
Veronica	J	Vieland	
Philosophy	of	Science	Assoc	Biennial	Meeting	2016	

	

Measurement of Statistical Evidence: Picking Up Where Hacking (et al.) Left Off 

 

Abstract Hacking’s (1965) Law of Likelihood says – paraphrasing– that data support 

hypothesis H1 over hypothesis H2 whenever the likelihood ratio (LR) for H1 over H2 exceeds 

1. But Hacking (1972) noted a seemingly fatal flaw in the LR itself: it cannot be interpreted 

as the degree of “evidential significance” across applications. I agree with Hacking about the 

problem, but I don’t believe the condition is incurable. I argue here that the LR can be 

properly calibrated with respect to the underlying evidence, and I sketch the rudiments of a 

methodology for so doing. 

 

Introduction  

The “likelihoodist,” or “evidentialist,” school of thought in statistics is well known among 

philosophers, more so perhaps than among scientists or even statisticians, in large part due to 

Hacking (1965). One way to distinguish evidentialism from the other major schools – 

frequentism and Bayesianism – is to note that evidentialism alone focuses on the assessment 

of statistical evidence as its principal task, rather than decision-making or the rank-ordering 

of beliefs.1  

																																																								
1	Hacking himself generally prefers the term “support” over “evidence,” as does Edwards 
(1992), but other representatives of this school (Good 1950; Barnard 1949; Royall 1997) 
refer to an equivalent concept as “evidence.”	I prefer “evidence,” since this is the familiar, 
albeit vague, word for what we are trying to illuminate; and I prefer “evidentialist” over 
“likelihoodist” as the name of the school, since the former highlights a key distinction 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PhilSci Archive

https://core.ac.uk/display/78374239?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Veronica	J	Vieland	
Philosophy	of	Science	Assoc	Biennial	Meeting	2016	

	

It might be thought, therefore, that evidentialism would be the predominant approach to 

statistical inference in science, where quantifying evidence is usually the main objective. (If 

you don’t agree, try getting scientists to stop using the p-value as a measure of the strength of 

the evidence!) But frequentism, and to a lesser extent Bayesianism, predominate in the 

scientific literature, while evidentialism is virtually unseen.  Why is this? I’m going to argue 

here that the fault lies with evidentialism’s failure thus far to address the problem of 

calibrating the units in which evidence is to be measured. Since meaningful calibration is the 

sine qua non of scientific measurement, this turns out to be the loose thread that causes the 

cloth to unravel when we pull on it.  

Before proceeding it may be worth noting some things I will and will not be talking about. 

First, I am concerned only with statistical evidence, and will not be considering the concept 

of evidence as it appears in other contexts, e.g., in legal proceedings. Second, I will treat 

statistical evidence as a relationship between data and hypotheses under a model that can be 

expressed in the form of a likelihood (as defined below). On this view, data do not possess 

inherent evidential meaning on their own, but only take on meaning in the context of their 

relationships to particular hypotheses, with the nature of those relationships governed by the 

form of the likelihood.  I will not be concerned here with measurement problems associated 

																																																																																																																																																																												
between this school and the others. By contrast, likelihood features prominently in all 
modern statistical frameworks.	
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with the data themselves.2  Third, I am interested here solely in addressing the question of 

whether this relationship between data and hypotheses can be rigorously quantified.  If the 

answer is yes, then presumably the degree of evidence could play a role in decision making 

(deciding how strong is strong enough when it comes to evidence) or in guiding belief, but I 

will not be addressing these topics here.  It is one hallmark of evidentialist reasoning that 

statistical evidence is treated independently of these matters. 

The remainder of the paper is organized as follows. In section (1) I articulate the central 

evidence calibration problem (ECP), and suggest reframing it in measurement terms. In 

section (2), I consider ways in which evidentialism’s preoccupation with so-called “simple” 

hypotheses (as defined below) has constricted the theory, masking the true nature of the 

underlying measurement problem, and also obscuring the solution. In section (3) I illustrate a 

methodology for beginning to address the ECP once the restriction to simple hypotheses is 

relaxed.  In section (4) I briefly consider what changes would be required to axiomatic 

foundations in order to accommodate this methodology while remaining true to the spirit of 

evidentialism’s original motivating arguments. 

