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Abstract

Into the Thesis, the author will try to give the basis of risk management and
asset pricing. Both of them are fundamental elements to understand how
the financial models work; this topic is judged important in the perspective
of successive studies in financial math: having clear the starting point makes
things easier. From the title it is clear that modern and more complex models
will be only touched upon.
We decide to divide the dissertation in two different parts because, in our
opinion, it is more evident that two different ways to approach at credit risk
exist: on one side we try to quantify the risk deriving from giving credit, on
the other we will establish a strategy that allows us to invest money with the
aim to pay the other part of the agreement. Everything became more clear
chapter by chapter. Financial institutions like banks are exposed at both of
this type of risk.
Chapters 1 and 5 are the center of this thesis: they represent the zero point
from which the modern models were originated.
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Abstract

In questa tesi l’autore cercherà di affrontare i concetti della gestione del
rischio e dell’asset pricing con l’obiettivo di mettere in evidenza i risultati
fondamentali e lasciare al lettore una chiara idea dei processi di modellizza-
zione nel risk management. L’ottica con cui si consiglia di approcciarsi alle
seguenti pagine è quella della ricerca dei concetti necessari per iniziare lo stu-
dio della finanza matematica, come suggerito dalla dicitura "Introduction"
presente nel titolo.
Le due parti in cui è stata divisa la tesi rispecchiano l’animo della questione:
da una parte si ha la necessità di quantificare quanto sia possibile perdere
facendo credito, dall’altra si cerca di proteggersi dalla possibilità che, anti-
cipando concetti che saranno chiari durante la lettura, sia il creditore stesso
ad essere insolvente. Questa duplicità nasce dal tipo di operazioni che si com-
piono: il primo è un rischio intrinseco al credito, il secondo è conseguenza
della casualità dei mercati. Istituzioni finanziarie come le banche sono un
esempio in cui entrambi gli elementi sono presenti: esse prestano denaro fa-
cendosi carico di una possibile insolvenza del debitore e, al contempo,
operano nel mercato azionario.
Cuore della trattazione sono i Capitoli 1 e 5 ove vengono presentati i punti
di partenza delle più complesse teorie moderne.
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To Laura

"What then shall we choose?
Weight or lightness?"

Milan Kundera
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Introduction

It is commonly known that the credit risk plays a central role into firm
planning and in firm models. Since the central business of the banks is
either giving credit either making investments, every day, every banks ex-
poses themselves to the intrinsic risk in the credit or in the randomness of
the market. Following the numerous crisis, it does not matter if small or big,
the finance corporations have tried more and more to reduce the riskiness
of their operations; so, in this aim, risk managment was introduced. The
credit risk measurement models are focused into the correlation between the
elements of portfolios, into maximizing the gain by minimizing the losses and
they try to indicate a "good" way to follow. These models are also made
to valuate the riskiness of a certain credit exposure or of a whole exposure
portfolio. First of all, we want to explain what "credit risk" exactly means.

Many different definitions of credit risk exist, nevertheless we present the
only one we judge useful for our aim. Embracing the definition by [3], credit
risk refers to

"the possibility that an unexpected change in a counterparty’s creditworthi-
ness may generate a corresponding unexpected change in the market value
of the associated credit exposure".

In order to render this definition clear and without misunderstandings, we
are going to analyze three fundamental concepts.

1. Default and migration risk − In short, credit risk includes the default
risk and the migration risk. The first of them is associated to the
insolvency of the borrower hence to the possibility that the borrower
does not respect the credit line or interrupt the payments. The second
one is tied to the deterioration in the borrower’s credit rating.

2. Risk is a random event − Insomuch as this thought is trivial, we think
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that it is important to stop to reflect on. The deterioration in the credit
rating or the default of the borrower is both unpredictable events, so it
is natural and important considering risk like a random event. Even if
this words sounds obvious, it has been necessary many years to arrived
to plug in risk inside firm models.

3. Credit Exposure − Last but not least it is the concept of credit expos-
ure deriving from the other financial operation that the bank makes.
So, the correct measurement of credit risk requires the valuation of the
economic value of the exposure, but the most important bank’s invest-
ment are connected to illiquid assets, which are not listed in the market.
So internal asset-pricing model is necessary. For this reason, we are go-
ing to pledge many time to illustrate the indispensable mathematician
instruments for building asset pricing models.

Chapter 1 − The basics is devoted to answer at "How can default risk be
measured?". We will start introducing the fundamentals and step by step
we will develop them up to give a stately mathematician structure as the
concepts of portfolio or replicant strategy. We will conclude the chapter por-
ing over two fundamental risk measures: the value at risk and the expected
shortfall.

Chapter 2 − Loss Distribution generalizes the precedent treatise lifting up
the lecture in a mathematician way. We will associate a distribution at the
losses and after we will give the model with a random vector of default prob-
ability. It is used the word "mixture" for the two distributions because in
both of them not only the losses variete but even the default probability.

Chapter 3 − Non-Linear Portfolio is strictly correlated at the Chapter 7.
Indeed we will use the concepts introduced in Hedging. It would appear
quite strange using tolls before introduced them, but it has been necessary
for maintaining the continuity of notation and the treatise. We will touch
upon only two methods in order to work with no-linear portfolio.

Chapter 4 − Put and Call options rapidly presents the Put options and
the Call options and the relation that exists between them by the Put −
Call parity formula.

Chapter 5 − A Discrete World introduces the main concepts that we will
generalize in the consecutive chapter. After a quick recall at the main defin-
ition, we will immediately enter in the heart of this second part: the asset
pricing in a discrete way. We will spend a bit more time on the risk-neutral
probability, then in the other idea; this because when we will pass at the
continuos formulation, it will be important having clear what this measure
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is.

Chapter 6 − A Continuos World is the starting point for the asset pricing.
Considering the reader practical with stochastic equation, we will try to give
a deepened treatise of the Black-Sholes model and of the Merton model. The
chapter also contains a brief hint to the equity case.

Chapter 7 − Hedging tries to introduce the reader at the procedure of
hedging. Nowadays, hedging becomes more and more essential in the fin-
ancial models, and, more generally, one chooses a strategy which can resist
at the variations in those parameters from which the model depends on. Ob-
viously, this chapter does absolutely not go in the deep of the matter; a huge
literature of the matter exists. Who reads can see this chapter like a quick
and light introduction to the practice of hedging.
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Part I

Credit Risk Management
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Chapter 1

The Basics

In this chapter we will give some tools and the relative interpretation for the
risk-management. We will start considering only one asset into our portfolio
and thus we are going to introduce the loss derived by an exposure in the
credit. After talking about expected loss, i.e. the amount of money that the
creditor foresees to lose in case obligor defaults, we will spend time to speak
about unexpected loss, how to calculated it and its importance into the credit
risk. We will terminate the chapter giving the definition of value at risk, in
dependence of a specific level of confidence α, and the quantities that one
can derive from it: the economic capital and the expected shortfall.

1.1 Expected Loss
The expected loss is the mean value of the probability of future losses. In or-
der to estimate the loss on a credit exposure, a bank needs three parameters:

EAD The exposure at default. This is a random variable represented by the
current exposure, called outstandings, plus the possible variation of the
amount of the loan which may occur from now to the date of possible
default, said commitments. The commitments indicate the further credit
which the bank has decided to give to the borrower only if he claims it.

PD The probability of defaults.

LGD The lost given default: how many parts of the debt the bank expects to
loss if the borrower defaulted.

Therefore, it results natural to define the loss of any obligor such as

L̃ = EAD× LGD× L (1.1)
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where L = 1D, D stands for the event "The obligor defaults after a time T"
and PD is exactly P(D).

Definition 1.1.1. Considering the variable L̃ as defined in (1.1), we call its
expectation

EL = E[L̃] (1.2)

the expected loss of the underlying credit-risky asset.

When the variables present in (1.1) are independent, by the property of
mean value, the above formula becomes

EL = E(EAD)× E(LGD)× PD

In the case in which EAD and LGD are also constant, (1.2) takes place

EL = EAD × LGD × PD (1.3)

In the real life not only EAD is not constant, in fact it usually depends on
uncertainties in payment and on the chosen planning horizon, but even the
three variables are hardly ever independent. First of all, the greater is the
probability the obligor defaults, the greater is the possibility the creditor
losses the amount of money he expected to loss (LGD); hence, to cover the
risk of loss, the creditor starts to sell collaterals, triggering, due to the law
of supply and demand, a chain process which terminates in the devaluation
of the collaterals and so in the grew of the LGD (as it happened in the crisis
of sub-prime loans). At the end, in hypothetic financial stress period, that
is a period in which obligors hardly pay back landers, the creditors tend to
redefine a new credit line for obligors exposing themselves to a major risk of
default; hereby we can note a strict link between EAD and PD.

We end this part on expected loss with a very quick discussion about PD,
EAD and LGD.

1.1.1 PD

Computing default probability is the starting point in order to have a good
model that works out credit risk of the obligor. The most important way for
getting the PD value is the rating. Originally, rating was used to put firms
on an ordinal scale by credit quality. Rating agencies do not directly assign
PDs to rated clients but they assign ratings and from them they obtain the
probability of default. Therefore, one should pay attention when dealing
with these two different objects. For the ones interested in the parameters
which fixed the rating, these sites are available:
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www.moodys.com

www.standardandpoors.com

www.fitchratings.com

Summarizing, a rating grade and its assigned default probability address the
creditworthiness of a client. Whereas a detailed study of ratings isn’t in the
aim of this thesis, in the sequel we only list the four broad categories in which
the world of the rating system can be divided:

1. Casual Rating Systems

2. Balance Sheet Scorings

3. Private Client Scorings

4. Expert Rating Systems

The procedure by means of we give out a PD from a rating grade is named
calibration.

1.1.2 EAD

The exposure at default specifies the exposure the bank does have to its
borrowers. Banks stipulate with obligors the so called credit lines, which
work like a credit limit for the single-obligor exposure. The part of credit
line the borrower has already taken, is said outstandigs, instead the part the
borrower can request is called commitments. In other words, the bank fixes
a credit limit for the applicant and divides this limit in two parts: a drawn
part, i.e. the amount of money the borrower will receive immediately, which
is what we have called outstandings and a requesting part, namely the credit
the bank has established to lend to the debtor only if he will require it. In
this context, randomness doesn’t get involved, fixed is fixed, and in the case
obligor’s default takes place, outstandings are apt to recovery and it could
be lost in total. We have to consider the exposure originated from the open
part of the credit line like a random variable.

1.1.3 LGD

Before all, it is important to clarify that one can see LGD either as an amount
of money and as a percentage quote. Factors affecting LGD can be grouped
in four main categories:
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(I) The characteristic of credit exposure;

(II) The characteristic of the borrower;

(III) The peculiarities of the bank managing the recovery process;

(IV) External factors.

Despite the theme is interesting and very debated, we are not going to deepen
it more: we are only introducing the mean instrument for talking about risk
and leaving an idea of what we will do in the next section.

1.2 Unexpected Loss

In the previous section we have introduced the expected loss but it’s likewise
natural to measure potential unexpected loss that is how much the EL is
trustworthy. A possible application of this value might be the valuation of
the liquidity which is necessary to the bank in order to cover itself from
unforeseen losses.

As a measure for the variation of EL, the standard deviation of L̃ , defined
in (1.1), is the natural first choice.

Definition 1.2.1. We call unexpected loss of the underlying loan or asset the
standard deviation

UL =

√
V[L̃] =

√
V[EAD × LGD × L]

Proposition 1.2.1. If EAD is deterministic and the LGD and the default
event D are independent, the unexpected loss of a loan is given by

UL = EAD ×
√

V[LGD]× PD + E2 × PD(1− PD)

Proof. Foremost, squared the UL

UL2 = V[EAD × LGD × L]

= EAD2 × V[LGD × L].
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From V[X] = E[X2] − E[X]2 we get

V[LGD × L] = E[LGD2 × L2]− E[LGD × L]2

= E[LGD2]E[L2]− E[LGD]2E[L]2

= E[LGD2]P[D]− E[LGD]2P[D]2

= E[LGD2]PD − E[LGD]2PD2

= E[LGD2]PD − E[LGD]2PD2 + E[LGD]2PD − E[LGD]2PD

= PD
(
E[LGD2]− E[LGD]2

)
+ E[LGD]2PD

(
1− PD

)
= V[LGD]PD + E[LGD]2PD

(
1− PD

)
via the independence in hypothesis and for the definition of L.

Let us to consider a family of m loans

L̃i = EADi × LGDi × Li

with Li = 1Di , P(Di) = PDi. This family is said portfolio.

Definition 1.2.2. The portfolio loss is a random variable defined as

L̃PF =
m∑
i=1

L̃i =
m∑
i=1

(
EADi × LGDi × Li

)
Definition 1.2.3. Given a portfolio of m loss variable, the expected and
unexpected loss of the portfolio are

ELPF = E[L̃PF ] and ULPF =

√
V[L̃PF ].

