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Abstract. Putnam (1963) construed the aim of Carnap’s program of induc-

tive logic as the specification of an “optimum” or “universal” learning machine,
and presented a diagonal proof against the very possibility of such a thing. Yet

the ideas of Solomonoff (1964) and Levin (1970) lead to a mathematical foun-

dation of precisely those aspects of Carnap’s program that Putnam took issue
with, and in particular, resurrect the notion of a universal learning machine.

This paper takes up the question whether the Solomonoff-Levin proposal

is successful in this respect. I expose the general strategy to evade Putnam’s
argument, leading to a broader discussion of the outer limits of mechanized

Bayesian induction. I argue that this strategy ultimately still succumbs to

diagonalization, reinforcing Putnam’s impossibility claim.

1. Introduction

Putnam (1963a) famously challenged the feasibility of Carnap’s program of in-
ductive logic on the grounds that a quantitative definition of “degree of confirma-
tion” can never be adequate as a rational reconstruction of inductive reasoning.
Specifically, he formulated two conditions of adequacy, and proceeded to give a
diagonal proof to the effect that no Carnapian measure function can satisfy both.
In (1963b), Putnam assumed the view that “the task of inductive logic is the con-
struction of a ‘universal learning machine’” (303), and accordingly presented his
proof as showing the impossibility of this notion. What was shown, in these terms,
is that there can be no learning machine that is also universal : no measure func-
tion that is effectively computable, that is also able to eventually detect any pattern
that is effectively computable.

Independently of the work of Putnam, the suggestions of Solomonoff (1964) to-
wards an “optimum induction system” gave rise to a definition that is very much in
this spirit. The elements that Solomonoff took from Carnap’s program, and those
that he added to it — most importantly, the central role of effective computability
— are the very elements that Putnam presumed in his challenge to it. Solomonoff’s
ideas found a secure mathematical footing in the work by Levin (1970), resulting in
what qualifies, perhaps, as the definition of a universal learning machine. Namely,
the Solomonoff-Levin measure does manage to unite versions of Putnam’s two ad-
equacy conditions — though, crucially, involving a weakened notion of effective
computability.

In this paper I investigate whether the Solomonoff-Levin proposal indeed gives
a definition of an “optimum,” “cleverest possible,” or universal learning machine.
More broadly, this is an investigation into the possibility of a (Bayesian) definition
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of a perfectly general and purely mechanic rule for extrapolating data — against
the lesson that has generally been taken from Putnam that “[t]here is no universal
algorithm” for induction (Dawid, 1985, 341; also see van Fraassen, 2000, 260). I will
argue that there is promise in the general strategy that underlies the Solomonoff-
Levin proposal, which is to try and identify a natural class of effective elements
that is immune to diagonalization. This opens the prospect of attaining plausible
versions of Putnam’s two conditions that are compatible, and that enable a notion
of a learning machine that is universal in a Reichenbachian sense: this optimal
learning machine will learn successfully if any learning machine does. I will then
show, however, that Putnam’s lesson prevails: on a closer inspection of the proper
interpretation of the relevant elements we see that this general strategy cannot
escape diagonalization after all.

2. Overview

First, in section 3, I will introduce Putnam’s original argument, which shows
that no measure function can fulfill both of two conditions to qualify as a universal
learning machine: the first on its convergence to any effectively computable hy-
pothesis, the second on it being effectively computable itself. This is only one part
of Putnam’s charge; the other is that this is a defect peculiar to measure functions,
because other methods, that respect the role of scientific theories (in particular,
the hypothetico-deductive or HD method), can satisfy it. Next, in section 4, I ex-
plain how Solomonoff took his cue from Carnap’s project, and went on to develop
his ideas in a direction that (perhaps unlike Carnap’s own approach) falls squarely
within the general outlook and formal set-up that Putnam assumed for his argu-
ment. This raises the question how the resulting Solomonoff-Levin measure evades
the diagonal argument.

The only way around Putnam’s argument is to argue for a weakening of at least
one of the two conditions that he showed are incompatible. Hence the question is
what weakening the Solomonoff-Levin proposal introduces, and whether it can be
given a proper motivation. To be in a position to answer this question, we need to go
through a technical interlude, section 5, that traces the way to the exact definition
of the Solomonoff-Levin measure. Here we will encounter the general strategy of
identifying a class of effective measure functions that cannot be diagonalized; the
Solomonoff-Levin measure is a universal element in this class. This definition does
satisfy Putnam’s first condition on convergence to any computable hypothesis, but
it is effective in too weak a sense to still satisfy Putnam’s second condition.

Turning to the question whether an accordingly weakened condition is defensible,
we must first consider the second component of Putnam’s charge. This is the claim
that the conjunction of the two original conditions is not unreasonably strong,
since the HD procedure does satisfy it. The conclusion that I reach in section 6
is that this claim does not stand up to scrutiny: drawing a distinction between
specific methods and an underlying architecture, we see that the HD approach and
the Bayesian approach of measure functions are in the exact same predicament.
Given, then, that no specific method whatsoever can satisfy this pair of conditions,
it stands to reason to explore the possibility of a notion of a universal learning
machine that only satisfies a weaker pair. This we do in the final part of the paper,
through an evaluation of the Solomonoff-Levin proposal.
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I start in section 7 with the question whether the Solomonoff-Levin measure,
in the spirit of the first condition, can detect all reasonable patterns. The naive
interpretation of this question fails to be convincing, which prompts a different and
much more natural interpretation. This Reichenbachian interpretation, pursued
in section 8, takes the Solomonoff-Levin measure as optimal among all possible
learning machines. If the original class of effective measure functions represents
all possible learning machines, then the Solomonoff-Levin measure, as a universal
element, is in a precise sense at least as good as any possible learning machine.
In general, the identification of an undiagonalizable class of elements, if conjoined
with a successful argument that it represents all possible learning machines, yields
a notion of a universal learning machine.

Unfortunately, this strategy is obstructed by the fact that prediction methods
should actually be identified with confirmation functions, i.e., conditional measure
functions. This fact might sound innocuous, but it impacts the effectiveness prop-
erties of prediction methods. We will see that Putnam’s original argument implies
that this indeed blocks the central strategy of identifying a class of effective ele-
ments that cannot be diagonalized. Thus, as I conclude in section 9, our analysis
provides further support to Putnam’s case: there can be no such thing as a universal
learning machine.

3. Putnam’s argument

Consider a simple first-order language with a single monadic predicate G and
an ordered infinity of individuals xi, i ∈ N. Let a computable hypothesis h be a
computable set of sentences h(xi) for each individual xi, where h(xi) equals one of
Gxi and ¬Gxi. Now, if a given Carnapian measure function is supposed to be a
rational reconstruction of our inductive practice, then, since our actual inductive
methods would be sure to discern any computable pattern eventually, so should this
given measure function. Hence a condition of adequacy on such a measure function
P is that

(I) For any true computable hypothesis h, the instance confirmation P (h(xn+1) |
h(x0), ..., h(xn)) should pass and remain above threshold 0.5 after sufficiently
many confirming individuals x0, ..., xn.

