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Abbreviations 

 

2D – two-dimensional 

3D – three-dimensional 

2DSTE – two-dimensional speckle-tracking echocardiography  

3DS – three-dimensional strain 

3DSTE – three-dimensional speckle-tracking echocardiography 

AAEF – active atrial emptying fraction 

AASV – active atrial stroke volume 

AD – aortic distensibility 

AP2CH – apical two-chamber view 

AP4CH – apical four-chamber view 

AS – area strain 

ASI – aortic stiffness index 

BMI – body mass index 

CS – circumferential strain 

DBP – diastolic blood pressure 

DD – (aortic) diastolic diameter 

E and A – diastolic mitral inflow velocities measured by Doppler echocardiography 

EDD – end-diastolic diameter 

EDV – end-diastolic volume 

ESD – end-systolic diameter 

ESV – end-systolic volume 

EF – ejection fraction 

LA – left atrium 

LAEFO – left atrial ejection force 

LS – longitudinal strain 

LV – left ventricular 

MA – mitral annulus 

MAA – mitral annular area 

MAD – mitral annular diameter 

MAGYAR – Motion Analysis of the heart and vessels by three-dimensional speckle tracking 

echocardiography 
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MV – mitral valve 

NCCM – noncompaction cardiomyopathy 

PAEF – passive atrial emptying fraction 

PASV – passive atrial stroke volume 

RA – right atrium 

RT3DE – real-time three-dimensional echocardiography 

RS – radial strain 

RV – right ventricle 

SBP – systolic blood pressure 

SD – (aortic) systolic diameter 

T1DM – type 1 diabetes mellitus 

TAEF – total atrial emptying fraction 

TASV – total atrial stroke volume 

TV – tricuspid valve 

SV – stroke volume  

Vmax – maximum atrial volume 

Vmin – minimum atrial volume 

VpreA – pre-contraction atrial volume  
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1. Introduction  

 

Heart chambers have a complex motion during the heart sycle. While right (RV) and left 

ventricles (LV) empty through the semilunar pulmonary (PV) and aortic valves (AV) during 

systole, right (RA) and left atria (LA) behave like a reservoir beside closed mitral (MV) and 

tricuspid valves (TV). In this phase their chambers enlarge and load from the veins. Following 

closing of MV and TV in early diastole blood stored in atria flow into the ventricles and atria 

behave like a conduit in this phase. In late diastole atria become a contractile chamber and 

eject blood into the ventricles (1).   

  

There is a number of imaging opportunities to assess this complex atrial motion 

including non-invasive ultrasound examination of the heart. Evaluation of LV dimensions and 

ejection fraction (EF) is a part of routine echocardiography. However, regarding to complex 

motion of atria their exact echocardiographic volumetric and functional assessment is 

relatively difficult due to smaller sizes, disease-related deformations, presence of appendages 

and veins, etc (2,3). Three-dimensional (3D) echocardiography

 

 coupled with speckle tracking 

capability is a novel approach that might become a powerful methodology for the assessment 

of LA volumes and function without geometrical assumptions (4,5). Despite basic differences, 

volumetric real-time 3D echocardiography (RT3DE) and strain-based 3D speckle-tracking 

echocardiograpy (3DSTE) were found to be comparable, reproducible and interchangeable for 

quantification of LA dimensions and functional properties (6). Recently, RA volumetric and 

functional assessment have also been demonstrated using the same methodology (7).  

However, physiologic relationship between 3DSTE-derived RA and LV volumes and 

functional properties have never been assessed in healthy subjects.  

 

There are several aspects of LA function of which relationship with other physiologic 

parameters were not examined: 

 

3DSTE allows assessment of different LA functional properties. In earlier studies 

3DSTE was revealed for detailed assessment of all LA features including volumetric 

measurements (6,8-10), strain assessments (10-12) and calculation of LA ejection force 

(LAEFO) (13). LA strain and volume-based functional parameters originate from the same 

3D dataset, but assessment of LAEFO requires more data including measurement of mitral 
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annular dimensions and Doppler-derived inflow velocities (14). However, correlations 

between these LA functional parameters were not examined.  

 

Moreover, there is a strong interplay between vascular and cardiac mechanics 

including arterial-ventricular coupling (18). LV remodeling is a powerful determinant of LA 

size, therefore arterial stiffness could influence LA dimensions, as well (15-17). Arterial 

stiffness was found to be associated with LA size in different patient populations (17). 

However, there is a limited information regarding to interactions between LA and vascular 

functions in healthy subjects.  

 

 Over above mentioned physiologic relationships, specific alterations of different LA 

features based on 3DSTE-derived analysis are expected:  

 

Type 1 diabetes mellitus (T1DM) is characterized by a progressive destruction of 

pancreatic beta cells via apoptosis induced by irreversible autoimmune process. LV 

dysfunction is a known feature in T1DM explained by diabetic microangiopathy affecting 

small vessels of the heart, progressive fibrosis and cardiac autonomic neuropathy (18). 

Diastolic dysfunction occurs early at 6 years history of T1DM, whereas systolic dysfunction 

is later occurring after a mean of 18 years of evolution (18,19)

 

. However, 3DSTE-derived 

detailed analysis of LA functional properties have never been assessed in T1DM.  

Noncompaction of the LV myocardium is a rare congenital cardiomyopathy 

characterized by a distinctive 2-layered appearance of the myocardium due to 

hypertrabecularization and deep intertrabecular recesses (20). It usually presents with 

ventricular

  

 dysfunction, thromboembolic events and arrhythmias. However, little is known 

about the behaviour of LA in noncompaction cardiomyopathy (NCCM) (13,21).  
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2. Aims 

 

To analyze physiological relationships between 3DSTE-derived and routine two-dimensional 

echocardiographically examined RA morphological and functional parameters in healthy 

subjects. 

 

To find correlations between LAEFO and 3DSTE-derived LA volume-based functional 

properties and strain parameters in healthy subjects. 

 

To determine whether correlations exist between 3DSTE-derived LA volume-based and strain 

parameters characterizing all phasic functions of the LA and echocardiographic aortic elastic 

properties in healthy subjects.  

 

To compare 3DSTE-derived LA volumetric and strain parameters between T1DM patients 

and matched healthy controls. 

 

To assess LA volumes and volume- and strain-based functional properties by 3DSTE in 

NCCM. 
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3. Methods 

 

Patient population (general considerations). All healthy subjects and patients have been 

included in the MAGYAR-Healthy Study and MAGYAR-Path Study (Motion Analysis of 

the heart and Great vessels bY three-dimensionAl speckle-tRacking echocardiography in 

Healthy subjects and in Pathological cases). These studies have been organized at the 

Cardiology Center of the University of Szeged, Hungary to evaluate usefulness, diagnostic 

and prognostic value of 3DSTE-derived volumetric, strain, rotational etc. parameters in 

healthy volunteers as well as in pathological cases. In all patients complete 2D Doppler 

echocardiography study was performed extended with 3DSTE measurements. In healthy 

volunteers there was no any disease or other condition, which could influence results. 

Informed consent was obtained from each patient and the study protocol conformed to the 

ethical guidelines of the 1975 Declaration of Helsinki, as reflected in a priori approval by the 

institution’s human research committee (22). 

 

Biochemical measurements. Blood samples were drawn by venipuncture to evaluate routine 

blood parameters following 8h fasting including plasma glucose, HbA1c, haematocrit, 

haemoglobin, creatinine and glomerulus filtration rate (GFR).  

 

Two-dimensional Doppler and tissue Doppler echocardiography. While in the left lateral 

decubitus position all patients and healthy subjects underwent a complete 2-dimensional (2D) 

Doppler echocardiography and tissue Doppler study using a commercially available Toshiba 

ArtidaTM echocardiography equipment (Toshiba Medical Systems, Tokyo, Japan) with a PST-

30SBP phased-array transducer with a center frequency of 3.5 MHz (ranged between 1-5 

MHz depending on the necessities and changing automatically). 2D echocardiographic images 

were obtained in parasternal and apical 4-chamber (AP4CH) and 2-chamber (AP2CH) views. 

Special care was taken to avoid foreshortening during measurements. All echocardiographic 

measurements were averaged from 3 beats. LV internal dimensions were measured by M-

mode echocardiography using Teichholz method (Figure 1)(2). Significant (> grade 1) 

valvular regurgitations and stenoses were excluded by Doppler echocardiography. Following 

Doppler assessment of E/A, the ratio of transmitral E velocity to early diastolic mitral annular 

velocity (E/E') was measured by tissue Doppler imaging (23). Echocardiographic studies were 

performed by blinded examiners in respect to the physical status and anamnaesis patients and 

healthy controls.  
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Figure 1 Assessment of left ventricular dimensions in parasternal long-axis view by two-
dimensional echocardiography using Techholz-methodology. 
Abbreviations: IVS = interventricular septum, EDD and ESD = left ventricular enddiastolic 
and endsystolic diameter), PW = left ventricular posterior wall, RA = right atrium, RV = right 
ventricle 
 

Measurement of blood pressure values. Systolic (SBP) and diastolic blood pressure (DBP) 

values were estimated by a mercury cuff sphygmomanometer following 10 min of rest on the 

right arm in the supine position (24). The first Korotkoff sound for at least two consecutive 

heart beats was considered the SBP, while disappearance of fifth Korotkoff sound proved to 

be the DBP. Coffeinated drinks like coffee, tea, or other types of beverages, and cigarettes 

were not used or ingested from half and hour before the blood pressure measurements. Data 

were taken as the average of three consecutive measurements. 

