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1 Abstract 

Non-native species are a main cause for the global loss of biodiversity and ecosystem services. 
Mountain regions have been relatively spared from plant invasions up to now, mostly due to climatic 
restrictions and low human influence, with roads being the main pathways. But the invasion risk is 
increasing due to climate change and intensified land use. This is problematic, because mountain 
regions generally have high conservation value and are hard to manage. Therefore, prevention is 
crucial. The aim of my study is to improve predictions of plant invasions by including roads and 
topoclimate in the species distribution models and to provide suggestions for adequate roadside 
management.  
 
First, I downscaled bioclimatic variables according to the topography to a resolution of 50 x 50 m, 
applying a geographically weighted regression. Then, I fitted a species distribution model on both 
the original and downscaled bioclimate (‘topoclimate’), with a generalized linear mixed model. As 
response variable, I used presence-absence data for Trifolium repens (n=7683), which had been 
collected by the Mountain Invasion Research Network in 11 mountain regions worldwide. 
Furthermore, I fitted three species distribution models, based on ‘topoclimate’, ‘topoclimate and 
roads’ and ‘roads’. I then evaluated all models with the area under the receiver operating 
characteristic curve, focusing especially on sensitivity values. For validation, I used an independent 
dataset from Victoria, Australia. 
 
Both downscaling the bioclimate and including roads improved the species distribution models, with 
roads being an even more robust predictor than bioclimate. However, the overall predictive power of 
all models was very low, with moderate sensitivity values.  
 
This limited predictive power on a regional level (in Victoria, Australia) can be partly explained by 
general issues regarding invasive species but also by local peculiarities of the validation area. More 
local information would be needed in order to make accurate predictions for regional management. 
However, the global importance of mountain roads as pathways for plant invasions was confirmed by 
my study, which emphasizes the need for adequate roadside management. Generally, management 
should focus on both preventive measures as well as controlling further spread, especially in high 
conservation value areas.  
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2 Popular scientific summary 

Invasive species have gained public recognition worldwide due to the severe problems they can 
cause, e.g. outcompeting native species or triggering allergic reactions in humans. Ecologically, 
invasive species are seen as one of the main reasons for the global loss of biodiversity and ecosystem 
services. Financial losses due to invasive species are estimated to equal roughly 5 % of the world 
economy. In the future, such biological invasions and the problems associated with them are 
expected to increase even more. 
 
In mountains however, the situation is not that bad. There are not many invasives yet due to the 
harsh climate and little human influence. Moreover, the prevention of future invasions is relatively 
easy, as introduction pathways are limited. Still, the problem should not be underestimated, because 
the invasion risk in mountains is constantly increasing (due to climate change and intensified land 
use) and invasive species are very hard to control once they have spread in these remote and rugged 
areas.  
 
In my work, I focused only on plants (not on animals) and my main goal was to improve predictions 
of plant invasions in mountains. As study species, I chose White Clover (Trifolium repens), a 
widespread mountain invader. Usually, predictions of where a plant could potentially grow are only 
based on the climate (with a resolution of 1x1 km). In order to refine these predictions, I first 
downscaled the resolution of the climatic data to 50x50 m. Secondly, I included roads in the 
predictions as they are known to be the most important introduction pathway for plants in 
mountains. Both approaches improved the predictions indeed – however, I was not able to predict 
accurately the current species’ distribution in Victoria, Australia. One of the main reasons for this 
was probably that I made predictions on a global scale, which of course can only give rough 
estimates. For accurate predictions on a local level, one would also have to take into account the 
particular local conditions, e.g. land use and current vegetation. Still, my results underlined the 
importance of roads for plant invasions in mountains – therefore it is crucial to monitor and manage 
roadsides adequately.  
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3 Introduction 

Non-native species  
Over the last decades, invasive species have gained public and academic recognition worldwide, 
mainly due to their severe economic and ecological impacts (Millennium Ecosystem Assessment et 
al. 2005; Lockwood et al. 2013). Global financial losses due to invasive species are estimated to equal 
roughly 5 % of the world economy; examples of such economic impacts being invasive pests in 
agriculture or infectious human diseases (Pimentel et al. 2001). Furthermore, invasive species are 
seen as one of the main reasons for the loss of global biodiversity and ecosystem services 
(Millennium Ecosystem Assessment et al. 2005). Ecological impacts range from genetic level (e.g. 
hybridization and introgression) over individuals (e.g. behavior adaptation to new predator), 
populations (e.g. changes in structure and abundance due to new competitor), communities (e.g. 
introduced herbivores altering the base of trophic web) to ecosystems (e.g. nitrogen-fixing plants 
changing soil properties) and finally the global level (e.g. global homogenization) (Lockwood et al. 
2013).  
 
Range expansion of species is a natural process and 
usually happens over long, geological time frames, 
whereas if it is human-aided, dispersal rates are 
orders of magnitude higher and geographic patterns 
change substantially (Lockwood et al. 2013; Petitpierre 
2013). International sea, land and air connections for 
trade and travel establish new pathways for non-native 
species, helping them to overcome natural barriers and 
reach novel areas (Hulme 2009; Lockwood et al. 2013). 
Moreover, the rate of dispersal is much faster and it 
differs from natural dispersal in that individuals are 
usually released repeatedly and they stem from 
multiple source populations (Lockwood et al. 2013). 
Human-aided transport of species can happen either 
intentionally (e.g. as food, biofuel, game, biocontrol) or 
unintentionally (e.g. through ship ballast water, 
horticulture, roads) (Lockwood et al. 2013). Most of the 
human-transported species die during transportation 
or once they are released outside their native 
geographic range, but about 10 % of the species 
manage to survive, out of which 10 % are able to establish a population in their new environment 
(Williamson & Fitter 1996). Out of these established non-native species, again roughly 10 % become 
invasive (Williamson & Fitter 1996).  
 
Even though only a small fraction of all transported species become invasive, their impact can be 
severe, as stated above. And in the future, biological invasions are expected to increase even more 
(Millennium Ecosystem Assessment et al. 2005; Bradley et al. 2010), with complex reactions to 
different aspects of global change. Rising temperature and altered precipitation patterns could both 
facilitate or hinder plant invasions, whereas rising carbon dioxide and nitrogen deposition generally 
favor invasive plants (Bradley et al. 2010). Intensified land use and increasing global commerce will 
accelerate invasions as the speed and scale of human movement continues to expand (Pysek et al. 

Species are considered non-native in areas outside 
their natural geographical range and dispersal 
potential  (synonyms: alien, exotic, non-indigenous) 
(International Union for Conservation of Nature 
(IUCN) 2000; Richardson et al. 2000; Lockwood et 
al. 2013). There is a grey area of space and time 
between the differentiation of native and non-native 
species (Lockwood et al. 2013): on a spatial scale 
species can be non-native to continents, islands, 
bio- or ecoregions, states or counties and the 
temporal scale varies depending on the historical 
human activity in that area (e.g. European 
colonization of Australia) (Richardson et al. 2000).  
 
Invasive species are non-native species that either 
spread massively (e.g. due to lack of predators and 
competitors) or have an economic or ecological 
impact (Richardson et al. 2000; Daehler 2001; 
Lockwood et al. 2013). Invasion should be seen as a 
process, not a classification of a species (Lockwood 
et al. 2013).  
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2010; Lockwood et al. 2013). Overall, global change favors invasive over native species, because most 
invasive species have traits that are well-suited to change and they are often more successful with 
higher resource availability (Bradley et al. 2010). Biological invasions are therefore both cause and 
consequence of ecosystem changes (Lockwood et al. 2013; Petitpierre 2013). Furthermore, an 
‘invasion debt’ is expected to add to future invasions – meaning that non-native populations often 
stay very small, sometimes undetected, for a long time before they suddenly spread (Ficetola et al. 
2007; Lockwood et al. 2013). 
 
Non-native plants in mountains  

In mountain regions, there are relatively few plant invasions up to now, mainly due to climatic 
restrictions and low human influence (Pauchard et al. 2009; Alexander et al. 2011; Kueffer 2011; 
McDougall et al. 2011; Pyšek et al. 2011; Marini et al. 2012; Otto et al. 2014; Byun et al. 2015; 
González-Moreno et al. 2015; Lembrechts et al. 2016). The process called ‘directional ecological 
filtering’ describes the progressive dropping out of non-native species with elevation, whereby the 
species reaching highest elevations are the ones having the broadest climatic tolerances – and not 
specialized stress-tolerant species, like it is the case for native species (Alexander et al. 2011). This 
suggests that non-native plants first arrive at low elevations, where anthropogenic propagule 
pressure is highest, and spread upwards from there – meaning that invasion resistance in mountains 
is not mainly determined by extreme climatic conditions, but instead by the pathways of introduction 
(Alexander et al. 2011).  
 
Despite the currently low invasion success in mountains, 
the invasion risk is increasing due to climate change 
and intensified land use (Pauchard et al. 2009, 2016; 
Kueffer 2011; McDougall et al. 2011; Petitpierre 2013). 
With climate change, alpine areas are expected to 
experience above average warming (Walther et al. 2005). 
And with increasing temperatures, both native and non-
native species distribution ranges can expand to higher 
latitudes and elevations (Lenoir et al. 2008; Pauchard et al. 2016). In addition to climate change, 
intensified land use with increasing tourism accelerates the invasion process as it enhances 
disturbance, connectivity and propagule pressure (Kueffer 2011; Pyšek et al. 2011; Pauchard et al. 
2016). This is even more concerning considering the aspect that mountain plant communities have a 
lower invasion resistance than lowland communities (Lembrechts et al. 2014).  
 
Plant invasions in mountains are especially problematic because these regions generally have a high 
conservation value and they provide important ecosystem services like fresh water supply (Pauchard 
et al. 2009). Since mountains are relatively isolated ecosystems, they are also rich in endemic species 
and centers of significant biodiversity (International Union for Conservation of Nature (IUCN) 2000; 
Alexander et al. 2011). This evolutionary isolation means that native species are especially vulnerable 
to the introduction of novel species (International Union for Conservation of Nature (IUCN) 2000). 
Furthermore, plant invasions in mountainous areas are extremely hard to manage due to the rugged 
terrain and inaccessibility (McDougall et al. 2011).  
 