Remark 1.2.1. For a portfolio of m loans the EL is always given by

ELPF =
m∑
i=1

ELi

where ELi indicates the expected loss of single loss L̃i.

We usually have a correlation between variables inside the same portfolio
so the unexpected loss isn’t linear, therefore we enunciate the following result.
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Proposition 1.2.2. Taken m loss variables with deterministic EADs, we
have

ULPF =

√√√√ m∑
i=1

m∑
j=1

(
EADi × EADj × Cov

[
LGDi × Li, LGDj × Lj

])
(1.4)

Proof. By means of the formula

V
[ m∑
i=1

ciXi

]
=

m∑
i=1

m∑
j=1

cicjCov
[
Xi, Xj

]
in the case of square-integrable random variables X1, . . . , Xm and arbitrary
constants c1, . . . , cm, we have the thesis.

Proposition 1.2.3. Given a portfolio as we have usually taken, with de-
terministic EADs and deterministic LGDs we have

UL2
PF =

m∑
i,j=1

(
EADi × EADj × LGDi × LGDj× (1.5)

× ρij
√
PDi(1− PDi)PDj(1− PDj)

)
(1.6)

Proof. The result follows directly from the (1.4), from

Cov[Li, Lj] =
√

V[Li]V[Lj]Corr[Li, Lj]

and from V[Li] = PDi(1 − PDi) for all i = 1, . . . ,m.

Before generalizing, we should stop and think about the sense and im-
portance of correlation. For understanding better, we consider a portfolio in
which there are only two loans with LGD = 100% and EAD = 1. Then we
work only with Li for i = 1, 2 and we set ρ = Corr[L1, L2], pi = PDi.
Then, we have

UL2
PF = p1(1− p1) + p2(1− p2) + 2ρ

√
p1(1− p1)

√
p2(1− p2). (1.7)

Relative to the default correlation ρ, we may have three different situations:
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• ρ = 0.

In this context the third term in (1.7) vanishes. Fairly unusual in any
portfolio, we can read ρ = 0 like an optimal diversification. This par-
ticular and barely feasible case refers to a situation in which the element
of the portfolio are totally uncorrelated. Investing in many different as-
sets usually the full-scale risk decreases, in fact the defaulting of a large
number of assets at the same time it is pretty improbable. Seeing the
UL as a substitute1 for portfolio risk, in this case we have a minimiza-
tion of the risk of simultaneous defaults.

• ρ > 0.

In this case, we say that if one loan defaulted, it would increase the
likelihood that the other will also default. Looking at the conditional
default probability of the second counterparty and assuming that the
first obligor has already defaulted:

P[L2 = 1|L1 = 1] =
P[L1 = 1, L2 = 1]

P[L1 = 1]
=

E[L1L2]

p1

=
p1p2 + Cov[L1, L2]

p1

= p2 +
Cov[L1L2]

p1

.

So we see that a positive value of ρ leads the default probability of ob-
ligor 2 to increase with correlation between two loans. In other words,
if Cov[L1, L2] > 0, whatever default of any assets in the portfolio has
remarkable effect on the other facilities.
The extreme case is the case of ρ = 1, that is the case of perfect correlation.
If we assume even p1 = p2 = p equation (1.7) becomes

ULPF = 2
√
p(1− p)

i.e. it is as if our portfolio had only one asset but it would be doubly
risky; this situation is said concentration risk. Going on clarifying, the
default of one obligor makes the other obligor defaulting almost surely.

1Mark that in comparison with the EL, the unexpected loss works out the "true"
uncertainty the bank takes on when investing in a portfolio.

25



• ρ < 0.

This is the symmetrical situation of that which came first. We only
discuss the case of ρ = −1, that is the case of perfect anti-correlation.
One can view an investment in asset 2 like a nearly perfect hedge against
an investment in asset 1. Furthermore, from (1.7) the UL vanishes in
the case of perfect hedge: the risk of asset 1 has been eliminated.

We are now ready for a major step forward. We consider now a discrete-
market model in which we presume that all transactions, for a set time in-
terval [0, T ], happened only at times

0 = t0 < t1 < · · · < tN = T

In the market we have one risk-less assetB and d risky assets S = (S1, . . . , Sd)
which are stochastic processes on a probability space (Ω, F , P ). In this con-
text, Ω has a finite number of elements, F = P(Ω) and P ({ω}) > 0 for
any ω ∈ Ω. Bonds are deterministic so that we have

Bn = Bn−1(1 + rn) n = 1, . . . , N

where rn, such that rn + 1 > 0, is the risk-free rate in the period [tn−1, tn]
and B0 = 1. On the other hand, we have

Sin = Sin−1(1 + µin), n = 1, . . . , N

where Sin indicates the price of i-th asset at time tn, µin, for which (1 + µin) >
0, is a real random variable that denotes the yield rate of the i-th asset in
the n-period [tn−1, tn].
Knowing this, Si = (Sin)n=0,...,N is a discrete stochastic process on (Ω, F, P )
and we name (S,B) a discrete market on the probability space (Ω, F, P ).
We set

µn = (µ1
n, . . . , µ

d
n) 1 6 n 6 N

and we introduce the filtration (Fn) defined by

F0 = {,Ω} (1.8)
Fn = σ{µ1, . . . , µn} 1 6 n 6 N (1.9)

In this case we can interpret the σ-algebra Fn like the total information
we have in the market at time tn. Remark that one can also have Fn =
σ(S0, . . . , Sn) for 0 6 n 6 N and in this context we have FN = F.

We are now ready for talking about the portfolio, the value of the portfolio
and losses.
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Definition 1.2.4. We define a strategy (or portfolio) like a stochastic process
in Rd+1

(α, β) = (α1
n, . . . , α

d
n, βn)n=1,...,N

where αin indicates the quantity of asset Si present in the portfolio and βn
the amount of bond during the period [tn− 1, tn].

Consistently at this notation we denote the value of portfolio (α, β) at
time tn by

V (α,β)
n = αnSn + βnBn, n = 1, . . . , N (1.10)

where the product αnSn stands for the scalar product in Rd that is

αnSn =
d∑
i=1

αinS
i
n n = 1, . . . , N

therefore at the initial time the value of our portfolio is

V
(α,β)

0 =
N∑
i=1

αi1S
i
0 + β1B0

Definition 1.2.5. For a given time horizon ∆, such as 1 year or 10 days,
the loss of the portfolio over the period [tn, tn+∆] is a random variable and it
is defined as

L
(α,β)
[tn,tn+∆] = L

(α,β)
n+∆ := −(V

(α,β)
n+∆ − V

(α,β)
n )

The distribution of L(α, β)
n+ ∆ is termed the loss distribution.

We now introduce some notions that we will use in the last chapter.

Definition 1.2.6. We say (α, β) to be self-financing if the following relation
is valid

V
(α,β)
n−1 = αnSn−1 + βnBn−1 ∀n = 1, . . . , N (1.11)

Remark 1.2.2. Consider the (5.1) at time tn+1 and the (5.2) at the time tn,
we have the follow increment

Vn+1 − Vn = αn+1(Sn+1 − Sn) + βn−1(Bn−1 −Bn)

⇒ ∆V = α∆S + β∆B

therefore the value of the portfolio depends on two things:

- the price ∆S or the bond ∆B
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- the strategy (such as we can invest more money)

Then the self-financing condition imposes that we can’t change the strategy,
i.e. the value of the portfolio is due to the price.

Lemma 1. Let a self-financing strategy (α, β) be given; its value is work out
by V0 and recursively by

Vn = Vn−1(1 + rn) +
d∑
i=1

αinS
i
n−1(µin − rn) ∀n = 1, . . . , N (1.12)

Proof. From (5.3), we have

Vn − Vn−1 = αn(Sn − Sn−1) + βn(Bn −Bn−1)

=
d∑
i=1

αinS
i
n−1µ

i
n + βnBn−1rn

=
d∑
i=1

αinS
i
n−1(µin − rn) + rnVn−1

where the last parity is deduced from the definition of self-financial strategy.

Definition 1.2.7. A strategy (α, β) is predictable if (αn, βn) is Fn measur-
able for every n = 1, . . ., N .

Definition 1.2.8. We call A the family of acceptable strategies, namely the
family of all self-financing and predictable strategies of the market (S,B).

Proposition 1.2.4. Let be V0 ∈ R and α a predictable process; then we
have only predictable process β such that (α, β) ∈ A and V (α, β)

0 = V0.

Proof. We define the process

βn =
Vn−1 − αnSn−1

Bn−1

∀n = 1, . . . , N

where the process (Vn) derives from (5.3). For how we built (βn), we have
the claim.

Definition 1.2.9. Let (α, β) ∈ A be given, we define the gain of the strategy
like

g(α, β)
n =

n∑
k=1

(
d∑
i=1

αikS
i
k−1µ

i
k + βkBk−1rk

)
(1.13)

and we get
Vn = V0 + g(α, β)

n (1.14)
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1.3 Risk Measures
Considering the UL of a portfolio as a cushion (in terms of the amount of
money) for periods of financial distress isn’t the best choice: there may be
a considerable probability that losses will go beyond the expected loss more
than the unexpected loss. Because of that, we have to look for different ways
to quantify risk capital. The most common way to estimate risk capital is
economic capital2.

Before continuing with the economic capital, it’s important recalling and
introducing some mathematical concepts. The purpose of this section is to
quantify the value of the risk, so it is natural to speak about a risk measure

ρ : {distribution} → R

defined on the space of distribution and with real value. If two random
variables are law − invariant, then they have the same risk value:

X ∼ Y ⇒ ρ(X) = ρ(Y ) (1.15)

So one can define risk measure only on some set of random variables: for
(1.15), starting from the space of distribution is the same as moving from a
space of random variables. Yet, it is important to underline that there are
some cases in which the risk measure can only be defined on the space of
distributions.
Of course, ρ, should convey some notion of riskiness: a function like ψ(X) =
E[X2], though being evidently law-invariant, is not a sensible choice for a
risk measure.

1.3.1 Before VaR and ES

Markowitz, in his Portfolio Theory, considered standard deviation as a
risk measure:

ρ(X) = σ(Y ), X ∈ L2 = {X |E[X2] <∞}

Indeed, defining the risk measure in this way respects the characteristic of
being law-invariant (two random variables with same distribution have the
same deviation), yet this is rather a dispersion measure:

· it depends in the same way on the right and left tails of distribution:

σ(−X) = σ(X).

2Also said Capital at Risk, indicated with CaR
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A financial interpretation could be that the losses have the same risk
of the earnings, i.e. this measure is not coherent with the concept of
risk at all.

· it does not depend on monetary shifts

σ(X +m) = σ(X), m ∈ R

that is if we add more money, we have the same risk as before.

The (lower) standard semi-deviation is considered a reasonable adjustment:

ρ(X) = σ−(X) =
√
E
[
X2
left

]
where

Xleft = (X − E[X])− =

{
0 if X 6 E[X]

|X − E[X] | if X > E[X].

We can see that it only depends on the left tail Xleft (i.e. the losses) and
the threshold used here x∗ = E[X] can be changed. However, σ− is still
insensitive to monetary shifts. Another modification of the standard semi-
deviation is

ρ(X) = −E[X] + a σ−(X), a > 0

As it is possible to note, by this definition, the risk measure only depends
on the left tails and on monetary shifts. It also satisfies the translation
equivariance property:

ρ(X + m) = ρ(X)−m, m ∈ R

therefore if we investe more money, the risk decreases with it.

1.3.2 VaR and ES

Definition 1.3.1. Considered a random variable on the probability space
(Ω, F, P ), an α-quantile is any real number q such that

P[X 6 q] > α and P[X < q] 6 α

The set of all α-quantiles of X is an interval
[
q−α (X), q+

α (X)
]
, where

q−α (X) : = inf{x |P[X 6 x] > α}
q+
α (X) : = inf{x |P[X 6 x] > α}

= sup{x |P[X < x] 6 α}
(1.16)

In this context, consistently with the notation that we have introduced before,
our random variable is the loss of the portfolio (α, β) ∈ A .
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About Quantiles

It is best practice, if one has a random variable X with cdf F (x) = P (X >
x) invertible (i.e. strictly increasing and continuous), giving the definition of
quantile, given a confidence level α ∈ (0, 1), as

qα(X) = qα = F−1(α)

By this definition, qα is the unique real number satisfying

F (qα) = P (X 6 qα) = α

If X is continuous and its support is connected, i.e. it is an interval or a line,
then F is invertible at any α. In this case the quantile satisfies∫ qα

−∞
f(x)dx = α

The figure (1.1) give us an idea of the difference existing between the two
notations.
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(a) Quantile of order α = 20% in terms of F

(b) Quantile of order α = 20% in terms of f

Figure 1.1: Two particular examples
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Remark 1.3.1. We rapidly list some values of quantiles construed from the
cdf of the random variables

4 Exponential distrution
Consider X ∼ Exp(λ), with λ > 0 then the cdf is

F (x) = 1− e−λx, x > 0

The cumulated function F is invertible on [0,∞) so is worth qα =
F−1(α) for any α, therefore setting

1− e−λqα = α ⇒ qα = −1

λ
log(1− α)

4 Uniform distribution
If U ∼ U(0, 1) it has as cumulated function F (x) = x for every x ∈
(0, 1). So, the quantile is, trivially,

qα = α

4 Cauchy distribution
In this case, we have

f(x) =
1

π(1 + x2)

Then, resolving the integral we obtain

F (x) =
1

π

∫ x

−∞

dy

1 + y2
=

arctan(x)

π
+

1

2

from which we easily derive

qα = tan
(
π
(
α− 1

2

))
It is a matter of fact that even when the density is known, in many cases

getting the expression for the quantiles is difficult or even impossible. This
is the case of two essential distributions: the normal and the t-Student.