 

Evaluation of aortic stiffness parameters. In the study III, systolic and diastolic ascending 

aortic diameters (SD and DD, respectively) were recorded in M-mode echocardiography at a 

level of 3-4 cm above the aortic valve from a parasternal long-axis view as described in more 
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details in the literature (24,25) (Figure 2). The SD and DD were considered at the time out of 

maximum aortic anterior motion and at the peak of QRS complex, respectively. All 

measurements were repeated 3 times, and average data have been given. Echocardiographic 

aortic elastic properties were calculated using the following equations:  

[1] Aortic strain = (SD – DD) / DD 

[2] Aortic stiffness index [ASI] = ln (SBP / DBP) / [(SD - DD) / DD], where ’ln’ is the 

natural logarithm.  

[3] Aortic distensibility [AD] = 2 x (SD – DD) / [(SBP – DBP) x DD]. 

 

 
Figure 2. Measurements of systolic (SD) and diastolic (DD) diameters of the ascending 
aorta (A) are shown on the M-mode tracing obtained at a level 3 cm above the aortic 
valve (B) at parasternal long-axis view. 
Abbreviations: LV = left ventricle, RV = right ventricle, LA = left atrium, Ao = ascending 
aorta 
 

Three-dimensional speckle-tracking echocardiography. 3D echocardiographic acquisitions 

were performed using a commercially available fully sampled PST-25SX matrix-array 

transducer (Toshiba Medical Systems, Tokyo, Japan) by 2 experienced investigators (4,5). 

Full volume mode was used in which six wedge-shaped subvolumes were acquired over six 

consecutive cardiac cycles during a single-breathold. Care was taken to avoid movement of 

the patient or the examination table during acquisitions. The sector width was decreased as 

much as possible to improve temporal and spatial image resolutions. Pyramidal 3D datasets 
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were analysed offline using 3D Wall Motion Tracking software version 2.7 (Toshiba Medical 

Systems, Tokyo, Japan) by experienced investigators. AP4CH and AP2CH views as well as 

three short-axis views at different levels of the RA/LA (basal, midatrial, and superior regions) 

were automatically selected by the software from the 3D dataset (Figures 3-4). Following 

creation of anatomically correct, non-foreshortened optimal views by optimising longitudinal 

planes in AP4CH and AP2CH views RA/LA boundaries was manually traced starting at the 

tricuspid/mitral valve level of the RA/LA going toward the RA/LA superior region at end-

diastole. Caval veins, RA appendage and coronary sinus were excluded from the cavity during 

assessments in study I, while pulmonary veins and LA appendage were excluded in studies II-

V. The epicardial border was manually adjusted. Subsequently, 3D wall motion tracking was 

automatically performed through the cardiac cycle.  

 

 
Figure 3 Images from three-dimensional (3D) full-volume dataset showing left atrium 
(LA) in a patient with type 1 diabetes mellitus is presented: (A) apical four-chamber 
view, (B) apical two-chamber view, (C3) short-axis view at basal, (C5) mid- and (C7) 
superior left atrial level. A 3D cast (D), volumetric data (E), time – global volume and 
time – segmental strain curves (F) of the LA are also presented. Dashed curve (F) 
represents LA volume changes during cardiac cycle with maximum (Vmax), minimum 
(Vmin) LA volumes and LA volume before atrial contraction (VpreA

Abbreviations: LA – left atrium, LV left ventricle, RA – right atrium, RV- right ventricle 

). White arrow 
represent peak strain (F).  
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3DSTE-derived atrial volumetric measurements. From the acquired 3D echocardiographic 

datasets time – global RA/LA volume change curves were generated from which end-systolic 

maximum RA/LA volume (Vmax), end-diastolic minimum RA/LA volume (Vmin) and early 

diastolic RA/LA volume before atrial contraction (VpreA) were calculated (5) (Figures 2-3). 

Vmax and Vmin were obtained automatically by the software, while VpreA 

 

was taken from the 

time – volume change curve (see Figures 3-4).  

 

 
 
Figure 4 Images from three-dimensional (3D) full-volume dataset showing right atrium 
(RA) in a healthy subject is presented: (A) apical four-chamber view, (B) apical two-
chamber view, (C3) short-axis view at basal, (C5) mid- and (C7) superior RA atrial 
level. A 3D cast, volumetric data, time – segmental strain curves of the RA are also 
presented. White arrow represent peak segmental strains, while dashed arrow 
represents strains at atrial contraction.  
Abbreviations: LA – left atrium, LV left ventricle, RA – right atrium, RV- right ventricle 
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From the three volumes several measurements were selected as indices of RA/LA function as 

demonstrated in Table 1 (5): 

 
 
 
Table 1 The way to calculate atrial stroke volumes and emptying fractions in each phasis 
of left atrial motion is presented 
 

Functions Stroke volumes 

(ml) 

Emptying fractions 

(%) 

Reservoir Total atrial SV = 

Vmax-V

Total atrial EmF= 

min Total atrial SV/ Vmax 

Conduit function Passive atrial SV= 

Vmax -V

Passive atrial EmF= 

preA Passive atrial SV/ Vmax 

Active contraction Active atrial SV= 

VpreA- V

Active atrial EmF= 

min Active atrial SV/VpreA 

 

Abbreviations: EF = emptying fraction, SV = stroke volume, Vmax = maximum left atrial 
volume, Vmin = minimum left atrial volume, VpreA 

 

= left atrial volume before atrial 
contraction 

 

 

3DSTE-derived atrial strain assessments. Form the same 3D echocardiographic datasets 

time curves of segmental unidirectional radial (RS), longitudinal (LS), circumferential (CS) 

and complex area (AS) and (3DS) strains were generated using the 16-segment model 

obtained for the LV (4,5,26,27): 

[1] LS = strain in the direction parallel to the endocardial contour 

[2] CS = fiber shortening along the circular perimeter, strain in the circumferential 

direction  

[3] RS = radially directed deformation, strain in the perpendicular direction   
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[4] 3DS = strain in the wall thickening direction, combination of radial, circumferential 

and longitudinal strains, and  

[5] AS = ratio of endocardial area change during the cardiac cycle, percentage change in 

area 

On each time – segmental strain curve peak strains characterizing LA reservoir function were 

measured. Global strains were calculated by the software taking into consideration the whole 

RA/LA, while mean segmental strains were obtained as the average of strains of 16 segments. 

The software calculated these parameters automatically (Figures 2-3). 

 

 

3DSTE for left atrial ejection force measurements. There is a third way to analyse LA 

function by calculating LAEFO. According to the Newton’s second law of motion, the force 

generated by the LA in LA active contraction phase could be calculated using the following 

equation:  LAEFO = 0.5 × 1.06 × (MAD or MAA) × V2, where 0.5 is a coefficient factor, 

1.06 g/cm3 

 

is the blood density and V is the peak A wave velocity (28). From the same 3D 

echocardiographic dataset, mitral annulus (MA) could be obtained by optimizing cross-

sectional planes on the endpoints of the MA in the AP4CH and AP2CH views (Figure 5)(13). 

MA diameter (MAD) was then defined as the perpendicular line drawn from the top of the 

MA curvature to the middle of the straight MA border, while MA area (MAA) could also be 

measured using planimetry. For the evaluation of LAEFO, diastolic MAD and MAA data 

were used.  

 

Stastical analysis. Statistical analyses were performed using the MedCalc software 

(MedCalc, Mariakerke, Belgium). All continuous variables are expressed as mean ± standard 

deviation. Statistical significance was determined as a p value of less than 0.05.  The Shapiro-

Wilk test was used to check the normality of data. Independent samples Student t test were 

used to compare continuous variables. Chi-square analysis and Fisher’s exact test were used 

for comparison of categorical variables. Pearson’s coefficient was used for intra- and 

interobserver correlations. Intra- and interobserver agreements were studied according to 

Bland and Altman method (29).  
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Figure 5 From three-dimensional echocardiographic dataset, the mitral annulus (MA) 
could be obtained by optimizing cross-sectional planes on the apical 4-chamber (A) and 
2-chamber (B) views demonstrating an optimal MA image on cross-sectional view (C7). 
Using Doppler-derived mitral inflow peak A wave velocity, the left atrial ejection force 
(LAEFO) could be calculated. 
Abbreviations: E and A = Doppler-derived mitral inflow velocities, LA = left atrium, LV = 
left ventricle, MA = mitral annulus, RA = right atrium, RV = right ventricle 
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4. Results 

 

4.1. Relationships between right atrial and left ventricular size and function in healthy 

subjects 

 

Patient population. The study comprised 20 randomly selected healthy subjects (mean age: 

37.1 ± 10.3 years, 12 men), who were examined by routine 2D Doppler echocardiography and 

3DSTE. None of the cases had any disease or pathological factor which could affect results.  

 

Clinical, routine 2D echocardiographic and 3DSTE data are presented in Tables 2-4.  

