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Abstract

Virtual bargaining theory suggests that social agents aim to resolve
non-cooperative games by identifying the strategy profile(s) which they
would agree to play if they could openly bargain. The theory thus of-
fers an explanation of how social agents resolve games with multiple
Nash equilibria. One of the main questions pertaining to this theory
is how the principles of the bargaining theory could be applied in the
analysis of hypothetical bargaining in non-cooperative games. I pro-
pose a bargaining model based on the benefit-equilibrating bargaining
solution (BES) concept for non-cooperative games, broadly in line with
the principles underlying Conley and Wilkie’s (2012) ordinal egalitar-
ian solution for Pareto optimal point selection problems with finite
choice sets. I provide formal characterizations of the ordinal and the
cardinal versions of BES, discuss their application to n-player games,
and compare model’s theoretical predictions with the data available
from several experiments involving ‘pie games’.

1 Introduction
A central solution concept of the standard game theory is the Nash equilib-
rium – a pure or mixed strategy profile which is such that no rational player
is motivated to unilaterally deviate from it by playing a different strategy.
At least intuitivelly, however, some Nash equilibria are more convincing ra-
tional solutions of games than others: Even a simple game may have a Nash
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equilibrium which seems unlikely to be played by players who understand the
structure of the game and believe each other to be intelligent decision-makers.

Consider the Hi-Lo game depicted in Figure 1, in which two players si-
multaneously and independently choose between the two pure strategies: hi
and lo. The left and the right number in each cell represents row and column
player’s payoffs respectively1.

hi lo

hi 2, 2 0, 0

lo 0, 0 1, 1

Figure 1: Hi-Lo game

There are two pure strategy Nash equilibria in this game: (hi, hi) and
(lo, lo). There is a third Nash equilibrium in mixed strategies, in which both
players randomize between the pure strategies hi and lo with probabilities
1/3 and 2/3 respectively. From the perspective of standard game theory,
every Nash equilibrium is a rational solution of the game. For many people,
the attainment of the Nash equilibrium (hi, hi) appears to be an intuitively
‘obvious’ definitive resolution of this game: It is the best outcome for both
players and there is no conflict of interests in this game. Experimental results
support this intuition by revealing that over 90% of the time people opt for
strategy hi in this game2. The standard game theory cannot single out the
Nash equilibrium (hi, hi) neither as unique rational solution, nor as a more
likely outcome of this game.

This prompted the emergence of multiple theories which purport to ex-
plain how players resolve games with multiple rational solutions. One of
the more recent approaches is the theory of virtual bargaining suggested by
Misyak and Chater (2014) and Misyak et al. (2014). It is a hypothetical,
or fictitious, bargaining model which aims to provide an individualistic ex-
planation of how players may resolve a non-cooperative game by identifying
a feasible and mutually advantageous solution – an outcome which can be

1Unless it is stated otherwise, the payoff numbers in the matrices are Von Neumann and
Morgenstern utilities. The payoffs are assumed to represent all the relevant motivations
of players, including pro-social preferences, such as inequity aversion, altruism, sensitivity
to social norms, and so on.

2See Bardsley et al. (2010) who, among a number of other games, report results from
experiments with two versions of the Hi-Lo game, where the outcome (hi, hi) yields each
player a payoff of 10 while the outcome (lo, lo) yields either 9 or 1, depending on the
gameâs version.
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implemented via joint actions of self-oriented decision-makers and is indi-
vidually advantageous for every interacting individual. The theory suggests
that decision-makers choose their strategies on the basis of what strategy
profile(s) they would agree to play if they could openly bargain – engage in
real negotiations, in which each player can communicate his or her offers to
the other players and receive their counteroffers.

The idea of hypothetical bargaining warrants further theoretical and em-
pirical investigation for three reasons. First, every standard bargaining so-
lution is, essentially, an equilibrium refinement. In bargaining games where
players’ agreements are not binding, the set of feasible agreements is the set of
correlated equilibria. A bargaining solution is a correlated equilibrium which
satisfies a number of desirable properties, which can be interpreted as a ex-
pectation of the outcome of an open bargaining process involving self-oriented
individuals of roughly equal bargaining power (for extensive discussion, see
Myerson (1991). It seems reasonable to believe that certain formal proper-
ties of bargaining solutions that decision-makers find desirable may also be
deemed relevant by players searching for mutually advantageous solutions of
non-cooperative games.

Second, bargaining theory is a branch of non-cooperative game theory:
The bargaining solution concepts rely on the same basic principles of ortho-
dox game theory as solution concepts of non-cooperative games. A bargainer
is a self-oriented decision-maker – an individual who aims to maximally ad-
vance his/her personal interests, and only cares about the interests of the
other interacting individuals insofar as their actions may promote or hinder
the advancement of his or her own personal interests. Like a best-response
reasoner, a hypothetical bargainer deviates from the agreement if a unilateral
deviation is personally beneficial. For this reason, hypothetical bargaining
solutions are compatible with the orthodox notion of individual rationality,
and have conceptually appealing stability properties.

Third, the idea that people aim to resolve non-cooperative games by
identifying mutually advantageous solutions seems to be supported by ex-
perimental results. The experiment of Colman and Stirk (1998) with coor-
dination games suggests that a substantial proportion of people use some
notion of mutual advantage when reasoning about their choice options in
non-cooperative games.

One of the fundamental questions which requires further conceptual and
empirical exploration is what properties a strategy profile must have in order
to be identified by hypothetical bargainers as the hypothetical bargaining
solution of a game. Without an adequate answer to this question, a rigorous
empirical testing of this new theory is not possible. Misyak and Chater
(2014) use the Nash (1950) bargaining solution as an approximation to what
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hypothetical bargainers would identify as the bargaining solution of a non-
cooperative game.

In this paper, I argue that the use of Nash bargaining solution for the
analysis of hypothetical bargaining in non-cooperative games is problematic.
I will suggest an alternative benefit-equilibrating hypothetical bargaining solu-
tion (later abbreviated as BES) concept for non-cooperative games, broadly
in line with the principles underlying the ordinal egalitarian solution for
Pareto-optimal point selection problems with finite choice sets suggested by
Conley and Wilkie (2012). I will argue that the proposed solution concept
can be applied to cases where interpersonal comparisons of decision-makers’
payoffs in the original game are assumed not to be meaningful. I offer both
the ordinal and the cardinal version of this solution concept and discuss its
properties, application to n-player games, and theoretical predictions using
a number of experimentally relevant examples.

The rest of the paper is structured as follows. In section 2 I discuss the
virtual bargaining theory and the reasons of why the application of the stan-
dard Nash bargaining solution to non-cooperative games is both conceptually
and empirically problematic. In sections 3 and 4 I propose the ordinal and
cardinal versions of BES and discuss their formal properties. I also discuss
the application of BES to n-player games. In section 5 I discuss the BES pre-
dictions in several experimentally relevant games. With section 6 I conclude
and discuss the explanatory scope of the proposed model.

2 Hypothetical Bargaining
According to the theory of virtual bargaining, a player who reasons as a
hypothetical bargainer interprets all the pure and mixed strategy profiles of
a game as possible agreements – outcomes which the players could attain
via specific combinations of their actions. A hypothetical bargainer then
identifies a set of feasible agreements. Each feasible agreement is a strategy
profile, such that no player can exploit the other players by unilaterally de-
viating from it. A decision-maker who reasons as a hypothetical bargainer
then identifies a feasible agreement (or agreements) which s/he believes the
players would agree to play in open bargaining, and plays his/her part in
realizing that agreement, provided that s/he has a reason to believe that
the other players are hypothetical bargainers who will carry out their end of
the agreement. Each agreement identified by hypothetical bargainers as the
hypothetical bargaining solution of a game is assumed to be the mutually
beneficial and agreeable solution of a game. Misyak and Chater suggest that
the ‘goodness of a feasible bargain is, following Nash’s theory of bargaining,
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the product of the utility gains to each player (relative to a no-agreement
baseline) of adhering to that agreement’ (Misyak and Chater 2014: 4).

