimming 

and discarding of low-quality sequences, followed by either de novo genome or 

transcriptome assembly, or mapping of reads to a known reference genome, in 
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case one is available for the model organism. The resulting sam/bam (or cram) 

alignment files [46] store the mapping quality and read alignment information, 

and serve as a basis for the wide variety of tertiary analyses. The most common 

applications include genotyping, binding site identification and differential 

expression analysis, which fields now have fairly established guidelines and 

standard procedures, while in the areas of metagenomics, molecular 

fingerprinting, network analysis, and integrative genomics, development of 

robust algorithms continues  actively, with less dominant solutions available. 

 

1.9 High-throughput sequencing methods in herpesvirus research 

 

While the use of these high-throughput technologies has obvious advantages for 

viruses, possessing some of the smallest genomes possible, there are also notable 

difficulties, e.g. in sample purification, host-pathogen nucleotide ratios, or 

dealing with extreme GC-content and repetitive sequences. During the last 

decade, herpesvirus research has benefited tremendously from the application 

of 2nd-generation sequencing, providing high-resolution genetic maps for 

several key species [49, 51, 52], epigenetic patterns [50, 53] and transcriptome 

studies [55, 56, 57, 63], among others. Comparative genomics aides in the 

functional annotation of conserved elements, along with molecular 

fingerprinting and diagnostic potentials, previously also limited by the lack of 

whole-genome sequences for various strains of important pathogens. In viral 

studies, RNA-sequencing (RNA-Seq) mostly involves the simultaneous survey 

of host and viral transcripts. While providing insight into host-pathogen gene 

expression networks, RNA-Seq also expands the views on viral non-coding 

RNAs. A novel cluster of 5 microRNAs have been shown to be expressed in 

PRV from the Long Latency Transcript (LLT) intron during latency in neuronal 

ganglia, with possible roles in viral gene silencing [58], while the same locus 

gave rise to 11 miRNAs in epithelial cells [59]. Further miRNA discoveries have 

been reported from HSV-1 and 2, HCMV, EBV and KSHV, where miRNAs were 

predicted to target both viral and cellular mRNAs, potentially creating a more 
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favorable environment for virus replication by affecting immune evasion and 

the latent-lytic cycle [60]. The disregulation of host miRNAs during infection 

also hints at the interplay between these newly discovered RNAs. On the other 

hand, long non-coding RNAs (lncRNAs) are also detected in most members of 

Herpesviridae. The role of lncRNAs in the latent life cycle has been a long-

established fact [61], however, it is of note that several highly abundant 

lncRNAs have been detected by high-throughput methods in lytic infections, 

which often account for ~50% of total viral transcript quantities. Examples 

include human cytomegalovirus (HCMV) RNA2.7 [56] and the Kaposi's 

sarcoma herpesvirus   (KSHV) PAN lncRNA, which is hypothesized to modulate 

gene expression through binding of modified chromatin [62]. The cataloging of 

various truncated and spliced isoforms and often extremely variable 5' and 3' 

UTR sequences is also of interest, especially considering their potential 

functional roles arising from the condensed, streamlined genome structure, 

where the efficient encoding of a high number of genes is of key importance. 

The steadily declining cost per base of sequencing technologies also enables the 

discovery of novel rare transcripts and underrepresented splice isoforms through 

ultra-deep sequencing, which are increasingly attributed regulatory functions, 

instead of being regarded as mere transcriptional noise.   
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2. AIMS 

 

1. De novo assembly of the PRV strain Ka complete genome using long-

read sequencing, in order to provide an accurate reference of the strain 

used in our studies in place of the previously used composite reference. 

2. Generating the first single-base resolution transcriptome map of PRV Ka 

from a mixed-timepoint infection, using short-read sequencing in order 

to characterize potential new transcripts and splice isoforms. 

3. Independent validation and detailed characterization of novel transcripts 

in multi-time-point samples. 

4. Analysis of potential transcriptional interference events in the viral 

genome in support of the TIN hypothesis. 

 

Remark: The present thesis focuses primarily on the bioinformatical analysis 

and sequence categorization aspect of the results, which was the main 

contribution of the author to the source publications, drawing on the genomic 

DNA sequencing results from publication III, complete transcriptome results 

from publication I, and specific results on the CTO non-coding RNA from 

publication II. 

 

 

  



17 

 

3. MATERIALS AND METHODS 

 

3.1 Virus, cells and infection 

 

Immortalized Porcine Kidney PK-15 epithelial cells were used for the 

propagation of strain Kaplan of PRV. PK-15 cells were cultivated in Dulbecco’s 

modified Eagle medium supplemented with 5% fetal bovine serum (Gibco 

Invitrogen) with 80 μg gentamycin/ml at 37 °C, 5% CO2 in filter-capped flasks. 

The following virus stock was prepared for the experiments: semi-confluent PK-

15 cells in rapid growth were infected at a multiplicity of infection (MOI) of 0.1 

plaque-forming unit (pfu)/cell, and incubation lasted until a complete cytopathic 

effect was observed. The infected cells were frozen and thawed three times, 

followed by low-speed centrifugation at 10,000g, 20 min. The supernatant was 

concentrated and further purified by ultracentrifugation after removal of cell 

debris, across a 30% sugar cushion at 24,000 rpm for 1h, using a Sorvall AH-

628 rotor. The number of cells in a culture flask was 5 × 106. A high MOI (10 

pfu/cell) was used for the infection of PK-15 cells in order to generate samples 

for transcriptome studies. Infected cells were incubated for 1h, followed by 

removal of the virus suspension and washing with phosphate-buffered saline 

(PBS). After the addition of new medium to the cells, they were incubated for 1, 

2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 or 24h p.i. For the control population, mock-

infected cells, treated in the same way as the infected cells, were used. 

3.2 Viral DNA extraction 

 

PK-15 cell monolayers were infected at MOI=10pfu/cell, and cultivated at 37 °C 

until a cytopathic effect was observed. Culture medium was collected and 

centrifuged at 4,000 rpm for 10 min using a Sorvall GS-3 rotor. Viral particles 

were sedimented on a 30% sucrose cushion by ultracentrifugation at 24,000 rpm 

for 1h using a Sorvall AH-628 rotor. The sedimented virus was resuspended in 
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sodium Tris-EDTA buffer. 100 ug/ml Proteinase-K  and 0.5% sodium dodecyl 

sulfate (SDS) was added, the lysate was incubated at 37 °C for 1h, followed by 

phenol-chloroform extraction. 

 

3.3 TotalRNA extraction 

 

RNA was extracted from samples of each individual time point of infection by 

using the NucleoSpin RNA II Kit (Macherey-Nagel GmbH and Co. KG). 

Following centrifugation and cell lysis with buffer containing chaotropic ions, 

the nucleic acids were purified on silica column. DNA was removed by RNase-

free DNase solution (supplied with the NucleoSpin RNA II Kit). Finally, the 

RNAs were eluted from the column in RNase-free water (supplied with the kit). 

To eliminate the residual DNA contamination, all RNA samples were treated by 

an additional digestion with Turbo DNase (Ambion Inc.). The concentrations of 

the RNA samples were measured by spectrophotometric analysis with a 

BioPhotometer Plus instrument (Eppendorf) and Qbit fluorometer (Thermo 

Fisher Scientific). RNA samples were stored at −80°C until further use. 

3.4 PacBio RS II gDNA prepration and sequencing 

 

SMRTbell template libraries were prepared from DNA using standard protocols 

for 6-kb and 20-kb library preparation. Sequencing was performed in five 

single-molecule real-time (SMRT) cells with P5 DNA polymerase and C3 

chemistry (P5-C3) yielding a total of 78,111 reads and an extremely high 

coverage (1,200x) throughout the genome. Sequencing and library preparation 

were carried out in the Department of Genetics, Stanford University. 

3.5 Illumina cDNA library preparation and sequencing 

 

Strand-specific total RNA libraries were prepared for paired-end, 2x100bp 

sequencing by using the Illumina-compatible ScriptSeq v2 RNA-Seq Library 

Preparation Kit (Epicenter). For polyA-sequencing, a single-end library was 
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constructed through the use of custom anchored adaptor-primer 

oligonucleotides with an oligo(VN)T-10 primer sequence, in which a two-

nucleotide anchor is followed by 10 T nucleotides. Anchored primers 

compensate for the loss in throughput due to the high fraction of reads 

containing solely adenine bases, as in the case of conventional oligo(dT) 

primers. Sequencing was performed on an Illumina HiScanSQ platform at the 

Genomic Medicine and Bioinformatic Core Facilty of the University of 

Debrecen. 

 

3.6 RT-qPCR analysis of alternative splicing 

 

In order to validate splicing events, two sets of primers were applied, with 

lengths from 19 to 23 nucleotides, approximately 100 bp upstream and 

downstream of the given splice site (Table 1). 5 μl solutions were prepared for 

reverse transcription reactions, containing 0.02 μg of total RNA, 2 pmol of the 

gene-specific primer, 0.25 μl of dNTP mix, 1 μl of 5× First-Strand Buffer, 0.25 

μl (50 units/μl) of SuperScript III Reverse Transcriptase (Invitrogen) and 1 U of 

RNAsin (Applied Biosystems Inc.). RT mixes were incubated at 55 °C for 60 

min. The reaction was stopped at 70 °C for 15 min. No-RT control reactions (RT 

reactions without Superscript III enzyme) were run to test the potential viral 

DNA contamination by conventional PCR. For RT-qPCR reactions, RNA 

samples with no detectable DNA contamination were used. Real-time 

quantitative PCR experiments were carried out for each sample in triplicate, on 

a Rotor-Gene 6000 cycler (Corbett Life Science). RT-qPCR reactions were done 

in 20-μl mixtures containing 7 μl of ×10 dilution cDNA, 10 μl of ABsolute qPCR 

SYBR Green Mix (Thermo Fisher Scientific), 1.5 μl of forward and 1.5 μl of 

reverse primers (10 μM each). The running conditions were as follows: 15 min 

at 95 °C, 30 cycles of 94 °C for 25 s (denaturation), 60 °C for 25 s (annealing), 

and 72 °C for 6 s (extension). Products were visualized on 12 % polyacrylamide 

gel stained with Gel Red dye, gel images were acquired using a ProteinSimple 

AlphaImager HV gel documentation system. 
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EP0 SPLICE FW 1 tgtcaaacagcgcatcgacgagg 

EP0 SPLICE REV 1 cacaagttctgtctggactgcatcca 

EP0 SPLICE FW 2 Gatgttgtccacgacggcctc 

EP0 SPLICE REV 1 cacaagttctgtctggactgcatcca 

EP0 SPLICE FW 3 Ctggcggttcatcccgtgctc 

EP0 SPLICE REV 1 cacaagttctgtctggactgcatcca 

 

Table 1: EP0 splice site validation primer sequences 

3.7 Northern Blot Analysis 

 

Total RNA was isolated from PK-15 cells by TRIzol (Life Technologies) 

extraction according to the manufacturer’s instructions for conventional 

Northern blot experiments. Samples were denatured in loading buffer for 5 min 

at 65 °C. Extracted RNA samples (10 ug) were fractionated in 

formaldehyde/1.2% agarose gel, transferred to a Nytran N membrane 

(Schleicher & Schuell BioScience, Dassel, Germany) by a capillary method and 

fixed by ultraviolet cross-linking. The membrane was probed by using the 

random primed PCR product and the total viral DNA with the DecaLabel DNA 

Labeling Kit (Fermentas, Vilnius, Lithuania). PCR reactions were carried out 

with AccuPrime GC-Rich DNA Polymerase (Life Technologies) according to 

the manufacturer’s recommendations. The oligonucleotide probe was labeled 

with [α-32P]CTP. Filter prehybridization was carried out in 50% formamide, 

0.5% SDS, 5× SSPE, 5× Denhardt’s solution and 20 μg/mL sheared, denatured 

salmon sperm. The probe was heated for 1 min at 95 °C. Overnight hybridization 

was carried out at 68 °C. Finally, the hybridization membranes were washed in 

2× SSC 0.1% SDS at 68 °C for ones 10 min, 0.5× SSC, 0.1% SDS at 68 °C for 

10 min, 0.1× SSC 0.1% SDS at 68 °C for 10 min. 

 

3.8 Data analysis 

Sequence analysis was carried out using a range of open-source tools and 

custom in-house scripts incorporated into an analysis pipeline tailored to the 
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specific questions of our studies, as detailed in section 4.1. 

3.9 Data availability 

The complete genome sequence of strain Kaplan of pseudorabies virus was 

assigned DDBJ/EMBL/GenBank accession no. KJ717942. Raw read data from 

PA-Seq and RNA-Seq experiments are deposited in the European Nucleotide 

Archive under accession code PRJEB9526. 

 

 

 

  

http://genomea.asm.org/external-ref?link_type=ncbi:nucleotide&access_num=KJ717942
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4. RESULTS AND DISCUSSION 

 

The whole-genome sequence of PRV strain Ka was determined by cutting-edge 

long-read sequencing in order to facilitate accurate transcriptome mapping and 

further epigenetic studies of the virus. Illumina short-read, high-throughput 

sequencing was used for the first time on lytic-infection PRV samples in order 

to create a single-base resolution transcriptome map, along with the detailed 

polyadenylation landscape of the virus by PA-Seq.  In accord with expectations, 

most of the viral genome was transcribed, with the exception of several small 

intergenic repetitive sequences, and loci in the large internal and terminal 

repeats. Among the findings are a novel polyadenylated lncRNA near the OriL 

origin of replication, and the single-base resolution mapping of 3′ UTRs across 

the viral genome. A number of genes exhibited alternative polyadenylation sites, 

while previously described splice sites were confirmed and expanded with a 

novel alternative splicing event in the key regulator ep0 gene. As PRV mRNAs 

mainly form polycistronic clusters, it is also of note that we identified several 

genes possessing distinct PA sites that were previously thought of as 

polycistronic. 

