
 

 

 

 

The cardioprotective role of sensory nerves in adriamycin-

induced experimental cardiomyopathy 

 

PhD Thesis 

 

 

 

Krisztina Boros MD  

 

 

 

Supervisors: 

Gábor Jancsó MD, DSc 

Péter Sántha MD, PhD 

 

 

 

 

 

 

Doctoral School of Theoretical Medicine 

 

Department of Physiology, Faculty of Medicine, University of Szeged 

 

 

Szeged 

2016 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTE  Doktori Értekezések Repozitórium (SZTE Repository of Dissertations)

https://core.ac.uk/display/78375695?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

Present work is based on the following publications: 

 

I. Katona M., Boros K., Sántha P., Ferdinándy P., Dux M., Jancsó G. Selective sensory 

denervation by capsaicin aggravates adriamycin-induced cardiomyopathy in rats. Naunyn-

Schmiedeberg’s Arch. Pharmacol. 2004, 370: 436-443, Impact factor: 1.963 

  

II. Boros K, Jancsó G, Dux M, Fekécs Z, Bencsik P, Oszlács O, Katona M, Ferdinandy 

P, Nógrádi A, Sántha P. Multiple impairments of cutaneous nociceptor function induced by 

cardiotoxic doses of Adriamycin in the rat. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2016, 

389:1009-1020. Impact factor: 2.376 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Boros%20K%5BAuthor%5D&cauthor=true&cauthor_uid=27342418
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jancs%C3%B3%20G%5BAuthor%5D&cauthor=true&cauthor_uid=27342418
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dux%20M%5BAuthor%5D&cauthor=true&cauthor_uid=27342418
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fek%C3%A9cs%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=27342418
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bencsik%20P%5BAuthor%5D&cauthor=true&cauthor_uid=27342418
http://www.ncbi.nlm.nih.gov/pubmed/?term=Oszl%C3%A1cs%20O%5BAuthor%5D&cauthor=true&cauthor_uid=27342418
http://www.ncbi.nlm.nih.gov/pubmed/?term=Katona%20M%5BAuthor%5D&cauthor=true&cauthor_uid=27342418
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ferdinandy%20P%5BAuthor%5D&cauthor=true&cauthor_uid=27342418
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ferdinandy%20P%5BAuthor%5D&cauthor=true&cauthor_uid=27342418
http://www.ncbi.nlm.nih.gov/pubmed/?term=N%C3%B3gr%C3%A1di%20A%5BAuthor%5D&cauthor=true&cauthor_uid=27342418
http://www.ncbi.nlm.nih.gov/pubmed/?term=S%C3%A1ntha%20P%5BAuthor%5D&cauthor=true&cauthor_uid=27342418


 

TABLE OF CONTENTS 

 

 
LIST OF ABBREVIATIONS................................................................................................  

INTRODUCTION ................................................................................................................1 

Capsaicin, chemosensitive primary sensory neurons and TRP channels ..............................1 

Chemosensitive innervation of the skin with special regard to neurogenic inflammation and 

inflammatory hyperalgesia ..................................................................................................4 

Sensory innervation of the heart and the protective role of peptidergic afferent nerves 

against cardiac injury .........................................................................................................9 

Anthracycline-induced cardiotoxicity, and neurotoxicity ................................................... 12 

Aims of the study ............................................................................................................... 15 

MATERIALS AND METHODS ........................................................................................ 17 

Adriamycin treatment ........................................................................................................ 17 

Selective sensory chemodenervation induced by systemic capsaicin treatment .................. 17 

Echocardiac assessment of cardiomyopathy ...................................................................... 17 

Immunohistochemical examination of cardiac tissues ....................................................... 18 

Measurement of chemically induced neurogenic cutaneous vasodilatation ........................ 18 

Measurement of chemically induced cutaneous plasma protein extravasation ................... 19 

Measurement of CGRP release in vitro ............................................................................. 20 

Carrageenan-induced thermal and mechanical hyperalgesia ............................................ 20 

Kinematic analysis of hindlimb locomotor function ........................................................... 21 

Experimental setup ........................................................................................................ 21 

Locomotor data analysis................................................................................................ 22 

Demonstration of cutaneous innervation by immunohistochemistry and quantitative 

morphometry ..................................................................................................................... 22 

Statistics ........................................................................................................................... 24 

RESULTS ........................................................................................................................... 25 

Anthracycline cardiotoxicity assessed by echocardiography, effect of systemic capsaicin 

pretreatment ..................................................................................................................... 25 

Anthracycline- and/or capsaicin-induced changes in the cardiac innervation: 

immunohistochemistry ...................................................................................................... 30 

Alterations of chemically-induced vascular reactions ........................................................ 31 

Effects of adriamycin on neurogenic sensory vasodilatation .......................................... 31 



 

Effects of adriamycin on neurogenic plasma protein extravasation ................................ 32 

Effects of adriamycin treatment on the in vitro neural release of CGRP ............................ 35 

Effects of adriamycin on carrageenan-induced thermal and mechanical hyperalgesia ...... 35 

Effects of adriamycin on hindlimb locomotor parameters .................................................. 36 

Effects of adriamycin treatment on cutaneous sensory nerves and on skin structure .......... 37 

DISCUSSION ..................................................................................................................... 40 

Evaluation of adriamycin-induced cardiac impairments using echocardiography ............. 40 

Cardioprotective effect of chemosensitive fibers ................................................................ 41 

Effects of adriamycin on cutaneous sensory nerve functions .............................................. 43 

SUMMMARY ..................................................................................................................... 48 

AKNOWLEDGEMENTS .................................................................................................. 50 

REFERENCE LIST ........................................................................................................... 51 

APPENDIX ......................................................................................................................... 67 

 

 

 



 

LIST OF ABBREVIATIONS 

 

ABC ATP-binding cassette protein 

ACE angiotensin converting enzyme 

ANP atrial natriuretic peptide 

AOD aortic diameter  

ATP adenosine-5'-triphosphate 

CALC calcitonin 

CARP cardiac adriamycin-responsive protein  

CuBF cutaneous blood flow 

CGRP calcitonin gene-related peptide 

CLR calcitonin receptor-like receptor 

CNS central Nervous System 

cTnT cardiac-specific isoform of troponin T 

DNA deoxyribonucleic Acid 

DRG dorsal root ganglion 

EF ejection fraction 

FS fractional shortening 

GAL galanin 

GDNF glial cell derived neurotrophic factor 

IB4 isolectin B4 isolated from Griffonia simplicifolia (formerly Bandeiraea simplicifolia) 

LA left atrium 

LAD left atrial diameter  

LTB leukotriene B 

LV left ventricle 

LVDD left ventricular end diastolic diameter 

LVSD left ventricular end systolic diameter 

mRNA messenger ribonucleic acid 

MRP multidrug resistance-associated protein 

NGF nerve growth factor 

NK1 neurokinin 1 

NKA neurokinin A 

NO nitrogen monoxide 

PACAP pituitary adenylate cyclase-activating polypeptide 



 

PAR proteinase activated receptor 

PCR polymerase chain reaction 

PGE prostaglandin E 

PGP protein gene product 

PKA protein kinase A 

PKC protein kinase C 

PLC phospholipase C 

RAMP receptor activity-modifying proteins 

SF left ventricular fractional shortening  

SIF small intensely fluorescent  

SP substance P 

TG trigeminal ganglion 

THC (tetra-hydro cannabinol) 

TMP thiamine monophosphatase 

Trk A neurotrophic tyrosine kinase receptor type 1/ high affinity nerve growth factor receptor/ 

TRK1-transforming tyrosine kinase protein 

TRP transient receptor potential 

TRPA1 transient receptor potential cation channel, subfamily A, previously:  Transient 

receptor potential ankyrin type 

TRPM8 transient receptor potential cation channel, subfamily M, member 8  

TRPV transient receptor potential vanilloid type 

VIP vasoactive intestinal polypeptide 

VMA vanillin mandelic acid 

VR vanilloid receptor



 1 

INTRODUCTION 

 

Capsaicin, chemosensitive primary sensory neurons and TRP channels 

Capsaicin is the pungent component of capsicum species (hot chili peppers) that 

selectively excites and, in large doses selectively desensitizes a subpopulation of primary 

sensory neurons. Nicholas Jancsó’s classical studies have revealed that application of 

capsaicin onto the skin, conjunctiva, or other mucous membranes induces intense burning 

pain in man (Jancsó, 1960; Jancsó et al., 1967), and elicits pain-related behavior and 

nociceptive reflexes in animals.  Jancsó has also recognized that these fibers possess dual 

function: they have a role not only in the signalization of pain, but also in the mechanism of 

local vascular responses. Hence, local application of chemical irritants, such as capsaicin and 

mustard oil, produces not only burning pain but local vasodilatation and flare in man, and 

local vasodilatation and plasma extravasation, i.e. a neurogenic inflammatory response in rats 

(Jancsó, 1960; Jancsó et al., 2009a). The term „capsaicin desensitization” was first introduced 

by N. Jancsó (Jancsó and Jancsó-Gábor, 1959; Jancsó, 1968; Holzer, 1991; Jancsó, 1994). He 

observed that repeated local or systemic administration of capsaicin inhibited not only the 

transmission of afferent nociceptive impulses, but also the efferent vascular responses 

mediated by chemosensitive afferent nerves, both in man and animals. Capsaicin 

desensitization also inhibited the pain-producing effect of other irritants of widely different 

chemical structure, like xylene, mustard oil or chloroacetophenone, while mechano-

nociceptive reflexes remained intact (Jancsó and Jancsó-Gábor, 1959; Jancsó et al., 1968). 

Capsaicin-sensitive neurons comprise a special, quantitatively and functionally 

important population of somatic and visceral primary sensory neurons. The knowledge on the 

morphological characteristics, anatomical organization and functions of these nociceptive 

primary afferent neurons was greatly advanced by the discovery of the selective neurotoxic 

action of capsaicin by G. Jancsó and his co-workers (Jancsó et al., 1977; Jancsó and Király, 

1981; Jancsó and Király, 1984). Systemic administration of capsaicin to new-born rats led to a 

selective degeneration of about 50% of sensory ganglion cells. In peripheral cutaneous nerves 

a 70 % loss of unmyelinated C fibers was observed (Jancsó et al, 1977). In lumbar dorsal 

roots an about 95% loss of C-, and about a 10% loss of thin myelinated A-fibers was reported 

after neonatal capsaicin treatment (Jancsó et al., 1981; Jancsó and Király, 1981; Nagy et al., 

1981). Different types of systemic and regional treatments with capsaicin or other vanilloids 

have become standard techniques in pain research to reveal the participation of 
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chemosensitive primary afferent neurons in different somatic and visceral functions under 

physiological and pathological conditions.  

In 1997 Caterina and his co-workers successfully cloned the capsaicin receptor 

(Caterina et al., 1997; Caterina and Julius, 2001). The cloning of the receptor was based on an 

expression screening strategy exploiting the phenomenon of capsaicin-induced increase in 

intracellular free calcium (Jancsó et al., 1978; Joó et al., 1980; Jancsó et al., 1984)  The 

capsaicin receptor was first named vanilloid receptor type 1 (VR1). Later, it has been 

recognized that this receptor highly resembles the transient receptor potential (TRP) ion 

channels (Caterina et al., 1997). These results were published in Nature by Michael Caterina 

50 years after the publication of N. Jancsó’s article in Nature in 1947, explaining the 

phenomenon of histamine desensitization) (the idea that finally brought him to the recognition 

of capsaicin desensitization (Jancsó and Jancsó-Gábor, 1947; Jancsó, 1994; Jancsó and 

Sántha, 2015), and 20 years after the discovery of the selective neurotoxic action of capsaicin 

by Gábor Jancsó published in Nature in 1977 (Jancsó et al., 1977). The TRP (transient 

receptor potential) family of ion channels comprises more than 30 ion channels, and can be 

divided into seven subfamilies based on their sequence homology. In the case of the TRP 

channels, polymodality lies in a single channel. TRP channels are multifunctional sensors of 

chemical, mechanical and thermal stimuli. TRPV1, TRPV2, TRPV3, TRPV4, TRPM8 (transient 

receptor potential cation channel, subfamily M, member 8, previously melastatin type 8) and 

TRPA1 (transient receptor potential cation channel, subfamily A, previously: ankyrin type) are 

known to be expressed in dorsal root ganglia (DRGs) neurons. So far TRPV1 is the only 

known receptor that is responsive to capsaicin. The molecular site of the desensitizing effect 

of capsaicin is located on the sixth transmembrane domain. TRPV1 is present in the cell 

membrane, in the endoplasmic reticulum, and in cytoplasmic vesicles (Guo et al., 1999; 

Morenilla-Palao et al., 2004; Nagy and Sántha, 2008). It is synthetized in the soma of the 

neuron, packaged and transported by fast axonal transport into the central and peripheral 

terminals of the neurons to fulfill its function in sensory conduction.  

The fact that capsaicin applied topically onto peripheral nerves resulted in a selective 

loss of neurogenic plasma extravasation (Jancsó et al., 1980; Gamse et al., 1982; Dux et al., 

1999) increase in heat pain threshold (Jancsó et al., 1980; Fitzgerald and Woolf, 1982), and 

inhibition of reactive hyperemia (Domoki et al., 2003) suggested the presence of functioning 

capsaicin receptors in peripheral sensory axons. Perineural application of capsaicin resulted in 

a blockade of axoplasmic transport of neurotransmitter peptides (Gamse et al., 1982), a 

selective and permanent reduction of both afferent sensory (heat- and chemo nociception), 
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and efferent regulatory (neurogenic inflammation) functions, and lead to a dramatic loss of 

epidermal fibers in the skin area which is innervated by the treated nerve. (Dux and Jancsó, 

1994) The peripheral axon is not only a transporting route for the TRPV1 receptors, 

functioning receptors are also present in the axonal membrane, although their 

physiological/pathophysiological role need to be clarified (Tominaga et al., 1998). TRPV1 is 

expressed in about 30-60% of rat DRG neurons with considerable variations with respect to 

spinal segmental levels (Tominaga et al., 1998; Michael and Priestley, 1999; Malin et al., 

2011). TRPV1 is expressed almost exclusively in small- and medium-sized neurons with 

polymodal nociceptive function. These results are in accordance with earlier findings on 

sensory nerve fiber and ganglion cell loss after systemic neonatal capsaicin treatment (Jancsó 

et al., 1977; Nagy et al., 1983; Lawson, 1987). Small and medium-sized nociceptive DRG 

neurons can be divided into two main, partially overlapping populations. Peptidergic DRG 

neurons are characterized by the constitutive expression of several neuropeptides, especially 

calcitonin gene-related peptide (CGRP), substance P (SP) and somatostatin (Kruger et al., 

1989; Lawson, 1995), contain neurotrophic tyrosine kinase receptor type 1 (trkA), respond to 

nerve growth factor (NGF) in the adult rat and comprise about 40% of DRG neurons. Non-

peptidergic DRG neurons bind the Bandeiraea simplicifolia isolectin B4 (IB4), contain 

thiamine monophosphatase (TMP), respond to GDNF and make up about 30% of small DRG 

neurons. TRPV1 is expressed in the majority of both peptidergic (60% is TRPV1-positive) and 

non-peptidergic (75% is TRPV1-positive) neurons. TRPV1 is expressed only in few large and 

medium-sized DRG neurons with myelinated axons that express the 200 kD neurofilament 

(Michael and Priestley, 1999). 

