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This book is dedicated to Erwin Schrodinger, who introduced the wave function,
discovered the equation named after him, and had been attempting to find the on-
tology of quantum mechanics throughout the rest of his life.
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Preface

The meaning of the wave function has been a hot topic of debate since the early
days of quantum mechanics. Recent years have witnessed a growing interest in this
long-standing question.! Is the wave function ontic, directly representing a state
of reality, or epistemic, merely representing a state of (incomplete) knowledge, or
something else? If the wave function is not ontic, then what, if any, is the underlying
state of reality? If the wave function is indeed ontic, then exactly what physical
state does it represent?

In this book, I aim to make sense of the wave function in quantum mechanics and
find the ontological content of the theory. The book can be divided into three parts.
The first part addresses the question of the nature of the wave function (Chapters
1-5). After giving a comprehensive and critical review of the competing views of
the wave function, I present a new argument for the ontic view in terms of protec-
tive measurements. In addition, I also analyze the origin of the wave function by
deriving the free Schrodinger equation. The second part analyzes the ontological
meaning of the wave function (Chapters 6, 7). I propose a new ontological interpre-
tation of the wave function in terms of random discontinuous motion of particles,
and give two main arguments supporting this interpretation. The third part inves-
tigates whether the suggested quantum ontology is complete in accounting for our
definite experience and whether it needs to be revised in the relativistic domain
(Chapters 8, 9).

The idea of random discontinuous motion of particles came to my mind when
I was a postgraduate at the Institute of Electronics, Chinese Academy of Sciences
in 1993. I am happy that finally it has a more logical and satisfying formulation
in this book. During the past twenty years, I have benefited from interactions and

I See, e.g. Pusey, Barrett and Rudolph (2012), Ney and Albert (2013), and Gao (2014a, 2015b).
g Y. p y



2 Preface

discussions with many physicists and philosophers of physics who care about the
way the world really is. They are: Steve Adler, Guido Bacciagaluppi, Jeremy But-
terfield, Tian Yu Cao, Ze-Xian Cao, Eli Cohen, Lajos Didsi, Bernard d’Espagnat,
Arthur Fine, Shelly Goldstein, Guang-Can Guo, Bob Griffiths, Basil Hiley, Richard
Healey, Jenann Ismael, Adrian Kent, Vincent Lam, Tony Leggett, Matt Leifer, Peter
Lewis, Chuang Liu, David Miller, Owen Maroney, Wayne Myrvold, Philip Pearle,
Roger Penrose, Matt Pusey, Huw Price, Alastair Rae, Dean Rickles, Abner Shi-
mony, Max Schlosshauer, Lee Smolin, Antoine Suarez, Hans Westman, Ken Whar-
ton, Ling-An Wu, Jos Uffink, Lev Vaidman, and H. Dieter Zeh, among others. |
thank them all deeply.

I would like to thank Steve Adler, Guido Bacciagaluppi, Eli Cohen, Vincent
Lam, David Miller, Owen Maroney, and Dean Rickles for reading through some
parts of an early draft of this manuscript and providing helpful suggestions for im-
proving it. I also wish to express my warm thanks to all participants of First iWork-
shop on the Meaning of the Wave Function and Quantum Foundations Workshop
2015, which were both hosted by International Journal of Quantum Foundations
and in which the main ideas of this book were discussed.? I thank Simon Capelin
of Cambridge University Press for his kind support as I worked on this project,
and the referees who gave helpful suggestions on how the work could best serve its
targeted audience.

During the writing of this book, I have been assisted by research funding from
the Ministry of Education of the People’s Republic of China, Chinese Academy of
Sciences, and the Institute for the History of Natural Sciences, Chinese Academy
of Sciences. Some parts of this book were written when 1 taught The Philosophy
of Quantum Mechanics to the postgraduates at the University of Chinese Academy
of Sciences. I thank the International Conference Center of the University for pro-
viding comfortable accommodation.

Finally, I am deeply indebted to my parents, Qingfeng Gao and Lihua Zhao, my
wife Huixia and my daughter Ruiqi for their unflagging love and support; this book
would have been simply impossible without them. Moreover, they have never let
me forget the true values of life.

Shan Gao
Beijing
May 2016

2 See http://www.ijgf.org/ for more information about the workshops.



1

Quantum mechanics and experience

Quantum mechanics is an extremely successful physical theory due to its accurate
empirical predictions. The core of the theory, which is contained in various non-
relativistic quantum theories, is the Schrodinger equation and the Born rule.! The
Schrodinger equation governs the time evolution of the wave function assigned to
a physical system, and the Born rule connects the wave function with the proba-
bilities of possible results of a measurement on the system. In this chapter, I will
introduce the core of quantum mechanics, especially the connections of its mathe-
matical formalism with experience. The introduction is not intended to be complete
but enough for the later analysis of the meaning of the wave function and the onto-
logical content of quantum mechanics.

1.1 The mathematical formalism

The mathematical formalism of quantum mechanics is mainly composed of two
parts. The first part assigns a mathematical object, the so-called wave function or
quantum state, to a physical system appropriately prepared at a given instant.” The
second part specifies how the wave function evolves with time. The evolution of
the wave function is governed by the Schrodinger equation, whose concrete form
is determined by the properties of the system and its interactions with environment.

There are two common representations for the wave function: the Hilbert space
representation and the configuration space representation, which have their respec-
tive advantages. According to the Hilbert space representation, the wave function
is an unit vector or state vector in a Hilbert space, usually denoted by |y(#)) with

I An apparent exception is collapse theories (Ghirardi, 2016). In these theories, however, the additional
collapse term in the revised Schrodinger equation is so tiny for microscopic systems that it can be ignored in
analyzing the ontological status and meaning of the wave function.

It is worth noting that although all quantum theories assign the same wave function to an isolated physical
system, different quantum theories, such as no-collapse theories and collapse theories, may assign different
wave functions to a non-isolated physical system. The assignment, which depends on the concrete laws of
motion in the theory, does not influence the ontological status and meaning of the wave function.
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Dirac’s bracket notation. The Hilbert space is a complete vector space with scalar
product, and its dimension and structure depend on the particular system. For ex-
ample, the Hilbert space associated with a composite system is the tensor product
of the Hilbert spaces associated with the systems of which it is composed.?

This structure of the Hilbert space can be seen more clearly from the configura-
tion space representation. The configuration space of an N-body quantum system
has 3N dimensions, and each point in the space can be specified by an ordered 3/V-
tuple, where each group of three coordinates are position coordinates of each sub-
system in three-dimensional space. The wave function of the system is a complex
function on this configuration space,4 and it can be written as (X1, 1,21, ---» XN»> YN» ZN> ),
where x;, y;, z; are coordinates of the i-th subsystem in the 3N-dimensional config-
uration space. Moreover, the wave function is normalized, namely the integral of
the modulus squared of the wave function over the whole space is one. When the
N subsystems are independent, the whole wave function can be decomposed as the
product of the wave functions of the N subsystems, each of which lives in three-
dimensional space.

For an N-body quantum system, there are also a 3N-dimensional space and wave
functions on the space for other properties of the system besides position. For ex-
ample, the momentum space of an N-body system is a 3N-dimensional space pa-
rameterized by 3N momentum coordinates, and the momentum wave function is
a complex function on this space. Here the Hilbert space representation is more
convenient. Every measurable property or observable of a physical system is rep-
resented by a Hermitian operator on the Hilbert space associated with the system,
and the wave functions for different properties such as position and momentum
may be transformed into each other by considering the relationship between the
corresponding operators of these properties.

The second part of the mathematical formalism of quantum mechanics specifies
how the wave function assigned to a physical system evolves with time. The time
evolution of the wave function, |/(?)), is governed by the Schrédinger equation

- Oly(0)
lh—a =Hy(®), (1.1)
t
where 7 is Planck’s constant divided by 27, and H is the Hamiltonian operator that
depends on the energy properties of the system. The time evolution is linear and
unitary in the sense that the Hamiltonian is independent of the evolving wave func-

tion and it keeps the normalization of the wave function unchanged. The concrete

3 Similarly, the Hilbert space associated with independent properties is the tensor product of the Hilbert spaces
associated with each property.

4 To be consistent with convention, I will also say “the wave function of a physical system”, but it still means
“the wave function assigned to a physical system”.
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forms of the Hamiltonian and the Schrodinger equation depend on the studied sys-
tem and its interactions with other systems in the environment. For example, the
wave function of an electron evolving in an external potential obeys the following
Schrédinger equation:

0 K2
p e Moy ey, (12)
ot 2m

where ¥(x, y, z, t) is the wave function of the electron, m is the mass of the electron,
and V(x,y, z, 1) is the external potential.

1.2 The Born rule

What is the empirical content of quantum mechanics? Or how does the wave func-
tion assigned to a physical system relate to the results of measurements on the sys-
tem? The well-known connection rule is the Born rule, which has been precisely
tested by experiments. It says that a (projective) measurement of an observable A
on a system with the wave function |/) will randomly obtain one of the eigenvalues
of A, and the probability of obtaining an eigenvalue g, is given by |(a;|i)|>, where
|a;) is the eigenstate corresponding to the eigenvalue a;.

The Born rule can also be formulated in the language of configuration space. It
says that the integral of the modulus squared of the wave function over a certain
region of the configuration space associated with a property of a physical system
gives the probability of the measurement of the property of the system obtaining the
values inside the region. For example, for a physical system whose wave function
isy(x,y,z,0), Wx,y,z, t)|2dxdydz represents the probability of a position measure-
ment on the system obtaining a result between (x, y,z) and (x + dx,y + dy, z + dz),
and |y(x, y, z,1)|? is the corresponding probability density in position (x, y, z). Sim-
ilarly, for an N-body system whose wave function is ¥(x1, V1,21, ---» XN> YN» ZN> 1)s
(X1, V1,21, - XN» YN 2N, B)|* Tepresents the probability density that a position mea-
surement on the first subsystem obtains result (x1,y1,z;) and a position measure-
ment on the second subsystem obtains result (x, y2,z2) ... and a position measure-
ment on the N-th subsystem obtains result (xy, yn, Zn)-

The Born rule provides a probabilistic connection between the wave function
and the results of measurements. However, it may be not the only connection rule,
as the involved measurements are only one kind of measurements, the projective
measurements. In order to know whether there are other possible connections be-
tween quantum mechanics and experience, we need to analyze measurements in
more detail.

A measurement is an interaction between a measured system and a measuring
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device. It can be described by using the standard von Neumann procedure. Sup-
pose the wave function of the measured system is /) at a given instant ¢ = 0, and
the initial wave function of the pointer of a measuring device at r = 0 is a Gaus-
sian wavepacket of very small width wg centered in initial position xg, denoted by
|¢(x0)). The total Hamiltonian of the combined system can be written as

H=Hg + Hp + Hy, (13)

where Hg and Hp are the free Hamiltonians of the measured system and the mea-
suring device, respectively, and Hj is the interaction Hamiltonian coupling the mea-
sured system to the measuring device, which can be further written as

H; = g(t)PA, (1.4)

where P is the momentum of the pointer of the measuring device, A is the mea-
sured observable, and g(f) represents the time-dependent coupling strength of the
interaction, which is a smooth function normalized to f dtg(t) = 1 during the mea-
surement interval 7, and g(0) = g(1) = 0.

It has been known that there are different types of measurements, depending on
the interaction strength and time and whether the measured system is appropri-
ately protected etc. The most common measurements are projective measurements
involved in the Born rule. For a projective measurement, the interaction Hj is of
very short duration and so strong that it dominates the rest of the Hamiltonian, and
thus the effect of the free Hamiltonians of the measuring device and the measured
system can be neglected. Then the state of the combined system at the end of the
interaction can be written as

=1y = e T4y B(x0)) . (1.5)

By expanding i) in the eigenstates of A, |a;), we obtain

t=1)= > e lay) [p(x0)) (1.6)

i

where c¢; are the expansion coefficients. The exponential term shifts the center of
the pointer by a;:

t=1)= ) cilag(xo +ap). (1.7)

1
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This is an entangled state, where the eigenstates of A with eigenvalues a; are corre-
lated to the measuring device states in which the pointer is shifted by these eigen-
values q;.

The Born rule tells us (and we also know by experience) that the result of this
projective measurement is one of the eigenvalues of the measured observable, say
a;, with probability |c;|>. However, we still don’t know whether this entangled su-
perposition is the final state of the combining system after the measurement.’ The
appearance of the definite result seems apparently incompatible with the super-
posed state. This is the notorious measurement problem. I will try to solve this
problem in Chapter 8.

1.3 A definite connection with experience

It is not surprising that since the interaction between the measured system and the
measuring device is very strong during a projective measurement, the measurement
disturbs the measured system and changes its wave function greatly. This is not a
good measurement. A good measurement is required not to disturb the state of the
measured system so that it can measure the realistic properties of the system. This
is only possible for projective measurements when the initial state of the measured
system is an eigenstate of the measured observable. In this case, the final state of
the combining system is not an entangled state but a product state such as:

It =7) = lai) [$(x0 + a)) - (1.8)

According to the Born rule, this projective measurement obtains a definite result
a;.

A general way to make a good measurement is to protect the measured state
from being changed when the measurement is being made. A universial protec-
tion scheme is via the quantum Zeno effect (Aharonov, Anandan and Vaidman,
1993).5 Let us see how this can be done. We make projective measurements of an
observable O, of which the measured state |i/) is an nondegenerate eigenstate, a
large number of times which are dense in a very short measurement interval [0, 7].
For example, O is measured in [0, 7] at times ¢, = (n/N)t,n = 1,2, ..., N, where
3 In other words, it is still unknown how the wave function evolves during a projective measurement. In
standard quantum mechanics, which is formulated by Dirac (1930) and von Neumann (1932), it is assumed
that after a projective measurement of an observable the entangled superposition formed by the Schrodinger
evolution collapses to one of the eigenstates of the observable that corresponds to the result of the
measurement. This assumption is called the collapse postulate. For a helpful introduction of standard
quantum mechanics for philosophers see Ismael (2015).

Another protection scheme is to introduce a protective potential such that the measured wave function of a
quantum system is a nondegenerate energy eigenstate of the Hamiltonian of the system with finite gap to

neighboring energy eigenstates (Aharonov and Vaidman, 1993). By this scheme, the measurement of an
observable is required to be weak and adiabatic.
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N is an arbitrarily large number. At the same time, we make the same projective
measurement of an observable A in the interval [0, 7] as in the last section, which
is described by the interaction Hamiltonian (1.4).

As noted before, since the interaction Hj is of very short duration and so strong
that it dominates the rest of the Hamiltonian, the effect of the free Hamiltonians of
the measuring device and the measured system can be neglected. Then the branch
of the state of the combined system after 7, in which each projective measurement
of O results in the state of the measured system being in |y), is given by

6= ) = ) (Wl F Ry (e T ) (le ROy Ig(xo)

= ) (Wle T RENWPA 1y (yle™ R TP [y (yle™ F TSP [y 1(x0))
(1.9)

where |¢(xp)) is the initial wave function of the pointer of the measuring device,
which is supposed to be a Gaussian wavepacket of very small width centered in
initial position xy.

Thus in the limit of N — oo, we have

It = 1) = gy e i b SOUADPAL 03y — ) [x + (AD)), (1.10)

where (A) = (Y]A|) is the expectation value of A in the measured state |i). Since
the modulus squared of the amplitude of this branch approaches one when N — oo,
this state will be the state of the combined system after 7.” It can be seen that after
the measurement, the measuring device state and the system state are not entangled,
and the pointer of the measuring device is shifted by the expectation value (A).3

This demonstrates that for an arbitrary state of a quantum system at a given
instant, we can protect the state from being changed via the quantum Zeno effect,
and a projective measurement of an observable, which is made at the same time,
yields a definite measurement result, the expectation value of the observable in
the measured state. Such measurements have been called protective measurements
(Aharonov and Vaidman, 1993; Aharonov, Anandan and Vaidman, 1993; Vaidman,
2009).

7 1t is worth noting that the possible collapse of the wave function resulting from the projective measurements
of O does not influence this result. The reason is that the probability of the measured state collapsing to
another state different from |y) after each projective measurement of O is proportional to 1/N2, and thus the
sum of these probabilities is proportional to 1/N after T and approaches zero when N — oo. Moreover, since
the pointer of a measuring device may be a microscopic system, whose shift can be further read out by
another measuring device, the effect of the possible collapse of the wave function resulting from the
projective measurements of A can also be ignored.

Note that after the measurement the pointer wavepacket does not spread, and the width of the wavepacket is
the same as the initial width. This ensures that the pointer shift can represent a valid measurement result.

oo
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In fact, it can be shown that if the measured state is not changed during a pro-
jective measurement, then the result must be the expectation value of the measured
observable in the measured state. In this case, the evolution of the state of the com-
bined system is

1 (0)) 1#(0)) — W (2)) lo(0)) . 1 > 0, (1.11)

where |¢(0)) and |¢(7)) are the states of the measuring device at instants 0 and ¢,
respectively, [(0)) and |(#)) are the states of the measured system at instants 0
and ¢, respectively, and |(?)) is the same as |(0)) up to a phase factor during
the measurement interval [0, 7]. The interaction Hamiltonian is still given by (1.4).
Then by Ehrenfest’s theorem we have

d
7 Y OPOIX (D)) = gD 0)|A 0)) . (1.12)

where X is the pointer variable. This further leads to

(P(IX[p(1)) = {¢(0)X $(0)) = (W (0)A[4(0)), (1.13)

which means that the shift of the center of the pointer of the measuring device is the
expectation value of the measured observable in the measured state. This clearly
demonstrates that the result of a measurement which does not disturb the measured
state is the expectation value of the measured observable in the measured state.
Since the wave function can be reconstructed from the expectation values of a
sufficient number of observables, the wave function of a single quantum system
can be measured by a series of protective measurements. Let the explicit form of
the measured state at a given instant ¢ be y/(x), and the measured observable A be
(normalized) projection operators on small spatial regions V,, having volume v,:

L ifxe Vs
A=4" (1.14)
0, ifxeV,.
A protective measurement of A then yields
1 2
Ay=— | Wl dv, (1.15)
Vn Jv,

which is the average of the density p(x) = |1//()c)|2 over the small region V,,. Sim-
ilarly, we can measure another observable B = %(AV + VA). The measurement
yields
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1 h 1
(B) = —f T(l[/*Vl// —yVy)dy = —f J(x)dv. (1.16)
v, < Vn Jv,

Vn n

This is the average value of the flux density j(x) in the region V,. Then when
vy, — 0 and after performing measurements in sufficiently many regions V,, we can
measure p(x) and j(x) everywhere in space. Since the wave function ¥ (x, f) can be
uniquely expressed by p(x,?) and j(x,t) (except for an overall phase factor), the
whole wave function of the measured system at a given instant can be measured by
protective measurements.

