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What,	when	and	how	do	rational	analysis	models	explain?	

(Word count: 4995) 

Abstract	

Probabilistic modeling is a highly influential method of theorizing in cognitive science. Rational 

analysis is an account of how probabilistic modeling can be used to construct non-mechanistic but 

self-standing explanatory models of the mind. In this article, I disentangle and assess several 

possible explanatory contributions which could be attributed to rational analysis. Although existing 

models suffer from evidential problems that question their explanatory power, I argue that rational 

analysis modeling can complement mechanistic theorizing by providing models of environmental 

affordances.  

1.	Introduction		

During the past two decades, probabilistic modeling has become one of the most visible strands of 

cognitive modeling alongside connectionism, rule-based approaches and dynamical systems 

modeling. Curiously, against the general trend in the cognitive sciences where theorizing is 

increasingly anchored in neuroscience findings, probabilistic modeling of higher cognition has been 

a characteristically top-down endeavor. Without making any substantial commitments about the 

underlying cognitive mechanisms, probabilistic modeling has been applied to complex aspects of 

human cognition, which have often been thought of as being beyond the reach of mechanistic 

research methods. Models of human memory, categorization, causal learning, concept learning, and 

conditional inference, to mention a few applications, often show an impressive fit with empirical 
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data, and the novel analyses of cognitive capacities provided by the models appear to have shed 

new light on the nature of the explananda under study. 

However, how does that shedding light actually occur – how do such computational probabilistic 

models explain? Although probabilistic modeling, in principle, does not rely on any particular 

method of explanation, modelers often refer to the idea of rational analysis as the account of how 

and why their models help us understand the mind (Anderson 1990; Oaksford & Chater 2007). The 

striking claim made by rational analysis (RA) modelers is that by understanding higher cognitive 

capacities as forms of inductive inference, we can predict behavior, and understand a lot about 

human cognition without making any assumptions about the underlying representations and 

processes. This agnosticism about neural and cognitive mechanisms is justified by making reference 

to the rationality of human behavior: We know that human agents tend to be generally well-adapted 

to their environment, and hence a careful analysis of the cognitive task encountered by the mind, 

coupled with an assumption of the optimality of human behavior, results in a putatively powerful 

methodology of prediction and explanation.  

However, there is a large consensus in the philosophy of science that explanations also in the 

cognitive sciences should track causal mechanisms, and the way RA purports to sidestep the 

evidential and explanatory problems arising from the causal complexity of cognition has given rise 

to a strongly polarized debate (see, e.g., peer commentary in Jones & Love 2011). On the one hand, 

the way that the new mathematical methods in probabilistic modeling can combine structure and 

learning in human thought has lead to an exciting new paradigm for theorizing about the mind. On 

the other hand, the proponents of non-causal explanation need to show when and how it is that non-

causal models explain rather than redescribe or merely formally unify various phenomena (cf. 
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Colombo & Hartmann 2015). Otherwise, rational analysis could simply be seen as the last breath of 

the autonomist dream of studying the mind independently from the brain.  

In this paper, I assess the explanatory status of RA models by disentangling various explanatory 

contributions which have been attributed to them. By relying on the contrastive-counterfactual 

theory of explanation, I distinguish between three possible explanatory contributions such models 

could make: Uncovering (a) constitutive dependencies between parts and wholes, (b) environment-

behavior dependencies, and (c) environment–optimal behavior dependencies. I treat the third 

alternative as the most promising source of new understanding provided by RA models. I argue that 

(c) should be interpreted as being explanatory not of human behavior as such, but of environmental 

affordances. Well conducted modeling of environmental affordances can complement mechanistic 

theorizing by providing means for understanding the possible space of behavior of agents.  

2.	Probabilistic	cognitive	modeling	and	rational	analysis		

2.1	Procedure	of	rational	analysis		

The idea of rational analysis modeling dates back to John Anderson’s work on human memory and 

categorization in The Adaptive Character of Thought (1990). Having already worked on his ACT* 

cognitive architecture, the new methodology put forward in the book reflected Anderson’s 

increasing worries that the research methods of the time could not really uncover cognitive 

mechanisms. Lacking a clear picture of what it is that cognitive mechanisms do (i.e. what the 

psychological explananda are), the available evidence of neural and algebraic level structures was 

insufficient to uncover the mechanistic architecture of the human mind (Anderson 1990, pp.23–26). 