 

(1) The Evidence Calibration Problem (ECP) 

At the heart of evidentialism is Hacking’s (1965) familiar Law of Likelihood, which says 

in essence that data support one statistical hypothesis H1 over another hypothesis H2 

																																																								
2	In common usage “evidence” is often used to refer to what I am calling data, but “evidence” 
also has this other sense of being a relationship between data and hypotheses. In order to 
maintain this distinction, I will call the data “data” and the relationship “evidence.”  
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whenever the likelihood ratio (LR) for H1 over H2 exceeds 1. But Hacking (1972) pointed out 

a problem in assigning any particular interpretation to the magnitude of the LR. In his review 

of Edwards (1992, orig. 1972), he says: 

“Now suppose the actual log-likelihood ratio between the two hypotheses is r, and 

suppose this is also the ratio between two other hypotheses, in a quite different 

model, with some evidence altogether unrelated to [the original data]. I know of no 

compelling argument that the ratio r ‘means the same’ in these two contexts.”3 (p. 

136)  

Thus we can say that, for one experiment, data support hypothesis H1 over hypothesis H2 

with LR = 2, and, for another experiment, that a different set of data support  H3 over H4 with 

LR = 20; but we cannot saying anything definite about how much more the second set of data 

supports H3 over H4 relative to the amount by which the first set supports H1 over H2.  

Edwards was well aware of this problem, saying expressly that “we shall not be attempting to 

make an absolute comparison of different hypotheses on different data.” (p. 10).  But 

Hacking’s point cuts deep. If the numerical value of the LR cannot be meaningfully 

compared across applications, in what sense is it meaningful in any one application? 

																																																								
3	Here Hacking is using “evidence” in the sense of what I am calling data; however, he goes 
on to describe what he has in mind in terms of levels of “evidential significance.” He refers 
to the log LR as this is the form preferred by Edwards. Note that Hacking already appears to 
have been alluding to this problem in Hacking (1965), vide p. 61.	
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Hacking’s criticism points to a fundamental problem for evidentialists, who appear to be 

able to say whether given data support H1 over H2, but not by how much they support H1.4 

This is on the face of it metaphysically perplexing, but also, it leaves a gap between support, 

as Hacking’s Law defines it, and a truly quantitative weight of evidence, which would be far 

more useful scientifically if only we could work out how to evaluate it.  

 Following the core arguments in Barnard (1949), Hacking (1965) and Edwards (1992), I 

will assume that the LR is the key quantity in any cogent theory of statistical evidence. But 

the Law of Likelihood is more specific than this assumption: it assigns a particular 

importance to one very narrowly conceived aspect of the LR, a fact that is obscured by 

evidentialism’s focus on simple hypotheses, to which I turn next.  

 Before doing so, I note that resolving Hacking’s problem requires unpacking his phrase 

‘means the same’.  I think that this must be understood as ‘means the same with respect to 

the underlying evidence,’ a locution that lands us solidly in measurement territory. We must 

be able to think in terms of the underlying evidence, as something we can – at least in the 

abstract – conceive of independently of how we measure it. The question then becomes: How 

do we establish meaningful measurement units for evidence, so that a given measurement 

value always ‘means the same’ with respect to the evidence? This is the ECP. 

