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1. INTRODUCTION 

 

1.1. Mitochondria, structure and function 

Mitochondria are membrane-enclosed organelles, they are the energy-producing 

centers in eukaryotic cells. The inner mitochondrial membrane is loaded with the protein 

complexes of the electron transport chain (ETC) and adenosine triphosphate (ATP) 

synthesis. This membrane surrounds the matrix, in which the citric acid cycle produces the 

electrons that enter and skip through the ETC. The outer membrane has many protein-based 

pores that allow the passage of ions and molecules as large as a small protein. In contrast, 

the permeability of the inner membrane is more restricted than that of the cell membrane. 

Mitochondria produce ATP during oxidative phosphorylation, control the oxidative state of 

the cell, and are major regulators of caspase-dependent and caspase-independent apoptotic 

pathways. Mitochondria are also involved in other cellular activities like signaling, 

differentiation, senescence, and the control of cell cycle and growth. The number of 

mitochondria in a cell can vary widely depending on the organism, tissue or cell type. For 

example, red blood cells have no mitochondria, whereas liver cells can have more than 

2000 (Alberts 1994). 

1.1.2. The mitochondrial electron transport 

Electrons are transported through the complexes of the ETC, and are finally 

accepted by an oxygen molecule. This process drives the ATP synthesis, the exclusive 

source of cellular energy (Figure 1). The electrons enter the ETC at complex I, the 

nicotinamide adenine dinucleotide (NADH) dehydrogenase, and then skip to coenzyme Q. 

From coenzyme Q, the electrons are passed to complex III, the cytochrome c reductase, 

which is associated with another proton translocation event. The electrons flow from 

complex III to cytochrome c, and then to complex IV, the cytochrome oxidase complex. 

Electrons accumulate at complex IV, the end complex of ETC, where the protons and the 

electrons are finally accepted by oxygen molecules. As a result, the oxygen is reduced to 

water; meanwhile the proton gradient generates the proton motive force for ATP synthase. 

Complex II, the succinate dehydrogenase complex, is a separate starting point, where the 

electrons can enter from succinate and flow back to coenzyme Q, and then again to complex 

III, cytochrome c and complex IV. Thus, there is a common electron transport pathway 

beyond the two entry points, either complex I or complex II, and a reverse electron flow 
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step between them. In summary, substrate oxidation by the ETC creates a proton gradient 

across the inner membrane, and for optimal performance, the electron shuttle must be in a 

steady state as regards the two entry points and the final utilization points. Oxygen 

availability, is therefore crucial. 

Figure 1. The mitochondrial electron transport chain 

 

1.2. Mitochondrial dysfunction in liver diseases  

Due to their diverse physiological functions, dysfunctional mitochondria can cause 

various acute and chronic diseases, thus being potential targets for therapies and 

diagnostics. Liver diseases are also often accompanied by mitochondrial functional 

disorders, and likewise, diseases of the mitochondria can cause damage to liver cells. 

Hepatic manifestations of mitochondrial disorders range from steatosis, fibrosis and 

cirrhosis to hepatocellular carcinoma and chronic liver failure (Pessayre 2005; Caldwell 

1999; Sanyal 2001; Ibdah 2005). These conditions belong to a group of non-alcoholic fatty 

liver diseases (NAFLDs) which have a high prevalence worldwide (Clark 2002). The 

NAFLD-associated mitochondrial defects include reduced activity of respiratory chain 

complexes and decreased mitochondrial β-oxidation. Ultrastructural lesions, such as 

swelling, paracrystalline inclusions in the matrix and hypodensity have also been shown by 

electron microscopy (Wei 2008). Mitochondria play a central role in changes in liver 

architecture as well, because they can mediate death receptor signaling, metabolic disorders 

and fibrosis. As an end-stage of NAFLDs, hepatocellular carcinoma is the most common 
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malignant tumor of the liver. Mitochondrial dysfunctions in hepatocellular carcinoma 

display increased ROS production, Ca2+mobilization and reduced ATP generation (Chang 

2009). 

1.2.1 Ischemia-reperfusion (IR)-induced mitochondrial disturbances 

IR injury is a common complication of inflow-controlled major surgical resections 

and organ transplantations. The main source of reactive oxygen species (ROS) in hepatic IR 

injury are the mitochondria of activated sinusoidal endothelial cells and hepatocytes 

(Kalashnyk 2012). The lack of oxygen during ischemia causes a decrease in ATP 

production, and an increase in ATP hydrolysis due to the subsequent activation of anaerobic 

metabolism. In contrast, restoration of the blood flow during the reoxygenation phase leads 

to overproduction of superoxide, mainly at the sites of complexes I and III (Kalashnyk 

2012). Loss of calcium homeostasis, production of ROS and ETC damage are all different 

aspects of mitochondria-related changes in IR (Hines 2003). 

ROS can also derive from xanthine dehydrogenase/xanthine oxidase (XOR) system, 

furthermore, infiltrating polymorphonuclear leukocytes (PMNs) also produce ROS and 

cytokines upon reperfusion (Granger 1986; Schoenberg 1991; Lojek 1997). Cytokines 

promote the recruitment of PMNs and the expression of myeloperoxidase (MPO) enzyme 

upon their activation, thereby contributing to the progression of parenchymal injury. These 

cytokines amplify Kupffer cell activation, tumor necrosis factor-α (TNF-α) and interleukin-

1 (IL-1) secretion, and promote PMN recruitment and sticking into the liver sinusoids. In 

addition to high level ROS generation, liver IR injury leads to lower levels of antioxidants 

such as glutathione (GSH) or superoxide dismutase. 

Mitochondria are not only sources but also target organelles of IR-related 

intracellular changes; hence ischemia impairs both their structural and functional integrity. 

Lipid peroxidation, corresponding to the peroxidation of polyunsaturated fatty acids, is a 

well-known consequence of IR injury. The degree of lipid peroxidation can be estimated via 

the amount of malondialdehyde (MDA), a marker of oxidative damage of membranes. In 

fact, the overproduction of ROS during the reperfusion phase results in oxidative damage 

and mitochondrial inner membrane permeability transition (Hirakawa 2003). In the case of 

elevated membrane permeability, cytochrome c is released in considerable amounts as 

major starting molecules of apoptosis. Cytochrome c activates caspases 3, the point of no 

return of the apoptosis pathway, thus lipid peroxidation inevitably induces apoptosis. 

Furthermore, caspase 3 activates other effective caspases as well, leading to substrate 
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proteolysis (structure proteins, cell cycle proteins). The caspase-dependent apoptotic 

pathway is actively regulated, which means that ATP is required to proceed. Consequently, 

when ATP level decreases in IR conditions, cell necrosis occurs more frequently, which is a 

passive, ATP-independent way of cell death. 

1.3. Examination of mitochondrial functions with high-resolution respirometry 

Respirometry detects the consumption of oxygen and it is the main tool to study 

mitochondrial function (Gnaiger 2000). In recent years, high-resolution respirometers have 

been developed which allow to determine many parameters of mitochondrial function in 

routine assays using small samples of biological material. The Oxygraph-2k (Oroboros 

Instruments, Innsbruck; Austria) is a second generation respirometer (Figure 2), equipped 

with two experimental chambers in which mitochondria, living cells or freshly prepared 

tissue samples are suspended in a suitable medium. Each chamber is supplied with an 

oxygen sensor and the oxygen consumption of mitochondria can be computed based on the 

changes in oxygen concentration in the chambers. Three different types of samples may be 

subjected to respirometric studies: isolated mitochondria, permeabilized cells and 

permeabilized tissues (e.g. precisely cut liver samples). In the latter cases the cellular 

membrane is made permeable in order to facilitate chemicals to cross over the membrane. 

During the respirometric measurements, the mitochondria undergo different “states” by the 

sequential addition of substrates or inhibitors (Figure 3). The key advantage of this 

approach is that the respiratory capacity can be assessed at multiple levels of the respiratory 

chain which makes the technique a powerful tool for studying the complex mitochodrial 

functionality. There are many possible human fields of application in conditions and 

diseases where a linkage to mitochondria is expected, such as diabetes mellitus type 2 

(Jelenik 2013), obesity (Schöttl 2015), IR injuries (Gnaiger 2001), aging and cancer 

(Domenis 2011). 