Compared to bottom-up research strategies, rational analysis begins from the other end: 
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[…] We can understand a lot about human cognition without considering in detail what is inside 

the human head. Rather, we can look in detail at what is outside the human head and try to 

determine what would be optimal behavior given the structure of the environment and the goals 

of the human. (Anderson 1990, p.3) 

According to Anderson, careful mathematical modeling of the environment/task structure combined 

with an assumption about the optimality of human behavior leads to a new self-standing research 

strategy for understanding the mind: “As this book is evidence, a rational analysis can stand on its 

own without any architectural theory" (ibid.). By providing a precise model of what the mind does 

as a well-adapted system, rational analysis can constrain the search space for cognitive mechanisms, 

and put the scientific study of the mind on a firm foundation.  

This view of the role of computational modeling immediately brings to mind Marr’s (1982) account 

of multi-level theorizing in the mind sciences. However, whereas Marr provides no systematic 

model for building computational-level theories, RA modeling has predominantly proceeded 

according to the six-step modeling cycle proposed by Anderson (1990. p.29):  

1. Specify precisely the goals of the cognitive system 

2. Develop a formal model of the environment to which the system is adapted 

3. Make minimal assumptions about computational limitations 

4. Derive the optimal behavior function, given items 1 through 3  

5. Examine the empirical evidence to see whether the predictions of the behavior function are 

confirmed  

6. Repeat, iteratively refining the theory 
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These steps embody an account of how a large part of probabilistic cognitive modeling is done. 

However, two further assumptions should be made explicit. First, the derivation of optimal behavior 

in steps 2-4 typically employs probability calculus (not logic) as the normative baseline theory of 

rational behavior. Secondly, the connection between model predictions (step 4) and observed 

behavior of humans (step 5) is mediated by an assumption about the optimality of the observed 

behavior (see quoted passage above).  

Below I illustrate this process with an example. However, a comment on the status of the approach 

in cognitive science is in place: Not all probabilistic modelers endorse the rational analysis 

framework (cf. Danks 2015; Sakamoto et al. 2008; Brighton & Gigerenzer 2008). Focusing on RA 

is useful for two reasons, however. Rational analysis is undeniably influential, and its core 

commitments have been endorsed a large group of well-known modelers (e.g., Anderson 1990; 

Oaksford & Chater 1994, 2007; Griffiths & Tenenbaum 2009). A further advantage of focusing on 

RA has to do with the fact that often the theoretical commitments of mathematical modelers are 

hard to pin down. In some cases, this is surely due to the modelers themselves not being clear of 

where their commitments (about explanatoriness, optimality, etc.) lie. Rational analysis provides a 

clear account of the conceptual foundations of probabilistic cognitive modeling, and therefore the 

following discussion is potentially helpful for challenging the methodological quietism among 

probabilistic modelers.  

2.2	Oaksford	and	Chater	on	the	Wason	selection	task		

To illustrate the rational analysis process, I now briefly introduce Mike Oaksford and Nick Chater’s 

(1994, 2007) analysis of the Wason selection task. Being a relatively simple model, it is a good 

device for illustrating the conceptual basis of RA modeling. 
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Wason selection task is one of the most famous laboratory experiments discussed in the literature 

on human rationality. In the original form of the task, subjects are given four cards, each of which 

has a letter on one side and a number on the other. The subjects’ task is to determine whether the 

rule “If there is a vowel on one side of the card (p), then there is an even number on the other side 

(q)” holds. More precisely, subjects are asked to select all those cards, but only those cards, which 

would have to be turned over in order to discover whether the rule is true for the combination of 

cards they were given. The famous finding from the task and its several replications is that only a 

small minority of the subjects (less than 10%) select the correct cards (vowel, odd number) 

corresponding to the falsifying instance. Judged in the light of logic, most subjects fail to perform in 

a rational way.  

