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Sommario

Lo studio del moto Browniano ha una lunga storia e coinvolge svariate formulazioni
differenti. Tutte mostrano due risultati fondamentali: lo spostamento quadratico medio
della particella che diffonde scala linearmente con il tempo e la densità di probabilità
risulta essere una Gaussiana.

La diffusione standard in ogni caso non è universale. In letteratura ci sono numerose
misure sperimentali [19] che mostrano une diffusione non lineare e non Gaussiana in molti
campi come la fisica, la biologia, la chimica, l’ingegneria, l’astrofisica e altri. Questo
comportamento può avere diverse origini fisiche ed è stato osservato frequentemente in
sistemi spazialmente disordinati, in flussi turbolenti e in sistemi biologici con siti che
legano le molecole o con affollamento macro-molecolare.

L’approccio di Langevin descrive il moto Browniano in termini di un’equazione sto-
castica differenziale. Il processo di diffusione è guidato da due parametri fisici, il tempo di
rilassamento o correlazione τ e il coefficiente di diffusione della velocità Dv. In questo la-
voro viene considerata una estensione di questo approccio ottenuta tramite l’introduzione
di una popolazione di τ e Dv al fine di generare una dinamica frazionaria. Questo approc-
cio si basa sull’idea che la diffusione frazionaria in mezzi complessi deriva da un processo
Gaussiano con parametri random, dove queste caratteristiche random sono dovute alla
complessità del mezzo. É stata realizzata una caratterizzazione statistica del mezzo
complesso nel quale avviene la discussione ricavando le distribuzioni di questi parametri.
Specifiche popolazioni di τ e Dv portano a particolari processi stocastici frazionari.

Questo approccio permette di preservare il moto Browniano classico come base ed
è promettente per formulare processi stocastici per sistemi biologici che mostrano una
dinamica complessa caratterizzata da diffusione frazionaria.

Lo studio numerico di questo approccio alternativo costituisce il presente lavoro di
tesi.

Nel Capitolo 1 sono descritte le principali peculiarità della dinamica Browniana,
sia per la particella libera che per una particella confinata da un potenziale armonico.
Nel Capitolo 2 viene presentato un breve excursus riguardo altri modelli discussi in
letteratura per la diffusione frazionaria, insieme alla descrizione delle sue caratteristiche
fondamentali. Nel Capitolo 3 è riportata una descrizione del nuovo approccio bastato
sull’equazione di Langevin per generare una cinetica frazionaria. In questo approccio la
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superdiffusione si ottiene come generalizzazione della Langevin classica per una particella
libera mentre per il caso subdiffusivo è necessario introdurre un potenziale confinante.
Alcune dei risultati analitici presenti in questo Capitolo sono stati derivati da Silvia Vitali
durante il suo periodo di ricerca all’estero presso il BCAM, Bilbao, sotto la supervisione
del Dott. Gianni Pagnini. Nel Capitolo 4 vengono presentati i risultati numerici di
questo approccio per il caso particolare della superdiffusione. In fine nell’Appendice
sono riportate le definizioni di derivata frazionaria insieme ad alcune caratteristiche utili
della funzione di Mainardi e delle distribuzioni stabili di Lévy.
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Introduction

The study of Brownian motion has a long history and involves many different formu-
lations. All these formulations show two fundamental common results: the mean square
displacement of a diffusing particle scales linearly with time and the probability density
function is a Guassian distribution.

However standard diffusion is not universal. In literature there are numerous experi-
mental measurements [19] showing non linear diffusion in many fields including physics,
biology, chemistry, engineering, astrophysics and others. This behavior can have dif-
ferent physical origins and has been found to occur frequently in spatially disordered
systems, in turbulent fluids and plasmas, and in biological media with traps, binding
sites or macro-molecular crowding.

Langevin approach describes the Brownian motion in terms of a stochastic differential
equation. The process of diffusion is driven by two physical parameters, the relaxation or
correlation time τ and the velocity diffusivity coefficient Dv. An extension of the classical
Langevin approach by means of a population of τ and Dv is here considered to generate a
fractional dynamics. This approach supports the idea that fractional diffusion in complex
media results from Gaussian processes with random parameters, whose randomness is
due to the medium complexity. A statistical characterization of the complex medium
in which the diffusion occurs is realized deriving the distributions of these parameters.
Specific populations of τ and Dv lead to particular fractional diffusion processes.

This approach allows for preserving the classical Brownian motion as basis and it
is promising to formulate stochastic processes for biological systems that show complex
dynamics characterized by fractional diffusion.

A numerical study of this new alternative approach represents the core of the present
thesis.

The main features of Brownian dynamics are described in Chapter 1, both for a free
particle and for a particle confined by a harmonic potential. In Chapter 2 a short review
of some models discussed in literature for fractional diffusion is presented, together with
its peculiar features. In Chapter 3 we describe a new approach based on the Langevin
equation to generate the fractional kinetics; in this approach superdiffusion is obtained
as a generalization of the Langevin equation for a free particle while the subdiffusive case
needs the introduction of a confining potential. Some analytical results presented in this
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Chapter have been derived by Silvia Vitali during her research period abroad in BCAM,
Bilbao, under the supervision of Dr. Gianni Pagnini. In Chapter 4 the numerical results
of this approach for the particular case of superdiffusion are showed with an in-depth
study of the generated stochastic processes. Finally in the Appendix it is reported the
definitions of the fractional derivatives and some useful features of the Mainardi function
and the Lévy stable distributions.



Chapter 1

Brownian Dynamics

The Brownian motion was observed for the first time by Robert Brown in 1827
[1]and its first mathematical formulation was provided by Albert Einstein in 1905 [3]. It
describes the random motion of particles immersed in a fluid. The latter, thought as a
set of an enormous number of microscopic particles characterized by their own thermal
motion, represents a homogenous medium that stimulates with continuos collisions the
particles immersed in it.

The theoretical description of the Brownian motion involves many formulations in-
cluding phenomenological, probabilistic and microscopic approaches. Here the attention
is focused on a mesoscopic description in terms of a stochastic equation of motion: the
Langevin Equation.

1.1 Langevin equation

A Brownian particle1 which moves along a specific direction x is taken into cosider-
ation. The dynamic of this particle is described by the following stochastic equation
which is called Langevin equation

m
d2x

dt2
= −γ dx

dt
+ Γξ(t) , (1.1)

where m is the mass of the Brownian particle, γ is the friction coefficient and Γ the
noise intensity. The term ξ(t) represents an unknown stochastic force due to the effect
of all the particles which constitute the surrounding medium and is referred to as ”noise
source”. This force, which is responsible for the fluctuations of the Brownian particle, is
countered by the friction term (the first term on the right-side of Eq. (1.1)), generated
from the surrounding medium as well.

1A Brownian particle means a heavy particle immersed in a fluid of light molecules which collide
with them in a random way.
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The stochastic force, called Langevin force, is irregular and unpredictable but it has
two main properties which are:

• its ensemble average2 vanishes: 〈ξ(t)〉 = 0 ;

• it varies rapidly; the idea is that every collision of the Brownian particle with a
single particle of the surrounding fluid is instantaneous and uncorrelated with the
successive collisions: 〈ξ(t)ξ(t′)〉 = δ(t− t′) .

A stochastic force with these characteristics is defined White Noise due to the fact that
using the Wiener-Khintchine theorem3 it is possible to see that its spectral density S(ω)
is a constant:

S(ω) = 2

∫ +∞

−∞
e−iωt

′
δ(t′)dt′ = 2 .

By means of the stochastic integration of white noise one can prove the Gaussianity of
the Langevin force since it results to be a Wiener process which is, indeed, a Gaussian
process characterized by:

W (t, τ) =

∫ t+τ

t

ξ(t′)dt′ =⇒ dW (t) = ξ(t)dt, 〈dW (dt)〉 = 0 〈dW 2(dt)〉 = dt. (1.2)

If we define v(t) = dx/dt the velocity of the Brownian particle, the Langevin equation
can be written as a stochastic differential equation:

dv(t) = − γ
m
v(t)dt+

Γ

m
dW (t) . (1.3)

The Equation (1.3) defines v(t) as a stochastic process. Fixed an initial value v(t0) = v0,
an explicit formal solution for (1.3) can be written as

v(t) = v(0)e−γ(t−t0)/m +
1

m

∫ t

t0

e−γ(t−t′)/mdW (t′) . (1.4)

Then if we introduce the velocity diffusivity coefficient Dv and the relaxation time scale
τ

Dv =
Γ2

2m2
; τ =

m

γ
, (1.5)

2The ensemble may consist of either many particles on the same field or of a series of observations
of the same particle. In the first case one must ensure that the distance from one particle to another is
so large that they not influence each other. In the second case one must ensure that the time from one
observation to another is so long that the system has the time to return to equilibrium.

3The Wiener-Khintchine theorem relies the Fourier spectrum of an autocorrelation function to the
Fourier spectrum of the corresponding dynamical variable itself. In our case, recalling the autocorrelation

function of the noise C(t) =
∫ +∞
−∞ ξ(t′)ξ(t− t′)dt′, the theorem asserts that F

[
|ξ(t)|2

]
= S(ω) = F

[
C
]
.
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Equation (1.3) becomes

dv(t) = −1

τ
v(t)dt+

√
2DvdW (t) (1.6)

and (1.4) can be written as follows:

v(t) = v0e
−(t−t0)/τ +

√
2Dv

∫ t

t0

e−(t−t′)/τdW (t′) . (1.7)

1.2 Ornestein-Uhlenbeck process

We now focus the attention on (1.7) which is reported below for convenience

v(t) = v0e
−(t−t0)/τ +

√
2Dv

∫ t

t0

e−(t−t′)/τdW (t′) . (1.8)

The process described by this equation is called Ornstein-Uhlenbeck (OU) process. It was
originally introduced to describe a Brownian particle’s velocity, as we did, but nowadays
it is also used for many other applications in physics.

0 100 200 300 400 500 600

t/τ

20

10

0

10

20

x

Figure 1.1: Particle trajectories of the Langevin equation.

Since dW (t) is a Gaussian process and because of the linearity of (1.3), v(t) will be a
Gaussian process as well and thus, it will be completely defined once found the first two
moments. Taking the average of (1.8) and considering that 〈dW (t)〉 = 0, we find

〈v(t)〉 = v0e
−(t−t0)/τ . (1.9)
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From (1.8) it is also possible to calculate the correlation function of v(t) defined as

Cv(t2, t1) = 〈v(t2)v(t1)〉

= 〈v2
0〉e−(t2−t1)/τ + 2Dv

∫ t2

t0

∫ t1

t0

e−(t2−t′2)/τe−(t1−t′1)/τ 〈dW (t′2)dW (t′1)〉 .
(1.10)

In the previous equation is implied that 〈v(0)dW (t)〉 = 0 at any time; this is because
the Langevin force acts as an external force thus, at any time, it is independent from the
kinematic properties of the particle.

The only contribution of the integral in (1.10) is for t′2 = t′1 since the Wiener process
has, except for this case, zero correlation function. Thus we have

Cv(t2, t1) = 〈v2
0〉e−(t2−t1)/τ + 2Dv

∫ min{t2,t1}

0

e−(t2+t1−2t′1)/τdt′1

= (〈v2
0〉 −Dvτ)e−(t2+t1−2t0)/τ +Dvτe

−(|t2−t1|)/τ .