The Nash bargaining solution has been developed to resolve a specific
type of game, known as the Nash bargaining problem. In the standard bar-
gaining problem, each player’s utility function is defined over the set of lot-
teries over all the possible distributions of some divisible resource. The Nash
bargaining solution of the standard bargaining problem is a unique Pareto
optimal distribution of the good. In other types of non-cooperative games,
however, players’ utility functions may represent all kinds of motivations
which are relevant for player’s evaluation of the possible outcomes. Because
of this, a non-cooperative game may have multiple Pareto optimal feasible
agreements, even multiple agreements which maximize the Nash product,
and each agreement may be associated with a different allocation of personal
payoff gains. Since hypothetical bargainers are assumed to be self-oriented
decision-makers, it stands to reason to assume that they would not be indif-
ferent between agreements associated with different allocations of personal
payoff gains, and so the question of how a conflict over different alterna-
tive allocations of players’ personal payoff gains would be resolved becomes
important.

For example, consider the two player coordination game with three Pareto
optimal outcomes3 depicted in Figure 2a. The game has four pure strat-
egy Nash equilibria: three Pareto optimal Nash equilibria (s1, t1), (s2, t2),
(s3, t3) and a Pareto inefficient Nash equilibrium (s4, t4). The game also
has eleven Nash equilibria in mixed strategies. Every mixed strategy Nash
equilibrium yields each player a lower personal payoff that any of the pure
strategy Nash equilibria. Notice that the Nash equilibrium (s4, t4) is the
profile of players’ maximin strategies, which maximize the payoff that each
player can guarantee to himself/herself, irrespective of what the other player
does.

Suppose that both players identify the Nash equilibrium (s4, t4) as the
disagreement profile. Relative to the disagreement point, the product of
players’ payoff gains associated with the Nash equilibria (s1, t1), (s2, t2) and
(s3, t3) is 9. The players should identify all three Pareto optimal Nash equi-
libria as the Nash bargaining solutions of this game. Notice, however, that
each of the three solutions is associated with a different allocation of play-
ers’ personal payoff gains. The Nash equilibria (s1, t1) and (s3, t3) maximize
the personal payoff of one of the players, but yield a payoff which is only

3An allocation of payoffs associated with an outcome is said to be Pareto optimal if
there is no alternative outcome associated with an allocation of payoffs which makes at
least one interacting player better off without making any other player worse off.
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t1 t2 t3 t4

s1 10, 2 0, 0 0, 0 0, 1

s2 0, 0 4, 4 0, 0 0, 1

s3 0, 0 0, 0 2, 10 0, 1

s4 1, 0 1, 0 1, 0 1, 1

a

L R B

L 5, 6 0, 0 0, 0

R 0, 0 6, 5 0, 0

B 0, 0 0, 0 5, 5

b

L R B

L 5, 6 0, 0 0, 0

R 0, 0 6, 5 0, 0

B 0, 0 0, 0 7, 5

c

Figure 2: Coordination games with multiple weakly Pareto optimal outcomes

slightly higher than the maximin payoff for the other. If one of the two
Nash equilibria were implemented, one of the players would forego an oppor-
tunity to maximally advance his/her personal interests with an alternative
available agreement, and would get a payoff gain which, relative to his/her
disagreement payoff, yields only 1/9 of the maximum payoff gain attainable
to him/her in this game4. The Nash equilibrium (s2, t2) is the second-best
solution of the game for both players, which yields each player 1/3 of the
total maximum attainable payoff gain. Since hypothetical bargainers are
assumed to be self-oriented decision-makers, they should not be indifferent
between the three Pareto optimal Nash equilibria, even though each of them
is associated with the same product of players’ payoff gains. The Nash bar-
gaining solution concept does not answer the question of how self-interested
individuals would resolve such a conflict over allocations of their personal
payoff gains.

Given the set of possible alternative allocations of payoff gains available
in this game, a disadvantaged party could raise an objection that an offer

4Notice that each player’s disagreement payoff is 1. The maximum personal payoff
attainable in this game is 10. Relative to disagreement payoff, the maximum payoff gain
that each player can attain in this game is 9. Relative to disagreement payoff of 1, the
payoff gain of the disadvantaged player associated with the Nash equilibria (s1, t1) and
(s3, t3) is 1. Therefore, the disadvantaged player gets 1/9 of his/her maximum payoff gain
attainable in this game.
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to implement either the (s1, t1) or (s2, t2) via joint actions is ‘unfair’, and
propose a counter-offer. Notice that the disadvantaged party could force the
other player to consider a counter-offer by threatening him/her to end the
negotiations and play his/her maximin strategy, thus forcing that player to
best respond by playing his/her maximin strategy as well. By doing this, a
disadvantaged player would only loose a payoff gain of 1.

Given each player’s ability to reject the ‘unfair’ offer of the other player by
threatening to end the negotiations, rational players should settle on playing
(s2, t2): Relative to players’ maximin payoffs, it yields each player the same
share of the maximum attainable payoff gain and ensures each player a payoff
which is higher than his/her disagreement payoff.

The model of hypothetical bargaining based on the Nash bargaining so-
lution fails to account for people’s strategy choices in a considerable number
of experimentally relevant games. For example, coordination game 3b has
three weakly Pareto optimal5 pure strategy Nash equilibria (L,L), (R,R)
and (B,B), as well as four Nash equilibria in mixed strategies. Every mixed
strategy Nash equilibrium yields both players a lower personal payoff than
any of the pure strategy Nash equilibria. Rational players should there-
fore prefer any pure strategy Nash equilibrium over any mixed strategy
Nash equilibrium as the bargaining solution of this game6. Assuming that
players’ disagreement profile is the mixed strategy maximin Nash equilib-
rium

(
5
17
L, 6

17
R, 6

17
B; 6

17
L, 5

17
R, 6

17
B
)
, they should identify the Nash equilib-

ria (L,L) and (R,R) as the Nash bargaining solutions of this game. The
players would also identify the Nash equilibria (L,L) and (R,R) as the
Nash bargaining solutions if they were to use the mixed Nash equilibrium(

5
11
L, 6

11
R; 6

11
L, 5

11
R
)
as the disagreement profile. Relative to mixed strat-

egy Nash equilibria
(

5
11
L, 6

11
B; 1

2
L, 1

2
B
)
and

(
1
2
R, 1

2
B; 5

11
R, 6

11
B
)
, they would

identify the profile (L,L) and the profile (R,R) as the Nash bargaining so-
lution of this game respectivelly. Notice that the Nash equilibrium (B,B)
would never be identified the Nash bargaining solution, irrespective of which
mixed strategy Nash equilibrium were chosen as the disagreement profile.
Hypothetical bargainers should therefore not be observed choosing strategy
B at all. Experimental results, however, reveal that approximately 90% of
people opt for B in this game (see, for instance, Crawford et al. 2008).

It could be argued that people’s behaviour observed in game 3b is de-
termined by coordination success considerations, which become relevant in

5An allocation of payoffs associated with an outcome is said to be Pareto optimal in
a weak sense if there is no alternative outcome associated with an allocation of payoffs
which makes every interacting player strictly better off.