Table 2 Clinical and two-dimensional echocardiographic data 

  values 

  Patients number  20 

  Age (years)  37.1 ± 10.3 

  Male gender (%)  12 (60)  

  BMI (kg/m2   ) 24.6 ± 3.0 

Two-dimensional echocardiography   

  LA diameter (from parasternal long-axis view)  (mm) 

  LV end-diastolic diameter (mm) 

 32.9 ± 3.2 

47.2 ± 6.6 

  LV end-diastolic volume (ml)  96.1 ± 16.3 

  LV end-systolic diameter (mm)  29.4 ± 4.3 

  LV end-systolic volume (ml)  32.7 ± 10.9 

  Interventricular septum (mm)  9.6 ± 2.0 

  LV posterior wall (mm)  9.6 ± 2.4 

  LV ejection fraction (%)  66.6 ± 7.6 

  E/A  1.33 ± 0.16 

   
Abbreviations: LV = left ventricle, LA = left atrium, BMI = body mass index  
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Table 3 Three-dimensional speckle tracking echocardiography-derived right atrial 
volumes and volume-base functional properties  

 

  Values 

Calculated right atrial volumes   

  Vmax   (ml) 37.54 ± 9.45 

  Vmin  (ml) 23.18 ± 7.35 

  VpreA   (ml) 30.27 ± 8.27 

Right atrial stroke volumes   

  TASV (ml)  14.85 ± 4.68 

  PASV (ml)  8.08 ± 4.51 

  AASV (ml)  6.77 ± 3.17 

Right atrial emptying fractions    

  TAEF (%)  38.82 ± 8.30 

  PAEF (%)  20.61 ± 9.14 

  AAEF (%)  22.47 ± 10.15 

 
Abbreviations: AAEF = active atrial emptying fraction, AASV = active atrial stroke volume, 
PAEF = passive atrial emptying fraction, PASV= passive atrial stroke volume, TAEF = total 
atrila emptying fraction, TASV = total atrial stroke volume, Vmax = maximum right atrial 
volume, Vmin = minimum right atrial volume, VpreA

 

 = right atrial volume before atrial 
contraction 

 

Relationships between LV-EF and 3DSTE-derived RA parameters. LVEF significantly 

correlated with systolic Vmax (r =-0.44, p =0.05) and diastolic VpreA

LVEF showed significant correlations with diastolic AS at atrial contraction (r =0.42, p 

=0.05).  

 (r =-0.44, p =0.05). 

Relationships could not be detected between volume-based functional parameters and LVEF.  
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Table 4 Three-dimensional speckle tracking echocardiography-derived global peak 
strains and strains at atrial contraction in healthy subjects 
 

 Peak strains Strains at atrial 
contraction 

   Radial strain (%) -14.84 ± 9.23 -7.28 ± 8.00 

   Circumferential strain (%) 11.78 ± 7.83 8.93 ± 9.94 

   Longitudinal strain (%) 30.19 ± 10.80 8.68 ± 9.21 

   3D strain (%) -6.43 ± 5.38 -4.54 ± 4.84 

   Area strain (%) 40.72 ± 18.87 16.09 ± 16.15 

 
Abbreviation: 3D = three-dimensional 
 

 

Relationships between LV end-systolic parameters and 3DSTE-derived RA properties.  

LV end-systolic diameter (ESD) correlated with Vmax (r =0.48, p =0.03), Vmin (r =0.43, p 

=0.05) and VpreA (r =0.52, p =0.02). LV end-systolic volume (ESV) showed significant 

correlations with VpreA (r =0.50, p =0.02), while tendentious relationships could be shown 

with Vmax (r =0.42, p=0.07) and Vmin

 

 (r =0.40, p =0.08). LV-ESD did not show correlation 

with any of RA volume-based functional parameters. Significant correlations could be 

detected between LV-ESV and AASV (r =0.49, p =0.03). While LV-ESD correlated with RS 

at atrial contraction (r =-0.47, p =0,04), LV-ESV did not correlate with any of strain 

parameters. 

 

Relationships between LV end-diastolic parameters and 3DSTE-derived RA properties.  

LV end-diastolic diameter and volume (EDD and EDV) did not show relationship with RA 

volumes and volume-based functional parameters. While LV-EDD significantly correlated 

with LS at atrial contraction (r =0.48, p =0.03), CS at atrial contraction (r =0.45, p =0.05) and 

3DS at atrial contraction (r =-0.43, p =0.05), and correlation tendencies were shown with peak 

AS (r =-0.40, p =0.08), LV-EDV did not shown relationship with any functional parameters.   
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4.2. Correlations between left atrial ejection force and left atrial strain and volume-

based functional properties in healthy subjects 

 

 

Patient population. The study group consisted of 34 healthy subjects (mean age: 36.1 ± 11.2 

years, 15 men) in sinus rhythm. None of them had known disease or any factor which could 

theoretically affect results.  

 

 

Clinical and echocardiographic data. Baseline clinical and echocardiographic data of 

healthy subjects are presented in Table 5. All 2D echocardiographic and 3DSTE-derived data 

were in normal range in this healthy population.  

 

 

Left atrial functional parameters. 3DSTE-derived volume-based and strain parameters 

characterizing  all phases of LA function together with LAEFO are presented in Table 6.  

 

 

Correlations. Both MAD- and MAA-based LAEFO showed correlations with global 3D 

strain at atrial contraction. Moreover, LAEFOMAD

 

 correlated with AAEF, as well (Table 7). 

Despite LAEFO is a characteristics of LA booster pump function, correlations could be 

demonstrated between LAEFO and volume-based and strain characteristics of LA reservoir 

function, as well (global peak strains, TASV and TAEF).  No correlations could be 

demonstrated between LAEFO and parameters characterizing LA conduit function (PASV, 

PAEF). 
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Table 5. Clinical, two-dimensional and three-dimensional speckle tracking 
echocardiographic data of subjects 
 

  data 

  Age (years)  36.1 ± 11.2 

  Male gender (%)  15 (44) 

2D echocardiography   

  LA diameter (parasternal long-axis view)      33.5 ± 3.7 

  LV end-diastolic diameter (mm)  47.0 ± 6.5 

  LV end-diastolic volume (ml)  99.3 ± 24.6 

  LV end-systolic diameter (mm)  30.3 ± 4.6 

  LV end-systolic volume (ml)  36.2 ± 13.3 

  Interventricular septum (mm)  9.7 ± 1.9 

  LV posterior wall (mm)  10.1 ± 2.1 

  LV ejection fraction (%)  63.7 ± 8.2 

  mitral E wave  74.6 ± 19.7 

  mitral A wave  57.9 ± 11.5 

  E/A  1.44 ± 0.31 

  E/E’  6.21 ± 1.75 

3D speckle tracking echocardiography   

 Maximum LA volume (Vmax  ) (ml) 36.6 ± 6.6 

 Minimum LA volume (Vmin  ) (ml) 16.5 ± 5.0 

 Pre-atrial contraction  LA volume (VpreA  ) (ml) 24.1 ± 6.2 

 End-diastolic mitral annular diameter (cm)  2.68 ± 0.31 

 End-systolic mitral annular diameter (cm)  2.06 ± 0.42 

 End-diastolic mitral annular area (cm2  ) 8.20 ± 1.75 

 End-systolic mitral annular area (cm2  ) 4.70 ± 0.88 

   
Abbreviation. 2D = two-dimensional 3D  = three-dimensional, LA = left atrial, LV = left 
ventricular 
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Table 6. Characteristics of left atrial function 

Systole  
 

Reservoir function  

Strains global peak radial strain (%) -19.4 ± 8.5 
global peak circumferential strain (%) 32.4 ± 14.1 
global peak longitudinal strain (%)  27.5 ± 7.7 
global peak 3D strain (%) -11.9 ± 7.3 
global peak area strain (%) 67.2 ± 25.6 

Volume-
based 
functional 
properties 

total atrial stroke volume (ml) 20.2 ± 5.0 
total atrial emptying fraction (%) 55.2 ± 10.7 

Diastole  Conduit function 
 

 

Volume-
based 
functional 
properties 

passive atrial stroke volume (ml) 12.6 ± 4.7 
passive atrial emptying fraction (%) 
 

34.4 ± 11.2 

Diastole Active contraction 
 

 

Strains global radial strain at atrial contraction (%) -7.7 ± 7.4 
global longitudinal strain at atrial contraction (%) 7.7 ± 6.9 
global circumferential strain at atrial contraction (%) 10.8 ± 10.1 
global 3D strain at atrial contraction (%) -6.0 ± 5.2  
global area strain at atrial contraction %) 17.6 ± 15.2 

Volume-
based 
functional 
properties 

active atrial stroke volume (ml) 7.6 ± 2.8 
active atrial emptying fraction (%) 
 

31.9 ±  9.2 

Ejection 
forces 

left atrial ejection force based on mitral anular diameter 
(kdyne) 

5.0 ± 2.1 

left atrial ejection force based on mitral anular area (kdyne) 15.2 ± 7.0 

 

 
Abbreviation. 3D  = three-dimensional 
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Table 7. Correlations between LA ejection force and other characteristics of LA 
function 
 