12 

 

 

Figure 2. The Oxygraph-2k high-resolution respirometer 

 

 
Figure 3. To measure the respiratory activity of the liver mitochondria, tissue samples are 

homogenized in mitochondrial respiration medium and then subjected to high-resolution 

respirometry. Glutamate (2 mM) and malate (10 mM) were used in combination to induce 

complex I-linked respiration. The complex II-linked state II respiration was determined 

with 10 mM succinate, saturating ADP (2.5 mM final concentration) was added in order to 

stimulate respiration to the level of OxPhos capacity. Complex I was inhibited by rotenone 

(0.5 µM) and complex III by antimycin A (2.5 µM). Finally, 2 mM ascorbate and 20 μM 

N,N,N,N-tetramethyl-p-phenylenediamine (TMPD) were added for complex IV-linked 

respiration, which was inhibited by sodium azide (50 mM). 
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1.4. Bioactivity of methane (CH4) 

CH4 is the simplest alkane and the main component of natural gas environment. At 

room temperature and at atmospheric pressure, CH4 is a colorless, odorless gas. It plays a 

well-known role in tropospheric and stratospheric chemistry, where the mass of the released 

CH4 is oxidized to carbon dioxide due to its reactivity with hydroxyl radicals (Cantrell, 

1990; Hurkuck, 2012). The atmospheric CH4 concentration has been increased 

approximately 2.5-fold since preindustrial times, and it is therefore regarded as a significant 

greenhouse gas of growing ecological importance (Denman, 2007; Mitchell, 2013). 

Naturally-occurring CH4 is mainly produced by methanogenesis. This multistep process is 

used by microorganisms as an energy source (Hamilton 2003). 

CH4 is intrinsically nontoxic in vivo. It is a simple asphyxiant, which means that 

tissue hypoxia may occur when CH4 displaces air, and hence oxygen, in a restricted space, 

and the concentration of oxygen is reduced to below approximately 18% in the internal 

milieu of the body. Nevertheless, the inhalation of normoxic air containing 2.5% CH4 for 3 

hours has been shown to have no side-effects on the blood gas chemistry, and not to 

influence the macrohemodynamics in unstressed animals (Boros 2012). On the other hand, 

CH4 can readily change the symbiosis with other gas molecules in closed spaces. The 

details and consequences of such in vivo relationships are basically unknown because 

determination of the intracellular distribution of these gas molecules is technically limited. 

1.4.1. Mitochondria might be intracellular targets of CH4 

Mammalian methanogenesis is widely regarded as an indicator of the 

gastrointestinal (GI) carbohydrate fermentation by the anaerobic flora. Once generated by 

microbes or released by a nonbacterial process, CH4 is generally considered to be 

biologically inactive. However, some data do hint at an association with the small bowel 

motility regulation, as CH4 produced in the GI tract is usually associated with a decreased 

intestinal transit time, and other results suggest that CH4 production (usually defined as a > 

1 ppm elevation of exhaled CH4 over the atmospheric level on breath testing) correlates 

with constipation in irritable bowel syndrome (Pimentel 2014). Information on the effects 

of exogenous CH4 is sparse, but a previous study demonstrated that CH4 supplementation 

can attenuate microcirculatory failure and the tissue accumulation of inflammatory cells in a 

large animal model of intestinal IR (Boros 2012). These data point to an anti-inflammatory 

potential for CH4, but the identification of intracellular targets remains elusive (Boros 

2012). 
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We postulated that, as they are critically involved in hypoxia-reoxygenation-induced 

intracellular respiratory damage, mitochondria may be targets of CH4 administration. In 

particular, we hypothesized that if CH4 is bioactive, it can exert its effect by influencing the 

respiratory activity and ROS production of mitochondria. 

1.5. Biological and anti-inflammatory effects of L-alpha glycerylphosphorylcholine 

(GPC) 

GPC is a water-soluble deacylated metabolite of phosphatidylcholine (PC) 

(Brownawell 2011), a source of choline and a precursor of acetylcholine (Abbiati 1993; 

Parnetti 2001). Under physiological conditions, GPC can be involved in the preservation of 

the structural integrity of cellular membranes, probably through the stimulation of PC 

synthesis via the Kennedy pathway (Gibellini 2010). 

Moreover, it is also recognized that choline is used for CH4 generation in various 

models of hypoxia and reoxygenation (in isolated mitochondria, endothelial cell cultures, in 

the exhaled air after reoxygenization of hypoxic animal tissues and in plants in response to 

excess excitation energy) (Ghyczy 2008). Today, the anti-inflammatory potential of choline 

is well established, but the underlying mechanism is not fully understood. Recently, it has 

been demonstrated that choline could participate in the “cholinergic anti-inflammatory 

pathway”, including interference with the mechanism of activation of leukocytes or 

macrophages (Tracey 2000). Additionally, we have shown that exogenous PC increases 

tolerance to ischemia and hypoxia, and inhibits leukocyte accumulation in various 

experimental scenarios (Erős 2006, Hartmann 2009). We have also shown that CH4-

producing phospholipid substrates inhibit the formation of ROS proportional to the amount 

of CH4 generated and the number of methyl groups in the molecules (Ghyczy 2008). It is 

especially notable that liver concentrations of endogenous GPC are significantly depleted 

after hemorrhagic shock, a prototype of systemic IR injury (Scribner 2010), and previous 

data suggest that exogenous GPC may influence tissue reactions in IR injury (Tőkés 2015; 

Hartmann 2014; Ghyczy 2008). Thus, the possible anti-inflammatory and scavenging 

potential of GPC is of particular importance, because it could offer means of targeting the 

inflammatory cascade without the confounding effects of mediators deriving from the 

metabolism of lipid side-chains. 

1.5.1. Potential effects of GPC on mitochondria 

Interestingly, mitochondrial inhibitors of the oxidative phosphorylation (OxPhos) 
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system can directly increase PC breakdown by activating phospholipase A2, leading to an 

increased concentration of metabolic products (Farber 2000). It has also been demonstrated 

that membrane PC is depleted after an IR insult, and the liberated choline can play a 

protective role in the intracellular redox imbalance (Bruhl 2004). Furthermore, it was also 

shown that hepatic concentrations of GPC are significantly reduced after a period of 

hemorrhagic shock, with recovery to the baseline only 48 h later (Scribner 2010). 

From therapeutic aspects, influencing mitochondrial damage is an appropriate 

strategy in hypoxia- or IR-related conditions, and the above indirect evidences all suggest 

that GPC may be an active and efficient compound in these settings. Based on this 

hypothesis, we plan to design in vitro tests using intact liver mitochondria in order to 

analyze the effects of GPC on mitochondrial function and on hypoxia-induced dysfunction. 

Following that, we intend to investigate the in vivo functional changes of liver mitochondria 

in response to a standardized IR challenge. 
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2. MAIN GOALS OF THE STUDIES 

 

 The primary goal of the study was to characterize the functional changes of liver 

mitochondria in response to IR by means of high resolution respirometry. 

o First, we designed in vitro tests using intact liver mitochondria to study 

mitochondrial functions directly. 

o Furthermore, we planned to investigate mitochondrial ETC changes in unstressed 

animals or after a standardized IR insult. 

 Secondly, we set out to investigate the effects of potentially effective treatments on 

IR-damaged hepatic mitochondria. 

o We hypothesized that inhaled CH4 can influence the mitochondrial respiratory 

activity. 

o We hypothesized that the protective mechanism of exogenous GPC is also linked to 

mitochondria. 

 

 Thirdly, we set out to investigate the mechanism of action of inhaled CH4 and GPC 

treatments. We hypothesized that these pathways will interfere with ROS generation caused 

by ETC dysfunction, and thus pro-inflammatory cellular activation can be reduced. 
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3. MATERIALS AND METHODS 

 

The experiments were carried out on male Sprague-Dawley rats (average weight 

300±20 g, 7-8 weeks old) housed in an environmentally controlled room with a 12-hour 

light-dark cycle, and kept on commercial rat chow (Standard rat chow LT/n; Innovo Kft, 

Gödöllő, Hungary) and tap water ad libitum. The experimental protocol was in accordance 

with EU directive 2010/63 for the protection of animals used for scientific purposes, and it 

was approved by the National Scientific Ethical Committee on Animal Experimentation 

(National Competent Authority) with the license number V./148/2013. This study also 

complied with the criteria of the US National Institutes of Health Guidelines for the Care 

and Use of Laboratory Animals. 

3.1. Surgical procedures 

The rats were anesthetized with sodium pentobarbital (45 mg/kg ip), and the trachea 

was cannulated to facilitate respiration. The right jugular vein and carotid artery were 

cannulated for fluid and drug administration, respectively. Then small supplementary doses 

of pentobarbital were given intravenously (iv) when necessary. The animals were placed in 

a supine position on a heating pad to maintain the body temperature between 36 and 37 oC, 

and Ringer's lactate was infused at a rate of 10 ml /kg/h during the experiments. For the 

preparation of the liver, the fur covering the abdomen was shaved, and the skin was 

disinfected with povidone iodide. After midline laparotomy and bilateral subcostal 

incisions, the liver was carefully mobilized from all ligamentous attachments. Complete 

ischemia of the median and left hepatic lobes was achieved by clamping the left lateral 

branches of the hepatic artery and the portal vein with a microsurgical clip for 60 min. After 

the period of ischemia, the clips were removed and measurements were performed during a 

60-min reperfusion period (Hartmann 2014). The wound was temporarily covered with non-

water-permeable foil during the reperfusion period. 