6The four mixed strategy Nash equilibria are: (1)
(

5
11L,

6
11R; 6

11L,
5
11R

)
,

(2)
(

5
17L,

6
17R, 6

17B; 6
17L,

5
17R, 6

17B
)
, (3)

(
5
11L,

6
11B; 1

2L,
1
2B
)
, (4)

(
1
2R, 1

2B; 5
11R, 6

11B
)
.
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non-cooperative games with multiple bargaining solutions: Since the game
3a has two indistinguishable Nash bargaining solutions, the probability of
both players choosing the same solution is 1/2. The ex ante strictly Pareto-
dominated Nash equilibrium (B,B) is unique. Given the coordination success
rate, the ex post expected payoff associated with the Nash equilibrium (B,B)
is higher than the one associated with the Nash bargaining solutions. The ex
ante Pareto optimal bargaining solutions (L,L) and (R,R) are thus ex post
Pareto dominated by the Nash equilibrium (B,B)7.

However, the model also fails to account for decision-makers’ observed
choices game 3b, which has three weakly Pareto optimal pure strategy Nash
equilibria: (L,L), (R,R) and (B,B). Each of the four mixed strategy Nash
equilibria yields each player a lower personal payoff than any of the pure
strategy Nash equilibria. Relative to players’ payoffs associated with the
maximin mixed strategy Nash equilibrium

(
5
17
L, 6

17
R, 6

17
B; 42

107
L, 35

107
R, 30

107
B
)
,

as well as payoffs associated with any other mixed strategy Nash equilibrium
of this game8, the Nash equilibrium (B,B) should be identified as the unique
Nash bargaining solution of this game. Experiments reveal that only 1/3 of
people opt for B in this game, while approximately 2/3 of people opt either
for strategy L or strategy R, which indicates that some kind of benefit distri-
bution considerations may be at play (for experimental results, see Crawford
et al. 2008).

In the following sections, I will argue that a certain type of comparisons
of foregone opportunities plays an important role in hypothetical bargain-
ing, and that BES offers a plausible explanation of how such comparisons
of foregone opportunities may influence players’ choices in non-cooperative
games.

3 The Ordinal BES

3.1 The Intuition Behind the Ordinal BES

In negotiations, every self-oriented individual wants to maximize the ad-
vancement of personal interests. S/he is therefore motivated to push the
other bargaining party or parties to accept as many of his/her initial de-
mands as possible. If bargainers have conflicting interests, an agreement can
only be reached by at least one of them making a concession – giving up
some of the initial demands. A self-oriented negotiator will seek to reach an

7This coordination aid has been considered by Bardsley et al. (2010) and Faillo et al.
(2016).

8(1)
(

5
11L,

6
11R; 6

11L,
5
11R

)
, (2)

(
5
11L,

6
11B; 7

12L,
5
12B

)
, (3)

(
1
2R, 1

2B; 7
13R, 6

13B
)
.
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agreement which minimizes the number of his/her foregone initial demands.
S/he can evaluate the ‘goodness’ of each feasible agreement on the basis of
the number of initial demands that s/he would have to forego in order for
that agreement to be reached: An agreement which could be reached with
a smaller number of foregone initial demands should always be deemed per-
sonally more beneficial than the one which would require a larger sacrifice of
initial demands (for a detailed discussion, see Zhang and Zhang 2008).

The bargainers can use another criterion for evaluating the feasible bar-
gaining agreements. Assuming that each bargainer knows the set of each
opponent’s initial demands, s/he can evaluate the feasible agreements by
comparing the number of initial demands that s/he would have to give up
in order to reach a particular agreement with the number of initial demands
that would have to be sacrificed by others: An agreement which, relative
to the number of initial demands given up by other bargainers, requires the
bargainer to give up less of the initial demands should be deemed more ac-
ceptable by him/her than any agreement which, relative to the numbers of
foregone initial demands of others, requires him/her to give up more of the
initial demands.

The ordinal BES is based on the principle that hypothetical bargainers
evaluate the feasible agreements by comparing the distributions of foregone
initial demands among the interacting bargainers associated with each agree-
ment: An agreement with a more equitable distribution of foregone initial
demands among the interacting bargainers is deemed more acceptable than
the one with a less equitable distribution of foregone initial demands.

The principles underlying the BES can be applied to analysis of non-
cooperative games where players only have ordinal information about each
other’s preferences over outcomes. For example, consider a simple ordinal
coordination problem depicted in Figure 4. The left and the right num-
ber in each cell represents row and column player’s ordinal preferences over
outcomes respectively.

t1 t2 t3 t4

s1 100, 3 0, 0 0, 0 0, 0

s2 0, 0 60, 5 0, 0 0, 0

s3 0, 0 0, 0 40, 9 0, 0

s4 0, 0 0, 0 0, 0 20, 1

Figure 3: Ordinal coordination game
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Since mixed outcomes can only be defined with cardinal payoffs, the
players who reason as hypothetical bargainers should identify the four pure
strategy Nash equilibria as the feasible agreements of this ordinal game:
(s1, t1) ,(s2, t2), (s3, t3), (s4, t4). Assuming that players’ ordinal preferences
are common knowledge, each player can determine the number of preferred
alternative agreements that each player would forego if each of the feasi-
ble agreements were chosen for implementation. For example, if outcome
(s1, t1) were chosen, the row player’s personal interests would be maximally
advanced, which means that s/he would not forego any opportunities to ad-
vance his or her personal interests. The column player, on the other hand,
prefers outcomes (s2, t2) and (s3, t3) over the outcome (s1, t1). If the out-
come (s1, t1) were chosen, s/he would forego two preferred alternative agree-
ments.

If players’ preferences are common knowldge, each decision maker knows
every other decision-maker’s preferential rankings of feasible agrements based
on the numbers of foregone preferred alternatives. Players’ preferential rank-
ings are shown in Figure 5:

Row:


Agreement Foregone alternatives

(s1, t1) 0
(s2, t2) 1
(s3, t3) 2
(s4, t4) 3

 Column:


Agreement Foregone alternatives

(s3, t3) 0
(s2, t2) 1
(s1, t1) 2
(s4, t4) 3


Figure 4: Players’ foregone preferred alternatives

In explicit bargaining, rational bargainers should easily agree to restrict
their negotiations to a subset of feasible agreements including outcomes
(s1, t1) , (s2, t2) and (s3, t3). This restriction of the bargaining set is clearly
mutually beneficial: For each bargainer, any agreement in the aforementioned
subset guarantees a strictly lower number of foregone preferred alternatives
than the agreement (s4, t4). Among the agreements (s1, t1), (s2, t2) and
(s3, t3), however, no agreement is associated with strictly lower numbers
of foregone preferred alternatives for both players. Hypothetical bargainers
could evaluate the feasible agreements in this set by comparing, how the
foregone preferred alternatives would be distributed among them if each of
the agreements were chosen to be implemented. Notice that outcome (s2, t2)
minimizes the difference between numbers of players’ foregone preferred al-
ternatives. In other words, among the three weakly Pareto optimal feasible
agreements (s1, t1), (s2, t2) and (s3, t3), agreement (s2, t2) ensures a max-
imally equitable distribution of foregone preferred alternatives. The Nash
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equilibrium (s2, t2) is the BES of this game9.

3.2 Formalization

Let Γo =
(
{1, 2} , {Si,�i}i∈{1,2}

)
be an ordinal two player game where S =

S1 × S2 is the set of pure strategy outcomes and �i is the complete and
transitive preference ordering of strategy profiles in S of player i ∈ {1, 2}.
Since mixed outcomes can only be defined with cardinal payoffs, only pure
strategy outcomes are considered.