(1.11)

The correlation function in (1.11) allows to get directly the second moment of the velocity
v(t)

σ2
v(t) =

〈
(v − 〈v(t)〉)2

〉
(t) = Dvτ

(
1− e−2(t−t0)/τ

)
. (1.12)

After an initial transient of the order of a few relaxation time scale units, the σ2
v-value

reaches a long-time equilibrium. For the stationary state we thus have

σ2
v,eq = Dvτ Cv,eq(|t2 − t1|) = R(t = |t2 − t1|) = σv,eqe

−t/τ . (1.13)

The velocity described by the OU process is thus a Gaussian stochastic process that
undergoes the following distribution

Gv(v, t) =
1√

2πσ2
v(t)

exp
{
− (v − 〈v(t)〉)2

2σ2
v(t)

}
, (1.14)

where the mean value and the variance is respectively defined by (1.9) and (1.12). The
stationary, equilibrium distribution is attained for t → +∞ and it becomes effective in
the time range t� τ :

Gv,eq(v) =
1√

2πDvτ
exp

{
− v2

2Dvτ

}
. (1.15)

For the variance, recalling Eq. (1.13), we have:

σ2
v,eq = Dvτc =

Γ2

2mγ
, (1.16)

while for the mean we can say that, at the equilibrium, if there are no external forcing
it is zero.
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Figure 1.2: OU process velocity in stationary state: pdf and correlation function.

It is worth noting that the velocity distribution of any particle which is in thermody-
namic equilibrium with its environment is the well-known Maxwell-Boltzmann velocity
distribution:

peq(v) =

√
m

2πkT
exp

{
− mv2

2kT

}
(1.17)

with k and T the Boltzmann constant and temperature respectively. Comparing (1.17)
with (1.15) it is possible to find a particular case for the relation (1.16) that shows clearly
how friction and velocity diffusivity are related to each other through:

Dvτc =
kT

m
⇐⇒ kT =

Γ2

2γ
. (1.18)

1.3 Taylor theorem

The Langevin equation can be also solved for the particle displacement, which is
given by

x(t) = x(0) +

∫ t

t0

v(t′)dt′ .

In fact, what we are interested in is the mean square displacement and it can be associated
with the velocity correlation function, noting that

σ2
x(t) = 〈(x(t)− x0)2〉 =

〈[ ∫ t

t0

v(t′)dt′
]2〉

=
〈 ∫ t

t0

v(t′)dt′
∫ t

t0

v(t′′)dt′′
〉

=

∫ t

t0

∫ t

t0

〈v(t′)v(t′′)〉dt′dt′′ .
(1.19)
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It is quite easy to solve the integral above when the system is in its stationary state:

σ2
x(t) =

∫ t

t0

∫ t

t0

Cv(t
′, t′′)dt′dt′′ = 2

∫ t

t0

(t− s)R(s)ds , (1.20)

or equivalently
dσ2

x(t)

dt2
= 2

∫ t

t0

R(s)ds . (1.21)

These equations was first studied by Taylor, who formulated this theorem for the normal
diffusion process:

Theorem 1. [32]
Given the stationary correlation function R(t) let us define the correlation time scale:

τ =

∫ ∞
0

R(s)

R(0)
ds, R(0) = σ2

v,eq , (1.22)

then the following crucial assumption:

0 6= τ < +∞ (1.23)

always determines the emergence of normal diffusion in the long-time regime:

σ2
x(t) = 2Dxt; Dx := lim

t→+∞

dσ2
x

dt2
(t) t� τ , (1.24)

independently from the micro-dynamics.

Back to the OU process, solving Eq. (1.20) considering Eq. (1.13), we find out that:

σ2
x(t) = 2Dvτ

2(t− t0)− 2Dvτ
3(1− e−(t−t0)/τ ) . (1.25)

From (1.25) we can see that the mean square displacement presents two different trends,
depending on the time range:

〈(x(t)− x0)2〉 =

{
2Dvτt

2 se t� τ

2Dvτ
2t se t� τ .

(1.26)

Equation (1.26) shows that for time much longer than the relaxation time the mean
square displacement grows linearly with time while, for the initial phase, it has indeed a
parabolic form. Once reached the stationary equilibrium, represented by the linear trend
of σ2

x(t), we can define a diffusivity coefficient for the displacement given by Dx = Dvτ
2.

If we put it in the Eq. (1.16) we find out an important relation known as Einstein-
Smoluchowski relation:

Dx = Dvτ
2 =

Γ2

2γ2
=
kT

γ
. (1.27)
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1.4 Brownian motion in a harmonic potential

Now a Brownian particle which diffuses under the influence of an external harmonic
potential V (x) = kx2/2, with the corresponding force acting on the particle Fh = −kx
is considered. The Langevin equation in this case is:

dx

dt
(t) = v(t)

dv

dt
(t) = −1

τ
v(t)− ω2

0x(t) +
√

2Dvξ(t)

(1.28)

where ω2
0 = k/m. After application of the Fourier transform:−iωx(ω) = v(ω)

−iωv(ω) =
1

τ
v(ω)− ω2

0x(ω) +
√

2Dvξ(ω)
(1.29)

we can solve the obtained linear system for x(ω), in terms of the Langevin force

x(ω) =
√

2Dv
ξ(ω)

ω2
0 − ω2 − 1

τ
iω
. (1.30)

The spectral density Sx(ω) is proportional to |x(ω)|2 so we have

Sx(ω) = 2Dv
Sξ(ω)

|ω2
0 − ω2 − 1

τ
iω|2

= 2Dv
2Γ

((ω2
0 − ω2)2 + 1

τ2
ω2)

, (1.31)

from which, thanks to the Wiener-Khintchine theorem the correlation function can be
found

Cx =
1

2π

∫ +∞

−∞
e−iωtSx(ω)dω . (1.32)

The integral can be calculated in the complex plane, taking the residues at the poles
located at

ω2
0 − ω2 = ± 1

τ 2
iω =⇒ ω = ±i 1

2τ
±
√
ω2

0 −
1

4τ 2
=⇒ ω = ±i 1

2τ
± ω1 .

Working out the residues it can be found

Cx(t) =
Dvτ

ω2
0

e−(t−t0)/2τ
{

cosω1t+
1

2τω1

sinω1t
}
. (1.33)

With an analogous method we can find the spectral density for the velocity correlation,
which is correlated to the displacement one through

Sv(ω) = ω2Sx(ω) . (1.34)

We notice that for t = 0, Cx(0) = 〈x2
0〉 = Dvτ/ω

2
0 = kT/mω2

0 which just identifies the
equipartition of the energy.
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1.5 Relation to Fokker-Planck equation

The Fokker-Planck equation, which can be seen in the general case as an approxi-
mation of a Master equation, is also known as ”Smoluchowski equation”, ”generalized
diffusion equation” or ”second Kolmogorov equation” and it is given by

∂P (x, t)

∂t
= − ∂

∂x
A(x)P (x, t) +

1

2

∂2

∂x2
B(x)P (x, t) . (1.35)

where the coefficients A(x) and B(x) can be any real function with the only restriction
B(x) > 0. The first term on the right-hand represents the ”drift term” while the second
represents the ”fluctuation/diffusion term”. The two coefficients can be easily found for
every stochastic process with a minimum knowledge about the underlying mechanism.
Suppose x to be a Markov process and then take a short time ∆t, so short that x cannot
vary too much, but large enough for the Markov assumption4 to be applied and now
compute the average along ∆t of ∆x and (∆x)2. It is possible to demonstrate that

〈∆x〉
∆t

= A(x),
〈(∆x)2〉

∆t
= B(x) . (1.36)

The Fokker-Planck equation describing a Wiener process doesn’t have the term with the
derivative of the first order so it appears as a diffusion equation; in fact, it is the diffusion
equation for the Brownian particle in the fluid

∂P (x, t)

∂t
= D

∂2P (x, t)

∂x2
. (1.37)

The foundamental solution of Equation (1.37), is the Gaussian

P (x, t) =
1√

4πDt
exp

{
− x2

4Dt

}
, (1.38)

which has zero mean and a width that evolves linearly with the square root of time,
according to

√
〈x2(t)〉 =

√
2Dt.

The Fokker-Planck equation describing an OU process in the phase space is given by:

∂P (v, x, t)

∂t
= Dv

∂2P (v, x, t)

∂v2
− 1

τ

∂vP (v, x, t)

∂v
− v∂P (v, x, t)

∂x
. (1.39)

Although one might think that the Langevin equation, (1.3) and the Fokker-Planck
equation (1.39) are equivalent, in fact they are not. The latter fully defines the stochastic
process, while the former cannot go beyond the first two moments of the stochastic
process described because the higher moments from the Langevin force are unknown.
Indeed, in the specific case of Brownian motion, the two equations mentioned before
coincide since we are dealing with a Gaussian process, which is totally described by its
first two moments.

4For a dynamical system the Markov assumption asserts that given the present state, all following
states are independent of all past states.



Chapter 2

Fractional Dynamics

2.1 Main features of fractional diffusion

The main results of Brownian motion theory are the mean square displacement scaling
linearly with time and a Gaussian normal distribution as probability density function.
We deduced these characteristics in Chapter 1 through a Langevin approach, but they are
consistent across many mathematical descriptions and many experiments have verified
these features.

However standard diffusion is not universal. In literature there are numerous experi-
mental measurements [19, 4, 7, 15, 16, 31, 34] showing non linear diffusion. It is used to
refer to these phenomena with the term anomalous diffusion because of the anomalous
scaling of the position variance manifested in power laws: in particular if the exponent
is less the unity we have subdiffusive processes instead, if the exponent is greater than
unity we have superdiffusive processes

〈x2(t)〉 ∼ Kφt
φ with φ 6= 1 . (2.1)

Actually the concept of anomalous dynamics encloses many properties such as stretched
exponential, colored noises, non Gaussian pdfs and a long-range spatial or temporal cor-
relations. In recent years a great deal of progress has been made in extending the
different models for diffusion to incorporate this anomalous diffusion [5]. The tools of
fractional calculus have proven very useful [29] in these developments, linking together
many mathematical models like fractional constitutive laws, continuous time random
walks, fractional Langevin equations and fractional Brownian motions. So that anoma-
lous diffusion is also referred to as fractional diffusion.

Space-Time fractional diffusion was originally introduced to study chaotic dynamics
where a non-local and/or non-linear relationship is needed. In the fractional calculus
approach the idea is to maintain a linear relationship while introducing a non-local de-
pendence by means of integral operators with inverse power-law kernel. Non linearity

15
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can be considered in time (time fractional diffusion or in space (space fractional diffu-
sion) or both (space-time fractional diffusion). Under the physical point of view, when
there is no separation of timescale between the microscopic and the macroscopic level of
the process the randomness of the microscopic level is transmitted to the macroscopic
level and the correct description of the macroscopic dynamics has to be in terms of the
fractional calculus. Fractional kinetics strongly differs form the classical one because
some moments of the pdf of particle displacement can be infinite and the fluctuations
from the equilibrium state have a broad distribution of relaxation times.

The space-time fractional diffusion equation is defined by [9]:

tD
β
∗P (x; t) = xD

ν
θP (x; t), −∞ < x < +∞, t ≥ 0 , (2.2)

with P (x; 0) = P0(x) and P (±∞; t) = 0. tD
β
∗ is the Caputo time-fractional derivative

[B] of order β while xD
α
θ is the Riesz-Feller space fractional derivative [B] of order ν and

symmetry parameter θ. The real parameters α, β and θ are restricted as follows:

0 < ν ≤ 2, |θ| ≤ min{ν, 2− ν}, 0 < β ≤ 1 or 0 < β ≤ ν ≤ 2 . (2.3)

A general solution for Eq. (2.2) can be represented by:

P (x; t) =

∫ +∞

−∞
Kθ
ν,β(x− x′; t)P0(t)dx′ , (2.4)

where Kθ
ν,β(x; t) is the Green function or fundamental solution which has been expressed

by the Mellin-Barnes integral representation as well as in terms of H-Fox function [9,
12]. Particular cases of the (2.2) are the space fractional diffusion when β = 1, time
fractional diffusion when ν = 2 and standard diffusion when β = 1 and ν = 2. Physically
speaking the first one is related to the long range memory (non Markovian processes)
while the second one is referred to non Gaussian particle displacement pdf, thus non
locality. Essentially we can see (2.2) as a Master equation and its solution as a pdf of
the underlying stochastic process. In the following sections we are going to present some
different approaches which allow to get anomalous diffusion stochastic processes.