But for any measure function P that itself satisfies a weak condition of effective
computability (so as to qualify, with the Church-Turing thesis, as an explicit method
at all):

(II) For any true computable hypothesis h, for every n, it must be possible to
compute an m such that if h(xn+1), ..., h(xn+m) hold, then P (h(xn+m+1) |
h(x0), ..., h(xn+m)) exceeds 0.5,

one can prove by diagonalization P ’s violation of (I). This is Putnam’s diagonal
argument: if the ideal inductive policy is to fulfill (I) and (II), then it is provably
impossible to reconstruct it as a measure function.

We can treat condition (I) as an instance, for measure functions, of the general
condition on an inductive method M that

(I*) M converges to any true computable hypothesis.

Moreover, in later expositions of the argument (Kelly, 2016, 701f), the slightly
cumbersome condition (II) is often replaced by the (stronger) condition that P is



4 TOM F. STERKENBURG

simply a computable function. The general condition on an inductive method M
is that

(II*) M is computable.

The diagonal proof of the incompatiblity of (I*) and (II*) for measure functions is
straightforward. Given candidate computable measure function P , we construct a
computable hypothesis h such that P fails to converge on h, as follows. Starting
with the first individual x0, compute P (Gx0) and let h(x0) be ¬Gx0 precisely
if P (Gx0) > 0.5. For each new individual xn+1, proceed in the same fashion:
compute P (Gxn+1 | h(x0), . . . , h(xn)) and let h(xn+1) be ¬Gxn+1 precisely if this
probability is greater than 0.5. The hypothesis h is clearly computable, but by
construction the instance confirmation it is given by P never remains above 0.5:
indeed, it never even goes above 0.5. Thus, again, if the ideal inductive policy is to
be able to converge to any true computable hypothesis, and be computable itself,
then it is impossible to reconstruct it as a measure function.

But maybe such a policy is so idealized as to escape any formalization? To
seal the fate of Carnap’s program, Putnam proceeds to give an example of an
inductive method that is not based on a measure function and that does satisfy the
two requirements. This method M is the hypothetico-deductive method : supposing
some enumeration of hypotheses that are proposed over time, at each point in time
select and use for prediction (accept) the hypothesis first in line among those that
have been consistent with past data. Then it satisfies (I*), or more precisely:

(I†) For any true computable hypothesis h, if h is ever proposed, then M will
eventually come to (and forever remain to) accept it.

The distinctive feature of M is that it relies on the hypotheses that are actually
proposed. To Putnam, this is as it should be. Not only does it conform to scientific
practice: more fundamentally, it does justice to the “indispensability of theories as
instruments of prediction” (ibid., 778). This appears to be the overarching reason
why Putnam takes issue with Carnap’s program: “certainly it appears implausible
to say that there is a rule whereby one can go from the observational facts . . . to
the observational prediction without any ‘detour’ into the realm of theory. But this
is a consequence of the supposition that degree of confirmation can be ‘adequately
defined’” (ibid., 780). Incredulously: “we get the further consequence that it is
possible in principle to build an electronic computer such that, if it could somehow
be given all the observational facts, it would always make the best prediction—i.e.
the prediction that would be made by the best possible scientist if he had the best
possible theories. Science could in principle be done by a moron (or an electronic
computer)” (ibid., 781).

Here Putnam is still careful not to attribute to Carnap too strong a view: “Of
course, I am not accusing Carnap of believing or stating that such a rule exists; the
existence of such a rule is a disguised consequence of the assumption that [degree
of confirmation] can be ‘adequately defined’” (ibid., 780). Carnap indeed showed
some reluctance in committing himself to the idea of an “inductive machine” (1950,
192-99); though in other places he does appear close to endorsing it (see especially
his 1966, 33-34; suggestive, too, is his use of the image of an inductive robot in
1962, 309ff). In any case, in his Radio Free Europe address (1963b), Putnam simply
declares that “we may think of a system of inductive logic as a design for a ‘learning
machine’: that is to say, a design for a computing machine that can extrapolate
certain kinds of empirical regularities from the data with which it is supplied”
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(ibid., 297); and “if there is such a thing as a correct ‘degree of confirmation’ which
can be fixed once and for all, then a machine which predicted in accordance with
the degree of confirmation would be an optimal, that is to say, a cleverest possible
learning machine” (ibid., 298). Again, the diagonal proof would show that there
can be no such thing: it is “an argument against the existence – that is, against
the possible existence – of a ‘cleverest possible’ learning machine” (ibid., 299).

4. Solomonoff’s new start

Solomonoff (1964) aimed to describe precisely that: an “optimum” learning ma-
chine, a formal system of inductive inference that “is at least as good as any other
that may be proposed” (ibid., 5). His ideas can indeed be seen as a particular
offspring of Carnap’s inductive logic; one that takes Putnam’s picture of a learning
machine seriously.

Solomonoff’s mission statement is clear: “The problem dealt with will be the
extrapolation of a long sequence of symbols” (ibid., 2). What is the probability
that a given (long) sequence T is followed by a (one-symbol) sequence a? “In the
language of Carnap (1950), we want c(a, T ), the degree of confirmation of the hy-
pothesis that a will follow, given the evidence that T has just occurred” (ibid.).
The underlying motivation is also very much in accord with things Carnap writes
in his 1950 book. Solomonoff’s suggestion that “all problems in inductive infer-
ence . . . can be expressed in the form of the extrapolation of a long sequence of
symbols” (ibid.) parallels Carnap’s insistence on the primacy of the predictive in-
ference — “the most important and fundamental inductive inference” (1950, 207).
And Carnap’s discussion under the header “Are Laws Needed for Making Predic-
tions?” (ibid., 574-75) — conclusion: “the use of laws is not indispensable” — is
easily read as informing Solomonoff’s proclamation that his proposed methods are
“meant to bypass the explicit formulation of scientific laws, and use the data of the
past directly to make inductive inferences about specific future events” (1964, 16).

This already very much resembles the picture that Putnam painted in order to
challenge it. What is more, the problem setting of sequence extrapolation is readily
translatable into the formal set-up that Putnam presupposes in his paper. Let us
suppose, as is customary in modern discussions of Solomonoff’s theory, that we
have an alphabet of only two symbols, ‘0’ and ‘1.’ Now Putnam assumes with
Carnap a monadic predicate language L, but with an ordered domain x0, x1, x2, . . .
of individuals. Let L have a single monadic predicate G. Identifying the individuals
with positions in a sequence as Putnam does (1963a, 766), we can have a ‘1’ at the
i + 1-th position express the fact that individual xi satisfies G, and a ‘0’ that it
does not. Thus we translate a symbol sequence of length n into the observation of
the first n individuals.