Let A ∈ P (S) be a set of feasible agreements in S. It will be assumed
that A 6= ∅10. The set of feasible agreements is the set of the pure strategy
Nash equilibria of Γo:

A =
{
s ∈ S : s ∈ SNE

}
,where SNE ∈ P(S). (1)

For each feasible agreement s ∈ A, we can define the cardinality of the
preferred set of alternatives for every player i ∈ {1, 2}:

Ci (s,A) ≡ {|T | , where s′ ∈ T if and only if s′ ∈ A and s′ �i s} . (2)

For any two agreements s ∈ A and s′ ∈ A, it is assumed that s �i s′
only if Ci (s) < Ci (s′). It is possible to define the set of maximally mutually
advantageous feasible agreements:

s ∈ Am ⇒ s′ /∈ A : Ci (s′,A) < Ci (s,A)∀i ∈ {1, 2} . (3)

For any agreement s ∈ Am, a measure of the difference between hypo-
thetical bargainers’ cardinalities of the preferred sets of alternatives can be
defined in the following way:

|Ci (s,A)− Cj 6=i (s,A)| . (4)

BES function φo (·) satisfies, for every A,

φo (A) ∈ arg mins∈Am {|Ci (s,A)− Cj 6=i (s,A)|} . (5)
9BES is based on the principles which are similar to the ones underlying Conley and

Wilkie’s (2012) ordinal egalitarian bargaining solution (OEBS) for finite sets of Pareto
optimal points. OEBS is a Pareto optimal point associated with strictly equal numbers
of foregone preferred alternatives. BES is based on a weaker equity requirement: It is
any weakly Pareto optimal outcome which, given a particular set of weakly Pareto op-
timal outcomes, minimizes the difference between the cardinalities of players’ preferred
sets of alternatives. In some games, a benefit-equilibrating solution may not be strictly
ordinally egalitarian. However, it is a maximally ordinally equitable outcome available in
a particular set of feasible agreements. For an in-depth discussion of OEBS, axiomatic
characterization and proofs, see Conley and Wilkie (2012).

10Some games may not have any Nash equilibria in pure strategies. In those cases A = ∅.

11



3.3 The Properties of the Ordinal BES

Existence: Ordinal BES (not necessarily unique) exists in every finite two
player ordinal game with at least one Nash equilibrium in pure strate-
gies.

For any finite ordinal game, SNE ∈ P (S) is always finite. Since A = SNE,
the set A is finite as well. It is therefore always possible to define, for every
feasible agreement s ∈ A, the cardinality of the preferred set of alternatives
for every player i ∈ {1, 2}. In every finite set of feasible agreementsA = SNE,
there exists s ∈ A, such that

s′ /∈ A : Ci (s′,A) < Ci (s,A)∀i ∈ {1, 2} . (6)

It follows that s ∈ Am, which means that Am 6= ∅. Therefore, a BES
exists in every Γo, such that SNE 6= ∅.

Feasible weak Pareto optimality: Ordinal BES is a weakly Pareto opti-
mal feasible agreement.

Let Awpo ⊆ A denote the set of weakly Pareto feasible agreements of Γo. A
feasible agreement s ∈ A belongs to a set of weakly Pareto optimal feasible
agreements only if there is no alternative outcome s′ ∈ A such that s′ �i s
for all i ∈ {1, 2}. In terms of cardinalities of preferred sets, this condition
can be defined as follows:

s ∈ Awpo ⇒ s′ /∈ A : Ci (s′,A) < Ci (s,A)∀i ∈ {1, 2} . (7)

Definition (7) is equivalent to definition (3), which implies that Awpo =
Am. From characterization (5), it follows that φo (A) ⊆ Awpo.

Invariance under additions of Pareto irrelevant alternatives: For any
two ordinal games Γo and Γo

′ , such that A = A’, it is always the case
that φo (A) = φo (A′).

Since Am = Awpo, from definition (3) it follows that, for every i ∈ {1, 2},
any s /∈ Am is such that Ci (s,A) > Ci (s′,A) ∀s′ ∈ Am. From definition 2,
it follows that, for any Am ⊆ A, it must be the case that every s′ ∈ Am is
such that Ci (s′,A) = Ci (s′,Am) ∀i ∈ {1, 2}. For any two ordinal games Γo

and Γo’, such that Am = A′m, for every s ∈ Am it must be the case that
s ∈ A′m, and so Ci (s,Am) = Ci (s,A′m) ∀i ∈ {1, 2}. It follows that, for any
s ∈ Am, it must be the case that Ci (s,A) = Ci (s,A′) ∀i ∈ {1, 2}. Therefore,
φo (A) = φo (A′).
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Ordinal invariance: Ordinal BES is invariant under order-preserving trans-
formations of players’ ordinal preference representations.

Notice that A = SNE of every Γo. It follows that φo (A) ⊆ SNE of Γo.
For any ordinal games Γo and Γo

′ , such that SNE = S′NE, it must be the case
that A = A′, which implies that Am = A′m. It follows that φo (A) = φo (A′).
Every pure strategy Nash equilibrium is invariant under order-preserving
transformations of players’ ordinal preference representations, and so is BES.

Independence of irrelevant strategies: Ordinal BES is invariant under
additions of strictly dominated strategies.

In every finite ordinal game Γo, we can use ordinal preferences to define
a best-response correspondence βi : S→ Si of player i ∈ {1, 2}, which maps
each pure strategy profile s ∈ S to the finite set of pure best responses of
player i to profile s ∈ S:

βi (s) = {si ∈ Si : (si, sj 6=i) �i (s̃i, sj)∀s̃i ∈ Si} . (8)

Notice that βi (s) ⊆ Si. From this we can define the set Sbri (S) ⊆ Si of pure
best responses of player i ∈ {1, 2} to the finite set of pure strategy profiles
S = {s1, ..., sn}:

Sbri (S) =
{
si ∈ Si : si ∈ βi

(
si
)
for some si ∈ S

}
. (9)

Every Nash equilibrium is a profile of best responses, and so SNE ⊆(
Sbr1 (S)× Sbr2 (S)

)
. Any strictly dominated strategy si ∈ Si is never a best

response, which implies that si /∈ Sbri (S). Since φo (A) ⊆ SNE, BES is
invariant under addition of any strategy si, such that si /∈ Sbri (S) for every
i ∈ {1, 2}.

Individual rationality: Ordinal BES is an outcome which, for i ∈ {1, 2},
is at least as good as ordinal maximin outcome.

In terms of cardinalities of preferred sets, an ordinal maximin threshold
of i ∈ {1, 2} can be defined as follows:

Cmnmi (S) = minsi∈Si
{
maxsj 6=i∈SjCi (s,S)

}
. (10)

Ordinal BES satisfies the individual rationality requirement if and only
if, for every i ∈ {1, 2}, the set of BES is always such that

Cmnmi (S) ≥ Ci (s,A)∀s ∈ φo (A) (11)
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Since A = SNE, it follows that φo (A) ⊆ SNE. If a strategy profile s ∈ S
is a Nash equilibrium, the preferences of player i ∈ {1, 2} are as follows:

(si, sj 6=i) ∈ SNE ⇒ (si, sj) �i (s̃i, sj)∀s̃i ∈ Si. (12)

In terms of cardinalities of preferred sets, property (15) can be defined as
follows:

(si, sj 6=i) ∈ SNE ⇒ Ci ((si, sj) ,S) ≤ Ci ((s̃i, sj) ,S)∀s̃i ∈ Si. (13)

Notice that the maximin strategy smxmi ∈ Si of each player i ∈ {1, 2} is
such that

Ci ((smxmi , sj 6=i) ,S) ≤ Cmnmi (S)∀sj ∈ Sj. (14)

Every Nash equilibrium of Γo must have the following property:

(si, sj 6=i) ∈ SNE ⇒ (si, sj) �i (smxmi , sj)∀i ∈ {1, 2} . (15)

In terms of cardinalities of preferred sets, property (15) can be characterized
as follows:

(si, sj 6=i) ∈ SNE ⇒ Ci (si, sj) ≤ Ci (smxmi , sj)∀i ∈ {1, 2} . (16)

Since φo (A) ⊆ SNE, the individual rationality requirement is always
satisfied.