And here, in a nutshell, is the evidentialist’s difficulty in addressing the ECP. The LR for 

a simple hypothesis comparison (see below) is a single number, thus, the evidentialist is lured 

																																																								
4	Royall (1997) is the only one as far as I know who argues that the magnitude of the LR 
does express strength of evidence in a comparable manner across applications. But I think his 
arguments on this point fail for reasons articulated in Forster & Sober (2004).	
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into the claim that “the LR is the evidence.” To see the danger here, consider a mercury 

thermometer reading 80°F. We might say, “the temperature is 80°,” but this is a 

circumlocution for “80 is the numerical value we assign, on the Fahrenheit scale, to the 

underlying temperature.” Now suppose that rather than degrees, only units of volume V are 

annotated on the sides of the glass. We might be tempted to say “V is the temperature,” but 

now this statement is not merely a circumlocution, it is also an error.  V alone does not tell us 

the temperature; we must, at the least, also take into account the pressure. To insist that 

temperature can be represented by volume alone, or by pressure alone, or by any other single 

thing that can be readily and directly measured, is to mistake the nature of temperature. Just 

so, I am going to argue that the simple LR mistakes the nature of evidence, by obscuring the 

fact that the evidence itself is not a number, and moreover, that the evidence is not any single 

thing that can be readily and directly measured, but instead, it is a function of (at least) two 

measurable things.  

 

(2) The Insidiousness of Simple Hypotheses 

To begin with, we need to define likelihood: 

“The likelihood, L(H|R), of the hypothesis H given data R, and a specific model, is 

proportional to P(R|H), the constant of proportionality being arbitrary.” Edwards (1992) 

(p. 9) 

Two key points are familiar: (i) likelihood represents a feature of an hypothesis given data, 

not the other way around; and (ii) likelihood is related to but not the same as probability, 
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since it is defined only up to an arbitrary multiplicative factor and therefore does not follow 

the Kolmogorov axioms. I will not rehearse the advantages of likelihood in spelling out a 

theory of statistical evidence, but suffice it to say that likelihood enables inferences to 

proceed independently of what are, arguably, extraneous features of study design, including 

the sampling distribution of all those observations that might have occurred but didn’t.   

There is a third important feature of this definition as well, and this regards the nature of 

the hypotheses to which the definition is intended to apply. Edwards is, as always, explicit: 

“An essential feature of a statistical hypothesis is that its consequences may be described 

by an exhaustive set of mutually-exclusive outcomes, to each of which a definite 

probability is attached.”  (p. 4) 

This precludes consideration of likelihoods involving composite hypotheses. For instance, in 

the context of a coin-tossing experiment in which x independent tosses have landed heads 

and y have landed tails, and letting θ=P(heads), one can write the likelihood L(θ=0.1|x, y), or 

L(θ=0.2|x, y). These likelihoods involve “simple” hypotheses, in which θ is assigned a single 

numerical value, so that the corresponding probability P(x, y|θ) returns a single number on 

the probability scale for each possible outcome (x, y).  But one can not write L(θ=0.1 or 

θ=0.2|x, y), because the latter involves a “composite” hypothesis, which does not assign a 

definite probability to the observed outcome. To know the probability of observing (x, y) 

under the hypothesis “θ=0.1 or θ=0.2,” we would need not only to know the probability of (x, 

y) for each θ, but also, we would need to know the prior probabilities of θ=0.1 and θ=0.2.  As 

these prior probabilities lies outside the likelihood, they are not admissible on the 
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evidentialist view. 

But even the simplest examples of statistical reasoning generally involve hypotheses that 

appear on the face of things to be composite; e.g., we might be interested in whether the coin 

is biased toward tails or fair, which would appear to involve the improperly formed 

hypothesis θ<0.5. This situation is handled by treating composite hypotheses “solely on the 

merits of their component parts” (Edwards, p. 5). Thus in forming the LR corresponding to 

‘coin is biased toward tails’ vs. ‘coin is fair,’ we would need to consider separately the 

(infinitely many) simple LRs in the form L(θ=θi|x, y)/L(θ=0.5|x, y), for each possible ith value 

of θ≤0.5. Now the LR is a function of θ, not a single number (Figure 1).  

 
 
 
 
 
 
 
 
 

Figure 1 LR as a function of θ for x = 2, y = 8. 
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“θ=0.1 is supported over θ=0.5, on those same data, by LR=4.4.”5  But as a practical matter, 

the graph is not a sufficiently concise summary for general scientific applications. We still 

need some way to reduce the function LR(θ) to a single number summarizing the strength of 

the evidence.  