2.2 Continuos time random walk

The Continuos time random walk (CTRW) model was introduced by Montroll and
Weiss [21] and can be viewed as a direct generalization of the Random walk also known
as drunkard’s walk. In the standard random walk the step length is a fixed ∆x and the
steps occur at discrete times separated by a fixed time interval ∆t.

The CTRW chooses a waiting time from a waiting time probability density φ(∆t)
before each step and the step length is chosen from a step length probability density
ψ(∆x). Physically, such waiting times reflect the existence of deep traps in the system
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which subsequently immobilize the diffusing particle. An important feature of this model
is also its renewal character: after each jump, values of the new pair of random variable
are fully independent of their previous values. It is further assumed that the waiting
times and step lengths are independent of each other so that:

Ψ(x− x′, t− t′) = ψ(x− x′)φ(t− t′) . (2.5)

It is useful to define the survival probability

Φ(t) = 1−
∫ t

0

φ(t′)dt′ =

∫ ∞
t

φ(t′)dt′ , (2.6)

which is the probability that the walker does not step during the time interval t.
The fundamental quantity to calculate in this model is the conditional probability

density p(x; t|x0, t0) that a walker starting from position x0 at time t0 , is at position x
at time t. This can be obtained from the Master equation of the CTRWs:

p(x; t|x0, t0) = Φ(t)δx,x0 +

∫ t

t0

φ(t− t′)
∫ +∞

−∞
ψ(x− x′)p(x′; t′|x0, t0)dx′dt′ . (2.7)

The first term of Eq. (2.7) represents the persistence of the walker at the initial position
and the second term considers walkers that were at other positions x′ at time t′ but then
stepped to x at time t after waiting a time t− t′.

In this model it is possible to distinguish sub- and super- diffusion depending on the
different choices for the waiting time and step length density probability. In particular
the attention is focused on the average of the waiting time 〈∆t〉 and on the variance of
jump length 〈∆x2〉. If these moments are both finite we obtain classical diffusion. If we
have a finite 〈∆x2〉 and the mean waiting time is infinite we obtain subdiffusion. Finally
if the step length variance diverges we have superdifusion. In particular, if the waiting
time pdf has finite moments the process obtained is called Lévy flights ; the trajectories
of the Lévy flights are fractal. There is also studies considering the combination of a
diverging characteristic waiting time with a Lévy stable distribution of step lengths. The
divergence of 〈∆x2〉 which has no physical meaning can be rectified by a cutoff in the
jump length pdf.

We note that superdiffusion cannot be achieved within the approach of a generalized
waiting time concept. Another possible approach to obtain the superdiffusion is to intro-
duce a coupling between jump lengths and waiting times in the subdifussive framework;
this case is referred to as Lévy walks. To introduce a coupling between step lengths and
waiting times is equivalent to set a constraint in the velocity and so that it corresponds
to truncate the velocity pdf.
Note that apart from the finiteness of moments 〈∆t〉 and 〈∆x2〉, the details of the related
pdfs are irrelevant for the diffusive properties of the CTRW process.
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In the subdiffusive case the evolution of the displacement probability function is
described by a time fractional diffusion equation:

∂P (x; t)

∂t
= 0D

1−α
t Kα

∂2P (x; t)

∂x2
, (2.8)

where 0D
1−ν
t is the Riemann-Liouville fractional derivative. The foundamental solution

of Eq. (2.8) shows an asymptotic behavior corresponding to a stretched Gaussian. Com-
paring Eq. (2.8) with the dynamical equation for the fBM reported below in (2.10) we
can notice that the latter, conversely to the former, is perfectly local in time. This char-
acteristic represents the main difference between this two model. CTRW leads to highly
non-local processes with long correlations in space and/or time; fBM and generalized
Langevin equation (GLE), on the macroscopic level, are local in space and time and
carry time- or space- dependent coefficients.

As far as the superdiffusive case is concerned it is possible to define a dynamical equa-
tion for the Lévy flights which we can referred to as Lévy fractional diffusion equation:

∂P (x; t)

∂t
= Kν ∂

νP (x; t)

∂|x|ν
. (2.9)

It defines a Lévy stable law and furthermore it highlights the strongly non-local character
of Lévy flights. For the specific case of the Lévy walks building an analytic equation
essentially is more difficult because of what we said before about the truncation of the
pdf.

2.3 Fractional Brownian motion

Both in the presence and in the absence of external potential the fractional Brownian
motion (fBM) represents, together with the already described CTRW, one of the major
stochastic model for the description of the anomalous diffusion processes. There is a vaste
literature on fBM, starting with Mandelbrot and Van Ness [14] and it comes from one of
the easiest ways to model anomalous diffusion: replacing the constant diffusivity with a
time dependent diffusivity D(t) = 2Ht(2H−1)D. In this case the evolution equation for
the probability density function becomes:

∂P

∂t
(x, t) = 2Ht(2H−1)D

∂2P

∂x2
D(t) . (2.10)

The fBM is a stochastic process distinguished by the fact that it is the only self-simialrity
Gaussian process with stationary increments, as a metter of fact if we let BH(t) denote a
fBM stochastic process with Hurst exponent H ∈ [0, 1] then three properties of particular
note are:
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• correlations

E
(
BH(t)BH(t′)

)
=

1

2

(
|t|2H + |t′|2H − |t− t′|2H

)
,

• Self-similarity
BB(at) = |a|HBH(t),

• Realizations xB(t) of the process are continuous but nowhere differentiable.

The fBm can be defined by means of a stochastic integral:

xB(t) =
1

Γ
(
(1− 2H)/2

)[ ∫ t

0

(t−t′)(2H−1)/2dB(t′)+

∫ 0

−∞

(
t−t′)(2H−1)/2−(−t′)(2H−1)/2

)
dB(t′) .

(2.11)
The probability density function for the fBm is given by the stretched Gaussian

P (x, t) =
1√

4πK2Ht2H
exp

(
− x2

4K2Ht2H

)
, (2.12)

and the position autocorrelation is

〈xB(t)xB(t′)〉 = K2H

(
t2H + t′2H − |t− t′|2H

)
. (2.13)

This model describes processes with an antipersistent behavior if 0 < 2H < 1 and
persisten if 1 < 2H ≤ 2.

2.4 Fractional Langevin equation

The fBm can also be defined by means of more intuitive representation uses the
fractional Langevin equation (fLE):

m
d2xB
dt2

= −m0D
2H
t xB(t) + ξfGn(t) , (2.14)

where B(t) is ordinary Brownian motion and ξfGn(t) is the fractional Gaussian noise
which has a standard normal distribution for any t > 0 but it is power-law correlated.
Note that the fLE represents a particular case of the generalized Langevin equation
(GLE) which is reported below:

m
d2x(t)

dt2
= −γ

∫ t

0

K(t− t′)dx
dt′
dt′ + ξ(t) , (2.15)

where ξ(t) is a non-white noise andK(t) is a memory kernel which satisfied the Fluctuation-
Dissipation Theorem: 〈ξ(t)ξ(t′)〉 = kBTK(t − t′). The fLE is obtained in the specific
case of ξ(t) equal to a fractional Gaussian noise.
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2.5 Generalized grey Brownian motion

The generalized grey Brownian motion (ggBM) [23, 22, 20] is a class of stochastic
processes defined by:

Xβ,H =
√

ΛβXH(t) , (2.16)

where the random variable Λβ is defined as a Mainardi function Mβ(λ) with λ ≥ 0 and
0 < β ≤ 1. The stochastic process XH is a Gaussian process with a variance scaling with
t2H and it is generally considered to be a fBM. This model involves the grey Brownian
motion (gBM) for β = 2H, the fBM for β = 1 and the Brownian motion (BM) for
β = 2H = 1.

The evolution equation for the pdf of the ggBM can be expressed in term of the
Erdély-Kober Dε,µ

η fractional derivative with respect to t in the following way [25]:

∂P

∂t
=
ν

β
tν−1Dβ−1,1−β

ν/β

∂2P

∂x2
, (2.17)

so that we con also referred to this process as Erdély-Kober fractional diffusion. The
Green function for Eq. (2.17) corresponds to:

P (x; t) =
1

2tH
Mβ/2

( |x|
tH

)
. (2.18)

Physically these processes can be thought as a population of particles diffusing according
to a Gaussian process XH in a complex random medium. This medium has properties
that are independent from the particles and it has a randomness described by a char-
acteristic quantity with distribution depends on β. This parameter has thus to role of
driving the randomness of the medium.

The same approach has been used [26] to derive a stochastic process whose one-point
one-time pdf is the solution of the symmetric space-time fractional diffusion, which occurs
when in Eq. (2.2) θ = 0. It can be defined(ref) as:

Xν,β(t) =
√

Λν/2,βG2β/ν(t), 0 < β ≤ 1, 0 < ν ≤ 2 , (2.19)

where G2β/ν(t) is a H-SSSI 1 Gaussian process with power law variance t2β/ν and Λν/2,β

is an independent constant non-negative random variable distributed according to the
pdf K

−ν/2
ν/2,β(λ), λ ≥ 0. The stochastic process described in (2.19) generalizes Gaussian

processes and it is uniquely determined by the mean and the autocovariance structure.

1A stochastic process X(t), t ≥ 0 with values in R is a Hurst Self-Similar with stationary Incre-
ments(H-SSSI) process if:

(i) it is a self-similar process, X(at) = aHX(t);

(ii) it has stationary increments, X(t+ t′)−X(t) is invariant under time shift transformation.
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In comparison with the ggBM it involves also stochastic processes fractional in space but
on the other hand it doesn’t provide all the time fractional processes described by the
ggBM.

Going on we will see that this approach has some characteristics in common with the
approach we will deal with in Chapter 3 and 4. In particular the idea is essentially the
same but the way to obtain the Gaussian process with an anomalous scaling is totally
different. This difference will allow us to treat a larger variety of processes.



Chapter 3

An Alternative Approach

The Langevin equation, as we saw in Chapter 1, is driven by two parameters: the
friction and the noise amplitude. Here is proposed1 a statistical characterization of the
complex medium in which the diffusion occurs by randomizing these parameters and
their distributions are derived.

We consider parameters modulation in the Langevin equation to generate a fractional
kinetics. Taking into account a free particle in a viscous medium it is possible to describe
anomalous super-diffusive regimes, while introducing a confining term in the equation
(Langevin harmonic oscillator) but maintaining the same parameter modulation, we can
describe subdiffusive regimes.

This approach supports the idea that fractional diffusion in complex media results
from Gaussian processes with random parameters, whose randomness is due to the
medium complexity.

This model is promising to formulate stochastic processes for biological systems that
show complex dynamics characterized by anomalous diffusion and it allows for preserving
the classical Brownian motion as basis.

3.1 Sub- and super-diffusion

We showed in Chapter 1 that, when the assumption (1.23) of the Taylor theorem
about the finite and non zero value of τ is still valid, there is a well-defined correlation
time scale τ and the emergence of a normal diffusion scaling (〈x2〉 ∼ t) in the long-
time limit (t � τ). As a consequence, the emergence of anomalous diffusion is strictly
connected to the failure of this assumption.