4 The Cardinal BES

4.1 The Intuition Behind the Cardinal BES

To grasp the intuition behind the cardinal BES, consider the two player three
strategy coordination game depicted in Figure 5. It has three pure strategy

t1 t2 t3

s1 100, 98 0, 0 0, 0

s2 0, 0 2, 99 0, 0

s3 0, 0 0, 0 1, 100

Figure 5: Coordination game with three weakly Pareto optimal outcomes

Nash equilibria in this game: (s1, t1) , (s2, t2) and (s3, t3). There are also
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four Nash equilibria in mixed strategies11. To simplify the presentation of
the key principles, in this particular example only the pure strategy Nash
equilibria will be considered as feasible agreements.

If the players were to treat this game as an ordinal bargaining problem,
they would identify the Nash equilibrium (s2, t2) as the ordinal BES. Given
the available information about players’ cardinal payoffs, intuitivelly this
solution does not seem reasonable: The column player’s loss of the maximum
attainable utility seems to be insignificant compared to the loss of the row
player. In real-world negotiations, the row player could be expected not to
accept anything else but the agreement (s1, t1). If the column player refused,
the row player would suffer relatively insignificant payoff losses from playing
his/her mixed maximin strategy12 rather than playing a part in realizing the
agreement (s2, t2).

Although this intuition is compelling, the expected utility theory does
imply the interpersonal comparability of players’ cardinal utilities. In other
words, the theory offers no answer to the question of how one player’s utility
units should be ‘converted’ into utility units of another player (for extensive
discussion, see Luce and Raiffa 1957). However, the players could identify
the Nash equilibrium (s1, t1) as the BES of this game without being able
to compare utility units in the aforementioned sense. This would happen if
they were to evaluate the feasible outcomes by comparing their normalized
losses of the maximum attainable individual advantage associated with the
implementation of each feasible agreement.

Such comparisons can be performed on the basis of Raiffa (1953) nor-
malization procedure, which can be used to measure the level of satisfaction
of decision-maker’s preferences. According to this procedure, the level of in-
dividual advantage gained from a particular outcome can be defined as the
extent by which that outcome advances the player’s personal payoff from
his/her reference point relative to the largest advancement possible, where
the latter is associated with the attainment of the outcome that s/he prefers
the most.

For the purposes of BES, each hypothetical bargainer’s most preferred
outcome will be defined as his or her most preferred feasible agreement13:

umaxi = maxs∈SNEui (s) (17)
11The four mixed strategy Nash equilibria are: (1)

(
99
197s1,

98
197s2;

1
51 t1,

50
51 t2

)
,

(2)
(

4950
14701s1,

4900
14701s2,

4851
14701s3;

1
151 t1,

50
151 t2,

100
151 t3

)
,(3)
(
50
99s1,

49
99s3;

1
101 t1,

100
101 t3

)
,

(4)
(
100
199s2,

99
199s3;

1
3 t2,

2
3 t3
)
.

12In this case, the maximin strategy of the row player is mixed strategy(
4950
14701s1,

4900
14701s2,

4851
14701s3

)
.

13This definition of the best outcome is in line with the definition used in some of the
standard bargaining solutions, such as the Kalai-Smorodinsky (1975) bargaining solution.
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With respect to hypothetical bargainers’ reference points, two definitions
seem reasonable. One possibility is to set each hypothetical bargainer’s ref-
erence point to be the worst personal payoff associated with a rationalizable
outcome of a game:

urefi = mins∈Sbrui (s) , where Sbr =
(
Sbr1 × Sbr2

)
⊆ S (18)

The intuition behind this definition is that hypothetical bargainers who were
to fail to reach an agreement in open bargaining would have no joint plan
on how to play the game. In such a situation of strategic uncertainty, the
players could attempt to coordinate their actions by guessing each other’s
strategy choice. If rationality is common knowledge, the players should only
consider rationalizable strategies.

Another possibility is to set each hypothetical bargainer’s reference point
to be his or her maximin payoff level in rationalizable strategies :

urefi = maxsi∈Si

{
mins−i∈Sbr−iui (s)

}
(19)

The intuition behind this definition is that a hypothetical bargainers who
were to fail to reach an agreement would respond by choosing a strategy
which guarantees the highest personal payoff, irrespective of which one of
the rationalizable strategies the opponent is going to choose.

The question of which reference point is the best approximation to how
real-world hypothetical bargainers reason about their options in games can-
not be answered on the basis of formal theoretical analysis alone. Further
empirical research is required to answer this question. It is possible that
decision-maker’s choice of a reference point may depend on how high his/her
personal stakes are in a particular game: A decision-maker may adopt a
more cautious approach in a game where the personal stakes are high, while
be more willing to risk in a game where the personal stakes are relatively
insignificant. For the purposes of the following theoretical discussion, defi-
nition (17) will be used. This reference point seems reasonable for a model
describing hypothetical bargainers’ behaviour in experimental games with
relatively low personal stakes.

Consider, again, the game depicted in Figure 5. For the row player, the
most preferred feasible agreement is the Nash equilibrium (s1, t1), while the
least preferred rationalizable outcome is any outcome of this game associated
with a payoff of 0. The levels of individual advantage associated with each of
the feasible agreements can be established with the following transformation
of row player’s original payoffs:

uιr (s) =
ur (s)− urefr
umaxr − urefr

,where s is a profile of rationalizable strategies. (20)
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For example, the level of individual advantage associated with outcome
(s2, t2) is 0.02. Since the maximum attainable level of individual advantage
is 1, the row player would loose 0.98 of the maximum attainable individual
advantage if outcome (s2, t2) were chosen.

Players’ levels of individual advantage and individual advantage losses
associated with each feasible agreement are shown in Figure 6.

Agr. uιr uιc 1− uιr 1− uιc
(s1, t1) 1 0.98 0 0.02
(s2, t2) 0.02 0.99 0.98 0.01
(s3, t3) 0.01 1 0.99 0


Figure 6: Players’ levels of individual advantage and losses of maximum individual
advantage associated with each agreement

Notice that outcome (s1, t1) minimizes the difference between players’
individual advantage losses: In percentage terms, the row player would loose
0% of the individual advantage, while the column player would loose just
2%. The Nash equilibrium (s1, t1) is the BES of this coordination game.

When hypothetical bargainers evaluate the feasible agreements, they equate
units of measures of their individual advantage — the advancement of their
personal interests relative to what they personally deem to be the best and
the worst outcome of their interaction. In order to use this measure, hypo-
thetical bargainers need to know each other’s cardinal payoffs and reference
points, but they need not be able to make interpersonal comparisons of their
attained well-being. In other words, BES is a formal arbitration scheme: It
operates purely on the basis of information about players’ reference points
and the cardinal payoffs represented by the numbers in the payoff matrix,
and so can be used in cases where hypothetical bargainers have no clue as
to what kind of personal motivations or welfare levels those utility numbers
actually represent.

4.2 Formalization

Let Γ =
(
{1, 2} , {Si, ui}i∈{1,2}

)
be a normal form two player game, where Si

is the set of pure strategies of i ∈ {1, 2} and ui : L (Σ) → R is the cardinal
utility function of player i ∈ {1, 2} that represents his/her preferences over
the set of lotteries over the set of possible agreements – the set of mixed
strategy profiles Σ = (Σ1 ×Σ2) of Γ. Each mixed strategy σi ∈ Σi should be
interpreted as a randomized action of player i ∈ {1, 2}, where σi (si) denotes
the probability of player i ∈ {1, 2} choosing pure strategy si ∈ Si. Each
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mixed strategy profile σ ∈ Σ should be interpreted as a profile of players’
randomized actions.