The quantile fo the standard normal are key quantities for our purpose. They
are denoted with zα and, by definition, they satisfy

Φ(zα) = P
(
Z 6 zα

)
=

∫ zα

−∞

e
−x2

2

√
2π
dx = α
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where Z ∼ N0,1 and Φ is the cdf function for the normal that is not known
in closed form. However, the quantile zα can be numerically approximated
with great precision.

Let us peak about the t-Student distribution. Let a random variable X be
given. If X has

f(x) = cν

(
1 +

x2

ν

)− ν+1
2

as distribution, we will say that X has a t-Student distribution with ν > 0
degrees of freedom. The positive number cν is a suitable normalizing con-
stant. Note that t-Student distributions are symmetrical around 0 and have
tails heavier than the normal one. The quantile of order α of the t-Student
distribution with ν degrees is indicated with tν, α. Except for few cases, like
ν = 1, ν = 2, ν = 4, the quantile tν,α cannot be written explicitly; never-
theless, like in the normal case, quantiles easily be numerically approximated.
We remark that when ν = 1 we recover the Cauchy distribution, indeed in
this case c1 = 1/π. So we already computed t1,α.
As we already said, the previously definition of quantile cannot be applied
whenever F is not invertible, this happens when

1. F is not strictly increasing corresponding to α

2. F has a jump corresponding to α

When we cannot work with the cdf of the random variable, we get the general
definition of quantile that we did in (1.16). This is the case of a discrete
random variable: its cdf is a step function.

Quantiles of transformed r.v.

Let X be a random variable and h be a continuos and strictly increasing
transform (hence, h is invertible).

Lemma 2. If X and h are like above, then, for any α, the following relation
holds

qα(h(X)) = h
(
qα(X)

)
Proof. We must divide the case when the cdf of X, FX , is invertible from
the case in which FX is not invertible. The second case requires a bit more
work than the first and it in not useful for our purpose, so we omit it. If FX
is invertible we have:

P (X 6 qα(X)) := α := P
(
h(X) 6 qα

(
h(X)

))
= P

(
X 6 h−1(qα

(
h(X)

)
)
)
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therefore qα(X) = h−1
(
qα(h(X))

)
. So we have proved the claim; note that

the third equation requires h increasing.

Example 1.3.1. For instance, if we get h(x) = ex or h(x) = log(x) we
have

qα(eX) = eqα(X) and qα

(
log(X)

)
= log

(
qα(X)

)
Instead, if we consider h(x) = |x| we have qα(|X|) 6= |qα(X)|, since h is not
always increasing.

In particular, if we consider h(x) = ax + b for positive a, we obtain

qα

(
aX + b

)
= aqα

(
X
)

+ b (1.17)

Consider, now, a r.v. X with finite mean µ and finite variance σ2; its stand-
ardized version is

X̃ =
X − µ
σ

(1.18)

with mean E[X̃] = 0 and variance var(X̃) = 1. Then for the equivalence
(1.18) we have

X = σX̃ + µ

therefore, for the (2), we have

qα(X) = σqα(X̃) + µ (1.19)

An immediate consequence is that for computing quantile is enough to con-
sider the standardized version of random variable.

Cornish-Fisher approximation

When we do not know the exact distribution of X but just the first four
moments, we can use the Cornish-Fisher approximation of a quantile. In
particular if X is standard, but not necessarily normal, with finite skewness
ξ and kurtosis κ, the Cornish-Fisher approximation is

qα(X) ≈ zα + ξ
z2
α − 1

6
+
(
κ− 3

) z3
α − 3zα

24
(1.20)

where zα is the quantile of standard normal. How we can note, the closer is
the distribution of X to a standard normal, the better is the approximation;
this happen when ξ is close to 0 and κ is close to 3. In the other case, the
mathematic literature discourage the use. In the case in which X is not
standard, we apply (1.20) to X̃ and then we use (1.19).
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Value at Risk

Definition 1.3.2. Given a confidence level α ∈ (0, 1), the Value-at-Risk of
the portfolio (α, β), denotes with V aRα, at the confidence level α is determ-
ined by the smallest figure q with the property the likelihood that the loss
L(α, β) is greater than q isn’t bigger than (1 − α). Formally

V aRα := inf{q ∈ R |P
(
L(α,β) > q

)
6 1− α}

= inf{q ∈ R |P
(
L(α,β) 6 q

)
> α}

In other words, V aR is a quantile of the loss distribution.
In financial terms, V aRα(L(α,β)) indicates the smallest quantity of capital
which, if added to L(α,β) and invested in a risk-free asset, holds the probability
of a negative outcome under the level α. Remark that in spite of Value at
Risk limits the odds of a loss, it doesn’t state the amount of the loss if it
happens.

Indicate with µ the mean of the loss distribution. Sometimes the statistic

V aRmean
α := V aRα − µ

is used for capital-adequacy aim instead of the ordinary VaR. The difference
between the two quantities is small in market risk, in which the time horizon
is little and µ is near to zero. It becomes considerable in credit risk where
the risk-management horizon is longer. Especially in loan pricing, one uses
V aRmean to work out the economic capital essential in order to cover unex-
pected losses in a loan portfolio.

Connected with the initial notation, we enunciate the following definition.

Definition 1.3.3. Let a portfolio
(
L̃i)i= 1,...,m be given. The economic capital,

EC, with respect to a specify level of confidence α, is the α-quantile of the
portfolio loss L̃PF minus the EL of the portfolio:

ECα = qα − EL

where qα is given as

qα = inf{q > 0 | P[L̃PF 6 q] > α}.

We reduce qα by the EL because is a best practice decomposing the total
risk capital (that is the quantile) into a first part buffering the expected losses
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Figure 1.2: The portfolio loss distribution

and a second part covering the unexpected losses. In the figure (1.2), we sum
up all quantities that we have met up until now.

Now, we list the most important criticism moved to the VaR models without
deepening the single (hypothetical) shortcoming.

1. VaR models disregard exceptional events
The first disapproval is intrinsic into the definition. VaR models is
strictly linked to the fixed confidence level therefore it is not feasible
to forecast all possible losses, that is the possible risks, that a financial
institution must be able to cope with.

2. VaR models leave out customer relations
A mechanical application of VaR might carry a bank to suddenly close
all positions for which risk-adjusted return is inadequate. In other
words, the bank may adopt a short term view that might conduce to
an unawareness of long term customer relations.

3. VaR models generate diverging results
Some researchers have found considerable discrepancies3 when compar-

3Same discrepancy of results was noticed by the Basel Commitee during an experiment.
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ing the results by different approaches. Even if these examples don’t
prove the unreliability of VaR, they indicate that the model should be
used with caution.

4. VaR models could penalize diversification
Dividing the investment in two or more assets carries Var to increase
and then to an increment of likelihood that something goes wrong,
without considering the substantial drop of the EL. Hereby one could
say that enhancing portfolio with respect to VaR may bring about
concentrating portfolio in one single asset with a very small PD; in this
way, the investor is exposed to big losses.

5. VaR models amplify market instability
In the case of all financial institutions in the financial markets adopt a
VaR model, joined with any market shock, it would happen that every
traders receive all the same operational signal, thus if before we had
an increase in volatility, now we have a much higher volatility (it’s the
case of subprime loans).

6. VaR measures "arrived when damage has already been done"
One last criticism concerns the delay in whom VaR shows any market
shock, therefore it could be difficult preventing losses.

Expected Shortfall

An alternative to EC is a risk capital based on Expected Shortfall, ES.

Definition 1.3.4. Let a portfolio
(
L̃i)i= 1,...,m be given. The expected short-

fall, EC, with respect to a specify level of confidence α, is defined as

ESα(L̃PF ) = E[L̃PF | L̃PF > V aRα(L̃PF )]

But we can give a more useful definition of ES. Instead of setting a
quantile at a particular confidence level α, we calculate the Expected Short-
fall like a VaR average across the entire tail specified by α:

ESα(L̃PF ) =
1

1− α

∫ 1

α

V aRβ(L̃PF ) dβ (1.21)

We can see this quantity as a measure of a risk aversion; furthermore, note
that ES focuses on the expected loss in the tail of the portfolio loss distribu-
tion, starting at V aRα. See the figure (1.3).

For examining in depth the problem, see Beder (1995), Marshall and Siegel(1996) and
Jordan and Mackay (1996)
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Figure 1.3: Tail conditional expectation E[L̃PF | L̃PF > V aRα(L̃PF )]

About VaR and ES

1. Note that both the two measures consider only the left tail (losses),
but ES contrarliy to VaR, depends on the entire left tail.

2. For quantile definition, V aRα and ESα are increasing in α.

3. If X has unbounded below support (i.e. it permits arbitrary losses) we
have

V aRα(X), ESα(X)→∞ as↘ 0

4. From Var and ES definitions we obtain

ESα(X) > V aRα(X)

that is ES is more conservative than VaR.
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5. The ES is coherent while Var it is not:

ESα(L̃PF1 + L̃PF2) 6 ESα(L̃PF1) + ESα(L̃PF2)

and, since we have obtained a bond for ES, this inequality is reassuring.

6. VaR is defined for all distribution, while the ES requires that the left
tail is integrable; for instance ES is not defined for Cauchy distributions.
Some distributions used in operative models or in insurance risk pose
this problem while this is not generally the case in market or credit
risk.

7. Computationally, Var is more easy to compute than ES that involves
a bit more work.

8. From (1.17), it immediately follows

V aRα(aX + b) = aV aRα(X)− b
ESα(aX + b) = aESα(X)− b

Therefore, both risk measures are positively homogeneous, i.e. ρ(aX) =
aρ(X), and translation equivariant, i.e. ρ(X + b) = ρ(X) − b. In
particular, if X has finite mean µ and finite variance σ2 with X̃ its
standardized version, then

V aRα = σV aRα(X̃)− µ ESα(X) = σESα(X̃)− µ.

40



Chapter 2

Loss Distribution

In this chapter we are going to give to default model a probabilistic approach.
In Chapter 1 we have defined loss variables like a litmus paper for default
events; hence now we try to bestow a distribution on this random variables.
We also attempt to furnish a financial interpretation with our treatise. We
are going to focus on three different well note distribution: Bernoulli and
Poisson distribution. Depending on what distribution we choose, we reap a
different model, into the set of industry models: Bernoulli’s distribution is
associated to models by Moody’s KMV, RiskMetrics Group and more bank-
internal models. CreditRisk+ is based on Poisson’s distribution. At the
end we compare two models trying to give an overview on pro and cons of
Bernoulli and Poisson distribution. Since in the real life, almost surely, the
underlying are correlated one other, we will directly explain those models
so called mixture models, i.e. those which introduce correlations between
assets. We assume we have m counterparties and, for simplicity, we take on
a two-state approach, that is only default or survival is considered.

2.1 Bernoulli Mixture Model

A vector of r.v. L = (L1, . . . , Lm) is named a Bernoulli loss statistics if

Li ∼ B(1, Pi)

where Pi is an element of P = (P1, . . . , Pm), the vector of loss probabilities
which are random variables with some distribution F with support in [0, 1]m.
We define the loss of L as

L =
m∑
i=1

Li.
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Moreover, we take on the independence of L1, . . . , Lm conditioning on a
particular sequence of value for P, i.e. p = (p1, . . . , pm):

Li|Pi=pi ∼ B(1, pi), (Li|P=p
)i=1,...,mindependent

From the theory of probability we have

P[L1 = l1, . . . , Lm = lm] =

∫
[0,1]m

m∏
i=1

plii (1− pi)1−li dF(p1, . . . , pm)

in which li ∈ {0, 1}. Furthermore the mean and the variance of the single
losses are worked out by

E[Li] = E[Pi], var(Li) = E[Pi](1− E[Pi])

where the proof of the first equality is trivial while for the second one we
must do more little work:

var(Li) = var(E[Li |P]) + E[var(Li |P)] = var(Pi) + E[Pi(1− Pi)] =

= E[Pi](1− E[Pi]).