 

4.1 Bioinformatic analysis pipeline 

 

4.1.1 Data quality assessment 

 

For PacBio RS II sequencing, reads spanning several kilobases were obtained 

using the 6kb and 20kb library preparation protocols. Individual reads 

with >25% error rate were discarded from further analysis, however high 

accuracy was achieved by the >1000x coverage of the genome, through ~78.000 

reads. 

For Illumina sequencing, both the RNA integrity measurements during the 

sample preparation, FastQC [64] quality metrics, and the low signal-to-noise 

ratio in the 1 kb region surrounding the PA peaks during the analysis indicated 
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high library quality. Sequencing of the total RNA isolates of infected cells 

yielded a data set of ~ 208 million 100 bp paired-end reads for the random 

hexamer-primed library, with a mean insert size ~ 300bp. 1.3 million reads 

aligned to the viral genome version KJ717942.1, and the majority of the 

remaining sequences aligned to the host organism genome Sus scrofa 10.2. PA-

Seq resulted in ~ 103 million single- end, 50 bp reads, with a higher ratio of 10 

million reads aligning to the PRV reference. 

 

4.1.2 Long-read genome assembly 

 

Raw reads of PRV gDNA were retrieved in PacBio's information-rich bax.h5 

format and were subjected to the SmrtAnalysis pipeline for filtering, followed 

by small genome de novo assembly using the HGAP and Quiver algorithms. 

[65]. The HGAP (Hierarchical Genome Assembly Process) algorithm aligns 

quality-filtered raw reads by the longest overlapping seeds in order to create 

high-accuracy consensus reads of several kbp length during pre-assembly. 

Genome assembly is then carried out by the Celera Assembler, optimized for 

microbial genome sizes. The Celera Assembler was used for the whole-genome 

shotgun assembly of the human reference genome by Celera Genomics, and 

since has been continually developed, until recently. The algorithm is based on 

Overlap-Layout Consensus de novo assembly and inherently works efficiently 

on long reads (such as those from Sanger sequencing), building unitigs which 

are then classified as unique (U-unitigs) or repeat, and processed into larger 

contigs. [66]. In the case of the compact PRV genome, the longest contigs 

practically encompass the complete genome, naturally without the large 

Terminal Repeat Sequence. Caution is required, however, especially with regard 

to the known systematic errors of long-read single-molecule sequencing. While 

the high error rate of individual raw reads is effectively cancelled out by 

coverage, due to the random nature of the error, the overestimation of 

homopolymer guanine stretches in a fraction of the reads often ends up 

incorporated in the final consensus. These can be easily scanned for as they 

https://github.com/PacificBiosciences/SMRT-Analysis/
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result in a drop of coverage, and sequence overrepresentation, and the erroneous 

reads are discarded. The resulting consensus is polished by the Quiver 

algorithm, which can use a preexisting reference genome in order to fill out 

possible gaps or structural arrangement- in the case of PRV, the placement of the 

large TRS sequence was guided by Quiver, with manual inspection of repeat-

boundary spanning anchor sequences, and further cross-validation by short-read 

cDNA fragments located over the repeat boundaries, which confirmed 

placement and orientation of the TRS. 

 

Fig.4. Alignment of PacBio genomic DNA reads to the de novo reference, 

illustrating a systematic sequencing error in guanine-homopolymer stretches, 

which was corrected during genome finalization, and the random-error nature 

of PacBio sequencing. Top bar: genomic coordinates; histogram: per-base read 

coverage; gray lines: individual single-pass reads, with insertions (blue), and 

deletions (black horizontal lines). It is shown that only a small fraction of 

individual reads contain the excess G (or C) homopolymer stretches, and an 

accurate consensus can be constructed by filtering for these errors. 
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4.1.3 Short-read transcriptome analysis 

The quality-filtered short reads were mapped to the respective host and viral 

genomes using Tophat [67] splicing-aware aligner for the random-hexamer 

primed library and Bowtie2 [68] for the PA-Seq library. In both approaches, 

a primary alignment is created with the Burrows-Wheeler alignment 

algorithm, as implemented in Bowtie2. End-to-end alignment with default 

seed lengths of 20 proved efficient for mapping, with deletions and insertions 

(indels) of 5-5 bases considered, although such long indels were rarely 

observed. A notable exception was a longer variant of 12 bp in the ul27 gene, 

which occurred in ~50% of sequenced viral gDNA fragments, and as such 

accounted for the greatest genomic variation, with its functional 

characterization awaiting further studies. In the case of random hexamer 

samples, splice site detection followed, by realignment of reads, using 

adjustments for insert sizes from 50bp to 5000bp. Splice sites were considered 

for further analysis, and included in the resulting list of junctions, if coverage 

was above 10 bases, with anchor sizes >5bp, and at maximum two 

mismatches present in a given set of anchors. PA-Seq peak detection was 

carried out using HOMER [70] in strand-specific mode, adjusting for the 

peculiarities of oligo(dT) primed samples, in that the peak slopes detection 

optimized for 5' CAGE-sequencing analysis was effectively reversed. Peak 

categories were assigned according to the following criteria: the presence of 

at least 2 consecutive adenine mismatches in at least 10 independent, non-

overlapping reads at the PA site, and the presence or absence of a PAS in the 

50 bp region upstream from the PA site. Visualization and annotation were 

undertaken in a variety of tools including the Artemis Genome Browser 

v15.0.0 [69], IGV v2.2 [70], Circos [71] and R [72]. GC bias in the alignments 

was inspected by using the Bioconductor R package. The prediction of 

canonical and non-canonical PAS was carried out using PolyApred support 

vector machine-based algorithm [73]. 
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Fig.5. A: Overview of long-read genome assembly. B: Overview of short-read 

sequencing data analysis  

 

4.2 Correlation between random-hexamer and PA-Seq results 

The overall expression values of genes were estimated in RPKM (Reads per 

Kilobase per Million) values. This normalization method takes into account the 

length of the transcripts, so the read count from these loci are not skewed, and 

also normalizes counts by the library size (or total read count) factor. In PA-Seq, 

A 

B 
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as reads are concentrated on the 3’ ends of transcripts, the mean peak width value 

(in base pairs) was taken into account instead of transcript length. The highest 

differences arise from the UL7-9 cluster, where, although random hexamer reads 

are present, these form disconnected and biased fragments, and PA-Seq peaks 

better define the transcripts. On the other hand, 3’ transcript ends are not well 

defined in the US region, where conservative polyA signals are sparsely found, 

which is reflected in the ratio of coverages from the different libraries. Among 

the genes with highest expression (us1 and the CTO lncRNA) differences are 

also attributable to the extremely high coverage over very short transcripts, at 

which the RPKM normalization does not perform optimally.  Altogether there is 

significant correlation of the expression values between the two approaches.  

 

 

Fig.6. Overall agreement between random-hexamer primed and anchored 

oligo(dT)-primed (PA-Seq) short-read sequencing libraries. Y-axis: gene 

expression values in Reads Per Kilobase per Million (correlation between 

libraries: r=0.724). 
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4.3 PRV strain Ka genome map 

Although PRV is a widely-studied organism among herpesviruses, and the 

complete viral genome of strain Kaplan had previously been sequenced [8], the 

available draft genomes are mostly poorly annotated, and contain several 

discrepancies, mainly in low-complexity regions. We carried out DNA 

sequencing in order to assess intra-strain heterogeneity, and to gather 

preliminary data for future epigenetic studies. Furthermore, the most well-

annotated genome to date (NC006151.1) is a composite of six different strains, 

and as such could not directly be used in transcriptomic studies. 

The especially long read lengths enabled the construction of highly overlapping 

contigs for assembly. The complete genome consists of 143,423bp, with 73.59% 

GC-content; sequence identity compared to other PRV strains available in 

GenBank ranges between 97-99%. The extent of intra-strain variability was 

lower than expected, with well-defined variable base positions only outside of 

protein-coding sequences, and occurring quite infrequently. An intriguing 

source of heterogeneity was present in a 12bp semi-palindromic repeat in the 

ul27 gene, being absent in ~50% of the viral genome copies. Further studies 

ruled out the possibility of technical error, and showed that the repeat is specific 

to certain mutant strains of Ka. Protein-coding genes were predicted, and 

existing, matching annotations lifted by the GATU tool [75]. Manual annotation 

was used on genomic features such as replication origins and repeat motifs. 

Annotation of a previously unknown noncoding RNA Close to OriL (CTO), a 

novel splice site of the ep0 gene, and new isoforms of 11 protein-coding genes 

were based on our short-read RNA sequencing results. Annotation of PRV 

miRNAs was created on the basis of previously published precursor miRNAs 

found in strains NIA-3 and Ea [58, 59], and as such were included in GenBank 

annotation for the first time. 
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Fig.7. The GC content of PRV complete genome and fragments (red) plotted 

against all available RefSeq viral sequences (blue). 
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Fig.8. The genome arrangement and nested gene clusters of PRV strain Ka 

illustrated on Circos plot. Blue: positive strand protein coding sequences, with 

latency-associated lncRNAs; orange: negative strand protein coding sequences.  
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4.4 Assessment of the PRV transcriptome by total RNA sequencing and PA-

Seq 

 

For the investigation of the lytic PRV transcriptome, porcine kidney (PK-15) 

epithelial cells were infected with a high dose (MOI=10 pfu) of PRV strain Ka. 

Samples were gathered up to 24 h post-infection (p.i.) in order to capture most 

RNA species during lytic infection for sequencing library preparation. Both 

random hexamer-primed and oligo(dT)-primed libraries were prepared in order 

to assess total RNA and mRNA transcripts separately. In our modified 

polyadenylation sequencing (PA-Seq) protocol [55], total RNA was reverse-

transcribed by using custom designed oligo(T10-VN) anchored primers 

containing standard Illumina strand-specific adaptor sequences. The two-

nucleotide anchor sequence ensures the annealing of primers at exactly the PA 

site of mRNAs, providing considerably fewer reads that contain redundant 

adenine homopolymer stretches, with more useful sequence information 

resulting for the given depth of sequencing. PA-peaks occurred on both strands, 

mainly in accordance with previously existing ORF annotations, and also long 

non-coding RNAs, including the latency-associated transcript (LAT) and the 

long-latency transcript (LLT), which have been shown to be expressed during 

lytic infection in moderate amounts, despite previous expectations. 

 

4.5 PRV transcriptome profiling 

 

As anticipated, nearly the complete viral genome was transcribed, with the 

exception of short intergenic repetitive sequences, and longer spans of low-

complexity sequences in the large internal and terminal repeat regions. 

Transcripts with the highest cumulative expression in the mixed time-point 

samples were the us1 gene (RPKM = 2.32×105, total RNA library), encoding 

the icp22 homolog Rsp40 immediate-early transactivator; followed by the novel 

lncRNA, CTO (RPKM = 1.6×106 in the total RNA library) Transcription at 

insulator sequences was observed only in two convergently oriented gene pairs, 
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ul44-ul26 and, in a less pronounced fashion, in ul35-ul36. The extent to which 

leaky transcription traverses the intergenic repeat boundaries is 109 bp and 443 

bp, respectively, indicating alternative transcript termination. On the other hand, 

non-transcribed, repetitive regions were markedly present between ORF-1 and 

ul54; ul46 and ul27; ul40 and ul41; and ul11 and ul10. No expression was 

detected in these boundary regions, indicating their mechanistic role involved 

with the transcriptional machinery of the virus. 
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4.6 Novel RNAs 

 

Through the use of PA-Seq and random hexamer sequencing, transcription of 

the hypothetical ORF1.2 [75] was evidenced by marked expression in both 

libraries, also involving 5′ upstream regions. Single-base localization of the 

transcription start site is complicated by the presence of several repeats in the 

genomic sequence in the interval 730–960 bp, and thus definitive transcription 

start sites (TSS) were only assigned by the use of long-read cDNA sequencing 

in subsequent experiments.  

The previously unknown polyA+ non-coding RNA, CTO (“Close to OriL”) 

located between genes ul21 and ul22 and spanning 286 bp (Fig.10.) proved to 

be among the most abundant transcripts, on par with UL1, in all samples. In 

subsequent studies it was revealed that besides the highly expressed isoform, 

CTO also possesses considerably longer isoforms, which are the products of 

various read-throughs, and thus the 286 bp-long transcript variant was 

designated CTO-S (“CTO-Short”). Other length variants include CTO-L, a 

readthrough product originating from the ul21 gene promoter, and an alternative 

PA site, about 120 nucleotides downstream from the main PAS. A putative CTO-

M transcript was decisively detected only in following studies reported in 

publication IV. As the TSS of CTO-M is near the ul21 polyA signal, the PAS of 

the downstream gene might act as a promoter in the opposite direction, as this 

phenomenon is observed especially in low-expressed transcripts. This alternate 

usage of the PAS might also be controlled by the flanking regulatory sequence 

elements, although the unusually high GC-content of PRV makes it difficult to 

discriminate less conserved motifs, as detailed in section 4.7. An interesting 

aspect of the novel lncRNA is the genomic context.  The predicted promoter of 

CTO-S is a well conserved TATAA motif within 20-25bp upstream of the TSS, 

also neighboring an Oct-1 binding site commonly present in the virus, and 

shown to affect viral DNA replication in adenoviral infections in vivo [76]. In 

microorganisms, the third-position GC content in a given genome is used with 

great precision to delineate protein-coding sequences. Indeed, in most microbial 
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and viral species, the third-position GC-content correlates well with the ORFs 

[77]. However, throughout the span of CTO-S, GC-base composition forms a 

synchronous peak in all reading frames; an irregular composition which is not 

present in the genomes of any of PRVs close relatives- bovine, equine, canine 

herpesviruses, Herpes simplex or Varicella zoster. PRV strains Becker, Bartha 

and HeN1 however show >99 % sequence similarity with strain Kaplan in the 

CTO-S genomic region, and thus express the lncRNA with high probability. 