Solomonoff’s setting is then fully within the scope of Putnam’s argument. This
in contrast to that of Carnap, who could still resort to the defense that in his
works he does not assume an ordered domain, and so “the difficulties which Put-
nam discusses do not apply to the inductive methods which I have presented in
my publications” (1963a, 986). Nevertheless, Carnap does acknowledge at various
places the need for taking into consideration the order of individuals in explicating
degree of confirmation (e.g., 1950, 62-65; 1963b, 225-26); and he envisioned for
this future project the same kind of “coordinate language” that Putnam assumes
(also see Skyrms, 1991). For such a language, Carnap should have agreed with
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Putnam’s charge that an inductive system that is “not ‘clever’ enough to learn that
position in the sequence is relevant” is too weak to be adequate. The difference in
opinion then ultimately comes down to what regularities in the observed individ-
uals should be extrapolated (i.e., what hypotheses or patterns should gain higher
instance confirmation from supporting observations).

Carnap states in (1963a, 987; 1963b, 226) that he would only consider “laws of
finite span.” In terms of symbol sequence extrapolation, these are the hypotheses
that make the probability of a certain symbol’s occurrence at a certain position
only depend on the immediately preceding subsequence of a fixed finite length (i.e.,
a Markov chain of certain order). In particular, hypotheses must not refer to abso-
lute coordinates, which immediately rules out Putnam’s example of the hypothesis
that “the prime numbers are occupied by red” (1963a, 765). In Carnap’s view, “no
physicist would seriously consider a law like Putnam’s prime number law” (1963a,
987), hence “it is hardly worthwhile to take account of such laws in adequacy con-
ditions for [confirmation functions]” (1963b, 226). According to Putnam, however,
“existing inductive methods are capable of establishing the correctness of such a hy-
pothesis . . . and so must any adequate ‘reconstruction’ of these methods” (1963a,
765). Indeed, the same goes for any effectively computable pattern; this is his
adequacy condition (I*).

Others have charged Carnap’s confirmation functions with an inability to meet
various adequacy conditions on recognizing regularities (notably Achinstein, 1963;
in fact the critique of Goodman, 1946, 1947 can be seen as an early instance of
this line of attack). What is distinctive about Putnam’s adequacy conditions is
the emphasis on effective computability. Interestingly, this notion of effective com-
putability is also the fundamental ingredient in Solomonoff’s proposal. It is this
aspect that genuinely sets Solomonoff’s approach apart from Carnap’s. The mea-
sure functions that Solomonoff proposed in (1964), and that evolved in the modern
definition of a measure QU that we will see below, were explicitly defined in terms
of the inputs to a universal Turing machine. Moreover, one can show that the
instance confirmation via QU of any true computable hypothesis will converge to 1,
thus fulfilling (I*).

5. The Solomonoff-Levin measure

How does Solomonoff evade Putnam’s diagonalization? If QU is within the scope
of Putnam’s argument, and it still fulfills (I*), then it must give way with respect to
(II*). To see how QU fulfills (I*) but not (II*), we will need to go into the details.
This we do in the current section; in the next section we return to the main thread
and ask ourselves what this means for QU as a purported “optimum,” or universal
learning machine.

Specifically, we will work in this section towards the precise specification of QU ,
and prove that it satisfies (I*). For a large part this amounts to retracing the
formal setting that was developed in the landmark paper of Zvonkin and Levin
(1970), based on Levin’s doctoral thesis (translated as Levin, 2010).

We start with the notion of a computable (probability) measure on the Cantor
space {0, 1}ω, the set of all infinite sequences of symbols in {0, 1}. More accurately,
a measure on Cantor space is defined on a tuple ({0, 1}ω,F), with F a σ-algebra
on {0, 1}ω. Then a probability measure on ({0, 1}ω,F) is a countably additive
function µ : F → [0, 1] with µ({0, 1}ω) = 1. Let the basic cylinder JxxxK be the
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class of all infinite extensions in {0, 1}ω of the finite sequence xxx ∈ {0, 1}∗. It
is convenient to view a measure (as well as the associated σ-algebra F) as being
generated from an assignment of probability values to just the basic cylinders JxxxK
for all finite sequences xxx. That is, we view a measure as being generated from
a pre-measure, a function m : B∗ → [0, 1] on the finite sequences that satisfies
m(∅∅∅∅∅∅∅∅∅) = 1 for the empty sequence ∅∅∅ and m(xxx0) +m(xxx1) = m(xxx) for all xxx ∈ {0, 1}∗.
The extension theorem due to Carathéodory (cf. Tao, 2011, 148ff) then gives a
σ-algebra F over {0, 1}ω (which includes all Borel classes) and unique measure µm
on F with µm(JxxxK) = m(xxx). I will follow the custom of simply writing “µ(xxx)” for
“µ(JxxxK).” (See Reimann, 2009, 249-256; Nies, 2009, 68-70 for more details.)

The most basic example of a measure on Cantor space is the uniform measure λ.
It is generated from the premeasure with m(xxx) = 2−|xxx| for all xxx, where |xxx| denotes
xxx’s length.

Now a measure is computable if it is generated from a computable pre-measure.
A pre-measure is computable if its values can be uniformly computed up to any
given precision. That is, there is a computable f : {0, 1}∗ × N → Q such that
|f(xxx, s)−m(xxx)| < 2−s for all xxx ∈ {0, 1}∗, s ∈ N (cf. Downey and Hirschfeldt, 2010,
202-03). I will adopt the nomenclature of the arithmetical hierarchy of levels of
effective computability (Kleene, 1943; Mostovski, 1947; see Soare, 1987, 60ff) and
henceforth refer to the computable measures as the ∆1 (“delta-one”) measures.

We will see below that the Solomonoff-Levin measure QU has the property that
for any true ∆1 measure µ, with probability 1 (“µ-almost surely”), the values
QU (xn+1 | xxxn) for xn+1 ∈ {0, 1},xxxn ∈ {0, 1}n converge to the values µ(xn+1 | xxxn)
as n goes to infinity. That is, QU satisfies the following condition on a measure
function P :

(I: ∆1) P converges µ-almost surely to any true ∆1 measure µ.

This is an instance of condition (I*) on a measure function, that at the same
time generalizes from “deterministic” computable hypotheses or single infinite com-
putable sequences to probability measures on infinite sequences. (Every computable
infinite sequence xxxω corresponds to a ∆1 measure that assigns probability 1 to every
initial segment xxxn of xxxω.) Moreover, we can rephrase condition (II*) on a measure
function as

(II: ∆1) P is ∆1.

This condition is not satisfied by QU . It is effectively computable in a weaker sense,
that we turn to now.