Protective measurements provide a definite, direct connection between the wave
function assigned to a physical system and the results of measurements on the sys-
tem, and the connection is only determined by the linear Schrédinger evolution.”
As I will argue later in this book, although this connection seems less well-known,
it will be extremely important for understanding the meaning of the wave function
and searching for the ontology of quantum mechanics.

9 Note that besides the wave function there are also state-independent quantities such as m (mass) and Q
(charge) in the Schrodinger equation, and the measurement of such a quantity will obtain a definite result.
This is also a definite, direct connection between the mathematical formalism of quantum mechanics and
experience.
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The wave function: ontic vs epistemic

The mathematical formalism of quantum mechanics and its connections with expe-
rience are the starting point of our search for the ontology of quantum mechanics.
The theory admits the mind-independent existence of a physical world, which con-
tains various physical systems. Moreover, it assigns a wave function to each appro-
priately prepared physical system, and states the relationship of the wave function
with the results of measurements on the system. But the theory does not tell us
what a physical system ontologically is, and especially, what the connection of the
wave function with the ontic state of the system is. Does the wave function directly
represent the ontic state of a physical system? Or does it merely represent the state
of (incomplete) knowledge about the ontic state of the system? In short, is the wave
function ontic or epistemic? We need to first answer this question in order to find
the ontological content of quantum mechanics. But wait, is there such a thing like
the ontic state of a physical system such as an atom?

2.1 There is an underlying reality

There is an argument for a negative answer to the above question, which is due to
Bohr. It is based on the concepts of entanglement and nonseparability between sys-
tem and device during a measurement (Bohr, 1948; Faye, 2014). Bohr believed that
atoms are real, but he would not attribute intrinsic and measurement-independent
state properties to atomic objects (Faye, 1991). Moreover, he did not regard the
wave function as a description of something physically real. According to Bohr,
the distinction between the measured system and the measuring device is a nec-
essary condition for a measurement to reveal information about the properties of
the system. Concretely speaking, in order to measure the properties of the mea-
sured system, it must be assumed that the system possesses an independent state,
which is in principle distinguishable from the state of the measuring device with
which it interacts. However, a quantum-mechanical treatment of the interaction
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between the measured system and the measuring device will make the very dis-
tinction ambiguous, since it requires that the combining system must be described
by a single inseparable entangled state. Therefore, according to Bohr, the impos-
sibility of “separating the behaviour of the objects from their interaction with the
measuring instruments” in quantum mechanics “implies an ambiguity in assign-
ing conventional attributes to atomic objects” (Bohr, 1948; see also Camilleri and
Schlosshauer, 2015).

It can be argued that there are several loopholes in the above argument. First
of all, it is possible that microscopic objects have some properties that cannot be
measured. Thus the unmeasurability of certain properties does not necessarily ex-
clude the existence of these properties. Next, the above argument only applies to
certain kinds of measurements such as projective measurements, which lead to in-
evitable entanglement and nonseparability between the measured system and the
measuring device. It is indeed true that such a measurement disturbs the measured
system and changes its state, and thus the result does not reflect the properties of
the measured system even if they exist. However, the argument does not apply to
protective measurements, during which there is no entanglement and nonseparabil-
ity. Thirdly, even for projective measurements, the above argument does not hold
true when the measured system is in an eigenstate of the measured observable.
In this case, there is no entanglement and nonseparability between the measured
system and the measuring device during the measurement either. Finally, if quan-
tum mechanics is universal,! then the above argument also applies to macroscopic
objects including measuring devices. Therefore, if the argument is valid, then mea-
suring devices will have no properties either. This contradicts the presupposition
that measuring devices can obtain definite results, and in particular, the pointers of
measuring devices have definite positions.

Certainly, even if there are no convincing arguments, one may also assume that
a microscopic object has no properties, e.g. the properties that determine the result
of a measurement on it. It has been suggested that the behaviour of microscopic
objects falls under no law and they do not properly admit of direct description
(Timpson, 2008; Fuchs, 2011). This view seems reasonable when the measure-
ments of microscopic objects yield only random results. But even for projective
measurements, when the measured system is in an eigenstate of the measured ob-
servable, the measurement result is not random, but definite. In this case, this view
cannot explain the definite measurement result. In fact, even for projective mea-
surements whose results are random, this view cannot explain the probabilities of
different measurement results either. In addition, according to Timpson (2008), this
view cannot provide an explanation of why macroscopic objects have the kinds of

! Tt seems that Bohr did not exclude the application of quantum mechanics to any system (Faye, 2014).
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physical properties that they do in virtue of the properties their constituents pos-
sess, since it does not ascribe properties to microscopic objects along with laws
describing how they behave.

Besides this explanatory deficit problem, it can be argued that the above view
has a more serious inconsistency problem. An observation of the position of the
pointer of a measuring device obtains a definite result (without disturbing it), and
the result indicates that the pointer has a definite position. This is the very reason
why we assume macroscopic objects including the pointers of measuring devices
have definite properties. Now if we can measure a microscopic object without dis-
turbing it and also obtain a definite result as for protective measurements, then
why cannot we ascribe properties to these objects? It will be inconsistent if we do
not ascribe properties to microscopic objects in this case.? In fact, if quantum me-
chanics is universal and can be applied to any physical system, then microscopic
objects will have the same ontological status as macroscopic objects. Therefore, if
macroscopic objects have properties (that can be measured by a measuring device),
so do microscopic objects. Note that denying macroscopic objects have properties
that we can experience will slip into solipsism for all practical purposes (see also
Norsen, 2016).

Last but not least, it is worth noting that whether or not microscopic objects
have properties related to their states, it is arguable that they at least have some
state-independent properties such as mass and charge. This is clearly indicated
by the Schrodinger equation that governs the evolution of microscopic objects, in
which there are quantities m and Q. Moreover, these properties also determine the
results of the measurements on them, which are definite and involve no quantum
randomness.

2.2 The y-epistemic view

I have argued that there is an underlying reality in the sense that microscopic ob-
jects such as atoms, like our familiar macroscopic objects, also have state properties
or an underlying ontic state (which can be measured). However, it is still possible
that the wave function, the key mathematical object of quantum mechanics, does
not directly represent the underlying reality. Concretely speaking, the wave func-
tion assigned to a physical system may not represent the ontic state of the system,
but merely represent a state of (incomplete) knowledge — an epistemic state — about
the ontic state of the system. There are indeed some heuristic arguments against the

2 Similarly, when considering the existence of protective measurements, if classical mechanics can attribute
intrinsic and observation-independent state properties to macroscopic objects, then quantum mechanics can
also attribute intrinsic and observation-independent state properties to microscopic objects.
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y-ontic view and supporting the (realist) y-epistemic view.> In the following, I will
examine these arguments.

2.2.1 Multidimensionality

The first sign of the non-reality of the wave function is that the space it lives on
is not three-dimensional but multidimensional. If a physical system consists of
N subsystems, then the space in which its wave function is defined, namely the
configuration space of the system, will be 3N-dimensional.

When Schrodinger first introduced the wave function for a two-body system, he
already worried about its reality:

The direct interpretation of this wave function of six variables in three-dimensional space
meets, at any rate initially, with difficulties of an abstract nature. (Schrodinger, 1926a, p.39)

Einstein expressed the same doubt:

The field in a many-dimensional coordinate space does not smell like something real. (Ein-
stein, 1926)

Later, after failing to develop a satisfactory ontology for the wave function, Schrodinger
also conceded this point when writing to Einstein:

I am long past the stage where I thought that one can consider the w-function as somehow
a direct description of reality. (Schrodinger, 1935a)

Interestingly, the multidimensionality of configuration space also made Bohm doubt
the reality of the wave function in the initial phase of formulating his theory:

While our theory can be extended formally in a logically consistent way by introducing the
concept of a wave in a 3N-dimensional space, it is evident that this procedure is not really
acceptable in a physical theory, and should at least be regarded as an artifice that one uses
provisionally until one obtains a better theory in which everything is expressed once more
in ordinary three-dimensional space. (Bohm, 1957, p.117)

However, although the multidimensionality of configuration space may pose a
serious difficulty for wave function realism (Albert, 1996, 2013), which regards
the wave function as a physical field in configuration space, it does not lead to
difficulties when interpreting the wave function as a representation of a property
of particles in three-dimensional space (Monton, 2002, 2013; Lewis, 2013, 2016;

3 It is worth noting that there are two different y-epistemic views. One is the realist y-epistemic view, which
will be discussed below. The other is the operationalist y-epistemic view, which regards the wave function of
a quantum system as representing a state of incomplete knowledge about which outcome will occur if a
measurement is made on the system. A further development of this view is QBism (Caves, Fuchs and
Schack, 2002; Fuchs, 2011), according to which the Born probabilities are subjective even for probability
one. This subjective Bayesian account of quantum mechanical probability has been debated by Timpson
(2008) and Stairs (2011). As argued in the last section, this view is also plagued by the explanatory deficit
problem etc (see Marchildon, 2004; Timpson, 2008).
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Gao, 2014b).* Therefore, the above analysis does not consititute a decisive argu-
ment supporting the -epistemic view and against the -ontic view.

2.2.2 Collapse of the wave function

Besides the multidimensional form of the wave function, the laws that govern the
evolution of the wave function seem to also suggest its non-reality.

Recall that there are two distinct evolution laws in standard quantum mechanics.
When a physical system is not being measured, its wave function evolves contin-
uously according to the Schrodinger equation. On the other hand, according to the
collapse postulate, if a (projective) measurement is made on the system, the origi-
nal wave function will instantaneously and discontinuously be updated by the wave
function corresponding to the measurement result. It has been a hot topic of debate
how to explain or explain away the collapse of the wave function.

It seems that the -epistemic view may provide a natural explanation of the
collapse of the wave function (Leifer, 2014a). If the wave function does not directly
represent a state of reality but merely represent a state of incomplete knowledge
about reality, namely if the wave function is not ontic but epistemic, then it seems
that the collapse of the wave function can be readily explained as the effect of
acquiring new information, no more mysterious than the updating of a classical
probability distribution when new data is obtained. For example, in Schrodinger’s
cat thought experiment, the cat may be definitely dead or alive before we observe
it, and the superposition of dead and alive cats we assign to it may simply reflect
the fact that we do not know the actual state of the cat. Then after we observe the
cat and know whether it is dead or alive, the superposition will naturally be updated
by the state corresponding to the dead or alive cat.

There is evidence that Einstein once supported this explanation of the collapse
of the wave function (see Fine, 1993, 1996 for a more careful analysis). In a letter
to Heitler, he criticized Heitler’s notion that the observer plays an important role in
the process of wavefunction collapse:

[I advocate] that one conceives of the y-function [i.e., wavefunction] only as an incomplete
description of a real state of affairs, where the incompleteness of the description is forced
by the fact that observation of the state is only able to grasp part of the real factual situation.
Then one can at least escape the singular conception that observation (conceived as an act
of consciousness) influences the real physical state of things; the change in the y-function
through observation then does not correspond essentially to the change in a real matter
of fact but rather to the alteration in our knowledge of this matter of fact. (emphasis in
original) (Einstein, 1948)

If this simple, intuitive explanation of the collapse of the wave function is indeed

4 T will analyze these two interpretations of the wave function in detail in Chapters 6 and 7.
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valid, then it strongly suggests that the wave function is not real. However, this
explanation cannot be wholly correct. Consider a quantum system being in the
following superposed state:

W)= cilay, 2.1)
l

where |a;) are the eigenstates of an arbitrary observable A, and c; are the expansion
coeflicients. The Born rule tells us that the result of a projective measurement of A
is one of the eigenvalues of A, say a;, with probability |c;|>. The collapse postulate
in standard quantum mechanics further says that after the measurement the original
superposition instantaneously and discontinuously collapses to the corresponding
eigenstate |a;). The explanation of the collapse of the wave function provided by
the y-epistemic view is as follows. Before the measurement, the observable A of
the system has a definite value ;. The superposed state we assign to the system
reflects our incomplete knowledge about the actual value of the observable. Then
after we measure the observable and know its actual value a;, the superposed state
will naturally be updated by the state corresponding to the value, |a;).

Since this explanation of wavefunction collapse is supposed to hold true for the
measurement of every observable at any time, it must assume that all observables
defined for a quantum system have definite values at all times, which are their
eigenvalues, independently of any measurement context, and moreover, measure-
ments also reveal these pre-existing values. As a result, the functional relations
between commuting observables must hold for the values assigned to them in or-
der to avoid conflicts with the predictions of quantum mechanics. This obviously
violates the Kochen-Specker theorem, which asserts the impossibility of assigning
values to all observables whilst, at the same time, preserving the functional rela-
tions between them (in a Hilbert space of dimension d > 3) (Kochen and Specker,
1967).

Today, most y-epistemists already abandon the above explanation of wavefunc-
tion collapse. However, a satisfactory explanation consistent with the -epistemic
view is still wanting. In order that a y-epistemic model is consistent with the pre-
dictions of quantum mechanics, the underlying ontic state also needs to be changed
during the measurement process in general. For example, in Spekkens’s toy model
(Spekkens, 2007), even a measurement of an eigenstate of the measured observ-
able also causes change of the underlying ontic state. Therefore, even if denying
5 Here I ignore the finite precision loophole of the Kochen-Specker theorem, which allows non-contextual

hidden-variables theories, but which is widely regarded as physically implausible (Bartlett and Kent, 2004).

Besides, it is worth noting that for a quantum system all observables can have their expectation values in the

state of the system at all times (Gao, 2015b). The Kochen-Specker theorem does not prohibit this, since the

definite values being expectation values violates the production rule, which is one of the key assumptions of
the theorem (Kochen and Specker, 1967).
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the reality of the wave function and wavefunction collapse, the -epistemic view
also needs to explain why the underlying ontic state is changed during the mea-
surement process. This is still a big challenge to the y-epistemic view.°

To sum up, I have argued that the collapse of the wave function cannot simply be
explained as a process of updating information about the ontic state of the measured
system. This result provides a support for the ¥-ontic view, not for the y-epistemic
view.

2.2.3 Indistinguishability of nonorthogonal states

Although some features of quantum mechanics seem to also suggest the non-reality
of the wave function, a more careful analysis shows that this is not the case. In the
following, I will take the indistinguishability of nonorthogonal states as a typical
example.

At first sight, the y-epistemic view may provide a very natural explanation of
the impossibility of distinguishing between nonorthogonal states with certainty.
The usual argument is as follows. If the wave function represents an ontic state,
then two nonorthogonal states will correspond to distinct ontic states, and thus it
seems puzzling that we cannot measure the difference between them. On the other
hand, if the wave functions are epistemic states and represented by probability dis-
tributions that have support over some set of ontic states, then two nonorthogonal
states will overlap and may correspond to the same ontic state. Thus it is quite
understandable that we cannot perfectly distinguish them by a measurement. Take
again Spekkens’s (2007) toy model as an example. In the model, two nonorthogo-
nal states |x+) and |y+) overlap on the ontic state (+1, +1), which will be occupied
by the system half the time whenever |x+) or |y+) is prepared. When this hap-
pens, there is nothing about the ontic state of the system that could possibly tell us
whether |x+) or [y+) was prepared. Therefore, we cannot distinguish between these
two prepared nonorthogonal states at least half the time. The overlap of the two
epistemic states explains their indistinguishability.

In order to justify the above y-epistemic explanation of the indistinguishability
of nonorthogonal states, we need more than just that the probability distributions
corresponding to two nonorthogonal states should have nonzero overlap. We also
need that the overlap should be equal to the overlap of the two nonorthogonal states
(i.e. the modulus squared of the inner product of these two states). That is: when
measuring a physical system prepared in one of these two states, the probability
of obtaining the result corresponding to the projector of the other state should be

6 In Spekkens’s (2007) toy model, this change is explained by the requirement of the so-called knowledge
balance principle, which, roughly speaking, states that at most half of the information needed to specify the
ontic state can be known at any given time. But again, the problem turns to explaining why there is this
knowledge balance principle. For further discussion see Leifer (2014a).
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equal to the overlap between the probability distributions corresponding to the two
states. Such models are called maximally y-epistemic models. Only in these mod-
els, can the difficulty of distinguishing nonorthogonal states be completely and
quantitatively explained by the difficulty of distinguishing the corresponding epis-
temic states, and thus the -epistemic explanation of the indistinguishability of
nonorthogonal states can be wholly satisfying (Maroney, 2012).

However, it has been shown that this simple, intuitive understanding of the in-
distinguishability of nonorthogonal states cannot go through (Leifer and Maroney,
2013; Barrett et al, 2014; Leifer, 2014b; Branciard, 2014). For example, it proves
that the maximally y-epistemic models, in which the overlap of the probability
distributions is large enough to explain fully the indistinguishability of nonorthog-
onal states, must make different predictions from quantum mechanics for Hilbert
space dimension d > 3 (Barrett et al, 2014). As we will see in the next section, the
y-ontology theorems will further show that y-epistemic models must be severely
constrained if they are to reproduce the predictions of quantum mechanics.

2.2.4 The eigenvalue-eigenstate half link

In the last part of this section, I will also discuss a heuristic argument against the
y-epistemic view and supporting the -ontic view. The argument is based on the
so-called eigenvalue-eigenstate half link, which says that when a physical system
is in an eigenstate of an observable, the system has an observation-independent
property with value being the eigenvalue corresponding to the eigenstate (Monton,
2006, 2013).

Here is the argument given by Leifer (2014a). First of all, according to the
eigenvalue-eigenstate half link, the observables of which the wave function is an
eigenstate are properties of a physical system with values being the corresponding
eigenvalues. Next, the wave function of a physical system is uniquely determined
by the set of observables of which it is an eigenstate. In fact, every wave function is
uniquely determined by a single observable; |i) is an eigenstate of the observable
[¥) (Y| with eigenvalue +1 and it is the only state in the +1 eigenspace of |) (Y|
(up to a global phase). Then the argument goes like this: if a physical system has
a set of properties, and those properties uniquely determine its wave function, then
the wave function is also real, representing a property of the system.

This argument deserves careful examination. To begin with, if one denies the
eigenvalue-eigenstate half link, then one can certainly refute the argument. How-
ever, it is worth noting that unlike the problematic eigenvalue-eigenstate link, the
eigenvalue-eigenstate half link seems more reasonable. The former states that if
and only if a physical system is in an eigenstate of an observable, the system has
a property with value being the eigenvalue corresponding to the eigenstate, and it
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restricts the scope of possible properties of a physical system. While the latter re-
moves the words “and only if”” and thus avoids this unnecessary restriction. I will
analyze the basis of the eigenvalue-eigenstate half link in more detail in Chapter 4.