Early studies by N. Jancsó (Jancsó, 1960; Jancsó et al., 1968) demonstrated that 

besides capsaicin-type compounds, mustard oil (allyl-isothiocyanate) also stimulates 

chemosensitive afferent nerves and elicits neurogenic inflammation. The phlogogenic effect 

of mustard oil, similarly to capsaicin, was completely abolished by denervation, capsaicin 

desensitization of adult rats (Jancsó et al., 1967) neonatal treatment with capsaicin (Jancsó et 

al., 1977) indicating the mediation of mustard oil-induced vascular reactions by 

chemosensitive afferent nerves. Similarly, perineural application of capsaicin produced a 

permanent loss of mustard oil-induced vascular reactions in the innervation area of the 

capsaicin-treated nerve (Jancsó et al., 1980). Further, mustard oil- but not capsaicin-induced 

neurogenic inflammation could be elicited in TRPV1
-/-

 mice, indicating the existence of 

another TRP receptor (Caterina et al., 2000; Bánvölgyi et al., 2004). Experiments on rodents 

confirmed that a large population of TRPV1-positive neurons are also responsive to mustard 
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oil (Story et al., 2003; Jordt et al., 2004), and express the TRPA1 receptors (Kobayashi et al., 

2005; Nagata et al., 2005; Bautista et al., 2006). Besides mustard oil, TRPA1 can be activated 

by cinnamaldehyde (in cinnamon), allicin (in garlic), methyl salicylate (in wintergreen oil), 

gingerol (in ginger), eugenol (in clove oil) and bradykinin. The data on its role in cold-

nociception are controversial (Story et al., 2003; Macpherson et al., 2005; Mckemy, 2005).  

Both somatic and visceral afferents involve a large chemosensitive population. They 

innervate, inter alia, the skin, the airways, the cardiovascular system, the gastro-intestinal 

tract, the urogenital system, the dura mater and have essential role in chemo-nociception and 

in a number of organ-specific local physiological and pathological events (Jancsó, 1960; 

Jancsó et al., 1968; Jancsó, 1984; Maggi et al., 1984; Jancsó et al., 1985; Rózsa et al., 1986; 

Jancsó et al., 1987; Holzer, 1998a; Holzer, 1998b; Dux et al., 2003). Neurogenic 

inflammation, the most thoroughly studied local regulatory process, is essential in the 

modulation of local blood flow, vascular permeability, inflammatory processes and tissue 

defense mechanisms in many organs (Jancsó, 1960; Jancsó et al., 1968; Rózsa et al., 1986; 

Maggi et al., 1987; Brain, 1997; Holzer, 1998a; Holzer and Holzer-Petsche, 2001; Jancsó, 

2009; Jancsó et al., 2009a). Besides their organ- or tissue-specific characteristics, visceral and 

somatic chemosensitive afferents share many common traits in terms of their morphology, 

neurochemistry and function. The cutaneous chemosensitive afferent nerves are the best-

characterized class of this particular population (Roosterman et al., 2006; Jancsó et al., 

2009b). 

 

Chemosensitive innervation of the skin with special regard to neurogenic inflammation and 

inflammatory hyperalgesia 

The skin has a remarkably rich TRPV1 positive innervation. Perineural treatment of rat 

peripheral nerves led to a loss of about 30% of cutaneous afferents (Jancsó and Lawson, 1990; 

Pini et al., 1990), and about 80% loss of epidermal nerves (Dux and Jancsó, 1994), an almost 

complete loss of SP-immunoreactive epidermal fibers and a less pronounced decrease of 

CGRP-immunoreactive axons (Dux and Jancsó, 1999). According to the results of Dux and 

co-workers, perineural capsaicin treatment resulted in a dramatic loss of intraepidermal nerves 

in skin areas innervated by the treated nerve: they found that 90% of nerves stained with the 

PGP 9.5 antiserum, a panneuronal marker, disappeared from the epidermis already three days 

after perineural capsaicin treatment (Dux et al., 1999). Repeated topical application of 

capsaicin onto the skin resulted in a temporary hypalgesia and loss of epidermal fibers in rats 

(Orosz et al., 1998) and also in man (Nolano et al., 1999).  
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Structural difference between peptidergic and non-peptidergic fibers was first 

described by Dux and coworkers (Dux et al., 1999) who showed that epidermal axons with 

simple morphology are peptidergic and those with a complex morphology are non-

peptidergic. Zylka et al. (2005) showed that in mice peptidergic and non-peptidergic 

epidermal nerve endings terminate in different epidermal layers (CGRP+ fibers appeared to 

end in the stratum spinosum and non-peptidergic fibers seemed to penetrate into the stratum 

granulosum); he also realized that peptidergic and non-peptidergic fibers had different 

morphology, peptidergic were straight and non-peptidergic had a zig-zag structure as 

described earlier by Dux et al. (1999).  

Cutaneous TRPV1-positive fibers primarily act as polymodal nociceptors that are 

responsible for heat- and chemo-nociception. Besides transmitting nociceptive impulses 

towards the central nervous system, these sensory neurons release peptides from their 

peripheral endings, and maybe along their peripheral axons, in response to noxious stimuli. 

Sensory neuropeptides such as CGRP, SP or neurokinin A (NKA) released from the activated 

nociceptors mediate local regulatory functions involving the microvasculature, inflammatory- 

and dermal/epidermal cells and the sensory neurons themselves. Among the local regulatory 

roles of sensory neurons, the vascular changes associated with sensory nerves were 

recognized even before the exact identification of the mediators. The triple response of the 

human skin evoked by noxious stimuli of different modalities was observed by Lewis (Lewis 

and Grant, 1924). It is composed of local vasodilatation, edema formation (wheal), and 

spreading vasodilatation (flare). In rats, the flare response is missing. Because the classical 

signs of inflammation, „rubor, tumor cum dolore et calore” were present in the reaction 

induced by noxious stimuli at least in humans, and because the existence of a substantial 

neurogenic component was evident, N. Jancsó named it „neurogenic inflammation” (Jancsó, 

1960). In the human skin the sensory fibers mediating the flare response are chemosensitive 

(Jancsó, 1960; Jancsó et al., 1968; Jancsó et al., 1985) and mechano-insensitive C-fibers 

(Schmelz et al., 2000). In the rat, sensory vasodilatation is primarily mediated by capsaicin-

sensitive C-fibers, but activation of Aδ fibers might also cause vasodilatation (Kenins, 1981; 

Lynn et al., 1996). While cutaneous vasodilatation and flare responses could be elicited by 

relatively mild chemical, physical or electrical stimuli, the production of neurogenic plasma 

extravasation requires excessive stimulation. Substance P (SP) was the first peptide verified 

as a mediator of sensory neurogenic vascular responses (Lembeck and Holzer, 1979; Gamse 

et al., 1980). It is a member of the tachykinin group together with the structurally similar 

NKA and B. SP causes plasma extravasation by binding to the NK1 receptor (a G protein 
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coupled receptor) situated on endothelial cells of postcapillary venules (Lembeck and Holzer, 

1979; Kenins, 1981; Kenins et al., 1984; Chahl, 1988). SP also activates cutaneous mast cells 

(Bueb et al., 1990; Holzer, 1992) and sensitizes nociceptors (Li et al., 2012). Calcitonin gene 

related peptide (CGRP) is a sensory neuropeptide which is found in both small and large 

primary afferent neurons (Kruger et al., 1989). CGRP is a member of the calcitonin (CALC) 

superfamily: a group of mainly hormokine peptides that derive from the CALC genes. CGRP 

I (or α) is a 37 amino acid long alternative mRNA splice product of the CALC I gene, 

together with calcitonin and pro-calcitonin. CALC II leads to CGRP II (or ß, which differs in 

3 amino acids from CGRP I or α), and CALC IV and V give rise to amylin and 

adrenomedullin, respectively, while CALC III is a non-translated pseudogene. Based on their 

structural homologies, calcitonin peptides have overlapping bioactivities, which they exert by 

binding to the same family of receptors. There are two subgroups of these G protein-coupled 

receptors with seven transmembrane domains: CALC receptors and calcitonin receptor-like 

receptor (CLR). Three accessory proteins, receptor activity-modifying proteins (RAMPs 1–3), 

bind to these receptors and alter their specific responsiveness and ligand affinity (Russell et 

al., 2014). The presence, the concentration, and the timing of the three RAMPs determines the 

specific cellular phenotype of the receptor that is biologically active on the cell surface 

(Christ-Crain and Müller, 2007). CGRP-immunoreactive fibers are more numerous in the 

human and rat skin than SP immunoreactive ones (Wallengren et al., 1987; Dux et al., 1999). 

In rodent as well as in human sensory nerves, CGRP is, at least in part, colocalized with 

substance P (Gibbins et al., 1985; Franco-Cereceda et al., 1987). It is a very potent vasodilator 

in the skin in many animals and in man (Brain et al., 1985). CGRP exerts its vasodilatory 

effect by directly acting on vascular smooth muscle cells (Ralevic et al., 1992) and also by 

activating endothelium-dependent NO pathways (Brain and Grant, 2004).  

Both peptides are transported into the nerve endings via fast axonal transport (Morton 

and Chahl, 1980; Gamse et al., 1982) where they are stored and can be released via TRPV1 or 

TRPA1 mediated mechanisms (Pethő et al., 2004; Bautista et al., 2006). CGRP can also be 

released from isolated peripheral nerves via TRPV1-mediated mechanisms (Bernardini et al., 

2004). Electrophysiological studies in vivo suggested a role for CGRP in regulating thermal 

sensitivity, sensitization and ectopic spike generation in peripheral nociceptive axons 

(Hoffmann et al., 2008). Some other neuropeptides expressed by cutaneous sensory neurons 

include pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal 

polypeptide (VIP), somatostatin (SOM) (Wallengren et al., 1987), and galanin (GAL) (Bártfai 

et al., 1992; Hokfelt et al., 1994; Sántha et al., 1998a; Sántha et al., 1998b; Sántha et al., 
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1999).  In the periphery, the main source of histamine is the mast cell. Mast cell degranulation 

mainly occurs when a tissue is inflamed or allergens are present (Benditt et al., 1955). Many 

factors cause histamine release, so does SP in the human skin (Bunker et al., 1991). There are 

four known types of histamine receptors, all of them are coupled to G-proteins (Shim and Oh, 

2008). H1R is found on endothelial cells and on sensory nerve endings. Histamine-induced 

plasma extravasation (Jancsó and Jancsó-Gábor, 1947) is mediated by endothelial H1R and 

consequent PLC activation. Histamine also has a vasodilator effect via binding to H2Rs on 

vascular smooth muscle. Histamine has vasoactive and proinflammatory effects, but it does 

not appear to have an essential role either in the initiation or in the final vascular response of 

the neurogenic inflammation (Jancsó et al., 2009a). Bradykinin, the „slow” kinin is a 

nonapeptide, which is formed from HMW (high molecular weight) kininogen by the action of 

kallikrein and other substances. Bradykinin is a potent endothelium-dependent vasodilator, 

inflammatory mediator and pain-producing substance. There are two known bradykinin 

receptors: B1 and B2, both of them are G-protein coupled receptors. Activation of B1 receptor 

is responsible for neutrophil recruitment during inflammation, while endothelial B2 receptor is 

involved in the vasodilator activity. Bradykinin causes plasma extravasation in many tissues 

by a B2 receptor-mediated pathway (Hall, 1997). Bradykinin can be considered as an 

endogenous activator of the TRPV1 through B2 receptors (Vellani et al., 2004). Arachidonic 

acid derivatives, local release of proteinases and NO also increase the complexity of neuro-

vascular reactions. Neurogenic inflammation is not only a cutaneous phenomenon; it also 

appears in many other organs, including the airways, the urogenital system, several parts of 

the gastrointestinal tract and the dura mater (Saria et al., 1987; Maggi and Meli, 1988; Abelli 

et al., 1991; Dux et al., 2003; Klukovits et al., 2004). 

Cutaneous fibers that express the TRPV1 receptor are key players of sensitization that 

are initiated by inflammation or tissue injury and lead to hyperalgesia and allodynia (Fischer 

and Reeh, 2007; Watanabe et al., 2015).  Tissue damage and inflammation produce an array 

of chemical mediators such as ATP, bradykinin, prostanoids, protons, cytokines and peptides 

including substance P that can excite or sensitize nociceptors to elicit pain at the site of injury. 

Pain hypersensitivity can take two forms: hyperalgesia is when noxious stimuli produce an 

exaggerated and prolonged pain and allodynia is when thresholds are lowered so stimuli that 

normally don’t cause pain, become painful (Costigan and Woolf, 2000). Hypersensitivity may 

be of peripheral or central origin. Peripheral sensitization involves increased excitability of 

the nociceptive nerve terminal and begin very early, even within seconds after injury. Central 

sensitization evolves slower and implicate long term changes in the synaptic transmission in 
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the central pain pathway. Heat hyperalgesia is said to be a result of peripheral sensitization 

and mechanical allodynia is considered to be central. As both central and peripheral 

mechanisms are closely related to processes that take place in the primary sensory neuron as a 

sensory unit, clear-cut separation of peripheral and central sensitization might not be 

inevitable although it serves as a helpful model. Several experimental models exist for 

inflammatory hyperalgesia including those induced by formalin, Freund’s adjuvant and 

carrageenan (Hargreaves et al., 1988; Ren and Dubler, 1999; Gould, 2000).  Intraplantar 

injection of carrageenan in experimental animals causes paw edema, heat hyperalgesia and 

mechanical allodynia that develops in the inflamed area (Kocher et al., 1987; Hargreaves et 

al., 1988) and reaches its peak within four hours. In the pathomechanism of carrageenan-

induced hyperalgesia sensitization and up-regulation of the TRPV1 receptors play a crucial 

role and the NGF signalization pathway is involved (Sammons et al., 2000; Tohda et al., 

2001). Systemic neonatal capsaicin treatment significantly decreases the carrageenan-induced 

heat- and tactile hyperalgesia (Lee et al., 2004).   