(2.1)

Note that the series of equalities directly derive from the definition and prop-
erty of conditional variance. By means the definition of covariance we have

Cov(Li, Lj) = E[Li Lj]− E[Li]E[Lj] = Cov(Pi, Pj)

therefore, we are ready to compute the default correlation between single
losses:

Corr(Li, Lj) =
Cov(Li, Lj)√
var(Li)var(Lj)

(2.2)

then, by (2.1)

Corr(Li, Lj) =
Cov(Li, Lj)√

E[Pi](1− E[Pi])
√
E[Pj](1− E[Pj])

. (2.3)

Hence from (2.3), we deduce that the covariance structure of F and P capture
the dependence between losses in the portfolio.

2.1.1 Uniform Portfolio

Retail portfolios and portfolios of smaller banks have frequently fairly ho-
mogeneous composition so it makes sense speak about portfolios with un-
varying PD and uniform correlation; this type of portfolios are said uniform

42



portfolio. This category of strategy1 are characterized by having all expos-
ures around the same size and type in terms of risk. Thanks to uniform-
ity, we are be able to talk about the changeableness between the variable
Li: (L1, . . . , Lm) ∼ (Lπ(1), ..., π(m)) for any permutations π. The variable
Li ∼ B(1;P ) with P ∼ F , where F is a distribution function with support
in [0, 1]. The conditional independence is assumed like in the general case.
By means the following equality

P[L1 = l1, . . . , Lm = lm] =

∫ 1

0

pk(1− p)m−k dF (p) (2.4)

getting

k =
k∑
i=1

li and li ∈ {0, 1}.

we can work out the probability that exactly k defaults occurs:

P[L = k] =

(
m

k

)∫ 1

0

pk(1− p)m−k dF (p). (2.5)

Since we are also in a two-state context and by (2.5), we have

p = P[Li = 1] = E[Li] =

∫ 1

0

p dF (p)

therefore, under the independence hypothesis, we are able to obtain

P[Li = 1, Lj = 1] =

∫ 1

0

p2 dF (p). (2.6)

Hence, utilizing (2.6) and the definition (2.2), we obtain the uniform default
correlation:

ρ =
P[Li = 1, Lj = 1]− p2

p(1− p)
. (2.7)

Examining the equality (2.7), we note that the ratio take account of the big
influence of volatility2 on correlation into the loss statistics: a growth on
volatility produced bigger default correlation. Moreover, seeing as how the
volatility cannot be negative, the model does not consider negative depend-
encies among the risks into the portfolio. We have two extreme cases:

1We remind the parallelism between portfolio and strategy which is defined in (1.2.4)
2We remind that var(P) =

∫ 1

0
p2 dF (p) − p2 and it is worth σ2 =

√
var, i.e. variance

and volatility are strictly linked.

43



1. The correlation is none that is to say the dearth of randomness. Fur-
thermore, in aforementioned case, the distribution F is all concentred
in p so L ∼ B(1, p).

2. The second case is about Corr[Li, Lj] = 1, namely, all assets have the
same behavior at the same time: portfolio’s component either default or
survive concurrently. This rigidity is perfect when all obligors survive;
it happens with probability (1−p). On the other hand, with probability
p, all obligors default at same time.

2.2 Poisson Mixture Model

The loss statistics L’ = (L′1, . . . , L
′
m) is such that L′i ∼ Pois(Λi) where Λ =

(Λ1, . . . , Λm) is a random vector with distribution function F with support
in [0,∞)m. As in the Bernoulli’s case, if we take λ = (λ1, . . . , λm) like
realization of Λ, we have

L′i|Λi=λi
∼ Pois(λi), (L′i|Λ=λ

)i=1,...,m independent

By the definition of Poisson distribution, the joint distribution is given by

P[L′1 = l′1, . . . , L
′
m = l′m] =

=

∫
[0,∞)m

e−(λ1+...+λm)

m∏
i=1

λ
l′i
i

l′i!
dF(λ1, . . . , λm)

where, instead of what we have seen previously, l′i ∈ {0, 1, 2, . . .}. The mean
and variance of Poisson’s variables is

E[L′i] = E[Λi] and var(L′i) = var(Λi) + E[Λi] (2.8)

for every i. Another time, since Cov(L′i, L
′
j) = Cov(Λi,Λj), we have this

close formula for the correlation:

Corr[L′i, L
′
j] =

Cov[Λi,Λj]√
var(Λi) + E[Λi]

√
var(Λj) + E[Λj]

. (2.9)

Like in (2.3) the correlation derive from the distribution F. Into this type of
approach the default probability of obligor i is given by

P[L′i > 1].
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Note that this form of PD permits multiple defaults of a single obligor. The
probability that obligor i defaults more than once is

P[L′i > 2] = 1− e−λi(1 + λi)

which is typically a small number. A cause of the cumulated function of a
Poisson’s distribution, we have

pi = P[L′i > 1] = 1− e−λi ≈ λi

which shows that the likelihood that an exponential waiting time with in-
tensity λi takes place in the first years is equals to the one-year default
probability.

2.2.1 Uniform Portfolio

Similarly to the Bernoulli model, it makes sense speaking about a model
in which, by means the restriction to one uniform intensity and one uniform
correlation, the portfolio is uniform with respect to the risk of singular assets.
In other words we have L′i ∼ Pois(Λ) with Λ ∼ F . In this case we have

P[L′1 = l′1, . . . , L
′
m = l′m] =

∫ ∞
0

e−mλ
λ(l′1+...+l′m)

l′1! · · · l′m!
dF (λ)

and going on with to readapt the earlier general case, we obtain

P[L′ = k] =

∫ ∞
0

P[L′ = k |Λ = λ] dF =

=

∫ ∞
0

emλ
mkλk

k!
dF (λ)

Remark 2.2.1. Seeing as now the support of the distribution F is not
bounded, if we use the Poisson distributions in order to model our portfolio
we include the possibility that the absolute loss L′ can exceed the number of
"physically" possible defaults.

In this context the PD is defined by

p = P[L′i > 1] =

∫ ∞
0

P[L′i > 1 |Λ = λ] dF (λ)

=

∫ ∞
0

(1− e−λ) dF (λ)
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We carry on with giving the equivalent face of (2.9):

Corr[L′i, L
′
j] =

var(Λ)

var(Λ) + E[Λ]
, (i 6= j) (2.10)

Call dispersion of a distribution of a certain r.v. X, the ratio

DX =
var(X)

E[X]

Then, from (2.8), we can observe that Poisson mixture models are overd-
ispersed, i.e. with dispersion greater than one3. The meaning of the formula
(2.10) is more clear if we interpret it in the sense of dispersion. This charac-
teristic of Poisson mixture models could be used for understand if we really
can apply it to the credit risk measurement: if the data about the underlying
do not contemplate overdispertion, it does not make sense using this type of
models. In order to interpret correlation in terms of dispersion, we indicate
with DΛ the dispersion of the random intensity Λ. Rewriting (2.8) by DΛ we
achieve

Corr[L′i, L
′
j] =

DΛ

DΛ + 1

therefore the correlation between variables is directly proportional to disper-
sion of intensity Λ, i.e. the higher dispersion, the greater dependence between
obligor’s default.

2.3 Bernoulli against Poisson Mixture

We want very rapidly compare the two models; if one is interested on, he
can be found more details on [1]. Let us rewrite the (2.3) in the other and
equivalent form:

Corr[Li, Lj] =

=
Cov(Pi, Pj)√

var(Pi) + E[Pi(1− Pi)]
√
var(Pj) + E[Pj(1− Pj)]

. (2.11)

If for a moment we assume that the variable Pi presents in the Bernoulli
models and Λi have the same mean and variance, by means noting that

3Note that the Poisson distribution has dispersion equal to one, so it is a reference
point to estimate if the distribution is overdispersed or underdispersed.
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the argument of the square in (2.9) and (2.11) are respectively one greater
than the other, we get that the level of default correlation in the Bernoulli
models are higher than those in Poisson’s models. In other words, under
this assumption on the first and second moment of the variables into the two
models, we have that var(L′i) is always exceed the variance of Li.
We can close this chapter saying that if we model a portfolio with Bernoulli
model we foresee fatter tail than a comparably calibrated Poisson model.
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Chapter 3

Non-Linear Portfolio

First of all, for simplifying the treatise, we consider the Profit&Loss, PL,
instead of the losses. It is simply a change of sign: PL = −L. Working with
PL is typical of the insurance models, see [4]. Sometimes, into this chapter,
we reveal mathematical concepts that we will take on the chapter 6. If one
is not practical with the following concepts, we suggest to go to the Chapter
6 and to pay serious attention to the section (6.2) and to the chapter 7.
Frequently, in real portfolios there are non-linear products, whose value de-
pends on a non-linear way on the underlying risk factors. In these cases, the
total PL is a non-linear function of risk factors.

Example 3.0.1. Consider a portfolio made by πS shares and πC Call options
(written on the same underlying asset). So, if we see the PL like a function
of the stock return R, by the Black-Scholes formula (6.7), we have

PL = πsR + πC
(
cBS(S0e

R)− cBS(S0)
)

where cBS is the Black-Sholes function. In this example we are simplifying
the matter: we are supposing that the time interval is very short, that is
not always true, especially in credit risk management. However, even in this
case one can note that the function cBS is not linear, therefore combination
of different option prices gives rise to highly non-linear portfolios.

Evidently, even if the distribution of risk factors has a simple form, when
the portfolio is no-linear, the distribution of PL can be difficult to derive.
We go beyond this obstacle in three possible and different ways:

1. Delta approximation

2. Delta-Gamma approximation

3. Full evaluation
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What Delta and the Gamma are is clearly explained into the chapter (7).
The last way, that we do not debate, concerns the used of MonteCarlo or
historical method, without the employ of approximations. The full evaluation
approach is the most accurate one, even if it involves repeated computations
of non-linear functions.

3.1 Delta approximation

If the time interval is short (for the general and more complex case, we
remand at the bibliography), we have a small value of R, then we can use
a Delta approximation. Consider a very simple portfolio made by one Call
option. Using the Black-Scholes model we know that the PL is given by

PL = cBS
(
S0e

R
)
− cBS

(
S0

)
. (3.1)

So, using the Taylor linear approximation around R = 0, we reach

PL ≈ S0R∆ (3.2)

See the figure (3.1).

Figure 3.1: We put in blue the exact value of PL and, in black, the reader
find the value of Delta approximation.
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General Delta approximation

In general, a portfolio is made by several different options or more general
derivatives on the same underlying. If there are πS units of the underlying
and πk units of a certain type of derivative, for k = 1, . . . , K, the Delta
approximation becomes

PL ≈ πSS0R +
∑
k

πkS0R∆k =

(
πS +

∑
k

πk∆k

)
S0R = ∆portS0R.

where ∆k is the Delta of the derivative of type k. It is also possible having
N underlying stocks and the K derivatives could depend on one or more of
these underlyings.
Let ∆k,n be the derivative of the pricing function for the k-th derivative with
respect to Sn, the underlying n. If the derivative k does not have Sn like
underlying, then ∆k,n = 0. Said that, we introduce

∆port,n = πS,n +
K∑
k=1

πk∆k,n

where πS,n are the units of the stock n. Therefore the Delta approximation
for a general no-linear portfolio is given by

PL ≈
N∑
n=1

S0,nRn∆port,n (3.3)

With Delta approximation, we can state the PL like a linear function of the
underlying returns. At least two observations are necessary:

1. Since the Delta depends on the underlying, its values are strictly linked
with the volatility, then the value of the Delta must be worked out day
by day.

2. The calculus of Delta not always is simply to make: it is more probable
that the pricing formula by means of Delta must be computed, it is
very far to be simply.

3.2 Delta-Gamma approximation
Consider again the context already introduced in section (3.1). The quadratic
Taylor approximation of (3.1) gives us the Delta−Gamma approximation:

PL ≈ S0R∆ +
S2

0

2
RΓ (3.4)
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Figure 3.2: We set the exact PL in black, the Delta approximation in blue
and the Delta−Gamma approximation in red.

General Delta-Gamma approximation

If there are πs units of the underlying and πk units of a certain type of
derivative, for k = 1, . . . , K, then the Delta−Gamma approximation is

PL ≈
(
πs +

∑
k

πk∆k

)
S0R+

∑
k πkΓk
2

S2
0R

2 = S0R∆port +
S2

0R
2

2
Γport (3.5)

More in general, consider the case of N underlyings and K type of derivatives
like in earlier section, then the Delta−Gamma approximation becomes

PL ≈
∑
n

(
S0,nRn∆port,n +

S2
0,nR

2
n

2
Γport,n

)
(3.6)

where
∆port,n = πS,n +

∑
k

πk∆k,n, Γport,n = πkΓk,n

Like it is common in practice, we do not take into consideration the mixed
second derivatives of a price.

52



Part II

Pricing Models
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Chapter 4

Put and Call options

For completeness we give the definition of option

Definition 4.0.1. An option is a contract stipulated between an option
seller (said also "option writer") and an option buyer (even called "op-
tion holder") that it gives at the second the right but not the obligation to
sell or buy the pointed out asset at some stipulated time for some precise
price.

We have also the following notation

Maturity It indicates the time when the option buyer can be exercised the option.
This date is also indicates with either exercise date or expiration date.
The time before the maturity is said time to maturity.