Let Σbr
i ⊆ Σi denote the set of rationalizable strategies of i ∈ {1, 2}

and Σbr =
(
Σbr

1 ×Σbr
2

)
the set of rationalizable strategy profiles of Γ. Let

urefi := minσ∈Σbrui (σ) denote the reference point of player i ∈ {1, 2}.
Let Σf ⊆ Σbr denote the set of feasible agreements of Γ which is defined

as follows:
Σf =

{
σ ∈ Σ : σ ∈ ΣNE

}
. (21)

Notice that definition (21) implies thatΣf = ΣNE. Let umaxi := maxσ∈Σfui (σ)
denote the utility associated with i’s most preferred feasible agreement.
Subject to the constraint umaxi 6= urefi , the individual advantage of player
i ∈ {1, 2} associated with any feasible agreement σ ∈ Σf will be defined as
follows:

uιi (σ) =
ui (σ)− urefi
umaxi − urefi

. (22)

Notice that if i’s utility function is such that umaxi = 1 and urefi = 0, then
ui (σ) = uιi (σ) ∀σ ∈ Σbr.

Let Σfm ⊆ Σf denote the set of maximally mutually advantageous agree-
ments, which will be defined as follows:

σ ∈ Σfm ⇒ σ′ /∈ Σf : uιi (σ′) > uιi (σ)∀i ∈ {1, 2} . (23)

A measure of loss of maximum individual advantage ϕi (· , · ) of player i ∈
{1, 2} will be defined as follows:

ϕi
(
σ,Σbr

)
=

(
umaxi − urefi
umaxi − urefi

)
−

(
ui (σ)− urefi
umaxi − urefi

)
= 1−uιi (σ) , where σ ∈ Σf .

(24)
The difference between players’ losses of maximum attainable individual ad-
vantage associated with any σ ∈ Σf can be determined as follows:∣∣ϕi (σ,Σbr

)
− ϕj 6=i

(
σ,Σbr

)∣∣ . (25)

The cardinal BES function φc (·, ·) satisfies, for every Σf ⊆ Σbr,

φc
(
Σf , Σbr

)
= arg minσ∈Σfm

{∣∣ϕi (σ,Σbr
)
− ϕj 6=i

(
σ,Σbr

)∣∣} . (26)

4.3 The Properties of the Cardinal BES

Existence: Cardinal BES exists in every finite two player game.
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Nash (1951) proved that an equilibrium in mixed strategies exists in every
finite game with a finite set of players. In every finite game, there exists
σ ∈ ΣNE, such that

σ′ /∈ ΣNE : ui (σ
′) > ui (σ)∀i ∈ {1, 2} . (27)

From definition (22) and property (27), it follows that every finite Γ has at
least one σ ∈ ΣNE, such that

σ′ /∈ ΣNE : uιi (σ′) > uιi (σ)∀i ∈ {1, 2} . (28)

From definitions (23) and property (28), it follows that Σfm 6= ∅ in every
finite Γ, and so φc

(
Σf , Σbr

)
6= ∅ in every finite Γ.

Feasible weak Pareto optimality: Cardinal BES is a weakly Pareto op-
timal feasible agreement.

Let Σfwpo ⊆ Σf denote the set of feasible weakly Pareto optimal agreements
of Γ. A set of Pareto optimal feasible agreements can be characterized as
follows:

σ ∈ Σfwpo ⇒ σ′ /∈ Σf : ui (σ
′) > ui (σ)∀i ∈ {1, 2} . (29)

From definitions (22) and (29), it follows that a set of weakly Pareto optimal
feasible agreements can be characterized as follows:

σ ∈ Σfwpo ⇒ σ′ ∈ Σf : uιi (σ′) > uιi (σ)∀i ∈ {1, 2} . (30)

From definitions (23) and (30), it folows that Σfwpo = Σfm. Since it is the
case that φc

(
Σf , Σbr

)
⊆ Σfm, it follows that φc

(
Σf , Σbr

)
⊆ Σfwpo.

Invariance under additions of irrelevant alternatives: Cardinal BES is
invariant under additions of non-rationalizable outcomes.

Notice that urefi and umaxi are associated with some σ ∈ Σbr for every i ∈
{1, 2}, and that Σf ⊆ Σbr, where Σbr =

(
Σbr

1 ×Σbr
2

)
. For any two games

Γ and Γ′, such that Σbr = Σbr′ , it must be the case that ΣNE = ΣNE′ .
From definition (21), it follows that Σf = Σf ′ , and so Σfm = Σfm′ . From
characterization (26), it follows that φc

(
Σf , Σbr

)
= φc

(
Σf ′ , Σbr′

)
. Every

non-rationalizable outcome σ ∈ Σ is such that σ /∈ Σbr. Therefore, Σbr ⊆ Σ
is invariant to additions of σ to Σ, such that σ /∈ Σbr.

Individual rationality: Cardinal BES yields each player a payoff which is
at least as high as the maximin payoff.
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The cardinal maximin threshold of player i ∈ {1, 2} can be defined as follows:

umxmi = maxσi∈Σi
{
minσj 6=i∈Σjui (σ)

}
. (31)

The cardinal BES satisfies the individual rationality requirement if and only
if, for every i ∈ {1, 2},

ui (σ) ≥ umxmi ∀σ ∈ φc
(
Σf , Σbr

)
(32)

The maximin strategy σmxmi ∈ Σi of player i ∈ {1, 2} is such that

ui (σ
mxm
i , σj 6=i) ≥ umxmi ∀σj ∈ Σj. (33)

If a strategy profile σ ∈ Σ is a Nash equilibrium, the preferences of i ∈ {1, 2}
are as follows:

(σi, σj 6=i) ∈ ΣNE ⇒ ui (σi, σj) ≥ ui (σ̃i, σj)∀σ̃i ∈ Σi (34)

Every Nash equilibrium must satisfy the following condition:

(σi, σj 6=i) ∈ ΣNE ⇒ ui (σi, σj) ≥ umxmi ∀i ∈ {1, 2} . (35)

Since φc
(
Σf , Σbr

)
⊆ ΣNE, the individual rationality requirement is satisfied.

Independence of irrelevant strategies: Cardinal BES is invariant under
additions of strictly dominated strategies.

In every cardinal game Γ, we can use the cardinal preferences to define a
best-response correspondance Bi : Σ → Σi of player i ∈ {1, 2}, which maps
each mixed strategy profile σ ∈ Σ to the finite set of mixed best responses
of i to profile σ ∈ Σ:

Bi (σ) = {σi ∈ Σi : ui (σi, σj 6=i) ≥ ui (σ̃i, σj)∀σ̃i ∈ Σi} . (36)

Notice that Bi (σ) ⊆ Σi. From this we can define the set Σbr
i ⊆ Σi of

mixed best responses of i ∈ {1, 2} to the set of mixed strategy profiles Σ =
(Σ1 ×Σ2) of Γ:

Σbr
i = {σi ∈ Σi : σi ∈ Bi (σ) for some σ ∈ Σ} . (37)

Every Nash equilibrium is a profile of best responses, and soΣNE ⊆
(
Σbr

1 ×Σbr
2

)
.

If strategy σi ∈ Σi is strictly dominated, it must be the case that σi /∈ Σbr
i .

Since φc
(
Σf , Σbr

)
⊆ ΣNE, the cardinal BES is invariant under additions of

any strategy σi to Σi, such that σi /∈ Σi.
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Invariance under positive scalar transformations of payoffs: For any
Γ′, which involves a transformation of Γ only of the form u′i = aui,
where a > 0, it is always the case that φc

(
Σf , Σbr

)
= φc

(
Σf ′ , Σbr′

)
.