Considering that the lncRNA is in close proximity of the OriL, knock-out 

experiments are difficult to carry out, although the function of the highly 

expressed transcript may be hypothesized as a regulator of DNA replication. It 

was also shown in RT-qPCR experiments that all isoforms of CTO share late 

transcriptional kinetics, which is in agreement with their hypothetical role in 

replication.   

CTO-S RNA was detected by using traditional Northern blot analysis. Due to 

the very low copy number, we could not detect CTO-L by Northern blot 

analysis; however, the existence of this transcript was verified by four 

independent techniques (PacBio PA-Seq, two Illumina RNA-Seq methods and 

Real-time RT-PCR) in subsequent experiments. Sequence analysis of CTO by 

using the pre-microRNA hairpin prediction tools miRNAFold [78] and miPred 

[79] yielded negative results in each case. Moreover, previous studies of the 

miRNA expression in PRV in both porcine dendritic and epithelial [58, 59] cell 

lines failed to detect miRNAs from the genomic region of CTO. 

A short, 3′-overlapping antisense non-coding transcript (termed SANC) was also 

detected adjacent to the PA site of the ul21 gene, near OriL (64558–64674 on 

reference genome KJ717942.1), with an expression of RPKM = 1.67×103 in the 

total RNA library, the highest non-coding antisense expression in our short-read 

samples that is not caused by gene cluster overlaps.   
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Fig.10. Expression of the CTO polyA+ lncRNA in the random-hexamer primed 

library. Blue histogram: read coverage per base position on + and – strands; 

blue arrows: coding sequences; white arrows: CTO-S RNA and origin of 

replication; line graph: the third-position GC content per reading frames, 

showing the irregular GC-composition of the non-coding RNA. 

 

4.7 Alternative 3' UTR detection 

 

The position of polyA tails on mRNA and polyA+ lncRNA transcripts can be 

accurately identified between and within gene clusters by using the PA-Seq 

method, with the additional benefit of a very high coverage of individual genes 

relative to sequencing depth. Anchored oligo(VN-T10) primers (V=A,G or C) 

provide greater efficiency, as the length of polyA tails may be well over the 

length of short reads used in sequencing; thus, with conventional oligo(dT) 

primers, a higher percentage of reads is lost to only containing adenine bases. In 

addition, we have detected robust signal from genes that were indistinguishable 

from background in random-hexamer primed libraries as well as gene-specific 

RT-PCR experiments. These include genes of the ul7-ul9 convergently oriented 
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cluster. 

The most highly abundant transcripts (CTO, US1, UL31, and UL35) were in 

accordance with the random hexamer-primed data. The most widely used 

polyadenylation signal (PAS) in eukaryotic organisms is the AAUAAA 

canonical motif, which is usually found 10-30 nucleotides upstream of the YA 

cleavage site, from where the addition of adenines through polyadenine 

polymerase (PAP) initiates. In line with expectations, the analysis of viral PAS 

indicated that in ~90% of cases, the strong polyadenylation peaks correspond to 

the AAUAAA signal., while the second most widely used motif is AUUAAA, 

in ~10% of all cases. (Fig.11). In eukaryotes, two of the most commonly 

recognized 3' regulatory motifs are USE (upstream sequence element) and DSE 

(downstream sequence element), U-rich and U/G-rich sequences, respectively. 

These are known to be required for the precise cleavage of pre-mRNA, 

especially in the absence of a conserved PAS [80]. Although it is known that the 

USE element lies upstream within ~30bp of the cleavage site, while DSE is 

found >20 nucleotides downstream, the extreme GC-content of PRV 

complicated the distinction of such motifs from the surrounding sequences, 

albeit PRV exhibited a number of non-canonical PA sites, mainly in the ul28 

gene and the US region. Human studies reveal that when multiple PA sites are 

present for a given gene, the most distal tends to use the canonical AAUAAA 

signal, while the proximal signals vary considerably from this consensus, 

essentially correlating signal position with usage frequency. Only six genomic 

positions containing the canonical AATAAA sequence were unused in our PA-

Seq samples, 3 motifs residing inside coding sequences (+9072-9077; −52929-

52934; −78490-78495) and one motif located directly upstream of the us3 gene 

(+118308-118313), and not corresponding to any viral transcript. The remaining 

signal was present in two copies, (−117738-117743) and (+126996-127001) in 

the inverted repeats. On the other hand, canonical PAS that were previously 

considered inactive demonstrated pronounced polyadenylation peaks, providing 

alternative transcript termination sites in genes ul35, ul44 and ul22, with PAS 

that were previously considered inactive. The usage frequency of the distal PA 
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site was at least an order of magnitude lower than those of the proximal ones in 

both cases. Although the PAP is thought cleave at an exact YA sequence motif, 

a slight wiggle in the nucleotide position of excision was observable in all PA-

peaks, with the extent of 5-10 bp; this is in accordance with recent findings in 

eukaryotes [81, 82] 

 

 

Fig.11. The organization and nucleotide distribution in the PAS regions. Letter 

height represents nucleotide frequency in the sequence logo. 

 

 

The PA-Seq method additionally revealed polyadenylation peaks in transcripts 

encoded by upstream genes of tandem gene clusters. These included the 

polyadenylation of UL19. This transcript has previously been detected in strain 

Indiana-Funkhauser [83], with the non-canonical PAS ATATAAA; in our PA-

Seq samples, we have confirmed the active use of this site in strain Ka. A similar 

arrangement was found in ul28, although no conservative PAS was detectable 

upstream of the well-defined PA-peak at base position 18960. Though PA peaks 

within the clusters of the US region were markedly above the background signal 

and correlated well with the coding sequence boundaries, these signals were 

several orders of magnitude weaker than the commonly observed polyA peaks, 

making them difficult to validate. The tandemly oriented UL4 transcript has 

been hypothesized to be 3′ coterminal with UL5 [11], as the canonical PAS 

directly downstream of UL5 is inside the UL4 ORF. However, PA-Seq peaks 

were found at the 3′ ends of both genes, showing that the PAS of UL5 is also 

active. 
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Fig.12. Alternative polyadenylation peaks in gene clusters. Blue histogram: 

random hexamer library coverage; green: PA-Seq coverage; blue arrows: 

coding sequences. The above diagram exemplifies the difference in dynamic 

range between random-hexamer primed and PA-Seq libraries, as normalization 

is omitted in the visualization. The 3’ ends of transcripts are marked by well-

defined spikes, which are easily detected and quantitated by peak analysis 

software such as HOMER. The gene map gives examples for PA-peak 

distributions in single genes (ul41), polycistronic genes with 3’ coterminal 

polyadenylation (ul39-ul40, ul25-ul26) and a tandem cluster of monocistronic 

genes (ul42-ul44).While there is no transcription in the intergenic sequence 

between UL40 and UL41 mRNAs, the UL44-UL26 boundary is an example 

where alternative polyadenylation traverses the intergenic repeat, resulting in a 

secondary PA-peak for UL26 (not shown due to scale) 
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Table 2: Transcriptional overlaps, splice sites and alternative polyadenylation 

in the PRV genome 

 

 

 

Detected splice sites Alternative polyadenylation 

Convergently over-

lapping gene clus-

ters 

Divergently 

overlapping 

genes 

Tan-

dem 

gene 

clusters 
Gene 

Donor 

site 

Acceptor 

site 
Gene 

Alternative 

polyad-

enylation 

signal 

Coordi-

nate 

UL15 D −76165 A −73285 UL35 AAUAAA 
33133–

33138 
UL51 UL50 UL52 UL51 

UL52-

UL54 

US1 
D 

+115592 

A 

+115713 
UL44 AAUAAA 

55768–

55773 
UL30 

UL31, 

UL32 
UL50 UL49.5 

UL48-

UL46 

  
D 

+115766 

A 

+115921 
UL22 N/A* 63624 

UL33, 

UL34, 

UL35 

UL36 UL29 UL30 
UL31-

UL32 

US1 
D 

−129158 

A 

−129037 
UL19 

AUAUAA

A 

71005–

710011 
UL44 

UL26.5, 

UL26, 

UL25, 

UL24 

UL32 UL33 
UL33-

UL35 

  
D 
−128984 

A 
−128829 

UL28 N/A* 18960 
UL8, 
UL9 

UL6, UL7 UL37 UL38 
UL39-
UL40 

EP0 D −97480 A −97389 UL5 AAUAAA 
92065–

92070 
    UL41 UL42 

UL24-

UL26.5 

  D −97528   CTO N/A* 63538     UL24 UL23 
UL17-

UL16 

                UL21 UL20 
UL14-
UL11 

                UL15 UL14 
UL9-

UL8 

                UL10 UL9 
UL7-
UL6 

                UL6 UL5 
UL1-

UL3.5 

                    
US3-

US4 

                    
US6-

US7 

                    
US8-

US9 

*No prediction available for canonical or non-canonical polyA signal using PolyApred server 
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4.8 Splice sites in the PRV transcriptome 

For splice site analysis, total RNA 

reads were aligned to PRV strain Ka 

genome KJ717942.1. All possible 

splice donor and acceptor sites were 

considered, with a lower bound of at 

least 10 supporting reads, and an 

anchor of at least five nucleotides. 

Through the exclusion of low-

coverage junction candidates, 

artifacts possibly occurring due to 

mispriming or template switching 

during amplification steps could be 

neglected. The initial set of splice 

acceptor and donor sites contained 

97 candidate splice junctions, with 

49 sites above the threshold 

coverage. This set contained several permutations of the US1 3′ UTR splice 

junctions, which were screened for the presence of short anchor regions and high 

mismatch ratios within these anchors. After screening for anchors of <5 bases, 

consistent splice junctions were readily identifiable. The remaining, high-

coverage splice sites are denoted as follows: (D + 10000^A + 12000), with D 

denoting the donor site, A the acceptor site, and +/− the DNA top and bottom 

strand, respectively, along the coordinates of the splice junction. Splice sites 

have previously been characterized in the protein-coding region of UL15 [84, 

85] (D −76165^A −73285), and in the 3′ UTR of US1 [86] (D +115592^A 

+115713; D +115766^A +115921), present in both terminal and internal repeats, 

while one site in the non-coding RNA LLT [87] (D +97765; A +102403) was 

expressed at an insufficient level for accurate splice site identification. A low 

Fig.12. RT-PCR validation of the 

ep0 splice site  
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percentage of reads also mapped outside the assigned acceptor and donor sites. 

A novel alternative splice site was characterized in the ep0 gene [88], the 

homolog of HSV-1 icp0, which is also a spliced gene, but expressed in the 

immediate-early class in HSV-1. The newly characterized ep0 alternative 

splicing consists of two potential donor sites at (D −97480) and (D −97528) and 

the acceptor site at (A −97389). While the splice junction formed between the 

acceptor and proximal donor sites conforms to the rule of GT/AG nucleotides 

comprising ~99 % of junctions in eukaryotic organisms [89], the junction 

formed with the distal donor site contains GT/CG bases. Experimental 

validation of the novel splice site has been carried out by RT-PCR, using two 

primer sets (Table 1) designed approximately 100 bp upstream and downstream 

of the splice site, followed by polyacrylamide gel electrophoresis. The 

experiments confirmed the presence of the novel isoform during lytic infection 

robustly after visualization (Fig.12). The disordered nature of the protein hinders 

in silico predictions of the altered structure of the shorter form, however, the 

zinc-finger domain of ep0 is not contained in the intron, indicating that a similar 

protein function is likely to be retained.   

  

4.9 Transcriptional overlaps and TI 

 

The genome of PRV is an ideal candidate for studying TI, as it is among the 

larger viral genomes, with >70 coding and non-coding genes forming 

overlapping gene clusters. In convergently oriented clusters, more extensive 

overlaps include coding regions of the opposite genes, potentially giving rise to 

TI between the interacting partners [7]. An example of such a relation is between 

UL30 and UL31, with a tail-to-tail overlap of 80 nucleotides. Here, the 

expression of UL30 mRNA exceeds that of UL31, with considerable antisense 

expression over the latter gene, possibly due to transcriptional read-through 

from UL30. As anticipated, convergent genes with more than ~45 bp separating 

their respective PA signals  do not demonstrate detectable transcriptional 

overlap, ranging from UL18-UL15 (45 bp) to UL46-UL27 (632 bp), while 
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convergent gene pairs in closer proximity exhibit longer 3′ UTR overlapping 

regions. The various overlaps between the viral genes are presented in Table 2. 

It is the hypothesis behind TINs that the transcription of these neighboring genes 

might affect each other in a mechanistic fashion, forming self-regulatory 

networks and a novel layer of complexity in the genome. We assessed the 

various transcript overlaps, including parallel (tandem), divergent and 

convergent overlaps (Fig.13, Table 2). Most of the PRV genes are organized into 

tandem gene clusters producing polycistronic RNAs (Table 2).  

 

 

Fig.13. 1: Categories of transcriptional overlaps plotted along the PRV strain 

Ka genome sequence. Legend from perimeter to center: light brown: coding 

sequences on both + and – strands; dark brown: non-transcribed, or sparsely 
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transcribed repetitive sequences between gene clusters; gray histogram: GC 

content in averaged windows; red line: 50% GC; colored ribbons: areas of 

transcriptional overlap corresponding to categories; purple: 3’ coterminal 

tandem overlaps; blue: convergent overlaps; green: divergent overlaps; orange: 

full overlaps; red: tandem overlap without 3’ coterminus 

2: Convergent (a), divergent (b) and tandem (c) overlaps in the PRV genome, as 

shown by random-hexamer primed samples. Extensive transcriptional overlaps 

are frequent throughout the condensed viral genome. Black boxes: coding 

sequences, white arrows: gene orientation, grey line graph: positive strand 

expression, black line graph: negative strand expression 

 

An interesting feature of organization is that all of the upstream genes of the 

clusters end within the downstream genes. Similarly, the divergent gene pairs 

overlap in every case. Thus, the translation of the downstream genes would be 

hindered in eukaryotic organisms, a problem for which a proposed mechanism 

is the wide use of Internal Ribosome Entry Sites (IRES) and ribosome skipping 

(90). However, the genetic arrangement and the observed, wide-spread read-

throughs between genes indicate a basis of inter-gene regulation through TI, 

which has been observed in a range of model organisms previously. 