And this is where we get into trouble, because focus shifts naturally to the maximum LR 

(MLR), which occurs over the best supported value – the maximum likelihood estimate 

(m.l.e.) – of θ. Indeed, given that we are only allowed to make statements about one simple 

hypothesis comparison at a time, the MLR, itself a ratio of two simple likelihoods, appears as 

the best single constituent LR to use as a summary feature of the LR graph. (Below I 

consider how relaxing the requirement that hypotheses must be simple frees us up to consider 

other features.) We have now successfully summarized the function LR(θ) as a single number, 

the MLR, but this summary is tethered to the m.l.e.. We appear to have answered the 

question: How well supported is the m.l.e. compared to (one or more individual) alternative 

values of θ?  But that is not the question we asked initially, which was about the evidence.6 

The m.l.e. of θ arrives on the scene as a seemingly innocuous point of special interest, the 

value that corresponds to the maximum support, but it rapidly takes over, embroiling us in a 

downward spiral of increasingly perplexing difficulties. One immediate issue with relying on 

the MLR to summarize the evidence (continuing to focus for ease of discussion on the coin-

																																																								
5	Moreover we can only make such statements when both the data and the form of the 
likelihood are the same in the numerator and the denominator of the LR, for only in such 
cases will the constants of proportionality cancel. 
6 Hacking (p. 28 ff.) makes clear the conceptual reasons for keeping estimation and evidence 
(or support) separate.  
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tossing example, in which maximization occurs only in the numerator of the LR), is that 

MLR≥1: the MLR can only show evidence in favor of the numerator but never in favor of the 

denominator. This is problematic, like using a thermometer in which the mercury is 

prevented from receding. 

Another problem with the MLR is that it begs the question of measurement scale in a 

particularly obvious way, because its evidential meaning would appear to require some kind 

of adjustment to compensate for the maximization itself. The more parameters we maximize 

over (again, for ease of discussion, assuming maximization occurs only in the numerator), the 

larger the MLR becomes. How are we to separate the portion of the MLR reflecting the 

evidence from the portion representing an artifact of the process of maximization?  It 

becomes particularly hard to retain the fiction that the numerical value of the maximum LR 

has some prima facie meaning with respect to the underlying evidence, regardless of the 

number of parameters over which the LR is maximized.  

There is a third, more subtle but at least as damaging, difficulty with summarizing 

evidence via MLRs. Simple LRs can be multiplied across two data sets, but MLRs can not be 

multiplied. Rather, to obtain the MLR based on two sets of data, we first combine the data to 

find the new m.l.e., which is a kind of weighted average of the two original m.l.e.s, and then 

we find the new MLR with respect to this average m.l.e. on the combined data. Now consider 

a situation in which data set D1 favors H2 by some substantial amount, and D2 also favors H2, 

but by a lesser amount. In such situations it is not uncommon for the combined support for 

H2 to be less than the original support on D1 alone.  But this is not how evidence behaves: 
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strong evidence for H2 followed by weaker evidence also supporting H2 ought to lead to 

stronger evidence for H2, not intermediate evidence. (A blood type match following a DNA 

match does not lessen the evidence that the defendant was at the crime scene.7) This means 

that we cannot in practice differentiate between situations in which new data are truly 

diminishing the evidence, and situations in which the evidence is in fact increasing but the 

MLR at the average m.l.e. goes down anyway. This tendency of the MLR to “average” 

across combined data is entirely due to its dependence on the m.l.e.; simple LRs do not share 

this defect.8 	

Of course none of this need surprise unreconstructed evidentialists, who, after all, 

disavowed composite hypotheses – and therefore any need for maximization – from the start.  

But then beyond the simplest of examples, we are left with an irreducible graph of the 

component simple LRs, not a single number.  This is true already in single-parameter cases;  

the problem is only exacerbated in higher dimensions.  