LA function Parameters Correlation 
coeffient with 
LAEFO

Correlation 
coeffient with 
LAEFOMAD MAA 

 peak radial strain 
 

-0.22 
(p =0.23) 

-0.10 
(p =0.58) 

 peak circumferential strain 
 

0.39 
(p =0.02) 

0.29 
(p =0.11) 

 
 
 
Reservoir 
(Systole) 

peak longitudinal strain 
 

0.32 
(p =0.05) 

0.24 
(p =0.18) 

peak 3D strain 
 

-0.14 
(p =0.44) 

-0.07 
(p =0.69) 

peak area strain 
 

0.43 
(p =0.01) 

0.31 
(p =0.07) 

total atrial stroke volume 
 

0.30 
(p =0.05) 

0.31 
(p =0.05) 

 total atrial emptying fraction 
 

0.31 
(p =0.05) 

0.25 
(p =0.15) 

Conduit 
(Diastole) 

passive atrial stroke volume 0.18 
(p =0.33) 

0.26 
(p =0.15) 

 passive atrial emptying fraction 0.10 
(p =0.40) 

0.14 
 (p =0.45) 

 radial strain at atrial contraction 
(%) 

-0.26 
(p =0.15) 

-0.20 
(p =0.26) 

 circumferential strain at atrial 
contraction (%) 

0.21 
(p =0.26) 

0.18 
(p =0.34) 

Active 
contraction 

longitudinal strain at atrial 
contraction (%) 

-0.12 
 (p =0.54) 

-0.17 
(p =0.37) 

(Diastole) 3D strain at atrial  
contraction (%) 

-0.44 
(p =0.01) 

-0.37 
(p =0.03) 

area strain at atrial contraction %) 0.18  
(p =0.32) 

0.13 
(p =0.50) 

active atrial stroke volume 
 

0.26 
(p =0.15) 

0.28 
(p =0.12) 

 active atrial emptying fraction 
 

0.36 
(p =0.04) 

0.27 
(p =0.12) 

 
Abbreviation. 3D  = three-dimensional, LA = left atrial 
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Reproducibility of MAD and MAA measurements. Reproducibility measurements were 

performed in 17 healthy controls. The mean ± standard deviation difference in values 

obtained by two observers for the measurements of 3DSTE-derived diastolic and systolic 

MAD and diastolic and systolic MAA were -0.02 ± 0.43 cm, 0.02 ± 0.43 cm, -0.06 ± 1.49 

cm2 and 0.07 ± 1.02 cm2, respectively. Correlation coefficients between measurements of 2 

observers were 0.77, 0.79, 0.89 and 0.89 (p =0.0003, 0.0002, <0.0001 and <0.0001), 

respectively (Figures 6-9) (interobserver agreement). The mean ± standard deviation 

difference in values obtained by 2 mesurements of the same observer for 3DSTE-derived 

diastolic and systolic MAD and diastolic and systolic MAA were 0.03 ± 0.38 cm, -0.01 ± 

0.34 cm, 0.05 ± 0.87 cm2, and 0.04 ± 0.97 cm2

 

, respectively. Correlation coefficient 

between these independent measurements of the same observer were 0.78, 0.83, 0.96 and 

0.90 (p =0.0002, <0.0001, <0.0001 and <0.0001), respectively (Figures 6-9) (intraobserver 

agreement).  

 
 
Figure 6 Interobserver (upper graphs) and intraobserver (lower graphs) agreements 
and correlations for measuring end-diastolic MAD by three-dimensional speckle-
tracking echocardiography are presented. 
Abbreviations: 3DSTE = three-dimensional speckle-tracking echocardiography, MAD = 
3DSTE-derived mitral annulus area  
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Figure 7 Interobserver (upper graphs) and intraobserver (lower graphs) agreements 
and correlations for measuring end-systolic MAD by three-dimensional speckle-tracking 
echocardiography are presented. 
Abbreviations: 3DSTE = three-dimensional speckle-tracking echocardiography, MAD = 
3DSTE-derived mitral annulus area  
 
 

 
Figure 8 Interobserver (upper graphs) and intraobserver (lower graphs) agreements 
and correlations for measuring end-diastolic MAA by three-dimensional speckle-
tracking echocardiography are presented. 
Abbreviations: 3DSTE = three-dimensional speckle-tracking echocardiography, MAA = 
3DSTE-derived mitral annulus area  
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Figure 9 Interobserver (upper graphs) and intraobserver (lower graphs) agreements 
and correlations for measuring end-systolic MAA by three-dimensional speckle-tracking 
echocardiography are presented. 
Abbreviations: 3DSTE = three-dimensional speckle-tracking echocardiography, MAA = 
3DSTE-derived mitral annulus area  
 

 

4.3. Correlations between left atrial functional parameters and aortic stiffness in healthy 

subjects 

 
Patient population. The study included 19 healthy volunteers (mean age: 37.9 ± 11.4 years, 

11 men) who had undergone complete 2D Doppler transthoracic echocardiography extended 

with echocardiographic aortic elastic properties assessments. 3DSTE has also been performed 

following 2D echocardiography in all cases. None of the subjects had any known disease 

which could have affected results.  

 

 

Two-dimensional echocardiographic data. Routine 2D echocardiographic LV and LA data 

and aortic elastic properties are summarized in Table 8. 
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Table 8 Two-dimensional echocardiographic data and aortic elastic properties of 
subjects 
 

 Data 

Left ventricular diastolic diameter (mm) 48.0 ± 6.8 

Left ventricular systolic diameter (mm) 30.1 ± 4.2 

Left ventricular diastolic volume (ml) 100.7 ± 20.2 

Left ventricular systolic volume (ml) 34.8 ± 11.0 

Interventricular septum (mm) 9.5 ± 2.0 

Left ventricular posterior wall (mm) 9.5 ± 2.3 

Left ventricular ejection fraction (%) 65.7 ± 7.0 

Systolic aortic diameter (mm) 30.3 ± 3.6 

Diastolic aortic diameter (mm) 26.8 ± 3.8 

Systolic minus diastolic aortic diameter (mm) 3.50 ± 2.28 

Aortic strain  0.13 ± 0.09 

Aortic distensibility (cm²/dynes 10-6 4.58 ± 3.21 ) 

Aortic stiffness index 5.17 ± 3.45 

 
 

 

Three-dimensional speckle-tracking echocardiographic data. 3DSTE-derived volumes, 

volume-based functional properties and strain parameters are summarized in Tables 9-10. 

 

  



29 
 

Table 9 Comparison of 3DSTE-derived volumetric and volume-based functional left 
atrial parameters in patients with type 1 diabetes mellitus and controls 
 
 

 Data 

Calculated volumes (ml)  

  Maximum left atrial volume (Vmax 35.6 ± 6.4 ) 

  Minimum left atrial volume (Vmin 16.3 ± 4.9 ) 

  left atrial volume before atrial contraction (VpreA 23.8 ± 6.7 ) 

Stroke volumes (ml)  

  Total atrial stroke volume  19.3 ± 4.5 

  Passive atrial stroke volume 11.8 ± 4.7 

  Active stroke volume 7.5 ± 3.2 

Emptying fractions (%)  

  Total atrial emptying fraction 54.5 ± 10.2 

  Passive atrial emptying fraction 33.5 ± 12.3 

  Active atrial emptying fraction 31.4 ± 9.2 

 
 
Correlations (volumetric data vs. aortic elastic properties). None of atrial volumes 

correlated with echocardiographic aortic elastic properties. Active atrial stroke volume 

correlated with ASI (r =0.45, p =0.05), while passive atrial stroke volume tended to be 

correlated with ASI (r =-0.42, p =0.09). None of other volume-based functional properties 

correlated with any of aortic stiffness parameters.  

 

Correlations (peak strains vs. aortic elastic properties). Global peak 3D strain correlated 

with aortic strain (r =-0.46, p =0.05). Only tendentious correlations could be demonstrated 

between global radial peak strain and ASI (r =-0.39, p =0.08) and aortic strain (r =-0.41, p 

=0.07) and between mean segmental longitudinal peak strain and aortic strain (r =0.41, p 

=0.08).  
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Table 10 Comparison of 3DSTE-derived global and mean segmental peak strains and 
strains at atrial contraction in healthy subjects 
 
 

 Peak strain Strain at atrial 
contraction 

Global strain parameters   

   Radial strain (%) -21.8 ± 11.8 -8.5 ± 8.3 

   Circumferential strain (%) 28.7 ± 10.0 10.7 ± 11.4 

   Longitudinal strain (%) 24.2 ± 6.6 9.0 ± 9.4 

   Area strain (%) 57.7 ± 17.6 16.5 ± 16.5 

   3D strain (%) -13.9 ± 10.8 -5.3 ± 5.4 

Mean segmental strain parameters   

   Radial strain (%) -23.1 ± 9.0 -8.6 ± 5.5 

   Circumferential strain (%) 36.6 ± 12.4 13.3 ± 10.0 

   Longitudinal strain (%) 31.6 ± 6.7 9.2 ± 6.2 

   Area strain (%) 74.5 ± 23.2 21.2 ± 15.1 

   3D strain (%) -16.4 ± 6.8 -6.7 ±  5.0 

 
Abbreviations: 3D = three-dimensional 
 

 

 

Correlations (strains at atrial contraction vs. aortic elastic properties). Global radial 

strain at atrial contraction correlated with ASI (r =-0.49, p =0.04) and aortic strain (r =-0.50, p 

=0.04) and tended to be correlated with AD (r =0.43, p =0.07). 
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4.4. Complex evaluation of left atrial dysfunction in patients with type 1 diabetes 

mellitus 

 
 
Patient population. This prospective study consists of 17 subcutaneous insuline pumpe-

treated non-obese patients with T1DM (mean age: 33.5 ± 8.2 years, 8 males, duration of 

T1DM: 17.0 ± 11.1 years, body mass index: 23.3 ± 3.0 kg/m2, daily insulin dose: 39.0 ± 7.3 

IU). To exclude possible cardiovascular disease, patients with complaints of chest pain, 

dyspnea or signs of cerebral or peripheral artery disease were not included. Their results were 

compared to 20 age- and gender-matched healthy controls (mean age: 36.9 ± 11.0 years, 9 

males, body mass index: 23.1 ± 1.2 kg/m2

 

). Presence of any disorder which might presumable 

influence the results were excluded from the healthy controls.  