Theoretically, the overlaps between convergent, divergent and within tandem 

gene clusters may be explained by the restriction of the viral genome length. 

However, since these overlaps are not too extensive, they probably provide a 

regulatory mechanism for transcription. The distant convergent genes are 

separated from each other by repetitive sequences, indicating a mechanism with 

a likely function for the prevention of transcriptional collisions. In the ul35 and 

ul44 genes, these alternative termination sites traversed intergenic repetitive 

regions, previously considered to be transcriptional barriers.   
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Fig.14. The distribution of coverage across all bidirectional promoters in the 

PRV genome, showing extensive transcription in both directions from the 

promoters. Dotted lines: coverage peaks per individual promoter, red line: mean 

expression across bidirectional promoters. 

 

This finding indicates that low-frequency “leaky” transcription occurs more 

often than anticipated in PRV. Although the function of these PA sites is 

unknown, it is noteworthy that a highly similar arrangement was present 

between convergent gene clusters ul9-ul8 and ul7-ul6, with the difference that a 

strongly repetitive sequence resembling the above-mentioned intergenic repeats 

in both length and base content, was found within the comparatively long 3′ 

UTR of UL7. This gave the sole example for a third type of transcriptional 

boundary between convergent clusters, as illustrated in Fig.15. 
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Fig.15. Types of short intergenic repeats as transcriptional insulators between 

convergently oriented gene clusters in PRV.  
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5. CONCLUSION 

 

5.1 gDNA sequencing 

 

In our series of experiments, the survey of Pseudorabies virus strain Kaplan 

genomic DNA and total RNA content was carried out for the first time using 

high-throughput sequencing methods. Through the use of complementary 

sequencing technologies and independent validation methods, detailed 

information was generated on the genomic context in which further, more 

specific experiments were devised to investigate questions of viral 

transcriptional regulation and the roles of transcriptional interference in the 

extremely condensed and temporally highly regulated viral genome.  

The gDNA sequencing of PRV strain Ka using the cutting-edge PacBio SMRT 

sequencing technology yielded an updated genetic map of the strain, providing 

an alternative to the previously widely used reference genome which consisted 

of mixed sequences of six viral strains. Using the information gathered from 

transcriptome sequencing, and previously available sources regarding 

regulatory motifs and microRNAs, rich and up-to-date annotation information 

was also deposited in the corresponding GenBank record, which, through 

sequence homology, might be useful in annotating and understanding the 

frequently isolated strains from farms mainly in Asia, but around the world as 

well. [91,92,93] 

On a technical level, the study has also been among the first which employed 

the SMRT technology in sequencing a viral genome, and as such, provided 

opportunities for methodological improvement, notably in the systematic errors 

arising in high-GC content organisms, and also effective screening and removal 

of such errors. With these additions, the long-read sequencing technology has 

proven efficient and economic for the use in viral gDNA studies, as complete 

genomes can be assembled from a minimal number of contigs and very little 

cross-validation using the long reads. 
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5.2 cDNA sequencing 

 

The catalog of PRV transcripts has been updated based on our cDNA sequencing 

experiments of mixed-timepoint lytic infections on the PK-15 epithelial cell line, 

providing a detailed view on the transcriptional landscape of the virus, and 

accurately defining 3’ polyA+ RNA boundaries, which are key to the 

composition of the characteristic, polycistronic gene arrangement in the 

Herpesviridae family.  

 

5.3 Splice sites 

 

From random-hexamer primed sequencing, data emerged on a splice isoform of 

the key early transactivator ep0 gene, the functions of which require further 

investigations, as the disordered nature of the protein prohibits in silico 

modeling and predictions. Based on amino acid sequence, however, the zinc-

finger domain of ep0 is not covered by the spliced intron, indicating retained 

function of the shorter isoform. 

Further splice sites of in the PRV genome have been confirmed and accurately 

detected in us1 and ul15. The expression of latency-associated transcripts was 

also detected in our lytic samples at low levels, although the coverage did not 

enable accurate identification of the LLT splice site. Further, the presence of 

low-coverage, difficult to validate splice junctions was later confirmed via deep-

sequencing isoform analysis reported in publication IV, and led to the 

identification of several lower-expressed mRNA isoforms and ncRNAs. 

 

5.4 Polyadenylation landscape 

 

Through PA-Seq, overall gene expression and transcript boundaries were 

assessed using highly efficient anchored primers, resulting in the detection of 

transcripts in the UL7-UL9 cluster, often missed by other PCR-based methods. 

The detailed organization of PRV gene clusters was also revealed, serving as a 
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foundation for further evaluation of the transcriptional kinetics and regulatory 

mechanisms that may shed light on transcriptional interference networks. The 

usage frequency and distribution of both canonical and non-canonical 

polyadenylation signals was assessed, with sequence motifs corresponding 

highly to those identified in eukaryotic model organisms, but also distinct 

features arising from the compact and overlapping 3’ UTR sequences and the 

polycistronic arrangement.  

 

 

5.5 Novel transcripts 

 

Recent results in herpesvirus research indicated a wide range of non-coding 

RNAs in clinically important pathogens such as KSHV, HCMV and EBV (REF). 

The ncRNAs described in lytic infections were of similarly high expression, 

often accounting to ~50% of the total transcribed RNA quantity. Further, the 

screening of PRV samples for miRNAs from both latent infection on neuronal 

ganglia and lytic phase in epithelial cells gave positive results [58, 59], with pre-

miRNAs originating from the LLT intron. As such, the assessment of the 

totalRNA and polyA+ RNA fractions was both timely and promising, eventually 

resulting in the characterization of the rather short (268bp), but extremely highly 

expressed polyA+ lncRNA CTO-S, near the viral origin of replication. Lacking 

a direct genomic target in either the host or the viral genome, the initial 

hypothesis for the function of the gene is the regulation of viral DNA replication, 

a function which is in agreement with its late expression kinetics. Other novel 

transcripts include the low-expressed short 3’-antisense RNA SANC, also in the 

OriL region, and validation of the ORF1.2 hypothetical mRNA, along with 

several new 3’-UTR variations arising from alternative polyadenylation. 
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5.6 Transcriptional interference 

 

The above findings indicated that key genomic features are present in PRV 

which may serve as the focus of transcriptional interference studies, including 

the extensive overlaps between various gene clusters, the location of ncRNAs 

and short intergenic repetitive sequences, and the newly discovered transcript 

boundaries within gene clusters. The evaluation of previously studied sites, such 

as the ul30-ul31 gene pairs added qualitative information to the results of earlier 

RT-qPCR results.     
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Characterization of pseudorabies virus
transcriptome by Illumina sequencing
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Abstract

Background: Pseudorabies virus is a widely-studied model organism of the Herpesviridae family, with a compact
genome arrangement of 72 known coding sequences. In order to obtain an up-to-date genetic map of the virus, a
combination of RNA-sequencing approaches were applied, as recent advancements in high-throughput sequencing
methods have provided a wealth of information on novel RNA species and transcript isoforms, revealing additional
layers of transcriptome complexity in several viral species.

Results: The total RNA content and polyadenylation landscape of pseudorabies virus were characterized for the first
time at high coverage by Illumina high-throughput sequencing of cDNA samples collected during the lytic infectious
cycle. As anticipated, nearly all of the viral genome was transcribed, with the exception of loci in the large internal and
terminal repeats, and several small intergenic repetitive sequences. Our findings included a small novel polyadenylated
non-coding RNA near an origin of replication, and the single-base resolution mapping of 3′ UTRs across the viral
genome. Alternative polyadenylation sites were found in a number of genes and a novel alternative splice site was
characterized in the ep0 gene, while previously known splicing events were confirmed, yielding no alternative splice
isoforms. Additionally, we detected the active polyadenylation of transcripts earlier believed to be transcribed as part of
polycistronic RNAs.

Conclusion: To the best of our knowledge, the present work has furnished the highest-resolution transcriptome map
of an alphaherpesvirus to date, and reveals further complexities of viral gene expression, with the identification of novel
transcript boundaries, alternative splicing of the key transactivator EP0, and a highly abundant, novel non-coding RNA
near the lytic replication origin. These advances provide a detailed genetic map of PRV for future research.

Keywords: Alphaherpesvirus, RNA-Seq, Polyadenylation, Gene expression, Viral genomics

Background
Pseudorabies virus (PRV, Suid Herpesvirus 1), also known
as Aujeszky’s disease virus, a herpesvirus belonging in the
subfamily Alphaherpesvirinae, infects swine populations
and causes economic losses worldwide. PRV is widely used
in studies of the molecular pathomechanism of herpes-
viruses [1], as a tract-tracing tool for mapping neuronal
circuitries [2, 3] and for the delivery of genetically encoded
fluorescent activity markers [4]. The transcription of her-
pesviruses is strictly regulated by cascade-like processes.
Three temporal classes of viral genes can be distinguished
in terms of the time of their activation during the viral life
cycle: initially, the immediate-early (IE) genes are expressed,

whose protein products are transcription factors. PRV has
a single IE-class gene, ie180, which is the major regulator
of viral gene expression. The early (E) genes typically play
roles in the replication of viral DNA, while most of the late
(L) genes code for structural elements of the virus. The
PRV genome is arranged into two unique protein coding
regions, the unique long (UL) and unique short (US) re-
gions, flanked by the internal and terminal repeats (IR and
TR). The genome of PRV is large among viruses, but much
smaller than those of cellular organisms, and especially
the mammalian genome. The whole transcriptome ana-
lysis of PRV can therefore be performed by real-time RT-
PCR, a technique, which provides an accurate platform for
the temporal analysis of transcription in both wild-type [5]
and mutant viral strains [6]. However, PCR can target
only a small genomic region, and information related
to transcript lengths, splicing, alternative initiation and
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termination of transcription, unknown transcripts, etc. is
not provided. Furthermore, PCR is inconvenient for the
detection of novel transcripts. Coding sequences and their
related transcripts have been widely studied in PRV [5, 7],
together with the microRNA expression in both the lytic
and latent phases of the viral life cycle [8, 9], whereas
other sources of non-coding transcription, alternative
transcript termination and alternative splicing have not
yet been analyzed at a genome-wide level. In order to
complement previous RT-PCR based studies, we have car-
ried out high-throughput sequencing of the total RNA
and polyA(+) RNA fractions of PRV during lytic infection.
Transcriptome-wide profiling has led to the discovery of
novel regulatory RNAs and an accurate assessment of
their expression in several members of the Herpesviridae
(human cytomegalovirus: [10], anguillid herpesvirus 1:
[11]). These studies have discovered highly abundant long
non-coding RNAs (lncRNAs), while in addition, the
characterization of the MAT ncRNA in murine cyto-
megalovirus has shown its role not only as a lncRNA, but
also coding for an ORF with potential regulatory functions
[12]. Host-pathogen interaction studies have also revealed
dramatic changes in expression levels of a range of host
regulatory- and non-coding RNAs during lytic infection
with varicella zoster virus [13]. Recent findings suggest
that, similarly as in eukaryotes, alternative transcript ter-
mination might be an important regulatory mechanism in
herpesvirus gene expression [14]. Indeed, the assessment
of 3′ UTRs in PRV strain Kaplan (Ka) identified three
genes, each containing two alternative termination sites,
while also indicating individual polyadenylation (PA) sites
of genes previously recognized as being exclusively tran-
scribed in polycistronic RNAs and not possessing their
own PA sites. The PA sites have also been categorized in
terms of relative expression levels by determining the
overall frequency of proximal and distal PA-site usage
per gene.

Results and discussion
Assessment of the PRV transcriptome by total RNA
sequencing and PA-Seq
For the investigation of the lytic PRV transcriptome,
porcine kidney (PK-15) epithelial cells were infected with
a high dose (10 pfu) of PRV strain Ka. Samples were
gathered up to 24 h post-infection (p.i.) in order to cap-
ture all RNA species during lytic infection for sequen-
cing library preparation. Both random hexamer-primed
and oligo(dT)-primed libraries were prepared in order to
assess total RNA and mRNA transcripts separately. In our
modified polyadenylation sequencing (PA-Seq) protocol
[14], total RNA was reverse-transcribed by using custom
designed oligo(T10-VN) anchored primers containing
standard Illumina strand-specific adaptor sequences. The
two-nucleotide anchor sequence ensures the annealing of

primers at exactly the PA site of mRNAs, providing
considerably fewer reads that contain redundant adenine
homopolymer stretches, with more useful sequence infor-
mation resulting for the given depth of sequencing. PA
peaks were detected by using HOMER [15] in strand-
specific mode, with adjustments for viral cDNA peak call-
ing and a cutoff of 50 reads per base position. PA peaks
occurred on both strands, mainly in accordance with pre-
viously existing ORF annotations, and also long non-
coding RNAs, including the latency-associated transcript
(LAT) and the long-latency transcript (LLT).
Both the RNA integrity measurements during the sam-

ple preparation, and the low signal-to-noise ratio in the
1 kb region surrounding the PA peaks during the ana-
lysis indicated high library quality. Sequencing of the
total RNA isolates of infected cells yielded a data set
of ~ 208 million 100 bp paired-end reads for the random
hexamer-primed library, of which 1.3 million reads
aligned to the viral genome version KJ717942.1, and the
majority of the remaining sequences aligned to the host
organism genome Sus scrofa 10.2. PA-Seq resulted in ~
103 million single- end, 50 bp reads, with 10 million
reads aligning to the above-mentioned viral reference.