Oaksford and Chater (O&C) challenge the irrationality claim by arguing that logic-based theories of 

inference and rationality misrepresent people’s behavior in the task. O&C’s own information-gain 

model of the situation argues that the apparently irrational behavior can be understood as the 

optimal way of decreasing uncertainty regarding the hypotheses studied. The gist of O&C’s 

reinterpretation of the selection task is that instead of engaging in deductive reasoning, subjects 

interpret the task as inductive one. They do not try to falsify the rule, but instead they try to 

determine which of two hypotheses holds:  

(a) Independence hypothesis  Hi: P(q | h) = P(q) or 

(b) Dependence hypothesis  Hd: P(q | p) is high, higher than P(q).  

Being initially equally uncertain about both hypotheses, subjects aim to reduce this uncertainty as 

much as possible by turning as few cards as possible.  

The rational analysis proposed by O&C relies on three basic starting points:  
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(1)  Higher cognition can be modeled as probabilistic (Bayesian) computation  

(2)  The likelihoods and prior probabilities required by the model can be acquired from the 

analysis of the environment structure 

(3)  Behavior of human agents constitutes an optimal response to the task.  

The Bayesian model of the situation is constructed roughly as follows.1 To formalize the idea of 

uncertainty reduction, O&C adopt the optimal data selection paradigm, and interpret uncertainty 

reduction as optimization of expected information gain. Expected information gain ![#$] from 

turning over a card is defined as ![# &'|) − # &' ].2 The Shannon information terms #(&), in 

turn, are a function of the probabilities of the hypotheses before and after observing data,	.(&') and 

.(&'|)). These required posterior probabilities can be calculated from the likelihoods .()|&) and 

the priors by applying the Bayes rule. As the initial priors were set to be equal (.5), the rest of the 

crucial model specification is built into the likelihood functions, which describe the nature of the 

four-card task. Oaksford and Chater (1994, Table 1) show in detail how the required likelihoods can 

be read off the contingency tables describing the two hypotheses. 

From these derivations, it follows that the crucial parameter values determining the optimality of 

behavior are the base rates of p and q. These probabilities describe how often positive instances of 

                                                

1 For mathematical details, see Oaksford & Chater 1994, 2007. 

2 Uncertainty (Shannon information) # &'  given n mutually exclusive and exhaustive hypotheses (Hi), is 

− . &' log2 . &'3
'45 .  
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the antecedent and consequent of the rule appear in the environment. The expected information gain 

from turning the four cards depends on P(p) and P(q) in the following way: 

- P(q) is small   à P card is informative  

- P(p) is large   à Not-q card is informative 

- P(p) and P(q) are small  à Q card is informative 

- Not-p card is not informative 

How should these base rates, then, be determined? Instead of attempting to somehow measure the 

base rates of vowels and consonants in a relevant environment, O&C cite various intuitively 

plausible justifications for their rarity assumption. Relying on the observation that categories in 

language cut the world quite finely, the rarity assumption states that, generally, P(p) and P(q) are 

low in most situations.3 Under rarity, O&C conclude, the q card is more informative than the not-q 

card. Hence, the model concludes that highest expected information gain is achieved by turning p 

and q cards, exactly as a majority of the participants do. Actually, with the parameter values chosen 

by O&C, there’s a very good fit between meta-analysis results about people’s behavior in the 

standard form of the selection task, and the predictions of the model. Hence, by changing the 

normative model of rational behavior, O&C were able to explain away irrationality, and to show 

that experimental subjects’ behavior is actually very close to optimal. 

The model has received critical attention in the literature (cf. Oaksford & Chater 2009), but it serves 

our current purposes well. The model specification and the modeling assumptions are conceptually 

                                                

3 See Oaksford & Chater 1994, 2007, and 2009 for alternative justifications of rarity. 
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on a par with those in more complex Bayesian models. The complexity in such models often 

pertains to the structure and generation of hypothesis spaces, and the models often rely on 

computational tools (such as MCMC approximation methods) to make the calculations tractable. 

However, these mathematical complexities have no influence on the fundamental conceptual 

structure of the model. What is common to all such models is that the none of the components 

(hypothesis space, likelihood function, and priors) are interpreted in a psychologically realistic way 

as mental representations (Jones & Love 2011). Instead, they stand directly for properties of the 

environment. Furthermore, data about human behavior is not fed into the model specification to 

empirically calibrate the model. Instead, it is only used to test model predictions. Hence, in this 

sense, the rational analysis of the selection task is an illuminating example of the theoretical and 

conceptual assumptions of computational probabilistic modeling.  