Over the last decades, a general upward trend of species ranges has already been documented 
(Walther et al. 2005; Lenoir et al. 2008, 2010; Pauchard et al. 2009, 2016; Pyšek et al. 2011; 
Lembrechts et al. 2016). Numbers about the current situation of plant invasions in mountains vary 
slightly. According to (Pauchard et al. 2009), over 1000 non-native plant species have become 

Propagule pressure is defined by the number of 
released individuals (i.e. propagule size), their 
characteristics like health, age and phenotypes 
(i.e. propagule composition) and the amount of 
release events (i.e. propagule number) (Lockwood 
et al. 2013). 
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established worldwide in high elevations above the treeline. Kueffer (2011) mentions 1500 non-
native plant species in mountain areas worldwide and highlights woody plants as especially 
problematic (because they change the vegetation structure, fire regimes and chemical properties of 
the soil), as well as introduced garden plants that are pre-adapted to mountain climate (these 
specialists pose a greater threat than the currently common generalists). Invasions of such 
horticultural mountain specialists are expected to rise due to an increase in (transcontinental) 
tourism, recreation and residential habitation (Pauchard et al. 2009; Kueffer et al. 2014). Furthermore, 
nitrogen fixing plants have great invasive potential in cold climates (Hiltbrunner et al. 2014). 
 
Because of this high risk, prevention of plant invasions is crucial in mountain areas (McDougall et 
al. 2011). The implementation of prevention measures is fortunately also relatively feasible in 
mountains due to the limited number of pathways, which makes prevention a realistic strategy 
(Pauchard et al. 2009, 2016; McDougall et al. 2011).  
 
Non-native plants along mountain roads  
Roads are seen as the main pathway for non-native plants entering alpine areas (Alexander et al. 
2009; McDougall et al. 2011; Lembrechts et al. 2016). It is generally known that vehicles 
significantly increase the dispersal of plants and they are a major vector for the ongoing spread of 
non-native plants (Gelbard & Belnap 2003; Ansong & Pickering 2013; Lockwood et al. 2013; Otto et 
al. 2014). Especially long-distance dispersal is enhanced by vehicles, as seeds can stay attached to 
them for hundreds of kilometers (Von Der Lippe & Kowarik 2007; Taylor et al. 2012).  
 
Mountain roadsides facilitate invasions because of enhanced propagule pressure and improved 
abiotic conditions like altered microclimate, hydrology, soil ecology and nutrient content (especially 
important in nutrient poor mountain ecosystems), moreover they are disturbed areas with less 
competition (Forman & Alexander 1998; Müllerová et al. 2011; Lembrechts et al. 2016).  
 
Non-native plant species are observed to have higher elevational ranges along roadsides, which 
means that roadsides can serve as corridors for plant migration (Lembrechts et al. 2016). And 
because mountain roads pass through steep climatic and environmental gradients over a short 
distance (Pauchard et al. 2009; McDougall et al. 2011), they play an outstanding role in helping non-
native plants to cross natural barriers and accelerate climate change induced range shifts 
(Lembrechts et al. 2016). In contrast to this vertical movement along roadsides, horizontal spreading 

away from the roadsides into the natural vegetation has been limited so far (Leung et al. 2009; 
Pollnac et al. 2012; Seipel et al. 2012; Lembrechts et al. 2014; Otto et al. 2014; Pollnac & Rew 2014). 
Therefore, roadsides can serve as an important early detection system where range shifts become 
visible first (Lembrechts et al. 2016). In order to react in time and prevent mountain invasions, it is 
helpful to refine predictions of future invasions (Thuiller et al. 2005b; Jiménez-Valverde et al. 2011; 
Petitpierre 2013), e.g. by including roads in the computations (González-Moreno et al. 2015; 
Lembrechts et al. 2016). 
 
Current research and aim of my work 

Biological invasions are usually predicted using species distribution models (SDMs), which aim at 
identifying places that are suitable for the survival of populations (Rödder et al. 2009; Soberón & 
Nakamura 2009). SDMs can be created by relating known species distribution data (presence, 
presence-absence or abundance data) with information about the environmental conditions at these 
locations (Guisan & Thuiller 2005; Elith & Leathwick 2009; Jiménez-Valverde et al. 2011). Based on 
this information, the species ecological niche can be characterized and then projected into geographic 
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space, resulting in a map showing the species potential distribution (Rödder et al. 2009). There are 
different types of SDMs, depending e.g. on data availability, purpose and scale of the study. The most 
common strategy is to work with a set of up to 19 classical bioclimatic variables at 30´´ resolution 
(ca. 1x1 km at the equator) or a coarser resolution (Hijmans et al. 2005; Warren et al. 2008; Sears et 
al. 2011; Slavich et al. 2014; González-Moreno et al. 2015) and widely available presence-only data 
as response variable (Soberón & Peterson, A. Townsend 2005; Elith & Leathwick 2009; González-
Moreno et al. 2015). 
 
In my case, I will downscale all explanatory variables to a resolution of 50x50 m and test if this finer 
resolution allows a better prediction of the species distribution. First, for plants as sessile organisms 
a finer resolution usually yields more accurate predictions (Guisan & Thuiller 2005). Second, factors 
influencing the distribution of species are scale dependent: while on a global scale macroclimate is a 
main driver (i.e. original bioclimatic variables), on a regional level topography and fine-scale 
variations in climate gain importance (i.e. downscaled bioclimatic variables) (Elith & Leathwick 2009; 
Illán et al. 2010; Slavich et al. 2014). Third, the terrain matters: while macroclimatic data might be 
sufficient in flat terrain, in mountainous areas microclimate varies noticeably over short distances 
due to the rugged terrain (Gottfried et al. 1999; Guisan & Thuiller 2005; Holden et al. 2011; Sears et 
al. 2011; Opedal et al. 2015). Thus, there is need for fine-scale models to adequately predict species 
distributions in mountain regions (Illán et al. 2010; Scherrer & Körner 2011; Graae et al. 2012; 
Opedal et al. 2015) and it has been found that topoclimatic variables can significantly improve on 
macroclimatic variables for modeling species distributions (Slavich et al. 2014; Meineri & Hylander 
2016). Also plant migration paths in mountains are found to be mainly determined by relief and 
surface texture (Gottfried et al. 1999; Opedal et al. 2015). Therefore it might be helpful in my case to 
downscale the explanatory variables. I will furthermore test if including roads as a factor improves 
the SDM. Since both large- and local-scale factors affect invasions, they should both be integrated in 
the SDMs to improve predictions (Ficetola et al. 2007). More precisely, it is recommended to use 
environmental data in tandem with corridors of propagule pressure when modelling invasive species 
distribution (Peterson 2003; Thuiller et al. 2005b; Jiménez-Valverde et al. 2011). And as explained 
above, it is generally known that roads have a strong influence on the distribution of non-native 
species in mountains. The dataset I will use includes presence- and absence-data.  
 
With this approach, I am aiming to refine the distribution predictions for invasive plants in 
mountains. In particular, I want to answer the questions: Does downscaling the climatic variables 
improve the SDM in my case? How does including the factor ‘distance to road’ change the SDM? 
And how can roadside management counteract plant invasions? I will conduct my study with the 
example of Trifolium repens L. (White Clover), family Fabaceae, in 11 selected mountain regions 
worldwide (see chapter 4.1.1). 
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4 Material and Methods 

4.1 Data collection 

4.1.1 Presence-absence-data for Trifolium repens (White Clover) 

MIREN dataset 

The plant data for my study was collected by the MIREN network (Mountain Invasion Research 
Network), www.mountaininvasions.org. MIREN is a worldwide collaboration of scientists in 
mountain regions that cover all major climatic zones and include island as well as continental 
systems (Kueffer et al. 2014). The aim of MIREN is to understand the effects of global change on 
plant invasions and plant biodiversity in mountainous areas, through standardized observational and 
experimental studies (Kueffer et al. 2014). 
 
The dataset I used is the result of an observational study which aimed at investigating global 
patterns of plant invasions into mountains in relation to elevation and distance to roads (McDougall 
et al. 2011; Kueffer et al. 2014). This study has been conducted in 11 MIREN regions, shown in 
Figure 1. In each region, 3 mountain roads were chosen that extended over broad elevation gradients 
(between 618-1715 elevational meters), in order to capture most of the environmental variation 
within each region. All roads were open to traffic, at least during parts of the year. The survey was 
first conducted in summer 2007 and repeated in summer 2012. A list of all 11 regions, and if required 
regional adaptations to the general procedure, can be found in Appendix I: Characteristics of the 11 
MIREN regions.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Map of the 11 MIREN regions. 

 

Along each road, 20 transects were evenly stratified by elevation, whereby the side of the road was 
chosen at random. Each transect was “T”-shaped and consisted of 3 plots, with Plot 1 being parallel 
to the road and Plot 2 and 3 perpendicular to it, stretching away from the center of Plot 1 (see 
Figure 2). Each plot measured 2 x 50 m, meaning that each transect reached 102 m away from the 
road. In the first survey in 2007, the plots were subdivided into smaller subplots of 2 x 10 m. Within 
the plots and subplots, the presence and absence of all vascular plants, both native and non-native, 
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were recorded. Minor deviations from this survey design occurred in some regions due to local 
practicalities. In total, the dataset currently contains 7683 data points. 
 

 
Figure 2: Schematic transect along mountain road.  

 
 

Trifolium repens (White Clover) 
In my study, I focused on Trifolium repens, which occurs in 10 of the 11 MIREN regions (all but the 
Canary Islands), in almost 10 % of all plots, with 757 presence points in total. It can be considered 
native in the Swiss Alps and non-native in all other regions, including the Northern Scandes 
(Lembrechts et al. 2014). T. repens is native to Europe and East Asia, but has also naturalized on the 
American continent, Australia and New Zealand and is one of the most widely distributed legumes in 
the world (Global Invasive Species Database (GISD) 2015).  
 
T. repens thrives best in temperate climates (Global Invasive Species Database (GISD) 2015) with 
an optimum growing temperature between 20-25 °C and an optimal annual rainfall of above 750 mm 
(Australian Government (Department of Health and Ageing) 2008; Food and Agriculture 
Organization of the United Nations (FAO) 2016). Summer droughts are limiting growth in warm 
climates (Lane et al. 2000), whereas in cold climates growth is restricted by cold-induced water stress 
(if root temperature is below 5 °C) (Food and Agriculture Organization of the United Nations (FAO) 
2016). In New Zealand, T. repens was found to be frost tolerant until -8 °C (Caradus 1995). 
Generally, a high degree of genetic variability and phenotypic plasticity allow T. repens to survive in 
highly variable environments (Lane et al. 2000). 
 