Sensory denervation of the skin in humans and in experimental animals results in the 

development of cutaneous lesions, impaired wound-healing (Kishimoto, 2016), and decreased 

hair growth (Maggi et al., 1987; Thomas et al., 1994). Toxic effects and metabolic disorders 

that affect cutaneous sensory neurons often lead to impaired homeostasis and/or structural 

lesions of the skin.  Measurement of the efferent vascular functions (Jancsó and Janka, 1981) 

and morphological analysis of tissue samples (Beiswenger et al., 2008) are reliable methods 

for the detection of the structural and functional integrity of cutaneous nerves not only in 

experimental animals but in man, too. A quantitative assessment of the vascular reactions 

elicited through activation of TRPV1 and/or TRPA1 receptors localized on chemosensitive 

afferent nerves serves as a reliable indicator of the functional condition of these afferent 

nerves in both man and animals (Jancsó and Janka, 1981; Jancsó et al., 1985; Baron et al., 

1988; Lynn et al., 1996; Dux et al., 2003; Bernardini et al., 2004; Namer et al., 2005). Further, 

measurements of the capsaicin- or mustard oil-induced release of the sensory neuropeptide 

CGRP in ex vivo preparations provide valuable information on the functional integrity of 

chemosensitive afferent nerves (Gamse et al., 1980; Saria et al., 1987; Lundberg et al., 1992; 

Dux et al., 2007; Fuchs et al., 2010).  
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Sensory innervation of the heart and the protective role of peptidergic afferent nerves 

against cardiac injury  

In many cultures the heart is considered as the center of emotions, but what we really 

sense with our heart, is not an easy issue. As for non-painful sensations, everybody can sense 

palpitation, extrasystole and arrhythmia. Interestingly, many pathologies of the heart, 

including myocarditis or rupture of the valves do not lead to sensation of cardiac pain 

(Malliani et al., 1986). Ischemic pain of the heart is the most common cardiac pathology 

associated with the activation of cardiac nociceptors. Cardiac chemo-nociceptive nerve 

endings can be activated by hypoxia, acidity, and potassium ions. Importantly, cardiac 

sensory nerves may respond to these stimuli with the release of sensory neuropeptides such as 

CGRP or SP (Franco-Cereceda et al., 1987; Holzer, 1992; Sosunov et al., 1996; Nagy et al., 

2004).  

The existence of sensory endings in the heart was first suggested by Berkley (1894), 

Smirnov (1895)), and Dogiel (1898). An excellent monograph on the innervation of the heart 

and the blood vessels has been published by (Ábrahám, 1969). Anatomically, the heart 

receives dual sensory innervation. Nociceptive spinal afferent nerves, whose parent cell 

bodies are located in the thoracic DRGs 1-6, run together with postganglionic sympathetic 

fibers. Vagal afferent nerves, whose parent cell bodies are situated in the nodose ganglion, 

join vagal parasympathetic fibers. The relative contribution of vagal and spinal sensory nerves 

to the innervation of the heart is controversial. Langley (1903) stated, that most of the afferent 

fibers, the stimulation of which leads to pain, run with the sympathetics and are of spinal 

origin. Woollard (1926) suggested, that a large proportion of cardiac sensory nerves are of 

vagal origin. Nettleship (1936) came to a different conclusion by showing that removal of 

thoracic DRGs resulted in the degeneration of nerves innervating the apical ventricular 

endocardium and the coronary arteries. Khabarova (1963) observed that vagal and spinal 

endings frequently run side by side. Vagal afferents form plexi associated with cardiac 

ganglia, where they provide dense pericellular ending on the small intensely fluorescent (SIF) 

cells. In the myocardium afferents are in close contact with the cardiac muscle and conduction 

fibers, and in the endocardium they form end-net or flower spray terminals. Some fibers have 

both endocardial and myocardial intramuscular endings (Cheng et al., 1997).   

Vagal left ventricular receptors are C-fiber afferents that mediate the Bezold-Jarish 

reflex. Bezold reported the cardiodepressive reflex evoked by veratrum alkaloids (von Bezold 

and Hirt, 1867) and Jarish clarified the reflex (Jarish and Henze, 1937).  According to 

(Hainsworth, 1991), the receptors involved in the Bezold-Jarisch reflex respond to bradykinin, 
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prostaglandins, capsaicin, serotonin and phenylbiguanidine (PBG). Jancsó and Such (1986) 

demonstrated in cats that perivagal capsaicin treatment greatly reduced i.v. capsaicin-induced 

reflex bradycardia, hypotension and apnea but left these reflex responses evoked by 

intravenous administration of PBG and veratrine unaffected. These findings indicated that 

vagal afferent fibers mediating cardiovascular and respiratory chemo-reflexes are separated 

into chemo-specifically different populations.  

A large population of cardiac sensory nerves is sensitive to capsaicin (Jancsó and 

Such, 1983; Ferdinandy et al., 1997). Several studies concluded that capsaicin induces 

positive chronotropic and inotropic effects in the isolated guinea pig atrium (Fukada and 

Fujiwara, 1969;  et al., 1969; Lundberg et al., 1984). It was also shown that in guinea pig 

whole-heart preparations, CGRP stimulates the rate and force of atrial contractions (Franco-

Cereceda and Lundberg, 1988). Franco-Cereceda and coworkers furnished indirect evidence 

that activation of cardiac nerves by capsaicin results in the release of CGRP, which is at least 

partly responsible for the capsaicin-evoked cardiac effects. In the isolated guinea-pig right 

atrium capsaicin (10-6 M) evoked an increase in contractile rate and tension with a 

simultaneous outflow of CGRP-LI. In the isolated whole heart, capsaicin increased the 

outflow of CGRP-LI and stimulated heart rate while a negative inotropic effect was observed. 

The negative inotropic effect of capsaicin is unrelated to the activation of sensory nerves 

(Franco-Cereceda et al., 1991).  

Application of capsaicin (10µg/ml) onto the epicardial surface of the left ventricle in 

anaesthetized rats resulted in cardiogenic sympathoexcitatory response (Zahner et al., 2003) 

similar to that induced by bradykinin (Baker et al., 1980; Veelken et al., 1996; Tjen-A-Looi et 

al., 1998; Li and Pan, 2000; Pan and Chen, 2002). Capsaicin and bradykinin seem to act on 

the same subpopulation of neurons, but on different receptors, TRPV1 and B2, respectively.  

The study of the involvement of cardiac sensory nerves in the development of cardiac 

pathologies is a rapidly growing field of cardiovascular research. CGRP is to be found in 

approximately 40% of primary sensory neurons, including those innervating the heart 

(Gibbins et al., 1985; Mulderry et al., 1985; Franco-Cereceda et al., 1987; Franco-Cereceda 

and Lundberg, 1988). CGRP-containing nerves are present in all regions of the rat heart, 

especially in association with the coronary arteries, the papillary muscles, and the sinoatrial 

and atrioventricular nodes (Mulderry et al., 1985). The atria have a denser CGRP-positive 

innervation then the ventricles. CGRP immunopositive nerve fibers also occur in the cardiac 

ganglia between ganglion cells. In the guinea pig, most of the CGRP-positive fibers display 

SP immunopositivity, but in the rat, CGRP containing cardiovascular nerves are far more 
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numerous than those containing SP (Wharton et al., 1986). CGRP exerts marked coronary 

vasodilatory (Holman et al., 1986) and positive inotropic and chronotropic effects in several 

species (Franco-Cereceda and Lundberg, 1988; Franco-Cereceda and Lundberg, 1989; Yaoita 

et al., 1994; Gasparetti et al., 2002). CGRP is localized in cardiac primary sensory neurons 

which are sensitive to the potent sensory neurotoxin capsaicin (Franco-Cereceda and 

Lundberg, 1988; Ferdinandy et al., 1997; Gasparetti et al., 2002) and which express the 

TRPV1 receptor (Zahner et al., 2003). Systemic administration of capsaicin results in a 

depletion of CGRP from cardiac nerves (Ferdinandy et al., 1997), and a decrease in basal NO 

synthesis in the rat heart (Csont et al., 2003). It has been demonstrated that the depletion of 

CGRP by capsaicin results in a marked increase in the incidence of adverse reactions, which 

commence following the experimental induction of myocardial ischemia (Franco-Cereceda 

and Lundberg, 1989; Kallner, 1989; Kallner and Franco-Cereceda, 1989). Further, CGRP is 

essential for the development of myocardial protection: the depletion of CGRP from sensory 

nerves by prior pre-treatment with capsaicin greatly inhibits or even abolishes the protective 

effect of ischemic preconditioning (Ferdinandy et al., 1997; Zhou et al., 1999) or heat stress 

on reperfusion injury (Song et al., 1999), and attenuates the nitroglycerine-induced 

improvement of preservation with cardioplegic solution (Zhou et al., 2001). TRPV1 gene 

knockout impairs postischemic recovery (Wang and Wang, 2005) and N-oleoyldopamine, an 

endogenous activator of the TRPV1 receptor has been shown to protect the heart against 

ischemia-reperfusion injury (Zhong and Wang, 2008). CGRP seems to play an important role 

in both local (when conditioning stimulus is applied on the same organ), and remote (when 

stimulus is applied to a distant organ or tissue) ischemic conditioning (Wolfrum et al., 2005; 

Veighey and Macallister, 2012; Russell et al., 2014; Hausenloy and Yellon, 2016). Remote 

preconditioning via activation of peripheral nociceptors by non-ischemic stimuli (traumatic 

wound injury) were also studied (Jones et al., 2009). TRPV1 activation is involved in remote 

postconditioning (Gao et al., 2015) and rutacarpine, a useful herbal drug in the treatment of 

hypertension and angina pectoris has been shown to exert its cardioprotective effect, at least 

in part through an action on capsaicin-sensitive nerves (Hu et al., 2003). CGRP is also 

involved in human cardiac pathologies: an early increase in plasma CGRP level has been 

demonstrated in patients with myocardial infarction (Lechleitner et al., 1992) and 

administration of this peptide has been shown to delay the onset of myocardial ischemia upon 

physical exercise in patients with stable angina pectoris (Uren et al., 1993). In conclusion 

chemosensitive cardiac nerves play a crucial role in the adaptive/protective responses of the 

heart. The importance of cardiac peptidergic sensory nerves in cardiac adaptation to ischemic 



 12 

stress is well established, but little is known about their possible protective role in drug-

induced cardiotoxicity. 

 

Anthracycline-induced cardiotoxicity, and neurotoxicity  

Anthracyclines have been introduced into clinical oncology in the past century (Di 

Marco et al., 1969). Despite serious side effects, anthracyclines have soon become 

indispensable in the treatment of many malignancies (Davis and Davis, 1979). Hence, 

anthracycline-type cytostatic agents are still widely used in both adult and pediatric oncology. 

Adriamycin exerts its antimitotic effect by intercalating DNA base pairs leading to breaks in 

the helical strands (Pigram et al., 1972; Buja et al., 1974) and by inhibiting DNA-dependent 

enzymes. Adriamycin was shown to inhibit protein synthesis in cell-free systems but not in 

intact cells (Momparler et al., 1976). Studies on anthracycline distribution within tissues and 

cell compartments are based on its natural fluorescence (Egorin et al., 1974; Danesi et al., 

1974; Hindenburg et al., 1989) or on the use of immunosilver staining techniques 

(Henneberry and Aherne, 1992). After intravenous administration of the drug, the access to 

the cells depends on the vascularization of the tissue, the strength of the endothelial barrier 

systems and the binding of the drug to membrane sites (Tritton and Yee, 1982). The 

unchanged form of the drug is transported via passive diffusion across the cell membranes 

(Mayer et al., 1986; Frézard and Garnier-Suillerot, 1991). Adriamycin is a weak base 

(pK=8.3), and the cellular uptake is driven by the pH gradient and the concentration gradient. 

Binding of the drug to the DNA (Chaires et al., 1985;Capranico et al., 1990), to intracellular 

membranes (de Wolf et al., 1993), and its accumulation in acidic organelles (Willingham et 

al., 1986) can play a role in maintaining the concentration gradient. The actual intracellular 

concentration of adriamycin is the result of a dynamic equilibrium of influx and efflux 

processes. Therefore the expression pattern of efflux transporters such as ATP-binding 

cassette proteins (ABC) seems to be an essential factor in the cellular vulnerability for 

anthracyclines. Overexpression of the most studied ABC transporter, the P-glycoprotein, was 

shown to be associated with an acquired resistance to the cytostatic agent (Couture et al., 

2006). ABC transporters, on the one hand, can protect the organism from the toxic effect of 

the xenobiotic but, on the other hand, their overexpression in tumor cells can limit the 

therapeutic effect.   

The cardiotoxic effects are the most serious side effects of anthracyclines which are 

difficult to predict and even more difficult to manage. Congestive dilatative cardiomyopathy 

is the most serious manifestation of adriamycin cardiotoxicity which develops in 1.7% to 
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6.8% of the patients; the prevalence is highly dependent on the total dose administered 

(Minow and Benjamin, 1975; Lefrak et al., 1975; Praga et al., 1979; Suzuki et al., 1979). 

Potentially fatal cardiotoxicity has a rising probability at a cumulative dose of >550 mg/m2 

(Lenaz and Page, 1976). Children appear to be at greater risk at any given dose (Gilladoga et 

al., 1975). The outstanding clinical feature of its cardiotoxic effect is the insidious onset, 

followed by a rapid progressive biventricular failure and death. The lack of presently 

available effective treatment of established cardiomyopathy lays special emphasis on the 

development of possible preventive treatments. Therefore, extensive research has been and is 

being done to understand the pathomechanism of adriamycin cardiotoxicity. Experimental 

cardiomyopathy induced by adriamycin has been studied in rats (Schwarz et al., 1998a), dogs 

(Van Vleet et al., 1980), rabbits and mice (Lambertenghi-Deliliers et al., 1976). 

The special ability to bind to the phospholipid cardiolipin and to form a nearly-

irreversible complex with this mitochondrial inner membrane protein is considered as the first 

step of adriamycin cardiotoxicity in several studies (Rahman et al., 1985; de Wolf, 1991). 

Accumulation of adriamycin in the heart also depends on the rate of its transport out of the 

cells (Couture et al., 2006). Several members of the P-glycoprotein group of ABC 

transporters, named multidrug resistance-associated proteins (MRP) were found in high levels 

in the heart of many species including man (Flens et al., 1996; Meissner et al., 2004). 