3.	What	rational	analysis	models	fail	to	explain	

A shared starting point for many accounts of scientific explanation has been to distinguish 

explanation from other epistemic activities (e.g., description and prediction) by pointing out that 

explanations offer information of a specific kind. Explanations show how or why something 

happened or obtains. According to a now widely accepted approach, the knowledge that allows one 

to answer such questions concerns change-relating counterfactual dependencies between the relata 

in the explanation.  

Stated generally, according to this contrastive-counterfactual theory of explanation, explanatory 

information has the following form (Woodward 2013; Ylikoski & Kuorikoski 2010): 

{CC} x [x’] because of y [y’]  (variable X takes the value x instead of x’ because Y has the 

value y instead of y’) 
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In this account, being able to explain can be captured by being able to correctly answer what-if-

things-were-different questions, i.e. questions of how changes in explanans variables lead to 

changes in the explanandum variable. In addition to being a sufficiently general account of 

explanation, the contrastive-counterfactual theory suits the purposes of this article well, because it 

does not necessarily tie the notion of explanation to that of causation. That is, although the 

‘because’ in {CC} is typically understood as referring to causal dependency, the account does not 

rule out the possibility of non-causal explanation (Woodward 2013; Pincock 2015; Rice 2015): If 

there are ways of defining the notion of invariant dependency in non-causal situations (e.g. for 

mathematical dependencies), the contrastive-counterfactual theory could be applied to non-causal 

explanations as well. Hence, the theory of explanation casts the net wide enough to give RA models 

a fair chance of being explanatory. 

A further advantage of treating explanations as answers to questions is that it allows us to make 

more precise the possible explanatory claims made by RA modelers. I suggest that there are at least 

three different kinds of objective dependencies that RA models could be said to track: (1) 

constitutive dependencies between parts and wholes, (2) environment-behavior dependencies, and 

(3) environment–optimal-behavior dependencies. In the rest of this section, I argue that in most 

cases of RA modeling, there are good reasons to conclude that the models do not have genuine 

explanatory import with respect to the two first kinds of dependencies.  

3.1	Constitutive	what-ifs		

The notion of mechanism has acquired a central position in the philosophical debates concerning 

explanation in the life sciences. A clear expression of the mechanistic viewpoint has recently been 

given in the model-to-mechanisms mapping (3M) requirement by Kaplan and Craver (2011). 

According to the requirement, dynamical and mathematical models in systems- and cognitive 
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neuroscience explain a phenomenon only if there is a mapping between elements in the model and 

elements in the mechanism for the phenomenon. As the example discussed above suggests, rational 

analysis models provide no such mapping. They are agnostic about algorithmic and implementation 

level details, and intentionally so. Does this mean they cannot be explanatory? 

First, as Kaplan and Craver themselves admit, their argument ultimately relies on shared norms 

about explanatoriness in the neuroscience community, and their account of explanation as 

construction of multi-level mechanisms reflects these norms. However, if such norms do not hold 

among probabilistic cognitive modelers, it is not obvious why they should abide by the 3M 

requirement. 

Instead, if we understand explanation according to the contrastive-counterfactual theory, Kaplan 

and Craver’s argument seems less disastrous: RA models obviously do not provide information 

about constitutive and causal dependencies in multi-level mechanisms, but according to the 

account, this does not rule out the possibility of RA models tracking some other kinds of objective 

dependencies, e.g. those holding between relata described in computational-level terms. 

Furthermore, a proponent of RA need not (and should not) claim that adding mechanistic detail 

never improves a computational explanation. To defend explanatoriness of RA models, a far weaker 

claim suffices, one stating that there can be explanatory contributions which do not rely on 

information from uncovering causal mechanisms.  

3.2	Environment–behavior	what-ifs		

A second kind of explanatory question answered by an RA model could be ”how would the 

behavior of the cognizer change when the cognitive task changes in some particular way?” That is, 

a RA model could uncover objective dependencies between properties of the environment and the 
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behavior of cognizers. For example, O&C’s model can be used to derive predictions of what the 

behavior of the subjects in the Wason tasks would be, were P(p) and P(q) to take a range of values.  