Namely, we proceed with the notion of a semi-computable or Σ1 (”sigma-one”)
measure on the extended space {0, 1}ω ∪ {0, 1}∗ of infinite and finite sequences.
This notion will strike those who see it for the first time as cumbersome, if not
downright awkward; I will try to explain how it is both natural and important.
First I will briefly describe how this class of measures comes about as precisely the
effective transformations of the uniform measure on the Cantor space. Then I will
discuss the crucial property of this class that it cannot be diagonalized, meaning that
it contains universal elements. The Solomonoff-Levin measure is such a universal
element.

Let a transformation λF of the uniform measure by Borel function F : {0, 1}ω →
{0, 1}ω be defined by λF (A) = λ(F−1(A)). It is a basic fact that every Borel
measure µ on Cantor space can be obtained as a transformation of λ by some Borel
function. What if we consider transformations by functions that are computable?
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There are some details involved in the need to downscale these transformations to
functions f on finite sequences, in order to impose the property of computability
(see Reimann, 2009, 253f); in the end we are led to precisely those functions that
can be represented by a particular type of Turing machine. Originally dubbed an
algorithmic process (Zvonkin and Levin, 1970, 99), this type of machine is now
better known as a monotone machine (see Shen et al. 2014, 139-142): it can be
visualized as operating on a steady stream of input symbols, producing an (in)finite
output sequence in the process. We then indeed have an effective analogue to the
earlier statement: every ∆1 measure can be obtained as a transformation λM of
the uniform measure by some monotone machine M (Zvonkin and Levin, 1970,
100-01).

The monotone machines leading to the ∆1 measures have the special property
that they are “almost total,” meaning that they produce an unending sequence
on λ-almost all infinite input streams (ibid.). In general, however, a monotone
machine M can fail to do so. This translates into the possibility that λM (xxx) is
strictly greater than λM (xxx0) + λM (xxx1) for some xxx. In that case we can say that
λM assigns positive probability to the finite sequence xxx. A function λM can thus
be interpreted as a measure on the collection of infinite and finite sequences.

Levin calls the class of transformations λM by all monotone machines M the class
of semi-computable measures on {0, 1}ω ∪{0, 1}∗. This is because the pre-measures
corresponding to these transformations are precisely the functions m : {0, 1}∗ →
[0, 1] with m(xxx) ≥ m(xxx0) + m(xxx1) for all xxx that satisfy a weaker requirement of
computability, that we may paraphrase as computable approximability from below
(Zvonkin and Levin, 1970, 102-03). In exact terms (cf. Downey and Hirschfeldt,
2010, 202-03), we call m (lower) semi-computable if there is a computable f :
{0, 1}∗ × N → Q such that for all xxx ∈ {0, 1}∗ we have f(xxx, s) ≤ f(xxx, s + 1) for
all s ∈ N and lims→∞ f(xxx, s) = m(xxx). Equivalently, the so-called left-cut {(q,xxx) ∈
Q × {0, 1}∗ : q < m(xxx)} is computably enumerable or Σ1. For that reason I will
refer to a semi-computable measure as a Σ1 measure.

Let me reiterate the parallel between, on the one hand, the expansion from the
∆1 to the Σ1 measures, and, on the other, the expansion from the total computable
(t.c.) to the partial computable (p.c.) functions. It is well-known since Turing
(1936) that the class of t.c. functions is diagonalizable, and that this is overcome
by enlarging the class to the p.c. functions (cf. Soare, 1987, 10ff). More precisely:

under the assumption that there exists a universal t.c. function f̊ that can emulate

every other t.c. function (meaning that f̊(i, x) = fi(x) for a listing {fi}i∈N of all

t.c. functions), we can directly infer a diagonal function g (say g(x) := f̊(x, x) + 1)
that is t.c. yet distinct from every single fi (because g(i) = fi(i) + 1 6= fi(i) for
all i), which is a contradiction. (Note the similarity to the argument in section
3.) To say that the class of t.c. functions is diagonalizable is therefore to say that

there can be no such universal f̊ , hence no effective listing of all elements: the
class is not effectively enumerable. The introduction of partiality, however, defeats
the construction of a diagonal function (consider: what if fi(i) is undefined?); and
indeed the class of p.c. functions is effectively enumerable, does contain universal
elements. Likewise, the class of ∆1 measures is not effectively enumerable, does not
contain universal elements; the larger class of Σ1 measures is and does. We now
turn to these universal Σ1 measures (Zvonkin and Levin, 1970, 103-04).
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Informally, a universal Σ1 measure “is ‘larger’ than any other measure, and is
concentrated on the widest subset of [{0, 1}ω ∪ {0, 1}∗]” (ibid., 104). Formally, a
universal Σ1 measure µ̊ is such that it dominates every other Σ1 measure: for every
µi ∈ Σ1 there is a constant ci ∈ [0, 1] such that for all xxx ∈ {0, 1}∗ it holds that
µ̊(xxx) ≥ ciµi(xxx). “This fact is one of the reasons for introducing the concept of
semi-computable measure” (ibid.) — we may take it as the main reason. Indeed,
the expansion to Σ1 objects in order to obtain universal elements is a move that
returns in many related contexts. Martin-Löf (1966), in defining his influential
notion of algorithmic randomness, employed the class of all Σ1 randomness tests: a
sequence xxxω is random if it passes a universal such test. Vovk (2001b), in defining
his notion of predictive complexity, employed the class of Σ1 loss processes: the
predictive complexity of xxxω is the loss incurred by a universal such process. Vovk
and Watkins (1998, 17): “It would be ideal if the class of computable loss processes
contains a smallest (say, to within an additive constant) element. Unfortunately
. . . such a smallest element does not exist.” Levin’s suggestion to widen the class
to the Σ1 elements is then “a very natural solution to the problem of non-existence
of a smallest computable loss process” (ibid.).

The straightforward way of obtaining a universal Σ1 measure is the following.
Since the monotone machines are also effectively enumerable, we can likewise specify
universal such machines. A transformation λU of λ by universal U then yields a
universal Σ1 measure.

We have finally arrived at the definition of the Solomonoff-Levin measure. The
measure QU is precisely the transformation of λ by universal monotone machine U .

Definition 1. QU := λU .

So there are in fact infinitely many such measures, one for each choice of universal
monotone machine U . Each is a universal Σ1 measure. It is this property that is
exploited in the adequacy result.

Proposition 2. QU fulfills (I*).

Proof. Let µ ∈ ∆1. The fact that QU dominates µ entails that µ is absolutely
continuous with respect to QU (i.e., µ(A) > 0 implies QU (A) > 0 for all A in the
σ-algebra B), which by the classical result of Blackwell and Dubins (1962) entails
that µ-almost surely the variational distance supA∈B |µ(A | xxxn)−QU (A | xxxn)| → 0
as n→∞ (see Huttegger, 2015, 617-18), so in particular (I: ∆1). �

6. HD-methods and Bayesian methods

So how does the Solomonoff-Levin function evade Putnam’s diagonalization? As
we saw above, the very motivation for the expansion to the class of Σ1 measures
is to evade diagonalization — to obtain universal elements. The measure QU is a
universal element; as such, it tracks every ∆1 measure in the sense of (I: ∆1). The
downside is that, as a universal Σ1 element, QU is itself no longer ∆1 (or the class
of ∆1 measures would already have universal elements).