Polymorphism in ABC transporter genes  have been shown to modulate drug disposition, and 

might  be responsible for  interindividual variability in both the therapeutic and the toxic 

effect of the drug, but its exact impact on cardiac drug levels remains to be elucidated. It is 

probable that some drugs, for example verapamil or cyclosporine A, that are clinically proved 

to enhance the cardiotoxic effect of anthracyclines, act by inhibiting P-glycoprotein or other 

ABC transporters; paclitaxel might also have a similar effect (Couture et al., 2006). Because 

of the heart’s unique vulnerability to oxidative stress, adriamycin-induced free radical 

production and subsequent lipid peroxidation (Bachur et al., 1977) has been extensively 

studied, and the participation of several mitochondrial enzymes (Davies and Doroshow, 1986) 

has been disclosed. Increased endothelial nitric oxide synthesis and apoptosis (Kalivendi et 

al., 2001; Bruynzeel et al., 2007) also contribute to the cardiac injury. The cardiotoxic effect 

of adriamycin is likewise related to impairment of DNA replication (Singal et al., 1997), 

disturbances of calcium homeostasis (Olson-RD and Mushlin, 1990), and altered iron 

homeostasis (Xu et al., 2005). Adriamycin affects cardiac-specific gene expression as well. 

Cardiac adriamycin-responsive protein (CARP) appears to function as a negative regulator of 

cardiac-specific gene expression and its overexpression in cardiomyocytes suppresses cardiac 
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troponin C and atrial natriuretic factor transcription (Umlauf and Horky, 2002), but the 

downregulation of α-actin, myosin light- and heavy chains and sarcoplasmic reticulum ATP-

ase has also been suggested to play a role in adriamycin cardiotoxicity. Similarly, changes in 

the high energy phosphate pools, disturbances in the endothelin, cannabinoid, and 

neuroregulin signaling pathways, ceramide accumulation and extracellular matrix remodeling 

can also contribute to the pathomechanism (for a review see Octavia et al., 2012).   

Besides the chronic cardiotoxic effect, acute cardiotoxicity of adriamycin also occurs, 

presenting mainly with arrhythmias and myocardial apoptosis (Arola et al., 2000). In humans 

the incidence of acute cardiotoxicity is relatively high (~11%), and occurs during and within 

2-3 days of the administration of the drug, and the manifestations are usually chest pain due 

myo-pericarditis, sinus tachycardia, paroxysmal nonsustained supraventricular tachycardia, 

and premature atrial and ventricular beats. The electrocardiogram may show nonspecific ST-T 

changes, decreased QRS amplitude and left axis deviation. Acute left ventricular failure is 

rare, and the acute effects of the drug are usually reversible (reviewed by Chatterjee et al., 

2010).  

Anthracycline cardiotoxicity is a multifactorial process, many mechanisms of which 

are different from those implicated in the therapeutic effect of the drug. Jeon et al concluded 

that damage to cardiac adrenergic innervation might also contribute to the pathomechanism of 

adriamycin-induced cardiomyopathy, but little is known about the possible role of sensory 

nerves in the mechanism of anthracycline cardiotoxicity (Jeon et al., 2000).  

Human histopathologic effects of the drug have been studied at autopsy (Suzuki et al., 

1979) and in endo-myocardial biopsy specimens (Billingham et al., 1978). The lesions are 

disseminated but are yet focal: vacuolar degeneration due to distension and swelling of the 

sarcoplasmic reticulum, and later myofibrillar loss can be seen. „Adria Cell” is a term used 

for cardiomyocytes with myofibrillar loss, cytoplasmic vacuolization and central clumping of 

the nuclear chromatin seen by electron microscopy in adriamycin-treated patients. Lesions 

progress to death of the myocyte, at which point the mitochondria degenerate with swelling 

and cristolysis and finally dead myocytes are replaced by fibrotic tissue. In many animal 

models similar histopathologic changes were observed. Animal studies pointed to the fact that 

a number of morphological signs appear before the onset of congestive heart failure (for a 

review see (Saltier and McGuire, 1983).  

Similar changes were recognized in post mortem examination of dorsal root and 

cardiac ganglia of adriamycin- or daunorubicin-treated patients (Smith, 1969). Adriamycin 

does not pass the blood brain barrier in vivo, but has rapid access to cells in the dorsal root 
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ganglia (Bigotte et al., 1982) and exerts a pronounced neurotoxic effect in experimental 

animals. In rats, administration of a single high dose of adriamycin lead to selective sensory 

neuropathy, with characteristic morphological changes and cell death in DRGs (Cho, 1977; 

Eddy, 1983). Cellular degeneration was also present in cultures of DRGs exposed to 

adriamycin (Zagoren et al., 1984). In mice, intramuscular or intraneural injection of the drug 

reaches the CNS via retrograde axonal transport and induces degeneration of motoneurons 

and other types of nerve cells (Bigotte and Olsson, 1983).  

It is difficult to estimate the clinical prevalence of the neurotoxic effect of adriamycin 

because it is often given in combination with other cytostatic agents with known neurotoxic 

propensity. Vinca alkaloids are particularly neurotoxic. Other cytostatic drugs can cause 

peripheral neuropathies, but are less neurotoxic than vincristine (Rosenthal and Kaufman, 

1974). The clinical features of vincristine neuropathy are well documented (Holland et al., 

1973). Other oncolytic drugs associated with peripheral neuropathy include cisplatin, 

suramin, paclitaxel, chlorambucil, altretamine, carboplatin, cytarabine, docetaxel, 

dacarbazine, etoposide, fludarabine, tamoxifen, teniposide, and thioguanine, (for reviews see 

Scripture et al., 2006; Kanbayashi et al., 2010; Grisold et al., 2012). Most drug-induced 

neuropathies affect solely the sensory nerves or are mixed sensorimotor in nature. Usually 

mixed peripheral neuropathies present sensory symptoms prior to progressing to motor 

impairments. Autonomic neuropathy may also develop following the administration of 

anticancer agents.  

 

Aims of the study 

Peptidergic cardiac nerves have been demonstrated to play a significant role in cardiac 

function under pathophysiological and possibly physiological conditions. However, the 

participation of cardiac sensory nerves in the pathomechanism of anthracycline-induced toxic 

cardiomyopathy has not been considered, yet. With regard to the pivotal significance of 

chemosensitive afferent nerves expressing TRPV1 and CGRP in myocardial protective 

mechanisms, the present experiments were conducted in an attempt to reveal a possible role 

of these particular nociceptive sensory nerves in the development of adriamycin-induced 

experimental cardiomyopathy in the rat. 

Chemosensitive afferent nerves innervating different organs and tissues share many 

common traits in terms of their morphology, neurochemistry and function. The cutaneous 

chemosensitive afferent nerves are the best-characterized class of this particular population of 

sensory nerves (Roosterman et al., 2006; Jancsó et al., 2009a). Through application of a 
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treatment paradigm previously shown to produce congestive cardiomyopathy in the rat, an 

additional aim of the present work was therefore an explanation of the neurotoxic effects of 

adriamycin on chemosensitive afferent nerves through studies of cutaneous neurogenic 

sensory vasodilatation, neurogenic plasma extravasation, inflammatory hyperalgesia and 

innervation, and measurement of CGRP release from sensory nerves. 

 

The specific aims of this thesis were as follows: 

 

1) The exploration of the possible contribution of cardiac chemosensitive peptidergic nerves 

to protective mechanisms against adriamycin-induced cardiotoxicity by comparing the 

severity and dynamics of progression of cardiac failure/damage in intact and 

chemodenervated rats. 

 

2) The evaluation of the neurotoxic effects of adriamycin on the local regulatory, „sensory 

efferent” functions of cutaneous chemosensitive afferent nerves. The assessment of the dose- 

and time-dependent effects of adriamycin on cutaneous neurogenic vasodilatation, plasma 

extravasation, inflammatory hyperalgesia and the axonal release of CGRP.  

 

3) The quantitative analysis of the morphological effects of adriamycin on cutaneous 

innervation and skin structure. 
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MATERIALS AND METHODS 

 

This study conformed fully to the Principles of laboratory animal care  (NIH 

publication No. 85-23, revised 1985) and was approved in advance by the Animal Research 

Ethics Committee of the University of Szeged. 

 

Adriamycin treatment  

Adult male Wistar rats weighing 250 ± 30 g at the start of the experiments were used 

in the study. Adriamycin (doxorubicin) treatment was induced according to the treatment 

schedule introduced by Tong et al (Tong et al., 1991). The animals received a cumulative 

dose of 15 mg/kg of adriamycin (Pharmacia Italia, Milan, Italy) by systemic injection of 2.5 

mg/kg of the drug three times a week for 2 weeks. The control rats received equivalent 

amounts of the vehicle (saline). Tests other than echocardiography were made 2-7 days after 

the cessation of the adriamycin treatment. 

 

Selective sensory chemodenervation induced by systemic capsaicin treatment 

A group of rats (n=23) was pretreated with capsaicin (Fluka, 10, 20 and 100 mg/kg 

subcutaneously injected on 3 consecutive days) or its vehicle (6% ethanol, 8% Tween 80 in 

saline, n=6) under ether anesthesia 2 weeks prior to the induction of adriamycin treatment. 

This capsaicin treatment paradigm has been shown to result in a practically complete 

elimination of CGRP-containing cardiac sensory nerves (Ferdinandy et al., 1997). 

 

Echocardiac assessment of cardiomyopathy 

Cardiac function was assessed by echocardiographic examination before and at regular 

intervals after capsaicin and/or adriamycin treatment. Echocardiography was performed 

essentially as described by Schwarz et al (Schwarz et al., 1998a;  et al., 1998b). The rats were 

anesthetized with ether, the chest was shaved and the animal was placed in the supine 

position. Two-dimensional and M-mode echocardiographic examinations were performed in 

accordance with the criteria of the American Society of Echocardiography, with a Desmin F 

ultrasound scanner (Echo-Son, Poland), using 5 and 7.5 MHz phased-array transducers. The 

investigator who analyzed the echocardiograms was unaware of the modes of treatment that 

the animals had undergone. At all-time points, three measurements were made in each animal, 

and the mean values were calculated and used for statistical evaluation of the data. The left 

ventricle (LV) was examined in the parasternal long-axis view at the level of the mitral valve, 
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or in the parasternal short-axis view at the level of the papillary muscles. The LV diameters 

were measured by means of M-mode echocardiography between the endocardial borders. The 

LV end-diastolic diameter (LVDD) was measured at the longest diameter of the LV. The LV 

end-systolic diameter (LVSD) was measured at the shortest diameter of the LV. The 

fractional shortening (FS) was calculated by using the LV diameters (LVDD–LVSD)/LVDD, 

and was expressed as a percentage. The left atrial diameter (LAD) and aortic diameter (AOD) 

were measured by M-mode echocardiography at the level of the longest LAD. Three cardiac 

cycles were measured, and the mean values were calculated and utilized for the evaluation of 

the data. The ratio LAD/AOD was calculated. Values are given as means ± SEM. Pericardial 

and pleural effusion was detected by the examination of fluid accumulation between the 

layers of the epicardium and the pericardium and between the layers of the visceral and 

parietal pleurae, respectively, with two-dimensional and M-mode echocardiography. Ascites 

was visualized from the subcostal four-chamber or short-axis view below the diaphragm by 

means of two-dimensional ultrasonography.  

 

Immunohistochemical examination of cardiac tissues 

For cardiac immunohistochemical studies additional groups of rats treated with 

adriamycin (n=3) and capsaicin plus adriamycin (n=3) were perfused via the left heart 

ventricle with Zamboni s fixative 2 weeks after the completion of the administration of 

adriamycin. The hearts were removed and after a post-fixation period of 3 h they were placed 

in a buffer solution and stored at 4°C until sectioning. Transverse sections through the 

ventricles were cut at a thickness of 20 µm and were processed for immunohistochemical 

staining with the indirect immunofluorescence technique by using rabbit polyclonal antisera 

raised against protein gene product 9.5 (PGP 9.5, 1:1000; Ultraclone, Cambridge, UK) and 

CGRP (1:500, Sigma Chemicals, St Louis, MO, USA). Goat anti-rabbit IgG labeled with Cy3 

(carboxymethylindocyanin, 1:500, Jackson ImmunoResearch Laboratories, West Grove, PA, 

USA) was used as a secondary antibody. The specimens were viewed under a Leitz DMLB 

fluorescence microscope equipped with an appropriate filter combination and photographed 

with a digital camera (Nikon Coolpix 950). 

 

Measurement of chemically induced neurogenic cutaneous vasodilatation 

Animals were anesthetized with chloral hydrate (400 mg/kg, i.p., Reanal, Budapest, 

Hungary). Body temperature was maintained at 37.2 ± 0.5 
o
C with a heating pad. A small 

silicone chamber (5 mm in diameter) was mounted on the middle region of the dorsal skin of 
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the hind paw to avoid the lateral spreading of the applied solutions. Cutaneous blood flow 

(CuBF) was monitored with a Laser Doppler Blood Flow (LDF) Monitor (type MBF3, Moor 

Instruments Ltd, Axminster, Devon, UK) by positioning the probe over the surface of the skin 

in the center of the chamber.  After a stable LDF signal was attained, 20 µl of mustard oil 

(0.2%, allyl-isothiocyanate, Merck, Darmstadt, Germany) was applied onto the skin through a 

polyethylene cannula built into the wall of the chamber and the CuBF was recorded for 15-20 

min. This procedure was repeated 45 min later with a higher concentration of mustard oil 

(1%). We also studied the vasodilatory effect of capsaicin (1%, Fluka, Buchs, Switzerland) in 

a similar set of experiments. Relative increases in CuBF were calculated by comparing the 3-

min pre-drug mean CuBF with the mean of consecutive 1-min LDF signal values recorded 

after the application of test agents. The effects of pretreatments with the specific TRPA1 and 

TRPV1 antagonists, HC-030031 (Tocris, Bristol, UK) and capsazepine (Sigma-Aldrich 

GmbH, Germany), respectively, were also tested. Capsaicin was dissolved in ethanol. Stock 

solutions of HC-030031 (100 mM) and capsazepine (10 mM) were prepared with dimethyl 

sulfoxide and ethanol, respectively. Mustard oil was diluted with ethanol. 

 

Measurement of chemically induced cutaneous plasma protein extravasation 

Neurogenic plasma extravasation was evoked and quantified as described previously. 