It is here that the optimality assumption of RA becomes crucial. To predict how human behavior 

would change in response to changes in the task, without knowing anything about the algorithms 

and processes which produce behavior, RA relies on the assumption that humans are well-adapted 

to their environments: If we assume that human behavior is optimal (or approximates optimal 

behavior) across a large variety of environments, the predictions derived from the RA model (step 4 

of the analysis procedure) should in fact apply to that behavior.  

Given that human (ir)rationality has been the topic of a longstanding debate in philosophy and 

psychology, it is not surprising that the optimality assumption has drawn a lot of criticism (cf. Jones 

& Love 2011). Although proponents of RA are correct in arguing that some degree of rationality of 

target behavior is required for us to even perceive it as intentional action, the modest levels of 

rationality needed hardly license the strong optimality assumptions in RA models. Neither do 

evolutionary arguments provide support for strong optimality claims: Although natural selection is 

a source of design and adaptedness, evolution is not guaranteed to produce globally optimal 

solutions – merely a local comparative advantage is sufficient for evolutionary solutions to survive.  

Being aware of these problems, proponents of RA have avoided appealing to evolutionary defenses 

of the optimality assumption. Instead, they justify optimality by relying on an analogy to behavioral 

ecology and economics, where similar assumptions are commonly made (Chater et al. 2003). I 

believe, however, that the analogy breaks down due to a crucial dissimilarity between these fields: 

Both in biology and economics, rationality claims typically concern aggregate behavior, not that of 
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individual agents. Due to the disanalogy, I do not see how appealing to economics or biology could 

be a viable way to justify optimality assumptions in RA modeling.  

These problems with general defenses of the optimality assumption suggest that perhaps optimality 

should be examined more locally. What kind of evidence should be obtained to justify the 

optimality claim in the case of a particular cognitive task? It seems that to support an objective 

dependency between environment and behavior, we should gather data about human behavior in a 

task across a range of parameter values describing various different environmental states.  If 

human behavior fits the predictions made by the model across a range of conditions, that would 

appear to be rather strong evidence of optimality.4  

Existing RA models rarely employ such cross-environmental data. First of all, many models not 

rely on any actual measurements of environment parameters (cf. Jones & Love 2011). Instead, they 

use plausible-sounding assumptions or analogies. For example, in O&C’s selection task model, the 

base rates for p and q originated in such analogical reasoning. Similarly, Anderson’s (1990, ch. 2) 

early model of memory relied on data about library borrowings to model usage of memory 

structures, and Griffiths et al. (2007) use Google PageRank to predict fluency of recall. Models 

devoid of good quality empirical data should be considered as toy models (at best), incapable of 

uncovering actual properties of cognitive environments.  

                                                

4 Note, however, that such empirical evidence for optimality would make the theory-based optimality assumption 

unnecessary. 
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Furthermore, as Marcus and Davis (2013, Table 1) observe, Bayesian modelers have been selective 

in the results that they report from experimental tasks. They only report ones where human behavior 

follows the model and ignore cases where its not optimal. Although some of the most recent models 

show some improvement in these respects, generally in RA models there is little evidence that 

could support knowledge of the needed invariant environment-behavior counterfactuals. 	

4.	Rational	analysis	and	the	logic	of	the	situation		

Finally, let us think about the epistemic value of a RA model if we drop the optimality assumption. 

Assume that we have a rational analysis model with (i) well-specified task structure, (ii) parameter 

values based on empirical measurement of the environment, and (iii) an account of computational 

costs and limitations. What such a model could do is to link combinations of parameter values to 

best possible behavioral choices in those situations. Is this not a kind of objective what-if 

dependency? However, consider what the relata of such a dependency are. The model tells what the 

optimal behavior would be, given a particular combination of environmental conditions and 

computational limitations. Such counterfactuals do not say anything about actual human behavior. 

Instead, they increase our understanding of the environmental affordance, or, the logic of the 

situation (Popper 1963). 