3.2. Experimental protocols  

3.2.1. Experimental series to study IR-induced changes in mitochondrial functions 

The animals were randomly assigned to two groups. In the IR group (n=6), the rats 

were subjected to a 60-min complete ischemia followed by a 60-min reperfusion. Sham-

operated animals (SH group, n=6) underwent the same surgical procedure but liver 
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ischemia was not induced. Liver samples were taken from the affected lobes at the end of 

the reperfusion period and at identical time point from the sham-operated animals. 

3.2.2. Experimental series to study the effects of CH4 on liver mitochondria 

The animals were randomly assigned to one or another of the following groups. In 

the IR group (n=6), the mitochondrial respiratory functions in response to 60-min complete 

ischemia and 60-min reperfusion with normoxic air were examined. Control tissue samples 

were taken to determine the baseline mitochondrial respiratory variables, then ischemia was 

induced in the median and left hepatic lobes by clamping the left lateral branches of the 

hepatic artery and the portal vein. At 55 min of ischemia, liver samples were taken to 

analyze the mitochondrial respiration in response to ischemia. Following the release of the 

vascular occlusions, biopsies were obtained from the affected lobes at 5, 30 and 60 min of 

reperfusion. In the IR+CH4 group (n=6), the protocol was identical, and additionally, 

inhalation with normoxic artificial air containing 2.2% CH4 (Linde Gas, Budapest, 

Hungary) was started after 50 min of ischemia which continued throughout the reperfusion 

period. The sham-operated animals in the SH group (n=6) underwent the same surgical 

procedure but liver ischemia was not induced and the animals inhaled normoxic air, while 

the sham-operated animals in the SH+CH4 group (n=6) were not subjected to liver 

ischemia, but inhaled CH4 for the same duration as in the IR+CH4 group. 

3.2.3. Experimental series to study the effects of GPC on mitochondrial dysfunction-

caused ROS generation 

The animals were randomly assigned to four groups. In the vehicle-treated IR group 

(n=6), the rats were subjected to 60-min complete ischemia which was followed by 60-min 

reperfusion. In the IR+GPC group 16.56 mg/kg bw GPC (MW: 257.2, Lipoid GmbH, 

Ludwigshafen, Germany; dissolved in 0.5 ml of sterile saline solution at 0.064 mM 

concentration) was injected iv and the same protocol was used 5 min before the end of 

ischemia (Tőkés 2015). The sham-operated, vehicle-treated animals (SH group, n=6) 

underwent the same surgical procedure without liver ischemia, while another control group 

(SH+GPC group, n=6) received GPC in the same time-frame as the IR+GPC group. 

3.3. High-resolution respirometry  

Intact liver mitochondria from sham-operated animals were used to study in vitro 

mitochondrial functions directly. The isolation protocol was performed by the method of 
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Gnaiger et al. (Gneiger 2000). Briefly, mitochondria were isolated from the left liver lobe in 

isotonic sucrose medium (300 mM sucrose, 0.2 mM EDTA and 10 mM HEPES, adjusted to 

pH 7.4 with KOH at 4 °C). After the last centrifugation, mitochondrial pellets were 

resuspended in sucrose medium. 

For the in vivo experiments, liver biopsy samples were taken at different time points 

of the experimental protocols. To determine the respiratory activity in the liver 

mitochondria, liver samples were homogenized in 1 ml of MitOx respiration medium with a 

glass Potter homogenizer, then 50 µl of homogenates were weighed into the detection 

chambers and subjected to high-resolution respirometry.  

3.3.1. The Substrate-Uncoupler-Inhibitor Titration (SUIT) protocol to study IR-

induced changes 

The SUIT protocol was employed in liver homogenates to explore the IR-related 

changes in the electron transport system (ETS). Glutamate (2 mM) and malate (10 mM) 

were used in combination to induce complex I-linked respiration; saturating ADP (2.5 mM 

final concentration) was added in order to stimulate respiration to the level of OxPhos 

capacity. By adding succinate (10 mM), the complex I+complex II OxPhos capacity was 

detected, then the uncoupler carbonyl cyanide m-chlorophenyl hydrazine (CCCP) (C; 0.5 

µM per step) was titrated. Finally, complex I was inhibited by rotenone (0.5 µM) and 

complex III by antimycin A (2.5 µM). 

3.3.2. Effects of CH4 on mitochondrial respiration 

1. Pilot experiments were conducted to detect the changes in respiratory activity of 

different mitochondrial OxPhos system complexes in response to CH4 in intact 

mitochondria. For respirometric analysis, isolated mitochondria were suspended in 1 ml  

MitOx medium and weighed into the chambers, while the gas phase contained the 2.2% 

CH4-air mixture or room air (n=8). The rate of respiration was determined after the addition 

of 2 mM malate and 10 mM glutamate for complex I-linked respiration, 2.5 mM ADP for 

complex I state III respiration, 10 mM succinate for complex I and complex II state III 

respiration, 0.5 μM rotenone for complex II-linked respiration and finally 2.5 μM antimycin 

A, 2 mM ascorbate and 20 μM N,N,N,N-tetramethyl-p-phenylenediamine (TMPD) for 

complex IV-linked respiration. 

2. Basal protocol was employed to study the ETS (state II) and OxPhos (state III) 

capacity of mitochondria (state II-III respiration protocol) from liver homogenates. The 
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steady-state oxygen consumption (respiratory flux) was observed; then, the complex II-

linked state II respiration rate was determined with 10 mM succinate after the addition of 

0.5 μM complex I inhibitor rotenone. To determine the maximum respiratory capacity of 

complex II-linked (state III) respiration, 2.5 mM ADP was added to the chamber. Finally, 

the intactness of the outer mitochondrial membrane was assessed after 10 μM cytochrome c 

addition. The respirometry data were normalized to wet weight (Hutter 2007). 

3.3.3. Determination of the effective GPC concentration on mitochondrial functions 

1. We have performed in vitro experiments to detect the changes in the respiratory 

activity of intact liver mitochondria in response to 30-min anoxia, with or without GPC 

administration, using high-resolution respirometry. In this experimental series, the animals 

were anesthetized for sample taking using sodium pentobarbital (45 mg/kg ip). The liver 

samples were weighed into the detection chambers, 50 µl in each, which were calibrated to 

200 nmol/ml oxygen concentration in room air. In order to determine the effective GPC 

concentration range, series of GPC solutions from 1 nM to 800 mM were used. The steady-

state basal oxygen consumption of the homogenates (respiratory flux) was measured. The 

complex II-linked state II respiration rate was then determined with 10 mM succinate after 

the addition of 0.5 μM complex I inhibitor rotenone. Then the complex II-linked (state III 

respiration) maximum respiratory capacity was estimated by adding saturating 

concentration of ADP to the medium. Subsequently, anoxia was applied and, at the end of 

the 30-min anoxic period, the chambers were opened to recover the mitochondria at 200 

nmol/ml oxygen concentration. 

2. The SUIT protocol was employed to investigate the effect of GPC on the 

respiratory complexes of the ETS and the coupling of the ATP synthase. Administration of 

substrates-inhibitors and the uncoupler CCCP was identical to that seen in the IR-linked 

protocol. 

3. The Leak protocol was used to detect the proton leak in mitochondria as follows. 

In order to determine the leak respiration, liver samples were homogenized in 1 ml of 

MitOx medium, then 50 µl of homogenates were weighed into the detection chambers. The 

complex II-linked state II respiration rate was then determined with 10 mM succinate, after 

the addition of 0.5 μM complex I inhibitor rotenone. To determine the complex II-linked 

state III respiration, 2.5 mM ADP was added to each chamber. Finally, the leak respiration 

was measured in the leak state by inhibition of ATP synthase by adding 0.5 μM oligomycin 

to the medium (state IV respiration). 
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3.4. Detection of cytochrome c oxidase activity 

The cytochrome c oxidase activity was calculated via the time-dependent oxidation 

of cytochrome c at 550 nm as described previously (Szarka 2004). Briefly, liver samples 

were homogenized in 10x ice-cold Mitox medium with a Potter grinder, and then 

centrifuged at 800g for 5 min at 4 °C. Then 50 μl supernatant was added to 2.5 ml  

cytochrome c stock solution (10.6 mg cytochrome c dissolved in 20 ml  distilled water) 

(Sigma-Aldrich, Budapest, Hungary) and the decrease in optical density at 550 nm was 

measured spectrophotometrically during 1 min intervals at 0, 30 and 60 min. 

3.5. Xanthine oxidoreductase (XOR) activity 

Tissue biopsies were homogenized in phosphate buffer (pH 7.4) containing 50 mM 

Tris.HCl, 0.1 mM EDTA, 0.5 mM dithiotreitol, 1 mM phenylmethylsulfonyl fluoride, 10 μg 

ml−1 soybean trypsin inhibitor and 10 μg ml−1 leupeptin. The homogenate was centrifuged 

at 4 °C for 20 min at 24,000g and the supernatant was loaded into centrifugal concentrator 

tubes. The activity of XOR was determined in the ultrafiltered supernatant by fluorometric 

kinetic assay based on the conversion of pterine to isoxanthopterine in the presence (total 

XOR) or absence (XO activity) of the electron acceptor methylene blue (Beckman 1989). 