There is also the matter of masking the nature of the real problem: by focusing initially 

only on those situations in which the LR is a single number, we missed Hacking’s 

measurement question, how do we ensure that this number always ‘means the same’? It is 

only when we consider composite hypotheses that it becomes clear we were never warranted 

																																																								
7	This example was suggested by Hasok Chang. 
8	This issue plays a salient role in the current “crisis” of non-replication of statistical findings 
in the biomedical and social sciences, where the tendency of p-values and MLRs to “regress 
to the mean” upon attempts to replicate initial findings is widely interpreted as meaning that 
the evidence has gone down. In the absence of a properly behaved evidence measure, 
however, this conclusion is entirely unwarranted.	
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in the first place in assuming that the face value of the LR for a simple vs. simple hypothesis 

comparison is the evidence. Composite hypotheses force us to think in terms of the LR graph, 

which, precisely because it is not a single number, immediately raises the issue of which 

feature(s) of the graph might be relevant to the evidence. Composite hypotheses are crucial, 

not only because they are scientifically relevant, but also, because they beg a question all but 

hidden as long as we focus only on simple hypotheses.  

The urge to sidestep the problem of the evidential interpretation of the MLR is the reason 

evidentialists have been reluctant to admit composite hypotheses into their formalism in the 

first place.  But it is fair to say that they have failed to provide any viable alternative to the 

MLR as the summary measure of evidence strength in practice. The preoccupation with 

simple hypotheses has entailed inherent difficulties for the program, and it has also masked a 

basic underlying calibration issue.  The good news, I believe, is that it has also been masking 

the possibility of a solution.  

 

 (3) Towards a Solution to the Measurement Calibration Problem  

Consider again the coin-tossing experiment and LR(θ) as shown in Figure 1. Let us 

suppose, following the spirit if not the letter of the Law of Likelihood, that all of the 

evidential information is captured, somehow, in this graph. What feature(s) of the graph 

should we take as representing the degree of evidence?   

The MLR of course is one possibility, but I have already stated some objections to this 

option.  An alternative would be to use the area under the graph (ALR). (Note that this is 
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only possible if we allow ourselves to consider the truly composite hypothesis θ<0.5, because 

the ALR requires simultaneous consideration of all of the constituent simple hypotheses.9) 

But while we’re at it, why not also consider using sets of features of the graph?  For instance, 

the evidence might be a function of the both the MLR and the ALR, e.g., their product, or 

their ratio.  What we need is a methodology for figuring out which among the many 

possibilities is the correct one. 

The methodology I propose is quite simple, at least to begin with. Let’s consider the 

behavior of candidate evidence measures in situations where we have clear intuitions 

regarding the behavior of evidence, and see which of our candidate measures behaves like the 

object of measurement, the evidence. Here I will illustrate using coin-tossing “thought 

experiments” to discover patterns of behavior of the evidence with changes in data, 

considering the evidence that the coin is either biased toward tails or fair. I propose that, 

perhaps with a little persuasion, I could convince you that the following patterns capture 

what we mean when we talk about statistical evidence in this context. (Here I summarize the 

data in terms of n=the number of tosses, and x/n=the proportion of tosses that land heads.)  

(i) Evidence as a function of changes in n for fixed x/n For any given value of x/n, the 

evidence increases as n increases. The evidence may favor bias (e.g., if x/n = 0.05) or no 

bias (e.g., if x/n = ½), but in either case it gets stronger with increasing n.  

																																																								
9	The ALR is proportional in this simple example to the Bayes factor under a uniform prior 
on θ, which is sometimes interpreted in Bayesian circles as a measure of evidence strength; it 
is also proportional to the relative belief (Evans 2015), another Bayesian proposal for 
measuring evidence. But the ALR itself does not involve a prior, so I see no prima facie 
reason for the evidentialist to balk at this suggestion, once composite hypotheses are allowed.	
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(ii) Evidence as a function of changes in x/n for fixed n  If we hold n constant but allow 

x/n to increase from 0 up to, say, 0.20, the evidence favoring ‘coin is biased’ diminishes: 

i.e., the evidence for bias is stronger the further x/n is from ½. But we have also already 

noted that when x/n is close to ½ the evidence favors ‘coin is fair.’ Therefore, as x/n 

continues to approach ½, at some point the evidence will shift to favoring ‘coin is fair,’ 

and from that point, the evidence for ‘coin is fair’ will increase the closer x/n is to ½.  