Strike price It is the price at which the option can be exercised, it is written in the
option. It is also called exercise price.

Exist two types of options: call and put. The first of this grants the right
to buy the underlying asset for the strike price, while the right to sell the
asset presents in the contract at the strike price is given by the put option.
If the option can be exercised before the maturity, it is said American op-
tion, otherwise we will say it European. At the end we explain the difference
between short position and long position. If one sells an asset without pos-
sessing it, he assumes a short position. On the other hand, we said that
one is in a long position if he has bought the option. Let us go to analyze
the payoff of an European Call option with strike K, maturity T ; indicate
with ST the price of the underlying asset at time T . At time T we have two
possibilities:

1. ST > K
The gain obtained buying the underlying asset at price K and selling
it at market price ST is ST − K.
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2. ST 6 K
In this case it is not convenient, for the option holder, exercising the
option so the payoff is zero; the price of the option is the loss of the
investor.

By means that, we have that the payoff of an European Call option is

(ST −K)+ = max{ST −K, 0}

Proceeding at the same way, the payoff of an European Put option is given
by

(K − ST )+ = max{K − ST , 0}

Combining Call and Put options, it arises a lot of other derivatives. In the
figure (4.1) we can see summarized the characteristic of call and put options
related at the long and short position.

The derivatives can be used principally in two way:

i) hedging the risk;

ii) speculation.

Starting from we do not know the price of the asset exchanged in the contract
at time T , the first main problem is the pricing of the options, i.e. establishing
an fair price for the options. Another important problem is related to the
hedging. We can note the payoff of a Call option can grow indefinitely
therefore the option writer exposes itself at potentially unlimited loss; for
this reason born the problem of finding a strategy that can make the payoff
of the option at the maturity.

Remark 4.0.1. Long position have a limited downside risk inasmuch for the
option buyer the worst case is the loss of the invested money. On the other
hand option buyer has unlimited upside chance. About the option writer we
can see unlimited downside risk therefore the best case for him is when the
option holder does not exercise the option.

Proposition 4.0.1. (No-arbitrage principle)
Let X=(Xt)t≥0 and Y=(Yt)t≥0 denote two different risky assets such as XT 6
YT . If the market is arbitrage-free it happens that

Xt 6 Yt for t 6 T. (4.1)

Proof. Suppose for absurd that Xt > Yt then we can do the following in-
vestment strategy:
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Figure 4.1
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- short selling of Xt

- long buying of Yt

- investing the residual Xt − Yt > 0 in the riskless bond.

At time T , first of all, we receive the payoff (Xt − Yt)e
r(T−t) deriving from

the investment in riskless bond. Since XT = YT , we can cover the cost of
short selling only with the money that the investment in Y has given back.
Therefore, we have made a riskless gain i.e. we have made an arbitrage but
this negates the hypothesis of no-arbitrage of the market.

Corollary 1. From (4.0.1) follows

XT = YT ⇒ Xt = Yt, t ≥ T (4.2)

Proposition 4.0.2. (Put-Call parity)
Consider a Call option c and a Put option p, both of European type with
maturity T and strike k. Assuming the no-arbitrage principle holds we have

ct + k e−r(T−t) = pt + St, t ∈ [0, T ]. (4.3)

where r is the risk-free rate.

Proof. Consider two investments

Xt = ct +
k

Bt

Bt and Yt = pt + St

note that the value at time T are the same:

XT = YT = max{K,ST}

So, from (4.0.1), the claim follows.

Just for completeness, if the asset pays a dividend D at date between t
and T the previous formula becames

ct = pt + St −D − k e−r(T−t).

Proposition 4.0.3. For European options hold the following inequality(
St − k e−r(T−t)

)+

< ct < St,(
k e−r(T−t) − St

)+

< pt < k e−r(T−t)

where t ≤ T .
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Proof. Via (4.1)
ct, pt > 0

by (4.3) we get
ct > St − k e−r(T−t)

therefore, joint to the first inequality, we have the estimate from below. At
the end, from cT < ST and from (4.1) we obtain the estimate from above.
Similarly, the other estimate can be proved.

Proposition 4.0.4. If a European and an American Call option are written
on the same underlying asset with the same maturity T and strike price k,
then the respective prices of two Call are equal.

Proof. Consider two portfolio

- one American Call option and an amount of money of size k e−rT

- one share of the underlying asset St

If we exercise the call before the expiration date, the portfolio value is

St − k + k e−r(T−t) < St for t < T

Otherwise, exercising the Call at the maturity the total value of the first
portfolio is

max{ST , k}.

In other word, this show that in a nondivident-paying context never should
exercised before the maturity.
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Chapter 5

A Discrete World

The purpose of this chapter is to introduce some of the most important
instruments for the price of options and derivatives in a discrete market. We
will also try to give an economical interpretation of the mathematical objects
with whome we will work. One can see the credit risk like the risk originated
from the possible change in the value of portfolio, due to unexpected change
in the credit quality. Into the chapter, we will speak about discrete-time
models.

5.1 Recall

For a major compactness of the treatise, we now give a summarize of the
definition that we have done in the first chapter, but we will use them more
intensely in the sequel. Furthermore, we will introduce the definition of
arbitrage.
In the context of a discrete-market model, we denote the price of our d-
risky assets with S = (S1, . . . , Sd) and the price fo the bond with B.
Through (S, B) we indicate the market in which we are. By means of
µn = (µ1

n, . . . , µ
d
n) we refer to the yield rate of S in the n period and by

means of rn we indicates the risk-free rate in the n period.

Definition 5.1.1. We define a strategy (or portfolio) like a stochastic process
in Rd+1

(α, β) = (α1
n, . . . , α

d
n, βn)n=1,...,N

where αin indicates the quantity of asset Si present in the portfolio and βn

the amount of bond during the period [tn− 1, tn].
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Consistently at this notation, we denote the value of portfolio (α, β) at
time tn by

V (α,β)
n = αnSn + βnBn, n = 1, . . . , N. (5.1)

At the initial time the value of our portfolio is

V
(α,β)

0 =
N∑
i=1

αi1S
i
0 + β1B0

Definition 5.1.2. We say (α, β) to be self-financing if the following relation
is valid

V
(α,β)
n−1 = αnSn−1 + βnBn−1 ∀n = 1, . . . , N (5.2)

Remark 5.1.1. The variation, from time tn−1 to tn, of the value of a self-
financing strategy (α, β) is given by:

V (α,β)
n − V (α,β)

n−1 = αn(Sn − Sn−1) + βn(Bn −Bn−1) (5.3)

and, as we can note, this change is caused by the variation of S and B and
not because we have invested more money.

Definition 5.1.3. A strategy (α, β) is predictable if (αn, βn) is Fn measur-
able for every n = 1, . . ., N .

Definition 5.1.4. We call A the family of acceptable strategies, namely the
family of all self-financing and predictable strategies of the market (S,B).

Definition 5.1.5. Given (α, β) ∈ A , we say that it is an arbitrage strategy
if the value V = V (α, β) is such that

a) V0 = 0;

and it exists n > 1 for that

b) Vn > 0 P-a.s.;

c) P(Vn > 0) > 0

Moreover, if A does not have into itself arbitrage strategies, we say that the
market (S, B) is arbitrage-free.

Remark 5.1.2. Summarizing, an arbitrage strategy costs 0 at the beginning;
it is probably that its price increases; sooner or later the strategy lets me give
a positive net gain.
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The arbitrage-free condition is the base for the most important models;
we are in this case in dependence on the probabilistic model taken, that is
on (Ω, F, P ) and (S, B). Instead of verifying if A does not have arbitrage
strategy, one can work withmartingale measure; the existence of this measure
proved the absence of arbitrage. In this thesis we will not deep more.
We now want strengthen the concept of admissible-strategy.

Definition 5.1.6. The couple (α, β) ∈ A is said admissible if

V (α, β)
n > 0 P − a.s. ∀n 6 N

In a discrete market, it is possible to modify the strategy for making it
admissible, for this reason the arbitrage condition includes the admissibility.

Proposition 5.1.1. A discrete market is arbitrage free if and only if there
admissible arbitrage strategies do not exist .

Proof. Suppose by absurd that (α, β) is an arbitrage strategy; we want to
construct an admissible arbitrage strategy (α′, β′). In this case we have

S
(α, β)
0 = 0

and we can find an n for wich

αnSn + βnBn > 0 a.s.

P (αnSn + βnBn > 0) > 0.

In the case of (α, β) is not admissible then it exists k < N and F inF with
P (F ) > 0 for which

αkSk + βkBk < 0 on F

αnSn + βnBn > 0 a.s. for k < n < N .

Therefore we are able to construct a new arbitrage strategy:

• α′n = 0; β′n = 0 on Ω \ F for all n

• Instead on F

α′n =

{
0 n 6 k,
αn n > k.

, β′n =

{
0 n 6 k,
αn − (αkSk + βkBk) n > k.

It is simple proved that (α′, β′) it is an admissible arbitrage strategy.
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5.2 Asset Pricing
Definition 5.2.1. Let us fix an asset Y = (Yn) we define (S̃, B̃) as the nor-
malized market with respect to Y with S̃ = (S̃i1, . . . , S̃

i
N), B̃ = (B̃1, . . . , B̃N)

and where

S̃in =
Sin
Yn
, B̃n =

Bn

Yn

Remark 5.2.1. By means of units of Y , we gauge the prices of the other as-
sets; for this reason Y is said numeraire. Very often, B is taken as numeraire
and in this case S̃i denotes the discounted price of the i-th asset.

Got a strategy (α, β), we have

Ṽ (α, β)
n =

V
(α, β)
n

Bn

In this new path, the self-financing condition becomes

Ṽ (α, β)
n = αnS̃n−1 + βn.

where n = 1, . . . , N .

Remark 5.2.2. We can readapt the preceding results like following:

1. The discounted value of (α, β), self-financing strategy, is uniquely de-
termined by V0 and

Ṽ (α, β)
n = Ṽ

(α, β)
n−1 +

d∑
i=1

αin

(
S̃in − S̃in−1

)
with n = 1, . . . , N .

2. The successive formula holds:

Ṽ (α, β)
n = V0 +G(

nα) (5.4)

where

G(α)
n =

n∑
k=1

αk

(
S̃k − S̃k−1

)
is the normalized gain related to the predictable process α; it does not
depend on β. We point out that this formula implies that (α, β) is
self-financing if and only if Ṽ (α, β) is the transform of S̃ by α.
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5.2.1 Risk-neutral Probability

At the beginning of this chapter we recalled the concept of arbitrage and we
have said that a discrete market (S,B) is arbitrage-free if a strategy (α, β)
with the characteristic into the definition does not exist. Trying to verify
the non-existence of that strategy is very far to possible, so, to make more
operative the concept of absence of arbitrage, we introduce the risk neutral
probability or, more usually, the equivalent martingale measure (in short
EMM or simply MM).

Definition 5.2.2. An MM with numeraire Y is a probability measure Q on
(Ω, F) such that

1. Q is equivalent to P

2. the Y-normalized prices are Q-martingales:

Sn−1

Yn−1

= EQ
[Sn
Yn
|Fn−1

]
,

Bn−1

Yn−1

= EQ
[Bn

Yn
|Fn−1

]
for every n = 1, . . . , N .

Remark 5.2.3. In the case of Y = B, the martingale measure related to
this numeraire gives

S̃k = EQ
[
S̃n |Fk

]
, 0 6 k < n 6 N,

and for the martingale property

EQ
[
S̃n

]
= EQ

[
EQ
[
S̃n |F0

]]
= S̃0, n 6 N (5.5)

The last formula can be interpreted as: "the expectations of the future nor-
malized prices are equal to the current ones".

Since Q is equivalent to P , in the market (S,B) the absence of arbitrage
under P is equivalent at the arbitrage-free respectively at Q.

Theorem 5.2.1. (First Fundamental Theorem of asset pricing)
A discrete market is arbitrage-free if and only if at least one MM exists.

For the proof we remand at [2].
The following theorem, whose enunciate we are just going to give, permit us
to pass from a MM with numeraire Y to a MM with another numeraire. Ba-
sically, to make this change is useful when in the market different currencies
for prices are used. In a theoretical way, the change of numeraire might be
used to semplify computations.
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Theorem 5.2.2. Let a discrete market (S,B) and a MM Q with numeraire
Y be given. Let X be a positive adapted process such that

(
Xn
Yn

)
is a Q-

martingale. The new measure QX , defined by

dQX

dQ
=
XN

X0

(YN
Y0

)−1

has the property

YnE
Q

[
Z

YN
|Fn

]
= XnE

QX

[
Z

XN

|Fn

]
, n 6 N, (5.6)

for every random variable Z.

Remark 5.2.4. Relatively at the theorem, we can make two different obser-
vations.