 
 
Demographic, biochemical and two-dimensional echocardiographic data. Hypertension 

and hypercholesterolaemia were frequent in T1DM patients. No significant differences were 

demonstrated in standard echocardiographic parameters between groups (Table 11). While 

fasting plasma glucose (5.3 ± 0.6 mmol/l vs. 5.1 ± 0.8 mmol/l, p =0.93), creatinine (75 ± 5 

umol/l vs. 78 ± 3 umol/l, p =0.91), haematocrit (41 ± 2% vs. 40 ± 1%, p =0.90) and 

haemoglobin (134 ± 3 mmol/l vs. 132 ± 4 mmol/l, p =0.88) levels did not differ between 

T1DM patients and controls and GFR >60 ml/min/1.73 m2

 

 could be measured in both groups, 

HbA1c proved to be significantly increased in T1DM patients (8.1 ± 1.5% vs. 5.2 ± 1.0%, p 

<0.05). These results suggest that anaemia or impaired renal function could not be confirmed 

in this T1DM patient population. 

 

3DSTE-derived volumes and volume-based functional properties. Significantly increased 

LA maximum (45.2 ± 10.3 ml vs. 35.9 ± 6.3 ml, p =0.002), LA minimum (21.6 ± 6.3 ml vs. 

16.3 ± 4.8 ml, p =0.006) volumes and LA volume before atrial contraction (31.5 ± 9.1 ml vs. 

24.0 ± 6.6 ml, p =0.006) could be detected in T1DM patients as compared to controls. Total 

atrial stroke volume (SV) proved to be increased (23.6 ± 6.9 ml vs. 19.6 ± 4.6 ml, p =0.04) in 

patients with T1DM. Other volume-based LA functional properties showed no significant 

differences between groups (Figure 10).  

 



32 
 

Table 11 Baseline demographic and two-dimensional echocardiographic data in patients 
with type 1 diabetes mellitus and controls 

 
 

Abbreviations: DM = diabetes mellitus, LA = left atrial, LV = left ventricular 
 
 
  

 
Type 1DM  

patients 
(n=17) 

Controls 
(n=20) p-value 

Risk factors    

  Age, years 33.5 ± 8.2 36.9 ± 11.0 0.15 

  Male gender, % 8 (47) 9 (45) 1.00 

  Hypertension, % 4 (24) 0 (0) 0.04 

  Hypercholesterolaemia, % 4 (24) 0 (0) 0.04 

Two-dimensional echocardiography    

  LA diameter, mm  33.2 ± 6.6 33.1 ± 3.4 0.92 

  LV end-diastolic diameter, mm 46.3 ± 5.5 47.8 ± 7.1 0.41 

  LV end-diastolic volume, ml 100.5 ± 28.2 101.2 ± 21.3 0.97 

  LV end-systolic diameter, mm 29.3 ± 4.4 31.0 ± 4.1 0.58 

  LV end-systolic volume, ml 34.2 ± 12.0 34.9 ± 11.2 0.88 

  Interventricular septum, mm 9.1 ± 1.9 9.6 ± 2.0 0.61 

  LV posterior wall, mm 9.1 ± 0.9 9.4 ± 2.2 0.52 

  LV ejection fraction, % 66.1 ± 7.6 66.1 ± 7.1 0.89 

  LV mass index, kg/m 97.7 ± 14.6 2 104.6 ± 33.4 0.44 

  E/A 1.47 ± 0.50 1.30 ± 0.17 0.14 

  E/E’ 6.3 ± 2.0 5.2 ± 1.8 0.32 
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Figure 10. Calculated left atrial volumes and volume-based functional properties (stroke 
volumes and emptying fractions) are presented in type 1 diabetes mellitus patients and 
matched healthy controls.  
Abbreviations: Vmax – maximum left atrial volume, Vmin – minimum left atrial volume, 
VpreA - left atrial volume before atrial contraction, TASV – total atrial stroke volume, PASV 
– passive atrial stroke volume, AASV – active atrial stroke volume, TAEF – total atrial 
emptying fraction, PAEF – passive atrial emptying fraction, AAEF – active atrial emptying 
fraction, LA – left atrial, T1DM – type 1 diabetes mellitus 
 

 

3DSTE-derived peak strain parameters. Global, mean segmental and basal, midatrial and 

superior segmental peak strain parameters of T1DM patients and control subjects are 

presented in Figures 11 and 12. Only mean segmental circumferential peak strain showed 

significant difference between groups (37.3 ± 12.5% vs. 28.9 ± 11.4%, p =0.04). Segmental 

basal longitudinal (26.8 ± 9.2% vs. 17.3 ± 6.7%, p =0.001) and area (69.1 ± 16.0% vs. 54.4 ± 

16.4%, p =0.01) strains were increased, while segmental superior circumferential (33.8 ± 

18.5% vs. 17.2 ± 16.8%. p =0.008) and area (71.1 ± 38.8%, vs. 39.7 ± 45.1%, p =0.03) strains 

and midatrial 3-D strain (-16.8% ± 8.8% vs. -11.2% ± 6.8%, p=0.04) proved to be decreased 

in T1DM. 
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Figure 11. Left atrial global and mean segmental peak circumferential, longitudinal, 
area, radial and three-dimensional strains are presented in type 1 diabetes mellitus 
patients and matched healthy controls.  
Abbreviation: T1DM – type 1 diabetes mellitus 
 

 
Figure 12. Left atrial segmental basal, midatrial and superior peak circumferential, 
longitudinal, area, radial and three-dimensional strains are presented in type 1 diabetes 
mellitus patients and matched healthy controls. 
Abbreviation: T1DM – type 1 diabetes mellitus 
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Reproducible measurements. The mean ± standard deviation difference in values obtained 

by 2 measurements of the same observer and 2 observers for the measurements of 3DSTE-

derived Vmax, Vmin, VpreA

 

, RS, CS, LS, AS and 3DS together with correlation coefficients are 

demonstrated in Table 12.  

 

Table 12 Intra- and interobserver variability for the most important parameters in 
patients with type 1 diabetes mellitus 
 
 

 Intraobserver agreement Interobserver agreement 

 

mean ± SD 
difference in 

values 
obtained by 2 
measurements 

of the same 
observer 

correlation 
coefficient 
between 

measurements 
of the same 

observer 

mean ± SD 
difference in 

values 
obtained by 
2 observers  

correlation 
coefficient 
between 

independent 
measurements 
of 2 observers 

Volumetric data     

  V 0.9 ± 4.7 ml max 
0.97  

(p =0.0001) 1.0 ± 6.4 ml 0.95 
(p=0.0001) 

  V -1.1 ± 6.5 ml min 0.85 
(p =0.0001) -1.2 ± 7.4 ml 0.83 

(p =0.0001) 

  V 0.3 ± 3.7 ml preA 0.98 
(p= 0.0001) 0.2 ± 5.3 ml 0.95 

(p =0.0001) 

Global strains     

Radial strain -2.5 ± 11.1% 0.68 
(p =0.003) -0.6 ± 9.6% 0.75 

(p =0.0005) 
Circumferential 
strain 3.8 ± 14.8% 0.77  

(p =0.0003) 3.6 ± 18.0% 0.73 
(p =0.0009) 

Longitudinal strain 0.6 ± 8.5% 0.67 
(p =0.003) -2.0 ± 15.7% 0.54 

(p =0.02) 

Area strain 10.2 ± 37.1% 0.59 
(p =0.01) 2.3 ± 38.0% 0.75 

(p =0.0005) 

3D strain -1.1 ± 10.4% 0.62 
(p =0.008) 1.4 ± 9.5% 0.71 

(p =0.001) 

 
Abbreviations: SD = standard deviation, 3D = three-dimensional, Vmax = maximum left atrial 
volume, Vmin = minimum left atrial volume, VpreA 
 

= left atrial volume before atrial contraction 
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4.5. Left atrial volumetric and strain analysis in noncompaction cardiomyopathy  

 

Patient population. The present study comprised 12 patients with typical features of NCCM. 

The diagnosis of NCCM was confirmed in all patients according to the Jenni’s criteria (23). 