In particular when the assumption of finite and non-zero τ fails, we have two cases:

1Some analytical results presented in this Chapter have been derived by Silvia Vitali
during her research period abroad in BCAM, Bilbao, under the supervision of Dr. Gianni
Pagnini.

22
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• Super-diffusion: ∫ ∞
0

R(s)

R(0)
ds = +∞ , (3.1)

and we have: 〈x2〉 ∼ tα with α > 1 or 〈x2〉 =∞

• Sub-diffusion: ∫ ∞
0

R(s)

R(0)
ds = 0 , (3.2)

and, thus, 〈x2〉 ∼ tα with α < 1. This case occurs when there is anti-correlation,
i.e., there exist time lags t such that R(t) < 0 (e.g., the anti-persistent fBM with
H < 0.5).

3.2 Anomalous diffusion by randomization of the

timescale and diffusivity parameters

In the following we use the fundamental results of the Langevin description to derive
a model for anomalous diffusion. The basic idea is that the observed anomalous diffusion
emerges as a linear superposition of independent contributions, each contribution being
given by a single realization of the process. The superposition is driven by the random-
ness of some parameters and these parameters are here treated as independent random
variables with a given pdf.

We assume that the randomness lies in the parameters Dv and/or τ or, equivalently,
in the parameters γ and/or Γ. Each chosen parameter is statistically independent from
the other ones.

Thus, the following pdfs are given:

h(Dv) ; b(τ) ; f(γ) ; g(Γ) . (3.3)

Considering Eq. (1.5), the pdfs h() and g() are related to each other, and so are the pdfs
b() and f().

Starting from the basic formulas of the considered stochastic process, the parameter
pdf driving the linear superposition is here chosen in such a way to determine the emer-
gence of global (effective) statistical features in agreement with fractional anomalous
diffusion. The basic formulas that we exploit in the proposed extension of the classical
Langevin approach are the following:

• Eq. (1.13) for the velocity correlation function;

• Eqs. (1.20) and (1.21) for the variance of the position in the stationary, equilibrium
state;
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• Eqs. (1.14) and (1.15) for the velocity pdf (general and stationary cases, respec-
tively);

• Eqs. (1.18) and (1.27) for the relationships among velocity and position diffusiv-
ities, parameters of the OU model (friction and noise intensity) and equilibrium
statistics σ2

v,eq (e.g., kT in the Maxwell-Boltzmann equilibrium distribution).

Then, we impose the emergence of the following global properties:

(i) correlation function with a asymptotic power-law decay;

(ii) anomalous diffusion in the position variance;

(iii) pdf P (x; t) compatible with fractional diffusion.

First of all let us define a stochastic variable which is the product of the gaussian
variable xφ and an appropriate power of a random variable Λ not dependent on time:

x =
√

Λvφ , (3.4)

velocity changes as well:

v =
√

Λvφ . (3.5)

The classical Langevin equation then becomes: d
√

Λxφ(t) =
√

Λvφ(t)dt

d
√

Λxφ(t) = −1

τ

√
Λvφ(t)dt+

√
2ΛDvdW (t)

(3.6)

and DV = ΛDv is the new random velocity diffusivity coefficient (hereafter we will refer
to Dv in the case of non random diffusivity and to DV in the case of random diffusivity).

Since we assume that τ , DV are independent parameters and thanks to the pos-
sibility to factorize out the parameter

√
Λ in Eq. (3.6), it is possible to consider the

randomization of the timescale and of the diffusivity in two separate steps.

3.3 Thermal equilibrium condition

We already remembered in Section 3.1 that the emergence of fractional diffusion is
strictly related to the stationary characteristics of the system. An asymptotic power-law
behavior for the correlation function is a typical condition violating the assumption of
the Taylor Theorem. Let us first rewrite the velocity correlation function of the single
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OU process, as given by Eq. (1.11), making the variable dependence more explicit and
avoiding the average over the initial velocities:

〈v(t1)v(t2)|v0, DV
, τ〉ξ =

(
v2

0 −DV
τ
)
e−(t1+t2−2t0)/τ +D

V
τe−|t1−t2|/τ . (3.7)

The average over the noise is now conditioned by the random realization of the
parameters. Notice that, in the single OU process, the equilibrium condition is associated
with the relationship (1.16): σ2

v,eq = 〈v2
0〉eq = Dvτ . For the single OU process, this

relationship follows by the equilibrium condition given by the Gaussian distribution of
Eq. (1.15), which is reached by the OU process in the long-time limit t � τ . In this
extended model the Gaussian with Eq. (1.15) is no longer the equilibrium pdf for the
velocity so that Eq. (1.16) is not valid in general.

Then, even if the equilibrium of the single OU process fails, let us assume that, even
in the extended global equilibrium condition, the initial velocity distribution depends on
τ : v0 = F (τ, ...). Let us now apply the averaging over the random parameters (DV , τ)
and over the initial velocity v0 to Eq. (3.7):

〈v(t1)v(t2)〉 := 〈〈v(t1)v(t2)|v0, DV
, τ〉ξ〉v0,DV ,τ

= 〈
(
v2

0 −DV
τ
)
e−(t1+t2−2t0)/τ 〉v0,DV ,τ + 〈D

V
τe−|t1−t2|/τ 〉v0,DV ,τ .

(3.8)

In order to get the global equilibrium condition, we must put to zero the first, non-
stationary, term:

〈v2
0(τ)e−(t1+t2−2t0)/τ 〉τ = 〈D

V
〉
D
V

〈τe−(t1+t2−2t0)/τ 〉τ , (3.9)

where the dependence of v0 on τ has been taken into account. This is the equality of
two integrals and, thus, the choices on the integrand functions are infinite. However, the
most simple and natural choice is given by the following one:

v2
0 = D

V
τ ; 〈v2

0〉 = v2
0,eq = 〈D

V
〉〈τ〉 , (3.10)

where the equilibrium assumption on the initial velocity distribution has been taken into
account: 〈v2

0〉eq = v2
eq.

When stationarity is imposed we can write the following expression for the stationary
correlation function:

R(t) = 〈v(t0 + t)v(t0)〉 = 〈D
V
〉
〈
τe−t/τ

〉
=

∫ ∞
0

dD
V
D
V
f(D

V
) ·
∫ ∞

0

dτ ′τ ′e−t/τ
′
g(τ ′) .

(3.11)

As a consequence of the fundamental relationship between diffusion of x, σ2
x(t), and

velocity correlation function we must guess a suitable choice for R(t) in order to get
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anomalous diffusion. This implies to construct suitable distributions for the two random
parameters τ and DV .

Referring at Eqs. (3.1) and (3.2) we saw in particular that in this approach the most
general condition leading to the subdiffusive case is that

∫∞
0
R(t)dt = 0. This is satisfied

if the velocity correlation function R(t) shows an oscillating behavior. This feature
cannot be obtained in the free particle case, because the exponential suppression and
the distribution function of the timescale present in the correlation function, obtained
in Eq. (3.11), are both positively defined. We then expect that to describe subdiffusive
processes through the introduction of a further oscillating potential, generalizing the
results obtained in the fourth section of Chapter 1.

For the sake of simplicity in the present work we will deal only with the superdiffusive
case which can be treated using a free particle model but we highlight that the model
for the subdiffusivity is completely defined as well and for more details we remand to the
article in press.

3.4 A suitable distribution for τ

Any choice of correlation function and distribution for the parameters of the dynamics
should satisfy the following global properties:

• the scaling of the position variance in the long time limit is a power fraction of
time;

• the position variance at time zero is zero;

• the scaling of the correlation function in the long time limit should be a power law,
with exponent −α = −(2 − φ), with 0 < α < 1 or 1 < α < 2 depending if we are
describing super or sub diffusive processes respectively;

• the correlation function at time zero is R(0) = c, with c = σ2
v,eq. finite positive

number, which imply that b(τ), as well as h(DV ), must have finite mean in order
to describe a finite energy system;

• the distribution functions of the parameters, b(τ) and h(DV ), are normalized to 1.

In principle there exists an infinite number of distribution functions b(τ) that satisfy
these conditions, here we propose a suitable function with all the required properties as
reference example.

Let’s consider a distribution of time scales of the kind:

b(τ) =
α

Γ(1/α)

1

τ
L−αα

( τ
τ∗

)
, (3.12)



3.5#1 27

where L−αα (z) is the extremal Lévy density, with 0 < α < 1 and τ∗ = (〈τ〉Γ(1/α)
α

). The
distribution is characterized by 〈τ〉, the mean timescale of the process, which could be
estimated experimentally.

Using this distribution for Eq. (3.11) we obtain an asymptotic behavior for t→ +∞
for the stationary correlation function of the velocity given by:

R(t) = 〈DV 〉〈τ〉
Γ(α + 1)

Γ(1− α)

( t
τ∗

)−α
, (3.13)

which is enough to obtain the desired scaling of the position variance σ2
x(t) ∝ tφ, with

φ = 2 − α. Note that in the limit in which α = 1 we recover the classical correlation
function:

R(t)α=1 = 〈DV 〉τ∗e−t/τ∗ . (3.14)

3.5 Suitable distributions for D
V

Until the velocity coefficient of diffusion is not random the resulting pdf is still a
Gaussian density G(x, σ2

x(t)), where the variance σ2
x(t) is the one derived from the cor-

relation function with anomalous time scaling, due to the randomness of the time scale
τ . The resulting pdf in the long time limit is:

P (x, t;φ) =
1√

4πCtφ
e−

x2

4Ctφ (3.15)

with C = Γ(α+1)
Γ(3−α)

(
Γ(1/α)
α

)(2−φ)

〈τ〉(3−φ)Dv.

Including random velocity diffusivity DV we may derive not Gaussian pdf. From
the Lemma 3.1 in [26] we have that the pdf associated to a product of two independent
random variables z = λρz1 is:

p(z) =

∫ ∞
0

p1(z/λρ)pλ(λ)
dλ

λρ
. (3.16)

Then if we consider z = xt−φ/2, z1 = xφt
−φ/2 and λρ =

√
Λ that is equivalent to

x =
√

Λxφ, with Λ = DV /Dv and we can write:

P (
x

tφ/2
) =

∫ ∞
0

Pxφ

( x

(tφΛ)1/2

)
p2(Λ)

dΛ

Λ1/2
. (3.17)

Considering the Gaussian distribution for xφ reported in Eq. (3.15) and the relationship
between Λ and DV , we obtain the following general relation:

P (x, t) =

∫ ∞
0

Gφ(x, σ2
x(t,DV ))h(DV )dDV , (3.18)
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which means that the final probability is the conditional probability respect to the real-
ization of the random variable DV weighted over the distribution h(DV ).

Assuming different distributions of the velocity diffusivity h(DV ) is it possible to
generate different pdfs as the Mainardi or Lévy, which are related to the most known
fractional processes in the literature.

In particular, if p(Λ) = Mβ(Λ), i.e. the special Wright function known as Mainardi
function, we have h(DV ) = Mβ(DV ) and the resulting pdf is the Mainardi space time
distribution with a time stretching:

P (x, t) =
1

2tφ/2
Mβ/2

( |x|
tφ/2

)
. (3.19)

Note that the latter can be seen as the Green function of the time fractional diffusion
equation.