Briefly, animals were anesthetized with chloral hydrate and injected intravenously with Evans 

blue dye (50 mg/kg, 1% in saline). Ten minutes later, the dorsal skin of the hind paws was 

painted with a solution of 5% mustard oil, 1% capsaicin or their solvent (liquid paraffin and 

ethanol, respectively). The effects of pretreatments with the specific TRPA1 and TRPV1 

antagonists, HC-030031 and capsazepine, respectively, were also tested. After 20 min, the 

animals were perfused transcardially with saline, and samples of the dorsal paw skin were 

removed, weighed and placed into formamide to extract the dye for quantitative photometric 

determination (Jancsó et al., 1977). Tissue Evans blue contents were expressed in µg dye/g 

tissue as mean ± S.D. Plasma extravasation induced by histamine, bradykinin and substance P 

was also measured with the Evans blue technique following the intracutaneous injections of 

these vasoactive agents into the abdominal region. The doses of these agents were chosen to 

produce dye leakage responses of similar magnitude. Skin sites injected with the solvent 

(artificial interstitial fluid, 0.1 ml) served as controls. Twenty min after the injections, rats 

were sacrificed by decapitation and abdominal skin samples of standardized size were 

removed and their dye contents were measured as described above. 
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Measurement of CGRP release in vitro 

The animals were anesthetized with chloral hydrate, sacrificed by decapitation, and the 

sciatic nerves were removed. The epineurium was carefully removed from the nerves under 

microscopic control and the samples were washed with synthetic interstitial fluid (SIF, 

containing in mM: 107.8 NaCl, 26.2 NaHCO3, 9.64 Na-gluconate, 7.6 sucrose, 5.55 glucose, 

3.48 KCl, 1.67 NaH2PO4, 1.53 CaCl2 and 0.69 MgSO4) gassed with 95% O2 and 5% CO2 to a 

pH of 7.4 at room temperature for 30 min. Thereafter, the SIF was replaced with 400 μl of the 

release buffer consisting of SIF supplemented with 0.1% bovine serum albumin and 16 μM 

thiorphan (Price et al., 2005). After an incubation period of 10 min to measure the basal 

CGRP release, the buffer was replaced either with a release buffer containing 10 μM 

capsaicin or with a modified release buffer containing 60 mM KCl. The tissue samples were 

then further incubated for 10 min to determine the capsaicin- and the depolarization-induced 

CGRP release. The effect of capsazepine, a specific TRPV1 antagonist, on the capsaicin-

induced CGRP release was also studied. Samples were collected at the end of each incubation 

period into silicone-coated Eppendorf cups, frozen and stored at -70 °C until the 

determination of their CGRP content. The wet weights of the nerves were also measured. The 

CGRP concentrations of the samples were determined with an enzyme-linked immunoassay 

kit (ELISA, Bertin Pharma, Montigny-le-Bretonneux, France) according to the protocol 

provided by the manufacturer. The absorbances of the samples were measured 

photometrically with a microplate reader (DY-NEX MRX, Dynex Technologies, Chantilly, 

USA), and the CGRP contents were calculated and corrected for the tissue weights. The 

results (mean ± S.D.) are expressed as percentages of the basal CGRP release.  

 

Carrageenan-induced thermal and mechanical hyperalgesia  

The nociceptive paw withdrawal response to radiant heat stimulation was studied by 

the Hargreaves method (Hargreaves et al., 1988). The animals were placed on a glass surface 

in a transparent plastic cage and were allowed to adapt to their environment for 15 min before 

testing. The heat stimulus was directed onto the plantar surface of the hind paw. The 

withdrawal latency was measured three times on both hind paws of each rat, the means of the 

measured data serving as baseline for the left and right hind paws. The apparatus was 

calibrated to give a withdrawal latency of about 10 s in control animals. To prevent tissue 

damage, a cutoff-time of 20 s was chosen. For the assessment of carrageenan-induced thermal 

hyperalgesia, rats received an intraplantar injection of carrageenan (3 mg in 0.1 ml saline, 

Sigma-Aldrich GmbH, Steinheim, Germany) into the right hind paw. The paw withdrawal 
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latencies were measured 3 h after the carrageenan injection, and the data were expressed as 

percentage changes (mean ± S.D.) from the control values.  

Paw withdrawal thresholds for mechanical stimulation were measured in both hind 

paws with an automated apparatus suitable for the application of reproducible mechanical 

stimuli (Dynamic plantar aesthesiometer, Ugo Basile, Gemonio, Varese, Italy). Rats were 

placed on a metal mesh table and allowed to adapt to their new compartments. With the help 

of an adjustable angled mirror, the mechanical stimulus was directed to the plantar surface of 

the hind paw from below the floor. When the unit was started, a steel rod was pushed against 

the plantar surface of the hind paw with increasing force of 0 to 50 g over a 20-s period. As 

the animal withdrew its hind paw or an applied force of 50 g was reached, the stimulation was 

stopped and the force at which the response occurred was recorded. This procedure was 

repeated three times and the withdrawal responses were averaged. Mechanical hyperalgesia 

was assessed after an intraplantar injection of carrageenan as described above. The latency of 

withdrawal responses were measured 3 h after carrageenan. The data were expressed as 

percentage changes (mean ± S.D.) from the control. 

 

Kinematic analysis of hindlimb locomotor function 

Experimental setup 

For the kinematic analysis of the locomotion of intact and treated animals a 

transparent plexiglass runway (100 cm [L] x 15 cm [W]) with a tilted mirror fixed under the 

floor plate was used. Another mirror system was fixed behind the runway in order to observe 

the movements of the contralateral limb, too. A square grid pattern with 1 cm intervals was 

scratched into the front panel for calibration purposes. The rats were trained prior to the 

measurements to walk from one end of the runway to the other reaching a shelter. The hair of 

the animals was shaved off from the hindlimbs and the skin was marked with permanent 

black ink above the major joints. The locomotor pattern of the rats was recorded with high 

resolution and high speed digital cameras. The analysis of locomotor function was performed 

on basis of the observations published earlier by other laboratories (Ribotta et al., 2000;Fey et 

al., 2010) and of our own observations on animals that had suffered from an ongoing 

motoneuron degeneration and/or loss (Nógrádi and Vrbová, 2001; Nógrádi et al., 2007; Pájer 

et al., 2014)). A methodological manuscript detailing the description of the above set up and 

analysis is currently being prepared for publication.  
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Locomotor data analysis  

We recorded 3 runs of each animal in every session and examined 5 steps complying 

two criteria: one similar step was required before and after the measured step and the head of 

the animal had to point to the direction of walk. The appropriate video sequences were 

divided into single frames using the VirtualDub software and the selected frames where the 

animals were in a defined phase of movement were analyzed by using the ImageJ software 

(NIH, USA). The following parameters were determined and used in the analysis of 

locomotion in this study. Lateral view parameters were defined as follows. Step length: the 

length of the step cycle measured between the first moments of the consequent stance phases 

expressed in cm; tarsus off angle: the angle enclosed by the tarsus and the floor plate at the 

last moment of the stance phase expressed in degrees; ankleflexion: the angle enclosed by the 

tarsus and the tibia at the first moment of the stance phase expressed in degrees; knee flexion: 

the angle enclosed by the tibia and the femur at the first moment of the stance phase 

expressed in degrees; lateral placing: the angle enclosed by the tarsus and the longitudinal 

axis of the animal. We measured this parameter at the first moment of the stance phase 

expressed in degrees. Ankle lifting: the highest point reached by the ankle joint during the 

swing phase compared to its lowest position on the ground (in mm); knee lifting: the highest 

point reached by the knee joint during the swing phase compared to its lowest position on the 

ground (in mm). Rear-view parameters were defined as follows. Metatarsus-surface angle: the 

angle enclosed by the metatarsus and the surface (expressed in degrees) at the first moment of 

the swing phase when the foot has just left the ground; spreading of toes: the angle opening 

between the 2nd and the 4th toes is determined in degrees at the first moment of the swing 

phase when the foot has just left the ground.  

 

Demonstration of cutaneous innervation by immunohistochemistry and quantitative 

morphometry 

For immunohistochemical studies, adriamycin- or vehicle-treated rats were perfused 

via the left heart ventricle with 4% buffered formaldehyde solution 2-7 days after the 

completion of treatment. The plantar skin of the hind paws was removed and, after a post-

fixation period of 3 h, was placed into a buffer solution and stored at 4 °C until sectioning. 

Skin samples were taken from the mid-plantar region of the paw and transverse sections were 

cut at a thickness of 25 μm and processed for immunohistochemical staining with the indirect 

immunofluorescence technique by using antisera raised against the TRPV1 receptor (rabbit 

polyclonal, 1:1000-1:1500, Alomone Laboratories, Jerusalem, Israel) and β-tubulin  (mouse 
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monoclonal, 1:1000, Sigma-Aldrich GmbH, Steinheim, Germany). Donkey anti-rabbit and 

anti-mouse IgGs labeled with Cy3, DL-488 (1:500, Jackson Immunoresearch Laboratories, 

West Grove, PA, USA) were used as secondary antibodies. Control procedures for 

immunolabeling were performed by replacing the primary antisera by normal donkey serum. 

To test the specificity of the TRPV1 antibody we have also performed a preadsorption test by 

applying a blocking peptide (supplied by the manufacturer of the TRPV1 antibody) 

representing the immunogenic fragment of TRPV1 against which the antibody was generated. 

No staining was observed in either case. Slides were covered with ProLong Gold Antifade 

Mountant with or without DAPI (Invitrogen, ThermoFisher Scientific, Budapest, Hungary).  

The specimens were viewed under a Zeiss confocal fluorescence microscope. Z-stack 

image series were collected from sections of plantar skin samples obtained from control and 

adriamycin-treated rats. The density of epidermal axons was estimated with the vertical 

projection method. This design-based stereological approach allows an unbiased estimation of 

the length density of linear structures in a given volume (Gokhale, 1990). Systemic random 

projection images of the epidermis were obtained from 25-µm-thick cryostat sections of the 

plantar skin of the hind paw. By using the filter grid cycloid arc plug-in of the Image-J image 

analysis software (Image Processing and Analysis in Java, National Institutes of Health, 

USA), a counting template containing cycloid curves was defined and superimposed onto the 

images. The major axis of the cycloid curves was aligned perpendicular to the skin surface. 

The total length of the cycloid curves and the number of counting grid points were optimized 

by performing pilot experiments on control skin sections. The factor l/p (length of test line per 

grid point) was set at 12.046 µm. Intersections of the epidermal nerve fibers with the cycloid 

arcs, and the number of grid points coinciding with the area representing the cross-section of 

the epidermal layer were determined on each image. The length density (Lv) of the 

intraepidermal nerve fibers was determined via the equation Lv = 2 x li/d x Pi x (l/p), where li 

is the number of cycloid intersections, d is the thickness of the section and Pi is the number of 

grid points hitting the cross section area of the epidermis. 

The epidermal thickness was also measured along a line perpendicular to the skin 

surface with the aid of Image-J software in sections prepared for immunohistochemistry and 

covered with a mounting medium containing DAPI to visualize cell nuclei. Epidermal 

thickness was calculated as the average of 6 measurements on each sample from control and 

adriamycin-treated rats. 
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Statistics 

Statistical evaluation of the experimental cardiomyopathic data was performed with 

ANOVA, followed by the Bonferroni test. A probability level p<0.05 was regarded as a 

statistically significant difference between groups. The values of the survival proportions ± 

SEM were calculated. To compare the survival experience of the animals of the two groups, 

the non-parametric log rank test was applied. Since more than one event was registered at 

certain times of observations, we calculated the X
2
 value by a formula described by (Altman, 

1991). Pairwise comparisons between the survival proportions observed at the completion of 

adriamycin treatment and at the end of the 2nd, 3rd, and 4th weeks of the post-treatment 

period were performed using Fisher s exact test and the p values were corrected by 

Bonferroni s method. For the statistical comparisons of the mustard oil-induced vasodilatory 

responses two-way ANOVA was performed with pairwise comparisons based on Estimated 

Marginal Means using the Bonferroni post-hoc analysis, whereas one-way ANOVA was used 

for comparisons of the capsaicin-induced blood flow changes. One-way ANOVA was used to 

compare Evans blue contents of skin samples. The Student t-test (unpaired) was applied for 

the statistical analyses of the data concerning the paw withdrawal responses, the in vitro 

CGRP release and the immunohistochemical experiments. In all groups normality was proved 

by the Shapiro-Wilk test and homogeneity of variances was confirmed by Levene’s test in 

advance of performing two-way ANOVA. One-way ANOVA was applied to analyze the 

results of the hindlimb locomotor parameters. In all comparisons, a p value of <0.05 was 

accepted as a significant difference. 
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RESULTS 

 

Anthracycline cardiotoxicity assessed by echocardiography, effect of systemic capsaicin 

pretreatment 

The cardiac parameters measured by echocardiographic examination in control, 

capsaicin-, adriamycin-, and capsaicin plus adriamycin-treated rats are presented in Table 1. 

The echocardiograms in Fig. 1 illustrate the techniques used to measure the 

echocardiographic parameters involving AOD, LAD, LVSD, and LVDD. Sequential 

echocardiographic examination of the control animals demonstrated little change in the 

cardiac parameters during the period of the study. Since there was no significant difference 

between the parameters of the two control groups, treated with the vehicles for capsaicin and 

adriamycin, respectively. For subsequent statistical evaluation, they were lumped together as 

a single control group. None of the rats in this control group died or developed pathologies 

associated with cardiac failure during the period of the study. Fractional shortening at the 

beginning of the study was 25.3±1.5% and did not exhibit any significant change throughout 

the entire study period. Examination of the rats treated with capsaicin revealed that there was 

no significant change in FS as compared with the initial baseline value or that for the control 

group. During the period of the study, the follow-up examinations indicated that there was no 

change in FS of rats treated only with capsaicin. 

 

 

 

 

 

 

 

http://www.springerlink.com/content/72a00hrn5j42h8tw/fulltext.html#Tab1
http://www.springerlink.com/content/72a00hrn5j42h8tw/fulltext.html#Fig1
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Fig. 1 (a) M-mode echocardiogram of the aorta (Ao) 

and the left atrium (LA) illustrating the technique used 

to measure the aortic (AOD) and left atrial dimensions 

(LAD). A normal ratio of LAD and AOD is measured 

in the parasternal long axis view in a control rat. (b) M-

mode echocardiogram of the left ventricle (LV) in the 

parasternal long axis view illustrating the method used 

to measure the ventricular dimensions in a control rat. 

The left ventricular end-diastolic diameter (LVDD) and 

the left ventricular end-systolic diameter (LVSD) 

measurements are done from the leading edge at the 

end of the diastole and at the end of the systole. Normal 

contractility of the left ventricle can be seen. (c) An 

enlarged LV can be seen by M-mode echocardiography 

in the parasternal long axis view in a rat treated with 

capsaicin plus adriamycin. The contractility of the left 

ventricle is markedly decreased 

 

 

 

 

 

 

 

 

In rats treated only with adriamycin, echocardiographic measurements of the LV dimensions 

3 and 4 weeks after the completion of drug administration demonstrated significant increases 

in the LVSD. LVDD did not change significantly in these animals. The ratio LAD/AOD was 

already significantly increased 1 week after the completion of the treatment (Fig. 2a, Table I). 