The force of Putnam’s diagonal proof is that no measure function can satisfy
both (I*) and (II*), and QU is no exception. The Solomonoff-Levin measure is
powerful enough to avoid diagonalization and fulfill (I: ∆1), but the price to pay is
that QU might be said to be too powerful. It is no longer effective in the sense of
(II: ∆1), but only in the sense of
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(II: Σ1) P is Σ1.

Does this invalidate QU as a learning machine — let alone a universal one?
One reply is that we cannot hold this against QU , since, after all, Putnam has

shown that this incomputability is really a necessary condition for a policy to be
optimal in the sense of (I*): “an optimal strategy, if such a strategy should exist,
cannot be computable . . . any optimal inductive strategy must exhibit recursive
undecidability” (Hintikka, 1965, 283, fn. 22). However, this reply seems to miss the
second component of Putnam’s charge. This is the claim that, while no measure
function can fulfill both adequacy conditions, other methods could — in particular,
the HD-method.

In the current section we turn our attention to this claim. As discussed already
in some detail by Kelly et al. (1994, 99-112), it actually turns out to be the weak
spot in Putnam’s argument. When we have this claim out of the way, we can, in
the next section, follow up on the above reply and consider the question of QU ’s
adequacy afresh.

Recall that we formulated (I*) and (II*) as conditions on inductive methods in
general, not just measure functions. Again, Putnam (1963a, 770ff) takes it to be
important for his case against Carnap that these conditions are not supposed to
be mutually exclusive a priori ; or it would be a rather moot charge that indeed no
measure function can satisfy them in tandem. No measure function can satisfy both
— conditions (I: ∆1) and (II: ∆1) are mutually exclusive — but other methods can:
and the hypothetico-deductive (HD) method that Putnam describes is to be the
case in point.

Crucially, however, Putnam’s HD method depends on the hypotheses that are
actually proposed in the course of time. The HD method fulfills (I†), which is so
phrased as to accommodate this dependency: the method will come to accept (and
forever stick to) any true computable hypothesis, if this hypothesis is ever proposed.
Thus the HD method relies on some “hypothesis stream” (Kelly et al., 1994, 107)
that is external to the method itself; and the method will come to embrace a true
hypothesis whenever this hypothesis is part of the hypothesis stream.

In computability-theoretic terminology, the method uses the hypothesis stream
as an oracle. The HD method is a simple set of rules, so obviously computable
— given the oracle. But the oracle itself might be incomputable. Indeed, since
the computable hypotheses are not effectively enumerable, any hypothesis stream
that contains all computable hypotheses is incomputable. This is why Putnam
must view the oracle as external to the HD method. The alternative is to view
the generation of a particular hypotheses stream η as part of the method itself ; but
if any such HD-with-particular-hypothesis-stream-η method — let us simply say
“HDη method” — is powerful enough to satisfy (I*), then the hypothesis stream and
hence the method HDη as a whole must be incomputable. Putnam is well aware of
this: “it is easily seen that any method that shares with Carnap the feature: what
one will predict ‘next’ depends only on what has so far been observed, will also
share the defect: either what one should predict will not in practice be computable,
or some law will elude the method altogether” (Putnam, 1963a, 773). The diagonal
proof described in section 3 readily generalizes to any method M : simply construct
a computable sequence that goes against M ’s computable predictions at each point
in time (cf. Kelly et al., 1994, 102-03).
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In short, the HDη methods are in exactly the same predicament as Carnap’s
measure functions. Conditions (I*) and (II*) are mutually exclusive — unless we
allow the method to be such that “the acceptance of a hypothesis also depends
on which hypotheses are actually proposed” (Putnam, 1963a, 773), i.e., allow the
method access to an external hypothesis stream.

But Putnam’s assumption of an (incomputable) external oracle does, of course,
raise questions of its own. The idea would be that we identify the oracle with
the elusive process of the invention of hypotheses, the unanalyzable “context of
discovery”; ultimately rooted, maybe, in “creative intuition” (Kelly et al., 1994,
108) or something of the sort. Is this process somehow incomputable? How would
we know? More importantly, “if Putnam’s favourite method is provided access to a
powerful oracle, then why are Carnap’s methods denied the same privilege?” (ibid.,
107).

Kelly et al. offer Putnam the interpretation that the HD method provides an
“architecture,” a recipe for building particular methods (in our above terminology,
HDη methods), that is “universal” in the sense that for every computable hypoth-
esis, there is a particular computable instantiation of the architecture (a particular
computable HDη method) that will come to accept (and forever stick to) the hy-
pothesis if its true. “A scientist wedded to a universal architecture is shielded from
Putnam’s charges of inadequacy, since . . . there is nothing one could have done by
violating the strictures of the architecture that one could not have done by honoring
them” (ibid., 110). Kelly et al. are not convinced, though, that their suggestion
saves Putnam’s argument, for the reason that it makes little sense for Putnam to en-
dorse a universal architecture while calling every particular instance inadequate and
therefore “ridiculous” (ibid., 110-11; here they quote Putnam, 1974, 238). There
is, however, a more fundamental objection. Again, Putnam’s argument against
Carnap would only be completed if the above way out for the HD method were
not open to measure functions. That is, it would only succeed if measure functions
could not be likewise seen as instantiations of some universal architecture. But
as a matter of fact, they can. They can be seen as instantiations of the classical
Bayesian architecture. (Cf. Romeijn, 2004. I follow Diaconis and Freedman, 1986,
11 in adopting the designation “classical Bayesian.” Also see Skyrms, 1996.)

The classical Bayesian architecture employs a countable hypothesis class (where
hypotheses are again measures over Cantor space), as well as a prior distribution
that gives positive probability to every element of this hypothesis class. Given a hy-
pothesis class H and prior w, the corresponding Bayes-with-particular-hypothesis-
class-H method ξHw — let us say “BayesH method” ξHw — is the measure func-
tion that is simply the w-weighted mean over the hypotheses in H, i.e., ξHw (xxx) :=∑
h∈H w(h)h(xxx).
The classical Bayesian architecture is a universal architecture because for every

(computable) deterministic hypothesis, there is a particular (computable) instan-
tiation of the architecture (a BayesH method where H contains the hypothesis)
that will converge on it when it is true. Just like the HD architecture is guaran-
teed to converge on (i.e, accept and stick to) every true deterministic hypothesis,
whenever it is included in the hypothesis stream, so the classical Bayesian archi-
tecture is guaranteed to converge on every true deterministic hypothesis, whenever
it is included in the hypothesis class. More generally, to also cover the case where
the true hypothesis is in fact probabilistic, a BayesH method will come to accept
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and forever stick to any true hypothesis µ, with probability 1 (“µ-almost surely”),
whenever it is in H. This property is also known as Bayesian consistency. It follows
from the exact same argument as the proof of Theorem 2, given the fact that ξHw
dominates every element in H: for every h ∈ H we clearly have for all xxx ∈ B∗ that
ξHw (xxx) ≥ w(h)h(xxx).