Considering p(Λ) = L
−α/2
α/2 (Λ), i.e. h(DV ) = L

−α/2
α/2 (DV ), extremal Lévy distribution,

we obtain that the final pdf is the symmetrical Lévy distribution:

P (x, t) =
1

2tφ/2
L0
α

( x

tφ/2

)
. (3.20)

This can be seen as the Green function for the space fractional diffusion equation. In
this last case we notice that the diffusivity of velocity does not have a finite mean value,
which means that the energy necessary to the system to generate such a process should
be infinite. This is not realistic in nature but mathematically it is consistent with the fact
that the final distribution P (x, t) is a Lévy density and has an infinite position variance.

Introducing a cut-off on h(DV ), the mean value should become finite as well as the
position variance in the final distribution and the energy involved in the process. However
the analyticity of the solution is lost and the final distribution can only be computed
numerically. We expect this numerical solution to be similar, at least in the long time
limit, to the distribution related to Lévy Flights (sec. 2.2).



Chapter 4

Numerical Results

First of all in this Chapter it is reported a study of the pseudo-random number
generators that are considered for the all simulations. A generator of variables distributed
according to the α-Stable distribution is also described. Different schemes to integrate the
classical Langevin equation are studied and used to reproduce the Ornstein-Uhlenbeck
process, described in Chapter 1. Finally the simulations suggested from the alternative
approach proposed in Chapter 3 are analyzed and discussed, also in comparison with the
results from the other methods described in Chapter 2. The numerical simulations are
implemented in Python.

4.1 Generation of random variables

The generation of random variables is the starting point of this present study. To
reproduce a stochastic noise and to be able to extract random variables distributed
according to specific distributions is what we need as basic tools to achieve our target.
Thus, in this section it is described the development of these tools.

4.1.1 Pseudo random generator

The random numbers generation is something that a computer cannot manage be-
cause of its deterministic methods, indeed a real random generator is a tool able to
provide a sequence of non deterministic numbers. Thus, we are going to deal with num-
bers, called pseudo-random, that seem random, but they are not and are generated by
means of appropriate algorithms. A good sequence of random numbers should be unpre-
dictable and independent so that, the features used to study the goodness of a Pseudo
Random Number Generator (PRNG) are respectively period and randomness. If for
the former there is a simple judgment rule, the longer is the period, the better is the
sequence, for the latter it is more complicated to confer such a quality to a sequence of

29
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numbers. It is possible to proceed according to the Von Neumann criterion which as-
serts that every random number is equiprobable thus the extraction of N differ numbers
has to give rise to a uniform distribution. Together with the two parameters already
explained also efficiency, repeatability and portability have to be check in order to verify
the PRNG’s quality.

In Python there are many PRNG already implemented in its library called random
and the basic one is given by the Mersenne-Twister algorithm [17]. The latter was
developed by Makoto Matsumoto e Takuji Nishimura in 1997 and it is a particular kind
of Linear congruential generator (LCG) which became popular thanks to the following
characteristics:

• It has a really huge period, 219937 − 1, which explains the origin of the name: it is
a Mersenne prime number like many other constants of the algorithm;

• It allows to generate equiprobable numbers in a 623-dimensional space;

• It is faster than the majority of the LCG;

• It passes many statistic tests.

LCGs use a discontinuous piecewise linear equation defined by the recurrence relation:

Xn+1 = (aXn + c) mod m. (4.1)

There is another LCG that operates in moltiplicative group of integers modulo m, which
means that the constant c in (4.1) is equal to zero, called Lehmer pseudo random number
generator also known as Park-Miller algorithm [28]. It has a period highly smaller than
the previous, p = 231 − 1, but it is really simple to implement.
For our purpose having a such large period is not so important, but it is more important
to have a good uniform distribution in order to be sure to have a good randomness of the
generated numbers. Thus the two algorithms presented was combined together to obtain
a more unpredictable sequence; the former generators is used to extract a number that
then becomes the seed of the latter algorithm. The same method is used to generate
standard distributed random variables by means of Box-Muller algorithm instead of the
Park-Miller one. Studies using the χ2− test have been done to check the results of both
the two methods.

4.1.2 α-Stable random generator

The generation of α-Stable random variables is critical for our aim, since it allows
to obtain the two random parameters we are interested in for the simulations, τ and
DV . As described in Chapter 3, in order to reproduce the physical phenomena we are
dealing with these two parameters must obey to specific distribution functions, which



4.1#1 31

can all be constructed starting from the general case of the α-Stable Distribution. These
distributions don’t have an explicit analytical form for the pdf thus it is not possible to
generate variables extracted from them by means of classical methods like the inverse
transformation method 1.

Chambers and Mallow [2, 6] have found a direct method to generate extremal Lévy
distributed random numbers

LEXTα,CM =
sin[α(r1 + π/2)]

(cos r1)1/α

{cos[r1 − α(r1 + π/2)]

− ln r2

}
, 0 < α < 1 , (4.2)

where r1 and r2 are random variables uniformly distributed in (−π/2, π/2) and (0, 1)
respectively. Through lots of draws of this method, it is possible to obtain a histogram
of extremal Lévy probability density for assigned parameters values. At small and large
argument values the histogram is usually distorted but since we know the analytical
asymptotic behavior, the distribution can be fixed replacing the distorted samples by the
asymptotic values. One should ensure that this representation, which we will referred to
as semi-analytical, is normalized for every value of the parameters. So that are introduced
two normalization parameters k1(α) and k2(α) in order to have:∫ ∞

0

LEXTα (x)dx =

∫ xn

0

k1(α)x′−ae−bx
′−c
dx′ +

N∑
i=n

LEXTα,CM(xi)dxi +

∫ ∞
xN

k2(α)

x′1+α
dx′ = 1 ,

(4.3)
where LEXTα (x) is the constructed distribution, the second term on the right-hand is the
histogram obtained by the Chambers-Mellow method and the first and last term are the
asymptotic form respectively for x→ 0+ and x→∞, with

a =
2− α

2(1− α)
; b = (1− α)αα/(1−α); c =

α

1− α
.

Note that the normalization constant is needed only for the analytical forms because the
numerical one is proved to be already normalized by Chambers[2].

Once the semi-analytical distribution is constructed, it is also possible to obtain a
semi-analytical cumulative distribution which can be used to generate the desired random
variables by means of the inverse transformation method.

Probability density function of τ

We want that the time scale parameter τ undergoes the distribution in Eq. 3.12
which is reported here for convenience:

b(τ) =
α

Γ(1/α)

1

τ
L−αα

( τ
τ∗

)
, (4.4)

1It is a basic method for generating sample numbers at random form any probability distribution,
given its cumulative distribution function.
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where L−αα (z) is the equal Lévy density with 0 < α < 1 and τ∗ = 〈τ〉(Γ(1/α)/α). In the
simulations τ∗ is set to one; it physically means that we are selecting a system with a
well defined mean of τ , equal to 〈τ〉 = α/Γ(1/α).

To generate variables according to this distribution we have to take the semi-analytical
distribution constructed for the extremal Lévy density and to divide it by the argument
itself. We have to introduce an additional normalization constant for each α, thus the
distribution is defined as

fτ (x) =
A(α)

x
LEXTα (x) . (4.5)

Therefore the semi-analytical cumulative function is computed again for this specific case.
Now it is possible to generate random variables according to (4.4) just drawing uniform
distributed random variables (u), evaluating the semi-analytical cumulative function for
these values (Fτ (u)) and then inverting it (τ = F−1

τ (u)). Note that also the inversion
process is done numerically.

Probability density function of DV

Due to what we saw in Chapter 3, once that an anomalous Gaussian process xH
is generated (in our case through a Langevin approach with random time scales) it is
possible to obtain a non Gaussian process x just introducing the randomization of DV .
The pdf of velocity diffusion coefficient h(DV ) does not depend on time and the stochastic
variable DV is independent of τ . Thus, our choses for h(DV ) are linked only to which
kind of final stochastic process we want to have:

x =
√

ΛxH with 2H = Φ . (4.6)

Processes fractional in space can be reproduced considering the following diffusion equa-
tion fractional in space:

∂P (x, t)

∂t
= νHtνH−1∂

νP (x, t)

∂|x|ν
0 < ν < 2 . (4.7)

Its solution is a Lévy function and as we saw in Chapter 3, in order to obtain processes
according to Eq. (4.7) we can define DV as:

h(DV ) = LEXTν/2 (DV ) . (4.8)

From this processes we can obtain as a special case the Space time fractional diffusion.
Processes fractional in time can be instead described by the Erdèly-Kober time Frac-

tional Diffusion equation

∂P (x, t)

∂t
=

2H

β
t2H−1D

(β−1),(1−β)
2H/β

∂2P (x, t)

∂x2
. (4.9)
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Eq. (4.9) has a Mainardi function as solution. In this case the velocity diffusion coefficient
has to be defined in the following way:

h(DV ) = Mβ(DV ) . (4.10)

Random variables according to the distributions reported in (4.9) and (4.10) can easily
be constructed thanks to the generator described above in this section. In the space
fractional case we directly have an extremal Lévy function while for the time fractional
case we can use the same generator remembering that:

Mβ(x) =
[
LEXTβ (x)

]−β
. (4.11)

4.2 Time discrete approximations of stochastic pro-

cesses

Stochastic simulations typically require the calculation of many different realizations
of the approximating process, so efficiency and stability are crucial factors to be taken in
account. Furthermore we have to construct an algorithm to solve the Langevin equation
suitable for all the different cases we are interested in.

A stochastic process x satisfying the scalar stochastic differential equation:

dx = a(x, t)dt+ b(x, t)dW (4.12)

is considered, with the initial value xt0 = x0 and t0 ≤ t ≤ T . Given a discretization of
the time interval [t0, T ] , for every discretization time tn = t0 + n∆t we are interested in
the approximated solution yn of the process described by (4.12). Different schemes can
be defined for this aim and to choose the best one for our studies is what we will do all
along this section.

A criterion to judge a stochastic approximation’s quality (which in the numerical
field is described by the concept of accuracy) can be established depending on what one
is interested in. Namely, it is possible to distinguish two different tasks:

• to obtain a good pathwise approximation;

• to obtain a good approximation for the expectation values.

To these aims two important concepts are respectively connected, the Strong Convergence
and the Weak convergence. We shall say that a general time discrete approximation yδ,
where δ is the maximum step size, converges strongly to x at time T if:

lim
δ→0

E
(
|xT − xδ(T )|

)
= 0 . (4.13)
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In order to asses and compare different time discrete approximations a rate of strong
convergence γ > 0 is defined. We shall say that a time discrete approximation yδ

converges strongly with order γ > 0 at time T if there exists a positive constant C, which
do not depend on δ, and a δ0 > 0 such that:

ε(δ) = E
(
|xT − yδ(T )|

)
≤ Cδγ , ∀δ ∈ (0, δ0) . (4.14)

As we con see from Eq. (4.13) and (4.14) the strong convergence criterion is based on
an error evaluation directly connected to the pathwise approximation, given by:

ε = E
(
|xT − y(T )|

)
.

Is it also possible to define the approximation error with respect to the mean:

εµ = E
(
y(T )

)
− E

(
xT
)
.

In this case we shall say that a general time discrete approximation yδ converges weakly
to x at time T with respect to a class C of test functions if we have

lim
δ→0

∣∣E(g(xT )
)
− E

(
g(yδ(T ))

)∣∣ = 0 , ∀g ∈ C , (4.15)

and the order of weak convergence is η > 0 if∣∣E(g(xT )
)
− E

(
g(yδ(T ))

)∣∣ ≤ Cδη . (4.16)

The approximation convergence alone cannot guarantee good results for a scheme due to
problems caused by the error propagation. We need also a counterpart to the determin-
istic concept of numerical stability for the stochastic approximation. We shall say that a
time discrete approximation yδ is stochastically numerically stable for a given stochastic
differential equation if for any finite interval [t0, T ] there exists a positive constant ∆0

such that for each ε > 0 and each δ ∈ (0,∆0)

lim
|yδ0−ȳδ0 |→0

{
sup

t0≤t≤T
P
(
|yδt − ȳδt | ≥ ε

)}
= 0 , (4.17)

where ȳδ represents another discrete approximation characterized by the value ȳδ0 at the
initial time t0.