PRV transcriptome profiling
Nearly all of the viral genome was transcribed, with the
exception of highly repetitive sequences within the ter-
minal and internal repeats that do not encode any RNA
species. Similarly, there was no detectable transcription at
intergenic repeat regions, which were earlier predicted to
be transcriptional insulators [16]. Significant transcription
at these insulator sequences was observed only in two
convergently oriented gene pairs, ul44-ul26 and, to a
lesser extent, ul35-ul36. Here, the alternative transcript
termination indicates that leaky transcription traverses the
intergenic repeat boundaries with lengths of 109 bp and
443 bp, respectively. On the other hand, non-transcribed,
repetitive regions were markedly present between ORF-1
and ul54; ul46 and ul27; ul40 and ul41; and ul11 and
ul10. In these boundary regions, no expression was ob-
servable. A high percentage of the transcription is com-
mitted to producing a newly identified non-coding RNA,
CTO (“close to OriL”), located between the ul21 gene and
the oriL, between bases 63673–63958 on the complemen-
tary strand of genome KJ717942.1. The CTO (RPKM=
1.6×106 in the total RNA library) and US1 (RPKM=
2.32×105) encoding the ICP22 homolog Rsp40 immediate-
early regulatory protein are the most abundant transcripts.
Although we examined lytic infection, the two latency-
associated transcripts (LAT and LLT) were found to be
expressed at a low level, and not at sufficient coverage to
determine splicing donor and acceptor sites. Transcription
of the hypothetical ORF1.2 [17] sequence was also de-
tected, involving 5′ upstream regions, although single-base
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localization of the transcription start site is complicated by
the presence of several repeats in the genomic sequence in
the interval 730–960 bp. On the use of PA-Seq, 3′ tran-
script boundaries can be accurately identified between and
within gene clusters (Fig. 1). In convergently oriented clus-
ters, more extensive overlaps include coding regions of the
opposite genes, potentially giving rise to transcriptional
interference between the interacting partners [18]. An ex-
ample of such a relation is between ul30 and ul31, with a
tail-to-tail overlap of 80 nucleotides. Here, the expression
of ul30 mRNA exceeds that of ul31, with considerable
antisense expression over the latter gene, possibly due to
transcriptional read-through from ul30. As anticipated,
convergent genes with more than ~45 bp separating their
respective PA signals (PAS) do not demonstrate detectable
transcriptional overlap, ranging from ul18-ul15 (45 bp) to
ul46-ul27 (632 bp), while convergent gene pairs in closer
proximity exhibit longer 3′ UTR overlapping regions. A
short, 3′-overlapping antisense non-coding transcript
(termed SANC) was also found adjacent to the PA site of
the ul21 gene, near OriL (64558–64674 on reference gen-
ome KJ717942.1), with an expression of RPKM= 1.67×103

in the total RNA library, the highest non-coding antisense
expression in our samples. The various overlaps between
the viral genes are presented in Table 1. These overlaps
may affect the expression of adjacent genes. It is hypothe-
sized that these interactions form a regulatory network
controlling the transcription cascade of herpesviruses [18].

Splice sites in the PRV transcriptome
For splice site analysis, total RNA reads were aligned to
PRV strain Ka genome KJ717942.1. All possible splice
donor and acceptor sites were considered, with a lower
bound of at least 10 supporting reads. Through the exclu-
sion of low-coverage junction candidates, artifacts possibly
occurring due to mispriming or template switching during
amplification steps could be neglected (Additional file 1).
The initial set of splice acceptor and donor sites contained
97 candidate splice junctions, with 49 sites above the
threshold coverage. This set contained several permuta-
tions of the us1 3′ UTR splice junctions, which were
screened for the presence of short anchor regions and
high mismatch ratios within these anchors. After screen-
ing for anchors of <5 bases, consistent splice junctions
were readily identifiable. The remaining, high-coverage
splice sites are denoted as follows: (D + 10000^A + 12000),
with D denoting the donor site, A the acceptor site,
and +/− the DNA top and bottom strand, respectively,
along the coordinates of the splice junction. Splice sites
have previously been characterized in the protein-coding
region of ul15 [19, 20] (D −76165^A −73285), and
in the 3′ UTR of us1 [21] (D +115592^A +115713;
D +115766^A +115921), present in both terminal and in-
ternal repeats, while one site in the non-coding RNA LLT

[22] (D +97765; A +102403) was expressed at an insuffi-
cient level for accurate splice site identification. A low per-
centage of reads also mapped outside the assigned
acceptor and donor sites (Fig. 1). A novel alternative splice
site was characterized in ep0, the homolog of Herpes
simplex 1 ICP0 [23], which is also a spliced gene, but
expressed in the immediate-early class in HSV-1. The
newly characterized ep0 alternative splicing consists of
two potential donor sites at (D −97480) and (D −97528)
and the acceptor site at (A −97389) (Fig. 1). While the
splice junction formed between the acceptor and proximal
donor sites conforms to the rule of GT/AG nucleotides
comprising ~99 % of junctions in eukaryotic organisms
[24], the junction formed with the distal donor site con-
tains GT/CG bases. Experimental validation of the novel
splice site has been carried out by RT-PCR, using two pri-
mer sets (Additional file 2) designed approximately 100 bp
upstream and downstream of the splice site, followed by
polyacrylamide gel electrophoresis. The experiments con-
firmed the presence of the novel isoform during lytic in-
fection robustly after visualization (Fig. 2).

Frequency of alternative polyadenylation correlated to
weak and strong PA signals and flanking motifs
Through the use of the highly sensitive PA-Seq method,
the 3′-end of the PRV transcripts was identified by the
presence of poly(A) tails. The use of anchored oligo(dT)
primers resulted in the accurate mapping of polya-
denylation sites, while providing a high coverage for quan-
titative analyses (Fig. 1). The most highly abundant
transcripts (CTO, us1, ul31, and ul35) were in accordance
with the random hexamer-primed data, while the greater
resolution provided by PA-Seq also allowed the identifica-
tion of transcripts that were of low abundance or difficult
to detect by other sequencing methods or RT-PCR, such
as the genes of the ul6-ul9 convergently oriented cluster.
The PAS-usage of eukaryotic organisms is thought to be
well conserved, with the canonical AAUAAA being the
most widely used signal 10–30 nucleotides upstream of the
cleavage site [25, 26]. Not surprisingly, the analysis of the
PAS motifs indicated that strong polyadenylation peaks
correspond to the AAUAAA signal (<90 %), while
AUUAAA is the second most widely used element (~10 %)
(Fig. 3). Two further signal motifs were the less conserved
USE GU-rich element, >30 nucleotides upstream of the
cleavage site [25], and DSE, >20 nucleotides downstream
of the cleavage site. In humans, it has been shown that
when multiple PA sites are used, the 3′ -most tends to use
the AAUAAA signal, while the inner signals tend to vary
considerably from the consensus [27]. In our PA-Seq sam-
ples, only 6 genomic positions containing the canonical
AATAAA sequence proved to be unused PA signals, 3 mo-
tifs residing inside coding sequences (+9072-9077; −52929-
52934; −78490-78495) and one motif located directly
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Fig. 1 (See legend on next page.)
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upstream of us3 (+118308-118313), and not correspond-
ing to any viral transcript. The remaining signal was lo-
cated within the large repeat regions, and therefore
present in two copies, (−117738-117743) and (+126996-
127001). On the other hand, canonical PAS that were pre-
viously considered inactive demonstrated pronounced
polyadenylation peaks, providing alternative transcript ter-
mination sites for genes ul35, ul44 and ul22. In both cases,
the usage frequency of the distal PA site was at least an
order of magnitude lower than those of the proximal ones.
The PA-Seq method additionally revealed polyadenyla-

tion peaks in transcripts encoded by upstream genes of
tandem gene clusters. These included the polyadenylation
of ul19. This transcript has previously been detected in
strain Indiana-Funkhauser [28], with the non-canonical
PAS ATATAAA; in our PA-Seq samples, we have con-
firmed the active use of this site in strain Ka. A similar ar-
rangement was found in ul28, although no conservative
PAS was detectable upstream of the well-defined PA-peak
at base position 18960. Though PA peaks within the clus-
ters of the US region were markedly above the back-
ground signal and correlated well with the coding
sequence boundaries, these signals were several orders of

magnitude weaker than the commonly observed polyA
peaks, making them difficult to validate. The tandemly
oriented ul4 transcript has been hypothesized to be 3′
coterminal with the ul5 transcript [16], as the canonical
PAS directly downstream of ul5 is inside the ul4 ORF.
However, PA-Seq peaks were found at the 3′ ends of
both genes, showing that the PAS of ul5 is also active.
The most abundant transcript during PRV lytic infec-
tion proved to be a previously unknown non-coding
RNA of 286 bp, located between genes ul21 and ul22,
and named CTO. This long non-coding RNA is charac-
terized by an irregular GC composition, where the
third-position GC content increases sharply in all three
reading frames in the length of the transcript. Based on
sequence similarity search, this arrangement is not
present in the close relatives of PRV, such as varicella
zoster, herpes simplex and bovine herpesviruses. On
the other hand, PRV strains Becker, Bartha and HeN1
show <99 % sequence similarity with strain Kaplan in
the CTO genomic region. An alternative PA site was
also observed, about 120 nucleotides downstream from
the main PAS. An in-depth characterization of the
transcript is presented in [29].

Table 1 The organization of alternative splicing, overlapping gene clusters, polycistronic RNAs and alternative polyadenylation
events in the PRV genome

Detected splice sites Alternative polyadenylation Convergently overlapping gene
clusters

Divergently
overlapping
genes

Tandem
gene clustersGene Donor

site
Acceptor
site

Gene Alternative
polyadenylation signal

Coordinate

UL15 D −76165 A −73285 UL35 AAUAAA 33133–33138 UL51 UL50 UL52 UL51 UL52-UL54

US1 D +115592 A +115713 UL44 AAUAAA 55768–55773 UL30 UL31, UL32 UL50 UL49.5 UL48-UL46

D +115766 A +115921 UL22 N/Aa 63624 UL33, UL34, UL35 UL36 UL29 UL30 UL31-UL32

US1 D −129158 A −129037 UL19 AUAUAAA 71005–710011 UL44 UL26.5, UL26,
UL25, UL24

UL32 UL33 UL33-UL35

D −128984 A −128829 UL28 N/Aa 18960 UL8, UL9 UL6, UL7 UL37 UL38 UL39-UL40

EP0 D −97480 A −97389 UL5 AAUAAA 92065–92070 UL41 UL42 UL24-UL26.5

D −97528 CTO N/Aa 63538 UL24 UL23 UL17-UL16

UL21 UL20 UL14-UL11

UL15 UL14 UL9-UL8

UL10 UL9 UL7-UL6

UL6 UL5 UL1-UL3.5

US3-US4

US6-US7

US8-US9
aNo prediction available for canonical or non-canonical polyA signal using PolyApred server

(See figure on previous page.)
Fig. 1 Transcriptional map of the PRV genome identified by total RNA sequencing and PA-Seq. Genetic map: orange: coding sequences, blue:
transcripts, red striped rectangle: OriL palindrome, yellow striped rectangles: OriS palindromes, grey: internal and terminal repeat regions, blue
circles: PA site on + strand, red circles: PA site on –strand, green circles: alternative PA site on + strand, black circles: alternative PA site on –strand.
Expression levels (in coverage per base): upper box: PA-Seq expression, green: +strand read coverage, black: −strand read coverage, lower box:
totalRNA sequencing, blue: +strand coverage, red: −strand coverage
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Transcription overlaps
We assessed the various transcript overlaps, including
parallel (tandem), divergent and convergent overlaps
(Fig. 4, Table 1). Most of the PRV genes are organized
into tandem gene clusters producing polycistronic RNAs
(Table 1). An interesting feature of organization is that
all of the upstream genes of the clusters end within the
downstream genes. Similarly, the divergent gene pairs
overlap in every case. Theoretically, this phenomenon
may be explained by the restriction of the viral genome
length. However, since these overlaps are not too exten-
sive, they probably provide a regulatory mechanism for
transcription. The distant convergent genes are sepa-
rated from each other by repetitive sequences which
were found to be heavily methylated (this latter result
will be published elsewhere), indicating a mechanism
with a likely function for the prevention of transcrip-
tional collisions. Closely located convergent gene pairs
transcriptionally overlap or can overlap (alternative tran-
scriptional termination) themselves (Table 1). In the
ul35 and ul44 genes, these alternative termination sites
traversed intergenic repetitive regions, previously consid-
ered to be transcriptional barriers. This finding indicates
that low-frequency “leaky” transcription occurs more
often than anticipated in PRV. Although the function of
these PA sites is unknown, it is noteworthy that a highly
similar arrangement was present between convergent
gene clusters ul9-ul8 and ul7-ul6, with the difference
that a strongly repetitive sequence resembling the
above-mentioned intergenic repeats in both length and
base content, was found within the comparatively long
3′ UTR of ul7.