Their results were compared to 20 age- and gender-matched healthy controls. Complete 2D 

Doppler echocardiography and 3DSTE have been performed in all NCCM cases and controls.  

 

 

Clinical characteristics of patients. Cardiovascular risk factors and medications of NCCM 

patients and controls are presented in Table 13.  

 

 

Two-dimensional echocardiographic data. Standard 2D echocardiographic data are 

summarized in Table 2. Significant (>grade 2) mitral regurgitation could be detected in 4 

patients with NCCMP (33%) and in none of controls. Increased LV diameters and volumes, 

and decreased LVEF could be confirmed in NCCM patients (Table 13).  

 

 

Three-dimensional speckle-tracking echocardiographic data. Significantly increased LA 

maximum and minimum volumes and LA volume before atrial contraction could be detected 

in NCCM patients. Total, passive and active LA emptying fractions were significantly 

decreased in patients with NCCM (Table 14). Peak global and mean LA segmental strains 

proved to reduced in NCCM patients as compared to controls (Table 15). Alterations in 

segmental LA strain parameters in NCCM patients are summarized in Table 16. The number 

of noncompacted segments (extent of noncompaction) did not correlate with atrial functional 

properties. 
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Table 13. Clinical and two-dimensional echocardiographic characteristics of patients 
with noncompaction cardiomyopathy and of controls 
 

 NCCM patients 

(n = 12) 

Controls 

(n = 20) 

p value 

Risk factors    

  Age (years) 54.2 ± 15.0 51.9 ± 12.7 0.65 

  Male gender (%) 5 (42) 12 (60) 0.47 

  Diabetes mellitus (%) 0 (0) 0 (0) 1.00 

  Hypertension (%) 5 (42) 0 (0) 0.004 

  Hypercholesterolaemia (%) 3 (25) 0 (0) 0.04 

Medications    

  β-blockers (%) 10 (83) 0 (0) <0.0001 

  ACE-inhibitors (%) 10 (83) 0 (0) <0.0001 

  Diuretics (%) 9 (75) 0 (0) <0.0001 

Two-dimensional echocardiography    

  LA diameter (mm) 49.4 ± 8.7 33.0 ± 2.0 <0.0001 

  LV end-diastolic diameter (mm) 62.7 ± 13.2 47.4 ± 4.3 <0.0001 

  LV end-diastolic volume (ml) 198.8 ± 89.5 104.6 ± 21.1 0.0001 

  LV end-systolic diameter (mm) 47.7 ± 15.4 31.0 ± 4.3 0.0001 

  LV end-systolic volume (ml) 116.2 ± 76.5 37.5 ± 10.3 0.0001 

  Interventricular septum (mm) 10.1 ± 1.8 9.1 ± 2.0 0.17 

  LV posterior wall (mm) 9.8 ± 1.4 9.8 ± 2.1 1.00 

  LV ejection fraction (%) 41.5 ± 17.7 64.0 ± 6.1 <0.0001 

  E/A 1.6 ± 0.7 1.2 ± 0.1 0.02 

  Number of noncompacted segments 6.5 ± 1.7 0 - 

   
Abbreviations: ACE: angiotensin-converting enzyme, LA: left atrium, LV: left ventricular, 
NCCM:noncompaction cardiomyopathy 
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Table 14. Comparison of three-dimensional speckle-tracking echocardiography-derived 
left atrial volumetric parameters in patients with noncompaction cardiomyopathy and 
in controls 
 
 

 
NCCM patients 

(n=12) 

Controls 

(n=20) 

p-value 

 

  FR (vps) 23.2 ± 3.6 19.8 ± 0.8 0.0003 

Calculated Volumes    

  Vmax 76.5 ± 26.8  (ml) 45.3 ± 15.1 0.0002 

  Vmin 56.9 ± 27.3  (ml) 25.3 ± 15.2 0.0002 

  Vpre 67.1 ± 28.2 A (ml) 35.7 ± 16.4 0.0004 

Stroke Volumes     

  TASV (ml) 19.6 ± 4.8 19.9 ± 6.4 0.89 

  PASV (ml) 9.5 ± 2.8 9.5 ± 5.3 1.00 

  AASV (ml) 10.1 ± 5.4 10.3 ± 4.0 0.91 

Emptying fractions    

  TAEF (%) 29.3 ± 13.1 46.0 ± 13.3 0.002 

  PAEF (%) 15.1 ± 9.7 22.6 ± 9.0 0.05 

  AAEF (%) 17.1 ± 8.8 30.7 ± 9.2 0.0003 

 
Abbreviations: AAEF = active atrial emptying fraction, AASV = active atrial stroke volume, 
FR = frame rate, PSV = passive stroke volume, PAEF = passive atrial emptying fraction, 
TAEF = total atrial emptying fraction, TASV = total atrial stroke volume, Vmax = maximum 
left atrial volume, Vmin = minimum left atrial volume, Vpre

 

A = volume before atrial 
contraction 
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Table 15. Comparison of three-dimensional speckle-tracking echocardiography-derived 
peak global and mean segmental strain parameters in patients with noncompaction 
cardiomyopathy and in controls 
 
 

 
NCCM patients 

(n=12) 

Controls 

(n=20) 

p-value 

 

Peak global    

RS (%) -9.3 ± 7.8 -16.8 ± 10.2 0.05 

CS (%) 12.8 ± 8.4 26.2 ± 9.2 0.0003 

LS (%) 12.8 ± 8.2 22.5 ± 8.5 0.004 

3DS (%) -6.4 ± 5.8 -7.3 ± 12.3 0.81 

AS (%) 26.7 ± 18.5 51.6 ± 20.3 0.001 

Peak mean segmental 
 

RS (%) -12.7 ± 6.9 -19.8 ± 8.0 0.02 

CS (%) 16.2 ± 9.1 30.9 ± 11.8 0.0009 

LS (%) 15.9 ± 8.9 26.1 ± 7.7 0.002 

3DS (%) -9.3 ± 5.3 -13.7 ± 9.1 0.32 

AS (%) 32.4 ± 20.1 58.9 ± 21.3 0.002 

 
Abbreviations: 3DS = three-dimensional strain, AS = area strain, CS = circumferential 
strain, LS = longitudinal strain, NCCM = noncompaction cardiomyopathy, RS = radial 
strain 
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Table 16. Comparison of three-dimensional speckle-tracking echocardiography-derived 
peak segmental strain parameters in patients with noncompaction cardiomyopathy and 
in controls 
 
 

 
NCCM patients 

(n=12) 

Controls 

(n=20) 

p-value 

 

RS basal -9.3 ± 6.7 (%) -23.3 ± 11.4 0.0006 

RS mid -12.8 ± 6.6 (%) -20.6 ± 11.6 0.04 

RS apical -17.9 ± 14.1 (%) -18.8 ± 13.0 0.96 

CS basal 16.4 ± 12.3 %) 40.6 ± 14.5 <0.0001 

CS mid 14.6 ± 9.2 (%) 28.8 ± 12.3 0.002 

CS apical 19.1 ± 13.8 (%) 25.9 ± 16.7 0.24 

LS basal 13.0 ± 5.7 (%) 19.6 ± 10.8 0.06 

LS mid 21.9 ± 14.2 %) 35.4 ± 10.2 0.004 

LS apical 11.6 ± 8.6 (%) 20.9 ± 10.9 0.02 

3DS basal -6.5 ± 4.3 (%) -17.7 ± 10.9 0.002 

3DS mid -9.2 ± 5.2 (%) -13.3 ± 9.7 0.19 

3DS apical -13.4 ± 10.2 %) -12.4 ± 9.0 0.77 

AS basal 27.6 ± 19.0 (%) 58.9 ± 26.7 0.001 

AS mid 37.4 ± 26.8 (%) 69.1 ± 27.8 0.004 

AS apical 32.7 ± 23.0 (%) 54.5 ± 37.5 0.08 

 
Abbreviations: 3DS = three-dimensional strain, AS = area strain, CS = circumferential strain, 
LS = longitudinal strain, NCCM = noncompaction cardiomyopathy, RS = radial strain 
 



41 
 

Follow-up. The success rate of follow-up proved to be 100%. During a mean follow-up of 27 

± 1 months, cardiovascular event was found in the anamnaesis of 5 NCCM patients including 

coronary angiography-proven multivessel disease requiring coronary artery bypass grafting in 

2 cases, resynchronisation treatment in 1 case, cardiac decompensation and new-onset atrial 

fibrillation in 1 case and prosthetic valve implantation due to significant aortic regurgitation 

and pacemaker implantation due to ventricular arrhythmias in 1 case. 3DSTE-derived atrial 

volumetric and functional properties in NCCM patients with vs. without events are 

demonstrated in Tables 17-18.  