4.2.1 Taylor approximations: Euler-Maruyama and Milstein
schemes

In the integration schemes reported here it is used the stochastic Taylor expansion
[8] where the truncation is determined by the order of convergence. Both the weak and
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strong orders convergence determine the truncation that must be used but the one for
the weak convergence in general involves less terms. The Euler scheme, also known
as Euler-Maruyama scheme, represents the simplest one and it generally attains the
order of strong convergence γ = 0.5 and the order of weak convergence η = 1. In the
1-dimensional case this scheme has the form

yn+1 = yn + a∆t+ b∆W , (4.18)

where ∆t is the length of the time discretization subintervals and ∆W is the increment
of the Wiener process.

The Milstein scheme has a strong convergence of order 1 and in this sense can be
regard as the proper generalization of the deterministic Euler scheme. It can be written
as:

yn+1 = yn + a∆t+ b∆W +
1

2
bb′
(
(∆W )2 −∆t

)
. (4.19)

In our studies we will always have an additive noise independent from t so, in fact, these
two schemes, Eq. (4.18) and Eq. (4.19), turn out to coincide for our purpose and they
give: xn+1 = xn + v∆t

vn+1 = (1− ∆t

τ
)vn +

√
2D∆W .

(4.20)

4.2.2 Derivative free schemes

Following the Taylor approximation if we want to increase the convergence order, we
should introduce higher order derivatives of the stochastic equation coefficients. Here we
examine schemes which avoid the use of derivatives in much the same way that Runge-
Kutta schemes do in the deterministic case. The idea is simply to replace the derivatives
of the Taylor approximation by the corresponding difference ratios; these differences
require the use of supporting values of the coefficients at additional points. For example
we can consider the following autonomous scheme due to Platen [8] with order of strong
convergence 1.5 and it is reported here only for the case of additive noise:

yn+1 = yn + b∆W +
1

2
√

∆t
{a(ȳ+)− a(ȳ−)}∆Z +

1

4
{a(ȳ+) + 2a+ a(ȳ−)} , (4.21)

with
ȳ± = yn + a∆t± b

√
∆t , (4.22)

and the additional random variable ∆Z represents the double integral of the Wiener
process which is normally distributed with zero mean and variance E((∆Z)2) = (∆t)3/3.
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The latter can be generate from two independent normally distributed variables, u1 and
u2, by means of the transformation:

∆Z =
1

2
(∆t)3/2

(
u1 +

1√
3
u2

)
. (4.23)

In the same way it is also possible to construct an implicit derivative free scheme. It
is consider for example an autonomous scheme with order of strong convergence 1.5, like
the explicit one just discussed.

yn+1 = yn + b∆W +
1

2
{a(yn+1) + a}+

1

2
√

∆t
{a(ȳ+)− a(ȳ−)}

(
∆Z − 1

2
∆W∆t

)
, (4.24)

where ∆Z is always a random variable obtained by (4.23) and the supporting values are

ȳ± = yn + a∆t± b
√

∆t . (4.25)

Implicit schemes usually have a wide range of step sizes suitable for the approximation
of dynamical behavior, in particular with many different time scales, without the ex-
cessive accumulation of unavoidable initial and roundoff errors. On the other hand, in
implementing an implicit scheme we need to solve an additional algebraic equation at
each time step and, even if there is no accumulation of errors, it can become imprecise
providing results far from the real process.

4.2.3 Multi-step scheme

Multi-step method are often more efficient computationally than one-step method of
the same order because they require only one new evaluation of the right hand side of
the differential equation for each iteration thus to take in account at least one of these
is worthwhile.

Considering our system in the phase space, a 2-step scheme suitable for the x variable
can be obtained starting from the Milstein scheme{

xn+1 = xn + vn∆t

vn+1 = vn + a(tn)∆t+ b∆W .
(4.26)

Solving the first equation we have vn = (xn+1 − xn)/∆t and insert it into the second we
obtain a 2-step scheme for x given by:

xn+2 =
[
2− a(tn)∆t)xn+1

]
−
[
1− a(tn)∆t

]
xn + b∆W . (4.27)

This scheme is thus equivalent to the 2-dimensional Milstein scheme reported in (4.26)
and we can use its first equation both as a starting routine and to calculate approximation
of the second variable.



4.3#1 37

4.2.4 ∆t-variable method

Following from the Thomson’s work [33] it is also presented a method with a variable
temporal step. To choose a new temporal step at each time allows us to take into
account the phase space state in which the system is and to decide the next step in order
to avoid the particle to make a large change of its position. In this way we ensure to
reproduce the sample paths with a physical perspective which is going to be essential
for the reproduction of anomalous dynamic, as we will see. Starting from Eq. (4.12) the
temporal step is selected to be:

∆t = min
{0.05

b
,
0.1

|a|

}
. (4.28)

The latter is a dimensionless relation of which the dimensional version can be written as

∆t = min
{0.05σ2

v

b
,
0.1σv
|a|

}
. (4.29)

The problem using this method is that every realization has its own discretization of the
temporal interval so, if we want to compare each other the sample path we need to define
some observation times. The idea is thus to let the simulation of each trajectory proceed
until it reaches or just exceeds one of the observation times, then in the first case we
simply save the value obtained while, in the second case, we make an interpolation of
the values obtained in the instants previous and after the observation time and we store
this new value. The observation times are chosen to be 10 in every decade established
by the value of τ , from 10−1τ to 103τ .

Every scheme previous described can be adapted to this ∆t-variable method; different
proves have been done but here, for convenience, it is reported only the implementation
of this method within the explicit Runge-Kutta scheme which provides good results in
term of accuracy and computational efficiency.

4.3 Normal diffusion simulations

The first step of the numerical simulations is to reproduce the standard diffusion
model, with all its features in order to test all the schemes implemented.

4.3.1 Wiener process

We have already introduced the standard Wiener process in Chapter 1 for the math-
ematical description of Brownian motion. Recalling it we define a standard Wiener
process W (t) to be a Gaussian process with independent increments such that

W (0) = 0 〈W (t)〉 = 0 〈(W (t)−W (t′))2〉 = t− t′, ∀ t′ ≤ t . (4.30)
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Figure 4.1: Wiener process: mean and variance. On the left the process obtained start-
ing from uniform distributed variables, on the right the one from normally distributed
variables.

It is possible to approximate a standard Wiener process by a scaled random walk taking
independent, equally probable steps of length ±

√
∆t at the end of each subinterval of

the time interval. Starting from uniform distributed variables xi, then we define

SN(tn) = (x1 + x2 + · · ·+ xN) =⇒ WN(tn) = SN(tn)
√

∆t . (4.31)

By the Central Limit Theorem WN(t) converges in distribution as N →∞ to a process
with independent increments satisfying (4.30), that is a standard Winer process. To
ensure that the Wiener process has zero mean and variance equal to 1 the uniform
distributed variables are defined in the time interval [−1

2
, 1

2
] and rescale by a factor

√
12:

K

∫ 1/2

−1/2

x2p(x)dx = K

∫ 1/2

−1/2

x2dx = K
1

12
= 1 =⇒ K = 12 .

It is alo reported another process obtained directly by summing standard distributed
variables instead of uniform distributed variables; this process is thus Gaussian by def-
inition in every moments and not only in the long limit. The results for both cases are
reported in Figure 4.1 and 4.2.
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Figure 4.2: Wiener process: sample paths and pdf. On the top the process obtained
starting from uniform distributed variables, on the bottom the one from normally dis-
tributed variables.

4.3.2 Ornstein-Uhlenbeck process

The integration schemes described in the previous section are used to simulate the
Ornstein-Uhlenbeck (OU) process described in Chapter 1. Every simulation has 10000
realizations with a temporal step equal to 4 · 10−3, the velocity diffusion coefficient Dv

is set to 1, the initial time and position are set to 0 and τ = 0.4. The only exception
is for the ∆t-variable method which has been implemented with τ = 0.04 and a longer
temporal interval. As far as the initial velocity is concerned different conditions have
been studied.

We start from the case with the initial velocity equal to zero; the displacement and
velocity variance obtained through different integration schemes is reported in Figure
4.3.

The latter shows that all the different schemes reproduce correctly the main char-
acteristics of the stochastic process.The red lines in the plots represent the analytical
behaviors found in Chapter 1. The long-time trends for the both variances are satisfied
while the trend for small time values in the displacement variance is not fulfilled. This is
not a numerical error, but is only due to the initial condition chosen for the velocity. As
a metter of fact setting this value to zero means that we start looking and studying the
system before it reaches its stationary state where the analytical trends found are effec-
tive. Going on with time, the system manages to reach the equilibrium state after some
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(a) Milstein method.
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(b) Explicit Runge-Kutta method.
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(c) Implicit Runge-Kutta method.
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(d) 2-step method.
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(e) ∆t-variable method.

Figure 4.3: Position and velocity variance of the Langevin equation trajectories with
Dv = 1, τ = 0.4 and v0 = 0.
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Figure 4.4: Position and velocity variance of the Langevin equation trajectories with
Dv = 1, τ = 0.4 and v0 ∼ N(0, σv,eq).

unities of τ where we can observe the long-time trends only because of the logarithmic
scale.

In order to verify also the trend for short time we can take advantage of the knowledge
of the velocity equilibrium distribution, which is the Maxwell-Boltzmann distribution.
Thus, another simulation of the OU process is reported with the same parameter, except
for the initial velocity which has been taken from a Gaussian distribution with zero mean
and variance equal to σ2

v,eq = Dvτ . Only the results with one integration scheme, the
2-step method, are presented in Figure 4.4. In Figure 4.4 it is possible to observe both
the two trends thanks to the change of the initial conditions; our system is now at the
thermodynamical equilibrium since the first moments, so we are able to evidence the
complete dynamic in its stationary state. Figure 4.5 showes some sample paths together
with the probability distribution function which is a Gaussian as expected. In particular
it is possible to notice how in Figure 4.5-(b), as we can see also in Figure 4.3, the velocity
pdf keeps the same variance for all the times while the displacement pdf variance grows,
going through a sort of scattering. To conclude Figure 4.6 shows the plot of the velocity
correlation function for this case, in which we expect to have the stationary part only.
The numerical data perfectly fit the analytical trend defined by Eq. (1.13)
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Figure 4.5: Trajectories and pdf of the Langevin equation with Dv = 1, τ = 0.4 and
v0 ∼ N(0, σv,eq).
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Figure 4.6: Velocity correlation function of the Langevin equation trajectories with Dv =
1, τ = 0.4 and v0 ∼ N(0, σv,eq).

4.4 Fractional Diffusion Simulations

The fractional dynamics involves lots of cases, as we saw in Chapter 2, so that the
numerical simulations have to be split. The first division is of course between subdiffusion
and superdiffusion. In Chapter 3 we found out that to reproduce the former we need to
add an oscillating potential to the Langevin equation, which we chose for simplicity to be
harmonic. Due to the need of this modification, to verify and test the model presented
in Chapter 3 it is decided to start from the superdiffusion case which allows us to avoid
changes to the equation structure and it just requires the introduction of the random
parameters. Therefore in this section are reported studies on superdiffusion only. The
subdiffusive case is let as future research motivated by the promising results achieved in
the present thesis.