T. repens is a perennial forb that propagates sexually by seeds as well as vegetatively by stolons 
(Food and Agriculture Organization of the United Nations (FAO) 2016). It can also behave as an 
annual in warm climates or under moisture stress (Australian Government (Department of Health 
and Ageing) 2008). Ansong & Pickering (2013) analyzed 13 studies about non-native seed dispersal 
by cars and found T. repens to be one of the most common species transported by cars. Since T. repens 
exhibits low shade tolerance, it benefits from disturbance (Ansong & Pickering 2013), which makes it 
predestinated for invading roadsides. Moreover, it is often intentionally introduced to help reduce 
soil erosion due to its capability to colonize bare, shallow soil (Global Invasive Species Database 
(GISD) 2015). Its stoloniferous growth and phenotypic plasticity make it also highly suitable for 
grazing and mowing, thus it is widespread on pastures and meadows (Olsen et al. 2008; Food and 
Agriculture Organization of the United Nations (FAO) 2016). It is often sowed in pastures and can 
be dispersed by cattle, sheep and goats as seeds can remain viable for several days after being 
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ingested (Australian Government (Department of Health and Ageing) 2008). In general, species of 
European pastures, like T. repens, are considered to be the most widespread plant invaders in 
mountains and they were often already introduced during an early phase of livestock grazing 
(Kueffer 2011). 
 
T. repens can have an impact on invaded ecosystems by symbiotically fixing atmospheric nitrogen 
and thus increasing soil fertility (Nesheim & Boller 1991; Hiltbrunner et al. 2014; Food and 
Agriculture Organization of the United Nations (FAO) 2016). However, in mountains, the 
contribution of nitrogen derived from symbiotic sources is generally small compared to nitrogen 
derived from mineralization (Körner 2003). For T. repens in particular, Nesheim & Boller (1991) 
showed that the amount of fixed nitrogen per plant decreases with temperature and also the capacity 
to compete with other plants in cold climates is limited by its slower growth and nitrogen 
accumulation. Conversely, Hiltbrunner et al. (2014) found that the genera Trifolium shows high 
nitrogen fixation activities at high elevations and that alpine life conditions generally seem favorable 
for symbiotic nitrogen fixation. Also Thomas & Bowman (1998) stated that alpine Trifolium species 
can influence the abundance and growth of plant species growing near them, both in a facilitative or 
inhibitive way. Surely, any increase in soil nitrogen can alter plant communities, generally reducing 
biodiversity and facilitating invasions (Bradley et al. 2010; Lockwood et al. 2013). Cold biomes in 
particular show a high potential to be transformed by nitrogen fixing plants and they have only little 
capacity to retain nitrogen, which leads to increased nitrate leaching and nitrous oxide emissions 
(Hiltbrunner et al. 2014). Therefore, analogous to atmospheric nitrogen deposition, nitrogen fixing 
plant invasions should be seen as significant threat, especially in cold biomes (Hiltbrunner et al. 
2014). Another potential impact of T. repens is its ability to serve as a host for pests like the aphids 
Myzus cymbalariae, Aulacorthum solani and Rhopalosiphum padi that can affect endemic species, as it has 
been found on the Amsterdam Islands (Hullé et al. 2010). The impact of non-native T. repens in 
natural areas is generally considered moderate to high (Pickering & Hill 2007). Managing 
established populations of non-native T. repens requires a high level of effort – e.g. in Australia it is 
considered feasible to control vegetative regeneration, but not the seed bank (Pickering & Hill 2007). 
 
Independent Australian dataset for validation 

Independent presence-absence-data of T. repens was available on the ‘Atlas’ website, which is an 
Australian governmental database of flora and fauna records in New South Wales (New South Wales 
government 2016). The data can be downloaded as a point shapefile and it stems from various 
sources, including e.g. floristic surveys, Botanical Garden databases or reports from National Parks, 
that all follow the same survey guidelines. It is not a complete inventory of all species or locations, 
but it contains detailed distribution data for T. repens within the validation area (30721 km²) with 626 
presence and 5330 absence points. These data points were collected between 1972 and 2014 with 
varying spatial accuracy – data collected before the widespread use of a Global Positioning System 
(GPS) is limited to 100 m accuracy. 
 
 

4.1.2 Explanatory variables for species distribution models (SDMs) 

I selected the explanatory variables for the SDMs based on (1) comparable studies about species 
distribution modeling, (2) the physiology of T. repens and (3) data availability. Generally, it is 
recommended to focus on causality, i.e. the ecological basis, when selecting explanatory variables for 
SDMs (Araújo & Guisan 2006) and using not too complex relationships minimizes overfitting 
(Jiménez-Valverde et al. 2011). 
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WorldClim provides global bioclimatic data in a spatial resolution of 30´´ (ca. 1x1 km at the 
equator), based on the interpolation of temperature and precipitation recorded between 1950-2000 by 
globally distributed weather stations (Hijmans et al. 2005). Bioclimatic variables like ‘Maximum 
temperature of the warmest month’ are suitable for global SDMs, as they are independent of latitude 
and therefore worldwide comparable (Rödder & Lötters 2009). For the same reason, I did not take 
elevation into account: elevation reflects general altitude phenomena (e.g. atmospheric pressure, UV-
B radiation) as well as regional characteristics (e.g. precipitation, wind velocity) so the same 
elevation can have different physiological ‘meanings’ in different regions (Guisan & Zimmermann 
2000; Körner 2007; Rödder et al. 2009; Jiménez-Valverde et al. 2011). Concerning the bioclimatic 
variables, I chose a mixture of trends (annual values) and extremes (minimum/maximum values) that 
were found to be non-collinear and have been used in comparable studies, see Appendix II: 
Explanatory variables used in other studies (Guisan & Theurillat 2000; Thuiller et al. 2005a, b; 
Ficetola et al. 2007; Broennimann et al. 2012; Capinha et al. 2012; Petitpierre 2013; Tingley et al. 
2014; González-Moreno et al. 2015). Out of these variables, I selected the ones that were likely to 
influence the physiology of T. repens the most (see chapter 4.1.1 and Table 1): Annual mean 
temperature (TAnnual), Maximum temperature of the warmest month (TWarm), Minimum 
temperature of the coldest month (TCold), Annual precipitation (PAnnual), Precipitation of the 
warmest quarter (PWarm) and Precipitation of the coldest quarter (PCold). Furthermore, I included 
the variables Aridity Index (AI) and Positive Degree Days (PDD). The Aridity Index is derived by 
dividing mean annual precipitation by mean annual potential evapotranspiration, so it indicates 
actual moisture availability for the potential growth of vegetation (Consortium for Spatial 
Information (CGIAR-CSI) 2016). PDD are the sum of positive degree days throughout one year and 
were computed by multiplying each monthly mean temperature (negative values were replaced with 
0 °C) with the number of days per month and in the end adding up all monthly values. PDD indicate 
actual temperature conditions for vegetation on the ground, since there are no freezing temperatures 
under snow cover, and they approximate the length of the growing season. Since all above 
mentioned variables were either directly provided by WorldClim or calculated based on this data, all 
files have the same resolution of 30´´. 
 
 
Table 1: Explanatory variables for modeling the distribution of Trifolium repens 

Variable Abbreviation Relevance for Trifolium repens * 

Annual mean temperature TAnnual thrives best in temperate climate 

Maximum temperature of 
the warmest month 

TWarm optimal growing temperature between 20-25 °C; 
summer droughts are limiting growth 

Minimum temperature of 

the coldest month 

TCold frost tolerant until -8 °C 

Annual precipitation PAnnual annual rainfall > 750 mm promotes growth 

Precipitation of the  

warmest quarter 

PWarm summer droughts limit growth 

Precipitation of the  

coldest quarter 

PCold snow cover attenuates cold temperatures on the 

ground (frost tolerance) 

Aridity Index AI indicates actual moisture availability (including 
potential evapotranspiration) for potential growth  

Positive degree days PDD indicates length of growing season as well as 

actual temperature conditions on the ground 
(under snow)  

Distance to closest road DistRoad better growing conditions and higher propagule 

pressure closer to roads 

* Full explanation and sources can be found in chapter 4.1.1. 
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In addition to bioclimatic variables, I included ‘distance to closest road’ (DistRoad) as a factor in a 
separate SDM to see which effect roads have on the distribution of T. repens. Based on the open 
access ‘gROADS’ data, which is available in the form of linear shapefiles (Socioeconomic Data and 
Applications Center (SEDAC) 2016), I created a raster file for the MIREN region ‘Australian Alps 
Victoria’ in ArcGIS 10.1 (ESRI), using the Euclidean distance tool. The resulting raster file had a 
spatial resolution of 50x50 m with cell values representing the distance to the closest road. 

 

4.1.3 Topographic variables for downscaling bioclimatic data 

I downscaled the bioclimatic raster files with the use of topographic variables (Guisan & Theurillat 
2000; Ninyerola et al. 2000; Guisan & Thuiller 2005; Slavich et al. 2014; Meineri & Hylander 2016). 
All topographic variables are based on the satellite-based Digital Elevation Model (DEM), which has 
a spatial resolution of 1´´ (ca. 50x50 m at the equator) and an accuracy of 20 m vertically and 30 m 
horizontally (U.S. Geological Survey (USGS) 2016). Based on the DEM (which gives direct 
information about ‘Elevation’), I derived in ArcGIS the variables ‘Slope’, ‘Aspect’ and ‘Solar 
Radiation’ using the correspondingly named tools. Aspect values are originally measured clockwise 
and range between 0° and 360° (lowest and highest value both mean northward) and flat areas are 
given the value -1. Thus, aspect values cannot be used directly for linear regression analysis and I 
separated them into ‘Northness’ (i.e. cos(aspect) with values close to +1 if the aspect is northward 
and close to -1 if the aspect is southward) and ‘Eastness’ (i.e. sin(aspect) with values close to +1 if the 
aspect is eastward, close to -1 if the aspect is westward). Solar Radiation was not calculated for the 
entire year, but only for the longest day of the year as an approximation for annual solar radiation, 
due to the computing intensity of these calculations. The cell values in the output raster represent 
the average incoming watt hours per square meter. In addition to the topographic variables, I 
calculated the ‘Distance to ocean’ using the Euclidean distance tool in GIS, based on globally 
available shoreline information (National Centers for Environmental Information - National Oceanic 
and Atmospheric Administration (NOAA) 2016), which resulted in a raster file with a spatial 
resolution of 50x50 m.  
 
 

4.2 Data analysis 

4.2.1 Outline 

I downscaled the bioclimatic data based on 
topographic variables on a regional level, for 5 
MIREN regions in total. Based on this downscaled 
bioclimatic data, I fitted a species distribution model 
(‘SDM downscaled’) for T. repens. In addition, I fitted 
an analogous ‘SDM original’ based on the original 
bioclimatic data. I then compared these two SDMs, 
using an independent dataset from Australia as well 
as the training data, in order to assess the effect of 
downscaling the bioclimatic variables. Figure 3 
shows the workflow diagram of this procedure and a 
more detailed description of the analysis can be 
found in chapter 4.2.2.  