Next, when assuming the validity of the eigenvalue-eigenstate half link, it is
indeed surprising how this weak link can be so strong as to be able to derive the
reality of the wave function. The crux of the matter is whether the eigenvalue-
eigenstate half link really implies that the observables of which the wave function
is an eigenstate are properties of a physical system. It can be argued that the answer
is negative. The reason is that the eigenvalue-eigenstate half link is overused here;
the link only says that an observable is a property of a physical system when the
system is in an eigenstate of the observable, and it does not say that the observable
is a property of the system in all cases, e.g. when the system is not in an eigenstate
of the observable. For example, according to the eigenvalue-eigenstate half link,
the observable ) (] is a property of a physical system when the system is in the
state |i/). However, the link does not say that the observable |i/) (/] is still a property
of the system when the system is in a state other than [y). Only if the latter is true
can the above argument go through.

In fact, this understanding of the eigenvalue-eigenstate half link is still not very
accurate. What the link really says is that when a physical system is in an eigen-
state of an observable, the system has a property represented by the eigenvalue
associated with the eigenstate. This property is certainly not the observable itself,
although we may say that it is the observable possessing the corresponding eigen-
value. Therefore, although the wave function |¢/) can be uniquely determined by
the observable i) (¥, since the observable is not a property of the system, this has
no implication on the reality of the wave function. On the other hand, even though
the observable |y) (/| possessing an eigenvalue +1 is a property of the system, this
property cannot uniquely determine the wave function |i/); the wave function is a
very complex object, while some property having value +1 contains little informa-
tion.

However, this analysis may not persuade Penrose. He said:

One of the most powerful reasons for rejecting such a subjective viewpoint concerning
the reality of |/) comes from the fact that whatever [iy) might be, there is always—in
principle, at least—a primitive measurement whose YES space consists of the Hilbert-
space ray determined by |i/). The point is that the physical state |yr) (determined by the ray
of complex multiples of |y)) is uniquely determined by the fact that the outcome YES, for
this state, is certain. No other physical state has this property. For any other state, there
would merely be some probability, short of certainty, that the outcome will be YES, and
an outcome of NO might occur. Thus, although there is no measurement which will tell us
what |y) actually is, the physical state |i/) is uniquely determined by what it asserts must
be the result of a measurement that might be performed on it. (Penrose, 1994, p.314)
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Penrose’s argument is different from the above argument in that it is not based on
the eigenvalue-eigenstate half link. His reason for the reality of the wave function
is that the wave function |) is uniquely determined by the fact that the result of
the measurement of the projector ) (| on this state is certain, and other wave
functions do not have this property. This seems to be a good reason, but it in fact
assumes too much. Concretely speaking, it assumes that the Born probabilities are
not epistemic, but objective, intrinsic to a single measurement process. This already
rejects the y-epistemic view, according to which the Born probabilities are at least
partly epistemic. Therefore, Penrose’s argument is not a valid argument supporting
the y-ontic view either.

2.3 y-ontology theorems

I have analyzed several heuristic arguments for the y-epistemic view and y-ontic
view. The analysis shows that these arguments do not constitute a decisive proof of
either view. In order to obtain a definite result, we need to find a general, rigorous
approach to determine whether the wave function is ontic or epistemic. In this
section, I will introduce one such approach, the ontological models framework,
and two y-ontology theorems based on this framework.

2.3.1 The ontological models framework

The ontological models framework provides a rigorous approach to address the
question of the nature of the wave function (Spekkens, 2005; Harrigan and Spekkens,
2010). It has two fundamental assumptions. The first assumption is about the exis-
tence of the underlying state of reality. It says that if a quantum system is prepared
such that quantum mechanics assigns a pure state to it, then after preparation the
system has a well-defined set of physical properties or an underlying ontic state,
which is usually represented by a mathematical object, A. This assumption is nec-
essary for the analysis of the ontological status of the wave function, since if there
are no any underlying ontic states, it will be meaningless to ask whether or not the
wave functions describe them.

Here a strict y-ontic/epistemic distinction can be made. In a -ontic ontological
model, the ontic state of a physical system determines its wave function uniquely,
and thus the wave function represents a property of the system. While in a -
epistemic ontological model, the ontic state of a physical system can be compatible
with different wave functions, and the wave function represents a state of incom-
plete knowledge — an epistemic state — about the actual ontic state of the system.
Concretely speaking, the wave function corresponds to a probability distribution
p(A|P) over all possible ontic states when the preparation is known to be P, and the
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probability distributions corresponding to two different wave functions can over-
lap.”

In order to investigate whether an ontological model is consistent with the em-
pirical predictions of quantum mechanics, we also need a rule of connecting the
underlying ontic states with the results of measurements. This is the second as-
sumption of the ontological models framework, which says that when a measure-
ment is performed, the behaviour of the measuring device is only determined by
the ontic state of the system, along with the physical properties of the measuring
device. More specifically, the framework assumes that for a projective measure-
ment M, the ontic state A of a physical system determines the probability p(k|1, M)
of different results k for the measurement M on the system.® The consistency
with the predictions of quantum mechanics then requires the following relation:
fdﬁp(kl/l, M)p(A|P) = p(k|M, P), where p(k|M, P) is the Born probability of k
given M and P. A direct inference of this relation is that different orthogonal states
correspond to different ontic states.

In recent years, there have appeared several no-go theorems which attempt to
refute the y-epistemic view within the ontological models framework. These the-
orems are called y-ontology theorems, including the Pusey-Barrett-Rudolph theo-
rem, the Colbeck-Renner theorem, and Hardy’s theorem (Pusey, Barrett and Rudolph,
2012; Colbeck and Renner, 2012; Hardy, 2013).9 The key assumption of the -
epistemic view is that there exist two nonorthogonal states which are compatible
with the same ontic state (i.e. the probability distributions corresponding to these
two nonorthogonal states overlap).!? A general strategy of these y-ontology the-
orems is to prove the consequences of this assumption are inconsistent with the
predictions of quantum mechanics (under certain auxiliary assumptions). In the
following, I will introduce two typical ¥-ontology theorems.

2.3.2 Pusey-Barrett-Rudolph theorem

The first Y-ontology theorem is the Pusey-Barrett-Rudolph theorem (Pusey, Bar-
rett and Rudolph, 2012). Its basic proof strategy is as follows. Assume there is a
nonzero probability that N nonorthogonal states |y;) (i=1, ... , N) are compatible

7 Note that it is possible that two wave functions are compatible with the same ontic state but the probability
distributions corresponding to the two different wave functions do not overlap, although the probability of
this situation occurring is zero. I will not consider this undetectable difference between the two formulations
of the y-epistemic view in my following discussion.

This specific assumption is not necessarily a consequence of the second assumption. For further discussion
see Chapter 3.

Note that the early no-go theorems for hidden variables, such as Bell’s theorem and the Kochen-Specker
theorem, are not y-ontology theorems, since they do not explicitly addresses the -ontic/epistemic
distinction. For a comprehensive review of ¢-ontology theorems and related work see Leifer (2014a).

In other words, when these two nonorthogonal states are prepared, there is a non-zero probability that the
prepared ontic states are the same.

©
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with the same ontic state A. The ontic state A determines the probability p(k|1, M)
of different results k for the measurement M. Moreover, there is a normalization
relation for any N result measurement: Z?L | P(kilAd, M) = 1. Now if an N result
measurement satisfies the condition that the first state gives zero Born probability
to the first result and the second state gives zero Born probability to the second
result and so on, then there will be a relation p(k;|4, M) = 0 for any i, which leads
to a contradiction.

The task is then to find whether there are such nonorthogonal states and the
corresponding measurement. Obviously there is no such a measurement for two
nonorthogonal states of a physical system, since this will permit them to be per-
fectly distinguished. However, such a measurement does exist for four nonorthog-
onal states of two copies of a physical system (Pusey, Barrett and Rudolph, 2012).
The four nonorthogonal states are the following product states: |0) ® |0), |0) ®
[+),]+) ® |0) and |+) ® |+), where |+) = \%(lO) + |1)). The corresponding measure-
ment is a joint measurement of the two systems, which projects onto the following
four orthogonal states:

1) = \%(IO>®I1> +1) ®10)),
|¢2) = \%200) ® =) +11)®[+)),
|#3) = \L@(IH ® 1) +|-)®]0)),
|¢4) = %(H)@ =)+ =) ®+), (2.2)

where |-) = \%(lO) —|1)). This proves that the four nonorthogonal states are onto-
logically distinct. In order to further prove the two nonorthogonal states |0) and [+)
for one system are ontologically distinct, a preparation independence assumption
is needed, which says that multiple systems can be prepared such that their ontic
states are uncorrelated. Under this assumption, a similar proof for every pair of
nonorthogonal states can also be found, which requires more than two copies of a
physical system (Pusey, Barrett and Rudolph, 2012).

2.3.3 Hardy’s theorem

The proof of the Pusey-Barrett-Rudolph theorem requires an analysis of multiple
copies of the system in question. Hardy’s theorem improves this by pertaining to
a single copy of the system in question (Hardy, 2013). The price it needs to pay
is to resort to assumptions about how dynamics is represented in an ontological
model. In contrast, the Pusey-Barrett-Rudolph theorem only involves prepare-and-
measure experiments.
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Hardy’s theorem can be illustrated with a simple example (Leifer, 2014a). As-
sume there are two nonorthogonal states /1) and \L@(Id/]) + |y2)), which are com-
patible with the same ontic state A as required by the y-epistemic view. Consider a
unitary evolution which leaves |y ) invariant but changes %(l(ﬁﬂ + |2)) to its or-

thogonal state \%(Wl) — |2)). Since two orthogonal states correspond to different

ontic states,'! the original ontic state 1 must be changed by the unitary evolution.
How to derive a contradiction then? If assuming that the unitary evolution that
leaves |y) invariant also leaves the underlying ontic state A invariant, then there
will be a contradiction. In other words, under this assumption we can prove that
the two nonorthogonal state |i/;) and %(|lﬂ1> + |y2)) are ontologically distinct.

This is the simplest example of Hardy’s theorem. The above auxiliary assump-
tion is called ontic indifference assumption. One strong motivation for this assump-
tion is locality. When |i/1) and |») are two spatially separated states prepared in
regions 1 and 2 respectively, it seems reasonable to assume that the local evolution
of the ontic state in region 2 does not influence the ontic state in region 1. Interest-
ingly and surprisingly, even if the ontic indifference assumption holds only for a
single pure state, Hardy’s theorem can also be proved (Hardy, 2013; Patra, Pironio
and Massar, 2013).

" Note that in order to prove this result and Hardy’s theorem, it is not necessary to resort to the stronger
assumption that the ontic state determines the probability for measurement results (which is needed to prove
the Pusey-Barrett-Rudolph theorem); rather, one only needs to assume that the ontic state determines
whether the probability is zero or nonzero. This weaker assumption is called possibilistic completeness
assumption (Hardy, 2013).
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The nomological view

The ontological models framework provides a rigorous approach to address the
question of whether the wave function is ontic or epistemic. However, as noted by
the proponents of this framework (Harrigan and Spekkens, 2010), there could exist
realist interpretations of quantum mechanics that are not suited to it. This is in-
deed the case. For example, Bohm’s theory is just an exception.! The reason is that
the ontological models framework and Bohm’s theory have different assumptions
about the connection between the underlying ontic state and the probabilities of
measurement results; the former assumes that the ontic state determines the prob-
ability of a measurement result, while the latter as a deterministic theory assumes
that the ontic state completely determines the measurement result, and the (epis-
temic) probability of a measurement result is determined by the initial condition
of the universe. Therefore, the y-ontology theorems such as the Pusey-Barrett-
Rudolph theorem, which are based on the ontological models framework, do not
apply to Bohm’s theory even though their auxiliary assumptions can be avoided
(see also Feintzeig, 2014; Gao, 2014b; Drezet, 2015). In other words, these theo-
rems do not require that the wave function should be ontic in Bohm’s theory. Since
Bohm’s theory clearly rejects the -epistemic view, how can it interpret the wave
function if not assuming the -ontic view? Interestingly, there is a third option, the
nomological view. In this chapter, I will introduce this view of the wave function
and give a critical analysis of it.

! Bohm’s theory is a realistic alternative to standard quantum mechanics initially proposed by de Broglie
(1928) and later rediscovered and developped by Bohm (1952) (see also Bohm and Hiley, 1993; Holland,
1993; Diirr and Teufel, 2009; Diirr, Goldstein and Zanghi, 2012; Goldstein, 2013). The theory is also called
the de Broglie-Bohm theory or the pilot wave theory in the literature. I will use the appellation “Bohm’s
theory” throughout this book.
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3.1 The effective wave function

According to Bohm’s theory, a complete realistic description of a quantum system
is provided by the configuration defined by the positions of its particles together
with its wave function. The Bohmian law of motion is expressed by two equations:
a guiding equation for the configuration of particles and the Schrodinger equation,
describing the time evolution of the wave function which enters the guiding equa-
tion. The law can be formulated as follows:

dO@®)
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where Q(f) denotes the spatial configuration of particles, W(¢) is the wave function
at time ¢, and v equals to the velocity of probability density in standard quantum
mechanics.?2 Moreover, it is assumed that at some initial instant o, the epistemic
probability of the configuration, p(#y), is given by the Born rule: p(#y) = [P (t0)I?.
This is the so-called quantum equilibrium hypothesis, which, together with the law
of motion, ensures the empirical equivalence between Bohm’s theory and standard
quantum mechanics.

The status of the above equations is different depending on whether one consid-
ers the physical description of the universe as a whole or of a subsystem thereof.
Bohm'’s theory starts from the concept of a universal wave function (i.e. the wave
function of the universe), figuring in the fundamental law of motion for all the par-
ticles in the universe. That is, Q(#) describes the configuration of all the particles
in the universe at time ¢, and Y¥(¢) is the wave function of the universe at time ¢,
guiding the motion of all particles taken together. To describe subsystems of the
universe, the appropriate concept is the effective wave function in Bohm’s theory.

The effective wave function is the Bohmian analogue of the usual wave function
in standard quantum mechanics. It is not primitive, but derived from the universal
wave function and the actual spatial configuration of all the particles ignored in the
description of the respective subsystem (Diirr, Goldstein and Zanghi, 1992). The
effective wave function of a subsystem can be defined as follows. Let A be a subsys-
tem of the universe including N particles with position variables x = (x1, X2, ..., Xy).

2 Note that there are two somewhat different formulations of Bohm’s theory, in one of which the guiding
equation is second-order as Bohm originally formulated, and in the other the guiding equation is first-order.

Here I introduce the first-order formulation of Bohm’s theory, which is usually called Bohmian mechanics

(Goldstein, 2013). See Belousek (2003) for a comparison of these two formulations. In addition, it is worth

noting that there are also other velocity formulas with nice properties, including Galilean symmetry, and

yielding theories that are empirically equivalent to standard quantum mechanics and to Bohm’s theory
(Deotto and Ghirardi, 1998), although the Bohmian choice is arguably the simplest.
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Lety = (y1,y2, ..., yu) be the position variables of all other particles not belonging
to A. Then the subsystem A’s conditional wave function at time ¢ is defined as the
universal wave function ¥,;(x, y) evaluated at y = Y (¢):

P (x) = (X, Y)ly=y (- (3.3)

If the universal wave function can be decomposed in the following form:

Fi(x,y) = ()¢ (y) + O(x, y), (3.4)

where ¢,(y) and O,(x, y) are functions with macroscopically disjoint supports, and
Y(?) lies within the support of ¢,(y), then wf‘(x) = ¢;(x) (up to a multiplicative
constant) is A’s effective wave function at . It can be seen that the temporal evo-
lution of A’s particles is given in terms of A’s conditional wave function in the
usual Bohmian way, and when the conditional wave function is A’s effective wave
function, it also obeys a Schrédinger dynamics of its own. This means that the ef-
fective descriptions of subsystems are of the same form of the law of motion as
given above. This is a satisfactory result.

3.2 The universal wave function as law

It has been a hot topic of debate how to interpret the wave function in Bohm’s
theory. An influential view is the nomological interpretation of the wave function,
which was originally suggested by Diirr, Goldstein and Zanghi (1997).3 They ar-
gued that the universal wave function or the wave function of the universe has a
law-like character, that is, it is more in the nature of a law than a concrete physical
reality. In their own words,

The wave function of the universe is not an element of physical reality. We propose that
the wave function belongs to an altogether different category of existence than that of
substantive physical entities, and that its existence is nomological rather than material. We
propose, in other words, that the wave function is a component of a physical law rather
than of the reality described by the law. (Diirr, Goldstein and Zanghi, 1997, p. 10)

The reasons to adopt this nomological view of the wave function come from the
unusual kind of way in which Bohm’s theory is formulated, and the unusual kind
of behavior that the wave function undergoes in the theory. First of all, although
the wave function affects the behavior of the configuration of the particles, which is
expressed by the guiding equation (3.1), there is no back action of the configuration
upon the wave function. The evolution of the wave function is governed by the
Schrodinger equation (3.2), in which the actual configuration Q(f) does not appear.

3 See also Goldstein and Teufel (2001) and Goldstein and Zanghi (2013).
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Since a physical entity is supposed to satisfy the action-reaction principle, the wave
function cannot describe a physical entity in Bohm’s theory.

Next, the wave function of a many-particle system, ¥(q1, ..., gn), is defined not
in our ordinary three-dimensional space, but in the 3N-dimensional configuration
space, the set of all hypothetical configurations of the system. Thus it seems un-
tenable to view the wave function as directly describing a physical field. I have
discussed such worries in the last chapter. In fact, the sort of physical field the
wave function is supposed to describe is even more abstract. Since two wave func-
tions such that one is a (nonzero) scalar multiple of the other are physically equiv-
alent, what the wave function describes is not even a physical field at all, but an
equivalence class of physical fields. Moreover, Bohm’s theory regards identical
particles such as electrons as unlabelled, so that the configuration space of N such
particles is not the familiar high dimensional space, like R*", but is the unfamiliar
high-dimensional space VR? of N-point subsets of R>. This space has a nontrivial
topology, which may naturally lead to the possibilities of bosons and fermions. But
it seems odd as a fundamental space in which a physical field exists.