4.4.1 Distribution of τ and anomalous time scaling

Since the two parameters DV and τ are considered independent, we can start from
the randomization of the time scale leaving the diffusivity velocity coefficient as a fixed
value. In this particular case the process we expect to obtain is still Gaussian, because
there are no changes of the noise, but with an anomalous time scaling for the position
variance:

σ2
x(t) ∼ tφ, 1 < φ < 2 . (4.32)

The scale parameter φ depends on the distribution from which we take the values of τ ,
which are obtained as described in the first section of this Chapter. The distribution of
τ depends on a parameter α which, as we saw, is linked to φ by the relation φ = 2− α.
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Figure 4.7: Dv = 1, α = 0.25 and v0 = 0.
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Figure 4.8: Dv = 1, α = 0.5 and v0 = 0.
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Figure 4.9: Dv = 1, α = 0.75 and v0 = 0.
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The integration scheme largely conveys the variability of τ and so, in order to opti-
mize the computational time ,only the ∆t-variable method is used. In its evaluation of
the temporal step this method takes in account the value of τ . Furthermore we faced
problems of stability for extremely small value of τ so a rather drastic solution for this
purpose is selected: to put a cutoff value in the extraction of τ . This condition influences
the building of a good sample of τ that has to be extracted from the suitable distribution
and then used for the simulation. On the other hand we might say that this could not
affect the success of the simulations since the trends in which we are interested depend
only on the average of the temporal scales set. Thus, choosing a sample with a little bit
different mean should only lead to different stationary values related to the effective av-
erage. The simulations obtained with the ∆t-variable method are reported and discussed
for different values of α: 0.25, 0.5, 0.75.

Figures 4.7, 4.8 and 4.9 show the main features of the generated processes. In boxes
(a) it is possible to observe the trends of position and velocity variance. Both reach their
stationary trends in the same moment, as we expect, and in particular we pay attention
to the moment in which the system reached its stationary state. Comparing it with the
one of the OU process it is possible to notice that in general it is higher and that while
α increases, it decreases. This behavior agrees with the fact that while α is growing we
approach to the standard diffusion because the pdf of τ approach to a Dirac delta. Thus,
the presence of random media causes a delay in reaching the stationarity that can be
easily explained thinking that the stationary state corresponds to that state in which
each realization is relaxed. So we need to wait until all values of tau are over.

In boxes (c) it is possible to observe the velocity correlation functions for a fixed
moment t1, which is selected ensuring that in this moment the system has already reached
the stationary state, and t2 variable in [t1, T ]. Figure 4.10 show the velocity correlation
function for all the three cases studied. Note that for each value of α the trend drawn
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Figure 4.10: Velocity correlation function for different values of α.
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by the numerical data is decreasing and monotonous, as expected. It is interesting to
observe how the scale of the values changes from one case to the other. In particular,
recalling Eq. (3.13), we can link the maximum value of the velocity correlation function
to the product Dv〈τ〉 which is deeply related to the energy of the analyzed system, as
well as for the standard diffusion case. This observation highlight how in the approach
we are studying the parameters probability distribution really characterized the medium
in which the diffusion occurs.
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Figure 4.11: Numerical error evaluation from the oscillation of the correlation function
tail

.

Furthermore we can consider the oscillations of the difference between the tails of
these correlation functions and the analytic behaviours evaluated through Eq. (3.13), to
estimate the numerical error of the used scheme. They are shown in Figure 4.11 which
allows to evaluate the numerical error around 10−2.
As far as the Gaussianity is concerned a more in-depth study is reported below.

4.4.2 Guassianity study

A critical point of our study is to clarify that with the randomization of the parameter
τ we only introduce an anomalous time scaling, showed in Figure 4.7, 4.8 and 4.9,
without losing the Gaussianity of the process for every temporal moments. We take into
consideration the Central Limit Theorem, which is reported below:

Theorem 2 (Central Limit Theorem). Let x1, x2, . . . , xN be a set of N independent
random variables and each xi have an arbitrary probability distribution P (x1, ..., xN) with
mean µi and a finite variance σ2

i . Then the normal form

SN =

∑N
i=1 xi −

∑N
i=1 µi√∑n

i=1 σ1



4.4#1 49

has a limiting cumulative distribution function which approaches a normal distribution.
If conversion to normal form is not performed, then the variable

x =
1

N

N∑
i=1

xi

is normally distributed with mean µx = 〈µi〉 and variance σ2
x = 〈x2

i 〉 − 〈xi〉2.

Our system is made by a set of 10000 realizations, each one with a specific value of τ
which remains constant for all the simulation time. This means that every simple path
is essentially an OU process with its specific temporal scale, different from the one of all
the other realizations. Thus, it suggests that every trajectory in the phase space is, at
every moment, a Gaussian process with its own mean and variance.

If we now take into account the distribution of the entire system for a fixed time we
essentially have an ensamble of normally distributed random variables, each one taken
from its own Gaussian distribution, exactly what it is described by the Central Limit
Theorem. So the latter ensures that the process obtained is Gaussian in every moment.

To prove it numerically we can provide both a fit of our data with a Gaussian and
results from statistical tests. The most used test to prove that a sample of data is extract
from a specific distribution is the χ2-test. This test compares the observed frequencies
with the expected ones through the computation of

χ2 =
1

N

N∑
i=1

(fobs − fexp)2

fexp
,

which undergoes a χ2-distribution. Statistical tables are then provided to translate the
χ2-value obtained in a level of rejection or acceptance of the null hypothesis H0 (the
sample is extracted from a Gaussian distribution).

Note that this test requires the knowledge of the theoretical distribution of each
variables in order to compute the expected frequencies. In our case these distributions
vary at each time and we cannot manage to estimate them unless we focused the attention
on the stationary state of the system. In this case we have an evaluation of mean and
variance. It is worthwhile to observe that even in the stationary case we cannot be sure
that every trajectory is thermalized, in particular for those with high value of τ .

Due to this we follow a different approach for the application of the χ2-test. Instead of
converting each variables to the normal form using the evaluation of mean and variance,
we just take all the variables as they are and then we convert the obtained distribution
to a normal one by means of mean and variane values compute directly from the sample
in exam. In this way we manage to compare the final distribution with a normal one,
with zero mean and variance 1.

Actually the system we are analyzing is really more complicated than the one we
described above. Each variable involved in the distribution computation is itself a sum
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Figure 4.12: Velocity pdf of the Langevin equation trajectories in comparison with the
pdf of the process obtained with τ random. In both cases Dv = 1 and v0 = 0.

t WOU Wτ

10 · 〈τ〉 0.90 0.89
100 · 〈τ〉 0.91 0.89
500 · 〈τ〉 0.90 0.89

Table 4.1: Shapiro-Wilk test results.

of many (we neither know how many) other random variables defined in relation with
each time temporal step. Thus, taking a fixed observation time, we have 10000 variables,
which we know that in theory they are gaussian, that are obtained as sum of other
random variables with different distributions. Due to this even for the OU process
the distributions obtained are very noisy and the χ2-test cannot provide good results.
Anyway in Figure 4.12 it is possible to see that both the OU process and the process
with random τ approach the normal distribution just in the same way.

To ensure that this noisy results is really due to the integration scheme with ∆t-
variable method it is showed in Figure 4.13 the same results obtained with the simple
2step method, for the OU process and the τ random process respectively.

Since in these cases the χ2-test loses significance for the reasons previous reported,
also a non parametric test, the Shapiro-Wilk test, has been computed. By means of this
we avoid the need of a knowledge about the theoretical distribution and we just verify if
our sample is extracted from a normal distribution. The results of this test is reported in
Table 4.1; the closer is the test result to 1, the higher is the probability that our sample
belongs to a normal distribution .
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4.4.3 Distributions of D
V
: fractional processes

Through the randomization of τ we menage to reproduce anomalous diffusion pro-
cesses characterized by position and velocity variance scaling with power laws and Gaus-
sian pdf. Now we introduce the randomization of DV in order to obtain processes with
the same anomalous scalings but with non Gaussian pdf. In this Section we deal with
two different cases, Erdèly-Kober fractional diffusion and processes fractional in space.
These two cases can also be combined together to obtain the more general case of frac-
tional diffusion in space-time. A first example of the changes reported by the position
pdf through the randomization of DV is showed in Figure 4.14. We can see this plots
as an indirect proof of the Gaussianity of the samples obtained with the randomization
of τ . As a matter of fact the first pdf in Figure 4.14 display itself to be transparent,
giving rise to final pdfs totally defined by the distribution chosen for the DV . If the pdfs
obtained through the simulations described in the section above were not be Gaussian,
this would not happen.
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Figure 4.14: Pdfs of x for α = 0.5 and three different cases of DV .

Erdèly-Kober fractional diffusion

To obtain Erdèly-Kober fractional diffusion the velocity diffusion coefficient is chosen
according to a Mainardi function with the typical parameter, which we referred to as β,
that varies from 0 to 1. 10000 different random variables are generated to be combined
with the trajectories obtained before, as defined in Eq. (4.6). In this way it is generated
a stochastic process with a distribution given by:

P (x; t) =
1

2tΦ/2
Mβ/2

( |x|
tΦ/2

)
. (4.33)
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The asymptotic behavior of the new realizations pdf is studied in comparison with the
analytical asymptotic expansion of Eq. (4.33), which is reported below:

Mβ/2(|x| → +∞) ∼ |x|ae−b|x|c , (4.34)

with a = (β − 1)/(2 − β), b = (2 − β)2−2/(2−β)ββ/(2−β) and c = 2/(2 − β). Figure 4.15
shows the results of these comparisons for different values of β and α.

The pdf is symmetric so that it is proposed in some cases the left tail and in other
the right one in order to show both. As we can see from Eq. (4.34) the tails present
an exponential trend weighted by a power of x. This trend leads to a so fast decay,
especially for small values of α, that our data immediately reach values in which we
cannot manage to see in a precise way the asymptotic behavior due to the numerical
error. Anyway it is possible to notice that when α increases we are able to stretch to
spatial interval and the behavior can be better observed.

Space fractional diffusion

Space fractional diffusion processes are generated by means of DV distributed accord-
ing to an extremal Lèvy function LEXTν/2 , in order to obtain:

P (x; t) =
1

2tΦ/2
L0
ν

( |x|
tΦ/2

)
. (4.35)

The asymptotic expansion of the Lèvy function is given by:

Lθν(|x| → +∞) ∼ 1

|x|1+ν
(4.36)

and in this case the typical parameter ν is defined between 0 and 2 so we have more
cases for each value of α. Figure 4.16 shows the different cases studied.

Differently from the previous case the pawer law trend allows us to study in a better
way the asymptotic behavior also for the most critical values of ν. Small values of the
parameter ν present a slower decay that fits the data in a really good way. For values
of ν higher and higher we fall back into the previous problem about values comparable
with the numerical errors, especially for small value of α. Note that for ν = 1 we get a
Cauchy distribution while for ν that tends to 2 we approach the Gaussian pdf.
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Figure 4.15: Time fractional diffusion: D
V
∼Mβ.
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Figure 4.16: Space fractional diffusion: D
V
∼ LEXTν/2 .



Conclusions

The new approach described in Chapter 3 to model fractional diffusion was numeri-
cally implemented in this work, considering in particular the superdiffusive case.

We saw how this model, based on a Langevin approach, allows to manage in separate
ways the principal features of fractional dynamics: anomalous scaling and non Gaussian
pdf. The former is completely monitored by the randomization of the timescale τ while
the latter is controlled by the randomization of the velocity diffusivity coefficient D

V
.

We made use of a random variable generator expressly constructed to generate the
suitable distributions for the two random parameters proposed in Chapter 3.