1. X represents the value process of another asset or strategy and it is
considered the new numeraire

2. Subsequently, QX is a EMM with numeraire X.

Proposition 5.2.1. 1. Let Y be a numeraire of an MM Q and (α, β) ∈
A . Then Ṽ (α, β) is a Q-martingale and holds the risk-neutral pricing
formula:

Ṽ
(α, β)

0 = EQ
[
Ṽ (α, β)
n

]
, n 6 N

2. If Q is an equivalent measure to P and Ṽ (α, β) is a martingale with
respect to Q for every (α, β) ∈ A , then Q is an MM with numeraire
Y.

Proof. For simplicity, we only consider the case Y = B. By means of (5.2.2),
starting from another numeraire, it is possibile bringing back to the case that
we take into account. For hypothesis, (α, β) inA so

Ṽ (α, β)
n = Ṽ

(α, β)
n−1 + αn(S̃n − S̃n−1)

by that we get

EQ
[
Ṽ (α, β)
n |Fn−1

]
= ṽ

(α, β)
n−1 + EQ

[
αn(S̃n − S̃n−1) |Fn−1

]
=

= Ṽ
(α, β)
n−1 + αnE

Q
[
S̃n − S̃n−1 |Fn−1

]
=

= Ṽ
(α, β)
n−1

by (5.4).
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Proposition 5.2.2. (No arbitrage principle)
If (S,B) is a arbitrage-free market, (α, β), (α′, β′) ∈ A and

V
(α, β)
N = V

(α′, β′)
N P − a.s.

then
V (α, β)
n = V (α′, β′)

n P − a.s., n 6 N

Proof. Through the assumption of arbitrage-free market, we get the existence
of a MM Q with a certain numeraire Y . From the definition of EMM and by
the fact that Ṽ (α, β) and Ṽ (α′, β′) are Q-martingale, the claim follows.

Let X be the payoff of an option with maturity T . One of the purposes
for the option writer is to be able to cover the value of the option at the
maturity; then it is necessary to replicate the derivative.

Definition 5.2.3. A strategy (α, β) ∈ A is said replicating strategy if it
assumes the value of the derivative X at the time T

V
(α, β)
N = X a.s.

If the aforementioned strategy exists, then X is called replicable.

Theorem 5.2.3. Consider a replicable derivative X in (S,B), a arbitrage-
free market. Then for any EMM Q with numeraire B and for any replicating
strategy (α, β) ∈ A , we have

EQ

[
X

BN

|Fn

]
=
V

(α, β)
n

Bn

n = 0 . . . , N.

The process V (α, β) is called risk-neutral price of X.

Definition 5.2.4. Given a market, if we are able to replicate every European
derivative, then this market is named complete.

Theorem 5.2.4. (Second Fundamental Theorem of asset pricing)
An arbitrage-free market (S,B) is complete if and only if a unique EMM with
numeraire B exists.

By means of the first and second fundamental theorems, for studying
the completeness and the absence of arbitrage in a market, we reduce the
claim to prove the existence and the unicity of an EMM with numeraire the
free-risk bond.
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5.2.2 Binomial Model

Everyone interested can go on studying the binomial model and, sending
the number of periods of the model to infinity, one is able to obtain the
Black − Scholes formula. For more deepen treatise, we refer to [?]. We
list rapidly the main steps to reach the formula. Consider a binomial model
with N ∈ N periods. We denote the interest rate, the increase and decrease
factors (synthetically they are the parameters which indicate the intensity of
ascent and descent in the binomial model) by rN , uN , dN . Let T > 0 the
maturity of derivative X and we get

δN =
T

N

so we obtain

1 + rN = erδN , uN = eσ
√
δN+αδN , dN = e−σ

√
δN+βδn

with σ the volatility, α, β real constants and r the annual risk-free rate.

Proposition 5.2.3. It is worth that

lim
N→∞

EQN
[
XN

]
=

(
r − σ2

2

)
T (5.7)

lim
N→∞

varQN
(
XN

)
= σ2T (5.8)

It is possibile to show that XN converges in distribution to a normally
distributed variable X and then, through (5.7) and (5.8), we obtain

X ∼ N(
r−σ2

2

)
T, σ2T

(5.9)

Theorem 5.2.5. Consider a N-period binomial model with parameter uN ,
dN , rN like above and an European Put option with strike K, maturity T and
price P (N)

0 . Let X be as (5.9). Then the following limit exists

lim
N→∞

P
(N)
0 = P0 = e−rT E

[(
K − S0E

X
)+
]

Definition 5.2.5. The price P0 is named Black-Scholes price of an European
Put Option with strike K and maturity T
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Proposition 5.2.4. (Black-Scholes formula)
The following equality is worth

P0 = Ke−rTΦ(−d2)− S0Φ(−d1) (5.10)

where

d1 =
log(S0

K
) +

(
r + σ2

2

)
T

σ
√
T

d2 =
log(S0

K
) +

(
r − σ2

2

)
T

σ
√
T

= d1 − σ
√
T

(5.11)

The greek letter Φ indicates the standard normal distribution function

Φ(x) =
1√
2π

∫ x

−∞
e−

y2

2 dy x ∈ R

Remark 5.2.5. By the Put-Call parity formula (4.0.2) and (5.2.4), we are
able to achieve the Black − Scholes price for an European Call option with
strike K and maturity T :

C0 = S0Φ(d1)−Ke−rTΦd2 (5.12)
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Chapter 6

A Continuos World

The Black and Scholes equation and the Merton’s model are two classical
instruments used in the credit risk management. First of all, we introduce
the theoretical elements of the stochastic processes, that are normally used
in continuos-time financial models. After this short introduction, we will
present the Black-Scholes formula and at the end we will try to analyze the
pricing of a derivative, whose underlying asset is not exchanged on the market
like the case of a derivative on the temperature.

6.1 Stochastic Process
First and foremost, consider a probability space (Ω, F, P ) and a real interval
I ⊆ R≥0.

Definition 6.1.1. A collection (Xt)t∈I of random variables with values in
RN is said a measurable stochastic process if the map

X : I × Ω→ RN , X(t, ω) = Xt(ω)

is B(I) ⊗ F-measurable. The process X is integrable if Xt ∈ L1(Ω, P ) for
every t ∈ I

Definition 6.1.2. A stochastic process X is continuos a.s. if

t→ Xt(ω)

are continuos function ∀ω ∈ Ω.

Definition 6.1.3. A filtration (Ft)t≥0 in (Ω, F, P ) is an increasing family
of sub-σ-algebras of F. Taken a stochastic process X, we can define its
natural filtration as

F̃Xt = σ(Xs | 0 6 s 6 t)
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Definition 6.1.4. Gotten a filtration (Ft)t≥0, we define a stochastic process
X adapted as a process for which F̃Xt ⊆ Ft, i.e. X is adapted if Xt is
measurable with respect to the σ-algebra Ft for every t.

Definition 6.1.5. A stochastic processW = (Wt)t≥0 is called a real Brownian
motion if it has real value and satisfies the following three properties

1. W0 = 0 a.s.

2. W is adapted with respect to the filtration and it is continuos

3. Wt − Ws ∼ N0,t−s and the random variable is independent of Fs, for
0 6 s < t.

Like a direct consequence of (6.1.5) we know

Wt ∼ N0,t

Example 6.1.1. A model for the price of a risky asset S is

St = S0 (1 + µt) + σWt

where S0 is the initial price of the asset, µ is the expected rate of return and
σ is the volatility of the asset. If σ > 0, the process S = (St)t≥0 is a gaussian

St ∼ NS0(1+µt),σ2t

and so
E[St] = S0(1 + µt)

therefore we can observe that the Brownian motion introduces the "noise"
without modifying the mean.
It is important saying that this model is not used for a lack of continuity in
the rate and because we would have positive value of the likelihood that St
is negative.

Definition 6.1.6. Fixed (t, x), we define

W t,x
T = WT −Wt + x, T > t

a Brownian motion starting from x at time t. It also has a normal distribu-
tion but with different mean and variance:

W t,x
T ∼ Nx,T−t
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Definition 6.1.7. We called transition density of W t,x
T , the function

Γ(t, x;T, y) =
1√

2π(T − t)
exp

(
− (x− y)2

2(T − t)

)
where the couple (t, x) is the starting point and (T, y) is the end one.

Remark 6.1.1. (Link with heat equation)
Let us to consider the two forms of the heat equation:

1. backward operator

LB=
1

2
∂xx + ∂t

2. forward operator

LF =
1

2
∂yy − ∂T

It is easy showing that Γ(t, x;T, y) is a solution for heating operator:(1

2
∂xx + ∂t

)
Γ(t, x;T, y) = 0(1

2
∂yy − ∂T

)
Γ(t, x;T, y) = 0

Starting from the forward operator we can pose the following Cauchy’s prob-
lem {

LF u(T, y) = 0 T > t

u(t, y) = φ(y) y ∈ R

For what we have said, it is worth

u(T, y) =

∫
R

Γ(t, x;T, y)φ(x)dx

Consider now v(t, x) = u(T − t+ t0, x) and so{
LBv(t, x) = 0 t < T, x ∈ R
v(T, x) = φ(x)

where v(T, x) = u(t0, x) = φ(x) and ∂tv(t, x) = −∂Tu, that is, with the
backward operator, we are going back and this is the reason why the above
Cauchy problem finds a natural application in finance: I know the payoff
at the final time and I want to determine the initial price of the derivative.
However, we have

v(t, x) =

∫
R

Γ(t, x;T, y)φ(y)dy.
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Since Γ is the density of W t,x
T , in a probabilistic view making the integral

with respect to the variable x means making an expected value of the random
variable

v(t, x) =

∫
R

Γ(t, x;T, y)φ(y)dy = E[φ(W t,x
T )].

Therefore we have reached that working out a backward Cauchy problem gives
us the risk-neutral price; indeed the function v(t, x) is the expected value of
the payoff function.

Definition 6.1.8. Given a probability space
(
Ω,F, P, (Ft)

)
we introduce

L2 =

{
α |α is adapted and E

[ ∫ T

0

α2
tdt

]
<∞

}
Definition 6.1.9. Taken u,v ∈ L2, we define an Itô process like:

Xt = X0 +

∫ t

0

us ds+

∫ t

0

vs dWs

NOTATION: the Itô process can be indicate as

dXt = ut dt+ vt dWt.

Proposition 6.1.1. (Formula di Itô per moto browniano )
Consider a Brownian motion Wt and a function F = F (t, x) ∈ C1,2(R2).
Then

1. the stochastic process
Yt = F (t,Wt)

is an Itô process

2. we also have

F (t,Wt)−F (0,W0) =

∫ t

0

(∂tF )(s,Ws) ds+

∫ t

0

(∂xF )(s,Ws) dWs+
1

2

∫ t

0

(∂xxF )(s,Ws) ds

Proposition 6.1.2. Consider an Itô process and a function f = f(t, x) ∈
C1,2(R2). Then
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1. the stochastic process
Yt = f(t,Xt)

is an Itô process

2. we also have

df(t,Xt) = ∂t(t,Xt)dt+ ∂xf(t,Xt)dXt +
1

2
∂xxf(t,Xt)d〈X〉t (6.1)

where

〈X〉t =

∫ t

0

v2
s ds

Example 6.1.2. (An application)
Consider u, v, ∈ L2([0, T ]) and an Itô process with deterministic coefficients:

Xt = X0 +

∫ t

0

u(s) ds+

∫ t

0

v(s) dWs

We want to show that Xt has a normal distribution. First of all, we cal-
culate mean and variance of the process: since the stochastic integral is a
martingale, we have

E[Xt] = X0 +

∫ t

0

u(s) ds.

Moreover, by the Itô isometry we have

var(Xt) = E
[(
Xt−E[Xt]

)2
]

= E
[( ∫ t

0

v(s) dWs

)2
]

= E
[ ∫ t

0

v2(s) ds
]

=

∫ t

0

v2(s) ds.

For showing the process that we have considered has normal distribution, we
calculate its characteristic function:

ϕXt(ξ) = E[eiξXt ] = eiξX0 +

∫ t

0

E[eiξXs ](iξu(s)− ξ

2
s2(s)) ds (6.2)

where, setting Yt = eiξXt , the third equality directly cames from

dYt = iξYt dXt +
1

2
(iξ)2Yt d〈Xt〉 =

= (iξYtu(t) +
1

2
(iξ)2Ytv

2(t)) dt+ iξYtv(t)dWt

⇒ eiξXt = eiξX0 +

∫ t

0

Ys
(
iξu(s)− ξ

2
v2(s)

)
ds+

∫ t

0

iξeiξXsv(s) dWs.
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so one can observe that the first integral is deterministic, while the second
integral has only Yt like stochastic term. Coming back to characteristic func-
tion, the (6.2) can be read as

ϕ(t) = eiξX0 +

∫ t

0

ϕ(s)a(s) ds

putting

a(s) = iξu(s)− ξ

2
s2(s)

that is like having {
ϕ′(t) = a(t)ϕ(t)

ϕ(0) = eiξX0

which solution is

ϕ(t) = exp
(
iξX0 +

∫ t

0

a(s) ds
)

⇒ ϕXt(ξ) = exp
(
iξX0 +

∫ t

0

(
iξu(s)− ξ

2
v2(s)

)
ds
)

Hence, comparing the distribution function with mean and variance of the
process that we have considered, we can say that Xt is normally distributed.