Thirdly, and more importantly, the wave function in Bohm’s theory plays a role
that is analogous to that of the Hamiltonian in classical Hamiltonian mechanics
(Goldstein and Zanghi, 2013). To begin with, both the classical Hamiltonian and
the wave function live on a high dimensional space. The wave function is defined
in configuration space, while the classical Hamiltonian is defined in phase space:
a space that has twice as many dimensions as configuration space. Next, there is a
striking analogy between the guiding equation in Bohm’s theory and the Hamilto-
nian equations in classical mechanics. The guiding equation can be written as:

d
—Q = der(logy), 3.5)
dt
where the symbol der denotes some sort of derivative. Similarly, the Hamiltonian
equations can be written in a compact way as:

ax
i der(H), 3.6)

where der(H) is a suitable derivative of the Hamiltonian. Moreover, it is also true
that both logys and H are normally regarded as defined only up to an additive con-
stant. Adding a constant to H doesn’t change the equations of motion. Similarly,
when multiplying the wave function by a scalar, which amounts to adding a con-
stant to its log, the new wave function is physically equivalent to the original one,
and they define the same velocity for the configuration in the equations of motion
in Bohm’s theory. Since the classical Hamiltonian is regarded not as a description
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of some physical entity, but as the generator of time evolution in classical mechan-
ics, by the above analogy it seems natural to assume that the wave function is not a
description of some physical entity either, but a similar generator of the equations
of motion in Bohm’s theory.

These analyses suggest that one should think of the wave function as describing
a law and not as some sort of concrete physical reality in Bohm’s theory. However,
it seems that there is a serious problem with this nomological view of the wave
function. The wave function of a quantum system typically changes with time, but
laws are supposed not to change with time. Moreover, we can prepare the wave
function of a quantum system and control its evolution, but laws are not supposed
to be things that we can prepare and control. This problem indeed exists for the
effective wave function of a subsystem of the universe, but it may not exist for the
wave function of the universe, only which deserves to be interpreted nomologically
(Goldstein and Zanghi, 2013). The wave function of the universe is certainly not
controllable. And it may not be dynamical either. This can be illustrated by the
Wheeler-DeWitt equation, which is the fundamental equation for the wave function
of the universe in canonical quantum cosmology:

HY¥(q) =0, (3.7)

where W(g) is the wave function of the universe, g refers to 3-geometries, and H is
the Hamiltonian constraint which involves no explicit time-dependence. Unlike the
Schrodinger equation, the Wheeler-DeWitt equation has on one side, instead of a
time derivative of ¥, simply 0, and thus its natural solutions are time-independent.
Moreover, the wave function of the universe may be unique. Although the Wheeler-
DeWitt equation presumably has a great many solutions, when supplemented with
additional natural conditions such as the Hartle-Hawking boundary condition, the
solution may become unique. Such uniqueness also fits nicely with the conception
of the wave function as law.

Whether the wave function of the universe is a stationary function, uniquely
obeying some constraints and hence resembling the classical Hamiltonian is still
unknown, since the final theory of quantum gravity is not yet available. What we
can do now is to examine whether the effective wave functions of subsystems also
have a tenable physical explanation under the nomological view of the universal
wave function. As we will see in the next section, the answer to this question will
have implications for the nomological view of the wave function, as well as for the
ontology of Bohm’s theory.
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3.3 A critical analysis

What is the physical meaning of the effective wave function in Bohm’s theory?
If the wave function of the universe is nomological, then the ontology of Bohm’s
theory will consist only in particles and their positions. As a consequence, the
effective wave function of a subsystem of the universe, which is not nomological
in general, must be ontologically explained by these particles and their positions.
Moreover, it is uncontroversial that the effective wave function of a subsystem does
not supervene on the distribution of the system’s particles’ positions. For instance,
for the electron in the hydrogen atom, there are countably many real-valued wave
functions corresponding to different energy eigenstates of the electron, but they
may all describe a particle that is at rest in the same position at all times. Therefore,
if the ontology of Bohm’s theory consists only in particles and their positions,
then the effective wave function of a subsystem must encode the influences of the
particles which are not part of the subsystem.

This line of reasoning is also supported by the analysis of Esfeld et al (2013).
According to these authors, the effective wave function of a subsystem encodes the
non-local influences of other particles on the subsystem via the non-local law of
Bohm’s theory. For example, in the double-slit experiment with one particle at a
time, the particle goes through exactly one of the two slits, and that is all there is in
the physical world. There is no field or wave that guides the motion of the particle
and propagates through both slits and undergoes interference. The development of
the position of the particle (its velocity and thus its trajectory) is determined by the
positions of other particles in the universe, including the particles composing the
experimental setup, and the non-local law of Bohm’s theory can account for the
observed particle position on the screen (Esfeld et al, 2013).*

In the following, I will argue that the effective wave function of a subsystem of
the universe does not encode the influences of other particles on the subsystem,
and thus the nomological view of the wave function seems problematic. First of
all, consider the simplest case in which the universal wave function factorizes so
that

Fi(x, y) = @i(0)¢ (). (3-8)

Then ;bf(x) = ¢,(x) is subsystem A’s effective wave function at ¢. This is the first
example considered by Diirr, Goldstein and Zanghi (1992) in explaining the effec-
tive wave function. In this case, it is uncontroversial that subsystem A and its en-
vironment are independent of each other, and the functions ¢;(x) and ¢,(y) describe
subsystem A and its environment, respectively. Thus, the effective wave function

4 See also Dorato (2015) for a recent evaluation of this view.
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of subsystem A is independent of the particles in the environment, and it does
not encode the non-local influences of these particles. Note that even although the
universal wave function is time-independent, the effective wave functions of sub-
system A and its environment may be both time-dependent, and thus it is arguable
that they cannot be interpreted nomologically.’

Next, consider the general case in which there is an extra term in the factorization
of the universal wave function, which is denoted by (3.4). In this case, the effective
wave function of subsystem A is determined by both the universal wave function
and the positions of the particles in its environment (via a measurement-like pro-
cess). If Y(¢) lies within the support of ¢,(y), A’s effective wave function at ¢ will
be ¢;(x). If Y(¢) does not lie within the support of ¢,(y), A’s effective wave function
at ¢ will be not ¢;(x). For example, suppose O;(x,y) = ., fu(x)gn(y), where gi(y)
and g;(y) are functions with macroscopically disjoint supports for any i # j, then
if Y(¢) lies within the support of g;(y), A’s effective wave function at ¢ will be fi(x).
It can be seen that the role played by the particles in the environment is only se-
lecting which function the effective wave function of subsystem A is, while each
selected function is independent of the particles in the environment and completely
determined by the universal wave function.

Therefore, it seems that the effective wave function of a subsystem of the uni-
verse does not encode the influences of other particles in the universe in general
cases. When the effective wave function of a subsystem has been selected, the other
particles in the universe will have no influences on the particles of the subsystem.
For example, in the double-slit experiment with one particle at a time, the devel-
opment of the position of the particle does not depend on the positions of other
particles in the universe (if only the positions of these particles select the same
effective wave function of the particle during the experiment, e.g. Y(¢) has been
within the support of ¢,(y) during the experiment).

Since it is arguable that the nomological view of the wave function implies that
the effective wave function of a subsystem of the universe encodes the influences of
other particles in the universe, the above result seems to pose a threat to the view.
Moreover, the result also suggests that the ontology of Bohm’s theory consist in
not only Bohmian particles and their positions, but also the wave function.

3 Moreover, this simplest case seems to also pose a difficulty for the dispositionalist interpretation of Bohm’s
theory suggested by Esfeld et al (2013). If the universal wave function represents the disposition of motion of
all particles in the universe, then when the universal wave function factorizes, the effective wave function of
each subsystem will also represent the disposition of motion of the particles of the subsystem, and thus
Belot’s (2012) objections will be valid in this case.
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Reality of the wave function

I have analyzed the competing views of the wave function, including the y-epistemic
view, the y-ontic view and the nomological view. Which interpretation is true,
then? Although there are already several y-ontology theorems, a definite answer
to this question is still unavailable. On the one hand, auxiliary assumptions are
required to prove these y-ontology theorems, e.g. the preparation independence
assumption for the Pusey-Barrett-Rudolph theorem (Pusey, Barrett and Rudolph,
2012) and the ontic indifference assumption for Hardy’s theorem (Hardy, 2013). It
thus seems to be impossible to completely rule out the y-epistemic view without
auxiliary assumptions.! On the other hand, as noted before, the ontological models
framework, on which these y-ontology theorems are based, is not very general. For
example, the framework does not apply to deterministic theories such as Bohm’s
theory. Thus the ¥-ontology theorems, even if their auxiliary assumptions can be
avoided, cannot rule out the nomological view of the wave function either.

But this is not the end of the story. In this chapter, I will extend the ontolog-
ical models framework by introducing protective measurements, and give a new
argument for the y-ontic view in terms of protective measurements, first in the ex-
tended ontological models framework and then beyond the framework (see also
Gao, 2015b). The argument does not rely on auxiliary assumptions, and it also
applies to deterministic theories.

4.1 Ontological models framework extended

In order to obtain a definite answer to the question of the nature of the wave func-
tion, the ontological models framework must be amended and extended.
The first limitation of the ontological models framework is that it does not apply
! Indeed, by removing the assumptions of these y-ontology theorems, explicit y-epistemic models can be

constructed to reproduce the statistics of (projective) quantum measurements in Hilbert spaces of any
dimension (Lewis et al, 2012; Aaronson et al, 2013).
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to deterministic theories. This limitation can be readily removed by assuming that
the ontic state of a physical system determines the probabilities for different results
of a projective measurement on the system only for indeterministic theories, and
for deterministic theories the ontic state of a physical system (and the ontic state
of the measuring device) determine the result of a projective measurement on the
system. In this way, the ontological models framework can be amended to apply
to deterministic theories. However, since the result of a projective measurement
is random, the additional connection between the ontic state and the measurement
result for deterministic theories will have little use in addressing the question of the
nature of the wave function in these theories.

The second limitation of the ontological models framework is that the framework
only consider conventional projective measurements. This is not beyond expecta-
tions, as these measurements are most well-known and have been once regarded
as the only type of quantum measurements. However, it has been known that there
are in fact other types of quantum measurements, one of which is the relatively
less-known protective measurements (Aharonov and Vaidman, 1993; Aharonov,
Anandan and Vaidman, 1993; see also Section 1.3). During a protective measure-
ment, the measured state is protected by an appropriate mechanism such as via the
quantum Zeno effect, so that it neither changes nor becomes entangled with the
state of the measuring device. In this way, such protective measurements can mea-
sure the expectation values of observables on a single quantum system, even if the
system is initially not in an eigenstate of the measured observable, and the wave
function of the system can also be measured as expectation values of a sufficient
number of observables.

Protective measurements are distinct from projective measurements in that a
protective measurement always obtains a definite result, while a projective mea-
surement in general obtains a random result with certain probability in accordance
with the Born rule. As a consequence, the ontological models framework will be
greatly extended by including protective measurements. The framework assumes
as its second assumption that when a measurement is performed, the behaviour of
the measuring device is only determined by the ontic state of the system, along
with the physical properties of the measuring device. For a projective measure-
ment, this assumption means the ontic state of a physical system determines the
probabilities for different results of the projective measurement on the system (for
indeterministic theories). Similarly, for a protective measurement, this assumption
will mean that the ontic state of a physical system determines the definite result of
the protective measurement on the system.> Note that this inference for protective

2 One may think that the result of a protective measurement is determined not by the ontic state of the
measured system, but by the protection procedure, or in other words, what a protective measurement
measures is not the ontic state of the measured system but the protection procedure, such as the protection
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measurements is independent of the origin of the Born probabilities, and it applies
to both deterministic theories and indeterministic theories.

As we will see immediately, by extending the ontological models framework,
protective measurements will provide more resources for proving the reality of the
wave function.

4.2 A new proof in terms of protective measurements

Since the wave function can be measured from a single physical system by a se-
ries of protective measurements, it seems natural to assume that the wave func-
tion refers directly to the ontic state of the system. Several authors, including the
discoverers of protective measurements, have given similar arguments supporting
this implication of protective measurements for the ontological status of the wave
function (Aharonov and Vaidman, 1993; Aharonov, Anandan and Vaidman, 1993;
Anandan, 1993; Dickson, 1995; Gao, 2013d, 2014b; Hetzroni and Rohrlich, 2014).
However, these analyses are not very rigorous and also subject to some objec-
tions (Unruh, 1994; Rovelli, 1994; Uffink, 1999, 2013; Dass and Qureshi, 1999;
Schlosshauer and Claringbold, 2014).3 It is still debatable whether protective mea-
surements imply the reality of the wave function. In the following, I will give a
new, rigorous argument for y-ontology in terms of protective measurements in the
extended ontological models framework (see also Gao, 2015b).

I first use the proof strategy of the existing -ontology theorems, namely first
assuming that two nonorthogonal wave functions are compatible with the same
ontic state, and then proving the consequences of this assumption are inconsis-
tent with the predictions of quantum mechanics. The argument is as follows. For
two different wave functions such as two nonorthogonal states, select an observ-
able whose expectation values in these two states are different. For example, con-
sider a spin half particle. The two nonorthogonal states are |0) and |+), where
[+) = \%(IO} + [1)), and |0),|1) are eigenstates of spin in the z-direction. As
Aharonov, Anandan and Vaidman (1993) showed, a spin state can be protected by
a magnetic field in the direction of the spin. Let By, B be protecting fields for the
states |0), |+), respectively, and let the measured observable be Py = |0) (0]. Then
the protective measurements of this observable on these two nonorthogonal states
yield results 1 and 1/2, respectively. Although these two nonorthogonal states need
different protection procedures, the protective measurements of the observable on

potential for an adiabatic protective measurement (see, e.g. Rovelli, 1994). However, it has been argued that

this understanding is not right (Aharonov, Anandan and Vaidman, 1996). The main reason is that for infinite
number of various protective procedures which are all characterized by having the same wave function, the
protective measurements of the same observable will always yield the same results. For further discussion

see Section 4.3.
3 See Gao (2014b) for a brief review of these objections.
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the two (protected) states are the same, and the results of the measurements are dif-
ferent with certainty. If these two (protected) wave functions are compatible with
the same ontic state A, then according to the extended ontological models frame-
work, the results of the protective measurements of the observable on these two
states will be the same. This leads to a contradiction. Therefore, two (protected)
wave functions correspond to different ontic states.* By assuming that whether an
unprotected state or a corresponding protected state is prepared, the probability
distribution of the ontic state A is the same, which may be called preparation non-
contextuality assumption (Spekkens, 2005; Leifer, 2014a),> we can further reach
the conclusion that two (unprotected) wave functions also correspond to distinct
ontic states. In other words, the wave function represents the ontic state of a single
system.

A similar argument can also be given in terms of realistic protective measure-
ments. A realistic protective measurement cannot be performed on a single quan-
tum system with absolute certainty. For a realistic protective measurement of an
observable A, there is always a small probability to obtain a result different from
(A). In this case, according to the ontological models framework, the probabilities
for different results will be determined by the ontic state of the measuring device
and the realistic measuring condition such as the measuring time, as well as by
the ontic state of the measured system.® Now consider two (protected) wave func-
tions, and select an observable whose expectation values in these two states are
different. Then we can perform the same realistic protective measurements of the
observable on these two states. The overlap of the probability distributions of the
results of these two measurements can be arbitrarily close to zero when the realistic
condition approaches the ideal condition (In the limit, each probability distribution
will be a Dirac 6—function localized in the expectation value of the measured ob-
servable in the measured state, and it will be determined only by the ontic state
of the measured system). If there exists a non-zero probability p that these two
wave functions correspond to the same ontic state A, then since the same A yields

4 This result is not surprising, since two (protected) wave functions of a single system can be distinguished
with certainty by protective measurements.

According to Leifer (2014a), “Preparation noncontextuality says that if there is no difference between two
preparation procedures in terms of the observable statistics they predict, i.e. they are represented by the same
quantum state, then there should be no difference between them at the ontological level either, i.e. they
should be represented by the same probability.” Due to the existence of protective measurements, however,
this definition is vague, since even though two preparation procedures are represented by the same wave
function, they may have different observable statistics. it is arguable that a more appropriate definition of
preparation noncontextuality is that if two preparation procedures are represented by the same wave function,
then there should be no difference between them at the ontological level, in other words, the same wave
function corresponds to the same probability distribution of the ontic state. I use this definition of preparation
noncontextuality in my argument.

Note that this applies only to indeterministic theories. Similarly, the probabilities for different results of a
realistic projective measurement will be also determined by the ontic state of the measuring device and the
measuring time, as well as by the ontic state of the measured system. As we will see later, the existing
y-ontology theorems will be difficult or even impossible to prove for realistic projective measurements.

5
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the same probability distribution of measurement results under the same measur-
ing condition according to the ontological models framework, the overlap of the
probability distributions of the results of protective measurements of the above ob-
servable on these two states will be not smaller than p. Since p > 0 is a determinate
number, this leads to a contradiction.” Therefore, two (protected) wave functions
correspond to different ontic states, and so do two (unprotected) wave functions by
the preparation noncontextuality assumption.

The above argument, like the existing y-ontology theorems, is also based on
an auxiliary assumption, the preparation noncontextuality assumption this time.?
However, the argument can be further improved to avoid this auxiliary assumption.
The key is to notice that the result of a protective measurement depends only on
the measured observable and the ontic state of the measured system. If the result
is also determined by other factors such as the ontic state of the measuring device
or the protection setting, then the result may be different for the same measured
observable and wave function. This will contradict the predictions of quantum me-
chanics, according to which the result of a protective measurement is always the
expectation value of the measured observable in the measured wave function. Now
consider two (unprotected) wave functions, and select an observable whose expec-
tation values in these two states are different. The results of the protective mea-
surements of the observable on these two states are different with certainty. If these
two wave functions are compatible with the same ontic state A, then according to
the above analysis, the results of the protective measurements of the observable
on these two states will be the same. This leads to a contradiction. Therefore, two
different wave functions correspond to different ontic states.

There is also a direct argument for y-ontology in terms of protective measure-
ments, which is not based on auxiliary assumptions either. As argued above, the
result of a protective measurement is determined only by the measured observ-
able and the ontic state of the measured system. Since the measured observable
also refers to the measured system, this further means that the result of a protec-
tive measurement, namely the expectation value of the measured observable in the
measured wave function, is determined only by the properties of the measured sys-
tem. Therefore, the expectation value of the measured observable in the measured
wave function is also a property of the measured system. Since a wave function can

7 Note that it is indeed true that for any given realistic condition one can always assume that there exists some
probability p that the two measured wave functions correspond to the same ontic state 1. However, the point
is that if the unitary dynamics of quantum mechanics is valid, the realistic condition can always approach the
ideal condition arbitrarily closely, and thus the probability p must be arbitrarily close to zero, which means
that any y-epistemic model with finite overlap probability p is untenable. Certainly, our argument will be
invalid if quantum mechanics breaks down when reaching certain realistic condition.