Conclusion
The single-base resolution map of pseudorabies tran-
scripts revealed that the compact, 143 kbp genome of
PRV is transcribed pervasively, with the exception of loci
in the large inverted repeats and short intergenic se-
quences. In addition to previously known splice sites, a
novel junction was characterized in the transactivator

Fig. 2 RT-PCR validation of the novel splice site of the EP0 gene,
using two different primer sets. 12 % acrylamide gel electrophoresis,
Gel Red staining

Fig. 3 PA signal consensus of PRV and schematic organization of eukaryotic PA sites. The sequence logo represents nucleotide occurrence frequencies
within the +/−50 bp region of PA signals in the viral genome. Colored boxes indicate the functional elements affecting eukaryotic polyadenylation
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ep0, while the splice sites of lytic genes were confirmed
at a high depth of coverage. Polyadenylation signal
usage was found to be more frequent than previously
predicted, with alternative PAS in genes ul35, ul44,
ul19, ul28 and ul5. While alternative transcript termin-
ation is a major regulatory factor in eukaryotic organ-
isms, to date there is limited data for viruses in this
field. The region of the lytic replication origin was also
found to express a novel, highly abundant ncRNA,
named CTO, along with a short, 3′ overlapping ncRNA
of ul21, termed SANC. Other pervasively transcribed
regions include the ORF1.2 5′ UTR. The described
PRV transcript isoforms and non-coding RNAs help
guide future research in the possible regulatory mecha-
nisms of alphaherpesviruses.

Methods
Virus, cells and infection
For the propagation of strain Kaplan of PRV, immortalized
PK-15 epithelial cells were applied. PK-15 cells were culti-
vated in Dulbecco’s modified Eagle medium supplemented
with 5 % fetal bovine serum (Gibco Invitrogen) with 80 μg
gentamycin/ml at 37 °C, under 5 % CO2. The virus stock
used for the experiments was prepared as follows: rapidly-
growing semi-confluent PK-15 cells were infected at a
multiplicity of infection of 0.1 plaque-forming unit (pfu)/
cell and were incubated until a complete cytopathic effect
was observed. The infected cells were frozen and
thawed three times, followed by low-speed centrifu-
gation (10,000 g) for 20 min. The cell debris was re-
moved, while the supernatant was concentrated and

C

A

B

Fig. 4 Convergent (a), divergent (b) and tandem (c) overlaps in the PRV genome, as shown by random-hexamer primed samples. Extensive
transcriptional overlaps are frequent throughout the condensed viral genome. Black boxes: coding sequences, white arrows: gene orientation,
grey line graph: positive strand expression, black line graph: negative strand expression
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further purified by ultracentrifugation through a 30 %
sugar cushion at 24,000 rpm for 1 h, using a Sorvall
AH-628 rotor. The number of cells in a culture flask
was 5 × 106. A high multiplicity of infection (10 pfu/cell)
was used for the infection of PK-15 cells. Infected cells
were incubated for 1 h, followed by removal of the virus
suspension and washing with phosphate-buffered saline
(PBS). After the addition of new medium to the cells, they
were incubated for 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 or
24 h p.i. Mock-infected cells, but otherwise treated in the
same way as the infected cells, were used as controls.

Isolation of RNAs
RNA was extracted from samples of each individual time
point of infection by using the NucleoSpin RNA II Kit
(Macherey-Nagel GmbH and Co. KG), as described pre-
viously [5]. Briefly, after the cells had been collected by
centrifugation and lysed with buffer containing chaotro-
pic ions, the nucleic acids were docked to a silica col-
umn. The DNA was removed with RNase-free DNase
solution (supplied with the NucleoSpin RNA II Kit). Fi-
nally, the RNAs were eluted from the column in RNase-
free water (supplied with the kit). To eliminate the residual
DNA contamination, all RNA samples were treated by an
additional digestion with Turbo DNase (Ambion Inc.).
The concentrations of the RNA samples were measured
by spectrophotometric analysis with a BioPhotometer
Plus instrument (Eppendorf ). RNA samples were stored
at −80 °C until further use.

cDNA library preparation
Strand-specific total RNA libraries were prepared for
paired-end 100 bp sequencing by using the Illumina com-
patible ScriptSeq v2 RNA-Seq Library Preparation Kit
(Epicenter). For polyA-sequencing, a single-end library
was constructed through the use of custom anchored
adaptor-primer oligonucleotides with an oligo(VN)T20 pri-
mer sequence. Anchored primers compensate for the loss
in throughput due to the high fraction of reads containing
solely adenine bases on the use of conventional oligo(dT)
primers.

Illumina sequencing
Transcriptome sequencing was performed on an Illumina
HiScanSQ platform at the Genomic Medicine and Bio-
informatic Core Facilty of the University of Debrecen.
Quality assessment of raw read files was achieved with
FastQC v0.10.1. Reads were aligned to the respective host
genome (Sus scrofa, assembly: Sscrofa10.2) and subse-
quently to the PRV genome (KJ717942.1), using Tophat
v2.09 [30]; ambiguous reads were discarded. For PA-Seq,
mapping was carried out with Bowtie v2. [31], followed by
peak detection using HOMER in strand-specific mode,
with adjustments for the peak qualities of oligo(dT)

primed libraries. Peak categories were assigned by using
in-house scripts, based on the following criteria: the pres-
ence or absence of a PAS in the 50 bp region upstream
from the PA site and the presence of at least 2 consecutive
adenine mismatches in at least 10 independent reads at
the PA site. Annotation and visualization were carried
out in the Artemis Genome Browser v15.0.0 [32] and
IGV v2.2 [33]. GC bias in the alignments was inspected
by using the Bioconductor R package. The prediction
of canonical and non-canonical PAS was carried out
using PolyApred [34].

RT-qPCR analysis of alternative splicing
For the validation of splicing events, two sets of primers
were designed with lengths from 19 to 23 nucleotides,
approximately 100 bp upstream and downstream of the
splice site, detailed in Additional file 2. Reverse transcrip-
tion was performed in 5 μl of solution containing 0.02 μg
of total RNA, 2 pmol of the gene-specific primer, 0.25 μl
of dNTP mix, 1 μl of 5× First-Strand Buffer, 0.25 μl (50
units/μl) of SuperScript III Reverse Transcriptase (Invitro-
gen) and 1 U of RNAsin (Applied Biosystems Inc.). The
mixture was incubated at 55 °C for 60 min. The reaction
was stopped at 70 °C for 15 min. No-RT control reactions
(RT reactions without Superscript III enzyme) were run to
test the potential viral DNA contamination by conven-
tional PCR. RNA samples with no detectable DNA con-
tamination were used for RT-qPCR reactions.
Real-time quantitative PCR experiments were carried

out for each sample in triplicate, on a Rotor-Gene 6000
cycler (Corbett Life Science). Reactions were carried out
in 20-μl mixtures containing 7 μl of ×10 dilution cDNA,
10 μl of ABsolute qPCR SYBR Green Mix (Thermo
Fisher Scientific), 1.5 μl of forward and 1.5 μl of reverse
primers (10 μM each). The running conditions were as
follows: [1] 15 min at 95 °C, 30 cycles of 94 °C for 25 s
(denaturation), 60 °C for 25 s (annealing), and 72 °C for
6 s (extension). Products were visualized on 12 % poly-
acrylamide gel stained with Gel Red dye, gel images were
acquired using a ProteinSimple AlphaImager HV gel
documentation system.

Availaibility of data
Raw data from PA-Seq and RNA-Seq experiments are
deposited in the European Nucleotide Archive under ac-
cession code PRJEB9526. The PRV genomic sequence
used for mapping is available in Genbank, with accession
number KJ717942.1.

Additional files

Additional file 1: Splice site analysis using totalRNA sequencing data.

Additional file 2: Primer sequences for the Real-Time RT PCR
analysis.
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Abstract: In this study we identified two 3′-coterminal RNA molecules in the 

pseudorabies virus. The highly abundant short transcript (CTO-S) proved to be encoded 

between the ul21 and ul22 genes in close vicinity of the replication origin (OriL) of the virus. 

The less abundant long RNA molecule (CTO-L) is a transcriptional readthrough product of 

the ul21 gene and overlaps OriL. These polyadenylated RNAs were characterized by 

ascertaining their nucleotide sequences with the Illumina HiScanSQ and Pacific 

Biosciences Real-Time (PacBio RSII) sequencing platforms and by analyzing their 

transcription kinetics through use of multi-time-point Real-Time RT-PCR and the PacBio 

RSII system. It emerged that transcription of the CTOs is fully dependent on the viral 

transactivator protein IE180 and CTO-S is not a microRNA precursor. We propose an 

interaction between the transcription and replication machineries at this genomic location, 

which might play an important role in the regulation of DNA synthesis. 
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1. Introduction 

Pseudorabies virus (PRV), an alphaherpesvirus related to the human pathogens herpes simplex  

virus (HSV) and varicella-zoster virus, infects a wide range of mammalian species, including 

experimental rodents and pigs, the reservoir of the virus. PRV is commonly used in investigations of 

the molecular pathogenesis of herpesviruses [1,2], for the mapping of neural circuits [3–5] and for the 

delivery of genetically encoded fluorescence activity markers to the central nervous system [6] and 

cardiomyocytes [7]. During the past few years, a large variety of non-coding RNAs (ncRNAs) have 

been revealed in both cellular organisms and viruses. Micro (mi)RNAs (the best known ncRNAs) 

typically act to decrease the target mRNA level [8]. These transcripts are generated through the 

processing of long precursor RNA molecules. MicroRNAs have been detected in α-herpesviruses 

(HSV: [9], and PRV: [10,11]), betaherpesviruses (human cytomegalovirus (HCVM): [12]), and 

gammaherpesviruses (Epstein-Barr virus (EBV): [13]). These transcripts have been shown to play 

various roles, including the switch between the latent and lytic phases, evasion of host immune 

surveillance and apoptosis inhibition [14]. Long ncRNAs (lncRNAs) are the most abundant group of 

ncRNAs [15]. Numerous protein-encoding genes have been shown to specify antisense (as)-lncRNAs 

transcribed from the complementary DNA strands as templates. Large proportions of the mouse and 

human genomes have recently been reported to express lncRNAs [16,17]. The functions of these 

transcripts are still largely unknown. Many lncRNAs are involved in the regulation of transcription, such 

as XIST [18] and HOTAIR [19], or post-transcriptional regulation [20], or have structural roles [17]. 

Studies of multiple model systems have revealed that lncRNAs can function as modular scaffolds, forming 

extensive networks between chromatin regulators and various ribonucleoproteins [21]. Several 

polyadenylated lncRNAs have recently been demonstrated to be highly abundant in herpesviruses, 

including RNA2.7 in HCMV, accounting for nearly half of the total gene expression in RNA-Seq 

studies [22], and the widely-studied PAN RNA in Kaposi’s sarcoma-associated herpesvirus [23], 

which has diverse roles during the viral life cycle [24]. The HSV latency-associated transcript (LAT) 

was the first identified as-lncRNA molecule [25] in alphaherpesviruses. A spliced 8.4-kb RNA, termed 

the long latency transcript (LLT), is generated from the complementary DNA strand of ie180 and ep0 

genes under the control of the LAT promoter of PRV [26]. The expression of as-lncRNAs has also 

been detected in some other HSV genes [27–29]. Moreover, several antisense long non-coding 

transcripts have been discovered in HCMV [30] and EBV [31]. 

2. Materials and Methods 

2.1. Cells and Viruses 

An immortalized porcine kidney epithelial cell line (PK-15) was used for the propagation of PRV. 

The cells were cultivated in Dulbecco’s modified Eagle medium supplemented with 5% fetal bovine 
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serum (Gibco Invitrogen, Carlsbad, CA, USA) and 80 μg gentamycin/mL at 37 °C under 5% CO2. The 

virus stock used for the kinetic analyses was prepared as follows: rapidly-growing semi-confluent  

PK-15 cells were infected at a multiplicity of infection (MOI) of 0.1 pfu/cell, and then incubated at  

37 °C under 5% CO2 until a complete cytopathic effect was observed. The infected cells were next 

frozen and thawed three times, followed by centrifugation at 10,000× g for 15 min. The titer of the 

virus stock was determined by using the same cell type. For the transcription kinetic experiments, cells 

were infected at either a low (0.1 pfu/cell) or a high MOI (10 pfu/cell), and then incubated for 1 h. This 

was followed by removal of the virus suspension and washing with phosphate-buffered saline. Infected 

cells were incubated for various periods of time following the addition of new medium to the cells. 

For Illumina DNA sequencing we mixed infected cells, which were incubated for 1, 2, 4, 6, 8, 10, 

12, 14, 16, 18, 20, 22 or 24 h. For PacBio analysis, infected cells were incubated 1, 2, 4, 6, 8 or 12 h p.i. 

For Real-Time RT-PCR, infected PK-15 cells were incubated for 1, 2, 4, 6, 8, 12 or 24 h. Mock-infected 

cells, which were otherwise treated in the same way as the infected cells, were used as controls. 

2.2. Generation of Recombinant Viruses 

The generation of ep0 and vhs gene-deleted viruses was described elsewhere (vhs-KO: [32],  

ep0-KO: [33]). Briefly, the desired viral genes were deleted by targeted mutagenesis using 

homologous recombination. Following subcloning of the target region of PRV, a lacZ gene 

expression-cassette was inserted in place of the genes to be deleted in both mutants. Mutant viruses 

were selected on the basis of the blue plaque phenotype. 

2.3. RNA Isolation for RNA-Seq and Real-Time RT-PCR 

Total RNA was purified by using the Nucleospin RNA kit (Macherey-Nagel), following the  

kit protocol. Cells were collected by low-speed centrifugation, lysed in a buffer containing the 

chaotropic ions needed for the inactivation of RNases and providing the conditions for the binding of 

nucleic acids to a silica membrane. Contaminating DNA was removed with RNase-free rDNase 

solution (included in the kit). The isolated total RNA was treated by means of the TURBO  

DNA-free™ Kit (Life Technologies) to remove potential residual DNA contamination. RNA concentration 

was determined by Qubit 2.0, and RNA integrity was assessed by using an Agilent 2100 Bioanalyzer. 

Samples were stored at −80 °C. 