Notice that Σf = ΣNE for every Γ, which implies that φc
(
Σf , Σbr

)
⊆ ΣNE

of every Γ. Each mixed strategy profile σ ∈ Σ is a tuple (σ1, σ2), where
σi ∈ Σi is a mixed strategy of i ∈ {1, 2}, which in a finite game assigns a
probability distribution over the finite set Si of pure strategies of i ∈ {1, 2}.
The support of every σi ∈ Σ can be defined as follows:

Supp (σi) = {si ∈ Si : σi (si) > 0} , where σi (si) is the probability of si ∈ Si .
(38)

The support of each mixed strategy profile σ ∈ Σ can be defined as follows:

Supp (σ) = (Supp (σ1)× Supp (σ2)) ⊆ S, where S = (S1 × S2). (39)

The probability of players playing any pure strategy profile s ∈ Supp (σ) is

σ (s) = (σ1 (s1)× σ2 (s2)) =
∏

i∈{1,2}

σi (si) . (40)

The expected utility of i ∈ {1, 2} associated with σ ∈ Σ is

ui (σ) =
∑

s∈Supp(σ)

 ∏
i∈{1,2}

σi (si)

ui (s) . (41)

The expected utility of i ∈ {1, 2} playing a pure strategy si ∈ Si against j’s
mixed strategy σj ∈ Σj is

ui (si, σj) =
∑

sj∈Supp(σj)

σj (sj)ui (si, sj) . (42)

If (σi, σj) ∈ ΣNE, any pair si ∈ Supp (σi) and s̃i ∈ Supp (σi) of i ∈ {1, 2} is
such that

ui (si, σj) = ui (si, σj) . (43)

Which can be rewritten as follows:∑
sj∈Supp(σj)

σj (sj)ui (si, sj) =
∑

sj∈Supp(σj)

σj (sj)ui (s̃i, sj) . (44)

Suppose that Γ′ is a transformation of Γ, such that u′i = aui for every i ∈
{1, 2}, where a > 0. The expected utility of i ∈ {1, 2} from playing a pure
strategy si ∈ Si against σj ∈ Σj can be defined as follows:

u′i (si, σj) =
∑

sj∈Supp(σj)

σj (sj) aui (si, sj) . (45)
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If
(
σ′
i, σ

′
j

)
∈ ΣNE′ of Γ′, any pair si ∈ Supp (σ′

i) and s̃i ∈ Supp (σ′
i) of

i ∈ {1, 2} is such that∑
sj∈Supp(σ′j)

σ′
j (sj) aui (si, sj) =

∑
sj∈Supp(σ′j)

σ′
j (sj) aui (s̃i, sj) . (46)

Which is equivalent to∑
sj∈Supp(σ′j)

aσ′
j (sj)ui (si, sj) =

∑
sj∈Supp(σ′j)

aσ′
j (sj)ui (s̃i, sj) . (47)

Since a > 0 is constant, σ′
j (sj) = σj (sj) for every sj ∈ Supp

(
σ′
j

)
of i ∈ {1, 2}.

4.4 Application to N-Player Games

Notice that a strictly egalitarian BES of a two player game is a strategy
profile σ ∈ Σfm, such that

|1− uιi (σ)| =
∣∣1− uιj 6=i (σ)

∣∣ . (48)

It follows that BES is such that uιi (σ) = uιj (σ). This property of the strictly
egalitarian BES can be used in the analysis of n-player games. In any n-
player game with a unique strictly egalitarian maximally mutually advanta-
geous feasible agreement, the identification of the BES is unproblematic. In
other games, hypothetical bargainers could distinguish the maximally indi-
vidually advantageous feasible agreements associated with a more equitable
distribution of individual advantage losses (foregone preferred alternatives
in ordinal games) from those associated with a less equitable distribution of
individual advantage losses.

Let Γ =
(
I, {Si, ui}i∈I

)
be any cardinal game, where I = {1, ..., n} is the

set of players, Si is the set of strategies of i ∈ {1, 2}, and ui : L (×i∈IΣi)→ R
is i’s preferences over the set of lotteries over the set of possible agreements.
The levels of individual advantage and the set of maximally mutually ad-
vantageous agreements are determined in the same way as in the two player
case. Let

∑
i∈I u

ι
i (σ) denote the sum of players’ individual advantage levels

associated with some feasible agreement σ ∈ Σfm. A strictly egalitarian BES
must be such that, for every i ∈ I,

uιi (σ)∑
i∈I u

ι
i (σ)

=
1

n
. (49)

In many games, a strictly egalitarian BES will not exist, but the equity
of any two feasible maximally mutually advantageous agreements can be
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compared by comparing the ratio of each player’s individual advantage level
to the sum of players’ individual advantage levels associated with each of
the feasible agreements with a ratio 1/m that represents the ratio of each
player’s individual advantage level to the sum of players’ individual advantage
levels associated with a hypothetical strictly egalitarian BES. That is, for any
σ ∈ Σfm, we can determine the difference between the actual ratio of i’s level
of individual advantage to the sum of players’ individual advantage levels and
the ideal egalitarian ratio: ∣∣∣∣ uιi (σ)∑

i∈I u
ι
i (σ)

− 1

n

∣∣∣∣ . (50)

For any two feasible agreements σ ∈ Σfm and σ′ ∈ Σfm, agreement σ ∈ Σfm

is more egalitarian than agreement σ′ ∈ Σfm if, for every i ∈ I,∣∣∣∣ uιi (σ)∑
i∈I u

ι
i (σ)

− 1

n

∣∣∣∣ < ∣∣∣∣ uιi (σ′)∑
i∈I u

ι
i (σ′)

− 1

n

∣∣∣∣ 14. (51)

For example, consider a three player game depicted in Figure 7. The

m1 t1 t2

s1 10, 9, 9 0, 0, 0

s2 0, 0, 0 5, 5, 5

m2 t1 t2

s1 4, 4, 4 0, 0

s2 0, 0 6, 8, 10

Figure 7: Three player coordination game played by three hypothetical bargainers

row player chooses between strategies s1 and s2, the column player chooses
between strategies t1 and t2, and the matrix player chooses between matrices
m1 and m2. To simplify the example, only pure strategy outcomes will be
considered.

This game has two maximally mutually advantageous feasible agreements:
(s1, t1,m1) and (s2, t2,m2). The worst rationalizable outcome for each
player is any strategy profile associated with a payoff of 0. Let U ι

{r,c,m} =

uιr (s) + uιc (s) + uιm (s) denote the sum of row, column and matrix players’
individual advantage levels associated with some s ∈ Sfm. If this game had
an egalitarian BES, it would be some s = (sr, sc, sm), such that

uιr (s)

U ι
{r,c,m} (s)

=
uιc (s)

U ι
{r,c,m} (s)

=
uιm (s)

U ι
{r,c,m} (s)

=
1

3
. (52)

14In any n-player ordinal game, a feasible agreement s ∈ Am is more egalitarian that
s′ ∈ Am if, for every i ∈ {1, ..., n},∣∣∣ Ci(s,A)∑

i∈{1,...,n} Ci(s,A) −
1
n

∣∣∣ < ∣∣∣∣ Ci(s′,A)∑
i∈{1,...,n} Ci(s′,A) −

1
n

∣∣∣∣ .
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The sum of players’ individual advantage levels associated with agreement
(s1, t1,m1) is 2.9. The sum of players’ individual advantage levels associated
with agreement (s2, t2,m2) is 2.48889. The ratio of each player’s individual
advantage level to the sum of players’ individual advantage levels associated
with each outcome, and the difference between each player’s actual ratio and
the hypothetical egalitarian BES ratio are shown in Figure 8 (the numbers
are rounded off to 3 decimal places): Agr. uιr

U ι{r,c,m}

uιc
U ι{r,c,m}

uιm
U ι{r,c,m}

∣∣∣ uιr
U ι{r,c,m}

− 1
3

∣∣∣ ∣∣∣ uιc
U ι{r,c,m}

− 1
3

∣∣∣ ∣∣∣ uιm
U ι{r,c,m}

− 1
3

∣∣∣
(s1, t1,m1) 0.345 0.345 0.310 0.011 0.011 0.023
(s2, t2,m2) 0.241 0.357 0.402 0.092 0.023 0.069


Figure 8: The ratios of each player’s individual advantage level to the sum of
players’ individual advantage levels and the distance between each player’s actual
ratio and the egalitarian BES ratio.