In the rats treated with capsaicin plus adriamycin, LVSD was increased significantly already 

by the end of the 1st week after the completion of adriamycin administration. By the end of 

the 3rd week after the completion of adriamycin administration, both LVDD and LVSD were 

increased significantly. The ratio LAD/AOD was already significantly increased 1 week after 

the completion of adriamycin treatment (Fig. 1, Table 1).In the rats treated with adriamycin, 

the echocardiographic examinations revealed a progressive reduction in FS, indicating a 

decrease in cardiac contractility (Fig. 1c), from the 2nd week onwards after the completion of 

the administration of the drug, but this became statistically significant only in the 4th week 

post-treatment (Fig. 2b, Table I). In contrast, a marked and significant reduction in FS was 

already observed 1 week after the completion of adriamycin treatment in the rats pretreated 

http://www.springerlink.com/content/72a00hrn5j42h8tw/fulltext.html#Fig2
http://www.springerlink.com/content/72a00hrn5j42h8tw/fulltext.html#Fig1
http://www.springerlink.com/content/72a00hrn5j42h8tw/fulltext.html#Tab1
http://www.springerlink.com/content/72a00hrn5j42h8tw/fulltext.html#Fig1
http://www.springerlink.com/content/72a00hrn5j42h8tw/fulltext.html#Fig2
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with capsaicin. Statistical analysis of the data showed that, with the exception of the 4th week 

post-treatment, the FS in the capsaicin plus adriamycin-treated rats was markedly lower than 

that in the rats treated only with adriamycin (Fig. 2b, Table I). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 (a) Ratio of LAD and AOD and (b) fractional shortening of the left ventricle in control (open bars), 

capsaicin-treated (cross-hatched bars), adriamycin-treated (horizontally hatched bars), and capsaicin plus 

adriamycin-treated (filled bars) groups of rats before (Start), and 3 days (End) and 1–4 weeks after the 

completion of the adriamycin treatment. The asterisk and the hash sign denote statistically significant differences 

(p<0.05) between selected groups or in comparison with the initial control value respectively. Each column 

depicts the mean of values obtained from at least five rats. 

 

  

 

http://www.springerlink.com/content/72a00hrn5j42h8tw/fulltext.html#Fig2
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Table I Cardiac parameters measured by echocardiographic examination in control, capsaicin-, adriamycin- and capsaicin plus adriamycin-treated rats.  

AOD aortic diameter, LAD left atrial diameter, LVVD left ventricular end diastolic diameter, LVSD left ventricular end systolic diameter, FS fractional shortening 

Values are expressed in mm as mean  SEM obtained from at least 5 animals. § Time after completion of the treatment with adriamycin.* Significantly different from the 
initial baseline value.# Significantly different from the values of the corresponding control group. 

       

     Aortic Diameter (AOD)  Left Atrial Diameter (LAD)  LAD/AOD  

       

Treatme
nt 

period 

 Control Capsaicin Adriamycin Capsaicin 
 

+Adriamyci
n 

 Control Capsaicin Adriamycin Capsaicin 
+Adriamyci

n 

 Control Capsaicin Adriamycin Capsaicin 
+Adriamyci

n 

Start 

 

3.42±0.12 3.06±0.22 3.39±0.12 3.29±0.09  3.77±0.26 3.35±0.26 3.59±0.15 3.56±0.12  1.10±0.04 1.10±0.06 1.06±0.05 1.08±0.04 

End 

 

3.37±0.09 3.37±0.24 3.36±0.13 3.03±0.14  3.63±0.12 3.56±0.26 4.33±0.16* 3.59±0.17  1.08±0.02 1.07±0.05 1.27±0.07 1.20±0.05 

1 week§ 

 

3.35±0.10 3.45±0.15 3.47±0.13 3.00±0.17  3.52±0.07 3.80±0.13 4.42±0.16*# 4.10±0.22*#  1.05±0.01 1.10±0.06 1.28±0.05*# 1.37±0.07*# 

2 
weeks§ 

 

3.60±0.16 3.28±0.16 3.28±0.14 3.28±0.12  4.11±0.28 3.41±0.28 4.44±0.17*# 5.54±0.25*#  1.14±0.03 1.25±0.07 1.37±0.05*# 1.69±0.05*# 

3 
weeks§ 

 

3.52±0.16 3.20±0.11 3.27±0.16 3.36±0.14  3.97±0.26 3.64±0.23 5.03±0.22*# 5.31±0.27*#  1.13±0.02 1.14±0.06 1.53±0.06*# 1.58±0.05*# 

4 
weeks§ 

 

3.62±0.12 3.48±0.19 3.15±0.17 3.24±0.16  3.87±0.14 3.79±0.36 4.69±0.22*# 5.41±0.31*#  1.07±0.02 1.09±0.05 1.49±0.07*# 1.67±0.06*# 

                
       

  Left Ventricular End Diastolic Diameter (LVDD)  Left Ventricular End Systolic Diameter (LVSD)  Fractional Shortening (FS) 

       

Treatme
nt 

period 

 Control Capsaicin Adriamycin Capsaicin 
+Adriamyci
n 

 Control Capsaicin Adriamycin Capsaicin 
+Adriamyci
n 

 Control Capsaicin Adriamycin Capsaicin 
+Adriamycin 

Start 

 

5.460.19 5.200.26 5.330.30 5.460.17 

 

4.110.14 3.940.24 4.060.17 4.110.14 

 

0.250.01 0.240.02 0.240.02 0.250.01 

End 

 

5.700.11 5.310.34 5.520.21 5.680.24 

 

4.310.23 4.040.30 4.230.19 4.230.21 

 

0.240.05 0.240.02 0.230.02 0.250.02 

1 week§ 

 

5.650.14 5.530.18 5.400.17 6.010.30 

 

4.330.13 4.190.17 4.000.16 4.950.27*# 

 

0.230.02 0.240.02 0.260.02 0.170.02* 

2 
weeks§ 

 

5.760.11 5.490.22 5.400.32 5.830.22 

 

4.410.12 4.210.26 4.280.27  5.030.19*# 

 

0.230.02 0.230.03 0.220.02 0.140.02*# 

3 
weeks§ 

 

5.830.18 5.580.57 5.650.29 6.450.24*# 

 

4.330.07 4.180.43 4.690.18* 5.520.21*# 

 

0.260.04 0.250.03 0.170.02 0.140.02*# 

4 
weeks§ 

 

5.800.14 5.810.44 5.400.51 6.680.28*# 

 

4.450.12 4.310.48 4.640.19* 5.750.24*# 

 

0.230.03 0.260.03 0.140.02*# 0.130.03*# 
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Fig. 3 Demonstration of the large amount of 

pleural effusion (PLE) and ascites in the 

subcostal cross-sectional view of an adriamycin-

treated rat by two-dimensional ultrasound 

examination 

 

 

 

 

 

 

 

 

Fig.4 Cross section of the ventricles of control 

(left) and adriamycin-treated (right) rats shows 

dilation of the both ventricles with thinning of the 

ventricular walls, which are characteristic signs 

of congestive dilatative cardiomyopathy 

 

 

 

 

 

 

 

Echocardiography and ultrasonographic examination of the chest and abdomen revealed the 

accumulation of fluid in the pericardial, pleural, and abdominal cavities in adriamycin-treated 

animals (Fig. 3). The cumulative incidences of pericardial effusion, pleural effusion, and 

ascites by the end of the study period were 8, 3, and 8 of the 15 adriamycin-treated rats, and 

11, 3, and 8 of the 17 capsaicin plus adriamycin-treated rats, respectively. Three weeks after 

cessation of adriamycin treatment macroscopic signs of cardiotoxicity became evident in 

sacrificed animal. The ventricles were dilated and ventricular walls, and the septum became 

visible thinner than that of the control animal. 

 

 

 

http://www.springerlink.com/content/72a00hrn5j42h8tw/fulltext.html#Fig3


30 
 

Anthracycline- and/or capsaicin-induced changes in the cardiac innervation: 

immunohistochemistry 

Immunohistochemical studies were performed to reveal possible changes in the 

populations of cardiac nerves which, in turn, may contribute to the aggravation of adriamycin-

induced cardiomyopathy in capsaicin-pretreated rats. In control rats, immunohistochemical 

demonstration of cardiac nerves using an antiserum against protein gene product (PGP) 9.5, a 

panneuronal marker, revealed a dense innervation of both the left and right ventricles (Fig.5a, 

b). CGRP-containing nerves innervating the ventricles were far less numerous (Fig.5e). 

Examination of the distribution of PGP 9.5-positive nerve fibers of the heart ventricles of rats 

treated with adriamycin or capsaicin plus adriamycin 2 weeks after completion of adriamycin 

treatment disclosed an innervation pattern similar to that of the controls (Fig.5c, d). In 

contrast, in rats treated with capsaicin plus adriamycin, but not in rats treated only with 

adriamycin, CGRP-containing nerves could not be detected 2 weeks after cessation of 

adriamycin treatment (Fig.5f).  

 

Fig. 5 a–d Protein gene 

product (PGP) 9.5          

immunoreactive 

and e, f calcitonin gene-

related peptide (CGRP)-

immunoreactive nerve fibers 

in tissue sections obtained 

from the left (a,c,e,f) and 

right (b,d) heart ventricles of 

control (a, b) and capsaicin 

plus adriamycin-treated (c–f) 

rats. The distribution pattern 

of PGP 9.5-positive cardiac 

nerves is apparently similar 

in control and treated rats. 

CGRP-immunopositive 

nerves cannot be detected in 

the capsaicin-pretreated rat. 

The scale bar in f indicates 

50 µm and applies to all 

microphotographs 
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Alterations of chemically-induced vascular reactions  

Effects of adriamycin on neurogenic sensory vasodilatation  

In control rats, applications of mustard oil at concentrations of 0.2% and 1%, and 1% 

capsaicin produced significant increases in the CuBF (Fig. 6a, c, d). Subcutaneous (s.c.) 

injection of HC-030031 (100 µM, 50 µl) 20 min before the epicutaneous application of 

mustard oil significantly inhibited the vasodilatory response. The increase in CuBF evoked by 

mustard oil (1%) amounted to 121.80 ± 24.19%, whereas the increase in CuBF after the prior 

administration of the TRPA1 antagonist, HC030031 amounted to 14.47 ± 10.44% (p<0.01, 

n=6/group). The epicutaneous application of capsaicin (1%) resulted in a marked elevation in 

CuBF, which amounted to 167.23 ± 53.36%. Administration of the specific TRPV1 

antagonist, capsazepine (10 µM, 50 µl, s.c.) 20 min before the epicutaneous application of 

capsaicin resulted in a significant inhibition of the vasodilatory effect which amounted to 

27.94 ± 8.95% (p<0.01, n=6/group). In the adriamycin-treated animals, vasodilatory 

responses were measured 2 days after cessation of the treatment. After the administration of a 

cumulative dose of 7.5 mg/kg adriamycin, the CuBF increases elicited with 1% mustard oil 

and 1% capsaicin were reduced by 51% (p<0.01, n=10) and 64% (p<0.01, n=6), respectively, 

whereas the vasodilatory effect of 0.2% mustard oil was not affected significantly (n.s., 

n=10). However, in animals treated with a cumulative dose of 15 mg/kg adriamycin, the 

increase in CuBF was markedly and significantly reduced in response to both 0.2% and 1% 

mustard oil (Fig. 6c), and to 1% capsaicin (Fig. 6d), amounting to 43%, 29%, and 29%, 

respectively, of the control values (p<0.01, n=6-10/group, Table II). 
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Table II Effect of adriamycin pretreatment on chemically-evoked cutaneous sensory 

neurogenic vasodilatation 

 

 

 

 

 

 

 

 

 

Cutaneous blood flow was measured with a laser Doppler flow probe positioned over the dorsal skin of the 

hindpaw. Test agents were applied as described in the text. Percentage changes in blood flow are expressed as 

mean ± S.D.  * Significantly different from the control (p < 0.05, n = 6-10/group). 

 

Effects of adriamycin on neurogenic plasma protein extravasation 

Neurogenic plasma protein extravasation was studied with the quantitative Evans blue 

technique following the epicutaneous application of mustard oil or capsaicin. In control rats, 

both mustard oil (5%) and capsaicin (1%) produced marked plasma protein extravasation, 

with In control rats, epicutaneous application of mustard oil at a concentration of 5%, skin 

Evans blue dye content amounted to 180 ± 68 µg/g, which was markedly and significantly 

reduced to 32.67 ± 17.98 µg/g by the prior s.c. administration of the specific TRPA1 

antagonist HC030031 (p<0.01, n=6/group). Similarly, the specific TRPV1 antagonist 

capsazepine almost completely abolished the vascular permeability increasing effect of 1% 

capsaicin; the Evans blue dye content of the skin amounted to 205.50 ± 60.90 µg/g after the 

application of 1% capsaicin, which was reduced to 32.73 ± 19.75  µg/g by the prior 

administration of capsazepine (p<0.01, n=6/group). Following the administration of a 

cumulative dose of 7.5 mg/kg adriamycin, the mustard oil-induced increase in tissue Evans 

blue content was markedly reduced (72.85 ± 20.84 µg/g, p<0.01, n=8), and after a cumulative 

dose of 15 mg/kg, the low Evans blue dye content of the skin (24.95 ± 10.84 µg/g) indicated 

an almost complete abolition of the neurogenic inflammatory response (p<0.01, n=8; Fig. 6e). 

Similarly, after the administration of adriamycin at cumulative doses of 7.5 and 15 mg/kg, 

 

 

 

Mustard oil   

(0.2%) 

 

 

Mustard oil     

(1%) 

 

Capsaicin 

(1%) 

Control 54.00 ± 26.30 121.80 ± 24.19 167.23 ± 53.36 

Adriamycin 

(7.5 mg/kg) 
46.55 ± 30.73  58.17 ± 22.60* 60.88 ± 16.40* 

Adriamycin 

(15 mg/kg) 
23.55 ± 19.24*  35.67 ± 12.55* 48.33 ± 27.09* 
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tissue Evans blue contents were markedly and significantly reduced to 109.93 ± 38.16, and 

51.08 ± 17.43 µg/g after the application of capsaicin (for both comparisons p<0.01, n=8; Fig. 

6f), while there was no difference in the effect of histamine-, bradykinin- and substance P–

induced plasma extravasation between control and adriamycin-treated rats (Table III). 