Every measure function over Cantor space corresponds to a BayesH method
for some H and w. We can thus interpret any measure function as relying on
a class of hypotheses — meeting Putnam’s insistence on the indispensability of
theory. Moreover, this point of view naturally accommodates a simplicity ordering
of hypotheses that Putnam (inspired by Kemeny, 1953) envisages a refined HD
method to employ (1963a, 775-77), and that in (1963b, 301-02) he proposes as
a line of further investigation for inductive logic: “given a simplicity ordering of
some hypotheses, to construct a c-function which will be in agreement with that
simplicity ordering, that is, which will permit one to extrapolate any one of those
hypotheses, and which will give the preference always to the earliest hypothesis
in the ordering which is compatible with the data” (ibid., 302). The solution to
this problem is the measure function BayesH with a prior w that expresses the
desired simplicity ordering on the hypotheses in H, assigning lower probability to
hypotheses further away in the ordering.

In conclusion of this discussion, there is a perfect analogy between the situ-
ation for the HD method and for the classical Bayesian method. No particular
measure function — BayesH method — can satisfy both (I*) and (II*). But, sim-
ilarly, no particular HDη method can satisfy both (I*) and (II*). Nevertheless,
the HD architecture is universal. But, similarly, the classical Bayesian architecture
is universal. From this perspective, Putnam’s argument, purporting to show that
measure functions have fundamental shortcomings that other methods do not, fails.

7. A universal learning machine

We have observed that (I*) and (II*) are mutually exclusive: no particular
method can satisfy both. Let us then follow up on the earlier suggestion to not
dismiss the Solomonoff-Levin function QU out of hand simply because it does not
satisfy the special cases (I: ∆1) and (II: ∆1) — that it cannot do the impossible.
Instead, let us conclude our investigation with a fresh look at the question: could
QU be an adequate characterization of a “cleverest possible,” a universal learning
machine?

We can still, with Putnam, divide this question into two parts. First, in the spirit
of (I*), will QU be able to accept every reasonable (reasonably effective) hypothesis,
if it is true? Second, in the spirit of (II*), is QU itself still a reasonable (reasonably
effective) method?

To start with the first. Could QU be called universal in the sense that it is able to
track any reasonable hypothesis? The best vantage point to address this question is
to view QU as an instantiation of the classical Bayesian architecture that we saw in
the previous section. It turns out that the measure functions QU are the classical
Bayesian methods that employ the class of all Σ1 hypotheses (see Sterkenburg,
2016). To be exact, the measure functions QU are precisely the BayesHΣ1 methods
ξΣ1
w with semi-computable prior w over the hypothesis class HΣ1

of all Σ1 measures.
(In particular, the choice of universal machine U corresponds to the choice of semi-
computable prior w over HΣ1

.) By Bayesian consistency, it follows that QU will
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almost surely converge on any true Σ1 hypothesis. (This is again, in essence,
Theorem 2 above, though I only stated it for ∆1 measures. See the Appendix for
details.)

The hypothesis class embodies the regularities that can be extrapolated, the
patterns that should gain higher instance confirmation from supporting instances.
Thus we may rephrase our question: is the hypothesis class HΣ1

sufficiently wide,
sufficiently general?

Before we turn to an answer, we connect this question to an important alternative
perspective on QU . This is the interpretation of QU as an “a priori” distribution
over the symbol sequences. Measure QU “corresponds to what we intuitively un-
derstand by the words ‘a priori probability,’” Zvonkin and Levin (1970, 104) write,
because “if nothing is known in advance about the properties of [a] sequence, then
the only (weakest) assertion we can make regarding it is that it can be obtained
randomly with respect to [QU ]”. This is an illustration of how the question of
the generality of HΣ1

— the class of candidate measures that may be assumed to
generate the data — is related to the question of the adequacy of QU as an a priori
probability assignment on the data sequences. Ultimately, the latter perspective
is associated with the idea that inductive reasoning attains justification from some
objective or rational starting point. It is in this spirit that Carnap (1962) writes
that against our credences that are derived from a rational initial credence function
(i.e., measure function), “Hume’s objection does not hold, because [we] can give
rational reasons for it” (ibid., 317): the rationality requirements that are codified
as axioms constraining the measure function. It also seems in this spirit that Li and
Vitányi (2008), presenting QU as a “universal prior distribution,” make reference
to Hume and claim that the “perfect theory of induction” invented by Solomonoff
“may give a rigorous and satisfactory solution to this old problem in philosophy”
(ibid., 347).

The problem with this idea is, to begin, that there is still subjectivity involved
in pinning down the exact starting point. The choice of initial credence function
(measure function) is “guided (though not uniquely determined) by the axioms of
inductive logic” (Carnap, 1971, 30, emphasis mine). Likewise, the definition of QU
still leaves open the choice of U — from the classical Bayesian perspective, the choice
of semicomputable prior w over HΣ1

(cf. Sterkenburg, 2016, 471-74). One might
reply, with Jeffrey (1973, 302), that what we have here is only a “latituditarianism”
where different possible choices “are sufficiently similar so that their differences are
swamped out by experience,” a result of having priors over the same hypothesis
class. Indeed, bracketing this issue here, we still face the more fundamental problem:
the problem of justifying the stipulated constraints on the measure functions, i.e.,
from the classical Bayesian perspective, the problem of justifying the choice of
hypothesis class. And that brings us back to the question of the generality of the
hypothesis class.

As Howson (2000) argues at length, the choice of prior distribution — what
hypotheses are assigned nonzero prior probability — constitutes our inevitable
“Humean inductive assumptions.” “According to Hume’s circularity thesis, every
inductive argument has a concealed or explicit circularity. In the case of proba-
bilistic arguments . . . this would manifest itself on analysis in some sort of prior
loading in favour of the sorts of ‘resemblance’ between past and future we thought
desirable. Well, of course, we have seen exactly that: the prior loading is supplied by



14 TOM F. STERKENBURG

the prior probabilities” (ibid., 88). (Also see Romeijn, 2004, 357ff.) It is important
for the observation that Bayesian methods cannot escape Hume’s argument that
inductive assumptions must be restrictive: that it is impossible to have a prior over
everything that could be true. That is, from the classical Bayesian perspective, it
must be the case that no hypothesis class H can contain every possible hypothesis,
that no H is fully general.