6.2 Black-Scholes Model
As we have already said, the market is a couple (S,B) where the first repres-
ents a risky asset, while the second is simply a bond. Now, we impose that
the bond satisfies {

dBt = rBtdt

B0 = 1
⇒ Bt = ert.

and we consider an asset St such that

dSt = µStdt+ σStdWt

where µ is the expected rate of return of S and σ is the volatility. From the
stochastic differential equation, we know that

St = S0e
σWt+αt

Let we determine α:

dSt = αStdt+ σStdWt +
1

2
σ2dt = (αSt +

1

2
σ2St)dt+ σStdWt
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⇒ µ = α +
σ2

2
⇒ α = µ− σ2

2

therefore the process St has the form

St = S0 e
σWt+(µ−σ

2

2
)t

We can note that
E[St] = S0e

µt

so the parameter µ is coherent with the meaning of expected rate of return.
It is important to underline that, written in this form, the process St has
log-normal distribution:

P (St ∈ [a, b]) = P (logSt ∈ [log a, log b]) = P
(
[logS0+σWt+(µ−σ

2

2
)t] ∈ [log a, log b]

)
.

Definition 6.2.1. Given a probability space (Ω, F, P (Ft)t), a strategy is a
couple (αt, βt) of stochastic processes with the following properties:

1. they are adapted processes at the filtration (Ft)t with respect to the
measure P

2. the couple is self-financing i.e.

dVt = αtdSt + βtdBt

where Vt is the stochastic process of the strategy’s values, St represents
the risky asset and Bt is the process of bonds.

Since the Call options depend only on the final price, we can consider a
different type of strategies.

Definition 6.2.2. Let α(t, x), β(t, x) be two regular functions, a strategy
(αt, βt) is called markovian if

αt = α(t, St) βt = β(t, St).

Remark 6.2.1. 1. Comparing markovian strategies with adapted ones,
we can note that saying (αt, βt) is adapted, i.e. Ft measurable, is
a weaker condition than being markovian. Indeed the term adapted
indicates a dependence of the strategy on all prices until the time t,
while the markovian condition conveys a dependence of (αt, βt) only
on the price at time t.
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2. The stochastic process βt should be also dependant on the process Bt,
that is βt = β(t, St, Bt) but Bt = ert so the link with Bt is already
expressed from the time t.

If the strategy is markovian, the self-financing condition becomes

Vt = αtSt + βtBt = f(t, St)

which expresses in terms of stochastic differential turns into

dVt = αtdSt + βtdBt.

The function f(t, s) can be introduced just only because the strategy is
markovian. Let us now apply the Itô formula at f

df(t, St) = ∂tf(t, St) + ∂sf(t, St)dSt +
1

2
∂ssf(t, St)d〈S〉t (6.3)

It is a trivial calculation that 〈S〉t = σ2 S2
t dt. From self-financing condition

we also have

df(t, St) = αtdSt + βtrBtdt = αtdSt + r(αtSt − f(t, St))dt (6.4)

Comparing the (6.3) to (6.4) we have

�
αt = (∂sf)(t, St)

and since the strategy is markovian we have that the function α is

α = (∂sf) (6.5)

That, in other words, means "if the strategy is self-financing, the num-
bers of risky assets must be equals to ∂sf" where f is the function which
represents the value of portfolio.

� Matching the two parts in dt, we get

(∂tf)(t, St) +
σ2S2

t

2
(∂ssf)(t, St) = r

(
f(t, St)− St(∂sf)(t, St)

)
(6.6)

As St is log-normally distributed, it can assume any positive real value
and since (6.6) is an equality between aleatory quantities, we have the
famous Black-Scholes differential equation

∂tf(t, s) +
σ2s2

2
∂ssf(t, s) + rs∂sf(t, s)− rf(t, s) = 0 (6.7)
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Definition 6.2.3. We called Black-Scholes differential operator

LBS = ∂t +
σ2s2

2
∂ss + rs∂s − r. (6.8)

Then, from (6.7) we deduce that the function f , i.e. the value of the portfolio,
is a solution for LBS = 0.

Right now, we want to construct a self-financing strategy (αt, βt), which
replies the payoff of the derivative: taken a Call Option, we ask that (αt, βt)
is such as the value of the portfolio at maturity T is VT = (St−k)+ = ϕ(St)
where ϕ(s) = (s−k)+. In this way, we obtain the following Cauchy problem{

(LBSf)(t, s) = 0 t < T, s > 0

f(T, s) = ϕ(s) s > 0
(6.9)

With a bit of work, it is possible showing that the problem (6.9) has solution,
then the price of not arbitrage is

V0 = f(0, S0) (6.10)

Remark 6.2.2. 1. One is able to note that the price V0 does not depend
on the parameter µ

2. Making in (6.8) the variable change x = log s, the problem (6.9) be-
comes the classical heat equation, then the solution is given by

f(t, ex) ≈
∫
R
Gauss (ex − k)+ dx (6.11)

where Gauss states for the fundamental solution of the heat equation;
it is multiplied for ϕ(ex), i.e. the payoff function evaluates in ex.

6.2.1 Many ways lead to BS

At least other two different ways to amount to the Black-Scholes model exist,
and we are going to speak about them. The first one is not very mathemat-
ically correct, instead the second is very coherent.

Heuristic method

We suppose that a portfolio Vt exists, and it mades by certain quantities of
risky assets and by a Call option with price f :

Vt = αtSt − f(t, St). (6.12)
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We want to neutralize the risk deriving from this portfolio, i.e. we want that
the portfolio does not depend on the variation of the underlying assets. The
natural way to work out this variations is posing the derivative of Vt respect
to S equal to 0:

∂SV = 0.

So, making the derivative on (6.12), we obtain

0 = αt − ∂Sf(t, St) ⇒ αt = ∂sf(t, St) (6.13)

but we care about underlining that this equation does not make sense: why
do not we derive even α? However the heuristic method goes on passing at
stochastic differential equation:

dVt = αtdSt − df(t, St)

and, applying the Itô formula on df(t, St), it becomes

dVt = αtdSt − ∂tfdt− ∂sfdSt −
1

2
σ2S2∂ssfdt

then, from (6.13), we have

dVt = −∂tf −
1

2
σ2S2∂ssfdt = −(∂tf +

1

2
σ2S2∂ssf)dt

that is we have obtained that the stochastic differential of V is exclusively
deterministic, i.e. without risk. Comparing

dVt = −(∂tf +
1

2
σ2S2∂ssf)dt (6.14)

with the condition of no arbitrage

dVt = rVtdt (6.15)

we obtain
− (∂tf +

1

2
σ2S2∂ssf) = rVt (6.16)

which is exactly the Black-Scholes differential equation.

A third approach

From the remark (6.2.2), one could decide to replace µ with any other para-
meter. We chose r. Then we have

S̃ = e−rtSt ⇒ dS̃t = σS̃tdWt
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where Wt is brownian motion. But it is also true that, by Itô formula

d
(
e−rtf(t, St)

)
= e−rt(LBSf)(t, St)dt+ e−rtσSt(∂sf)(t, St)dWt (6.17)

then if f is the solution of (6.8), the product e−rtf(t, St) is a martingale. It
is essential noting that we have (6.17) only because we have chose to replace
µ with r, otherwise we would have obtained another form for the Itô formula
development. So, starting from (6.17) we have

f(0, S0) = e−rtE[f(T, ST )] = e−rtE[ϕ(ST )]

then
log

St
S0

∼ N
(r−σ2

2
)t,σ2t

(6.18)

This shows us that the initial price of derivative is the discounted mean value
of the payoff of the option.

6.3 Risk Neutral Probability

In the section (6.2.1) we have taken the possibility to replace µ with r for
granted, but this possibility is guaranteed by the Girsanov Theorem. We will
see that changing the drift coefficients is equivalent to make a changing in
measure terms.

Theorem 6.3.1. (The Girsanov Theorem)
Let W be a Brownian motion on (Ω,F, P, (F)t) and we consider a stochastic
process λ = (λt)t such as λ ∈ L2 and E[e

∫ t
0 λ

2
sds] <∞. Getting a stochastic

process W λ
t = Wt +

∫ t
0
λsdt (note that W λ

t is not a Brownian motion) then
a measure Q exists such as

1. Q ∼ P

2. W λ
t is Brownian motion on (Ω,F, Q, (Ft))

3. it is worth
dQ

dP
= exp

(
−
∫ T

0

λsds−
1

2

∫ T

0

λ2
sds
)

Remark 6.3.1. The stochastic process W λ
t has N0,t as distribution with

respect to Q, i.e. under the Q-measure W λ
t became a standard Brownian

motion.
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We now try to modify BS model for the asset S in order to have an
expression of S in which appear the process W λ

t . Start with the BS model:

dSt = µStdt+ σStdWt (6.19)

with W Brownian motion on (Ω,F, P, (Ft)) where P is the real measure. We
transform (6.19) in the following way

dSt = rStdt+ σSt

(
dWt +

µ− r
σ

dt
)

therefore posing

λ =
µ− r
σ

, W λ
t = dWt +

µ− r
σ

we obtain
dSt = rSt dt+ σSt dW

λ
T (6.20)

where W λ
t is a Brownian motion with respect to Q, that we well know it

exists from Girsanov’s theorem.
So, if we replace µ with r, the asset S follows the dynamics explaind by (6.20)
and therefore S̃t is an Q-martingale:

S̃t = EQ[S̃t |Ft].

We want now to work out the evolution of the discounted price f .

d
(
e−rtf(t, St)

)
= e−rt

(
LBSf

)
(t, St)dt+ e−rtσSt

(
∂sf
)
(t, St) dW

λ
t

If f is the price of our derivative, it satisfiea (6.7) and then the drift is
cancelled. Therefore it remains only the stochastic terms, so the discounted
price

e−rtf(t, St)

is a martingale. Morover, if the strategy is replicant we have f(T, ST ) =
ϕ(ST ) therefore

f(t, St) = e−r(T−t)EQ[f(T, ST ) |Ft] = e−r(T−t)EQ[ϕ(ST ) |Ft] (6.21)

Before going on, it is important to stop and reflect that the distribution of
ST
S0

depends on which measure we consider:

log
(ST
S0

)
∼ N

(r−σ2

2
)T,σ2T

w.r.t Q
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log
(ST
S0

)
∼ N

(µ−σ2

2
)T,σ2T

w.r.t P

Then the calculus of the mean value in (6.21) has to be done relatively to
the parameters of the normal on the measure Q.
So, it is clear that when we replace µ with r, we make a change of drift that
produces the neutral price to risk. By this point of view, we are not more
able to have informations about µ: using Q we make the price respect to
martingale measure that does not consider what happens in the reality.

Remark 6.3.2. We want to make some trivial but outstanding observations.

1. When we use in the treatise the measure P , with f we compute the
value of replicant and auto-financial strategy.

2. In terms of Q, we work out the risk neutral price.

3. The ratio
λ =

µ− r
σ

is called the market price of the risk. It indicates how much we gain
investing in risky assets (it is natural considering µ − r > 0), knowing
that a risk σ exists.

6.4 Implicit Volatility
For what we have said in section (6.3), the price of a Call option depends on
the value of underlying asset S0, on the maturity T , on the strike k, on the
volatility σ and on the free-risk rate r:

C = CALLBS
(
r, S0, T, k, σ

)
(6.22)

For arriving where we want to, we fix all parameters but the volatility σ:
C = CBS(σ). Then the price is an increasing function in σ, therefore it is
invertible: from the price C we can determine which is the volatility, such as,
if we insert it into the BS formula namely CBS, from (6.22) we can obtain
exactly C. In other words, we can obtain σ such as

C = CBS(r, S0, T, k, σ). (6.23)

This volatility, that is unique thanks to the invertibility, is said implicit
volatility. So, by (6.23) we price the derivative by means σ. Black-Scholes
model is an instrument to express the price, not for pricing. It is a sort of
"language" used by the market, not a model for the market.
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A meaningful question could be: "Why do we have to express the price by
the volatility?" Cannot we use simply the price?
Fix for a moment the value of r and S0 but leave free k and T . So, we have
an implicit volatility that changes in dependence on k and T . If we want to
compare two derivatives with different maturity or different strike (actually
we have even the possibility of same maturity and different strike or same
strike and different maturity) we knock our head against a wall. It turns
in an easy way when we compare the implicit volatilities: it is a relative
informer. This variability of the implicit volatility generates the so called
volatility surface.
If we used the BS model for pricing, we would have a flat surface. Many
other models can be given working on no constant volatility:

1. Local volatility models.

2. Stochastic volatility models.

3. Jump models.

If one is interested in one of this models can be look up in [2].