3.6. NADPH oxidase activity 

The NADPH oxidase activity of the liver homogenates was determined by a 

modified chemiluminometric method of Bencsik et al. (Bencsik 2010). The liver samples 

were homogenized in 2 ml MitOx medium, then 50 µl of resuspended homogenate was 

added in Dulbecco’s solution containing lucigenin (10 mM), EGTA (10 mM) and 

saccharose (900 mM). The NADPH oxidase activity was determined via the NADPH-

dependent increase in luminescence elicited by adding 1 mM NADPH (in 20 μl), measured 

with an FB12 Single Tube Luminometer (Berthold Detection Systems GmbH, Bad 

Wildbad, Germany). Samples incubated in the presence of nitroblue tetrazolium served as 

controls. The measurements were performed in triplicates and were normalized for protein 

content. The protein content of the samples was determined with Lowry’s method. 

 3.7. Myeloperoxidase (MPO) activity 

MPO activity was measured in liver biopsies by the method of Kuebler et al 

(Kuebler 1996). Briefly, the tissue was homogenized with Tris-HCl buffer (0.1 M, pH 7.4) 

containing 0.1 M polymethylsulfonyl fluoride to block tissue proteases, and then 
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centrifuged at 4 °C for 20 min at 24.000 g. The MPO activities of the samples were 

measured at 450 nm (UV-1601 spectrophotometer; Shimadzu, Japan), and the data were 

referred to the protein content. 

3.8. Whole-blood superoxide and hydrogen peroxide production 

10 μl whole-blood and 50 μl zymosan were added to 1 ml Hank’s solution (PAA 

Cell Culture, Westborough, MA, USA) and the mixture was incubated at 37 °C for 30 min, 

until assay (Ferdinandy 2000). The chemiluminometric response was measured with a 

Lumat LB9507 luminometer (Berthold Technologies, Wildbad, Germany) during a 30-min 

period after the addition of 100 μl of lucigenin and luminol reagent.  

3.9. MDA assay on liver tissue 

The lipid peroxide MDA level was measured through the reaction with 

thiobarbituric acid, by the method of Placer et al (Placer 1966) and corrected for the tissue 

protein content. 

3.10. Liver nitrite/nitrate (NOx) levels 

The levels of NOx, the stable end products of NO in the tissues, were measured by 

the Griess reaction. This assay is based on the enzymatic reduction of nitrate to nitrite, 

which is then converted into a colored azo compound, which is detected 

spectrophotometrically at 540 nm (Purnak 2012). 

3.11. Reduced glutathione (GSH) and oxidized glutathione disulfide (GSSG) in liver 

homogenates 

The reduced glutathione (GSH) and oxidized glutathione disulfide (GSSG) ratio was 

determined by using a Fluorimetric Gluthatione Assay Kit (Sigma Aldrich, USA). The GSH 

content of the sample can be determined by quantifying the thiol concentration in biological 

samples by reacting with the thiol groups they contain. The adduct can be detected with 

fluorimetry at 478 nm. The GSSG content of the sample was calculated following the 

recommendations of the manufacturer. 

3.12. Laser-scanning confocal microscopy (CLSEM) and staining protocol 

In a separate series fluorescence confocal laser scanning endomicroscopy (CLSEM, 

Five1, Optiscan Pty. Ltd., Melbourne, Victoria, Australia, excitation wavelength 488 nm; 

emission detected at 505-585 nm) developed for in vivo histology was employed to detect 
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the extent of tissue injury in the left liver lobe. The treatments (n=6, each group) were 

identical to the previous in vivo protocol. 

The microvascular structure was recorded after the iv administration of fluorescein 

isothiocyanate-dextran (FITC-dextran, 150 KDa, Sigma-Aldrich, Budapest, Hungary, 10 

mg/ml solution dissolved in saline). For the in vivo staining of liver cells, 0.01% acriflavine 

(Sigma-Aldrich, Budapest, Hungary) was injected into the jugular vein. The objective of the 

device was placed onto the liver surface, and confocal imaging was performed 5 min after 

dye administration (1 scan/image, 1024 x 512 pixels and 475 x 475 μm per image). 

The analysis was performed twice separately by the same investigator (PH) using a 

semiquantitative histology score (S0-S4) based on hepatocyte swelling, shrinkage, loss of 

integrity of cellular and nuclear membranes, or nuclear alterations. 

3.13. TUNEL and DAPI staining 

Apoptosis was detected by the TUNEL method. For apoptotic cell staining, samples 

(n=4-6) were analyzed with In situ cell death detection kit, TMR red (Roche, Cat. No 12 

156 792 910) according to the manufacturer’s instructions. Briefly, tissue sections were 

fixed in 4% paraformaldehyde. For permeabilization, 0.1% Triton X-100 in 0.1% sodium 

citrate was used. The TUNEL reaction mixture comprised one part Enzyme Solution and 

nine parts Label Solution. Slides were incubated in a humidified atmosphere for 60 min at 

37 °C in the dark, followed by DAPI staining (Sigma-Aldrich®, 1:100). For each 

experimental series, one negative control (incubated with the Label Solution) and one 

positive control (digested with DNase I, grade I before application of the TUNEL reaction 

mixture) samples were used. Three pictures per sample were taken with a Zeiss 

AxioImager.Z1 microscope at 20x magnification. The number of apoptotic cells per field of 

view (524.19 μm x 524.19 μm) was determined by Image J 1.47 software.  

3.14. Statistical analysis 

Data analysis was performed with SigmaStat statistical software (Jandel 

Corporation, San Rafael, CA, USA). Changes in variables within and between groups were 

analyzed by two-way repeated measures ANOVA, followed by the Bonferroni test in the 

cases of the mitochondrial respiratory function, the cytochrome c release from the 

mitochondria and whole-blood superoxide and H2O2 production; one-way ANOVA 

followed by the Holm-Sidak test was applied in the assay of tissue MDA, XOR activity, 

MPO activity, NADPH-oxidase activity, tissue nitrite/nitrate, H2O2 level and superoxide 
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level. Data were expressed as means ± SEM. For statistical analysis of TUNEL and DAPI 

staining, the Kruskal-Wallis and Dunn tests were applied. Histological data were expressed 

as median ± SD. Values of P < 0.05 were considered statistically significant. 
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4. RESULTS 

4.1. IR-induced mitochondrial dysfunctions 

The IR-induced changes were investigated with the SUIT protocol. In response to IR 

injury, both complex I and II basal respiration decreased, as compared with the sham-

operated animals, which refer to a lower capacity of the ETS. The ADP-stimulated OxPhos 

capacity was also decreased at the end of ischemia and throughout the reperfusion phase. 

Coupling of mitochondrial respiration was significantly damaged in the IR group. 

Application of selective inhibitors of the mitochondrial complexes (rotenone and antimycin-

A) provided evidence for the major role of complex I in IR injury-related mitochondrial 

dysfunction, as evidenced by decreased oxygen consumption (Figure 4). 

 

Figure 4. Oxygen consumption of liver homogenates measured by means of high-resolution 

respirometry (in pmol/s/ml). A: Original registration; B: SUIT protocol. Animals were 

subjected to 60 min of liver ischemia followed by 60 min of reperfusion (IR group, black 

squares) or were sham-operated (SH group, white circles). Data are presented as means ± 

SEM. # P< 0.05 vs baseline; * P< 0.05 vs IR group (two-way ANOVA, Bonferroni test). 

bsl: baseline; M: Malate; D: ADP; G: Glutamate; S:Succinate; CCCP: chemical inhibitor of 

OxPhos (uncoupler); Rot: Rotenone; Ama: Antimycin A. 

4.2. Effects of CH4 on mitochondrial function 

Basal mitochondrial respiration in intact mitochondria was determined by adding 

substrates of complex I (Table 1). The saturating concentration of ADP resulted in a 2-fold 

increase in complex I-linked respiration, which was not affected by CH4 treatment. After a 

stable signal had been reached, complex II-dependent respiration was stimulated by adding 

succinate which caused a 6-fold increase in both groups. Complex I was then inhibited with 

rotenone to assess complex II-linked respiration. After complex III inhibition with 
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antimycin-A, the residual oxygen consumption was equal in the two groups. Finally, 

ascorbate and TMPD were added to the medium for the measurement of complex IV state 

III respiration; there was no significant difference in respiratory flux between the groups. 

Thus, incubation of the respiration medium with 2.2% CH4 did not affect the activity of 

OxPhos complexes as compared with room air. 