Could HΣ1
, then, escape Hume’s argument — is HΣ1

fully general? Naturally, it
is not. As a restriction on what hypotheses could ever be true, really a metaphysical
assumption on the world, not only would the restriction to any specific level of
effective computability (∆1, Σ1, . . . ) look arbitrary: the assumption of effective
computability itself is a stipulation that wants motivation.

8. An optimal learning machine

There is, however, an alternative interpretation still. This interpretation is to
take the elements of the class HΣ1

, not as hypotheses about the origin of the data,
but as competing learning machines.

This interpretation is actually more in line with Putnam’s demand that the
cleverest possible learning machine should be able to eventually pick up any pattern
that our actual inductive methods would. It is also more in line with Solomonoff’s
original aim that given “a very large body of data, the model is at least as good
as any other that may be proposed” (1964, 5, emphasis mine). (Noteworthy, more-
over, is that Solomonoff’s basic idea of sequential prediction by a mixture over the
elements of a general class H is the starting point of a currently very active branch
of machine learning; here the stated goal is indeed to predict at least as well as any
member of a pool H of competing “experts” without assumptions on the origin of
the data. See, for instance, Vovk, 2001a; Cesa-Bianchi and Lugosi, 2006.)

Let us see what we get when we thus reinterpret the Σ1 measures as all possible
learning machines. As a start, Theorem 2 could be reinterpreted as a fully general
merging-of-opinions result (see Huttegger, 2015): every learning machine antici-
pates with certainty that QU ’s confirmation values converge to its own. Moreover,
it is easy to derive the following more “absolute” fact. For any learning machine
ν, there is a constant bound on the surplus logarithmic loss (expressing the diver-
gence between the given confirmation values and the symbols that actually obtain)
incurred by QU relative to this learning machine ν, on any symbol sequence (see
the Appendix for details). Thus, if we take the Σ1 measures as all possible learning
machines, then QU is a universal learning machine in the following powerful sense:
it is a learning machine that compared to any other learning machine will always
come to perform at least as well.

We may brand this the optimality interpretation: rather than reliable (guar-
anteed with certainty to converge on the true hypothesis), QU is optimal in the
sense that it is guaranteed to converge on the true hypothesis if any learning ma-
chine does. The learning machine QU is vindicated in the sense of Reichenbach (see
Salmon, 1991).

If we accept this, then QU is a universal learning machine — defying Putnam’s
lesson that there can be no such thing (see, in particular, the discussion of van
Fraassen, 2000, 257ff against a Reichenbachian conception of a universal inductive
rule). As we have seen, the crucial move to unlock this possibility after all, hence
the crucial precondition to our optimality interpretation, is the expansion to the
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nondiagonalizable class of Σ1 elements. The moment has come to answer the ques-
tion whether this move is reasonable at all. Specifically, we need to answer the
question that is the analogue in this interpretation to the first question we started
the previous section with: is it reasonable to identify all possible learning machines
with the Σ1 measures?

Most importantly, is the class of Σ1 measures not too wide — does a Σ1 measure
that fails to be ∆1 still constitute a proper learning machine? As a special case,
we have returned to the second question we started the previous section with: does
QU itself constitute a reasonable (reasonably effective) method?

Now an incomputable measure function is certainly “impractical” (Cover et al.,
1989, 863), or indeed “of no use to anybody” (Putnam, 1963a, 768) in any practical
way — but that already goes for any measure function that is computable but not
in some sense efficiently so. The minimal requirement that Putnam was after
is computability in principle, i.e., given an unlimited amount of space and time.
Indeed, under the Church-Turing thesis, computability is just what it means to be
(in principle) implementable as an explicit method — computability is the minimal
requirement to be a method at all. On this view, a ∆1 measure is a measure that
corresponds to a method that (given unlimited resources) for any finite sequence
returns the probability that the measure assigns to it. But, likewise, a Σ1 measure
still corresponds to a method that (given unlimited resources) for any finite sequence
returns increasingly accurate approximations of its probability. So, albeit in a
weaker sense, a Σ1 measure is still connected to some explicit method. (Cf. Martin-
Löf, 1969, 268 on his choice of Σ1 randomness tests: “on the basis of Church’s thesis
it seems safe to say that this is the most general definition we can imagine as long
as we confine ourselves to tests which can actually be carried out and are not pure
set theoretic abstractions.”)

This seems good — but we passed over a crucial detail. This is the fact that
for the purpose of inductive reasoning, we are actually interested in the conditional
probabilities issued by the measure functions: those are the confirmation values.
For that reason inductive methods or learning machines should actually be identified
with two-place confirmation functions rather than the underlying one-place measure
functions. But this has repercussions for the level of effectiveness.

This aspect is easy to oversee, because for the ∆1 measures it makes no difference.
If a measure µ is ∆1, so µ as a function on finite sequences is computable, then (and
only then) the two-place function µ(· | ·), given by µ(xn+1 | xxxn) = µ(xxxn+1)/µ(xxxn),
is computable as well. Thus the ∆1 measures correspond precisely to the ∆1 con-
ditional measures, or confirmation functions. However, for the Σ1 measures this
does make a difference. In particular, the conditional Solomonoff-Levin function
QU (· | ·) is no longer Σ1.

As a matter of fact, this follows from Putnam’s original diagonalization argu-
ment, that shows the incompatibility of the conditions (I) and (II) that we started
with in section 3. Namely, if QU (· | ·) were Σ1, then QU would satisfy (II): if, on
some infinite sequence xxxω, the value QU (xn+1 | xxxn) will for large enough n always
be above 0.5, then we can computably locate an m with QU (xm+1 | xxxm) > 0.5.
For completeness, the following proof recounts the details of the diagonalization
(cf. Putnam, 1963a, 768f, Putnam, 1963b, 299). (A different proof has been given
by Leike and Hutter, 2015, 370-71.)

Proposition 3. QU (· | ·) /∈ Σ1.
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Proof. Suppose towards a contradiction that QU (· | ·) is Σ1, so that (II) holds for
QU . We can now construct a computable infinite sequence xxxω as follows. Start
calculating QU (0 | 0n) from below in dovetailing fashion for increasing n ∈ N,
until an n0 such that QU (0 | 0n0) > 0.5 is found (since QU satisfies (I) such
n0 must exist). Next, calculate Q(0 | 0n010n) for increasing n until an n1 with
Q(0 | 0n010n1) > 0.5 is found. Continuing like this, we obtain a list n0, n1, n2, ...
of positions; let xxxω := 0n010n110n21 . . . . Sequence xxxω is computable, but by con-
struction the instance confirmation of xxxω will never remain above 0.5, contradicting
(I). �

Now we could argue that QU (· | ·) is still ∆2 or limit computable, meaning
that it still corresponds to a method that converges to any given finite sequence’s
probability in the limit (cf. ibid., 365). But the problem runs deeper. The problem
is that we cannot recover the optimality interpretation for conditional measures.