6.5 The Merton Model

Merton proposed his model in 1974 and in a little time it became very popu-
lar; it is still used. Over the time, the model has been developed and adapted
to the various cases. The asset values are represented as a stochastic process
(Vt). We take no-arbitrage principle for granted and the markets are sup-
posed frictionless, i.e. without taxes, transaction costs, bankruptcy costs.
The model assumes that the dividends cannot be paid out and the debts
cannot be released. In Merton’s model, the debt consists of one single zero
coupon bond with value B and maturity T . Therefore, the value of the firm’s
asset is

Vt = Et +Bt, t 6 T

where (Et)t is the stochastic process associated to the equity and (Bt)t is
relative to the bond. The firm’s default happens only at T and if debt
holders cannot be paid. At time T two situations can occur:

1. VT > B In this case the liabilities are greater than the value of the as-
sets of the firm. In this case the debtholders receive B, the shareholders
receive ET = VT − B and default does not occur.
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2. VT 6 B: the situation gets complicated. The liabilities exceed the
value of the assets of the firm and the company is not able to abide
by the financial duty. The shareholders, who do not receive something,
leave the control of the firm to bondholders. Therefore we have BT =
VT and ET = 0.

In short
ET = max

{
VT −B, 0

}
=
(
VT −B

)+ (6.24)

BT = min
{
VT , B

}
= B −

(
B − VT

)+ (6.25)

A typical strategy of debt holders is to try to neutralize the credit risk taking
a short position in a Put option on V with strike B and maturity T : in this
way they have bought a credit protection against the default risk of the firm.
Putting together the (6.25) and the last consideration we have the following
observation.

Remark 6.5.1. From the side of the company, the debt obligation of the
firm can be described by having a long position in a Put option, while for
the debt holders it is similar to write a Put option to the firm.

The shareholders of the firm have the right to liquidate the company that,
jointed with (6.24), led us to the successive observation.

Remark 6.5.2. By the firm’s point of view, equity and writing a Call option
have the same meaning. Then again, shareholders take on a long position in
a Call option on the firm’s asset values.

We want to draw attention to the contrary risk preferences between share
and debtholders; therefore an increasing volatility is

· good for shareholders, indeed they have a long position in a Call option
(the value of the call is naturally pushed up by increasing volatility)

· bad for debtholders inasmuch they have pledged a short Put.

Merton’s model is fairly simplistic: it does not think about the possibility
that the default can occur in any and different dates, not only at a fixed time
T . Formally, the default time is a random variable called stopping time and
defined as

τ = inf{t > 0 |Vt 6 B}
that is the first time in which the default occurs. The process of the stopping
time renews itself after each default. Furthermore, nowadays bankruptcy
is not automatically implied by the default. Other developments consider
stochastic interest rates and jumps for the process (Vt)t.

85



6.5.1 From Equity to Asset Values

In this paragraph we want to generalize the Black-Scholes model to the case
with dividends. Let us consider the process of a risky-asset S = (St)t and sup-
pose it follows a geometric Brownian motion. We also wish that St satisfies
the stochastic differential equation with the insertion of dividend payments:

dSt = (µSSt − Ct)dt+ σSStdBt (6.26)

where Ct is the dividend paid by the firm at time t, µ is the expected rate of
return of the asset S and σ the volatility. Since right now we have supposed
that the market value of the debt Dt at time t is a nonstochastic exponential
function

Dt = D0e
µDt.

We take into consideration a smooth function E = E(t, x, y) ∈ C2,1,1 then,
by Itô formula (6.1.2), the process (Et)t which is represented by

Et = E(t, St, Dt)

and solves

dEt =
[
(∂tE)(t, St, Dt) +

(
µSSt − Ct

)
(∂xE)(t, St, Dt)+

+ µDDt(∂yE)(t, St, Dt) +
1

2
σ2
SS

2
t (∂xxE)(t, St, Dt)

]
dt+

+ σSAt(∂xE)(t, St, Dt)dBt

The process E represents the value of the firm’s equity. Like we have done in
the section (6.2) (starting from (6.3) to the end), considering a self-financing
condition for the strategy, imposing Ct = δSt and equaling two equations,
with the same transitions, we reach:

∂tE(t, x, y) + (rx− δx)(∂xE)(t, x, y) + µDDt(∂yE)(t, x, y)+

+
1

2
σ2
Ax

2(∂xxE)(t, x, y)− rE(t, x, y) = 0
(6.27)

If we put δ = 0 and D0 = 0, we have again the Black-Scholes equation,
already seen in (6.7).

Reflect about the failure of a company. First of all, it is necessary to say that
at the moment in which the ratio St

Dt
amounts to some critical level γ, the

firm is considered to be in bankruptcy. This awkward level is chosen by the
equity-holders: the firm will go on working until equity holders are reluctant
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to have more losses than the ones that already occurred. It is possibile to
demonstrate that with the boundary condition

E(S,D)|S/D=γ
= 0

lim
S
D
→∞

E(S,D) = S − δ

r
D

the (6.27) admits solution and it is possible demonstrating that it is given
by

E(S,D) = D

[
S

D
− δ

r − µD
−
(
γ − δ

r − µD

)(
S/D

γ

)γ]
(6.28)

where

λ =
1

σ2
S

[(
σ2
S

2
+ δ + µD − r

)
−
√(

r − σ2
S

2
− δ − µD

)2
+ 2σ2

S

(
r − µD

)]

As we have said, the level γ is chosen by the investor so it is possible determ-
ining it by the first order condition ∂γE = 0 therefore we have

γ =
λ

λ− 1

δ

r − µD
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Chapter 7

Hedging

The fundamental question that we have tried to explain in the earlier chapter
is "What is the price of a derivative?". When a bank sells a derivative, it
must decide a price for it, so, knowing what is the right price is a matter of life
and death: if the price is too elevate, anyone will buy it, if instead the price is
not coherent with the derivative, the bank exposes itself at arbitrage, i.e. it
permits to make money at someone else with its own detriment. After pricing,
understand how the price change plays a central role in a financial point of
view: it is important to know if the price is quite enough sensitive at the
variation of volatility, of the asset value or of the short term rate. The natural
sensitivity indicators are the partial derivatives of the value of the portfolio
with respect to the corresponding risk factors. Since at each derivative we
associate a greek letter, they are called as The Greeks. In this chapter we
will give an expression for each of Greeks. They are so important because,
putting one of this derivatives equal to zero, we calibrate our strategy in order
that the price of the option is insensitive to the variations in the parameter
with respect to we have made the derivative. This is called hedging. If
we want to defend from the variations of the asset price, we will make a
Delta-hedging; likewise, if we want to be indifferent to the volatility, we will
make a Vega-hedging. It is possible making a combination of this hedging:
Delta-Vega-hedging, Gamma-Vega-hedging, and so on.

7.1 The Greeks

We have seen that the price of the derivatives depends on the price of under-
lying asset S, on the short-term rate r, on the volatility σ and on the time
t: f = f(t, s, σ, r). So, for understanding its sensitivity at the variation of
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those parameters we introduce:

∆ = ∂sf Delta

Γ = ∂ssf Gamma

V = ∂σf Vega

% = ∂rf Rho

Θ = ∂tf Theta

We have an explicit expression for the Greeks of European Put and Call
options, simply differentiating Black-Scholes formula (6.7). We will only talk
about Call options. We remind to the reader of, at time t, the price of an
European Call with maturity T and strike K is:

Ct = g(d1)

where

d1 =
log
(
St
K

)
+
(
r + σ2

2

)
(T − t)

σ
√
T − t

(7.1)

and
g(d) = StΦ(d)−Ke−r(T−t)Φ(d− σ

√
T − t), d ∈ R (7.2)

with

Φ(x) =
1√
2π

∫ x

−∞
e−

y2

2 dy

A few times, it is convenient to use

d2 = d1 − σ
√
T − t =

log
(
St
K

)
+
(
r − σ2

2

)
(T − t)

σ
√
T − t

Proposition 7.1.1. It is worth that

g′(d1) = 0 (7.3)
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Proof. One can observe that

Φ′(x) =
e−

x2

2

√
2π

Therefore

g′(d) = St
e−

d2

2

√
2π
−Ke−r(T−t) e

(d−σ
√
T−t)2

2

√
2π

=

=
e−

d2

2

√
2π

(
St −Ke−

(
r+σ2

2

)
(T−t) edσ

√
T−t
)
.

By (7.1), we have the claim.

Corollary 2. As consequence of (7.1.1) we have

StΦ
′(d1) = Ke−r(T−t)Φ′(d1 − σ

√
T − t) (7.4)

Now we are going to examinate each Greek of a Call option.

7.1.1 Delta

By (7.1.1), we have:
∆ = Φ(d1) (7.5)

then the values of the ∆ is included into the interval ]0, 1[:

0 < ∆ < 1

Remark 7.1.1. We can note that when the option is deep in the money, i.e.
the value of the payoff is major than the strike, the value of ∆ tends to 1;
that is because, almost surely, we exercise the option. When the option is at
the money, i.e. the value of the payoff is equal to the strike, ∆ is equal to
0.5: there are many uncertainties (we do not know if exercising the option is
the right thing), so, the ∆ is more sensitive to the variations in the price of
underlying asset.

The ∆ can be also interpreted like the amount of risky asset that has to
hold in the Delta-hedging portfolio. According to (7.5), the Call option is
treated as an equivalent long position in ∆ units of the underlying. By

lim
s→0+

d1 = −∞, lim
s→+∞

d1 = +∞ (7.6)

we reach
lim
s→0+

Ct = 0, lim
s→+∞

Ct = +∞

lim
s→0+

∆ = 0, lim
s→+∞

∆ = 1
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Remark 7.1.2. Using the Put-Call parity formula (4.0.2), we immediately
find that

∆put = ∆call − 1

It follows that ∆put ∈ [−1, 0], so that a Put option is equivalent to a short
position in the underlying.

7.1.2 Gamma

Since
Γ = ∂ssg = ∂s∆ = Φ′(d1)∂sd1

we get

Γ =
Φ′(d1)

σSt
√
T − t

(7.7)

We can note that the Γ is a positive function, so, by its definition, we have
that price g is a convex function, and the Delta is a increasing function; both
of them with respect to the underlying asset. By means of (7.6), we arrive
at

lim
s→0+

Γ = lim
s→+∞

Γ = 0

Remark 7.1.3. Being the derivative of Delta, the function Gamma assumes
big values when the option is at the money; this confirm the elevate sensibility
of ∆ in such case. Furthermore, when the option is at the money, the greater
is the value of Γ, the greater is the distance between the price of the option
and the discounted strike. Intuitively, this reflects the matter that the impact
of small variations in the value of the asset on the price of the option is more
significant when the option is at the money.

7.1.3 Vega

We have
V = St

√
T − tΦ′(d1) (7.8)

Indeed

V = ∂σCt = g′(d1)∂σd1 +Ke−r(T−t)Φ′(d1 − σ
√
T − t)

√
T − t

then, by (7.3) and (7.4), we get

V = St
√
T − tΦ′(d1)

The V ega is positive, therefore the price is a strictly increasing function of
the volatility. We remind that this important matter has been used into the
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section (6.4), speaking about the implicit volatility. It is possible to show
that

lim
σ→0+

Ct =
(
St −Ke−r(T−t)

)+

, lim
σ→+∞

Ct = St.

Since the proof is only a sequence formal calculus, we are not going to make
it. We only give the hint to put

λ = log
(St
K

)
+ r(T − t)

and to divide the proof in dependence on the possible values of λ. From
those limits, it follows that(

St −Ke−r(T−t)
)+

< Ct < St.

7.1.4 Theta

Since

Θ = ∂tCt = g′(d1)∂td1 − rKe−r(T−t)Φ(d2)−Ke−r(T−t)Φ′(d2)
σ

2
√
T − t

by (7.4), we reach

Θ = −rKe−r(T−t)Φ(d2)− σSt

2
√
T − t

Φ′(d1) (7.9)

We can note that Θ < 0, that is the price of a Call option is a decreasing
function with respect to the time; when we are no far off the maturity T , the
price is smallest than the beginning. It makes sense, indeed at the moment
in which we are closed to being in T , the effects of volatility are fairly small
and, with them, even the possibility of profit.

7.1.5 Rho

Due to
% = ∂rCt = g′(d1)∂rd1 +K(T − t)e−r(T−t)Φ(d2)

we have
% = K(T − t)e−r(T−t)Φ(d2) (7.10)

Since the factor exp(−r(T − t)) decreases when the r increases, the payment
of discounted strike K is inversely proportionate to r; therefore, the price of
a Call increases when the risk-free rate does so. Indeed % > 0.
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The Greeks of an European Put Option

We just give, without the proof, the equation for every Greeks.

∆ = ∂sPt = Φ(d1)− 1 < 0

Γ = ∂ssPt =
Φ′(d1)

σSt
√
T − t

> 0

V = ∂σPt = St
√
T − tΦ′(d1) > 0

Θ = ∂tPt = rKe−r(T−t)
(
1− Φ′(d2)

)
− σSt

2
√
T − t

Φ′(d1) ∈ R

% = ∂rPt = K(T − t)e−r(T−t)
(
Φ(d2)− 1

)
< 0
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