 
Glutamate+ 

Malate 
ADP Succinate Rotenone Antimycin A 

 

Ascorbate+ 

TMPD 

 
 
 

      

room air 16.4±0.9 34.5±4.5 200.1±15.9 207.1±15.6 9.2±0.6 322.9±37.8 

 

2.2% CH4 1.7±1.4 36.8±6.0 208.1±23.2 206.8±21.6 6.9±0.5 353.6±49.3 

 

 

Table 1. Effects of CH4 incubation on O2 consumption (pmol/s/ml) of isolated intact liver 

mitochondria. Data are presented as means ± SEM. 

 

The efficacy of the mitochondrial ETS in response to CH4 treatment was assessed 

with a basal protocol from liver homogenates. The complex II-linked respiratory flux values 

were significantly lower than those of the SH animals at 55 min of ischemia and at 60 min 

of reperfusion. The IR-induced decreases in basal flux were reversed in response to CH4 

treatment. Interestingly, CH4 treatment alone (SH+CH4), elevated the basal oxygen 

consumption throughout the observation period (Figure 5A). 

In comparison with SH, IR resulted in a lower OxPhos capacity of the mitochondria 

(complex II-linked state III respiration) throughout the examination period. When CH4 

inhalation was applied, however, the respiratory capacity was preserved at 55 min of 

ischemia and at 30 min of reperfusion (Figure 5B). 
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Figure 5. Oxygen consumption of liver homogenates measured by means of high-resolution 

respirometry. Animals were subjected to 60 min of liver ischemia followed by 60 min of 

reperfusion (IR group, black column) or were sham-operated (SH group, white column). 

2.2% CH4 inhalation was started 10 min before the end of ischemia and continued 

throughout the reperfusion (IR+CH4 group, gray column), or during the identical interval in 

sham-operated animals (SH+CH4 group, striped column). A. Basal respiration (complex II-

coupled state II respiration) (in pmol/s/ml). B. Oxidative phosphorylation (complex II-

coupled state III respiration) (in pmol/s/ml). C. Cytochrome c replacement (state III 

respiration augmented by adding cytochrome c to the medium) (as % of state III 

respiration). Data are presented as means ± SEM. # P < 0.05 vs baseline; * P < 0.05 vs IR 

group (two-way ANOVA, Bonferroni test). 

4.2.1. Cytochrome c oxidase 

The mitochondrial cytochrome c oxidase activity is an indicator of mitochondrial 

membrane damage (Figure 5C). After IR the ability of exogenous cytochrome c to replace 

the enzyme in the inner mitochondrial membrane increased significantly, while CH4 

treatment restored the amount of exchanged enzyme to the baseline level. The cytochrome c 

oxidase activity was also determined with a spectrophotometric analysis (Figure 6). In the 

SH animals, the cytochrome c level increased minimally as compared with the baseline 

during the experimental protocol. In the SH+CH4 group, the enzyme activity decreased in 

response to CH4 inhalation. In contrast, the IR group exhibited significantly higher 

cytochrome c oxidase activities during the reperfusion period, as an indication of functional 

A 

A 

B 

C 



28 

 

damage. In the IR+CH4 group, the cytochrome c did not increase in response to the IR-

induced damage (Figure 6). 

 

Figure 6. Cytochrome c oxidase activity (in %). Animals were subjected to 60 min of liver 

ischemia followed by 60 min of reperfusion (IR group, black column) or were sham-

operated (SH group, white column). 2.2% CH4 inhalation was started 10 min before the end 

of ischemia  and continued throughout the reperfusion (IR+CH4 group, gray column), or 

during the identical interval in sham-operated animals (SH+CH4 group, striped column) 

Data are presented as means ± SEM. # P < 0.05 vs SH group; *P < 0.05 vs IR group (two-

way ANOVA, Bonferroni test). 

4.3. Effects of GPC on mitochondrial function 

In vitro experiments were conducted in order to analyse the dose-response effects of 

GPC on the respiratory activity of rat liver mitochondria in normoxia or anoxic conditions. 

GPC had an increasing effect on mitochondrial oxygen consumption in the 100-200 mM 

concentration ranges (Figure 7A). The ETC and OxPhos capacity of mitochondria was 

influenced significantly when GPC was applied at 200 mM concentration (Figure 7B). In 

addition, GPC significantly attenuated the deleterious effects of 30-min anoxia on the 

oxygen consumption of liver mitochondria (Figure 7C). 
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Figure 7. Oxygen consumption (in pmol/s/ml) of liver mitochondria measured by means of 

high-resolution respirometry. Liver homogenates were harvested from sham-operated 

animals. A: Effect of different GPC concentrations on state III respiration of liver 

mitochondria. Data are means ± SEM. #P< 0.05 vs SH group (one-way ANOVA, Holm-

Sidak test). B: Effect of GPC on state II and III respiration. #P< 0.05 vs SH (state II) group; 
*P< 0.05 vs SH (state III) group (one-way ANOVA, Holm-Sidak test). C: Effect of 200 mM 

GPC on mitochondrial anoxia-reoxygenation in vitro. Liver homogenates were subjected to 

30’ anoxia in the presence of 200 mM GPC (black column: SH+GPC group) or without 

GPC pre-treatment (white column: SH group). Data are presented as means ± SEM. #P< 

0.05 vs 5’; *P< 0.05 vs SH group (two-way ANOVA, Bonferroni test). 

R: Rotenone; S: Succinate; D: ADP 

 

The effects of GPC on IR-induced mitochondrial dysfunction were evaluated with 

the SUIT protocol (Figure 8A). The state III oxygen consumption was significantly lower in 

IR compared to the sham-operated animals. Additionally, the maximum respiratory capacity 

was also significantly lower in response to the IR stress. In contrast, treatment with GPC 

enhanced the efficacy of oxygen consumption. These effects were basically linked to the 

complex I, rather than complex II, as indicated by the large decrease following the 

administration of the inhibitor of complex I.  

The Leak protocol (Figure 8B) demonstrated significant decrease in state IV oxygen 

consumption in response to IR injury as compared to the sham-operated animals. GPC 

A 

A 

B 

A 

C 
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administration restored the level of leak respiration to that of the sham-operated animals. 

 

Figure 8. Oxygen consumption of liver mitochondria measured by means of high-

resolution respirometry (in pmol/s/ml). A: SUIT protocol. B: Leak protocol. Animals were 

subjected to 60 min of liver ischemia followed by 60 min of reperfusion (IR group, black 

column) or were sham-operated (SH group, white column). 16.56 mg/kg GPC 

administration was started 5 min before the end of ischemia (IR+GPC group, grey column), 

or at identical time point in sham-operated animals (SH+GPC group, white striated 

column). Data are presented as means ± SEM. #P< 0.05 vs SH group; *P< 0.05 vs baseline 

(two-way ANOVA, Bonferroni test). 

bsl: baseline; M: Malate; D: ADP; G: Glutamate; S:Succinate; CCCP: chemical inhibitor of 

OxPhos (uncoupler); Rot: Rotenone; Ama: Antimycin A; Omy: Olygomycin 

4.4. Effects of CH4 on oxidative damage and structural changes 

4.4.1. Blood superoxide and H2O2 production 

The whole-blood superoxide-producing capacity was significantly higher in the IR 

group at 30 min of reperfusion in comparison with the SH animals. The CH4 inhalation 

before the end of the ischemic period reduced the elevated superoxide production to the 

level in the SH animals (Figure 9A). Significantly higher whole-blood H2O2 levels were 

measured at 5, 30 and 60 min of reperfusion in the IR group relative to the SH group. The 

CH4 inhalation protocol effectively reversed H2O2 production in the IR+ CH4 group (Figure 

9B). 

B A 
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Figure 9. Superoxide and H2O2 production in the whole-blood. Animals were subjected to 

60 min of liver ischemia followed by 60 min of reperfusion (IR group, black column) or 

were sham-operated (SH group, white column). 2.2% CH4 inhalation was started 10 min 

before the end of ischemia  and continued throughout the reperfusion (IR+CH4 group, gray 

column), or during the identical interval in sham-operated animals (SH+CH4 group, striped 

column) A. Superoxide level (in U/L), B. H2O2 level (in U/L). Data are presented as means 

± SEM. # P < 0.05 vs SH group; * P < 0.05 vs IR group (two-way ANOVA, Bonferroni 

test). 

4.4.2. Tissue MDA level 

A significantly higher MDA level was measured at the end of reperfusion in the IR 

group than in the SH group. The IR-induced elevation of the liver MDA level was 

effectively attenuated by CH4 inhalation in the IR+CH4 group (Figure 10). 

 

Figure 10. Tissue MDA level (in mmol/ml). A: Animals were subjected to 60 min of liver 

ischemia followed by 60 min of reperfusion (IR group, black column) or were sham-

operated (SH group, white column). 2.2% CH4 inhalation was started 10 min before the end 

of ischemia and continued throughout the reperfusion (IR+CH4 group, gray column), or 

during the identical interval in sham-operated animals (SH+CH4 group, striped column). 