Figure 3: Workflow diagram of downscaling 

bioclimatic data. 
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I then added the bioclimatic data from the 6 
MIREN regions that have not been 
downscaled due to time limitations (5 
downscaled plus 6 not downscaled) and 
created a global model, based on only 
bioclimatic variables (‘SDM I’). In a 
separate model, I added distance to the 
closest road as an extra factor (‘SDM II’). 
And finally, I fitted a model only based on 
distance to the closest road (‘SDM III’). 
Again, I compared the model performance 
and predictive power of the three SDMs, 
using independent data from Australia and the training data, to see the effect of including roads in 
the SDMs. A workflow diagram of this analysis can be seen in Figure 4 and the single steps are 
described in more detail in chapter 4.2.3.    
 

4.2.2 Downscaling bioclimatic data  

I downscaled the bioclimatic variables for 5 MIREN regions: Northern Scandes, Canary Islands, 
Oregon Rocky Mountains, Australian Alps New South Wales and Australian Alps Victoria. I chose 
the regions based on their location, so that both island and continental systems in different 
hemispheres were represented. In each of the 5 regions, I downscaled each of the 8 bioclimatic 
variables (TAnnual, TWarm, TCold, PAnnual, PWarm, PCold, AI, PDD; see chapter 4.1.2) based on 
6 topographic variables (Elevation, Slope, Northness, Eastness, Solar Radiation, Distance to Ocean; 
see chapter 4.1.3). It was not feasible to process all 11 MIREN regions within the timeframe of my 
thesis, because the downscaling calculations are very computationally intensive. 
 
For each region to be downscaled, I created a point shapefile in ArcGIS with a grid size of 100 m. 
At the location of each point in this grid, I extracted the values of the 6 topographic raster files as 
well as the 8 bioclimatic raster files that I intended to downscale.  
 
Based on this point shapefile, I ran an Ordinary Least Squares Regression (OLS) for each 
bioclimatic variable as response variable and the 6 above mentioned topographic variables as 
explanatory variables. The OLS serves as an intermediate step for the following more detailed 
Geographically Weighted Regression, which builds on the OLS-model. The OLS was computed in 
ArcGIS using the tool ‘Exploratory regression’. If several variables were collinear (Variance 
Inflation Factor >7.5, shown in the output table of the OLS results), I selected only one of them to 
avoid multicollinearity effects (ESRI ArcGIS 2012c). The tool then performed a stepwise backward 
model selection and in the end, I chose the model with the lowest corrected Akaike Information 
Criterion (AIC) as regional model (ESRI ArcGIS 2012c).  
 
Based on the explanatory variables of this regional model, I performed a Geographically Weighted 

Regression (GWR) (Li et al. 2010; ESRI ArcGIS 2012a; Su et al. 2012; Wang et al. 2012). A GWR 
takes into account the effects of geographic heterogeneity (i.e. non-stationarity), meaning that 
explanatory variables can have different effects in different parts of the region, e.g. on a mountain 
compared to a valley. This is done by fitting a regression model for every point in the shapefile. 
These local models are based on values that lie within a specified bandwidth around each point. I 

Figure 4: Workflow diagram of including roads in the 

SDM. 
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performed the GWR in ArcGIS using the tool ‘Geographically Weighted Regression’ with a fixed 
kernel type and a bandwidth of 500 (defines the extent of the kernel). Usually, the bandwidth should 
be calibrated separately for each GWR, but since these calculations are very computing intense and 
therefore not feasible within the timeframe of my work, I used the same bandwidth for all GWRs. 
After applying the GWR, I compared the corrected AIC values of both the OLS and GWR results to 
assess the effect of moving from a regional model (OLS) to a local model (GWR) (ESRI ArcGIS 
2012b). 
 
Based on these predicted values of the GWR that were calculated for each point of the 100 m point 
grid, I performed an interpolation to estimate the values between these points, thereby creating a 
continuous raster file that represents the downscaled bioclimatic data, i.e. the topoclimate. For 
interpolating, I used the Inverse Distance Weighted (IDW) method and defined 50 m as spatial 
resolution for the output raster files. It was not feasible to work with a 50 m point grid from the 
beginning due to the increased calculation time. The entire process of downscaling the bioclimatic 
variables is exemplarily shown in Figure 5.  
 

 
 
 
 
 
 
 
 
 
 

  

original bioclimatic data  point grid for OLS and GWR IWR: downscaled bioclimatic data 

Figure 5: Illustration of downscaling bioclimatic variables. 

 
In order to assess the effect of downscaling the bioclimatic variables, I applied the same species 
distribution model to both the downscaled and original bioclimatic data (5 MIREN regions). I 
compared the AIC values as well as the areas under the curve (AUC) of the receiver operating 
characteristic (ROC) (see chapter 4.2.3). The AUC was tested against independent data (Australian 
dataset, see chapter 4.1.1) as well as the training data (MIREN data for the 5 downscaled regions, 
3032 absence- and 388 presence-points for T. repens).  
 

4.2.3 Species distribution models (SDMs) for Trifolium repens 

Specifying niche and distribution 

A species’ ecological niche as well as the relation between niche and geographic distribution can be 
defined in many different ways (Pulliam 2000; Araújo & Guisan 2006; Soberón & Nakamura 2009). 
Generally, a species’ niche represents the whole set of environmental conditions that allow a 
population to exist indefinitely (Hutchinson 1957). In this framework, the fundamental niche (FN) 
of a species is defined as the combination of abiotic factors, such as climate, in which the species can 
theoretically maintain a positive growth rate. The FN corresponds to the geographical space where 
these favorable conditions are present, i.e. this space can potentially be occupied by the species. 
However, the FN is only a simplification of the actual conditions needed for a species to survive in a 
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given area. In fact, biotic interactions (e.g. competition, predation and facilitation) strongly influence 
the subset of the FN that a species can really occupy, which is called realized niche (RN). Moreover, 
while favorable abiotic and biotic conditions govern the potential distribution of a species, its actual 
areas of presence are also influenced by range dynamics, e.g. individuals might occur in unfavorable 
conditions due to source-sink dynamics or time-delayed extinction, and they might not occur in 
favorable condition due to dispersal limitations (Pulliam 2000; Guisan & Thuiller 2005; Soberón & 
Nakamura 2009; Jiménez-Valverde et al. 2011; Schurr et al. 2012). Especially non-native species have 
mostly not yet reached their full potential distribution in invaded regions (Elith & Leathwick 2009; 
Jiménez-Valverde et al. 2011; Lockwood et al. 2013). 
 
A species’ niche can be estimated either by a mechanistic (i.e. direct measurement of responses of 
individuals to different variables) or correlative (i.e. relating spatial data of species occurrences with 
ecological variables) approach (Soberón & Peterson, A. Townsend 2005). This niche information can 
then be extrapolated into geographic space to model the species’ spatial distribution (Soberón & 
Nakamura 2009). SDMs can be created for descriptive (i.e. testing hypotheses) or predictive (i.e. 
temporal or spatial projections) purposes (Araújo & Guisan 2006; Elith & Leathwick 2009; Mouquet 
et al. 2015). In my case, I used a correlative approach and aimed at testing for the effect of roads on 
invasion probability as well as at predicting the potential areas of invasion by T. repens. Since I 
combined environmental factors (i.e. bioclimate) with a spatially explicit factor (i.e. distance to roads), 
the outcome can be described as the ‘potential geographic distribution’ of T. repens (Araújo & Guisan 
2006).  
 
Modelling method  

As recommended when modelling the niche of invasive species (Jiménez-Valverde et al. 2011; 
Capinha et al. 2012; Petitpierre 2013), I used (1) distributional information from native and non-
native regions (see chapter 4.1.1), (2) explanatory variables that are linked to the physiological 
requirements and limits of T. repens (see chapter 4.1.2) and (3) modelling procedures that avoid 
overfitting to the training data. SDMs can be modelled with different techniques, e.g. using 
geometrical, machine learning or statistical algorithms (Jiménez-Valverde et al. 2011). I used a 
regression model under R, version 3.2.5 (R Core Team 2016). Since the response variable of this 
model is recorded as presence-absence-data, i.e. binary data, and the model contains random effects, I 
applied a Generalized Linear Mixed Model (GLMM) to analyze the data (family: binomial). The 
random effects of the transects are nested within roads, which are nested themselves within regions, 
and the different years of the two surveys are added as additional random effect in a crossed order, 
i.e. (1|region/road/transect)+(1|year). The models were fitted with the function ‘glmer’ from the 
package ‘lme4’ (Bates et al. 2015). 
 
Explanatory variables and model selection 

I first computed a model based on bioclimatic explanatory variables only (SDM I): TAnnual, 
TWarm, TCold, PAnnual, PWarm, PCold, AI and PDD. In a second model (SDM II), I added 
distance to the closest road (DistRoad) in addition to the bioclimatic variables, as described in 
chapter 4.1.2. A third model (SDM III) was based on distance to the closest road as the only 
explanatory variable. Since the variables of these three models are on very different scales, I scaled 
all variables by subtracting their mean and dividing them by their standard deviation, using the 
function ‘scale’ in R. This brings the values to a mean of 0 and the standard deviation close to 1. 
Additionally, DistRoad was log scaled to account for the rapid decrease of T. repens within the first 
meters away from the road and the much lower decrease further away from it (see Figure 8). Then, I 
visually explored if the bioclimatic variables were collinear (see Appendix III: Collinearity between 
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bioclimatic variables) and if so, I selected the variables that are most proximal to the ecology of T. 

repens (Petitpierre 2013). Removing collinear variables is recommended, as it simplifies the analysis 
and helps to avoid overfitting (Guisan & Thuiller 2005; Jiménez-Valverde et al. 2011; Petitpierre 
2013). The bioclimatic variables entering the full models were TWarm, TCold, PWarm, PCold, AI 
and PDD. Interactions between DistRoad and the bioclimatic variables were also tested. In both 
bioclimatic-based SDMs, I added quadratic terms for each of the bioclimatic variables. Since the 
MIREN regions are located in a wide variety of climate zones, T. repens could have range limits at 
both ends of the climatic gradients and therefore the relationships might not be linear (Seipel et al. 
2012; Lembrechts et al. 2016). Based on these full models, I manually deleted one by one the 
variables with the highest p-value in order to find the model with the best fit, based on the lowest 
AIC value (Elith & Leathwick 2009). 