Since the above argument only considers individual quantum systems and makes no appeal to entanglement,
it avoids the preparation independence assumption for multiple systems used by the Pusey-Barrett-Rudolph
theorem (Pusey, Barrett and Rudolph, 2012).
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be constructed from the expectation values of a sufficient number of observables,
the wave function also represents the property of a single quantum system.

4.3 With more strength

The above arguments for y-ontology, like the other y-ontology theorems, are based
on the second assumption of the ontological models framework, according to which
when a measurement is performed, the behaviour of the measuring device is deter-
mined by the ontic state of the measured system (along with the physical properties
of the measuring device) immediately before the measurement, whether the ontic
state of the measured system changes or not during the measurement. This is a
simplified assumption, and it may be not valid in general. A more reasonable as-
sumption is that the ontic state of the measured system may be disturbed and thus
evolve in a certain way during a measurement, and the behaviour of the measuring
device is determined by the total evolution of the ontic state of the system during
the measurement, not simply by the initial ontic state of the system. For example,
for a projective measurement it is the total evolution of the ontic state of the mea-
sured system during the measurement that determines the probabilities for different
results of the measurement. Certainly, if the measuring interval is extremely short
and the change of the ontic state of the measured system is continuous, then the
ontic state will be almost unchanged during the measurement, and thus the orig-
inal simplified assumption will be still valid. However, if the change of the ontic
state of the measured system is not continuous but discontinuous, then even during
an arbitrarily short time interval the ontic state may also change greatly, and the
original simplified assumption will be wrong.

It seems that the existing y-ontology theorems such as the Pusey-Barrett-Rudolph
theorem will be invalid under the above new assumption. The reason is that under
this assumption, even if two nonorthogonal states correspond to the same ontic
state initially, they may correspond to different evolution of the ontic state, which
may lead to different probabilities of measurement results. Then the proofs of the
y-ontology theorems by reduction to absurdity cannot go through. However, it can
be seen that the above arguments for -ontology in terms of protective measure-
ments can still go through under the new assumption.

For a protective measurement, there are two sources which may interfere with
the spontaneous evolution of the ontic state of the measured system: one is the
protection procedure, and the other is the measuring device. However, no matter
how they influence the evolution of the ontic state of the measured system, they
cannot generate the definite result of the protective measurement, namely the ex-
pectation value of the measured observable in the measured wave function, since
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they contain no information about the measured wave function.” The measuring
device only contains information about the measured observable, and it does not
contain information about the measured wave function. Compared with the mea-
suring device, the protection procedure “knows” less. The protection procedure is
either a protective potential or a Zeno measuring device. In each case, the protec-
tion procedure contains no information about both the measured observable and
the measured wave function.'? Thus, if the information about the measured wave
function is not contained in the measured system, then the result of a protective
measurement cannot be the expectation value of the measured observable in the
measured wave function.

On the other hand, as noted before, if the result of a protectie measurement is also
determined by the ontic state of the measuring device or the protection procedure
due to their influences on the evolution of the ontic state of the measured system,
then the result may be different for the same measured observable and the same
measured wave function. This contradicts the predictions of quantum mechanics,
according to which the result of a protective measurement is always the expectation
value of the measured observable in the measured wave function.

Therefore, the definite result of a protective measurement, namely the expecta-
tion value of the measured observable in the measured wave function, is determined
by the spontaneous evolution of the ontic state of the measured system during the
measurement. Since the spontaneous evolution of the ontic state of the measured
system is an intrinsic property of the system independent of the protective mea-
surement, the expectation value of the measured observable in the measured wave
function is also a property of the system. This then proves the reality of the wave
function, which can be constructed from the expectation values of a sufficient num-
ber of observables.

In the following, I will present a more detailed analysis of how a protective mea-
surement obtains the expectation value of the measured observable in the measured
wave function. The analysis may help understand the above result by further clar-
ifing the roles the measured system, the protection procedure, and the measuring
device play in a protective measurement.

9 In other words, the properties of the protection setting and the measuring device and their time evolution do
not determine the measured wave function.

Certainly, the measurer who does the protective measurement knows more information than that contained in
the measuring device and protection procedure. Besides the measured observable, the measurer also knows
the measured wave function is one of infinitely many known states (but she needs not know which one the
measured wave function is). In the case of protective potential, the measurer knows that the measured wave
function is one of infinitely many nondegenerate discrete energy eigenstate of the Hamiltonian of the
measured system. In the case of Zeno protection, the measurer knows that the measured wave function is one
of infinitely many nondegenerate eigenstates of an observable. Note that this permits the possibility that the
measurer can cheat us by first measuring which one amongst these infinitely many states the measured wave
function is (e.g. by measuring the eigenvalue of energy for the case of protective potential) and then
calculating the expectation value and outputing it through a device. Then the result will have no implications
for the reality of the wave function. But obviously this is not a protective measurement.

10
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By a projective measurement on a single quantum system, one obtains one of the
eigenvalues of the measured observable, and the expectation value of the observ-
able can only be obtained as the statistical average of eigenvalues for an ensemble
of identically prepared systems. Thus it seems surprising that a protective measure-
ment can obtain the expectation value of the measured observable directly from a
single quantum system. In fact, however, this result is not as surprising as it seems
to be. The key point is to notice that the pointer shift rate at any time during a
projective measurement is proportional to the expectation value of the measured
observable in the measured wave function at the time. Concretely speaking, for a
projective measurement of an observable A, whose interaction Hamiltonian is given
by the usual form H; = g(f)PA, where g(¢) is the time-dependent coupling strength
of the interaction, and P is the conjugate momentum of the pointer variable, the
pointer shift rate at each instant ¢ during the measurement is:

% = 8(1)(A), 4.1
where X is the pointer variable, (X) is the center of the pointer wavepacket at
instant ¢, and (A) is the expectation value of the measured observable A in the
measured wave function at instant . This pointer shift rate formula indicates that
at any time during a projective measurement, the pointer shift after an infinitesimal
time interval is proportional to the expectation value of the measured observable
in the measured wave function at the time. As is well known, however, since the
projective measurement changes the wave function of the measured system greatly,
and especially it also results in the pointer wavepacket spreading greatly, the point
shift after the measurement does not represent the actual measurement result, and it
cannot be measured either. Moreover, even if the point shift after the measurement
represents the actual measurement result (e.g. for collapse theories), the result is not
definite but random, and it is not the expectation value of the measured observable
in the initial measured wave function either.

Then, how to make the expectation value of the measured observable in the mea-
sured wave function, which is hidden in the process of a projective measurement,
visible in the final measurement result? This requires that the pointer wavepacket
should not spread considerably during the measurement so that the final pointer
shift is qualified to represent the measurement result, and moreover, the final pointer
shift should be also definite. A direct way to satisfy the requirement is to protect
the measured wave function from changing as a protective measurement does. Take
the Zeno protection scheme as an example. We make frequent projective measure-
ments of an observable O, of which the measured state /) is a nondegenerate
eigenstate, in a very short measurement interval [0, 7]. For instance, O is measured
in [0, 7] at times t, = (n/N)t,n = 1,2, ..., N, where N is an arbitrarily large number.
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At the same time, we make the same projective measurement of an observable A in

the interval [0, 7] as above. Different from the derivation given in Section 1.3, here

I will calculate the post-measurement state in accordance of the order of time evo-

lution. This will let us see the process of protective measurement more clearly.'!
The state of the combined system immediately before #{ = 7/N is given by

e i REIPA 1y 16 (x0)) = Z cilai)
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where |¢(xg)) is the pointer wavepacket centered in initial position xg, |a;) are the
eigenstates of A, and ¢; are the expansion coefficients. Note that the second term
in the r.h.s of the formula is orthogonal to the measured state [i/). Then the branch
of the state of the combined system after #{ = 7/N, in which the projective mea-
surement of O results in the state of the measured system being in |¢), is given
by

it 1
by (wrle™ 7 N8UOPA 1 (xg)) = ) ‘fﬁ(xo + %gm)m»} +0()- (43)

Thus after N such measurements and in the limit of N — oo, the branch of the state
of the combined system, in which each projective measurement of O results in the
state of the measured system being in i), is

t=1) =0 ‘¢(x0 " fo g(t)dr<A>>> = 10 6(xo + (A)). (4.4)

Since the modulus squared of the amplitude of this branch approaches one when
N — oo, this state will be the state of the combined system after the protective
measurement.

By this derivation, it can be clearly seen that the role of the protection proce-
dure is not only to protect the measured wave function from the change caused
1 Note that in the derivation given in Section 1.3, the measurement result of a protective measurement, namely

the expectation value of the measured observable in the measured wave function, is already contained in the

measurement operator which describes the measurement procedure. But this does not imply what the
measurement measures is not the property of the measured system, but the property of the measurement

procedure such as the protection procedure (cf. Combes et al, 2015). Otherwise, for example, diseases will
exist not in patients, but in doctors or expert systems for disease diagnosis.
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by the projective measurement, but also to prevent the pointer wavepacket from
the spreading caused by the projective measurement. As a result, the pointer shift
after the measurement can represent a valid measurement result, and moreover, it
is also definite, being natually the expectation value of the measured observable in
the initial measured wave function.

In fact, since the width of the pointer wavepacket keeps unchanged during the
above protective measurement, and the pointer shift rate at any time during the
measurement is proportional to the expectation value of the measured observable
in the measured wave function at the time,'? which is the same as the initial mea-
sured wave function, we can obtain the final measurement result at any time during
the protective measurement (when the time-dependent coupling strength is known).
This indicates that the result of a protective measurement is determined by the ini-
tial ontic state of the measured system, not by the evolution of the ontic state of
the system during the measurement, whether spontaneous or not. Thus the sec-
ond, simplified assumption of the ontological models framework is still valid for
protective measurements, so do my previous arguments for the reality of the wave
function based on this assumption.

It has been conjectured that the result of a protective measurement is determined
not by the ontic state of the measured system but by the protection procedure,
which may lead to a certain evolution of the ontic state of the system that may
generate the measurement result (Combes et al, 2015). If this is true, then protec-
tive measurements will have no implications for the reality of the wave function.
However, as I have argued in the beginning of this section, this conjecture cannot
be correct. The essential reason is that the protection procedure does not “know”
the measured wave function, and thus it cannot generate the measurement result,
the expectation value of the measured observable in the measured wave function.!3
In addition, the above analysis clearly shows that the result of a protective mea-
surement is generated not by the protection procedure. The expectation value of
the measured observable in the measured wave function is already hidden in the
process of the projective measurement, and what the protection procedure does is

12° Since the pointer shift is always continuous and smooth during a protective measurement, it is arguable that
the evolution of the ontic state of the measured system (which determines the pointer shift) is also
continuous. Then for an ideal situation where the protective measurement is instantaneous, the ontic state of
the measured system will be unchanged after the measurement and my previous arguments for y-ontology in
terms of protective measurements will be still valid. Note that the evolution of the position of the pointer as
its ontic state may be discontinuous in an y-epistemic model. However, the range of the position variation is
limited by the width of the pointer wavepacket, which can be arbitrarily small in principle. Thus such
discontinuous evolution cannot be caused by the evolution of the ontic state of the measured system, whether
continuous or discontinuous.

Note that in the y-epistemic models given by Combes et al (2015), it is implicitly assumed that the protection
procedure knows the measured wave function. Thus it is not surprising that the models can reproduce the
predictions of quantum mechanics for protective measurements.
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to make it visible in the final measurement result by keeping the measured wave
function unchanged.

In conclusion, the above analysis of how a protective measurement influences the
measured system and obtains its result does not refute but strengthen my previous
arguments for -ontology in terms of protective measurements.

4.4 A weaker criterion of reality

The first assumption of the ontological models framework is that if a quantum
system is prepared such that quantum mechanics assigns a pure state to it, then
after preparation the system has a well-defined set of physical properties (Harrigan
and Spekkens, 2010; Pusey, Barrett and Rudolph, 2012). The y-ontology theorems,
including the above arguments in terms of protective measurements, are all based
on this assumption. If one drops this assumption as anti-realists would like to do,
then one can still restore the (non-realist) -epistemic view or assume another non-
realist view. In this section, I will give a stronger proof of the reality of the wave
function based not on this realistic assumption but on a weaker criterion of reality.
The analysis is beyond the ontological models framework.

A well-known criterion of reality is the EPR criterion of reality, which says that
“If, without in any way disturbing a system, we can predict with certainty (i.e. with
probability equal to unity) the value of a physical quantity, then there exists an ele-
ment of physical reality corresponding to this physical quantity.” (Einstein, Podol-
sky and Rosen, 1935).!# The main difficulty of applying this criterion of reality is to
determine whether the measured system is disturbed during a measurement. Since
we don’t know the ontic state of the measured system and its dynamics during a
measurement before our analysis using the criterion of reality, the requirement of
“without in any way disturbing a system” in the criterion seems difficult or even
impossible to justify. In addition, disturbing the measured system does not neces-
sarily exclude the possibility that the measurement result reflects the property of
the measured system. The disturbance may not influence the parts of the ontic state
of the measured system which generate the measurement result (see, e.g. Spekkens,
2007 for an example).

Here, based on the analysis given in the last section, I suggest an improved cri-
terion of reality that may avoid the above problems. It is that if a measurement of
a physical quantity on a system obtains a definite result, which is denoted by the
value of a pointer variable after the measurement, and during the measurement the
pointer shift rate is also determined by the value, then the measurement result re-
14 Note that Hetzroni and Rohrlich (2014) gave an argument for y-ontology based on protective measurements

and the EPR criterion of reality, and Gao (2014b) improved the argument by revising the criterion of reality
so that it can also be applied to realistic protective measurements.
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flects a physical property of the measured system. This criterion of reality provides
a direct link from the mathematical quantities in a realistic theory to the properties
of a physical system via experience. By using it to analyze the ontological content
of a theory, we need not care about the underlying ontic state of a physical system
and its possible dynamics during a measurement. Thus the analysis will be simpler.

It can be seen that this suggested criterion of reality can be directly applied to
classical mechanics. Moreover, due to the existence of protective measurements, it
can also be applied to quantum mechanics to analyze the ontological status of the
wave function. As I have pointed out in the last section, a protective measurement
on a physical system will obtain a definite result, namely the expectation value of
the measured observable in the measured wave function, and during the measure-
ment the pointer shift rate is also determined by the expectation value. Thus, ac-
cording to the suggested criterion of reality, the expectation value of the measured
observable in the measured wave function is a physical property of the measured
system. Since the wave function can be constructed from the expectation values
of a sufficient number of observables, the measured wave function also represents
a physical property of the measured system. This proves the reality of the wave
function in quantum mechanics.

Since the suggested criterion of reality does not necessarily require that a quan-
tum system have properties, it is weaker than the realistic assumption of the onto-
logical models framework. Even though some people refuse to attribute properties
to quantum systems, they may well accept this criterion of reality. On the one hand,
this criterion of reality can be perfectly applied to classical mechanics, and one can
use it to get the anticipant ontological content of the theory. On the other hand,
people usually think that this criterion of reality cannot be applied to quantum
mechanics in general (although it can be applied to the measurements of the eigen-
states of the measured observable), and thus it does not influence the anti-realist
views of the theory. However, the existence of protective measurements must be
a surprise for these people. It will be interesting to see whether some anti-realists
will reject this criterion of reality due to the existence of protective measurements.

Certainly, one can also restore the (non-realist) y-epistemic view by rejecting
the suggested criterion of reality. However, there is a good reason why this is not
a good choice. it is arguable that a reasonable, universal criterion of reality, which
may provide a plausible link between theory and reality via experience, is useful
or even necessary for realistic theories. The criterion of reality is not necessarily
complete, being able to derive all ontological content of a theory, which seems to
be an impossible task. However, we can at least derive the basic ontological content
of a realistic theory by using this criterion of reality. If one admits the usefulness
and universality of such a criterion of reality, then the similarity between classical
measurements and protective measurements will require that if one assumes a re-
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alist view of classical mechanics, admitting the ontological content of the theory
derived from the suggested criterion of reality, then one must also admit the onto-
logical content of quantum mechanics derived from this criterion of reality, such as
the reality of the wave function. The essential point is not that the suggested crite-
rion of reality must be true, but that if we accept the usefulness and universality of
such a criterion of reality and apply it to classical mechanics and macroscopic ob-
jects to derive the anticipant classical ontology, we should also apply it to quantum
mechanics and microscopic objects to derive the quantum ontology, no matter how
strange it is. Otherwise we will have to divide the world into a quantum part and a
classical part artificially, and we will not have a unified world view as a result.
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Origin of the Schrodinger equation

I have argued that the wave function in the Schrodinger equation of quantum me-
chanics represents the physical state of a single system. In this chapter, I will pro-
vide additional evidence supporting this conclusion by analyzing the origin of the
Schrodinger equation.

Many quantum mechanics textbooks provide a heuristic derivation of the Schrodinger
equation (see, e.g. Schiff, 1968; Landau and Lifshitz, 1977; Greiner, 1994). It be-
gins with the assumption that the state of a free microscopic particle has the form
of a plane wave ¢/®**~“) When combining with the de Broglie relations for mo-
mentum and energy p = 7ik and E = Fiw, this state becomes e/P*~E0/" Then it
uses the nonrelativistic energy-momentum relation E = p?/2m to obtain the free
Schrodinger equation. Lastly, this equation is generalized to include an external
potential, and the end result is the Schrodinger equation.

In the following sections, I will show that the heuristic derivation of the free
Schrodinger equation can be made more rigorous by resorting to spacetime trans-
lation invariance and relativistic invariance. Spacetime translation gives the defi-
nitions of momentum and energy, and spacetime translation invariance entails that
the state of a free quantum system with definite momentum and energy assumes
the plane wave form e/P*~£) Moreover, the relativistic transformations of the gen-
erators of space translation and time translation further determine the relativistic
energy-momentum relation, whose nonrelativistic approximation is E = p?/2m.
Although the requirements of these invariances are already well known, an explicit
and complete derivation of the free Schrédinger equation using them seems still
missing in the literature.! The new analysis may not only answer why the physical

I Note that several authors have claimed that the free Schrodinger equation can be derived in terms of Galilean
invariance and a few other assumptions (Musielak and Fry, 2009a, 2009b). But the derivation is arguably
problematic (Gao, 2014e). In addition, there are also attempts to derive the Schrodinger equation from
Newtonian mechanics, a typical example of which is Nelson’s stochastic mechanics (Nelson, 1966). It has
been pointed out that Nelson’s stochastic mechanics is not equivalent to quantum mechanics (Grabert,
Hinggi and Talkner, 1979; Wallstrom, 1994). Moreover, Nelson himself also showed that there is an
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state of a single system is described by a wave function, but also help answer why
the linear nonrelativistic time evolution of the wave function is governed by the
Schrédinger equation.