A long tail distribution for the time scale parameter led to difficulties in the choice
of the integration scheme for the Langevin equation. As a matter of fact a such large
temporal interval for values of τ causes two opposite problems. For really small values
of the time scale we need an even smaller temporal step in order to have a serviceable
and accurate integration scheme. On the other hand the presence of large value for
τ forces the system to need much more time than a standard system to relax; thus,
the simulation must be long enough to allow us the observation of the stationary state.
Because of these two reasons a scheme with a variable temporal step, which is able to
take into consideration the τ variability, was chosen. Furthermore a cut off was realized
for values of τ less than 0.004. The numerical error of this scheme was evaluated to be
of the order of 10−2.

Once constructed a suitable integration scheme, the check of the expected trends for
the position and velocity variances was almost straightforward. It was not the same
to test the Gaussianity of the pdfs obtained. In this case the system complexity had
not always allow to achieve good results for statistic tests of Gaussianity, especially for
the selected integration scheme. Thus, studies on simulations obtained through a fixed
temporal step scheme was also introduced to prove the Gaussianity of our samples.

As far as the randomization of D
V

is concerned another kind of problem was faced:
the absence of an analytical form for the expected pdfs. It prevented the possibility to
use statistic tests and so that a study on the asymptotic behavior was realized. The pdf
tails sometimes overlapped to the numerical error and thus the fits with the asymptotic
behavior were not always extremely precise but both the numerical and the analytical
behavior always showed the same trend.

56
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Despite the difficulties above described, due essentially to the complexity of the sys-
tem, we can conclude that the results obtained in this thesis reproduce the expected
anomalous superdiffusive dynamics by means of the new approach here described.

We remember that this approach provides the possibility to deal with the randomiza-
tion of the parameters in two different steps and it represents a really important factor
for two main reasons. First of all it allows to generate a huge variety of stochastic
processes, discerning anomalous characteristics from the non Gaussian ones. Secondly,
since non Gaussian pdfs emerge when the whole system is considered and not in the
single realizations, it allows to reduce the computational efforts that the presence of non
Gaussian noise in the simulations had indeed required.

Finally, it is reported that the same path can be retraced to reproduce the subdif-
fusive case, introducing a harmonic potential into the Langevin equation. The study of
subdiffusion through this model is thus let as future research motivated by the promising
results achieved in the present thesis.
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Appendix

A Fractional derivatives

The Caputo time-fractional derivative tD
β
∗ is defined by its Laplace transform as∫ +∞

0

e−st
{
tD

β
∗ u(x; t)

}
dt = sβ ũ(x; s)−

m−1∑
n=0

sβ−1−n u(n)(x; 0+) , (37)

with m− 1 < β ≤ m and m ∈ N .
The Riesz-Feller space-fractional derivative xD

θ
θ is defined by its Fourier transform

according to ∫ +∞

−∞
e+iκx {xDν

θ u(x; t)} dx = −|κ|ν ei(signκ)θπ/2 û(κ; t) , (38)

with 0 < ν ≤ 2 and |θ| ≤ min ν, 2− ν as in

In literature the time-fractional derivative is sometimes considered in the Riemann-
Liouville sense. The relationship of the time-fractional Riemann-Liouville derivative with
the time-fractional derivative in the Caputo sense is the following

tD
β
∗ u(x; t) = tD

β u(x; t)− t−β

Γ(1− β)
u(x; 0) . (39)

The Erdélyi-Kober time-fractional derivative is defined as:

Dγ,µ
η φ(t) =

n∏
j=1

(
γ + j +

1

η
t
d

dt

)(
Iγ+µ,n−µ
η φ(t)

)
, (40)

where n − 1 < µ ≤ n and Iγ,µη with µ > 0, η > 0 and γ ∈ R is the Erdélyi-Kober
fractional integral operator given by:

Iγ,µη φ(t) =
t−η(µ+γ)

Γ(µ)

∫ t

0

sηγ(tη − sη)µ−1φ(s)d(sη) .

Also the Erdélyi-Kober time-fractional derivative can be related for a particular case to
the Riemann-Liouville derivative through:

D−µ,µ1 u(x; t) = tµtD
µu(x; t) . (41)
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B Special functions of fractional calculus

Mainardi fuction

The Mainardi function (ref) Mβ(z) is defined for every 0 < β < 1 and ∀ z ∈ C by:

Mβ(z) =
∞∑
k=0

(−z)k

k!Γ
[
− βk + (1− β)

] =
1

π

∞∑
k=0

(−z)k−1

(k − 1)!
Γ(βk) sin(πβk) . (42)

This is an entire function of order ρ = 1/(1− β) and it provides a generalization of the
Gaussian function which can be obtained for β = 1/2. For our purposes it is useful to
consider the main properties of Mainardi function for positive argument r ≥ 0:

• the Laplace transform is L
{
Mβ(r/c)

}
= cEβ

(
− crβ

)
, with c = const, R(s) > 0

and where Eβ(z) is the Mittlag-Leffler function;

• in the singular limit of β → 1− it tends to the Dirac function δ(r − 1);

• the asymptotic representation is

Mβ(r) ∼ A0Y
(β−1/2) exp(−Y ) , r → +∞

A0 =
1√

2π(1− β)ββ(2β−1)
, Y = (1− β)(ββr)1/(1−β) .

(43)

• it can be related to the class of extremal stable distributions by means of

Mβ(r) =
[
Lextβ (r)]−β (44)

Lévy stable distributions

The class of α-stable distributions is denoting by
{
Lθα(x)

}
with 0 < α ≤ 2 , θ ≤

min{α, 2 − α}. θ represents the skewness parameter and a stable pdf with extremal
value for it is defined extremal. Stable distributions admit a representation in term of
elementary functions only for some particular cases of the parameter values:

1. α = 2 , θ = 0 Gauss:

L0
2(x) =

1

2
√
π
e−x

2/4, −∞ < x < +∞ ;

2. α = 1/2 , θ = −1/2 Lévy-Smirnov:

L
−1/2
1/2 (x) =

x−3/2

2
√
π
e−1/4x, x ≥ 0 ;
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3. α = 1 , θ = 0 Cauchy:

L0
1(x) =

1

π(x2 + 1)
, −∞ < x < +∞ .

The main characteristics of the stable distributions are:

• they are kind ”attractors” for properly normed sums of independent and identically
distributed random variables (generalization of the Central Limit Theorem);

• for any value of α the pdfs are unimodal and indeed bell-shaped;

• they fulfill a symmetry relation Lθα(−x) = L−θα (x);

• because of the fat tails they have undefined variance for α < 2 and undefined
expectation value for α ≤ 1;

• their characteristic function can be expressed analitically

φ(k) =

{
exp

[
− |k|α exp(−π

2
iθC(α)sign(k))

]
, α 6= 1 ,

exp
[
− |k|

(
1 + 2

π
iθ ln(k)sign(k)

)]
, α = 1 ,

where C(α) = 1− |1− α|;

• their asymptotic behaviour is defined as Lθα(x) = O
(
|x|−(1+α)

)
, x→ ±∞ .







Bibliography

[1] R. Brown, Microscopical observations on the particles contained in the pollen of
plants and on the general existence of active molecules in organic and inorganic
bodies. Edin. Phil. Journal, July-September (1828), 358–371.

[2] J.M. Chambers, C.L. Mallows and B.W. Stuck, A method for simulating stable
random variables. J. Amer. Statist. Assoc. 71, No 354 June (1976), 340–344.

[3] A. Einstein, On the movement of small particles suspended in a stationary liquid
demanded by the molecular kinetic theory of heat. Ann. d. Phys. 17, (1905), 549–
560.

[4] I. Golding and E.C. Cox, Physical nature of bacterial Cytoplasm. Phys. Rev. Lett.
96, 098102 (2006).

[5] B.I. Henry, T.A.M. Langlands and P. Straka, An introduction to fractional diffusion.
World Scientific Lecture Notes in Complex Systems 9, (2009), 37–90.

[6] A. Janicki and A. Weron, Simulation and chaotic behaviour of α-Stable function.
Marcel Dekker, New York (1994)

[7] J.H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-Unkel, K. Berg-Sorensen,
L. Oddershede and R. Metzler, In Vivo anomalous diffusion and weak ergodicity
breaking of lipid granules. Phys. Rev. Lett. 106, 048103 (2011), 549–560.

[8] P.E: Kloeden and E. Platen, Numerical solution of stochastic differential equations.
Springer, Germany (1999)

[9] F. Mainardi, Yu. Luchko and G. Pagnini, The fundamental solution of the space-
time fractional diffusion. equation. Fract. Calc. Appl. Anal. 4, No 2 (2001), 153–192.

[10] F. Mainardi and G. Pagnini, The Wright functions as solutions of the time-fractional
diffusion. equations. Appl. Math. Comput. 141, (2003), 51–62.

[11] F. Mainardi, G. Pagnini and R. Gorenflo, Mellin transform and subordination laws
in fractional diffusion. processes. Fract. Calc. Appl. Anal. 6, No 4 (2003), 441–459.

63



BIBLIOGRAPHY 64

[12] F. Mainardi, G. Pagnini and R. K. Saxena, Fox H functions in fractional diffusion.
J. Comput. Appl. Math. 178, (2005), 321–331.

[13] F. Mainardi and P.Pironi, The fractional Langevin equation: Brownian motion
revisited. Extracta Mathematicae 11, (1996), 140–154.

[14] B.B. Mandelbrot and J.W. Van Ness, Fractional Brownian motions, fractional noises
and applications. SIAM Review 10, (1968), 422–437

[15] C. Manzo, J.A. Torreno-Pina, P. Masiggnan, G.J. Lapeyre Jr., M. Lewenstein and
M.F. Garc̀ıa-Parajo, Weak ergodicity breaking of receptors motion in living cells
stemming from random diffusivity. Phys. Rev X 5, 011021 (2015).

[16] P. Masiggnan, C. Manzo, J.A. Torreno-Pina, M.F. Garc̀ıa-Parajo, M. Lewenstein
and G.J. Lapeyre Jr., Nonergodic subdiffiusion from Brownian motion in an inho-
mogeneous medium. Phys. Rev. Lett. 112, 15063 (2014).

[17] M. Matsumoto and T. Nishimura, Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Transactions on Modeling
and Computer Simulation. (1) 8, (1988), 3–30.

[18] R. Metzler, J.H. jeon, A.G. Cherstvy and E. Barkai, Anomalous diffusion models
and their properties: non-stationarity, non-ergodicity, and ageing at the centenary
of single particle tracking, Phys. Chem. Chem. Phys. 16, (2014), 24128–24164.

[19] R. Metzler and J. Klafter, The restaurant at the end of the random walk: recent
developments in fractional dynamics descriptions of anomalous dynamical processes.
J. Phys. A: Math. Theor. 37, No 31 (2004), R161–R208.

[20] D. Molina-Garc̀ıa, T.M. Pham, P. Paradisi, C. Manzo and G. Pagnini, Fractional
kinetics emerges from ergodicity breaking in random media. Phys. Rev. E. Accepted
for publication (arxiv:1508.01361)

[21] E. W. Montroll and G. H. Weiss, Random walks on lattices. II. J. Math. Phys. 6,
(1965), 167–181.

[22] A. Mura and F. Mainardi, A class of self-similar stochastic processes with stationary
increments to model anomalous diffusion in physics. Integr. Transf. Spec. F. 20, No
3-4 (2009), 185–198.

[23] A. Mura and G. Pagnini, Characterizations and simulations of a class of stochastic
processes to model anomalous diffusion. J. Phys. A: Math. Theor. 41, (2008),
285003.



BIBLIOGRAPHY 65
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