2.4. Illumina HiScanSQ cDNA Sequencing 

Preparation of cDNA libraries—strand-specific total RNA libraries were prepared for sequencing 

through use of the Illumina ScriptSeq v2 RNA-Seq Library Preparation Kit (Epicentre, Madison, WY 

USA) for random hexamer primed amplification and the sequencing of 2 × 100 bp fragments. For PA-Seq, 

a single-end library was constructed by using custom-anchored adaptor-primer oligonucleotides with 

an oligo(VN)T20 primer sequence. Anchored primers compensate for the loss in throughput due to the 

high fraction of reads containing solely adenine bases when conventional oligo(dT) primers are used. 

Transcriptome sequencing was performed on an Illumina HiScanSQ platform, generating  

~200 million paired-end reads of 100 bp length and ~105 million 50 bp single-end reads. The quality 

assessment of the raw read files was achieved with FastQC v0.10.1. Reads were aligned to the 
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respective host genome (Sus scrofa, assembly: Sscrofa10.2) and subsequently to the PRV genome 

(KJ717942.1) by using Tophat v2.09. [34]; ambiguous reads were discarded. For PA-Seq, mapping 

was carried out with Bowtie v2. [35], and polyA peaks were detected through the use of in-house 

scripts, based on the criteria of the presence of a PA signal in the 50 bp region upstream from the PA 

site and the presence of at least two consecutive adenine mismatches in at least 10 independent reads at 

the PA site. Annotation and visualization were carried out with the Artemis Genome Browser v15.0.0 [36]. 

Any GC bias of the alignments was inspected with the Bioconductor R package. 

2.5. PacBio RS II cDNA Sequencing 

2.5.1. PolyA RNA Purification 

Polyadenylated RNAs were isolated from the total RNA samples by using the Oligotex mRNA 

Mini Kit (Qiagen, Venlo, The Netherlands) according to the kit instructions for the Oligotex mRNA  

Spin-Column Protocol. 

2.5.2. cDNA Synthesis 

The PolyA RNA samples were quantified with the Qubit RNA HS Assay Kit (Life Technologies, 

Carlsbad, CA, USA) and converted to cDNAs with the SuperScript Double-Stranded cDNA Synthesis Kit 

(Life Technologies). RT reactions were primed with an Anchored Oligo(dT)20 primer (Life 

Technologies). The cDNAs were quantified with the Qubit HS dsDNA Assay Kit (Life Technologies) 

and quality was assessed with the Agilent 2100 bioanalyzer. 

2.5.3. Library Preparation, Sequencing and Data Collection 

SMRTbell libraries were generated by using the PacBio DNA Template Prep Kit 2.0 and the Pacific 

Biosciences template preparation and sequencing protocol for Very Low (10 ng) Input 2 kb libraries 

with carrier DNA (pBR322, Thermo Scientific, Waltham, MA, USA). SMRTbell templates were bound 

to polymerases by using the DNA polymerase binding kit XL 1.0 (part #100-150-800) and v2 primers. 

Polymerase-template complexes were bound to magbeads with the Pacific Biosciences MagBead 

Binding Kit, and sequencing was carried out on the Pacific Biosciences RSII sequencer with  

C3 sequencing reagents. Movie lengths were 180 min (one movie was recorded for each SMRT Cell). 

Subread filtering and alignment were carried out in SMRT Pipe v2.2.0. Visualization and data analysis 

were performed in SMRT Analysis v2.2.0. 

2.6. Normalization of PacBio Data with Mitochondrial Transcripts 

The read counts of viral transcripts at each time-point were normalized to mitochondrial read 

counts, aligned to the Sus scrofa 10.2 MT chromosome sequence. The following mitochondrial genes 

were used for the normalization: ATP6; ATP8; CYTB; ND1; ND2; ND3; ND4; ND4L; ND5; ND6; 

COX1; COX2 and COX3. While the degradation of cytoplasmic mRNAs during alphaherpesvirus 

infection has been previously shown [37,38], no such evidence is known for mtRNAs. Although recent 

studies have shown the steady decrease of mtDNA levels in Vero cells expressing the UL12.5 gene of 
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HSV-1 [39]. We chose the mtRNAs as reference RNAs because the UL12.5 gene is absent from the 

PRV genome. 

2.7. Reverse Transcription 

RT reactions were carried out with 70 ng of total RNA with the use of Superscript III enzyme (Life 

Technologies) and gene-specific primers or oligo(dT) primers. 

2.8. Real-Time PCR 

Real-Time PCR reactions were performed in a volume of 20 µL with Absolute QPCR SYBR Green 

Mix (Thermo Scientific) containing 7 µL of 10-fold diluted cDNA, 1.5 μL of forward and 1.5 μL of 

reverse primers (10 μM each; Table 1A). 28S ribosomal (r)RNA was used as a reference gene in each run. 

The PCR amplification conditions were as follows: 15 min at 95 °C for the enzyme activation, followed 

by 30 cycles of 94 °C for 25 s (denaturation), 60 °C for 25 s (annealing), and 72 °C for 6 s (extension). 

Table 1. Primer sequences for the Real-Time RT PCR analysis. 

 
Name Sequence (5′-3′) 

Genomic 

Position 

A CTO-S fw GACGATCCGGCGGTCCCA 63858–63875 

CTO-S rev GCGCCACAACCCGGAGC 63915–63931 

CTO-L fw GTG TCG CGG ACA GAG AAT GG 64604–64623 

CTO-L rev GGC CCA GTA CCT GTT TCA GC 64708–64727 

B T7-CTO-out fw TAATACGACTCACTATAGGGAGAGGTCTCTAAGGGGGAACCAG 63605–63626 

SP6-CTO-out rev ATTTAGGTGACACTATAGAAGNGCCGAAAAATTCGCACATACC 63989–64008 

(underline: T7 and SP6 promoter sequences, respectively). 

Relative expression ratios (R) were calculated via the following formula: 

𝑅 =
(𝐸sample∙max)

𝐶tsample∙max

(𝐸sample)
𝐶tsample

:
(𝐸ref∙max)

𝐶tref∙max

(𝐸ref)
𝐶tref

 (1) 

where E is the amplification efficiency, Ct is the threshold cycle number, “sample” refers to the 

examined PRV transcript and “ref” refers to the 28S rRNA (internal control). The cDNAs were 

normalized to 28S cDNAs by using the Comparative Quantitation module of the Rotor-Gene Q 

software (Version 2.3.1, Qiagen), which automatically calculates the efficiency of the reaction. 

Thresholds were also set by the software. 

2.9. Treatment of Cells with CHX 

The requirement of de novo protein synthesis for CTO production was tested by cycloheximide 

(CHX) analysis. Cells were incubated in the presence or absence of 100 μg/mL CHX (Sigma-Aldrich, 

St. Louis, MO, USA) for 1 h prior to virus infection. Mock-infected cells otherwise treated in the same 

way as infected cells were used as controls. 
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2.10. Northern Blot Analysis 

Traditional Northern blot assay Total RNA was isolated from PK-15 cells through use of TRIzol 

reagent (Life Technologies) according to the manufacturer’s instructions. Samples were denatured in 

loading buffer for 5 min at 65 °C. Extracted RNA samples (10 ug) were fractionated in 

formaldehyde/1.2% agarose gel, transferred to a Nytran N membrane (Schleicher & Schuell 

BioScience, Dassel, Germany) by a capillary method and fixed by ultraviolet cross-linking. The 

membrane was probed by using the random primed PCR product or the total viral DNA with the 

DecaLabel DNA Labeling Kit (Fermentas, Vilnius, Lithuania). PCR reactions were carried out with 

AccuPrime GC-Rich DNA Polymerase (Life Technologies) according to the manufacturer’s 

recommendations (primer sequences Table 1B). The oligonucleotide probe was labeled with [α-32P]CTP. 

Filter prehybridization was carried out in 50% formamide, 0.5% SDS, 5× SSPE, 5× Denhardt’s 

solution and 20 μg/mL sheared, denatured salmon sperm. The probe was heated for 1 min at 95 °C. 

Overnight hybridization was carried out at 68 °C. Finally, the hybridization membranes were washed in 

2× SSC 0.1% SDS at 68 °C for ones 10 min, 0.5× SSC, 0.1% SDS at 68 °C for 10 min, 0.1× SSC 0.1% 

SDS at 68 °C for 10 min. 

Micro RNA Northern blot analysis two different PCR probes were used. Forward primers were 

linked with the T7 promoter sequence and reverse primers were linked with the SP6 promoter 

sequence (Table 1B). Samples (10 µg) were fractionated on denaturing 12% polyacrylamide gels 

containing 8 M urea, transferred to a Nytran N membrane (Schleicher & Schuell, Germany) by  

a capillary method and fixed by ultraviolet cross-linking. Prehybridization was carried out in 50% 

formamide, 0.5% SDS, 5× SSPE, 5× Denhardt’s solution and 20 μg/mL sheared, denatured salmon 

sperm DNA. Overnight hybridizations were performed in the same solution at 37 °C. An [α-32P]UTP-labeled 

RNA probe was used for the hybridization. Membranes were washed twice for 10 min with a solution 

containing 2× SSC, 0.1% SDS. 

3. Results 

3.1. Identification and Structural Characterization of Novel lncRNAs in PRV 

The PRV transcriptome was analyzed by means of the Illumina HiScanSQ and Pacific Biosciences 

(PacBio) RSII sequencing systems. Random hexamer-primed reverse transcription (RT) was used for 

Illumina sequencing, and oligo(dT)-primed (PA-Seq) RT for both platforms. With these techniques, 

we detected two novel 3′-coterminal transcripts located between the ul21 and ul22 genes, close to the 

OriL, termed CTOs. The length of the short intergenic lncRNA (CTO-S) is 286 base pairs (bp) and is 

mapped to bp-s 63673-63958 of the PRV reference genome KJ717942.1 (Figure 1). The attachment of 

adapter sequences to the Illumina RT primers allowed the analysis of transcription from both DNA 

strands separately. These investigations revealed that only one of the two DNA strands exhibits 

transcriptional activity at this genomic region. The long (CTO-L) transcript overlaps OriL, and maps to 

nucleotides (nt) 63673–66287 (2615 bp). CTO-L originates from the promoter of the ul21 gene and is 

produced by the continuation of the RNA polymerase molecule across the transcription termination 

sequences. CTO-L contains the entire ul21 gene sequence and is therefore a sense lncRNA. The 

promoter of the CTO-S transcript was identified in nucleotides 63952–63958 by the Tfsearch 



Viruses 2015, 7 2733 

 

algorithm with 96.8% confidence. An Oct1 transcription factor binding site was also discovered at 

98.3% confidence in the TransFac database [40]. 

 

Figure 1. Location of cto genes on the PRV genome. Both cto transcripts (CTOs) are 

polyadenylated RNAs with a common 3′ termination. CTO-L is generated by the 

continuation of transcription after the termination signals of the ul21 gene. OriL is the 

replication origin of in the UL region of viral DNA mapped between the ul21 and ul22 genes. 

3.2. Transcriptional Analysis of CTO 

3.2.1. Illumina RNA-Seq Analysis 

We combined transcripts isolated from consecutive time-points of viral infection for Illumina sequencing. 

CTO-S proved to exhibit a very high expression, with an RPKM (reads per kilobase per million) value 

of 1.6 × 106 in the random-hexamer primed library, and 45.9% of the total read count in PA-Seq, 

making this transcript by far the most abundant viral RNA molecule. CTO-L produced only 0.13% of 

the total reads in the random hexamer-primed library (RPKM = 5 × 10−4). However, pA-Seq produces 

more informative data than random hexamer-primed sequencing: in the former case the read numbers 

are in strict correlation only with the transcript abundance, whereas in the latter case they correlate 

with the transcript lengths too. 

3.2.2. PacBio RNA-Seq Analysis 

For the analysis of the transcription kinetics of the CTO length variants, we applied the PacBio  

RS II system, which is capable of generating significantly longer read lengths than those of  

second-generation technologies, such as Illumina. The CTO expression was analyzed at 1, 2, 4, 6, 8 or 12 h 

by using high [10 plaque forming unit (pfu)/cell] infection conditions. Due to template quantity we 

used the very low input protocol for the template preparation and sequencing, which is not optimal for 

the detection of small (<700 nt) transcripts, and we therefore observed a very strong bias against CTO-S. 

Due to the low sensitivity of this technique for small DNA fragments, the real proportion of the two 

transcripts cannot be precisely ascertained through its use. However, the data obtained could be used to 

compare the transcription kinetics in the two transcripts (Figure 2). The viral RNA reads were 

normalized with the pig mitochondrial RNAs, which are thought to resist degradation by the RNase 

activity of viral proteins. No reads were obtained for either of the CTO transcripts in the first hour of 

infection. A low amount of CTO-L was detected 2 h post-infection (p.i.). The CTO-S transcript 

appeared in only the 4 h p.i. samples (Figure 2A). The logarithmic plots demonstrate a slight increase 
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in the dynamics of transcriptions between 4 and 6 h p.i. in both transcripts (Figure 2B), followed by an 

elevated expression rate, especially in CTO-L, which increased very steeply after 6 h p.i.. However, 

analysis of the transcriptional activity normalized to the copy number of PRV DNA (determined by 

Real-Time RT-PCR) demonstrated that the expression from individual DNA molecules was highest at 

8 h p.i. for both transcripts (Figure 2C). F ig u re  2 A
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Figure 2. Transcription kinetics of CTO transcripts. The relative abundances of transcripts 

are depicted on a linear (A) and a logarithmic (B) scale. All RNA reads obtained by 

PacBio sequencing were normalized with mitochondrial RNAs. The transcriptional activity 

of the CTOs was also analyzed by normalizing the data with the relative amount of viral 

DNAs (C). 