5.1 Spacetime translation invariance

It is well known that the laws of motion that govern the time evolution of an iso-
lated system satisfies spacetime translation invariance.? In this section, I will ana-
lyze how the requirement of spacetime translation invariance restricts the possible
forms of the laws of motion. For the sake of simplicity, I will mainly analyze one-
dimensional motion. The physical state of an isolated system is assumed to be
represented by a general analytic function with respect to both x and ¢, y(x, 7). A
space translation operator can be defined as

T(@W(x,t) = ¥(x —a,t). 5.1

It means translating rigidly the state of the system, y(x,¢), by an infinitesimal
amount a in the positive x direction.* T'(a) can be further expressed as

T(a) = e P, (5.2)

where p is the generator of space translation.’ By expanding y(x — a, f) in order of
a, we can further get

. N,
p= —la. (5.3)

empirical difference between the predictions of quantum mechanics and his stochastic mechanics when
considering quantum entanglement and nonlocality (Nelson, 2005). But it seems still possible to obtain
quantum mechanics “as a statistical mechanics canonical ensemble average of classical variables obeying
classical dynamics.” (Pearle, 2005) Adler’s (2004) trace dynamics is an excellent example. In the theory, it is
shown that under plausible assumptions, thermodynamic averages leads to the Schrodinger equation, while
fluctuations around the averages leads to a stochastic modification of the Schrodinger equation, which may
naturally explain the collapse of the wave function and the Born rule.

This is due to the homogeneity of space and time. The homogeneity of space ensures that the same
experiment performed at two different places gives the same result, and the homogeneity in time ensures that
the same experiment repeated at two different times gives the same result.

It is arguable that y/(x, f) is the most general scalar representation of the physical state of a system. As we will
see later, however, the equation that governs the time evolution of the state will restrict the possible forms of
P(x,0).

There are in general two different pictures of translation: active transformation and passive transformation.
The active transformation corresponds to displacing the studied system, and the passive transformation
corresponds to moving the coordinate system. Physically, the equivalence of the active and passive pictures is
due to the fact that moving the system one way is equivalent to moving the coordinate system the other way
by an equal amount. Here I will analyze spacetime translations in terms of active transformations.

In order to differentiate the momentum and energy eigenvalues from the momentum and energy operators, I
add a hat to the momentum and energy operators as usual. But I omit the hat for all other operators in this
book. In addition, for convenience of later discussion I introduce the imaginary unit i in the expression. This
does not influence the validity of the following derivation.
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Similarly, a time translation operator can be defined as

Uy (x,0) = y(x,1). (5.4)
And it can also be expressed as U(t) = itk , where
N 0
E=i— 5.5
lat (5-5)

is the generator of time translation. In order to know the laws of motion, we need
to find the concrete manifestation of £ for a physical system, which means that we
need to find the evolution equation of state:

0P (x, 1)
T or

where H is a to-be-determined operator that depends on the properties of the stud-

= Hy(x, 1), (5.6)

ied system, and it is also called the generator of time translation.® In the following
analysis, I assume H is a linear operator independent of the evolved state, namely
the evolution is linear, which is an important presupposition in my derivation of the
free Schrodinger equation.

Let us now see the implications of spacetime translation invariance for the laws
of motion. First of all, time translational invariance requires that H have no time
dependence, namely dH/dt = 0. This can be demonstrated as follows (see also
Shankar, 1994, p.295). Suppose an isolated system is in state ¥ at time #; and
evolves for an infinitesimal time ¢. The state of the system at time #; + 67, to first
order in ¢t, will be

W(x, ty + 6t) = [1 — i5tH (1) o. (5.7)
If the evolution is repeated at time #,, beginning with the same initial state, the state
at tp + 6t will be

W(x, b + 6t) = [I — istH(t2) o (5.8)

Time translational invariance requires the outcome state should be the same:

W(x,ty + 0t) — W(x, t; + ot) = i6t[H(t1) — H(t2)wo = 0. (5.9)

Since the initial state yq is arbitrary, it follows that H(¢#;) = H(t»). Moreover,
since #| and #, are also arbitrary, it follows that H is time-independent, namely

6 Similarly I also introduce the imaginary unit i in the equation for convenience of later discussion.
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dH/dt = 0. It can be seen that this result relies on the linearity of time evolution.
If H depends on the state, then obviously we cannot obtain dH/dt = 0 because the
state is time-dependent. But we still have H(#1,yq) = H(t2, o), which means that
the state-dependent H also satisfies time translational invariance.

Secondly, space translational invariance requires [T (a), U(¢)] = 0, which further
leads to [p, E] = 0and [p, H] = 0. This can be demonstrated as follows (see also
Shankar, 1994, p.293). Suppose at t = 0 two observers A and B prepare identical
isolated systems at x = 0 and x = a, respectively. Let ¥(x, 0) be the state of the
system prepared by A. Then T'(a)¥(x,0) is the state of the system prepared by B,
which is obtained by translating (without distortion) the state /(x, 0) by an amount
a to the right. The two systems look identical to the observers who prepared them.
After time ¢, the states evolve into U(t)y/(x,0) and U(1)T (a)y(x,0). Since the time
evolution of each identical system at different places should appear the same to the
local observers, the above two systems, which differed only by a spatial translation
at t = 0, should differ only by the same spatial translation at future times. Thus
the state U(t)T (a)¥(x, 0) should be the translated version of A’s system at time ¢,
namely we have U(H)T (a)y(x,0) = T(a)U(H)yY(x,0). This relation holds true for
any initial state ¥(x, 0), and thus we have [T'(a), U(¢)] = 0, which says that space
translation operator and time translation operator are commutative. Again, it can
be seen that the linearity of time evolution is an important presupposition of this
result. If U(¢) depends on the state, then the space translational invariance will only
lead to U(t, TY)T (a)y(x,0) = T(a)U(t, y)¥(x,0), from which we cannot obtain
[T(a), U] = 0.

When dH/dt = 0, the solutions of the evolution equation Eq.(5.6) assume the
basic form

Y(x, 1) = pp(x)e ', (5.10)

and their linear superpositions, where E is an eigenvalue of H, and ¢g(x) is an
eigenfunction of H and satisfies the time-independent equation:

Hop(x) = Epp(x). (5.11)

Moreover, the commutative relation [p, H] = 0 further implies that p and H have
common eigenfunctions. Since the eigenfunction of p = —i (% is e'P* (except a nor-
malization factor), where p is the eigenvalue, the basic solutions of the evolution
equation Eq.(5.6) for an isolated system assume the form e/P*~E_ which repre-
sents the state of an isolated system with definite properties p and E. In quantum
mechanics, p and E, the generators of space translation and time translation, are

also called momentum operator and energy operator, respectively, and H is called
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the Hamiltonian of the system. Correspondingly, ¢/P*~£ is the eigenstate of both
momentum and energy, and p and E are the corresponding momentum and energy
eigenvalues, respectively. Then the state ¢/(P*~£") describes an isolated system (e.g.
a free electron) with definite momentum p and energy E.

5.2 The energy-momentum relation

The energy-momentum relation can be further determined by considering the rela-
tivistic transformations of the generators of space translation and time translation.
The operator P,l = (E/c,- p) = i(%a%,V) is a four-vector operator. In order that
its eigenvalue equation holds in all inertial frames, its eigenvalues must transform
as a four-vector too. In other words, every eigenvalue of the four-vector operator
ﬁ’ﬂ, (E/c,—p), is also a four-vector. Since the dot product of two four-vectors is
Lorentz invariant (a Lorentz scalar), we can form a Lorentz scalar p> — E%/c? with

the four-vector (E/c, —p). Then the energy-momentum relation is:

E? = p*® + E2, (5.12)

where p and E are the momentum and energy of a microscopic particle, respec-
tively, and Ej is the energy of the particle when its momentum is zero, called the
rest energy of the particle.” By defining m = Eo/c? as the (rest) mass of the particle,
we can further obtain the familiar energy-momentum relation

E? = p*c? + mPct. (5.13)

In the nonrelativistic domain, this energy-momentum relation reduces to E = p?/2m.

5.3 Derivation of the Schrodinger equation

Since the operators £ and p have common eigenfunctions for an isolated system,
the relation between their eigenvalues £ and p or the energy-momentum relation
implies the corresponding operator relation between £ and p. In the nonrelativistic
domain, the operator relation is £ = p%/2m for an isolated system. Then we can
obtain the free Schrodinger equation:

Op(x, ) 1 PY(x,n)
ZT = —%7 (514)

Here it needs to be justified that the only parameter m in this equation assumes
real values; otherwise the existence of the imaginative unit i in the equation will

7 For other derivations of the energy-momentum relation see Sonego and Pin (2005) and references therein.
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be an illusion and the equation will be distinct from the free Schrodinger equa-
tion. Since velocity assumes real values, this is equivalent to proving that momen-
tum or the eigenvalue of the generator of space translation assumes real values,
namely that the generator of space translation itself is Hermitian. This is indeed
the case. Since the space translation operator T'(a) preserves the norm of the state:
f_ 0; (o, (x, Hdx = f_ O:o v (x — a,Hy(x — a,t)dx, T(a) is unitary, satisfying
T'(a)T(a) = I. Thus the generator of space translation, p, which is defined by
T(a) = e~ is Hermitian.

In addition, it is worth noting that the reduced Planck constant 7 with dimension
of action is missing in the above free Schrodinger equation. However, this is in
fact not a problem. The reason is that the dimension of # can be absorbed in the
dimension of m. For example, we can stipulate the dimensional relations as p =
1/L,E = 1/T and m = T/L?, where L and T represent the dimensions of space
and time, respectively (see Duff, Okun and Veneziano, 2002 for a more detailed
analysis). Moreover, the value of 7 can be set to the unit of number 1 in principle.
Thus the above equation is essentially the free Schrodinger equation in quantum
mechanics.

When assuming the time evolution due to interaction is still linear, we can further
obtain the Schrodinger equation under an external potential V(x, f):
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The concrete form of the potential in a given situation is determined by a theory of

+ V(x, O (x, 1). (5.15)

interactions, such as the nonrelativistic approximation of interacting quantum field
theory.

The Schrodinger equation for one-body systems can also be extended to many-
body systems. For simplicity, consider a free two-body system containing two sub-
systems m; and m;. When ignoring the interaction between the two subsystems,
the Schrodinger equation that governs the evolution of this system will be

Oy (x1, D2 (x2, )] 1 o 1 o

i o = —[2m1 8_x§ + z—ma—%][%(xl,t)wz(m,t)]- (5.16)
wherer x; and x; are the coordinates of the two subsystems, respectively, and
Y1(x1, 1) and Yo (xy, t) are their wave functions, respectively. When considering the
interaction between the two subsystems and assuming the time evolution due to in-
teraction is still linear, the interaction will form an entangled state of the whole
system which is defined in a six-dimensional configuration space, and the free
Schrédinger equation that governs the evolution of this interacting two-body sys-
tem will be
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Iy (x1, x2, ) + Via(x1, x2, DY (x1, X2, 1),

(5.17)
where the entangled wave function ¥/(x1, x3,t) describes the whole two-body sys-
tem, and the potential energy term Vi,(x;, X2, f) describes the interaction between
its two subsystems.

5.4 Further discussion

I have derived the free Schrodinger equation based on an analysis of spacetime
translation invariance and relativistic invariance. The new analysis may not only
make the Schrodinger equation in quantum mechanics more logical and under-
standable, but also help understand the origin of the complex and multi-dimensional
wave function.

As noted before, the free Schrodinger equation is usually derived in quantum
mechanics textbooks by analogy and correspondence with classical physics. There
are at least two mysteries in this heuristic derivation. First of all, even if the be-
havior of microscopic particles likes wave and thus a wave function is needed to
describe them, it is unclear why the wave function must assume a complex form.
Indeed, when Schrodinger invented his equation, he was also puzzled by the in-
evitable appearance of the imaginary unit “i” in the equation. Next, one doesn’t
know why there are the de Broglie relations for momentum and energy and why
the nonrelativistic energy-momentum relation is E = p?/2m.

According to the analysis given in the previous sections, the key to unveiling
these mysteries is to analyze spacetime translation invariance of laws of motion.
Spacetime translation gives the definitions of momentum and energy in quantum
mechanics. The momentum operator p is defined as the generator of space trans-
lation, and it is Hermitian and its eigenvalues are real. Moreover, the form of the
momentum operator is uniquely determined by its definition, which turns out to
be p = —id/0x, and its eigenfunctions are e’’* , where p is the corresponding real
eigenvalue. Similarly, the energy operator £ is defined as the generator of time
translation, and its universal form is £ = id/dr. But the concrete manifestation of
this operator for a physical system, denoted by H and called the Hamiltonian of the
system, is determined by the concrete situation.

Fortunately, for an isolated system, the form of H, which determines the evo-
lution equation of state, can be fixed for linear evolution by the requirements of
spacetime translation invariance and relativistic invariance. Concretely speaking,
time translational invariance requires that dH/dt = 0, and this implies that the so-
lutions of the evolution equation iOy(x,1)/dt = Hy(x,1) are gp(x)e " and their
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superpositions, where ¢g(x) is the eigenfunction of H. Moreover, space transla-
tional invariance requires [p, H] = 0. This means that p and H have common
eigenfunctions, and thus ¢ (x) = e/P*. Therefore, ¢/P*~ED and their superpositions
are solutions of the evolution equation for an isolated system, where e/P*~E") rep-
resents the state of the system with momentum p and energy E. In other words,
the state of an isolated system (e.g. a free electron) with definite momentum and
energy assumes the plane wave form ¢/P*~£9_ Furthermore, the relation between
p and E or the energy-momentum relation can be determined by considering the
relativistic transformation of the generators of space translation and time transla-
tion, and in the nonrelativistic domain it is £ = p?/2m. Then we can obtain the
Hamiltonian of an isolated system, H = p*/2m, and the free Schrodinger equation,
Eq.(5.14).

Finally, I emphasize again that the linearity of time evolution is an important
presupposition in the above derivation of the free Schrodinger equation. It is only
for linear evolution that spacetime translation invariance of laws of motion can
help determine the precise form of the equation of motion for isolated systems. It
is possible that the free evolution equation also contains nonlinear evolution terms.
However, although nonlinear time evolution can also satisfy spacetime translation
invariance, the invariance requirement cannot help determine the precise form of
the nonlinear evolution equation. Nonlinear time evolution, if it exists, must have
an additional physical origin. I will discuss this issue in Chapter 8.



6

The ontology of quantum mechanics (I)

I have argued in the previous chapters that the wave function in quantum mechanics
represents the physical state of a single system. The next question is: What physical
state does the wave function represent? We must answer this question in order to
know the ontology of quantum mechanics.

Unfortunately, like the nature of the wave function, the ontological meaning of
the wave function has also been a hot topic of debate since the early days of quan-
tum mechanics. Today it is still unclear what ontic state the wave function repre-
sents in the realistic alternatives to quantum mechanics, such as Bohm’s theory,
Everett’s theory, and collapse theories. It can be expected that the y-ontology the-
orems, which says that the wave function is ontic, may have further implications
for the ontological meaning of the wave function. The reason is that these theo-
rems say that the ontic state of a physical system, which is represented by the wave
function, has certain efficacy during a measurement, and a further analysis of the
efficacy of the ontic state may help find what the ontic state really is.

According to the existing ¥-ontology theorems such as the Pusey-Barrett-Rudolph
theorem, which are based on an analysis of projective measurements, the efficacy
of the ontic state of a physical system is to determine the probabilities for differ-
ent results of a projective measurement on the system. It seems that such efficacy
says little about what the ontic state of a physical system is (see also Dorato and
Laudisa, 2014). Moreover, whether the efficacy exists or not also depends on the
solutions to the measurement problem, e.g. it does not exist in deterministic theo-
ries such as Bohm’s theory. In contrast, my arguments for -ontology in terms of
protective measurements says something different. According to these arguments,
the efficacy of the ontic state of a physical system is to determine the definite result
of a protective measurement on the system, not probabilities. This direct, definite
link is obviously stronger than the above indirect, probabilistic link. Moreover, the
efficacy exists in any realist theory consistent with the predictions of quantum me-
chanics, independently of the solutions to the measurement problem. Therefore,
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the efficacy revealed by protective measurements may tell us something about the
underlying ontology.

For a quantum system whose wave function is ¥/(x) at a given instant, we can
measure the density |(x)|? in each position x in space by a protective measurement
(see Section 1.3). In other words, the density ly(x)* as part of the ontic state has
efficacy to shift the pointer of the measuring device and yield the result of the pro-
tective measurement. Then, what density is the density [/(x)|>? Since a measure-
ment must always be realized by certain physical interaction between the measured
system and the measuring device, the density must be, in the first place, the den-
sity of certain interacting charge. For example, if the measurement is realized by
an electrostatic interaction between the measured system (with charge Q) and the
measuring device, then the density multiplied by the charge of the system, namely
l/(x)*Q, will be charge density. It is such concrete properties that have the actual
efficiencies during a measurement.

In this chapter, I will analyze the existence and origin of the charge distribu-
tion of a quantum system. As we will see, the analysis will help unveil the deeper
ontological meaning of the wave function.

6.1 Schrodinger’s charge density hypothesis

In quantum mechanics, an electron has an electric charge represented by —e in the
potential term of the Schrodinger equation, —epy/(x, t), where ¥(x,t) is the wave
function of the electron, and ¢ is an external electric scalar potential. An intriguing
question is: how is the charge of the electron distributed in space? We can measure
the total charge of an electron by electromagnetic interaction and find it in a certain
region of space. Thus it seems that the charge of an electron must exist in space
with a certain distribution. When Schrodinger introduced the wave function and
founded his wave mechanics in 1926, he also suggested an answer to this ques-
tion. Schrédinger assumed that the charge of an electron is distributed in the whole
space, and the charge density in position x at instant ¢ is —e|y/(x, 1)|*, where y(x, £) is
the wave function of the electron. In the following, I will give a detailed historical
and logical analysis of Schrodinger’s charge density hypothesis.

In his paper on the equivalence between wave mechanics and matrix mechan-
ics (Schrodinger, 1926b), Schrodinger suggested that it might be possible to give
an extraordinarily visualizable and intelligible interpretation of the intensity and
polarization of radiation by assuming the wave function, which was then called
mechanical field scalar, is the source of the radiation. In particular, he assumed that
the charge density of an electron as the source of radiation is given by the real part
of —eyOy* /0t, where ¢ is the wave function of the electron. In his third paper on
wave mechanics (Schrodinger, 1926c), which deals with perturbation theory and
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its application to the Stark effect, Schrodinger noted in an addendum in proof that
the correct charge density of an electron was given by —elys|>. Then in his fourth
paper on wave mechanics and his 1927 Solvay report (Schrodinger, 1926d, 1928),
Schrodinger further showed how this gives rise to a sensible notion of charge den-
sity for several electrons, each contribution being obtained by integrating over the
other electrons. Concretely speaking, for a many-body system, select one subsys-
tem and keep the coordinates of the subsystem that describe its position fixed at a
given position and integrate ||> over all the rest of the coordinates of the system
and multiply the charge of the subsystem, and do a similar thing for each subsys-
tem, in each case fixing the selected subsystem at the same given position. Then
the sum of all these partial results gives the charge density at the given position.