 

 
Table 17. Comparison of three-dimensional speckle-tracking echocardiography-derived 
left atrial volumetric and volume-based functional parameters in noncompaction 
cardiomyopathy patients with versus without events during follow-up 
 
 

 

NCCM patients 

with events 

(n=5) 

NCCM patients 

without events 

(n=7) 

p-value 

 

Calculated Volumes    

  Vmax 92.0 ± 15.0  (ml) 65.6 ± 28.6 0.09 

  Vmin 73.7 ± 16.2  (ml) 44.9 ± 28.1 0.07 

  Vpre 84.7 ± 16.5 A (ml) 54.5 ± 28.9 0.06 

Stroke Volumes     

  TASV (ml) 18.4 ± 5.7 20.5 ± 4.2 0.47 

  PASV (ml) 7.3 ± 2.8 11.0 ± 1.5 0.01 

  AASV (ml) 11.0 ± 6.4 9.5 ± 5.0 0.65 

Emptying fractions    

  TAEF (%) 20.3 ± 6.3 35.7 ± 13.0 0.04 

  PAEF (%) 8.3 ± 4.0 20.0 ± 9.7 0.03 

  AAEF (%) 13.0 ± 6.9 20.1 ± 9.3 0.18 

 
Abbreviations: AAEF = active atrial emptying fraction, AASV = active atrial stroke volume, 
NCCM = noncompaction cardiomyopathy, PAEF = passive atrial emptying fraction, PASV = 
passive stroke volume, RS = radial strain, TAEF = total atrial emptying fraction, TASV = 
total atrial stroke volume, Vmax = maximum left atrial volume, Vmin = minimum left atrial 
volume, Vpre
  

A = volume before atrial contraction 
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Table 18. Comparison of three-dimensional speckle-tracking echocardiography-derived 
left atrial strain parameters in noncompaction cardiomyopathy patients with versus 
without events during follow-up 
 

 

NCCM patients 

with events 

(n=5) 

NCCM patients 

without events 

(n=7) 

p-value 

 

Peak global strains    

  RS (%) 5.8 ± 3.9 11.9 ± 9.1 0.19 

  LS (%) 7.1 ± 3.9 16.9 ± 8.2 0.03 

  CS (%) 9.3 ± 8.6 15.3 ± 8.0 0.24 

  3DS (%) 4.6 ± 3.2 7.7 ± 7.0 0.38 

  AS (%) 15.2 ± 13.8 34.9 ± 17.6 0.06 

Mean segmental strains    

  RS (%) 9.5 ± 2.8  15.1 ± 8.2 0.18 

  LS (%) 9.1 ± 3.3 20.8 ± 8.4 0.01 

  CS (%) 11.3 ± 8.1 19.8 ± 8.6 0.12 

  3DS (%) 7.3 ± 3.2 10.7 ± 6.2 0.29 

  AS (%) 19.3 ± 13.6 41.8 ± 19.2 0.05 

 
Abbreviations: AS = area strain, CS = circumferential strain, LS = longitudinal strain, 
NCCM = noncompaction cardiomyopathy, RS = radial strain, 3DS = three-dimensional 
strain 

 
 

5. Discussion 

 
 
5.1. Relationships between right atrial and left ventricular size and function in healthy 

subjects 

 

In our study, LVEF showed relationship both with systolic and diastolic RA volumes. While 

LVEF did not correlate with RA stoke volumes and emptying fractions, correlations could be 

detected between LVEF and diastolic AS measured at atrial contraction. RA volumes 

respecting cardiac cycle showed correlations only with LV-ESD and LV-ESV, similar 

correlations with end-diastolic parameters could not be detected. Relationship could be 
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demonstrated between LV-ESD and LV-ESV and certain diastolic RA functional parameters 

at atrial contraction. Similarly, relationship could be demonstrated between LV-EDD and 

systolic and diastolic RA strain parameters.  

It is well known that to maintain normal circulation aligned movement of the atria and 

ventricles is essential (1). Recent imaging cardiovascular techniques seem to be suitable not 

only for quantitative detection of changes in cardiac chamber sizes but for calculation of 

different functional parameters. Calculation of LV dimensions (diameter, volume) and 

function (LV fractional shortening, LVEF) is a part of the daily routine examination by M-

mode and 2D echocardiography (2,30). There are further opportunities for more detailed 

analysis due to presence of complementary methodologies including Doppler, tissue Doppler, 

2DSTE, volumetric RT3DE and strain-based 3DSTE (30). 

Unfortunately routine 2D echocardiography suffers in featuring RA dimensions, 

volumes and function (31,32). RA (similarly to LA) has a complex motion during the heart 

cycle, working as a reservoir in systole, while conduit and actively contracting heart chamber 

in diastole (32). 3DSTE is a new methodology with which 3D model of the RA could be 

created by digitally acquired RA-focused 3D databases. Due to ECG gating changes in 

volumetric and functional parameters could be analysed respecting the heart cycle. However, 

there were no previous 3DSTE studies, in which RA and LV functional relationship was 

examined in healthy subjects.   

The number of studies related to recent echocardiographic examination of RA volumes 

and functional parameters is limited. RT3DE was found to be a reliable non-invasive 

methodology for assessment of RA volume changes respecting the heart cycle, and RA 

volumes changes were confirmed by RT3DE in different disorders (33,34). 2DSTE was also 

found to be a tool for quantitative characterization of RA wall motion as confirmed in several 

papers (35,36). The newly developed 3DSTE overcome technical difficulties which could 

arise during 2DSTE (for instance inaccuracy in the evaluation of motions which leave 2D 

plane), because the whole imaging (virtual 3D cast of RA) is based on 3D tracking of speckles 

(acoustic echo samples) (3-5,26,27). The other important advantage of the method is that not 

only changes in chamber volumes, but strain, rotational and dyssynchrony parameters could 

be measured at the same time from the same 3D cast (4,26,27).  

The present study aimed to highlight attentation on the fact that with this new 

methodology detailed analysis of RA is possible via volumetric and functional measurements 

during a simple ultrasound examination of the heart. Results have confirmed relationships 

between above mentioned RA and LV morphological and functional parameters, which could 
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help understanding physiologic contexts during heart cycle. However, further studies are 

warranted in larger patient populations to confirm our results and to clarify the role of other 

factors including valves’ sizes and functional parameters, as emerged from previous studies.    

 

Study limitations. One the important limitations is that RA appendage, caval veins and sinus 

coronarius were excluded from analyses. The present study aimed to compare 3DSTE-derived 

RA volumes and functional parameters and 2D echocardiographic LV data in healthy 

subjects. The other heart chambers and valves participating in maintaining circulation were 

not examined in this study. 3DSTE examination of LV, RV and LA and 2D 

echocardiographic analysis of the RA were even not aimed to be assessed in this particular 

study. 3DSTE-derived image quality is much worse than that could be experienced during 2D 

echocardiography, which could theoretically affect results. During performing 3D cast of the 

RA a methodology validated for LA was used (6,8,9). This could be considered when 

interpreting our results. Finally, although 3DSTE is suitable for measuring rotational, twist 

and synchronicity features of a certain heart chamber, it was not aimed to be examined.  

 
 
5.2. Correlations between left atrial ejection force and left atrial strain and volume-

based functional properties in healthy subjects 

 

The newly developed 3DSTE is a non-invasive imaging methodology with ability for 

chamber quantifications based on block-matching algorithm of the myocardial speckles of the 

endocardial border during their frame-to-frame motion (4,26,27). As mentioned before, 

usefulness of 3DSTE for LA volumetric assessments has been demonstrated and validated by 

2D echocardiography (9), 2DSTE (8), RT3DE (6) and computer tomography (8). Moreover, 

3DSTE-derived LA strain measurements have also been demonstrated (10-12) and validated 

before by 2DSTE (11).  

In most of cases, volumetric and strain assessments could be performed 

simultaneously using the same 3D model of the LA. However, there is a third way to 

characterize LA function during the same examination measuring LAEFO, the force exerted 

by the LA to accelerate blood into the LV during atrial systole. LAEFO is based on classic 

Newtonian mechanics and is a potential useful index for assessing atrial contribution to 

diastolic performance (28). Over 2D imaging both 3D echocardiographic techniques, RT3DE 

(14,21,37) and 3DSTE (13) have been demonstrated to be practicable in assessing LAEFO 
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using Doppler-derived mitral inflow A velocity. However, to the best of authors’ knowledge 

this is the first time to examine whether correlations exist between 3DSTE-derived LAEFO 

and LA volume-based and strain funtional properties respecting cardiac systolic and diastolic 

functions in healthy subjects. 

In a recently published paper from the MAGYAR-Healthy Study, 3DSTE seemed to 

be feasible in detection of cyclic changes in LA volumes and calculation of its functional 

properties was comparable to 2D echocardiography (9). Good correlations were found 

between both techniques for LA volumetric data and volume-based functional properties. 

Moreover, excellent intra- and interobserver agreements could be demonstrated for 3DSTE-

derived volumetric and strain data (9). Results of the present study extended our knowledge 

demonstrating capability of 3DSTE in reproducible assessment of MAD and MAA allowing 

simple calculation of LAEFO, as well.  