Data are presented as means ± SEM. # P < 0.05 vs SH group; *P < 0.05 vs IR group (one-

way ANOVA, Holm-Sidak test). 

A 

A 
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4.4.3. In vivo morphological changes 

The morphological changes in the left liver lobe were evaluated by means of in vivo 

imaging, using confocal laser scanning endomicroscopy. The FITC-dextran and acriflavine 

staining demonstrated more dilated sinusoids in the IR group, and also histological signs of 

apoptosis: a loss of fluorescence intensity, changes in hexagonal cell shape and cytoplasm 

blebbing and vesicle formation relative to the SH group. CH4 inhalation effectively 

attenuated these apoptosis-linked morphological changes (Figure 11). 

 
Figure 11. Histological changes in the rat liver. Tissue sections show the results of in vivo 

confocal laser scanning endomicroscopy with FITC dextran and acriflavine labeling. 

Apoptosis-related structural changes such as dilated sinusoids, loss of fluorescence 

intensity, changes in hexagonal cell shape, cytoplasmatic blebbing and vesicle formation 

can be observed in the IR group. The bar represents 100 µm. 

4.4.4. Apoptosis 

As expected, few TUNEL-positive cells were observed in the liver specimens of the 

rats in the SH+CH4 and SH groups. Conversely, liver IR was accompanied by an increased 

TUNEL positivity, which was diminished as a result of CH4 inhalation (IR and IR+CH4 

groups) (Figure 12). 
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Figure 12. Liver cell apoptosis. Tissue sections are labeled with TUNEL/DAPI staining. a. 

SH group, b. SH+CH4 group, c. IR group, d. IR+CH4 group. Nuclei are marked in blue, and 

apoptotic nuclei in red. Data are presented as median ± SD. * P < 0.05 vs IR group 

(Kruskal-Wallis and Dunn tests). 

4.5. Effects of GPC on oxidative damage 

4.5.1. XOR activity 

XOR is a key enzyme in purine catabolism, and also catalyses the reduction of 

nitrates and nitrites into nitric oxide (NO). During this process, ROS are produced, which 

can be deleterious to the cells. As expected, XOR activity was increased in the IR group 

compared to the SH group. These values were significantly decreased when GPC was 

applied 5 min before the reperfusion (Figure 13). 
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Figure 13. XOR activity (in pmol/mg protein). Animals were subjected to 60 min of liver 

ischemia followed by 60 min of reperfusion (IR group, black column) or were sham-

operated (SH group, white column). 16.56 mg/kg GPC administration was started 5 min 

before the end of ischemia (IR+GPC group, grey column), or at identical time point in 

sham-operated animals (SH+GPC group, white striated column). Data are presented as 

means ± SEM. # P< 0.05 vs SH group; *P< 0.05 vs IR group (one-way ANOVA, Holm-

Sidak test). 

4.5.2. NADPH oxidase activity 

NADPH oxidases are a family of membrane-bound oxidoreductase complexes 

whose main function is the formation of ROS, by catalysing the reduction of oxygen 

(2NADPH +2O2 --> 2NADP+ + 2H+ + 2O2- --> 2NADP+ + H2O2). While their precise role 

in the IR pathogenesis is not fully elucidated, it is assumed that NADPH oxidases play a 

key role in the propagation of oxidative stress. By the end of the 60-min reperfusion period, 

the NADPH oxidase activity was significantly increased in the IR group, compared to the 

SH groups (Figure 14). When GPC was administered before the end of ischemia the 

NADPH oxidase activity became even lower than the values of the SH groups. 

 

Figure 14. NADPH oxidase activity (in mmol/ml). Animals were subjected to 60 min of 

liver ischemia followed by 60 min of reperfusion (IR group, black column) or were sham-

operated (SH group, white column). 50 mg/kg GPC administration was started 5 min before 

the end of ischemia (IR+GPC group, grey column), or at identical time point in sham-

operated animals (SH+GPC group, white striated column). Data are presented as means ± 

SEM. # P< 0.05 vs SH group; * P< 0.05 vs IR group (one-way ANOVA, Holm-Sidak test). 

4.5.3. MPO activity 

MPO is mostly produced by PMN leukocytes upon their activation. In the vehicle-

treated IR group, the tissue MPO level was significantly increased as compared with that of 

the sham-operated animals. In the GPC-treated group, the MPO activity was significantly 
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lower than in the vehicle-treated IR group (Figure 15). 

 

Figure 15. Tissue MPO activity (in mU/mg protein). Animals were subjected to 60 min of 

liver ischemia followed by 60 min of reperfusion (IR group, black column) or were sham-

operated (SH group, white column). 16.56 mg/kg GPC administration was started 5 min 

before the end of ischemia (IR+GPC group, grey column), or at identical time point in 

sham-operated animals (SH+GPC group, white striated column). Data are presented as 

means ± SEM. # P< 0.05 vs SH group *P< 0.05 vs IR group (one-way ANOVA, Holm-

Sidak test). 

 

4.5.4. Blood superoxide and H2O2 production 

The superoxide-producing capacity in the whole blood was significantly higher in 

the IR group at the end of reperfusion when compared to the SH animals. The GPC 

treatment before the end of the ischemic period reduced the elevated superoxide production 

to the level in the control animals (Figure 16A). Significantly higher whole blood H2O2 

levels were measured at the end of reperfusion in the IR group relative to the SH group, and 

the GPC treatment effectively reversed the H2O2 production (Figure 16B). 

 

Figure 16. Superoxide and H2O2 production in the whole-blood. Animals were subjected to 

60 min of liver ischemia followed by 60 min of reperfusion (IR group, black column) or 

were sham-operated (SH group, white column). 16.56 mg/kg GPC administration was 
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started 5 min before the end of ischemia (IR+GPC group, grey column), or at identical time 

point in sham-operated animals (SH+GPC group, white striated column). A: Superoxide 

level (in U/L); B: H2O2 level (in U/L). Data are presented as means ± SEM. # P< 0.05 vs SH 

group; * P< 0.05 vs IR group (one-way ANOVA, Holm-Sidak test). 

4.5.5. Tissue MDA level 

As expected, IR resulted in an increased MDA production after IR (Figure 17). The 

GPC treatment reduced the level of MDA production, while no difference was seen 

between the two control groups (SH and SH+GPC). 

 

Figure 17. Tissue MDA level (in mmol/ml). Animals were subjected to 60 min of liver 

ischemia followed by 60 min of reperfusion (IR group, black column) or were sham-

operated (SH group, white column). 16.56 mg/kg GPC administration was started 5 min 

before the end of ischemia (IR+GPC group, grey column), or at identical time point in 

sham-operated animals (SH+GPC group, white striated column). Data are presented as 

means ± SE. #P< 0.05 vs SH group; (one-way ANOVA, Holm-Sidak test). 

4.5.6. Liver NOx levels 

In the IR group, a significant elevation in NOx was present relative to the SH 

groups. The GPC treatment protocol decreased the NOx elevation, in contrast with the non-

treated IR group; but the NOx level remained higher than that in the sham-operated group 

(Figure 18). 
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Figure 18. Tissue nitrite/nitrate (NOx) level (in µM). Animals were subjected to 60 min of 

liver ischemia followed by 60 min of reperfusion (IR group, black column) or were sham-

operated (SH group, white column). 16.56 mg/kg GPC administration was started 5 min 

before the end of ischemia (IR+GPC group, grey column), or at identical time point in 

sham-operated animals (SH+GPC group, white striated column). Data are presented as 

means ± SEM. # P< 0.05 vs SH group; (one-way ANOVA, Holm-Sidak test). 

4.5.7. GSH/GSSG ratio in liver homogenates 

GPC administration in the SH+GPC group did not influence the GSH/GSSG ratio as 

compared with the SH group. As expected, hepatocytes were exposed to increased levels of 

oxidative stress after IR, as shown by a significant increase of GSSG and the decreased 

GSH/GSSG ratio when compared to the SH group, however, the GSSG levels were 

significantly decreased in response to GPC treatment in the IR+GPC group (Figure 19). 

 

Figure 19. GSH/GSSG ratio. Animals were subjected to 60 min of liver ischemia followed 

by 60 min of reperfusion (IR group, black column) or were sham-operated (SH group, white 

column). 16.56 mg/kg GPC administration was started 5 min before the end of ischemia 

(IR+GPC group, grey column), or at identical time point in sham-operated animals 



38 

 

(SH+GPC group, white striated column). Data are presented as means ± SEM. # P< 0.05 vs 

SH group *P< 0.05 vs IR group (one-way ANOVA, Holm-Sidak test). 

4.5.8. In vivo histology 

The morphological changes in the left liver lobe were evaluated by means of in vivo 

imaging, using confocal laser scanning endomicroscopy. The FITC-dextran and acriflavine 

staining demonstrated dilated sinusoids in the IR group, fluorescent dye leakage with edema 

formation was present with visible signs of structural damage: changes in hexagonal cell 

shape and cytoplasm blebbing and vesicle formation. GPC administration effectively 

attenuated the IR-induced morphological changes. The severity of injury was moderated, 

these changes were still apparent, but the average degree of damage was decreased from S4 

to S2 level (Figure 20). 