(iii) Rate of evidence change as a function of changes in n for fixed x/n For given x/n, as n 

increases the evidence increases more slowly with fixed increments of data. E.g., consider 

evidence in favor of bias with one additional tail (T), following T, or TT, or TTT. When 

the number of tails in a row is small (i.e., when there is weak evidence favoring bias), each 

subsequent T makes us that much more suspicious that the coin is biased. But suppose we 

have already observed 100 Ts in a row: now one additional T changes our sense of the 

evidence hardly at all, as we are already quite positive that the coin is not fair.10  

 (iv) x/n as a function of changes in n (or vice versa) for fixed evidence It follows from (i) 

and (ii) that in order for the evidence to remain constant, n and x/n must adjust to one 

another in a compensatory manner. E.g., if x/n increases from 0 to 0.05, in order for the 

evidence to remain the same n must increase to compensate; otherwise, the evidence 

would go down, following (ii) above. By the same token, it is readily verified that if (i) 

																																																								
10	This underscores the point made above that evidence is not inherent in the data (say, a 
single toss T), but rather, evidence is a relationship between the data and the hypotheses that 
depends on context. 
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and (ii) hold, then as x/n continues to increase, at some point n must begin to decrease in 

order to hold the evidence constant as the evidence shifts to favoring ‘coin is fair.’  

Note that at this point we have not mentioned probability distributions, likelihoods,  or 

parameterization of the hypotheses. These patterns characterize evidence in only a very 

informal, vague manner. However, by the same token, they exhibit a kind of generality: they 

derive from our general sense of evidence, from what we mean by statistical evidence before 

we attempt a formal mathematical treatment of the concept.  

Can we find a precise mathematical expression that exhibits these patterns? As  

illustrated in Figure 2, the ratio RLR=MLR/ALR exhibits all of the expected behaviors. By 

contrast, neither MLR nor ALR shows all four of these patterns. For instance, MLR, as 

already noted, cannot show increasing evidence in favor of H2 because it can never favor H2 

in the first place; and both MLR and ALR increase exponentially in n for fixed x/n rather 

than showing the concave-down pattern in 2(a).  

 

 

 

Figure 2 Patterns of behavior of RLR for coin-tossing thought experiments: (a) Patterns (i) 
and (iii); (b) Pattern (ii); (c) Pattern (iv).  
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Of course none of this proves that RLR is the correct, or optimal (or properly calibrated) 

measure of evidence. But this style of reasoning buys us an important methodological tool. 

Whichever features of the LR graph we consider and however we combine them, we must be 

able to show that the resulting evidence measure behaves like the evidence. When proposing 

candidate evidence measures anything goes, but only those candidates that behave 

appropriately remain on the ballot. And even in this very simple example, two obvious 

candidates – the MLR and the ALR – have already dropped out of contention.  

Of course, there is no reason to assume that what works in this simple case (RLR) will 

work in more complicated cases, nor have we yet resolved the ECP’s fundamental calibration 

issue. Establishing that a measure behaves like the object of measurement is only a first step, 

but it is a vital step not previously taken. It provides an “empirical” measurement scale, not 

an absolute scale, much as early thermoscopes provided good experimental tools while 

falling short of proper, absolute, calibration (Chang 2004).11  Projecting an empirical 

measure onto an absolute scale requires a broader theoretical foundation, but one needs the 

empirical measure first.  My point here is simply that confronting the ECP head on, and in 

the context of composite hypotheses, opens the door for the first time to the possibility of 

establishing a proper measurement scale for statistical evidence.   