The study reported here is the first to demonstrate correlations between LAEFO and 

3DSTE-derived volume-based and strain parameters featuring systolic LA reservoir and late 

diastolic LA booster pump phases calculated from the same 3D model of the LA. No 

relationships could be demonstrated between LAEFO and functional properties of early 

diastole (LA conduit function). The results of the present study could higlight our attention on 

several facts. Firstly, 3DSTE seems to be a simple, non-invasive technology with which 

complex evaluation of the LA function could be done. All functions of LA including systolic 

reservoir, early diastolic conduit and late diastolic booster pump (or active contraction) phases 

could be assessed at the same time by a complex way. Secondly, several volume-based and 

strain parameters over LAEFO could be calculated from the same 3D model of the LA. The 

measurement of LAEFO requires more data including MAD or MAA and pulsed Doppler-

derived mitral inflow A wave. Thirdly, significant correlations could be demonstrated 

between these functional properties, as demonstrated before. However, further validation 

studies with other imaging methodologies are warranted to confirm our findings. Moreover, 

other studies should focus on deeper insights on atrial (patho)physiology, especially in 

different cardiovascular disorders using all the methodologies detailed above.  

 

Limitation section. In agreement with available literature, LA appendage and pulmonary 

veins were excluded from evaluations. Despite most of patients had far from optimal image 

quality due to low temporal and spatial resolutions, none of them were excluded from the 

analyses, but could theoretically affect results. Only a limited number of healthy volunteers 

from a single center were examined and measurements were provided by a single observer. 



46 
 

Although 3DSTE seems to be an applicable technique for non-invasive estimation of LA 

volumes and functional properties, more comparative and validation studies with other 

methodologies are warranted. At this moment 3DSTE-derived normal strain reference values 

has not been described and the results of the present study were somewhat different as 

compared to that of previous findings. It could be explained by methodological differences, 

but the effect of the age and other factors could also not be excluded (10,28,37,38). It is 

known that LA function could be deteriorated in different arrhytmologic disorders like in 

atrial fibrillation. However, all of the studied healthy subjects were in sinus rhythm. 

Theoretically higher grade of MR could affect LA function. However, none of the healthy 

subjects had ≥ grade 1MR. Quantification of LV strains and rotational parameters by 3DSTE 

was not aimed in the present study.  

 

5.3. Correlations between left atrial functional parameters and aortic stiffness in healthy 

subjects 

 
 
To the best of authors’ knowledge this is the first study in which correlations could be 

demonstrated between echocardiographic aortic elastic properties and 3DSTE-derived LA 

functional parameters in healthy subjects. 3DSTE has been found to be feasible for non-

invasive quantification of LA volumes and functional properties allowing complex evaluation 

of LA phasic function during cardiac cycle which includes (3,39):  

[1] Reservoir function (LA inflow during LA systole) 

[2] Conduit function (LA passive emptying during LV relaxation and diastasis, when 

blood transiting from the pulmonary veins to the LV during early diastole) 

[3] Active contraction or booster pump function (LA active emptying, when LA works 

like an active contractile chamber that augments LV filling in late diastole).  

There are several ways for functional assessment of LA including calculation of volume-

based and strain parameters by 3DSTE as demonstrated before (6,8-13). With these 

parameters detailed characterization of all three LA functions possible:  

[1] Reservoir function by total atrial SV and total atrial EF together with global and mean 

segmental peak strain parameters, 

[2] Conduit function by passive atrial SV and passive atrial EF, and 

[3] Active contraction (booster pump) by active atrial SV and active atrial EF together 

with global and mean segmental strain parameters at atrial contraction. 
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It is known that due to large number of collagens and filaments, the normal aorta is 

working as an elastic artery. As a physiologic consequence of the reduction of aortic buffering 

(Windkessel) function, SBP increases and DBP decreases leading to increased LV afterload 

and impaired LV relaxation (40). In the present study most of functional LA parameters 

showing correlations with aortic elastic properties are characteristics of atrial booster pump 

function reflecting magnitude and timing of atrial contractility but is dependent on the degree 

of venous return, LV end-diastolic pressures and LV systolic reserve (3). Moreover, 

correlations were found between aortic elasticity and characteristics of LA reservoir and 

conduit functions, as well. Because of the close interplay between LA, LV remodeling and 

diastolic function, the relationship is not suprising. However, in the present study detailed 

analysis could be demonstrated between echocardiographic aortic elastic properties and all the 

LA phasic functions by 3DSTE-derived volume-based and strain parameters even in healthy 

subjects.   

 

Limitation section. Over previously mentioned limitations it should be considered that the 

blood pressure in the brachial artery and ascending aorta may be different which could 

theoretically affect our results. However, the presented non-invasive imaging technique has 

been validated against invasive methods in the evaluation of aortic stiffness parameters 

(25,40).  

 
5.4. Complex evaluation of left atrial dysfunction in patients with type 1 diabetes 

mellitus 

 
The present study features a novel aspect of early LA remodeling in T1DM patients with the 

aid of 3DSTE. Changes in LA volumes and functional properties respecting cardiac cycle 

suggesting LA remodeling could highlight our attention on the importance of early diagnosis, 

treatment and follow-up of young patients with T1DM who have not yet overt cardiovascular 

disease. 

In the present study total atrial SV was found to be increased together decreased mean 

segmental circumferential peak strain in T1DM patients. Segmental analysis have revealed 

that basal longitudinal and area strains are increased, while superior circumferential and area 

strains are decreased in T1DM suggesting augmented basal and reduced superior LA 

deformations in reservoir phase of the LA function. However, alterations in conduit and active 

contraction phases of LA function could not be confirmed by 3DSTE in this patient subset. 
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Our results are only partially in agreement with previous findings. Acar et al. found 

decreased LA passive EF and increased LA active emptying volume and LA active EF in 

T1DM patients (41). In another study, during cold pressor test, isovolumic relaxation time 

increased, peak early LV filling velocity (E) decreased, E deceleration time decreased and LA 

contribution (A) increased significantly in T1DM. A marked increase in LA ejection force 

was also seen in this study. This LA hyperfunction was hypothesized to be due to reduced size 

of the LV combined with incipient autonomic neuropathy (42). Peterson et al. found that 

T1DM is related to A wave velocity, late myocardial velocity (Am global), LA ejection 

fraction and  LA systolic ejection fraction (43).   

The prevalence of hypertension was frequent in our diabetic patient population, which 

is a common finding in T1DM. In a recent 2DSTE study, hypertension

The real mechanism behind the LA volumetric and functional alterations and  LA 

remodeling is not yet known in T1DM. However, diabetes-related hormonal changes, 

necrosis, progressive fibrosis, haemodynamic reasons and the effect of diastolic dysfunction 

etc. could not be excluded. Moreover, the effects of diabetes-related hypertension should also 

be considered.  

 was found to be 

associated with impaired LA function even before LA enlargement develops and after LV 

remodeling is accounted for (44). Badran et al. found that in hypertension LA conduit 

function is chiefly affected and LA dysfunction is linked to a more advanced disease (45). 

 

Study Limitations. Over previous limitations it should be considered that the present single-

center study covered a small number of T1DM patients, which should be considered as the 

most important limitation. Moreover, one quarter of T1DM patients had treated hypertension 

and/or hypercholesterolaemia and HbA1c of T1DM patients was significantly increased, 

which could theoretically affect results.  

 

5.5. Left atrial volumetric and strain analysis in noncompaction cardiomyopathy  

 

To the best of authors’ knowledge this is the first study in which LA function was assessed by 

3DSTE in a series of patients with NCCM and compared to matched controls. Increased LA 

volumes, reduced LA emptying fractions and peak LA strain parameters could be 

demonstrated in NCCM.  

 Cardiomyopathies are frequently associated with volumetric and functional 

deteriorations of different heart chambers (46-48). However, relatively low number of studies 
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are available, in which LA (dys)function was investigated in NCCM. In a recent RT3DE 

study, LA ejection force was found to be increased in NCCM as compared to controls (13,21). 

In the present study, significantly reduced AAEF could be demonstrated during LA 

contraction. Moreover, all calculated LA volumes proved to be increased, while LA emptying 

fractions respecting cardiac cycle were decreased in NCCM demonstrating significant 

alterations in all LA functions. During strain analysis certain peak global and mean segmental 

strain parameters showed reductions in NCCM patients confirming changes in LA reservoir 

function.  

 

Limitation section. Over above mentioned limitations it should be taken into consideration 

that results of a relatively small number of NCCM patients were analysed. However, it should 

be considered that this was a single-centre experience and NCCM is a relative rare disorder. 

Some NCCM patients showed higher grade mitral regurgitation. This could affect our results. 
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6. Conclusions (new observations) 

 
 

Relationships could be demonstrated between three-dimensional speckle tracking 

echocardiography-derived right atrial and two-dimensional echocardiography-derived left 

ventricular volumetric and functional parameters in healthy subjects. 

 

Complex left atrial functional assessment could be provided by three-dimensional speckle 

tracking echocardiography including calculation of left atrial ejection force and volume-based 

and strain functional properties with significant correlations between these parameters. 

 

Correlations exist between three-dimensional speckle tracking echocardiography-derived 

functional left atrial parameters and echocardiographic aortic elastic properties in healthy 

subjects.  

 

Three-dimensional speckle tracking echocardiography-derived volumetric and strain analysis 

confirmed alterations in left atrial function in young patients with type 1 diabetes mellitus 

suggesting early remodeling of the left atrium before other cardiovascular alterations occur. 

 

Significantly increased left atrial volumes and impaired left atrial function could be 

demonstrated in noncompaction cardiomyopathy by three-dimensional speckle tracking 

echocardiography. 
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