 

Figure 20. Histological changes in the rat liver. Tissue sections show the results of in vivo 

fluorescence confocal laser scanning endomicroscopy with FITC dextran and acriflavine 

labelling (at 4 and 40 µm depth). Structural damages such as dilated sinusoids, loss of 

fluorescence intensity, changes in hexagonal cell shape, cytoplasmatic blebbing and vesicle 

formation can be observed in the IR group. The bar represents 100 µm. 
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5. DISCUSSION 

5.1. IR-induced changes in mitochondrial functions  

Low-flow states, trauma, liver resection surgery for treatment of benign and 

malignant disease, and liver transplantation are some of the scenarios that predispose the 

liver to IR (Lei 2001; Kiemer 2002). With the lack of the final electron acceptor, oxygen, 

the electron flow in the respiratory chain is immediately interrupted, leading to a reduced 

activity of ATP synthase. Meanwhile, mitochondria no longer accept electrons from 

substrates; therefore, the number of pyridine nucleotides are reduced, resulting in an 

increased intracellular NADH/NAD+ ratio. 

Our experiments revealed the non-phosphorylating basal respiration of complex II in 

the presence of the reducing succinate substrate, but in the absence of ADP. State II 

respiration is the resting state of intrinsic uncoupled or dyscoupled respiration, when the 

oxygen flux is maintained in order to compensate for the proton leak at a high 

chemiosmotic potential when ATP synthase is not active. ADP-dependent oxygen 

consumption is a test of mitochondrial functional integrity and its overall function which 

directly reflects mitochondrial OxPhos (Li 2012). The ADP-stimulated respiration of 

coupled mitochondria (OxPhos or state III) was supported by high, saturating 

concentrations of ADP and was significantly increased, by ~ 60%, in the sham-operated 

animals. 

In response to IR-injury, the basal respiratory activity of mitochondria significantly 

decreased, which refers to a lower capacity of the respiratory chain to transmit electrons 

toward the ATP synthase. The ADP-stimulated OxPhos capacity also decreased at the end 

of ischemia and throughout the reperfusion phase. The application of selective substrates 

and inhibitors of the mitochondrial complexes provided evidence for the major role of 

complex I in IR injury, as demonstrated by decreased oxygen consumption and the 

increased leak respiration. 

In the leak state of mitochondria, oxygen flux is maintained mainly to compensate 

for the proton leak at a high chemiosmotic potential through the respiratory complexes, 

when the ATP synthase is not active. Leak respiration is measured in the presence of 

reducing substrate, but in the absence of ADP. Dyscoupling of mitochondria in IR led to an 

increased superoxide formation and membrane damage. Peroxidation, an immediate chain 

reaction, caused the breakdown of biomembranes, leading to decompartmentalization and to 
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the loss of maintenance of a steady state.  

As a consequence of mitochondrial distress, the intracellular redox milieu changes, 

and this leads to an alteration in intracellular enzyme activity. Accordingly, mitochondria-

derived superoxide formation contributes to intracellular ROS formation through different 

ways (1) by being the primary source of production and (2) as a modifier of other 

intracellular superoxide producing enzymes activity, too. In our studies, we examined the 

activities of the main extra-mitochondrial enzymatic complexes responsible for ROS 

formation, XOR and NADPH oxidase. The IR-induced increases in superoxide and H2O2 

levels in the circulating blood were accompanied by increased local NOx concentrations, 

providing indirect evidence for an evolving nitroxidative stress in the liver tissue. 

5.2. Effects of CH4 in mitochondrial dysfunction 

Normoxic ventilation with 2.5% CH4 supplementation has been shown to protect the 

intestinal tissues and mitigate liver injury after an IR insult (Boros 2012). Recently, 

fundamental evidence has accumulated to demonstrate the anti-inflammatory and 

antiapoptotic properties of CH4-based treatments in various IR settings; however, its 

intracellular target has remained elusive (Song 2015, Wu 2015, Ye 2015, Chen 2016, He 

2016). Mitochondria are critically involved in hypoxia-reoxygenation-induced intracellular 

respiratory damage; therefore, they are possible targets of CH4 administration. 

In our study, we investigated the in vivo influence of an increased CH4 intake on the 

respiratory activity of rat liver mitochondria by using controlled ventilation. This protocol 

did not influence the blood-gas chemistry in the anesthetized animals under the baseline 

conditions. More importantly, the inhalation of CH4-containing normoxic artificial air 

preserved the OxPhos after a period of tissue ischemia, and significantly improved the basal 

mitochondrial respiration state after the onset of reperfusion. In line with this, IR-induced 

ROS production, cytochrome c release and hepatocyte apoptosis were also significantly 

reduced. 

It is known that ~ 2-4% of the electrons flowing through the ETC generate 

superoxide anions by the partial reduction of oxygen (Lesnefsky 2001; Tahara 2009), i.e. 

involving precursors of ROS such as H2O2 and OH.-, and our data provide evidence for the 

influence of an increased CH4 intake on mitochondrial ETC reactions. However, the exact 

pathway through which CH4 influences the mitochondrial respiration has remained 

unexplored, and several mechanisms can be postulated to explain the in vivo effects of CH4 

in this system. 
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In this respect, data overall support a role for CH4 membrane defense during ROS-

induced damage. During ischemia, the mitochondrial NADH/NAD+ and FADH/FAD+ 

ratios remain elevated, leading to reductive stress (Ghyczy 2008; Boros 1999), while 

reperfusion of the previously ischemic tissue leads to oxidative stress with a burst of ROS 

generation following the start of reoxygenation. It was earlier suggested (without indicating 

the exact biochemistry, contributing compounds or enzymes) that ROS reactions could lead 

to a higher level of fixation of CH4 in a lipid environment, such as the mitochondrium 

membrane (Carlisle 2005; Dougherty 1967). Indeed, IR perturbs the heterogeneous lipid-

bilayer membrane structure and changes the fluidity from fluid to gel. Disordered/fluidized 

bilayer states could therefore be analogous to physical damage to the ETC in these 

conditions. Inhaled exogenous CH4 will move from the alveoli into the circulation, and 

diffuse into the plasma, throughout which it is rapidly and evenly distributed. If there are no 

barriers, the apolar CH4 may enter the cytoplasm and mitochondrial matrix and dissolve in 

the hydrophobic nonpolar lipid tails of the phospholipid biomembranes (Meyer 1980). 

Membrane rigidity relates to the degree of lipid peroxidation, when the level of oxidized 

lipids is increased and the fluidity of membranes is reduced. CH4 dissolved in biological 

membranes may affect this process, thereby influencing the stereo structure of membrane 

proteins, which determines their accessibility and morphology (Levine 1996). The 

peroxidation of polyunsaturated fatty acids and a direct triggering of cytochrome c release 

from the mitochondria are well-known consequences of IR injury (McCord 1985). The 

degree of lipid peroxidation can be estimated via the amount of MDA, a marker of 

oxidative damage of lipid membranes. As a reactive aldehyde, MDA is one of the many 

reactive electrophilic compounds that cause further oxidative stress in cells and form 

covalent protein adducts referred to as advanced lipoxidation end-products. We have shown 

that the levels of both ROS and MDA were reduced after an increased CH4 intake, 

indirectly demonstrating the decreased oxidative damage to the mitochondrial membranes. 

Furthermore, CH4 may accumulate transiently at cell membrane interfaces, thereby 

transitorily changing the physico-chemical properties or the in situ functionality of proteins, 

ion channels and receptors embedded within this environment. In this case, an increased 

CH4 intake may influence the function of membrane-bound structures. The pilot in vitro 

results demonstrated that the incubation of isolated mitochondria in a 2.2% CH4 atmosphere 

has no effect on the respiratory activity of the ETC. As opposed to this, the in vivo CH4 

inhalation regimen unexpectedly increased the mitochondrial respiratory function, without 
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influencing the baseline ROS production in the SH animals. These differing responses can 

also be explained by membrane injury, as compared to isolated mitochondria, 

homogenation can disrupt mitochondrial membranes (Picard 2011). In contrast, the protocol 

of mitochondria isolation permits rearrangement of the membranes and results in fully 

viable mitochondria whose function cannot be further ameliorated by CH4 (Gnaiger 2000). 

This study addressed the plausibility of CH4 bioactivity. This concept is supported 

by experimental data showing that gaseous CH4 can delay the contraction of peristalsis and 

increase the amplitude of the peristaltic contractions in the guinea pig ileum (Pimentel 

2006). A recent study provided in vitro evidence that CH4 can inhibit the contractile activity 

of the smooth muscle by activating the voltage-dependent potassium channels and 

increasing the voltage-dependent potassium current (Liu 2013). 