 

Model evaluation 
Based on the final SDMs, I created prediction maps for the MIREN region Australian Alps Victoria 
(30721 km²). This was done in R, using the package ‘raster’ (Hijmans 2015). I first scaled the 
explanatory variables’ raster files with the same values that were used in the SDMs, in order to make 
the coefficients of the SDMs and the raster files comparable. Then I applied the SDMs to these raster 
files using the function ‘predict’, which resulted in a map for each SDM that showed the probability 
(values between 0 and 1) of T. repens’ presence, see Appendix V: Prediction maps SDM I, II and III. 
These predictions could then be tested against real presence-absence data of an independent dataset 
(see chapter 4.1.1). For testing the predictive performance of SDMs, it is recommended to use 
independent data (i.e. validation) instead of resampling the original dataset (i.e. verification) 
(Guisan & Zimmermann 2000; Araújo & Guisan 2006; Elith & Leathwick 2009; Newbold et al. 2010; 
Mouquet et al. 2015).  
 
Model accuracy was measured in R with the area under the curve (AUC) of the receiver operating 
characteristic (ROC), using the function ‘performance’ from the package ‘ROCR’ (Sing et al. 2005). 
AUC is one of the most widely used accuracy measures in various disciplines, including ecology, and 
it shows the performance of a binary classifier, i.e. the ability of a model to discriminate between 
presences and absences (Liu et al. 2009; Newbold et al. 2010). The ROC plot shows the proportion of 
presence points correctly predicted as presence (i.e. true positive rate or sensitivity) against the 
proportion of absence points incorrectly predicted as presence (i.e. false positive rate or commission 
error) for all possible thresholds that can be used to divide presence from absence predictions 
(Newbold et al. 2010). These plots depict a curve and the area under this curve represents the 
accuracy rate (i.e. percentage of correct predictions). A value of 0.5 stands for the lowest predictive 
performance (equal to random guessing) and 1 means the highest predictive performance (predicting 
all presences and absences correctly) (Newbold et al. 2010). In addition to the AUC value, other 
measures can be taken into account for describing the predictive performance of SDMs (see Table 2). 
SDMs are generally susceptible to two types of errors: predicting suitable habitats as unsuitable 
(false negatives) and predicting unsuitable habitats as suitable (false positives) (Guisan et al. 2013).  
 
It is recommended to report sensitivity and specificity separately (Lobo et al. 2008). Sensitivity is 
the true positive rate (fraction of all presences that have been correctly predicted as presences) and 
specificity the true absence rate (fraction of all absences correctly predicted as absences) (Lobo et al. 
2008) and both measurements can range between 0 and 1. Especially regarding invasive species, this 
differentiation is important, since it is common to receive high commission errors (Guisan & Thuiller 
2005). This can even be seen as desirable if one is trying to predict the potential distribution of an 
invasive species: to predict its occurrence where it does not occur yet, but might do so in the future 
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(Jiménez-Valverde et al. 2011). So instead of focusing on correctly predicting absences, one should 
emphasize the correct prediction of presences (i.e. sensitivity) (Jiménez-Valverde et al. 2011).  
 
Table 2: Matrix of measures that describe the predictive performance of SDMs. 

 
 Prediction 

Observation present absent 

present 
true presences  

(true positive rate  
= sensitivity) 

omission error 
(false negative rate) 

absent 
commission error 

(false positive rate) 

true absences  
(true negative rate 

= specificity)   

 
I furthermore validated the SDMs with different temporal and spatial subsets of the independent 
dataset. First, I divided the independent dataset into data that has been collected before and after 
2006 (because the SDMs are based on data that has been collected since 2006), in order to see if the 
SDMs can predict better the distribution of T. repens of the same time period. Second, I split the 
independent data into three subsets depending on their distance from roads (up to 100 m, 500 m and 
1000 m away from roads) to see if the SDMs yield in better predictions on a similar spatial scale 
(MIREN data has been collected up to 100 m away from roads).  
 
In addition to validating the SDMs with independent data as described above (which gives 
information about how well the model is able to predict to new situations (transferability)), I tested 
the SDMs against the training data (indicates how well the model is fit in absolute values (how well 
it describes the training data)) and reported the AIC values (to show which model has the best fit 
relative to the others, penalizing for the amount of variables).  
 
 

5 Results 

5.1 Effect of downscaling bioclimatic data 

Downscaling the bioclimatic variables improved both the model performance and predictive power of 
the species distribution model. The AIC value decreased from 1779.3 (original bioclimatic data) to 
1744.4 (downscaled bioclimatic data). When testing the model predictions against independent data, 
the predictive power was overall low, but downscaling the bioclimate slightly improved it. The 
model based on downscaled bioclimatic data had more predictive power (AUC 0.60, mean sensitivity 
0.58) than the model based on original bioclimatic data (AUC 0.53, mean sensitivity 0.43). Whereas 
when testing the model predictions against training data, the predictive power was overall high, but 
no effect of downscaling the bioclimate could be noted. The model based on downscaled bioclimatic 
data had almost the same predictive power (AUC 0.91, mean sensitivity 0.71) like the model based on 
original bioclimatic data (AUC 0.91, mean sensitivity 0.72). The ROC plots are shown in Figure 6 
and prediction maps can be found in Appendix IV: Prediction maps original vs. downscaled 
bioclimatic data. 
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Figure 6: ROC plots showing the effect of downscaling the bioclimatic data. 

Independent data (Australia): 626 presence and 5330 absence points for T. repens 
Training data (5 MIREN regions): 388 presence and 3032 absence points for T. repens 

 

5.2 Effect of including roads in the SDM  

Including roads in the SDMs improved the model performance and especially the predictive power, 
being an even more accurate predictor than climate. The final explanatory variables in the first 
model SDM I were TCold, TCold², PCold, PCold², PDD and PDD². In the second model SDM II, 
the final bioclimatic variables were the same, plus DistRoad. Interactions between DistRoad and the 
bioclimatic variables proved to be not significant – perhaps it was not possible to detect them due to 
the different scales: DistRoad was measured over a distance of 100 m, which means that it spanned 
across only 1-3 bioclimatic raster tiles, which had a resolution of ca. 1 x 1 km (original data) 
respective 50 x 50 m (downscaled data). Comparing the AIC values for the three species distribution 
models, SDM II showed the lowest value (AIC 3059.4), followed by SDM III (AIC 3129.1) and SDM 
I (AIC 3399.7). When validating the models against the independent dataset, the predictive power 
was generally low with SDM III having the highest values (AUC 0.56, mean sensitivity 0.75), 
followed by SDM II (AUC 0.52, mean sensitivity 0.53) and SDM I (AUC 0.47, mean sensitivity 0.48). 
When validating the models against training data, the respective values increased a lot in general but 
did not differ much between the models. SDM II showed the highest values (AUC 0.97, mean 
sensitivity 0.92), followed by SDM III (AUC 0.97, mean sensitivity 0.85) and SDM I (AUC 0.95, 
mean sensitivity 0.83). The prediction maps are shown in Appendix V: Prediction maps SDM I, II 
and III and the ROC plots can be seen in Figure 7. 



  18 

  

  

  
Figure 7: ROC plots showing the effect of including roads in the SDMs. 

Independent data (Australia): 626 presence and 5330 absence points for T. repens 
Training data (all MIREN regions): 757 presence and 6926 absence points for T. repens 

 
 
Dividing the independent dataset into different time periods, it could be seen that all SDMs predicted 
the current distribution (since 2006) slightly better than the distribution before 2006. For SDM I the 
AUC value increased from 0.46 to 0.51 (mean sensitivity from 0.47 to 0.52), for SDM II from 0.51 to 
0.55 (mean sensitivity from 0.52 to 0.56) and for SDM III from 0.55 to o.58 (mean sensitivity 
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decreased from 0.74 to 0.70). Dividing the independent data into different distances from the road 
and testing against SDM II and III (SDM I does not include roads), no clear pattern could be seen. 
SDM II predicted the distribution up to 500 m and 1000 m slightly better (both AUC 0.45, mean 
sensitivity 0.45 resp. 0.47) than the distribution within 100 m away from roads (AUC 0.44, mean 
sensitivity 0.48). SDM III on the other hand showed slightly higher predictive power for the areas 
up to 100 m and 500 m away from roads (both AUC 0.51, mean sensitivity 0.70 resp. 0.67) than for 
1000 m distance (AUC 0.48, mean sensitivity 0.70). 
 
 

6 Discussion 

6.1 Interpretation of modeling results 

6.1.1 Brief discussion of results 

Modeling results provided evidence that downscaling bioclimatic variables to a finer resolution 
improved the prediction of T. repens presence. Therefore, downscaling bioclimatic data can be 
recommended for regions with heterogeneous topography, like the MIREN regions. Moreover, it 
can reduce common mismatches between the resolution at which species data is being collected and 
the one at which environmental predictor variables are available (Guisan & Thuiller 2005). The 
bioclimatic and topographic data used for the downscaling process is free of charge, but computing 
intensity and duration of the calculations (especially for calculating solar radiation and bandwidth for 
the GWR) might limit widespread implementation in practice. It is currently rarely applied (at least 
over large areas), but ongoing research seems promising, also with regard to investigating micro-
refugia during climate change (Opedal et al. 2015; Meineri & Hylander 2016). As an alternative to the 
downscaling approach, which is already based on interpolated climatic data, actual field 
measurements would provide an even more accurate estimate of fine-scale climatic conditions, but 
also require much more effort (Opedal et al. 2015; Meineri & Hylander 2016).  
 
When comparing SDM I, II and III, it could be seen that AUC and sensitivity values were 
constantly very low when tested against independent data. This could mean that the models are 
overfitted or incomplete, T. repens has not filled its potential niche yet in the validation area 
(Australia) or the independent Australian dataset is inadequate for validation. Efforts were made to 
avoid overfitting, but missing variables are likely (see below). Moreover, T. repens is probably not yet 
in equilibrium in its non-native range, so it can be assumed that is has not yet filled its potential 
niche. Especially considering the fact that the SDMs were based on roadside-data, where elevational 
range shifts become visible first (Lembrechts et al. 2016), it seems logical that the Australian dataset, 
which consists mainly of observations far away from roadsides, has not reached the same climatic 
conditions yet. Furthermore, the Australian dataset is atypical in several ways which might limit its 
validation quality (see below).  
 
Including roads in the SDMs improved the model performance both when testing against training 
and independent data. For predicting independent data, SDM III showed even better results than 
SDM II. It indicates that for transferability to a new region, roads are even more accurate predictors 
than climate, maybe because climate is evenly favorable across the validation area or the climatic 
variables are not adequate here due to adapted T. repens varieties (see below). In regions with wide 
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climatic ranges and for the upper range limit on a global scale, climate is still expected to be of great 
importance though (Alexander et al. 2009; Pollnac & Rew 2014).  
 