We examined whether the efficiency of transcriptional readthrough varied in time by comparing the 

amounts of CTO-L and ul21 mRNA (Figure 3A,B). The data revealed that the ratio of CTO-L to the 

ul21 transcript increased continuously in time. An examination as to whether this was simply due to  

a higher transcription rate of individual ul21 genes did not indicate an ycorrelation between the 

readthrough efficiency and the transcriptional activity of this gene when the transcript reads were 

normalized with the DNA copy number (Figure 3C). This suggests that the efficiency of the 

recognition of transcriptional termination sequences might be regulated by a specialized mechanism. 
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Figure 3. Comparison of the amounts of ul21 and CTO-L transcripts. CTO-L is a readthrough 

product of the ul21 gene. (A) shows the transcriptional kinetics of the two transcripts, while 

(B) shows the change in readthrough efficiency with time. All RNA reads obtained by 

PacBio sequencing were normalized with mitochondrial RNAs. (C) shows the 

transcriptional activity normalized to the viral genome. 

3.2.3. Multi-Time-Point Real-Time RT-PCR Analysis of CTOs in Wild-Type (wt) and Mutant 

Backgrounds 

Wild-type PRV 

Strand-specific priming-based RT was used for the kinetic assay of the abundant CTO-S transcript 

in both low-titer (0.1 pfu/cell) and high-titer (10 pfu/cell) infection. The method used for the 

calculation of relative expression ratios (R) was as described earlier [41]. Real-Time RT-PCR analyses 

confirmed the PacBio and Illumina RNA-Seq results, showing that practically no transcription 

occurred in the first 2 h of the viral life cycle in the genomic region encoding CTO-S (Figure 3A). In the 

high-titer infection, CTO-S reached very high levels by 4 h p.i. (Figure 4A), which means that the 

expression of this transcript is initiated sometime between 2 and 4 h p.i. In the low-titer experiment, 

however, CTO-S was expressed at a very low level at 4 h, but reached a high level by 6 h p.i. (Figure 

4B). Thus, there is a shift in the expression kinetics of CTO-S transcripts in low-pfu as compared with 

high-pfu experiments. The CTO-L expression was examined by using strand-specific primers for the 

reverse transcriptions at 1, 2, 4, 6, 8, 12, 18 and 24 h at high-titer infection (Figure 4C) and 1, 2, 4, 6 and 
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8 h at low-titer infection (Figure 4D). There was no significant expression until 4 h p.i., which 

confirmed the PacBio sequencing data. F ig u re  4 A
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Figure 4. The change in relative expression ratio (R) of the CTO transcripts with time, 

determined by Real-Time RTR-PCR. (A). CTO-S: High-titer (10 pfu/cell) infection. The 

cDNAs were generated by reverse transcription of CTO-S transcripts through the use of 
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gene-specific or oligo(dT) primers. (B). CTO-S: Low-titer (0.1 pfu/cell) infection.  

The cDNAs were generated by reverse transcription of CTO-S transcripts through the use 

of gene-specific or oligo(dT) primers. (C). CTO-L: High-titer (10 pfu/cell) infection.  

The cDNAs were generated by reverse transcription of CTO-S transcripts through the use 

of gene-specific or oligo(dT) primers. (D). CTO-L: Low-titer (0.1 pfu/cell) infection.  

The cDNAs were generated by reverse transcription of CTO-S transcripts through the use 

of gene-specific or oligo(dT) primers. (E). Expression of CTO-S in vhs-KO background 

following high-titer infection. (F). Expression of CTO-S in ep0-KO background following 

high-titer infection.  

Mutant PRVs 

Two mutant viruses were used to analyze the CTO-S and CTO-L transcription kinetics in order to 

evaluate the potential effects of mutations on the expression kinetics of this transcript. The levels of 

the two transcripts were higher than that of the wt virus in the vhs-KO virus (Figure 4E), which is not 

surprising since the virion host shut-off (VHS) protein plays a role in the destabilization of RNA 

molecules [42]. We earlier reported similar transcription kinetics for the rest of the PRV genes [32]. 

The expression kinetics of the CTOs in the ep0-KO (ep0: early protein 0) background, however, 

exhibits an atypical pattern since the transcript levels of other late genes of the wt virus are generally 

higher than those of the ep0-null mutant virus, which is not the case for these lncRNAs (Figure 4F). 

Additionally, in contrast to the wt virus, the level of CTO-S and CTO-L is relatively high at 2 h p.i. in 

this mutant virus. Thus, EP0 appears to exert a down-regulatory effect on the transcription of CTOs 

throughout the whole life cycle of the virus. 

3.3. CTO Expression is Controlled by the IE180 Transactivator of PRV 

The transcription of PRV genes is controlled by the IE180 transactivator protein. Cycloheximide (CHX), 

an inhibitor of protein synthesis in eukaryotic cells, completely blocked gene expression, except in the 

ie180 gene itself and two as-lncRNA-encoding genes, LAT and LLT. The repression of CTO 

expression in the presence of CHX indicates that the transcription of these molecules is fully 

dependent on IE180 (Figure 5). Earlier we had shown that ul21 gene expression was completely 

repressed by CHX treatment [41], which—due to their sharing a common promoter—also resulted in 

the silencing of CTO-L transcription. 
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Figure 5. Analysis of transcription following CHX treatment of infected cells.  

The ie180 gene is not repressed by cycloheximide (CHX), but CTO-S is totally blocked by 

this protein synthesis inhibitor, the reason for this being that CTO-S requires the IE180 

protein for its expression. 

3.4. CTO Expression in the Presence of an Inhibitor of DNA Replication 

We additionally investigated the effect of phosphonoacetic acid (PAA), an inhibitor of DNA 

synthesis, on the transcription kinetics of CTO-S. The method of calculation for the evaluation of the 

repressive effect of PAA on the transcription of the individual genes was published earlier [41]:  

Ri-PAA = R6h-PAA/R6h-UT. In the present study, the average Ri-PAA values were found to be 0.717 for early 

genes and 0.113 for late genes. The value of Ri-PAA = 0.184 for CTO-S and Ri-PAA = 0.361 for CTO-L 

confirmed the result of our kinetic analyses in non-treated samples: these transcripts are expressed with 

late kinetics. 

3.5. Northern Blot and in Silico Analyses Revealed that CTO-S is not a miRNA Precursor 

Our investigation of whether CTO-S might be a miRNA precursor by using microRNA Northern blot 

analysis, however, did not detect any transcript with miRNA size in this genomic region (data not shown). 

Conversely, CTO-S RNA was detected by using traditional Northern blot analysis (Figure S1). Due to 

the very low copy number, we could not detect CTO-L by Northern blot analysis, however, the 

existence of this transcript was verified by four independent techniques (PacBio PA-seq, two Illumina 

RNA-seq methods and Real-time RT-PCR). Sequence analysis of CTO by using the pre-microRNA 

hairpin prediction tools miRNAFold [43] and miPred [44] yielded negative results in each case. 

Moreover, previous studies of the miRNA expression in PRV in both porcine dendritic [10] and 

epithelial [11] cell lines failed to detect miRNAs from the genomic region of CTO. 
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4. Discussion 

In this study we report the identification and characterization of two lncRNAs of pseudorabies virus. 

The two transcripts share a common poly(A) signal. CTO-S, a short intergenic lncRNA molecule is 

found to be very abundant, but is not expressed in the first 2 h of viral infection. We have 

demonstrated that the expression of CTO-S is controlled by the virally-encoded IE180 transactivator. 

CTO-L is expressed at a relatively low level, produced from the promoter of the ul21 gene through 

occasional transcriptional readthrough events across the transcription termination signal of this gene. 

The levels of CTO-S transcripts in the mutant viruses are higher at every time point than in the wt 

PRV, indicating a role of these gene products in the stability and/or the regulation of these molecules 

at the level of transcription. The vicinity of CTO-S to OriL and the overlap of CTO-L with OriL 

suggest a role of this genomic region in the regulation of DNA replication, which may be based on the 

interference between the transcriptional and replication machineries, as suggested by Huvet et al. [45]. 

Others did not verify the Huvet model, at least in human cells [46]. Despite this, interference between 

the two apparatuses may be an existing mechanism; the RNA polymerase molecules transcribing 

CTO-L might clash with DNA polymerase, thereby preventing the progress of replication in one of the 

two directions (Figure 6). It has been hypothesized, but never proved, that the synthesis of 

alphaherpesvirus DNAs starts with δ-type replication, which is followed by a switch to sigma-type 

replication generating concatemers [47]. The transcription of CTO-S may facilitate replication in 

another way, through separation of the two DNA strands, thereby helping the progression of DNA 

polymerase in one direction. In this scenario, the lack of CTO expression in the first few hours of the 

viral life cycle allows bidirectional δ-type replication; later, the process of CTO transcription itself 

makes the replication unidirectional through the two mechanisms proposed above. If there is no δ-type 

replication, and the viral DNA synthesis starts with CTO transcription itself, this makes the replication 

unidirectional through the two mechanisms proposed above. If there is no δ-type replication, and the 

viral DNA synthesis starts with concatemer formation immediately, the above putative mechanism 

might also contribute to the unidirectionality of DNA synthesis. Overall, extensive transcriptional 

activity near oriL potentially exerts an effect on the DNA replication by determining the orientation of 

the DNA synthesis and perhaps contributing to the switch from bidirectional to unidirectional replication. 

The polyadenylation of CTO-S indicates that this transcript may have additional function(s) in the 

life cycle of the virus. These transcripts do not have an essential role in the viral replication since two 

strains (TJ [48] and ZJ01 [49]) contain deletions at this genomic region. 

In this putative mechanism, the transcripts are merely by-products. It has been shown in a variety of 

organisms that a similar mechanism based on the clash between two RNA polymerase molecules in the 

overlapping region may have a regulatory effect on the transcription through transcriptional  

interference [50–52]. 
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Figure 6. A proposed model for the interactions between the replication and transcription 

machineries. (A) There is no CTO expression in the early stage of infection, and this 

allows the bidirectional synthesis of DNA (δ type replication). (B) Later, the transcription 

machineries of the CTOs facilitate unidirectional DNA replication through two 

mechanisms: (1) the DNA polymerase collides with the RNA polymerase synthesizing 

CTO-L, thereby halting the progression and/or preventing the assembly of the replication 

machinery (right to OriL); and (2) RNA polymerase transcribing the CTO-S (or CTO-L) 

facilitates the progression of DNA polymerase in one way through unwinding of the two 

DNA strands (left to OriL). For the sake of simplicity, the DNA synthesis from the lagging 

strand is not depicted. 
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Pseudorabies virus (PRV), also known as Aujeszky’s disease vi-
rus or suid herpesvirus 1, a member of the Alphaherpesvirinae

subfamily, causes significant abortion and morbidity in pigs, the
natural host of the virus (1). PRV is a useful model organism for
studies of the pathogenesis of herpesviruses. The genetically mod-
ified strains are powerful tracers for mapping neuronal circuits
(2–6), are tools in gene and cancer therapy (7), and serve as viral
vectors for gene delivery into mammalian neurons (3, 4) and car-
diomyocytes (8); PRVs have also been employed as live vaccines
against Aujeszky’s disease (9–11). Further, attenuated vaccine
strains of PRV are valuable models for novel vaccine development
against varicella-zoster virus (VZV) and herpes simplex virus 1
and 2 (HSV-1 and HSV-2, respectively) (12).

The currently available genome sequences of PRV contain sev-
eral discrepancies, mainly in intergenic repetitive regions
(GenBank accession no. JF797218.1), and the totally annotated
version of genome sequence is a composite of six different PRV
strains (GenBank accession no. NC_006151.1). We have se-
quenced the PRV Kaplan genome with Pacific Biosciences single-
molecule long-read sequencing technology (Pacific Biosciences,
Menlo Park, CA, USA) in order to upgrade the draft sequences,
reconstruct the GC-rich and repetitive regions of the genome, and
extract epigenetic information. The availability of the completely
annotated genome and the single-base resolution methylation
map of strain Kaplan will aid in understanding the control of viral
gene expression at different levels. Investigations of the PRV ge-
nome and gene functions are expected to result in the develop-
ment of effective vaccines and direct practical applications in gene,
cancer, and antiviral therapies.

Sequencing of purified virion DNA was carried out on the Pa-
cific Biosciences RSII sequencer. SMRTbell template libraries
were prepared from the DNA, as previously described (13, 14),
using standard protocols for 6-kb and 20-kb library preparation.
Sequencing was performed in five single-molecule real-time
(SMRT) cells with P5 DNA polymerase and C3 chemistry (P5-C3)
yielding a total of 78,111 reads and an extremely high coverage
(1,200�) throughout the genome.

The sequencing reads were processed and mapped to the respective
referencesequenceswiththeBLASRmapper(https://github.com/Pacific
B i o s c i e n c e s / b l a s r) and the Pacific Biosciences SMRT Analysis
pipeline (https://github.com/PacificBiosciences/SMRT-Analysis
/wiki /SMRT-Pipe-Reference-Guide-v2.0) using the standard
mapping protocol.

The protein-coding genes were predicted by GATU (15). Man-
ual annotation was used to identify other genomic features. An-
notation of a previously unknown noncoding RNA (named Close
to OriL [CTO]), a newly discovered splice site of the early protein
0 gene, and new isoforms of 11 protein-coding genes are based on
RNAseq data (our unpublished data). MicroRNA (miRNA) an-
notation was based on the precursor miRNAs found in strains
NIA-3 and Ea.

The complete genome of strain Kaplan of PRV is characterized
as a double-stranded linear DNA composed of 143,423 bp, with an
average G�C content of 73.59%. PRV contains 70 protein-coding
genes (11 genes have different isoforms), two latency-associated
transcripts, and a long noncoding RNA, and its genome predicts
16 miRNAs.

Nucleotide sequence accession number. The complete ge-
nome of strain Kaplan of pseudorabies virus was assigned DDBJ/
EMBL/GenBank accession no. KJ717942.
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