Whereas the results indicate a bioactive role for higher concentrations of exogenous 

CH4, this is not obvious for endogenous sources. It is widely recognized that large amounts 

of CH4 can be produced by the anaerobic metabolism of methanogenic microorganisms in 

the GI tract (Attaluri 2010; Roccarina 2010), and CH4 is present in measurable amounts in 

the breath of approximately one-third of humans (Levitt 2006). Nevertheless, as opposed to 

the previous view, in vitro and in vivo studies have revealed the possibility of nonmicrobial 

CH4 formation in both plants and animals (Keppler 2009; Tuboly 2013). CH4 generation 

has been demonstrated after site-specific inhibition of the ETC, and in association with a 

mitochondrial dysfunction, similarly to the effects of hypoxia (Ghyczy 2008; Tuboly 2013).  

Of interest, recent studies demonstrated the critical role of a ferryl species ([Fe(IV)=O]2+) 

and CH3 radicals, leading to the in vitro generation of CH4 from methionine sulfoxide as 

substrate at ambient temperature (Althoff 2010). In this chemical reaction, CH4 is readily 

formed from the S-CH3 groups of organosulfur compounds in a model system containing 

iron(II/III), H2O2 and ascorbate that uses organic compounds with heterobonded CH3 

groups for CH4 generation under ambient (1,000 mbar and 22oC) and aerobic (21% oxygen) 

conditions. CH3 radicals can be formed in the mitochondria through reaction between a 

reducing agent, a metal and a hydroperoxide. Methionine is known to be a key factor in 

many biochemical reactions in plants, fungi and animals, and methionine residues in the 

surface of proteins are highly susceptible to oxidation, the product generally being 

methionine sulfoxide. Importantly, the available data suggest that reversible methionine 

oxidation could be a novel mechanism in redox - regulation, which involves the  repair 

mechanism of methionine sulfoxide reductases (MSRs) whose main function is to protect 
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membranes from oxidative damage (Levine 1996). The MSRs were originally thought to be 

exclusively bacterial enzymes, but their presence was recently proven in mitochondria in 

mammals (Weissbach 2005). The scavenging action of these enzymes is based on the cyclic 

oxidation and reduction of the several methionine residues of the molecules that makes 

them the counterpart of the NADH/NAD+ system (Levine 1996). In an oxygen-depleted 

environment, the methionine sulfoxide-CH4 system may act as an alternative to 

NADH/NAD+ and FADH/FAD+ as an electron donor, thereby mitigating ischemia-induced 

reductive stress. The capacity of mitochondria to reverse oxidant-induced changes upon 

reperfusion originates from the exposure of previously hidden epitopes of mitochondrial 

proteins, as proven in the case of mitochondrial MSRs (Cole 2010). 

IR injury is an antigen-independent stimulus that initiates intrinsic signaling 

pathways. Cytochrome c is attached to the inner membrane, and is detached in response to a 

threshold disturbance in the membrane structure, which leads to activation of the apoptotic 

caspase cascade (Wang 2001). CH4 inhalation effectively attenuated the IR-induced 

elevation in MDA level, and in parallel, the amount of cytochrome release was diminished. 

Conventional and in vivo histology provided evidence of IR-related apoptosis and the 

observations suggest that CH4 may influence the cell fate under stress conditions. 

5.3. Effects of GPC in ROS production 

GPC is a well-known protective compound in IR-injuries; however, the exact 

mechanism of action has not been described. In our studies, we have outlined a novel route 

of action for the molecule. The in vitro experimental data demonstrated the direct effects of 

GPC on mitochondrial oxygen consumption in the 100 and 200 mM concentration ranges. 

Next, GPC supplementation attenuated the respiratory consequences of anoxia by reducing 

the leak of protons into the matrix. This effect had mainly been attributed to an action on 

complex I at the appropriate concentration of 200 mM. Within the mitochondria, the 

mechanism by which GPC increases basal oxygen consumption rates is not well-

understood, nevertheless, there are two plausible explanations: 1) by interacting with 

proteins and causing modulations in their functions or 2) by influencing the redox 

environment. Furthermore, the I-V sequence of the respiratory complexes is perhaps not the 

highest level of OxPhos organization. Flux control experiments confirm that the respiratory 

chain operates as one single functional unit (Bianchi 2004; Boumans 1998). According to 

the “fluid-state model”, individual protein complexes of the electron transport chain freely 

diffuse in the membrane and the electron transfer is based on random collisions of single 
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complexes. Recent findings also suggest that OxPhos enzymes are organized into 

supramolecular assemblies (Lenaz 2009). It has been shown that point mutations in genes of 

the subunits of an OxPhos complex affect the stability of another complex. Thus, complex 

III and complex IV are necessary for the assembly or stability of complex I (Acín-Pérez 

2004; Diaz 2006). Moreover, it appears that supercomplexes are further organized into 

larger string structures. The example is the ATP synthase complex (complex V), which 

assembles into long oligomeric chains (Krause 2005). Some supercomplexes require an 

appropriate osmotic environment for their formation (Zhang 2002; Pfeiffer 2003). Whether 

GPC influences the conformation of this system is an open question. 

Secondly, the redox-optimized ROS balance hypothesis postulates that the redox 

environment is the main controller of both production and scavenging of ROS as an 

intermediary between mitochondrial respiration and ROS formation (Aon 2010). We have 

shown that exogenous GPC targets the mitochondrial oxidative metabolism in IR stress, and 

have provided evidence that this way the IR-associated inflammatory activation may be 

limited. Mitochondrial dysfunction generates ROS and hypoxic conditions induce a leak of 

electrons of the ETC into the intermembranous space (Rose 2014), which can lead to 

increased ROS formation. We have demonstrated that GPC treatment reduces the leak 

respiration after an IR challenge, and in accordance with previous findings, the lower leak 

respiration was accompanied with a decreased ROS formation (Scribner 2010; Rose 2014; 

Kenneth 2005). Furthermore, exogenous GPC enhanced mitochondrial oxygen consumption 

both in normoxic and hypoxic conditions, which clearly demonstrates that GPC can 

potentiate the mitochondrial activity. To further clarify this issue, another protocol was 

applied by adding substrates and inhibitors of individual ETC complexes. In response to 

complex I inhibitor rotenone, the oxygen consumption diminished significantly, which 

suggests that complex I is the target site of the GPC-mediated action. 

We have investigated IR-induced ETC changes together with XOR and NADPH 

oxidases responses. The activity of both pro-inflammatory enzymes were decreased in 

response to GPC administration, which suggests that its primary influence on leak 

respiration was followed by secondary consequences on the main extra-mitochondrial, i.e. 

cellular enzymes involved in ROS formation. Furthermore, the IR-induced increases in 

superoxide and H2O2 levels in the circulating blood were accompanied by increased local 

NOx concentrations, providing indirect evidence for an evolving oxido-nitrosative stress in 

the liver tissue. RNS acting together with ROS generates “footprints” of tissue damage 
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(Iovine 2008). ROS interacting with NO produces peroxynitrite (Knight 2002), and the 

nitration of mitochondrial proteins result in acute and chronic liver diseases. 

In our model, the increase in MDA and other oxidative and nitrosative stress 

markers were significantly reduced by GPC supplementation. The need of restoration of 

cellular GSH levels for efficient scavenging of peroxynitrite is emphasized. GPC 

administration reversed the IR-induced decrease in GSH level, and maintained the ratio of 

GSH to GSSG. 

We also detected increased MPO activity as a secondary inflammatory marker, 

mainly secreted by active immune cells including PMNs. Again, MPO activity was 

decreased after the administration of GPC. All considered, these results suggest that 

mitochondrial alterations preceded cellular, enzymatic ROS production, and the onset of 

oxidative stress in liver tissue leads to PMN activation in the circulation. 
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6. SUMMARY OF NEW FINDINGS 

 

 Liver IR injury is a progressive process starting from a depressed mitochondrial 

ETS, then the abnormal formation of ROS leads to biomembrane damage, and 

finally to necrotic or apoptotic cell death.  

 

 The mitochondrial protection afforded by CH4 inhalation involves different 

components under normal conditions, during ischemia and during reperfusion, 

similarly to the different pathomechanisms of damage.  

 

 2.2% CH4 inhalation significantly influenced the IR-related disturbances of the 

mitochondrial ETS and mitigated the severity of subsequent damaging events. The 

protective potential of CH4 was linked to reduced cytochrome c release and a 

reduced number of apoptotic hepatocytes. 

 

 Exogenous GPC influences the mitochondrial oxidative metabolism, the primary 

source of ROS production. The direct action of GPC on mitochondrial complex I 

function leads to increased oxygen consumption and reduced leak respiration. 

 

 GPC administration attenuated membrane peroxidation and the subsequent stages of 

tissue damage, therefore this compound might be therapeutic in IR episodes. 

 

 In summary, both CH4 and GPC treatments could effectively attenuate pro-

inflammatory activation in IR stress through targeting the mitochondrial oxidative 

metabolism. 
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