Comparing different timeframes, all SDMs predicted better the independent data that was collected 
from 2006 onwards (during the same timeframe as the training data) than before 2006, which can be 
interpreted as an argument for considering residence time (see below). Sensitivity values of the two 
climate-based SDMs (SDM I and SDM II) were higher for the current data (since 2006) than the 
older data (before 2006) but for SDM III it was the other way around. This could indicate that in the 
validation area (Australia), T. repens has spread further away from roads and filled more of its 
climatic niche over time. It has to be noted though that the SDMs were fitted based on several 
MIREN regions in which the residence times of T. repens differ. Also, the discrepancy could be 
caused by sampling issues of the Australian dataset, e.g. different survey methods or sampling areas 
during the different timeframes, but no such patterns could be detected through the available 
information.  
 
Assessing the predictive performance of the SDMs depending on different distances to the road, 
no remarkable discrepancies could be seen. The overall AUC values were very low (indicating no 
predictive power), but the sensitivity values for SDM III could be considered high enough (0.67-
0.70) to draw conclusions. Since they did not differ much between the different distances to the road, 
it would suggest that the model is able to extrapolate on further distances than the scale of data 
collection (100 m).  
 

6.1.2 Issues specific to my case 

The extrapolation from small scale surveys to much 
larger areas can generally be problematic as it 
influences model robustness and realism (Elith & 
Leathwick 2009). Dispersal events of more than 
100 m could not be detected by the survey method 
but can be expected to influence the species 
distribution on a regional level and over long time 
periods. Even though long-distance dispersal events 
usually happen only rarely, they play an outstanding 
role for the spread of invasive species (Lockwood et 
al. 2013). Long-distance dispersal in the direction of 
the roads is being captured by the SDMs (which is 
known to happen frequently) (Von Der Lippe & 
Kowarik 2007)), but not dispersal away from the 
roads into the natural vegetation. In this study, the extrapolation from 100 m to a regional level did 
not seem to reduce the predictive performance of the SDMs, as mentioned above. This assumption is 
also supported by the strong decline in T. repens occurrence with distance from road – in the MIREN 
surveys almost all T. repens individuals were found within 2 m next to the road, whereas at a 100 m 
distance from the road nearly no individuals were present (see Figure 8) – so it can be assumed that 
this clear trend also continues beyond 100 m away from the roads. It could furthermore indicate – if 
T. repens stays restricted to the very close proximity of roads – that a one-dimensional model, which 
considers only roads, would be sufficient. But this is not advisable because spread away from 
roadsides can be expected with time and satellite populations are ecologically important, even if they 
occur only rarely (Lockwood et al. 2013). The extrapolation of roadside data to entire regions is 

Figure 8: Trifolium repens decreases with 

distance to road.  
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supported by a study about building SDMs based on roadside samples, where Mccarthy et al. (2012) 
found that if the range of environmental gradients is represented in the roadside samples, they can be 
a valuable, unbiased data source for SDMs. Another issue in addition to the different scales is the 
mismatch between the resolution of the species survey and the bioclimatic predictors. The species 
data was collected only up to 100 m away from the road, whereas the bioclimatic variables had a 
resolution of circa 1 x 1 km (original data) respective 50 x 50 m (downscaled data). This means that 
several species points collected at different distances from the road are attributed with the same 
bioclimatic values, which is especially problematic for detecting interactions.   
 
Another group of potential issues is directly related to roads and roadsides. In the independent 
dataset from Australia, it can be seen that T. repens is abundant along some of the roads, whereas it 
does not occur at all along others (see Appendix V: Prediction maps SDM I, II and III). These 
differences can be caused by the amount, type and origin of traffic (determining the propagule 
pressure), by the management and material of roadsides (see chapter 6.2) or just by random dispersal 
events. Thus, the SDMs could be improved by differentiating the road network into subcategories, 
characterized by traffic and roadsides. The high sensitivity value of SDM III confirmed a good 
predictive performance of the model and at the same time, a lot of false positives (low specificity 
value) indicated high potential for T. repens to spread more along roadsides – which suggests that 
theoretically, there are still plenty of roadsides left to invade in the Australian validation area. This 
result supports the above mentioned issue of missing propagule pressure along certain roads (many 
suitable roadsides with no T. repens yet). Furthermore, it should be considered that roads are not the 
only pathways for T. repens in mountains, but also e.g. hiking trails and cattle routes (Bear et al. 2006; 
Australian Government (Department of Health and Ageing) 2008; Leung et al. 2009; Müllerová et al. 
2011; Ware et al. 2012). Even though roads can be seen as the major pathway, adding other types of 
pathways would probably improve the SDMs. Another issue regarding the roadsides is the fact that 
T. repens might occur there just because of constant propagule pressure and therefore represent sink-
populations without the ability to reproduce. This would violate the assumption of the niche-concept 
where a positive growth rate is assumed and bias the predictions to areas further away from roads. 
Moreover, T. repens occurrence might be more correlated to small-scale microclimatic conditions in 
roadsides and other local conditions like soil properties (for T. repens especially soil moisture) and 
low competition through disturbance (Lembrechts et al. 2016) rather than larger-scale bioclimate, so 
the bioclimatic values derived from T. repens occurrences along roadsides might not be precisely 
representative. In this study, I cannot disentangle the effects of propagule pressure and favorable 
growing conditions on the success of T. repens along roadsides. Plant invasions along roadsides can 
be differentiated into vertical spread (higher in elevation) and horizontal spread (away from 
roadsides). The upper range limit (establishment of a species) in alpine environments is mainly 
determined by climate, whereas the lower realized range as well as the spread away from roadsides 
(growth after establishment) seems to be influenced mainly by native plant communities (Araújo & 
Guisan 2006; Alexander et al. 2009; Pollnac & Rew 2014; Lembrechts et al. 2016). Also Roux et al. 
(2012) found that species altitudinal ranges were more accurately predicted when including the cover 
of dominant species than when using abiotic variables alone. The effect of the present vegetation 
changes though, as facilitation gains importance over competition in higher elevations (Lembrechts 
et al. 2015).  
 
Generally, regional variations of explanatory variables compared to a global model can be expected, 
e.g. certain climatic conditions may be biologically meaningful to a species in one region (actually 
restricting its geographical range) whereas other variables may have a weak or no impact (Rödder & 
Lötters 2009). This is especially true for T. repens as it has many genotypes and can adapt to a wide 
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range of soil and environmental conditions (Lane et al. 2000). For example in the Australian 
validation area Victoria, grass competition and summer moisture stress are seen as the main 
environmental constraints limiting the performance of T. repens (Lane et al. 2000). But existing 
vegetation was not considered in my models and PWarm (precipitation of the warmest quarter), 
which could have served as a proxy for summer moisture stress, did not prove to be significant on a 
global level and was therefore not part of the models either.  
 
In addition to such regular regional differences, the Australian dataset is atypical in several ways, 
which could explain the low predictive power of the SDMs in this region. First, T. repens has been 
introduced to Australia already in the late 18th century (Bear et al. 2006; Australian Government 
(Department of Health and Ageing) 2008) and this long residence time has allowed the species to 
adapt and spread. T. repens is considered a significant environmental weed in south eastern Australia, 
mostly because of its high adaptability – the current growing zone is estimated to be about 6 million 
ha with the potential to increase to at least 16 million ha (Australian Government (Department of 
Health and Ageing) 2008). It is found even in the alpine zone (but here, only on the verge of walking 
tracks) up to 2019 m and grows mostly in disturbed but also in natural areas (Bear et al. 2006; 
Pickering & Hill 2007). In the natural vegetation, T. repens is already so widespread that control is 
considered impracticable (McDougall et al. 2005). Especially along creeks and in mesic grasslands, it 
can form mats and outcompete native species (Godfree et al. 2006). Second, T. repens has been 
intentionally introduced in the Australian Alps on pastures as well as for soil stabilization on 
degraded grazing areas and ski resorts (since the 1950s) (McDougall et al. 2005; Australian 
Government (Department of Health and Ageing) 2008). Recolonization of these areas by native 
species has been slow and many places are still dominated by the introduced non-native species 
(McDougall et al. 2005). Moreover, T. repens has become common in natural vegetation throughout 
the Australian alps since then (McDougall et al. 2005). In other studies in the Snowy Mountains of 
Australia, adjacent to the validation area, T. repens was also found to be common in disturbed areas 
like road and trail verges, ski resorts and disturbed subalpine grasslands – occurrences in natural 
areas were mostly restricted to woodland and grassland sites at lower elevations (montane and 
subalpine) (Bear et al. 2006; Pickering & Hill 2007). Including information about (historical) land use 
in the SDMs is therefore expected to greatly improve the predictions, as it is also generally 
recommended on a regional level (Seipel et al. 2012). Third, breeding programs for T. repens in 
Australia resulted in special varieties that are better adapted to cold climates and especially to 
summer droughts (Lane et al. 2000; Australian Government (Department of Health and Ageing) 
2008). These adapted varieties in particular could explain the mismatch with the global bioclimatic 
SDMs (SDM I and SDM II).  
 

6.1.3 General issues when modeling invasive species 

In addition to the above mentioned issues which are specific for this study, there are some general 
problems with modeling the distribution of species (especially invasive species). First, SDMs only 
represent a snapshot view and invasive species are expected to be not yet in equilibrium with their 
environment in the invaded regions (Guisan & Thuiller 2005; Elith & Leathwick 2009; Rödder et al. 
2009; Soberón & Nakamura 2009; Jiménez-Valverde et al. 2011; Václavík & Meentemeyer 2012; 
Lockwood et al. 2013). Therefore, it would be important to consider factors related to range 
dynamics, e.g. residence time and dispersal rate (Wu et al. 2003; Soberón & Peterson, A. Townsend 
2005; Araújo & Guisan 2006; Brooker et al. 2007; Haider et al. 2010; Pyšek et al. 2011; Schurr et al. 
2012). Correlative SDMs do not account for such range dynamics though, therefore the estimated 
niche might be biased (Schurr et al. 2012). In my case, T. repens might be absent from suitable 
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environments due to dispersal limits (e.g. in areas further away from roads and on the Canary 
Islands) and present in unsuitable environments due to source-sink dynamics (along roads). Václavík 
& Meentemeyer (2012) found that SDMs calibrated at early stages of the invasion process are less 
accurate and tend to underestimate the potential distribution, whereas SDMs calibrated close to 
equilibrium are more accurate. Regarding plant invasions in mountains, residence time is sometimes 
correlated with the elevational limits of non-native species, because time is needed for either 
dispersal or genetic adaptation (see next paragraph) (Becker et al. 2005; Haider et al. 2010; Alexander 
et al. 2011; Pyšek et al. 2011). Also regarding the horizontal spread away from roads, non-native 
species tend to colonize disturbed habitats in the early stages of the invasion process and then 
expand to natural areas as the invasion unfolds (González-Moreno et al. 2015). Since T. repens is most 
likely not in equilibrium yet within the MIREN regions (non-native ranges), its full potential 
distribution is probably underestimated in my studies and the SDMs can only reflect general 
patterns but have limited predictive power. 
 