At the 1927 Solvay conference, Born posed an objection relating to quadrupole
moments to Schrodinger’s charge density hypothesis (Bacciagaluppi and Valen-
tini, 2009, p.426). Born considered two microscopic particles with charge e whose
wave function is ¥(x1, x2), where x| and x, stand for all the coordinates of the two
particles. According to Schrodinger, the charge density is

p(x) =e f W (x, x2)[dxy + e f (xr, x)dx; . (6.1)

But the electric quadrupole moment

effxllel//(xbm)lzdmdxz

cannot be expressed using the function p(x). As a result, one cannot reduce the
radiation of the quadrupole to the motion of a charge distribution p(x) in the usual
three-dimensional space. Born then concluded that interpreting the quantity || as
charge density leads to difficulties in the case of quadrupole moments.

However, it can be seen by a more careful analysis that the above problem is
not really a problem of Schrodinger’s charge density hypothesis, but a problem
of Schrodinger’s interpretation of the wave function in terms of charge density. In
fact, Schrodinger also clearly realized this problem. As early as in his equivalence
paper (Schrodinger, 1926b), Schrodinger already noticed the difficulty relating to
the problem of several electrons, which lies in the fact that the wave function is a
function in configuration space, not in real space. Although the charge distribution
in three-dimensional space can be consistently defined for an N-body system, it
does not reflect all information encoded in the wave function of the system which
lives in a 3N-dimensional configuration space. Therefore, although the existence
of charge distribution may provide an approximate classical explanation for some
phenomena of radiation, it cannot account for all experimental observations, e.g.
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as Born rightly pointed out, the motion of a charge distribution cannot explain the
radiation of the quadrupole.

Besides this incompleteness problem for many-body systems, Schrodinger (1928)
also realized that the charge distribution of a quantum system such as an electron
cannot be purely classical either, because his equation does not include the usual
Coulomb interaction between the distributions. In particular, there is no electro-
static self-interaction of the charge distribution of a quantum system. Moreover,
according to the Schrodinger equation, the interacting systems should be treated
as a whole, whose wave function is defined in a multi-dimensional configuration
space, and cannot be decomposed into a direct product of the wave functions of
all interacting systems. This makes the interaction between two charged quantum
systems more complex than the interaction between two classical charges.

Schrodinger’s interpretation of the wave function in terms of charge density was
latter investigated and extended by a few authors (see, e.g. Madelung, 1926, 1927,
Janossy, 1962; Jaynes, 1973; Barut, 1988).! Due to the above problems, however,
this semiclassical interpretation cannot be satisfactory in the final analysis. More-
over, although this fact does not imply the non-existence of the charge distribution
of an electron, the very limited success of the interpretation does not provide a
convincing argument for its existence either. Presumably because people thought
that the hypothetical charge distribution of an electron cannot be directly measured
and its existence also lacks a consistent physical explanation, Schrédinger’s charge
density hypothesis has been largely ignored.”

6.2 Is an electron a charge cloud?

In order to answer the question of whether a quantum system such as an electron
has a well-defined charge distribution as Schrodinger assumed, we need to first de-
termine what exists in quantum mechanics. According to the extended ontological
models framework or the suggested criterion of reality (see Chapter 4), the definite
result obtained by a protective measurement reflects a property of the measured
quantum system. While what property the measured property is depends on the
concrete interaction between the measured system and the measuring device dur-
ing the protective measurement. In this section, I will analyze the existence of the
charge distribution of a quantum system with the help of protective measurements.

! It is worth noting that Wallace and Timpson’s (2010) “spacetime state realism” can be regarded as a
generation of Schrodinger’s interpretation in some sense (see also Wallace, 2012, chap. 8). Although this
view may avoid the problems of wave function realism (Albert, 1996, 2013), it has the same problems as
Schrodinger’s interpretation. For a critical analysis of this view see Norsen (2016).

2 However, there is a modern variant of Schrodinger’s charge density hypothesis, which has been called mass
density ontology (Ghirardi, Grassi and Benatti, 1995; Ghirardi, 1997, 2016). I will briefly discuss it later in
Section 8.5.
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6.2.1 Two simple examples

Before my analysis of the charge distribution of a quantum system, I will give
two simple examples to explain how to determine whether a physical system has a
well-defined charge distribution.

Figure 6.1 Scheme of a non-disturbing measurement of the charge distribution of
a classical system

First of all, I will analyze the charge distribution of a classical system. Consider
a classical particle with charge Q, which is trapped in a small box. A measuring
electron is shot along a straight line near the box, and then detected on a screen
after passing by the box. According to Newton’s laws of motion and Coulomb’s
law, the deviation of the trajectory of the measuring electron is determined by the
charge of the measured particle, as well as by the distance between the electron
and the particle. If there were no charged particle in the box, the trajectory of the
electron would be a straight line as denoted by position “0” in Figure 6.1. Now the
trajectory of the electron will be deviated by a definite amount as denoted by posi-
tion “1” in Figure 6.1. Then according to the second assumption of the ontological
models framework or the suggested criterion of reality, a simple analysis of the
definite measurement result will tell us that the measured particle has a charge Q
in the box as its property, which has the efficacy to deviate the measuring electron.
Certainly, such ontological content of classical mechanics is already well-known.
However, this is because the theory was founded based on the classical ontology.
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Here I show that the ontology of the theory can be derived from its connections
with experience and a connecting rule between experience and reality such as the
suggested criterion of reality. This approach to the ontology of a physical theory is
universal, and it can be applied to all physical theories.

Here it may be necessary to further clarify the meaning of charge distribution
as a property of a physical system. As noted before, any physical measurement
is necessarily based on certain interaction between the measured system and the
measuring system. Concretely speaking, the measuring system is influenced by the
measured system through an interaction that depends on the measured property,
and the definite change of the measuring system then reflects this property of the
measured system (in accordance with the ontological models framework or the sug-
gested criterion of reality). For example, a position measurement must depend on
the existence of certain position-dependent interaction between the measured sys-
tem and the measuring system such as electrostatic interaction between two electric
charges. The existence of an electrostatic interaction during a measurement, which
is indicated by the deviation of the trajectory of the charged measuring system such
as an electron, then tells us that the measured system also has a charge responsible
for the interaction. Moreover, since the strength of the interaction relates to the dis-
tance between the two interacting systems, the measurement result may also reflect
the charge distribution of the measured system in space. In the above example, the
definite deviation of the trajectory of the measuring electron will tell us that there
exists a definite amount of charge in the box, and the extent of the deviation will
further tell us the amount of the charge there.

Secondly, I will analyze the charge distribution of a quantum system being in a
position eigenstate. Consider a quantum system with charge Q whose wave func-
tion is localized in a small box. A measuring electron, whose initial state is a Gaus-
sian wavepacket narrow in both position and momentum, is shot along a straight
line near the box. The electron is detected on a screen after passing by the box.
According to the Schrodinger equation with an external Coulomb potential, the
deviation of the trajectory of the electron wavepacket is determined by the charge
of the measured particle in the box, as well as by the distance between the elec-
tron and the particle. If there were no charged quantum system in the box, then the
trajectory of the electron wavepacket will be a straight line as denoted by position
“0” in Figure 6.2. Now, the trajectory of the electron wavepacket will be deviated
by a definite amount as denoted by position “1” in Figure 6.2. In an ideal situation
where the size of the box can be ignored, this can be regarded as a conventional
projective measurement of an eigenstate of the system’s charge in the box. Then
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Figure 6.2 Scheme of a projective measurement of the charge distribution of a
quantum system

according to the ontological models framework or the suggested criterion of real-
ity, an analysis of the definite measurement result will tell us that the measured
system has a charge Q in the box as its property.

In general, when a quantum system is in an eigenstate of an observable, a projec-
tive measurement of the observable will obtain a definite result, namely the eigen-
value of the observable corresponding to the eigenstate. Then, similarly, the sys-
tem has a property with value being the eigenvalue. This result is also called the
eigenvalue-eigenstate half link, which says that if a system is in an eigenstate of an
observable, the system has a property with value being the eigenvalue correspond-
ing to the eigenstate (see Section 2.2). This link provides a very limited connection
between quantum mechanics and reality.

6.2.2 The answer of protective measurement

I have analyzed the charge distributions of a classical system and a quantum system
being in a position eigenstate. It is demonstrated that a classical charged particle
has a well-defined charge distribution; the charge is localized in the definite posi-
tion in space where the particle is. Similarly, a charged quantum system being in a
position eigenstate also has a well-defined charge distribution; the charge is local-
ized in a definite position in space, which is the position eigenvalue corresponding
to the position eigenstate. Then, is there also a well-defined charge distribution
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for a quantum system being in a superposition of position eigenstates? And if the
answer is yes, what is the charge distribution of the system?

According to quantum mechanics, a projective position measurement of a su-
perposition of position eigenstates will change the state greatly by entanglement
and possible wavefunction collapse, and the measurement result is not definite but
random with certain probability in accordance with the Born rule. Thus neither the
ontological models framework nor the suggested criterion of reality can be used
to analyze the charge distributions of such superpositions when considering only
projective measurements. However, as I have argued before (in Chapter 4), both the
ontological models framework and the suggested criterion of reality can be applied
to a general quantum state when considering protective measurements; the definite
result obtained by a protective measurement reflects a property of the measured
system. In the following, I will demonstrate that protective measurements can tell
us that a quantum system has a well-defined charge distribution in the same sense
that classical measurements can tell us that a classical system has a charge distri-
bution and projective measurements can tell us that a quantum system being in a
position eigenstate has a charge distribution.

Consider a quantum system with charge Q whose wave function is

Y(x, 1) = ap(x, 1) + Do (x, 1), (6.2)

where ((x, t) and Y (x, t) are two normalized wave functions respectively local-
ized in their ground states in two small identical boxes 1 and 2, and lal> + |b]> = 1.
A measuring electron, whose initial state is a Gaussian wavepacket narrow in both
position and momentum, is shot along a straight line near box 1 and perpendicu-
lar to the line of separation between the two boxes. The electron is detected on a
screen after passing by box 1. Suppose the separation between the two boxes is
large enough so that a charge Q in box 2 has no observable influence on the elec-
tron. Then if the system is in box 2, namely |a|*> = 0, the trajectory of the electron
wavepacket will be a straight line as denoted by position “0” in Figure 6.3, indi-
cating that there is no charge in box 1. If the system is in box 1, namely |a*> = 1,
the trajectory of the electron wavepacket will be deviated by a maximum amount
as denoted by position “1” in Figure 6.3, indicating that there is a charge Q in box
1. As noted above, these two measurements are conventional projective measure-
ments of two eigenstates of the system’s charge in box 1, and their results can tell
us that the measured system has a well-defined charge distribution in box 1 as its
property. However, when 0 < |a|> < 1, i.e. when the measured system is in a su-
perposition of two eigenstates of its charge in box 1, such projective measurements
cannot obtain definite results and thus cannot tell us whether there is a well-defined
charge distribution in box 1.
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Figure 6.3 Scheme of a protective measurement of the charge distribution of a
quantum system

Now let us make a protective measurement of the charge of the system in box
1 for the superposition ¥(x,£).> Then the trajectory of the electron wavepacket is
only influenced by the expectation value of the charge of the system in box 1, and
thus the electron wavepacket will reach the definite position “|a|>” between “0” and
“1” on the screen as denoted in Figure 6.3. According to the extended ontological
models framework or the suggested criterion of reality, this definite result of the
protective measurement indicates that the measured system has a charge |a|>Q in
box 1 as its property.

This result can be generalized to an arbitrary superposition of position eigen-
states. For a quantum system with charge Q whose wave function is y/(x) at a given
instant, we can make a protective measurement of the charge of the system in a

3 An adiabatic-type protective measurement can be realized as follows (Aharonov, Anandan and Vaidman,
1993). Since the state y(x, f) is degenerate with its orthogonal state > (x, ) = b*i1(x, 1) — a*a(x, f), we first
need an artificial protection procedure to remove the degeneracy, e.g. joining the two boxes with a long tube
whose diameter is small compared to the size of the box. By this protection y(x, ) will be a nondegenerate
energy eigenstate. Then we need to realize the adiabatic condition and the weakly interacting condition,
which are required for a protective measurement. These conditions can be satisfied when assuming that (1)
the measuring time of the electron is long compared to 7i/AE, where AE is the smallest of the energy
differences between y/(x, ¢) and the other energy eigenstates, and (2) at all times the potential energy of
interaction between the electron and the system is small compared to AE. Then the measurement by means
of the electron trajectory is a realistic protective measurement, and when the conditions approach ideal
conditions, the measurement will be an (ideal) protective measurement with certainty. Note that weak
measurements have been implemented in experiments (see, e.g. Lundeen et al, 2011), and it can be
reasonably expected that adiabatic-type protective measurements can also be implemented in the near future
with the rapid development of quantum technologies (Cohen, 2016).
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small spatial region V having volume v near position x. This means to protectively
measure the following observable:

0, ifxeV,
A= ] (6.3)
0, ifxegV.
The result of the measurement is
(A)=0 f W (x, )Py, (6.4)
1%

It indicates that the measured system has a charge Q fv ly(x, £)]>dv in region V.
Then when v — 0 and after performing measurements in sufficiently many regions
V, we can find that the measured system has a charge distribution in the whole
space, and the charge density in each position x is [y(x)[>Q.*

To sum up, I have argued with the help of protective measurements that a quan-
tum system has a well-defined charge distribution in space, in exactly the same
sense that a classical system has a well-defined charge distribution in space. More-
over, it is shown that the charge of a charged quantum system is distributed through-
out space, and the charge density in each position is equal to the modulus squared
of the wave function of the system there multiplied by the charge of the system.
Thus, visually speaking, a charged quantum system such as an electron is a charge
cloud. This confirms Schrédinger’s original charge density hypothesis.

6.3 The origin of charge density

In this section, I will further investigate the physical origin of the charge distri-
bution of a quantum system such as an electron. As we will see, the answer may
provide an important clue to the ontological meaning of the wave function.

As I have pointed out previously, there are at least two good motivations for
investigating of the origin of the charge distribution of a quantum system. First,
although the charge distribution can be consistently defined for a many-body sys-
tem, the distribution contains no information about the entanglement between the
subsystems of the many-body system. This indicates that the charge distribution is
an incomplete manifestation of the underlying physical state and thus must have a

deeper physical origin.> Second, even for one-body systems the charge distribution
4 Similarly, we can protectively measure another observable B = %(AV + VA). The measurements will tell us
the measured system also has an electric flux distribution in space, and the electric flux density in position x
is jo(x) = %(w*wf — V). These results can also be generalized to a many-body system.
5 This conclusion is also supported by the seemingly puzzling fact that although each charged quantum system
has a charge distribution in space, the electrostatic interaction between two charged quantum systems is
described not by certain charge density terms but by the potential terms in the Schrodinger equation. Since
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also has some puzzling features, e.g. the charge distribution of a single electron has
no electrostatic self-interaction. These puzzling features are in want of a reasonable
explanation, which may be provided by the origin of the charge distribution. In ad-
dition, the charge distribution has two possible forms, and we need to determine
which form is the actual form. Again, this is closely related to the physical origin
of the distribution.

Then, what kind of entity or process generates the charge distribution of a quan-
tum system in space, |¥(x, HI?Q? There are two possibilities. The charge distri-
bution can be generated by either (1) a continuous charge distribution with den-
sity |¥(x, H)I>Q or (2) the motion of a discrete point charge Q with spending time
[ (x, )|2dvdt in the infinitesimal spatial volume dv around x in the infinitesimal
time interval [z, t + dt].® Correspondingly, the underlying physical entity is either a
continuous field or a discrete particle. For the first possibility, the charge distribu-
tion exists throughout space at the same time. For the second possibility, at every
instant there is only a localized, point-like particle with the total charge of the sys-
tem, and its motion during an infinitesimal time interval forms the effective charge
distribution. Concretely speaking, at a particular instant the charge density of the
particle in each position is either zero (if the particle is not there) or singular (if the
particle is there), while the time average of the density during an infinitesimal time
interval around the instant gives the effective charge density. Moreover, the motion
of the particle is ergodic in the sense that the integral of the formed charge density
in any region is equal to the expectation value of the total charge in the region.

6.3.1 Electrons are particles

In the following, I will try to determine the existent form of the charge distribution
of a quantum system.

If the charge distribution of a quantum system is continuous in nature and exists
throughout space at the same time, then any two parts of the distribution (e.g. the

charge density (and electric flux density) are not a complete manifestation of the physical state of a two-body
system, e.g. they do not contain the entanglement between the sub-systems of the two-body system, they are
not enough to describe the interaction between these two sub-systems when there is entanglement between
them in general cases. However, when there is no entanglement between two quantum systems in special
cases such as during a protective measurement, the charge density (and electric flux density) are enough to
describe the interaction and can also be directly manifested, e.g. in the results of protective measurements.
Note that the expectation value of an observable at a given instant, such as (A) = Q fV [(x, 1)|?dx, is either
the physical property of a quantum system at the precise instant (like the position of a classical particle) or
the limit of the time-averaged property of the system at the instant (like the standard velocity of a classical
particle). These two interpretations correspond to the above two possibilities. For the later, the observable
assumes an eigenvalue at each instant, and its value spreads all eigenvalues during an infinitesimal time
interval around the given instant. Moreover, the spending time in each eigenvalue is proportional to the
modulus squared of the wave function of the system there. In this way, such ergodic motion may generate the
expectation value of the observable (see also Aharonov and Cohen, 2014). I will discuss in the next chapter
whether this picture of ergodic motion applies to properties other than position.
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two partial charges in box 1 and box 2 in the example discussed in the last section),
like two electrons, will arguably have electrostatic interaction too.” The existence
of such electrostatic self-interaction for individual quantum systems contradicts the
superposition principle of quantum mechanics (at least for microscopic systems
such as electrons). Moreover, the existence of the electrostatic self-interaction for
the charge distribution of an electron is incompatible with experimental observa-
tions either. For example, for the electron in the hydrogen atom, since the potential
of the electrostatic self-interaction is of the same order as the Coulomb potential
produced by the nucleus, the energy levels of hydrogen atoms would be remark-
ably different from those predicted by quantum mechanics and confirmed by ex-
periments if there existed such electrostatic self-interaction. In contrast, if there is
only a localized particle with charge at every instant, and the charge distribution
is effective, formed by the motion of the particle, then it is understandable that
there exists no such electrostatic self-interaction for the effective charge distribu-
tion. This is consistent with the superposition principle of quantum mechanics and
experimental observations.