 

 Table III Effect of doxorubicin treatment on the plasma extravasation induced by various 

vasoactive compounds 

Evans blue 

concentration of 

the abdominal skin 

(µg/g tissue) 

Histamine 

(10 µg in 0,1 ml 

SIF) 

Bradykinin 

(4 µg in 0,1 ml 

SIF) 

 

Substance P 

(10 µg in 0,1 ml 

SIF) 

control 501.0±70.9 236.1±70.2 
115.8±35.7 

adriamycin (15 

mg/kg i.v.) 506.3±182.2 305.0±126.9 

 

125.9±136.3 

 

Data show the Evans blue dye content of standard size skin samples after the intracutaneous application of 

different vasoactive compounds. Note, that there is no significant difference between control and adriamycin 

treated rats. Data are expressed as mean ± SD, n=6-9/group 
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Fig. 6 Effects of adriamycin treatment on chemically-evoked cutaneous sensory neurogenic vasodilatation (a, c, 

d), plasma extravasation (e, f), and axonal CGRP release (b). The graph (a) demonstrates percentage changes of 

blood flow of the dorsal paw skin after the application of mustard oil (0.2 %, arrow) in control and adriamycin-

treated animals as assessed by laser Doppler flowmetry. Each marker indicates changes of blood flow measured 

in consecutive 1-min periods expressed as mean + SD of six animals. The graph (b) shows the effect of 

adriamycin treatment (cumulative dose: 15 mg/kg) on capsaicin- and high KCl-induced release of CGRP from 

rat sciatic nerves in vitro. (n = 6–8/group). The graphs (c), (d) show the effect of adriamycin treatments on 

mustard oil- and capsaicin-induced cutaneous vasodilatation. (n = 6–10/group). (e), (f) show mustard oil- and 

capsaicin-evoked plasma extravasation in control and in adriamycin-treated rats (n = 8 for each group). The 

effects of capsaicin and mustard oil were inhibited significantly by the specific TRPV1 and TRPA1 antagonists 

capsazepine and HC-030031, respectively. In graphs b–f, each marker indicates an individual value and the 

horizontal lines show the mean of the group. * Significantly different from the control, p < 0.05 
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Effects of adriamycin treatment on the in vitro neural release of CGRP 

Neurogenic sensory vasodilatation is mediated by CGRP released from 

chemosensitive afferent nerves in response to stimulation of the TRPV1 and TRPA1 receptors. 

Study of the capsaicin-induced release of CGRP is an established experimental approach 

through which to characterize the sensory efferent function of peptidergic nociceptors 

expressing the TRPV1 ion channel. Capsaicin and high potassium-induced release of CGRP 

was therefore measured with ELISA in ex vivo preparations of sciatic nerves from control and 

adriamycin-treated rats. The release of CGRP, elicited by capsaicin at concentrations of 0.1, 

1.0 and 10.0 µM, was significantly inhibited by 69.54%, 54.02 % and 23,26%, respectively, 

in the presence of the specific TRPV1 antagonist, capsazepine (10.0 µM; p<0.01, n=6/group). 

In the control sciatic nerve preparations, both capsaicin (10 μM) and high potassium (60 mM) 

elicited a marked release of CGRP (325 ± 110%, and 327 ± 77% of the basal release, 

respectively, n=6-8/group). In preparations obtained from adriamycin-treated rats, the high 

potassium-induced peptide release was similar to that in the controls (303 ± 55% of the basal 

release, n=8, n.s.). In contrast, the capsaicin-induced release of CGRP was significantly 

reduced in the adriamycin-treated animals (164 ±71% of the basal release, p<0.01, n=6; Fig. 

6b).  

 

Effects of adriamycin on carrageenan-induced thermal and mechanical hyperalgesia 

The findings on the effects of adriamycin treatment on the neurogenic sensory 

vascular responses were indicative of a marked functional impairment of the chemosensitive 

afferent nerves which express the TRPV1 and TRPA1 receptors. Since these nociceptive ion 

channels play a crucial role in the mechanism of inflammatory hyperalgesia (Caterina et al., 

2000), the effects of adriamycin treatment were studied in the carrageenan model of paw 

inflammation. In the control rats that received carrageenan, the paw withdrawal latencies to 

radiant heat stimulation decreased by 63.2 ± 2.0% (p<0.05, n=5). In contrast, in the 

adriamycin-treated rats that received carrageenan, the heat withdrawal latencies were barely 

different from the control values (16.5 ± 11.6%, n=5, n.s.). Similarly, the mechanical 

withdrawal thresholds were significantly reduced in the controls (by 61.6 ± 10.5%, p<0.05, 

n=5), but not in the adriamycin-treated animals (by 19.4 ± 7.0%, n.s., n=5; Fig. 7). 



36 
 

Fig. 7 Effect of adriamycin treatment 

(cumulative dose: 15 mg/kg) on carrageenan-

induced thermal and mechanical 

hyperalgesia. Percentage decreases in 

withdrawal responses to heat and mechanical 

stimuli are shown. Each symbol indicates the 

data of an individual animal; horizontal lines 

show the mean values of the groups (n=5 for 

each group). * Significantly different from 

the control, p<0.05. 

 

 

 

Effects of adriamycin on hindlimb locomotor parameters 

The treated animals walked in a similar manner as their intact controls.  No marked 

difference in the locomotor pattern of intact and treated animals was observed before the 

detailed analysis. In adriamycin treated rats, thorough examination of the high resolution 

images failed to reveal any significant impairment in step length, ankle and knee lifting, 

lateral placing (Fig. 8), ankle flexion and spreading of toes (n.s., n=5 ). The knee flexion, 

tarsus off angle and metatarsus-surface angle parameters showed moderate but significant 

differences for both treatment groups as compared with the controls (p<0.05, n=5).  

 

Fig. 8 Hindlimb locomotor 

parameters directly dependent on the 

integrity of motoneuron function. 

Box whisker plots showing the knee 

lifting, ankle lifting, step length and 

lateral placing parameters measured 

in control and adriamycin-treated 

rats. There is no indication of motor 

impairment after adriamycin 

treatment. (n=5 for each group). * 

Significantly different from the 

control, p<0.05 
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Effects of adriamycin treatment on cutaneous sensory nerves and on skin structure 

The effects of adriamycin treatment on the cutaneous innervation were studied with 

immunohistochemistry, quantitative stereological methods being used to determine the 

epidermal nerve fiber density of the rat plantar paw skin. In control skin samples tubulin 

immunostaining revealed subepithelial bundles of nerve fibers giving rise to individual 

epidermal axons approaching the surface. In accord with our previous findings, two 

morphological types of epidermal axons were seen: axons with simple morphology, 

exhibiting little branching and a straight course, and axons which take a tortuous course and 

develop elaborate arborization. It was earlier established that the axons with simple 

morphology are peptidergic, whereas those with complex morphology are non-peptidergic 

(Dux et al., 1998;Zylka et al., 2005). Double immunofluorescence staining revealed that 

almost all the tubulin-immunoreactive epidermal axons are TRPV1-positive. The densities of 

tubulin- and TRPV1-immunoreactive epidermal axons were 1075 ± 120 mm/mm
3 

and 1065 ± 

116 mm/mm
3
,
 
respectively. The density of epidermal axons decreased by roughly half 

following adriamycin treatment; the densities of tubulin- and TRPV1-positive axons were 503 

± 76 (p<0.01, n=5) and 417 ± 80 mm/mm
3
 (p<0.01, n=5), respectively. Interestingly, although 

the number of epidermal axons was greatly reduced, bundles of nerve fibers were seen 

subepidermally. It appeared that the epidermal axons were truncated at the epidermal-

subepidermal border (Fig. 9.). Adriamycin treatment also resulted in a significant reduction in 

epidermal thickness (control: 70.41 ± 7.52 µm; adriamycin-treated: 47.47 ± 6.75 µm; p<0.01, 

n=5; Fig. 10).  
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Fig. 9 Effects of adriamycin treatment (cumulative dose: 15 mg/kg) on the distribution of intraepidermal 

axons of the rat plantar skin. Z-stack confocal microscopic images were taken from specimens double 

immunostained for tubulin (b,e) and TRPV1 (a,d). Note the colocalization of tubulin and TRPV1 (c,f) and 

the massive loss of intraepidermal axons after adriamycin treatment (d,e,f). Subepidermal nerves 

(arrowheads) can still be seen after adriamycin treatment (d,e,f). The scale bar in f holds for all 

microphotographs 
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Fig. 10. Z-stack confocal microscopic images 

of the plantar skin of control (a) and adriamycin-

treated (b), cumulative dose: 15 mg/kg) rats. 

Epidermal nuclei are visualized with DAPI and 

intraepidermal axons with TRPV1 

immunohistochemistry. Note the marked 

thinning of the epidermis after adriamycin 

treatment. The scale bar in b holds for both 

microphotographs. 
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DISCUSSION 

 

Evaluation of adriamycin-induced cardiac impairments using echocardiography 

Several methods are used to evaluate cardiac function under physiological and 

pathological conditions in both humans and experimental animals. Electrocardiography has 

been the standard technique for the assessment of pathophysiological changes in heart 

function (Minow and Benjamin, 1975). It has been used to detect deterioration of cardiac 

function following the administration of cardiotoxic drugs, such as adriamycin. However, ST-

T changes are neither specific nor characteristic of cardiomyopathy, and reduction of the QRS 

amplitude occurs late in the therapy (Takemura and Fujiwara, 2007). Further, these alterations 

often do not precede the clinical onset of cardiomyopathy and, therefore, they have little 

predictive value. Other techniques used to detect cardiac dysfunction include radionuclide 

angiocardiography, biochemical parameters, and histopathological grading of transvenous 

endomyocardial biopsy specimens (Billingham et al., 1978; Morandi et al., 2001; Panjrath and 

Jain, 2006). Unfortunately, these techniques lack specificity and clinical validation and/or are 

invasive (Gabrielson et al., 2008; Octavia et al., 2012). The introduction of echocardiography 

heralded the advent of a new era in the clinical and experimental investigation of heart 

function. Echocardiography, a non-invasive technique, is now generally used to evaluate 

cardiac function by measuring pivotal cardiac morphological and functional parameters 

(Parisi, 1978; Lewis et al., 1978; Friedman et al., 1979; Biancaniello et al., 1980). 

In our study, therefore, we used echocardiography as the most reliable and least 

invasive technique, which can be used for serial examinations to detect early signs of cardiac 

dysfunction and the progression of adriamycin-induced cardiomyopathy. Administration of 

adriamycin to rats over a period of two weeks resulted in a progressive deterioration of 

cardiac function as reported previously (Tong et al., 1991). Follow-up measurements of the 

cardiac parameters revealed that the changes indicative of an impaired cardiac function were 

most marked from the third week onwards after the cessation of adriamycin administration. 

The FS displayed a noteworthy reduction by three weeks after the cessation of treatment, and 

by the fourth week the reduction reached the level of statistical significance. Similarly as in 

previous reports, only minor changes in LVDD were detected in the course of the study, but 

LVSD exhibited significant increases from the third week onwards (Schwarz et al., 1998). 

The animals showed other signs of congestive heart failure, as indicated by pericardial and 

pleural effusions and ascites. These findings corroborate the earlier observations and furnish 
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further evidence that adriamycin causes a progressive deterioration of cardiac function 

resembling congestive cardiomyopathy, which can be reliably monitored by means of follow-

up echocardiographic examinations in the rat.  

 

Cardioprotective effect of chemosensitive fibers 

The most important observation in the present study was the demonstration of a 

marked aggravation and, in particular, acceleration of the development of the symptoms of 

adriamycin-induced congestive heart failure in capsaicin-pretreated rats. Hence, capsaicin 

pretreatment resulted in a marked deterioration of the cardiac function even only one week 

after the cessation of adriamycin administration, as indicated by a significant reduction in FS 

and a significant increase in the ratio LAD/AOD. In particular, one and two weeks after the 

completion of adriamycin treatment FS was significantly reduced and the ratio LAD/AOD 

was significantly increased in the capsaicin-pretreated rats as compared not only with the 

baseline values, but also with the values obtained in the rats treated only with adriamycin. 

Similarly, as in the rats treated only with adriamycin, pericardial and pleural effusions and 

ascites were observed in many animals upon ultrasonographic examination. Administration of 

capsaicin did not produce significant changes in cardiac parameters examined.  

Capsaicin is a selective sensory neurotoxin which is known to induce depletion and/or 

degeneration of somatic and visceral chemosensitive C-fiber sensory nerves (Jancsó et al., 

1977). Histochemical studies demonstrated peptide-containing sensory nerves in the heart of 

various species, including the rat (Mulderry et al., 1985; Gibbins et al., 1985). The depletion 

of CGRP-immunoreactive nerve fibers has also been demonstrated after systemic 

administration of capsaicin (Wharton et al., 1986; Ferdinandy et al., 1997). This was 

confirmed in the present study by showing a practically complete elimination of CGRP-

immunoreactive nerves in both the atria and ventricles of adriamycin-treated rats. However, a 

similar reduction in cardiac nerves visualized with PGP 9.5 immunohistochemistry was not 

observed. CGRP plays a cardinal role in the myocardial protection provided by ischemic 

preconditioning, heat stress or nitroglycerine which is dependent on the integrity of the 

capsaicin-sensitive sensory nerves and is abolished after capsaicin treatment (Ferdinandy et 

al., 1997; Song et al., 1999; Zhou et al., 2001; Wang and Wang, 2005). Accordingly, we 

suggest that the loss of capsaicin-sensitive CGRP-containing cardiac afferent nerve fibers 

may be the most likely explanation for the marked acceleration and aggravation of the 

adriamycin-induced cardiac pathology in the capsaicin-pretreated rats. Elimination of an 
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important cardioprotective mechanism by the depletion of CGRP through capsaicin 

pretreatment may result in the earlier onset and rapid progression of the myocardial changes 

leading to congestive cardiomyopathy. This assumption is supported by earlier findings 

showing the deleterious effect of sensory denervation on experimentally-induced myocardial 

ischemia, and the beneficial effect of CGRP in experimental models of cardiac ischemia and 

arrhythmia (Kallner and Franco-Cereceda, 1989; Csont et al., 2003). Taken together, these 

observations strongly suggest that local release of sensory neuropeptides, in particular CGRP, 

from capsaicin-sensitive afferent nerves may be a significant protective mechanism which 

counteracts the deleterious effects of adriamycin in this experimental model of congestive 

cardiomyopathy. Since capsaicin acts through the activation of the TRPV1 receptor, these 

findings also suggest an implication of this nociceptive ion channel in the mechanisms of 

cardioprotection conferred by chemosensitive afferent nerves expressing the TRPV1 receptor. 

Importantly, the expression of TRPV1 receptor has been demonstrated in cardiac sensory 

nerves (Zahner et al., 2003). This assumption is supported by recent findings which 

demonstrated that postischemic recovery is impaired in TRPV1 gene knockout mice (Wang 

and Wang, 2005). On the contrary, activation of the TRPV1 receptor through N-

oleoyldopamine, a novel endogenous capsaicin-like lipid, protects the heart against ischemia-

reperfusion injury (Zhong and Wang, 2008). 