Namely, if we accept that a ∆2 confirmation function (i.e., a ∆2 conditional
measure) still counts as a possible learning machine, then we should identify the
possible learning machines with the class of ∆2 confirmation functions (rather than
the original class of confirmation functions with underlying Σ1 measure functions).
That means that the sought-for optimality would have to be relative to this class.
But QU (· | ·) is not optimal among the ∆2 confirmation functions — no ∆2 confir-
mation function is. This is because the class of ∆2 measure functions, that precisely
induces the class of ∆2 confirmation functions, is diagonalizable: just like in the
∆1 case, one can, for any given ∆2 measure function, construct a ∆2 sequence that
it will never converge on.

Nor can we take a step back and settle for the class of Σ1 confirmation functions.
Once again it follows from Putnam’s argument above that there cannot exist uni-
versal elements in the class of measure functions that induce the Σ1 confirmation
functions: for any given Σ1 conditional measure one can construct a Σ1 conditional
measure (indeed even a computable sequence) it will never converge on.

All of this easily generalizes to higher levels (“relativizes” in computability-
theoretic jargon): the strategy for optimality cannot work on any level in the
arithmetical hierarchy.

9. Conclusion

Thus we conclude our story on an unhappy note. We have discussed how Put-
nam’s diagonal argument shows that no method whatsoever — not just the methods
expressed as measure functions — can satisfy at the same time two conditions to
qualify as a universal learning machine: the one on the ability to detect every
true effectively computable pattern, the other on the effective computability of the
method itself. Faced with this impossibility result, we allowed ourselves to con-
sider as candidate universal learning machines measure functions that only satisfy
a weaker pair of conditions; specifically, we considered the Solomonoff-Levin mea-
sure. The overarching strategy we identified to bring versions of the two conditions
together is to locate a natural class of effective measure functions that cannot be
diagonalized, i.e., that contains universal elements. If one could reasonably iden-
tify this class of measure functions with all possible learning machines, then the
universal elements would be vindicated as universally optimal learning machines:
they constitute learning machines that are in a strong sense at least as good as
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any other learning machine. In particular, we saw that the Solomonoff-Levin mea-
sures were constructed as universal elements among the Σ1 measures — and so,
our hope ran, they could qualify as such optimal learning machines. Unfortunately,
we found a fatal flaw in this strategy: learning machines should be identified with
two-place confirmation (conditional measure) functions rather than the underlying
one-place measure functions. This affects their effectiveness properties, which ulti-
mately means that no level in the arithmetical hierarchy yields an undiagonalizable
class of learning machines. Putnam’s argument stands.

Appendix

Theorem 2 is in the literature (Li and Vitányi, 2008, 352-56; Hutter, 2003, 2062; Poland
and Hutter, 2005, 3781) usually presented as a consequence of (variations of) the following
stronger result, first shown by Solomonoff (1978, 426-27). Let us introduce as a measure
of the divergence between two distributions P1 and P2 over {0, 1} the squared Hellinger
distance

(1) H(P1, P2) :=
∑

x∈{0,1}

(√
P1(x)−

√
P2(x)

)2

.

Then, for every µ ∈ ∆1, the expected infinite sum of divergences between QU and µ

(2) EXω∼µ

[
∞∑
n=0

H (µ(· | Xn), QU (· | Xn))

]

is bounded by a constant.
To see how (I: ∆1) follows from this constant bound, suppose that QU does not satisfy

(I: ∆1): there is a µ ∈ ∆1 such that with probability ε > 0 there is a δ > 0 such that
|µ(xn+1 | xxxn)−QU (xn+1 | xxxn)| > δ infinitely often. But that means that with positive
probability the infinite sum of squared Hellinger distances is infinite, and the expectation
(2) cannot be bounded by a constant.

The proof of the constant bound on (2) starts with the observation that the distance
H(P1, P2) is bounded by the Kullback-Leibler divergence

(3) D(P1 ‖ P2) := EX∼P1

[
ln
P1(X)

P2(X)

]
.

The term − lnP (xxx) expresses the logarithmic loss of P on sequence xxx, a standard

measure of prediction error; the difference − lnP2(xxx) − (− lnP1(xxx)) = ln P1(xxx)
P2(xxx)

expresses

the surplus prediction error or regret of P2 relative to P1 on sequence xxx. Thus the Kullback-
Leibler divergence (3) expresses the expected regret of P2 relative to P1.

Using H(P1, P2) ≤ D(P1 ‖ P2) one can work out that (2) is bounded by

(4) EXω∼µ

[
∞∑
n=0

ln
µ(Xn+1 | Xn)

QU (Xn+1 | Xn)

]
.

Now by the universality of QU in the class of Σ1 measures we know that QU dominates
µ: for every finite xxx there is a constant c such that QU (xxx) ≥ µ(xxx)/c. Indeed we can
identify c with 1/w(µ), where w is the prior over hypothesis class HΣ1 in the classical
Bayesian representation ξΣ1

w of QU . This fact allows us to derive that for every sequence
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xxxm of any length m

m−1∑
n=0

ln
µ(xn+1 | xxxn)

QU (xn+1 | xxxn)
= ln

m−1∏
n=0

µ(xn+1 | xxxn)

QU (xn+1 | xxxn)

= ln
µ(xxxm)

QU (xxxm)

≤ − lnw(µ).(5)

This concludes the proof that (2) is bounded by a constant: since the bound (5) holds for
any individual sequence of any length, it also holds for (4) and thus for (2).

Theorem 2 was in the main text only stated for measures µ in ∆1: measures over
{0, 1}ω. To retrieve the merging-of-opinions variant of this result mentioned in the main
text, we need to make it go through for Σ1 measures, measures over {0, 1}ω ∪ {0, 1}∗
— indeed we need to make precise what “almost surely” should mean for such “semi-
measures.” We can do this as follows. Let a ν ∈ Σ1 be represented by a measure ν′ over
{0, 1, s}ω, with ‘s’ a “stopping symbol”: we have ν′(xxx0) + ν′(xxx1) + ν′(xxxs) = ν′(xxx) and we
stipulate ν′(xxx) = ν(xxx) and ν′(xxxss) = ν′(xxxs) for all xxx ∈ {0, 1}∗. Then for all ν ∈ Σ1 we
have that Q′U dominates ν′, hence ν′ � Q′U and the Blackwell-Dubins theorem applies as
before.

The absolute optimality property mentioned in the main text is just the individual
sequence bound (5) above. To reformulate, for any ν ∈ Σ1, the sum of surplus prediction
errors (regrets) of QU relative to ν will always (for any sequence xxxm of any length m) be
bounded by a constant:

m−1∑
n=0

(− lnQU (xn+1 | xxxn)− (− ln ν(xn+1 | xxxn))) ≤ − lnw(ν).
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