Note too that the coin-tossing exercise suggests the existence of an equation of state 

involving the three quantities (n, x/n and the evidence), such that fixing any one quantity 

																																																								
11	Indeed, the ECP poses what Chang calls a “nomic” measurement problem, much like the 
nomic problem of temperature measurement. What I am describing here is a necessary but 
not sufficient stage in resolving a nomic problem. 
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while allowing a second one to change requires a specific compensatory change in the third. 

This in turn suggests a new, and potentially very powerful, way to think about the laws 

governing the behavior of LRs. I’m not aware of any evidentialist work that considers such 

equations, but I see no reason that an evidentialist-at-heart should be prohibited from 

pursuing their study. 

  

(4) Relaxing the Foundations To Include Composite Hypotheses 

In order to tackle the ECP in the terms of the preceding section, we need to amend the 

foundations of evidentialism, but only slightly. I propose the following changes. First, let’s 

retain Edwards definition of likelihood, as quoted above, but insert the word “simple” (which 

is tacit in Edwards’ original statement): “The likelihood, L(H|R), of a simple hypothesis H 

given data R, and a specific model, is proportional to P(R|H), the constant of proportionality 

being arbitrary.” Second, we can again add the word “simple” to his characterization of a 

statistical hypothesis: “An essential feature of a simple statistical hypothesis is that its 

consequences may be described by an exhaustive set of mutually-exclusive outcomes, to 

each of which a definite probability is attached.”  But we can now add a definition of 

likelihood for a composite hypothesis: “A composite hypothesis H given data R, and a 

specific model, is the set of all constituent simple hypotheses, defined up to a single constant 

of proportionality.” Thus the essential feature of a composite hypothesis is that each of its 

constituent simple hypotheses may be described by an exhaustive set of mutually-exclusive 

outcomes, to each of which a definite probability is attached.  We can now use this definition 
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of a composite hypothesis to define the corresponding composite likelihood, as the set of all 

constituent simple likelihoods. 

Under my proposal, the spirit of the Law of Likelihood can be retained: We can say that 

all of the evidential information conveyed by given data regarding a comparison between two 

hypotheses on a particular model is contained in the LR, where, under the expanded 

definition of hypotheses, the LR is understood to be a function of all unknown parameters, or 

better still perhaps, a graph. This can equivalently be read as a definition of evidential 

information, as whatever changes the LR graph.12  But the idea that the (simple) LR itself 

expresses the degree or weight of the evidence must be abandoned. What I have attempted to 

argue here is that there is at least the possibility of replacing this notion with something more 

useful.   

 

Discussion   

Evidence is a general and vague term in science. Statistical evidence is a narrower concept, 

but it still inherits some of this vagueness.  One way to tackle a general and vague term is by 

seeking a precise definition that maintains full generality, but of course, this might not be 

possible. Weyl (1952) has suggested another approach: 

“To a certain degree this scheme is typical for all theoretic knowledge: We begin with 

some general but vague principle, then find an important case where we can give that 

																																																								
12	I borrow this idea from Frank (2014), who defines information as whatever changes a 
probability distribution. 
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notion a concrete precise meaning, and from that case we gradually rise again to 

generality… and if we are lucky we end up with an idea no less universal than the one 

from which we started. Gone may be much of its emotional appeal, but it has the same or 

even greater unifying power in the realm of thought and is exact instead of vague.” (p. 6) 

Can evidentialism be redeemed and made truly useful to science? Of course I have not 

proved that the answer is yes. But in section (3) I illustrated a case in which we appear to be 

able to give the vague concept of statistical evidence a concrete, precise meaning, via the 

quantity RLR=MLR/ALR. It remains to be seen whether it is possible to rise again to 

generality from this first step. But for those of us who agree with most of what Barnard, 

Hacking and Edwards have to say on the subject, it seems worthwhile to see how far we can 

take this line of reasoning. This also seems to be a singular opportunity for philosophers of 

science to step into the breach and at least try to solve a problem that has long stood between 

one of the needs of science – for well-behaved quantitative measures of evidence – and the 

capabilities of conventional statistical methodologies. 
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