In addition, other mechanisms may also contribute to cardioprotection afforded by 

capsaicin-sensitive afferent nerves. Hence, stimulation of capsaicin-sensitive afferents has 

been suggested to exert a protective effect by triggering cardiogenic sympathoexcitatory 

reflexes (Zahner et al., 2003). Further, endocrine mechanisms may also contribute to the 

cardioprotective effect of capsaicin-sensitive afferent nerves. Hence, B-type natriuretic 

peptide has been shown to limit the size of ischemia-induced infarcts in isolated rat hearts 

(D'Souza et al., 2004) and the stretch-induced release of atrial natriuretic peptide has been 

shown to be inhibited in capsaicin treated rats (Rankin and Scott, 1990). 

In conclusion, the present study has demonstrated that elimination of capsaicin-

sensitive afferent nerves promote the development and progression of adriamycin-induced 

myocardial dysfunction. The results suggest that perturbation of the function of capsaicin-

sensitive afferent nerves and/or myocardial CGRP metabolism, e.g. by agents interfering with 

capsaicin/TRPV1 receptors localized on cardiac sensory nerves, or with peptide metabolism, 

may open up new perspectives as concerns prevention and/or alleviation of the pathological 

changes that follow adriamycin treatment. 
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Effects of adriamycin on cutaneous sensory nerve functions 

Our studies indicated that the sensory nerves which express the archetypal nociceptive 

ion channel TRPV1 and contain the neuropeptide CGRP exert a protective effect against 

adriamycin-induced cardiotoxicity in a rat model of congestive cardiomyopathy. These 

observations suggested the possibility that the neurotoxic propensity of this anthracycline-

type cytotoxic agent may play a role in the development of cardiac pathologies by virtue of 

their neurotoxic effect through the elimination of an important cardioprotective mechanism 

conferred by the sensory nerves. The effects of antitumor agents on sensory functions have 

been the subject of extensive investigations (Grisold et al., 2012), but studies on the effects of 

these compounds on nociceptor functions are scarce. In subsequent studies, therefore, we 

sought to further explore the effects of adriamycin on sensory nerve functions. Since 

somatosensory and visceral chemosensitive nerves share common functional characteristics, 

our studies related to the effects of adriamycin on the morphology and function of cutaneous 

afferent nerves, whose morphological and functional traits are best characterized (Roosterman 

et al., 2006; Jancsó et al., 2009a). Hence, through application of a treatment paradigm 

previously shown to produce congestive cardiomyopathy in the rat, we have explored the 

possible neurotoxic effects of adriamycin on cutaneous chemosensitive afferent nerves 

through studies of cutaneous neurogenic sensory vasodilatation, neurogenic plasma 

extravasation, inflammatory hyperalgesia, cutaneous innervation, and measurement of CGRP 

release from sensory nerves. 

We demonstrated that adriamycin treatment resulted in a marked reduction of both 

components of the cutaneous neurogenic inflammatory response, e.g. vasodilatation and 

plasma extravasation elicited by chemical irritants. Mustard oil and capsaicin applied onto the 

skin acts by directly activating TRPA1 and TRPV1 receptors, respectively. TRPV1 and 

TRPA1 are expressed mostly by the same population of chemosensitive afferents (Jordt et al., 

2004; Bautista et al., 2005; Kobayashi et al., 2005; Nagata et al., 2005). Activation of 

epidermal chemosensitive fibers leads to the release of vasoactive sensory peptides. SP is 

responsible for plasma extravasation by binding to NK1 receptors situated on endothelial cells 

of postcapillary venules (Lembeck and Holzer, 1979; Kenins et al., 1984; Chahl, 1988), while 

CGRP exerts its vasodilatory effect mostly by directly acting on vascular smooth muscle cells 

(Ralevic et al., 1992). They are stored in the sensory nerve endings and can be released via 

TRPV1 or TRPA1 mediated mechanisms (Pethő et al., 2004) Irritant-induced neurogenic 

vasodilatation is mediated by chemosensitive afferent nerves and both non-selective and 
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selective (capsaicin-induced) denervation of the skin abolishes it completely (Jancsó et al., 

1977). Neurogenic sensory vasodilatation is a sensitive measure of sensory nerve function 

since activation of even one single nerve fiber can cause detectable changes in CuBF (Lynn et 

al., 1996). Investigation of the cutaneous flare response, the human equivalent of neurogenic 

sensory vasodilatation was proposed as a diagnostic tool to assess the functionality of C-fiber 

(cutaneous) afferents (Jancsó and Janka, 1981; Jancsó et al., 1983; Baron et al., 1988; Husz et 

al., 1991; Baron et al., 1999). In our experiments we found that epicutaneous application of 

chemical irritants produced a transient dose-dependent increase in regional CuBF which was 

significantly reduced following adriamycin treatment. Quantitative measurement of 

neurogenic plasma protein extravasation both in response to epicutaneous administration of 

capsaicin or mustard oil showed similar dramatic decreases in adriamycin-treated animals. At 

the same time, permeability changes induced by chemical agents acting directly on blood 

vessels were unaffected, which suggest that vascular responsiveness is unaffected by 

adriamycin. These findings indicated that the local regulatory, sensory-efferent functions of 

nociceptive sensory nerves are profoundly affected by adriamycin treatment. Since these 

efferent responses are mediated by vasoactive peptides released from activated sensory 

nerves, we measured the capsaicin-induced release of CGRP in peripheral nerves obtained 

from control and adriamycin-treated rats using ELISA. The results disclosed a significant 

decrease of the capsaicin-evoked release of CGRP from sciatic nerves. High potassium-

induced release of CGRP was unaffected by adriamycin treatment, suggesting an impairment 

of mechanisms involved in the activation of the TRPV1 receptor.  

Inflammatory hyperalgesia is a sensitive measure of classical nociceptor function. The 

examination of heat and mechanical nociceptive responses revealed a marked attenuation of 

carrageenan-induced inflammatory hyperalgesia in adriamycin-treated rats. This suggests an 

impairment of the afferent, nociceptive function of chemosensitive sensory nerves expressing 

the TRPV1/TRPA1 receptors, which have been shown to be critically involved in the 

mechanism of inflammatory hyperalgesia (Davis et al., 2000; Pogatzki-Zahn et al., 2005). The 

results of the quantitative locomotor analysis failed to reveal major motor impairments in 

adriamycin treated rats. Except three parameters all measurements yielded results similar to 

the controls. Locomotor parameters directly dependent on the integrity of spinal motoneuron 

function, such as step length, ankle and knee lifting and lateral placing remained unaffected 

by the treatment (Nógrádi et al., 2007; Pájer et al., 2014). The significant differences observed 

in parameters tarsus off angle, metatarsus-surface angle and knee flexion, suggest 
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disturbances in proprioception rather than a true impairment of motor function. Hence, the 

increased latency of the nociceptive withdrawal reflex following the administration of 

carrageenan in adriamycin-treated animals may be attributed to a toxic damage of the 

antitumor agent on nociceptive afferent nerves, rather than an impairment of motor 

function/performance.  

The mechanisms of the impairments in both the classical afferent, nociceptive and 

sensory-efferent, local vascular functions of chemosensitive afferent nerves expressing the 

TRPV1 and TRPA1 receptors cannot be fully explained on the basis of the present findings. 

However, the results do indicate that degenerative changes of cutaneous, and in particular 

epidermal sensory axons may be responsible, at least partially, for these functional 

disturbances. Examination of cutaneous innervation by means of immunohistochemistry and a 

quantitative stereological approach revealed a marked loss of epidermal axons in adriamycin-

treated animals. In contrast, the density and distribution of subepidermal nerve fibers 

appeared normal, suggesting a selective loss of epidermal nerve endings. This might explain 

both the marked reduction of the sensory neurogenic vascular reactions and the inflammatory 

hyperalgesia in adriamycin-treated rats, since activation of the epidermal chemosensitive 

nerves is essential in the initiation of these responses (Maggi and Meli, 1988; Szolcsányi, 

1988; Holzer, 1998b; Davis et al., 2000; Caterina et al., 2000; Jancsó et al., 2009a). It is 

noteworthy that similar structural changes, i.e. a selective loss of terminal, epidermal, but not 

preterminal nerve fibers was also observed in the toxic neuropathies elicited by paclitexel 

(Boyette-Davis et al., 2011) and vincristine (Siau et al., 2006) and, interestingly, a human 

bacterial disease, leprosy (Miko et al., 1993).   

Epidermal thinning was pronounced after the administration of adriamycin. This may 

well be explained by a direct antiproliferative action of the drug on the germinative cells of 

the epidermis, but the contribution of neuronal mechanisms cannot be excluded. Indeed, 

sensory denervation-induced thinning of the plantar skin has been demonstrated in the rat 

(Chiang et al., 1998). Hence, the marked loss of epidermal axons observed in the present 

study may also play a role in this phenomenon.  

In conclusion, the findings presented in this thesis have demonstrated the protective 

role of TRPV1 expressing chemosensitive afferent nerves in a clinically important 

pathological entity, anthracycline-induced dilatative cardiomyopathy. Further, these 

observations support and extend previous reports on cardioprotective neurogenic mechanisms 

involving a specific class of nociceptive peptidergic CGRP-containing sensory nerves which 
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express the nociceptive ion channels TRPV1 and TRPA1. We also provided evidence for a 

neurotoxic lesion by adriamycin of nociceptive primary sensory neurons resulting in profound 

impairments in nociceptive functions of fundamental physiological and pathophysiological 

significance, such as pain sensation and neurogenic sensory vascular reactions. The findings 

also suggest that the neurotoxic propensity of anthracycline-type antitumor agents may 

contribute to the deterioration of cardiac function through the elimination of an important 

cardioprotective mechanism conferred by sensory nerves. Importantly, the adriamycin-

induced functional impairments of the nociceptive afferent neurons observed in the present 

study precede the commencement of cardiomyopathic changes. Hence, the findings raise the 

possibility of using specific quantitative sensory testing, such as the detection and 

quantification of the axon reflex flare response, the human equivalent of neurogenic sensory 

vasodilatation, to predict the risk of adriamycin-induced cardiac injury in clinical practice. 

Taking into consideration that adriamycin- cardiomyopathy once developed carries a poor 

prognosis and has no definitive treatment at the moment, cutaneous sensory tests as tools for 

the prediction of cardiac damage could open a door for the more effective preventive 

cardioprotective therapies. 
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The specific conclusions of this study were as follows: 

1) Chemosensitive cardiac sensory nerves play a crucial protective role against the chronic 

cardiotoxic effect of anthracyclines in the rat model. Systemic capsaicin pretreatment 

intensify and accelerate the development of cardiomyopathy. 

2) Adriamycin treatment severely impairs TRPV1/TRPA1-mediated afferent and efferent 

cutaneous sensory nociceptive functions, dramatically decreases epidermal nerve fiber density 

and causes significant epidermal thinning. Adriamycin treatment decreases capsaicin-induced 

CGRP release from peripheral nerves, while depolarization-induced CGRP release remains 

intact. Adriamycin-induced sensory changes appear prior to the manifestation of the 

cardiotoxic effect. 

3) Present study raises the possibility of functional sensory testing as a predictive monitoring 

tool in anthracycline-induced cardiomyopathy. Our results highlight the potential usefulness 

of testing cutaneous neurogenic vascular reactions, such as the detection and quantification of 

the axon reflex flare response to predict the risk of adriamycin-induced cardiac injury in 

clinical practice. 

4) The severe toxic effect of adriamycin on cutaneous chemo-nociceptive fibers suggests that 

sensory neural deficit could play a role in the pathomechanism of adriamycin-cardiotoxicity. 
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SUMMMARY 

 

Selye’s (1936) recognition of the “general adaptation syndrome”, later renamed by 

Selye “stress response” not only initiated a still growing wave of medical research, but also 

raised the idea, that diverse injury can activate the same coping systems of the body or an 

organ. Chemo-nociceptors, that innervate most organs including the skin and the heart, exert 

nociceptive afferent and local regulatory efferent functions by releasing sensory 

neuropeptides, and express the TRPV1 and/or TRPA1 receptor, can be considered as an 

important innate coping system for heterogeneous noxa.  

In this study, we examined the possible protective role of CGRP containing 

chemosensitive afferent nerves in an established model of adriamycin-induced experimental 

cardiomyopathy in rats. Systemic treatment with capsaicin was utilized to deplete sensory 

neuropeptides from cardiac afferent nerves. Echocardiography was applied to assess the 

cardiac function in adriamycin-treated rats pretreated with capsaicin or its vehicle. In control 

rats, adriamycin treatment produced a reduction in the fractional shortening of the left 

ventricle and an increase in the ratio of the left atrial diameter and the aortic diameter, 

indicative of a decreased myocardial contractility and heart failure at 3–4 weeks post-

treatment. In contrast, in capsaicin-pretreated rats, a deterioration of the cardiac function was 

already evident 1 week after the cessation of adriamycin administration, while the clinical 

signs associated with cardiomyopathy were more severe and displayed a significantly more 

rapid progression. Immunohistochemistry revealed a complete depletion of calcitonin gene-

related peptide from cardiac sensory nerves after systemic capsaicin treatment.  

Besides their deleterious action on cardiac muscle, anthracycline-type cytostatic agents 

exert significant neurotoxic effects on primary sensory neurons. Therefore, we also examined 

the effects of cardiotoxic doses of adriamycin on the function and morphology of epidermal 

nerves, that share common traits with cardiac chemosensitive nerves. Sensory neurogenic 

vasodilatation, plasma extravasation and the neural CGRP release evoked by TRPV1 and 

TRPA1 agonists in vitro were examined by using laser Doppler flowmetry, the Evans blue 

technique and ELISA, respectively. Carrageenan-induced hyperalgesia was assessed with the 

Hargreaves method. Immunohistochemistry was utilized to study cutaneous innervation. 

Adriamycin treatment resulted in profound reductions in the cutaneous neurogenic sensory 

vasodilatation and plasma extravasation evoked by the TRPV1 and TRPA1 agonists capsaicin 

and mustard oil, respectively. The in vitro capsaicin-, but not high potassium-evoked neural 
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release of the major sensory neuropeptide, CGRP, was markedly attenuated after adriamycin 

treatment. Carrageenan-induced inflammatory hyperalgesia was largely abolished following 

the administration of adriamycin. Immunohistochemistry revealed a substantial loss of 

epidermal TRPV1-expressing nociceptive nerves and a marked thinning of the epidermis.  

The results suggest that TRPV1-expressing cardiac peptidergic nerves have a 

protective role against anthracycline-induced cardiac pathologies. Furthermore, these findings 

indicate early impairments in the functions of TRPV1 and TRPA1 receptors expressed on 

cutaneous chemosensitive nociceptive nerves and the loss of epidermal axons following the 

administration of cardiotoxic doses of adriamycin. 
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