What mathematical models of affordances – the opportunities the environment offers for the agent – 

can help us understand is the possible space of behavior for cognitive agents. They show what a 

hypothetical rational agent would do in different situations. For what purposes could such 

information be useful? First, were we to design artificial cognitive systems with a particular 

cognitive task in mind, these systems should approximate the optimal behavior specified by the 

model. For example, in the selection task, if we are interested in reducing our uncertainty, O&C’s 
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model tells us something non-trivial: It reveals the best choices of cards under different values of 

base rates for p and q.  

Secondly, as in economics, rational models can act as normative baselines to which human behavior 

can be compared. As Sloman & Fehrbach (2008) argue, often it is just as interesting to find out that 

behavior does not conform to the norm than when it does. Finding out where and how systems 

malfunction is an efficient way to learn about them.  

However, in neither of these uses are RA models employed to directly explain human behavior. 

Instead, they function as inferential aids which help to map the possible space of action for agents 

when faced with a particular task. Herein lies perhaps the hardest evidential problem faced by 

rational analysis. How do we know what the mind really does in some situation, i.e. where do the 

functional hypotheses in step 1 of RA come from? For example, how would O&C defend their 

probabilistic construal of the selection task against an adamant falsificationist? Available empirical 

evidence can hardly decide the issue: Where O&C see optimal behavior, the falsificationist sees 

well-known inferential blunders.5 Marcus and Davis (2013) argue that similar problems of model 

selection plague several other RA models as well.  

The difficulty seems to come down to the fact that the cognitive tasks and the affordances available 

for an organism depend on its “life space” – not the physically objective world in its totality, but 

reality filtered through the organism’s needs, drives and perceptual apparatus (Simon 1956). 

                                                

5 What makes O&C’s model selection seem even more ad hoc is that they do not explain different versions of the 

selection task (e.g., the deontic selection task) by using the same model, but instead they introduce modified versions 

for each of the variations.  
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Therefore, there is no reason to think that a mathematician’s intuitions are a reliable guide to what 

the cognitive tasks of human agents are. Ad-hocness in model selection, in turn, raises serious 

worries about the relevance of RA modeling: Constructing detailed mathematical models of 

potential affordances is of little interest unless they can be shown to be ones humans actually track.  

This leads me to my conciliatory conclusion. As suggested both by the connectionist rivals of RA 

and proponents of multi-level mechanistic explanation in philosophy (McClelland et al. 2010; 

Bechtel & Richardson 2010), functional hypotheses in cognitive science must be formulated in an 

iterative process between bottom-up and top-down research strategies. On the one hand, knowledge 

about perceptual and computational constraints of organisms mostly originates in bottom-up 

research on the mind-brain, and this knowledge should be allowed to constrain RA models. In this 

sense, Anderson’s and O&C’s claims about the self-standing explanatory role of RA are not 

vindicated by my analysis. However, the discussion on mechanistic explanation has been 

downward-looking in spirit, and modeling the environment within which cognitive mechanisms 

function has not received enough attention. Here RA models can complement mechanistic theories 

of cognition by providing precise mathematical models of the task and the environment. For 

example, as Chater et al. (2003) point out, a correctly formulated rational analysis can show why it 

is that some simple approximating heuristic is successful in solving a computationally complex 

task.  

4.	Conclusions		

I have argued that given a sufficiently broad account of scientific explanation, there are several 

possible ways in which probabilistic modeling could increase our understanding of the mind. 

However, the strictly-computational methodology embodied in the six-step formula of rational 
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analysis has led to theorizing which often fails to reliably uncover genuine explanatory 

dependencies. The shortcomings of RA are evidential in nature: The nature of the data, and the way 

it is used in model construction allows too easy curve fitting, and it is insufficient for reliable 

counterfactual inference. 

My new proposal about the epistemic role of RA models without the problematic optimality 

assumption is that they can be understood as models of environmental affordances. Interpreted in 

this way, RA models do not actually provide information about the mind works, or hypotheses 

about cognitive functions (Zednik & Jäkel 2014). Instead, they map the possible cognitive space of 

action for an organism. The explanatory contribution of such information is best worked out as 

constituting a part of a non-reductionist mechanistic research programme.  
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