Here is a further clarification of the above analysis. As noted before, the non-
existence of electrostatic self-interaction for the charge distribution of a single
quantum system poses a puzzle. According to quantum mechanics, two charge
distributions such as two electrons, which exist in space at the same time, have
electrostatic interaction described by the potential term in the Schrodinger equa-
tion, but in the two-box example discussed in the last section, the two charges in
box 1 and box 2 have no such electrostatic interaction. In fact, this puzzle does
not depend so much on the actual existence of the charge distribution as a property
of a quantum system. It is essentially that according to quantum mechanics, the
wavepacket | in box 1 has electrostatic interaction with any test electron, so does
the wavepacket ¥, in box 2, but these two wavepackets, unlike two electrons, have
no electrostatic interaction.

Facing this puzzle one may have two responses. The usual one is simply ad-
mitting that the non-existence of the self-interaction of the charge distribution is a
distinct feature of the laws of quantum mechanics, but insisting that the laws are
what they are and no further explanation is needed. However, this response seems
to beg the question and is unsatisfactory in the final analysis. A more reasonable
response is to try to explain this puzzling feature, e.g. by analyzing its relationship
with the existent form of the charge distribution. The charge distribution has two
possible existent forms after all. On the one hand, the non-existence of the self-
interaction of the distribution may help determine which form is the actual one.

7 The interaction will be described by an additional potential term in the Schrdinger equation. Moreover, the
two parts of the distribution will be entangled, and their wave function will be defined in a six-dimensional
configuration space.
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For example, one form is inconsistent with this distinct feature, while the other
form is consistent with it. On the other hand, the actual existent form of the charge
distribution may also help explain the non-existence of the self-interaction of the
distribution.

This is just what the previous analysis has done. The analysis establishes a con-
nection between the non-existence of the self-interaction of the charge distribu-
tion of a quantum system and the actual existent form of the distribution. The rea-
son why two wavepackets of an electron, each of which has part of the electron’s
charge, have no electrostatic interaction is that these two wavepackets, unlike two
electrons, do not exist at the same time, and their charges are formed by the motion
of a localized particle with the total charge of the electron. Since there is only a lo-
calized particle at every instant, there exists no electrostatic self-interaction of the
effective charge distribution formed by the motion of the particle. In contrast, if the
two wavepackets with charges, like two electrons, existed at the same time, then
they would also have the same form of electrostatic interaction as two electrons.®

To sum up, I have argued that the superposition principle of quantum mechanics
requires that the charge distribution of a quantum system such as an electron is
effective; at every instant there is only a localized particle with the total charge
of the system, while during an infinitesimal time interval around the instant the
ergodic motion of the particle forms the effective charge distribution at the instant.

6.3.2 The motion of a particle is discontinuous

Which sort of ergodic motion then? If the ergodic motion of a particle is contin-
uous, then it can only form an effective charge distribution during a finite time
interval. But, according to quantum mechanics, the charge distribution is required
to be formed by the ergodic motion of the particle during an infinitesimal time in-
terval (not during a finite time interval) around a given instant. Thus it seems that
the ergodic motion of a particle cannot be continuous. This is at least what the
existing theory says. However, this argument may have a possible loophole. Al-
though the classical ergodic models that assume continuous motion of particles are
inconsistent with quantum mechanics due to the existence of finite ergodic time,
they may be not completely refuted by experiments if only the ergodic time is ex-
tremely short. After all quantum mechanics is only an approximation of a more
fundamental theory of quantum gravity, in which there may exist a minimum time
interval such as the Planck time (see also Section 8.4.1). Therefore, we need to
investigate the classical ergodic models more thoroughly.

First, consider an electron being in a momentum eigenstate. For this state the

8 For further discussion of this argument see Epilogue.
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charge distribution is even in the whole space at any time. If the motion of the
electron as a particle is continuous, moving with a finite speed, then it is obvious
that the motion cannot generate a charge distribution in the whole space during a
finite time interval, whether the distribution is even or not. The reason is that during
a finite time interval the particle can only move in a finite spatial region. Thus it
seems that only if the electron moves with an infinite speed at every instant, can it
form the required charge distribution in the whole space. But in this case, it seems
already meaningless to say that the motion of the electron is continuous.

Next, consider an electron being in a superposition of two momentum eigen-
states with opposite momenta. For this state the charge distribution is cyclical in
the whole space at all times. Similarly, the continuous motion of the electron with
a finite speed cannot generate the charge distribution during any finite time inter-
val.® Moreover, even if the electron moves with an infinite speed at every instant,
it can only form an even charge distribution in the whole space, and it cannot form
a cyclical charge distribution in the whole space. Thus it seems that the continuous
motion of the electron cannot form the required charge distribution in this case.
This conclusion also holds true for general superpositions of momentum eigen-
states which spread in the whole space.

Thirdly, consider an electron in a one-dimensional box in the first excited state
(Aharonov and Vaidman, 1993). For this state the charge distribution is symmetry
relative to the center of the box, and the charge density is zero at the center of
the box, as well as at the two ends of the box. Since the charge distribution only
exists in a finite spatial region, it seems that the continuous motion of the electron
with a finite speed may generate the charge distribution during a very short time
interval.'” However, since the amount of time the electron spends around a given
position is proportional to the charge density in the position, the electron can spend
no time at the center of the box where the charge density is zero; in other words,
it must move at infinite velocity at the center. Although the appearance of infinite
velocities at an instant may be not a fatal problem (since the infinite potential is
only an ideal situation), it seems difficult to explain why the electron speeds up at
the node and where the infinite energy required for the acceleration comes from
(Aharonov and Vaidman, 1993).

Lastly, consider an electron in a superposition of two energy eigenstates in two
boxes. In this case, even if the electron can move with infinite velocity, it cannot

9 Even if this is possible, it is also difficult to explain why the electron moves back and forth in space.

10" Note that in Nelson’s stochastic mechanics, the electron, which is assumed to undergo Brownian motion,
moves only within a region bounded by the nodes (Nelson, 1966). This ensures that the theory can be
equivalent to quantum mechanics in a limited sense. Obviously this sort of motion is not ergodic and cannot
generate the right charge distribution. This conclusion also holds true for the motion of particles in Bohm’s
theory (Bohm, 1952), as well as in some variants of stochastic mechanics and Bohm’s theory (Bell, 1986b;
Vink, 1993; Barrett, Leifer and Tumulka, 2005).
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continuously move from one box to another due to the restriction of box walls.
Therefore, any sort of continuous motion cannot generate the required charge dis-
tribution. One may still object that this is merely an artifact of the idealization of
infinite potential. However, even in this ideal situation, the ergodic motion of the
electron should also be able to generate the required charge distribution; otherwise
the model will be inconsistent with quantum mechanics.

In view of these serious drawbacks of classical ergodic models and their incon-
sistency with quantum mechanics, I conclude that the ergodic motion of a particle
cannot be continuous. If the motion of a particle is essentially discontinuous, then
the particle can readily move throughout all regions where the wave function is
nonzero during an arbitrarily short time interval around a given instant. Further-
more, when the probability density that the particle appears in each position is
equal to the modulus squared of its wave function there at every instant, the discon-
tinuous motion will be ergodic and can generate the right charge distribution, for
which the charge density in each position is proportional to the modulus squared of
its wave function there. This will solve the above problems plagued by the classical
ergodic models. The discontinuous ergodic motion requires no finite ergodic time.
Moreover, a particle undergoing discontinuous motion can also “jump” from one
region to another spatially separated region, whether there is an infinite potential
wall between them or not. Finally, discontinuous motion has no problem of infinite
velocity. The reason is that no classical velocity and acceleration can be defined for
discontinuous motion, and energy and momentum will require new definitions and
understandings as in quantum mechanics.

In summary, I have argued that the ergodic motion of a particle is discontinuous,
and the probability density that the particle appears in each position is equal to the
modulus squared of its wave function there.

6.3.3 An argument for random discontinuous motion

For the discontinuous motion of a particle, since quantum mechanics provides no
further information about the position of the particle at each instant, it seems that
the discontinuous motion should be also essentially random according to the the-
ory. In the following, I will give a further argument for the existence of random
discontinuous motion of particles.

In order to know whether the motion of particles is random or not, we need to
analyze the cause of motion. For example, if motion has no deterministic cause,
then it will be random and determined only by a probabilistic cause. This may be
also the right way to find how particles move. Since motion involves change in
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position, if we can find the cause or instantaneous condition that determines the
change,!! we will be able to find how particles move in reality.

Consider the simplest states of motion of a free particle, for which the instan-
taneous condition determining the change of its position is constant during the
motion. The instantaneous condition can be deterministic or indeterministic. That
the instantaneous condition is deterministic means that it leads to a deterministic
change of the position of the particle at each instant. That the instantaneous con-
dition is indeterministic means that it only determines the probability density that
the particle appears in each position in space at each instant. If the instantaneous
condition is deterministic, then the simplest states of motion of the free particle
will be continuous motion with constant velocity, for which the equation of mo-
tion is x(¢ + dt) = x(t) + vdt, where the deterministic instantaneous condition v is
a constant.!? On the other hand, if the instantaneous condition is indeterministic,
then the simplest states of motion of the free particle will be random discontinuous
motion with even position probability distribution; at each instant the probability
density that the particle appears in every position is the same.

In order to know whether the instantaneous condition is deterministic or not, we
need to determine which sort of simplest states of free motion are the solutions of
the equation of free motion in quantum mechanics (i.e. the free Schrédinger equa-
tion).!> According to the analysis given in the previous subsections, the momen-
tum eigenstates of a free particle, which are the solutions of the free Schrédinger
equation, describe the ergodic motion of the particle with even position probability
distribution in space. Therefore, the simplest states of free motion with a constant
probabilistic instantaneous condition are the solutions of the equation of free mo-
tion in quantum mechanics. On the other hand, it can be seen that the simplest states
of free motion with a constant deterministic instantaneous condition are the solu-
tions of the equation of free motion in classical mechanics, and not the solutions of
the equation of free motion in quantum mechanics.

When assuming that the instantaneous condition determining the position change
of a particle is always deterministic or indeterministic for any state of motion, the
above result then implies that motion, whether it is free or forced, has no determin-
istic cause, and thus it is random and discontinuous, determined only by a proba-
bilistic cause. This argument for random discontinuous motion may be improved
by further analyzing this seemingly reasonable assumption, but I will leave this for
future work.

I The word “cause” used here only denotes a certain instantaneous condition determining the change of
position, which may appear in the laws of motion. My following analysis is independent of whether the
condition has a causal power or not.

12" This deterministic instantaneous condition has been often called intrinsic velocity (Tooley, 1988).

13 T have derived this equation of free motion from a few fundamental physical principles in Chapter 5. This
makes the argument given here more complete.
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6.4 Further discussion

Historically, it is Schrédinger who first assumed the existence of the charge distri-
bution of an electron in space in 1926. According to his charge density hypothesis,
the charge of a quantum system is distributed throughout space, and the charge
density in each position is equal to the modulus squared of the wave function of
the system there multiplied by the charge of the system. Schrédinger’s purpose was
not to simply assume the existence of the charge distribution of a quantum system,
but to interpret the wave function of the system in terms of its charge distribution.
This is the first attempt to give an ontological interpretation of the wave function.

In the previous sections, I have re-examined Schrddinger’s charge density hy-
pothesis. It is argued that although Schrodinger’s ontological interpretation of the
wave function in terms of charge density meets serious problems and is unsatisfac-
tory, this does not imply that the charge distribution of an electron does not exist.
Moreover, I have argued with the help of protective measurements that a quan-
tum system has a well-defined charge distribution, and the charge density in each
position is equal to the modulus squared of the wave function of the system there
multiplied by the charge of the system. This confirms Schrodinger’s original charge
density hypothesis.

In order to explain the puzzling behaviours of the charge distribution of a quan-
tum system, I have also investigated the physical origin of the distribution. It is
argued that the charge distribution of a quantum system is effective, that is, it is
formed by the ergodic motion of a localized particle with the total charge of the
system. Visually speaking, the ergodic motion of a particle will form a particle
“cloud” extending throughout space (during an infinitesimal time interval around a
given instant), and the density of the cloud in each position, which represents the
probability density that the particle appears there, is |/(x, 1)|>, where ¥(x, f) is the
wave function of the particle. For a charged particle such as an electron, the cloud
will be a charged cloud, and the density |(x, 1), when multiplied by the charge of
the particle, will be the charge density of the cloud. This picture of ergodic motion
of a particle may explain some puzzling behaviours of the charge distribution of a
quantum system such as the non-existence of electrostatic self-interaction for the
distribution.

Although the charge distribution can be consistently defined for a many-body
system, the distribution contains no information about the entanglement between
its subsystems. In order to further solve this incompleteness problem, we need to
extend the above picture of ergodic motion of a particle for one-body systems to
many-body systems. At a given instant, an N-body quantum system can be rep-
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Figure 6.4 Three electron clouds in a hydrogen atom

resented by a point in a 3N-dimensional configuration space. During an infinites-
imal time interval around the instant, the representative point performs ergodic
motion in the configuration space, which is also random and discontinuous, and
forms a cloud there. Then, similar to the single particle case, the representative
point is required to spend in each volume element in the configuration space a
time that is proportional to the modulus squared of the wave function of the sys-
tem there. In other words, the density of the cloud in the configuration space is
p(x1, X2, .. XN, 1) = [W(x1, X2, ... XN, )%, where w(xy, x2,...xN, t) is the wave function
of the system. Since such ergodic motion in the configuration space contains en-
tanglement between the subsystems, its existence will solve the incompleteness
problem for the charge distribution of a many-body system.'

Here appears an intriguing question. Are there N particles in three-dimension
space for an N-body quantum system? Or there is only one particle in configuration
space for an N-body quantum system? According to my previous analysis, the
ontology for a one-body quantum system is a particle with the mass and charge
of the system, which undergoes ergodic motion in three-dimension space. If this
analysis is valid, it does require that the ontology for many-body quantum systems
is also discrete particle, not continuous field in configuration space; otherwise when
the wave function of a many-body system is a product state of the wave functions of
one-body systems, the ontology for one-body systems is not particle. However, the
analysis does not require that the ontology for N-body quantum systems should
be N particles in three-dimension space, not one particle in configuration space.
In order to answer the above question, we need to further analyze the nature of
configuration space and the ontological meaning of the many-body wave function
defined in the space. This will be the main task of the next chapter.

14 T will give a detailed analysis of quantum entanglement in Chapters 7 and 9.
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The ontology of quantum mechanics (1)

I have analyzed the ontology of quantum mechanics for one-body quantum sys-
tems such as an electron. The analysis suggests that the electron is a particle, and
its motion is random and discontinuous. In this chapter, I will extend this picture
of random discontinuous motion of particles for one-body systems to many-body
systems. I will argue that the wave function of an N-body quantum system repre-
sents the state of random discontinuous motion of N particles in three-dimensional
space, and in particular, the modulus squared of the wave function gives the proba-
bility density that the particles appear in every possible group of positions in space.
Moreover, I will present a more detailed analysis of random discontinuous motion
of particles and the interpretation of the wave function in terms of it.

7.1 Wave function realism?

The wave function of a physical system is in general a mathematical object de-
fined in a high-dimensional configuration space. For an N-body system, the con-
figuration space in which its wave function is defined is 3N-dimensional. Before
presenting my analysis of the nature of configuration space and the meaning of the
wave function, I will first examine a widely-discussed view, wave function real-
ism,! which regards the wave function as a description of a real, physical field in a
fundamental high-dimensional space (Albert, 1996, 2013, 2015).

In recent years, wave function realism seems to become an increasingly popu-
lar position among philosophers of physics and metaphysicians (Ney and Albert,
2013). This view is composed of two parts. The first part says that configuration
space is a real, fundamental space. Albert (1996) writes clearly,

The space we live in, the space in which any realistic interpretation of quantum mechanics
! Since a realist interpretation of the wave function does not necessarily imply that the wave function describes

areal, physical field in configuration space, the appellation “wave function realism” seems misleading. But
for the sake of convenience I will still use this commonly used appellation in the following disussion.
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is necessarily going to depict the history of the world as playing itself out ... is configu-
ration-space. And whatever impression we have to the contrary (whatever impression we
have, say, of living in a three-dimensional space, or in a four-dimensional space-time) is
somehow flatly illusory. (Albert, 1996, p.277)

The second part of this view states what kind of entity the wave function is in the
configuration space. Again, according to Albert (1996),

The sorts of physical objects that wave functions are, on this way of thinking, are (plainly)
fields - which is to say that they are the sorts of objects whose states one specifies by
specifying the values of some set of numbers at every point in the space where they live,
the sorts of objects whose states one specifies (in this case) by specifying the values of two
numbers (one of which is usually referred to as an amplitude, and the other as a phase at
every point in the universe’s so-called configuration space.

The values of the amplitude and the phase are thought of (as with all fields) as intrinsic
properties of the points in the configuration space with which they are associated. (Albert,
1996, p.278)

Note that configuration space conventionally refers to an abstract space that is used
to represent possible configurations of particles in three-dimensional space, and
thus when assuming wave function realism it is not accurate to call the high-
dimensional space in which the wave function exists “configuration space”. For
wave function realism, there are no particles and their configurations, and the high-
dimensional space is also fundamental, whose dimensionality is defined in terms
of the number of degrees of freedom needed to capture the wave function of the
system. But I will still use the appellation “configuration space” in my discussion
of wave function realism for the sake of convenience.

Here it is also worth noting that Bell (1987) once gave a clear recognition of the
prima facie argument for wave function realism (see also Lewis, 2004). Concerning
Bohm'’s (1952) theory, Bell writes,

No one can understand this theory until he is willing to think of ¥ as a real objective field
rather than just a ‘probability amplitude’. Even though it propagates not in 3-space but in
3N-space. (emphasis in original) (Bell, 1987, p.128)

Concerning Ghirardi, Rimini and Weber’s (1986) dynamical collapse theory, he
also writes,

There is nothing in this theory but the wavefunction. It is in the wavefunction that we
must find an image of the physical world, and in particular of the arrangement of things in
ordinary three-dimensional space. But the wavefunction as a whole lives in a much bigger
space, of 3N-dimensions. (Bell, 1987, p.204)

There are two main motivations for adopting wave function realism. The first,
broader motivation is 