Second, it cannot be assumed that species keep their same niche in novel areas. Even though species 
niches usually evolve only slowly, this niche conservatism is doubtable when it comes to invasive 
species (Guisan & Zimmermann 2000; Araújo & Guisan 2006; Elith & Leathwick 2009; Rödder & 
Lötters 2009; González-Moreno et al. 2015). Novel abiotic and biotic conditions can change the 
realized niche, especially biotic interactions can either facilitate (for T. repens e.g. release from 
predators like grazing cattle) or reduce (for T. repens e.g. biotic resistance from native community 
like a shading shrub layer) invasions – moreover, also the fundamental niche of a species can shift in 
novel environments due to rapid evolution of species (Guisan & Thuiller 2005; Soberón & Nakamura 
2009; Jiménez-Valverde et al. 2011; Pyšek et al. 2011; Boyd 2012; Lockwood et al. 2013; Tingley et al. 
2014; González-Moreno et al. 2015). Especially species with high phenotypic plasticity, like T. repens, 
can adapt well to new environmental conditions (Haider et al. 2010; Seipel 2010; Jiménez-Valverde et 
al. 2011; González-Moreno et al. 2015). These uncertainties related to niche conservatism can result 
in both under- and overestimation of a species’ potential distribution. Some general trends have been 
found though. Often, invasive species are more widespread in non-native ranges than in their native 
range due to the lack of predators (Lockwood et al. 2013). Moreover, Tingley et al. (2014) found that 
within the native range, mainly biotic interactions are limiting, whereas in the invasive range species 
can expand to their climatic limits in the absence of limiting biotic interactions. And climatic niche 
shifts seem to be rare among terrestrial plant invaders (Petitpierre et al. 2012). When modeling the 
potential distribution of invasive species, it is generally recommended to include both the native 
range (where species is expected to be at distributional equilibrium) as well as non-native range 
(where novel biotic and abiotic conditions are represented) in the SDMs (Bradley et al. 2010; 
Jiménez-Valverde et al. 2011; Capinha et al. 2012), which has been done in this study. But still, 
underestimation of a species’ potential distribution when projected to novel areas remains a common 
problem (Guisan & Thuiller 2005; Jiménez-Valverde et al. 2011; Lockwood et al. 2013; González-
Moreno et al. 2015). This might be especially true in my case, because I included true-absence 
information in the SDMs, which can misrepresent suitable areas (Jiménez-Valverde et al. 2011).  
 
Third, model evaluation is another main challenge for invasive SDMs (Araújo & Guisan 2006; Elith 
& Leathwick 2009). Conceptual considerations include the trade-off between optimizing accuracy 
versus generality (Guisan & Zimmermann 2000) and SMDs that aim at predicting invasions should 
be evaluated with regards to generality, using independent data (Araújo & Guisan 2006). Since this 
data usually represents the realized distribution of a species though, it cannot accurately test the 
model predictions that aim at predicting the potential distribution (Araújo & Guisan 2006), 
penalizing SDMs which estimate the potential distribution and favoring the ones which estimate 
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realized distributions (Jiménez-Valverde 2012). Commission errors will mostly not be erroneous in 
this context, as areas of overprediction are of interest when evaluating risk of species invasions 
(Araújo & Peterson 2012). Model evaluation should therefore focus more on well-predicted presences 
than on efficient prediction of absences (Jiménez-Valverde et al. 2011).  Further criticism focuses on 
the AUC as a measurement for validation, which is commonly used for testing the predictive 
performance of SDMs (Guisan & Zimmermann 2000; Elith & Leathwick 2009; Liu et al. 2009).  Since 
AUC values give information about the discrimination capacity of the SDM, the values are naturally 
lower for widespread species, even if the SDM is accurate – it only represents the generalist nature of 
the species distribution (Lobo et al. 2008). So the AUC value provides information about the 
generalist or restricted distribution of a species in the study area, but it does not provide information 
about the performance of the SDM (Lobo et al. 2008). Moreover, the AUC value assumes equal costs 
for commission and omission errors, it is spatially independent (we have no information about the 
spatial distribution of errors) and it is positively related to the spatial extent under consideration and 
the relative occurrence data (Lobo et al. 2008). The latter argument should not be a problem in my 
case, since the AUC values are compared for the same validation area and the same species data. It is 
furthermore recommended to rely on AUC values only if true absences are available (which is true in 
my case) and the objective is the estimation of the realized distribution (which is not true in my case) 
(Jiménez-Valverde 2012). So the AUC values have to be critically interpreted, but in combination 
with reporting the ROC plots as well as sensitivity and specificity values, it can still provide valuable 
information (Lobo et al. 2008; Jiménez-Valverde 2012). 
 

6.2 Implications for roadside management 

Prediction maps based on the SDMs of this study cannot be directly used for management decisions 
in Victoria (Australia) since their validation was not successful there. Maybe the SDMs would have 
higher predictive power in other regions, where the distribution of T. repens is less influenced by land 
use and breeding programs. Generally, the aim of my study was to show general global patterns, 
whereas for management purposes also regional characteristics should be taken into account. Still, 
my results underline the importance of roads and roadsides in the invasion process in mountains, 
therefore adequate roadside management is crucial. This seems feasible, as the number of roads in 
mountains is limited and roadsides are easily accessible for monitoring and management. Compared 
to the effort it would take to control invasive plants once they have spread in the natural vegetation, 
thorough and continuous roadside management is surely more efficient (McDougall et al. 2011).  
 
Preventive measures 

In order to prevent the introduction and establishment of invasive species in mountains, several 
aspects can be considered. Generally, it is recommended that mountain regions co-operate (e.g. share 
information about species that are invasive in some regions, but not yet in others) and focus on areas 
of high conservation value (Ansong & Pickering 2013; Pauchard et al. 2016). This should be coupled 
with prioritization schemes for targeting invasive species that are expected to have the greatest 
impact (e.g. preadapted to cold climate), are likely be transported by vehicles (e.g. regarding size and 
morphology of seeds) and for which prevention or eradication is still possible (McDougall et al. 2005; 
Ansong & Pickering 2013; Pauchard et al. 2016). SDMs can add information on prioritizing species 
that are expected to invade high conservation value areas and others that are likely to stay restricted 
to roadsides. Local managers will also have to decide how to deal with ‘native invaders’, i.e. native 
species that expand their range due to climate change (McDougall et al. 2011) and along roads 
(Lembrechts et al. 2016).  
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When building a new road, the invasion risk should be taken into account, e.g. SDMs can help to 
find potential invasion-‘hotspots’ which should be spared of roads. For the actual building process, 
the use of adequate road and roadside material is crucial, e.g. the use of alkaline gravel in granite 
mountains can change the soil pH and consequently influence native plant communities (Müllerová 
et al. 2011). How far away from roads this effect can reach depends strongly on the slope of the 
roadside (Müllerová et al. 2011). During the building process, machines should be cleaned from seeds 
before entering the mountain area (McDougall et al. 2011; Ansong & Pickering 2013). For example 
the Department of Sustainability and the Environment in Victoria (Australia) offers machinery 
inspection and clearing workshops for their employees and contractors in order to reduce the spread 
of non-native seeds (Pickering & Mount 2010). Along road construction sites, disturbance to the 
natural vegetation should generally be minimized (Godfree et al. 2006; Pollnac & Rew 2014). Even 
though disturbance does not necessarily favor the establishment of non-native plants in alpine 
environments due to the higher importance of facilitation (Lembrechts et al. 2015), T. repens has been 
found to establish in mountains primarily at disturbed places, such as roadsides or freshly excavated 
areas (Godfree et al. 2006) since it has only moderate ability to compete with other weeds during 
early establishment (Food and Agriculture Organization of the United Nations (FAO) 2016). After 
road construction, when stabilizing the roadsides against erosion through sowing or planting, it is 
crucial to use only native plants (Von Der Lippe & Kowarik 2007).  
 
But not only building new roads, also reconstructing existing roads can increase the risk of plant 
invasions (Gelbard & Belnap 2003) and the above mentioned measures can be recommended. Once 
the roads are in use, connectivity to other regions should be taken into account for risk assessment 
(Von Der Lippe & Kowarik 2007). Seed dispersal through vehicles depends strongly on the road 
material and weather conditions. Vehicles on unpaved roads and off-road tracks were found to collect 
more seeds than on paved roads, especially under wet conditions, due to mud sticking to the vehicles 
(Ansong & Pickering 2013). The distance over which seeds are transported is generally much longer 
under dry conditions (> 250 km) than under wet conditions (both on paved and unpaved roads) 
(Taylor et al. 2012). Rain can therefore on one hand increase the risk of seeds attaching to vehicles, 
but on the other hand also wash off seeds from cars and prevent long-distance dispersal (Ansong & 
Pickering 2013). It can be generally recommended to clean vehicles, especially before and after 
driving off-road (Ansong & Pickering 2013) and before entering sensitive areas (Taylor et al. 2012). 
Strategically located washdown facilities can support implementation (Pickering & Mount 2010). 
Furthermore, it can be considered to restrict access to high conservation value areas under wet 
conditions and to establish regulations for cleaning and inspecting vehicles before entering certain 
regions or countries, like e.g. New Zealand and Australia have already done so (Taylor et al. 2012). 
Again, certain regions or species can be prioritized with the use of SDMs. Establishing early 
detection systems along roadsides, expanding prevention measures into the neighboring lowlands 
and informing road users about the issue are further measures than can be taken in order to prevent 
plant invasions (McDougall et al. 2011). 
 