The difference between the ratio of each player’s level of individual ad-
vantage to the sum of players’ individual advantage level and the egalitarian
ratio 1/3 associated with the outcome (s1, t1,m1) is smaller than the one
associated with the outcome (s2, t2,m2), which means that the Nash equi-
librium (s1, t1,m1) is the BES.

In a two player game, it seems reasonable to assume that a player will
not search for the BES if s/he does not believe that the opponent will do
that as well. More complicated problems arise in n-player games when some
of the players are hypothetical bargainers while others are not. For example,
suppose that it is common knowledge among the row and the column player
that they are hypothetical bargainers, but they have no information about
the matrix player’s type. They could not attain the BES of a game depicted in
Figure 7 without the matrix player choosing strategy m1. In this situation of
strategic uncertainty, the row and the column player could resort to playing a
combination of strategies (s2, t2), since it guarantees each player a minimum
payoff of 5, irrespective of what the matrix player does. This example shows
that the BES may not be chosen to be implemented in strategic situations
where some of the players are not hypothetical bargainers, or in situations
where hypothetical bargainers are uncertain about each other’s reasoning
mode.

5 Explanatory relevance
One of the fundamental questions pertaining to the hypothetical bargain-
ing theory is whether it can explain real-world decision-maker’s behaviour in
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strategic interactions. Crawford et al. (2008) and Faillo et al. (2013) con-
ducted experiments, in which the participants were presented with two-player
‘pie games’, in which they had to choose one of the three outcomes repre-
sented as segments of a pie. Each segment represents a specific pair of payoffs
to the interacting players. If both participants chose the same outcome, they
received positive payoffs. An, example of a normal form representation of a
‘pie games’ is provided in Figure 9.

R1 R2 R3

R1 9, 10 0, 0 0, 0

R2 0, 0 10, 9 0, 0

R3 0, 0 0, 0 9, 9

Figure 9: A 3x3 pie game represented in normal form

The structure of a pie games is suitable for testing the theory of hy-
pothetical bargaining, since they share certain structural similarities with
the standard bargaining games: The players have to choose between several
different allocations of payoffs and in case they do not choose the same allo-
cation they receive nothing. In addition, each allocation of payoffs is a Nash
equilibrium.

Tables 1 and 2 summarize the results of Faillo et al. (2013) and Crawford
et al. (2008) respectivelly. The theoretical predictions of the BES model are
indicated by bes.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11
R1 9, 10 9, 10 9, 10 9, 10 10, 10 10, 10 10, 10 10, 10 9, 12 10, 10 9, 11
R2 10, 9 10, 9 10, 9 10, 9 10, 10 10, 10 10, 10 10, 10 12, 9 10, 10 11, 9
R3 9, 9 11, 11 9, 8 11, 10 9, 9 11, 11 9, 8 11, 10 10, 11 11, 9 10, 10

N (%)R1 14 0 51bes 16 48bes 1 51bes 26 16 43bes 6
N (%)R2 11 1 45bes 4 34bes 3 31bes 22 11 27bes 7
N (%)R3 74bes 99bes 4 80bes 18 96bes 18 52bes 73bes 30 86bes

Table 1: A summary of Faillo et al. (2013) results. Choices predicted by the BES
model are indicated by bes.

In Faillo et al. (2013) experiment, the BES model is a resonably good
predictor of choices in 10 out of 11 games (does not account for 30% of
people choosing R3 in G10). In Crawford et al. (2008) experiment, the BES
is a reasonably good predictor in 4 out of 5 games (does not account for
choices in AM3). These results are by no means conclusive, but they suggest
that the BES concept offers an empirically relevant alternative explanation
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AM1 AL1 AM2 AM3 AM4
L 5, 6 5, 10 5, 6 5, 6 6, 7
R 6, 5 10, 5 6, 5 6, 5 7, 6
B 5, 5 5, 5 6, 5 7, 5 7, 5

N (%)L (P1) ;N (%)L (P2) 6; 7 0; 13 53; 21bes 40; 38 35; 33bes

N (%)R (P1) ;N (%)R (P2) 6; 0 7; 13 16; 33bes 35; 29bes 40; 33bes

N (%)B (P1) ;N (%)B (P2) 88; 93bes 93; 73bes 32; 46bes 25; 33 0, 14

Table 2: A summary of Crawford et al. (2008) results. The choices of player 1
(P1) and player 2 (P2) are presented separately. Choices predicted by the BES
model are indicated by bes.

of how people identify the solutions of games with multiple Nash equilibria,
and so the BES model at least warrants further empirical testing.

6 Conclusion
In this paper I predominantly focused on discussing the BES concept as
a possible representation of the properties of outcomes that hypothetical
bargainers would identify as mutually beneficial and agreeable solutions of
non-cooperative games. The proposed solution concept is an equilibrium
concept, broadly in line with the traditional equilibrium refinements of non-
cooperative games.

The theory of hypothetical bargaining is not a theory of how players
coordinate their actions, only how they identify the desirable solutions of
non-cooperative games. The game may have multiple bargaining solutions,
and so decision-makers’ ability to coordinate their actions may depend on
factors that have nothing to do with how mutually advantageous it would
be for the players to end up at that outcome in terms of their personal pay-
offs associated with it. For example, the game depicted in Figure 10 has
two BES: (hi1, hi1) and (hi2, hi2). The probability of players coordinating
their actions on one of the outcomes by choosing strategies hi1 and hi2 at
random is 1/4. The players could coordinate their actions by taking into
account the coordination success rate and choose an ex ante Pareto domi-
nated outcome (lo, lo) which, due to its uniqueness, ex post Pareto dominates
outcomes (hi1, hi1) and (hi2, hi2), and so is the ex post BES of this game.
However, other coordination aids, such as label salience, could also be used
(see Bacharach and Bernasconi 1997). The possibility of there being mul-
tiple coordination aids for players to choose from may leave them facing a
coordination problem of a different type – one related to the choice of a
coordination aid to resolve the game they play. The choice of coordination
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aid will likely depend on decision-maker’s beliefs about which aids are most
likely to be adopted by other players, which may in turn be determined by
decision-makers’ social and cultural background, social norms, conventions,
and many other factors unrelated to the structure of the game itself.

hi1 hi2 lo

hi1 10, 10 0, 0 0, 0

hi2 0, 0 10, 10 0, 0

lo 0, 0 0, 0 9, 9

a

Figure 10: Extended Hi-Lo game

The aim of this paper was not to provide a complete theory of hypothet-
ical bargaining. Further empirical research is required to test the empirical
validity of the model, as well as to determine the conditions under which
social agents might engage in hypothetical bargaining. Since the model pro-
vides testable predictions in experimental games, its further empirical testing
seems possible. However, since observed choices can often be explained in
terms of multiple accounts of what decision-makers try to achieve in games,
these studies may need to consider a broader evidence base than mere obser-
vations of choices.
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