Controlling established populations 

Once a non-native species has established along mountain roads, management should focus on 
controlling further spread. Since most mountain invaders have a broad climatic niche (Alexander et 
al. 2011), they generally have the potential to become invasive over a wide range. For the vertical 
spread uphill along roadsides, the precautionary measures mentioned above are also valid in order 
to minimize seed dispersal. Moreover, dispersal can be reduced by mowing the roadsides. It has been 
found that mowing roadsides generally tends to reduce plant species richness and favor non-native 
plants (Forman & Alexander 1998), but it strongly depends on the right timing. If the roadsides are 
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mowed before the target plant is seeding, the amount of seeds transported by vehicles can be 
reduced, so further spread can be minimized (Ansong & Pickering 2013). But for example for T. 

repens this is hard to achieve since it is flowering and producing seeds over a long time period 
throughout spring and summer (apart from the fact that it is able to reproduce vegetatively) 
(Australian Government (Department of Health and Ageing) 2008). In such a case, mowing could 
have the opposite effect and even increase the spread of seeds along roadsides, which is why it is 
highly recommended to clean the machinery before entering mountain areas (Pickering & Mount 
2010). If the machines are cleaned, it could be worthwhile to mow in downhill direction (in order not 
to transport seeds uphill), but in case cleaning the machinery is not feasible, it is probably better to 
mow uphill in order to slowly reduce the seed load towards less infested areas.  Other than mowing, 
also pollutants from exhausts and deicing salt from road runoff can affect non-native species richness 
along roadsides (Müllerová et al. 2011). For example T. repens is sensitive to salinity and its nitrogen 
fixation ability gets reduced (Lane et al. 2000).  
 
After establishing along roadsides, non-native species can spread away from roadsides into natural 

vegetation, which is mainly influenced by properties of the vegetative community (Pollnac & Rew 
2014; González-Moreno et al. 2015; Lembrechts et al. 2015). The potential speed and area of spread 
could be estimated using mechanistic distribution models. Biotic factors can either facilitate or hinder 
plant invasions (Pollnac & Rew 2014), with facilitation generally outweighing competition in higher 
elevations (Lembrechts et al. 2015). Due to this elevational difference, disturbance to the existing 
vegetation should be minimized at low and mid elevations in order to limit the spread of non-native 
species (Pollnac & Rew 2014). This is especially true for T. repens, which colonizes bare soil and is 
not very shade tolerant (Lane et al. 2000; Australian Government (Department of Health and 
Ageing) 2008). It has to be noted though that T. repens increases its ability to compete with other 
weeds with residence time (Food and Agriculture Organization of the United Nations (FAO) 2016). 
Besides avoiding disturbance, the transport vectors into natural vegetation should be controlled – 
e.g. cars going off-road, tourists walking into natural areas or horseback riding (Pickering & Mount 
2010). It would be important to inform visitors about the issue and to promote the economic 
importance and public acceptance of preventing further spread (Pickering & Mount 2010; 
McDougall et al. 2011). Detection of non-native species that have spread into the natural vegetation 
is especially hard in mountains due to the rugged and remote terrain (McDougall et al. 2011). Yet, 
early detection is crucial, because it is more effective to control satellite populations instead of the 
edges of the main population when trying to reduce the spread of non-native species (Lockwood et al. 
2013). One approach could be to offer a monetary reward for citizens who detect new infestations, as 
it is being done in the Rocky Mountains (USA) (McDougall et al. 2011). Once a non-native species 
has been detected away from roadsides, different measures can be taken – in the case of T. repens for 
example punctual use of herbicides or hand pulling when working in native ecosystems and applying 
nitrogen fertilizer (reduced competitiveness in soils where nitrogen-fixing gives it no advantage) and 
heavy grazing or close mowing (both reduce competitiveness to grasses) in anthropogenic areas 
(MacRae et al. 2005; Australian Government (Department of Health and Ageing) 2008). In the 
Australian Alps however, T. repens is considered impracticable to control due to its large seedbank, 
capability to spread vegetatively and because it is already too widespread in the natural vegetation 
(McDougall et al. 2005; Pickering & Hill 2007; Australian Government (Department of Health and 
Ageing) 2008).  
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7 Conclusions 

Downscaling the resolution of bioclimatic variables and including roads in the SDMs both helped to 
improve predicting the distribution of T. repens in its non-native range. When modeling non-native 
species in mountains, both aspects can thus be recommended. The downscaling approach I used 
however requires much computing power and time, which might limit its implementation on a large 
scale in practice. Generally, major limitations remain when applying these models to a certain region, 
e.g. for validation or management suggestions. This can be partly explained by general issues about 
modeling non-native species (e.g. assumptions about environmental equilibrium or niche 
conservatism) but also by regional peculiarities. Additional local factors have great influence on 
species’ distribution and should be taken into account in order to receive reliable predictions within a 
certain region (e.g. native vegetation, soil moisture, additional pathways for introduction, current 
and historic land use and residence time).  
 
Still, even though the predictions had only limited validation on a regional level, my results 
underlined the global importance of roads as major pathways for non-native plants into mountain 
areas, as roads were an even more robust predictor than climate for the distribution of T. repens. 
Non-native species disperse along roadsides and often stay restricted to them for a long time before 
spreading into the natural vegetation. On one hand, this makes it feasible to prevent and control 
invasions in practice, since roadsides cover relatively little area and are easily accessible for 
monitoring and management, on the other hand it also requires constant, targeted effort for roadside 
management. Preventive measures to avoid the introduction of seeds (e.g. washing vehicles) should 
be coupled with measures to control further spread after establishment (e.g. adequate mowing). 
Special focus should be given to high value conservation areas and non-native species with high 
invasion potential (e.g. species pre-adapted to alpine climate).  
 
The risk of plant invasions is expected to increase in the future, mainly due to climate change and 
intensified land use. With warming climate, not only non-native species but also native species can 
expand their ranges to higher elevations and alter mountain communities, potentially outcompeting 
endemic alpine species. Intensified land use adds to this risk, e.g. ornamental plants escaping from 
gardens, increased hiking activities and the construction of more roads. Therefore, efforts should be 
made both on a conceptual level (refine predictions) and in practice (improve management).  
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Appendix 

Appendix I: Characteristics of the 11 MIREN regions 

MIREN 

region 

Coordinates 

(center of the 
region) 

Elevational 

range  

(m above sea 
level) 

No. 

of 

roads 

Max. 

distance 

from 

roads (m) 

Years 

of the 

survey   

Presence- 

and 

absence 

points for 

T. repens 

Presence- 

points for 

T. repens 

Argentinian 
Andes 

71°33' W 
40°59' S 

857 – 1678 3 100 2014 180 33 

Australian 
Alps New 
South Wales 

148°48' E 
36°25' S 

410 – 2125 3 100 
2007 

& 2012 
1080 168 

Australian 
Alps Victoria 

146°54' E 
37°16' S 

205 – 1848 3 2 2012 60 37 

Canary 
Islands 

16°34' W 
28°15' N 

5 – 2250 3 100 2007 900 0 

Central 
Chilean 
Andes 

70°12' W 
33°07' S 

1895 – 3585 3 100 
2007 

& 2012 
609 1 

Hawaiian 
Islands 

155°45' W 
20°00' N 

45 – 4192 6 2 
2007 

& 2012 
476 122 

Montana 
Rocky 
Mountains 

110°24′ W 

44°48′ N  
1803 – 3307 3 100 

2007 
& 2012 

1080 32 

Northern 
Scandes 

17°80′ E 

68°19′ N  
13 – 697 3 100 2012 300 22 

Oregon 
Rocky 
Mountains 

117°48′ W 

45°18′ N  
902 – 2265 3 100 

2007 
& 2012 

1080 161 

South Chilean 
Andes 

71°24′ W 

36°58′ S  
274 – 1668 3 100 

2007 
& 2012 

1068 86 

Swiss Alps 
7°12′ E  

46°12′ N  
411 – 1802 4 100 

2007 
& 2012 

850 95 

In total      7683 757 
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Appendix II: Explanatory variables used in other studies 

Reference Explanatory variables  

(bold = used in this work) 
Comments 

Broennimann et al. 2012 Bio 1 

annual max. temp. � Bio 5 

annual min. temp. � Bio 6 

Bio 12 

AET/PET � AI 

GDD above 5°C � PDD 

PET 

plant productivity index  

seasonality in precipitation � Bio 15 

 

Capinha et al. 2012 Bio 2 

Bio 5 

Bio 6 

Bio 12 

Bio 14  

number of rainy days per month 

6 non-redundant climatic 
variables 

Ficetola et al. 2007 Bio 5 

Bio 6 

Bio 18 

Bio 19 

human footprint (population density, 
infrastructure,…) 

only those 4 Bioclim-variables 
were chosen to avoid 
collinearity 

 

González-Moreno et al. 2015 Bio 1 

Bio 4 

Bio 6 

Bio 9 

Bio 15 

Bio 19 

tested all 19 Bioclim-variables, 
only those 6 were not collinear 

Guisan & Theurillat 2000 Bio 1 

geology, rock cover, hydrology 

DEM  

• slope  

• aspect (northness & southness) 

• topographic position 

some of these explanatory 
variables I used for downscaling 
the climate 
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• solar radiation 

black-and-white aerial photos 

infrared aerial photo (for soil moisture 
& snow cover) 

Petitpierre 2013 Precipitation seasonality � Bio 15 

Mean moisture index of driest quarter  

Moisture index seasonality 

Mean temperature of warmest quarter 
� Bio 10 

Mean moisture index of warmest 
quarter 

Precipitation of driest quarter � Bio 17 

Mean moisture index of warmest week  

8 most frequently included 
variables for different models of 
terrestrial plants (in ranked 
order) 

Thuiller et al. 2005a Bio 1 

Bio 6 

Bio 12 

Bio 18 

GDD � PDD 

AET/PET � AI 

 

Thuiller et al. 2005b Bio 6 

GDD above 5°C � PDD 

AET/PET � AI 

plant productivity index  

these variables affect plant 
physiology & growth 

Tingley et al. 2014 Bio 1 

Bio 5 

Bio 6 

Bio 18 

mean humidity of the  
warmest quarter 

variables were chosen because 
they are not correlated and 
influence the physiology of 
study species 
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Appendix III: Collinearity between bioclimatic variables  

 

 
 
AI:  Aridity Index 
BIO1:  Annual Mean Temperature (TAnnual)  
BIO5:  Max. Temperature of Warmest Month (TWarm) 
BIO6:  Min. Temperature of Coldest Month (TCold) 
BIO12:  Annual Precipitation (PAnnual) 
BIO18:  Precipitation of Warmest Quarter (PWarm) 
BIO19:  Precipitation of Coldest Quarter (PCold) 
PDD:  Positive Degree Days  
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Appendix IV: Prediction maps original vs. downscaled bioclimatic data 
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Appendix V: Prediction maps SDM I, II and III 
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