
ALMA MATER STUDIORUM – UNIVERSITA DI BOLOGNA

CAMPUS DI CESENA

SCUOLA DI INGEGNERIA E ARCHITETTURA

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA E SCIENZE INFORMATICHE

Hooking Java methods and native functions

to enhance Android applications security

Tesi in

Sicurezza delle Reti

 Relatore:

 Gabriele D’Angelo

 Correlatore: Presentata da:

 Bruno Crispo Filippo Alberto Brandolini

 Controrelatore:

 Andrea Omicini

 Sessione II

Anno Accademico 2015/2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AMS Tesi di Laurea

https://core.ac.uk/display/78373838?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Preface

This dissertation is the result of my personal elaboration of the work ac-
complished at IKS TN, Rovereto, Italy, during my work experience. There-
fore, this is not to be considered an IKS TN official project, nor is IKS TN
responsible for this work.

iii

Acknowledgements

I would like to thank my thesis supervisor Prof. Gabriele D’Angelo of the
University of Bologna for his assistance and precious collaboration.

I would also like to thank my assistant supervisor Prof. Bruno Crispo of
the University of Trento for his support during my work experience, which
inspired the realization of this work.

My sincere thanks also go to Prof. Andrea Omicini for being examiner of
this thesis.

Finally, I would like to thank Dr. Maqsood Ahmad, who was involved in
the analysis phase of this research project. His passionate participation and
input have been essential.

v

Abstract

Mobile devices are becoming the main end-user platform to access
the Internet. Therefore, hackers’ interest for fraudulent mobile applications
is now higher than ever. Most of the times, static analysis is not enough to
detect the application hidden malicious code. For this reason, we design and
implement a security library for Android applications exploiting the hooking
of Java and native functions to enable runtime analysis. The library verifies
if the application shows compliance to some of the most important security
protocols and it tries to detect unwanted activities. Testing of the library
shows that it successfully intercepts the targeted functions, thus allowing to
block the application malicious behaviour. We also assess the feasibility of
an automatic tool that uses reverse engineering to decompile the application,
inject our library and recompile the security-enhanced application.

I dispositivi mobile rappresentano ormai per gli utenti finali la princi-
pale piattaforma di accesso alla rete. Di conseguenza, l’interesse degli hacker
a sviluppare applicazioni mobile fraudolente è più forte che mai. Il più delle
volte, l’analisi statica non è sufficiente a rilevare tracce di codice ostile. Per
questo motivo, progettiamo e implementiamo una libreria di sicurezza per
applicazioni Android che sfrutta l’hooking di funzioni Java e native per ef-
fettuare un’analisi dinamica del codice. La libreria verifica che l’applicazione
sia conforme ad alcuni dei principali protocolli di sicurezza e tenta di rile-
vare tracce di attività indesiderate. La fase di testing mostra che la libreria
intercetta con successo le funzioni bersaglio, consentendo di bloccare il com-

vii

viii

portamento malevolo dell’applicazione. Valutiamo altresì la fattibilità di un
programma che in modo automatico sfrutti tecniche di reverse engineering
per decompilare un’applicazione, inserire al suo interno la libreria e ricompi-
lare l’applicazione messa in sicurezza.

Categories and Subject Descriptors: C.2.0 [Computer-Communication

Networks]: Security and protection; D.4.6. [Processor Architectures]:
Cellular architecture; D.2.7 [Software Engineering]: Restructuring, re-
verse engineering, and reengineering.

Keywords: android, security, monitoring, hooking, reverse engineering.

Contents

Abstract viii

List of Abbreviations xi

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 System Requirements . 3

1.2 The Android Stack . 6

1.3 Possible Solutions . 7

2 The hooking library 13

2.1 Reading device information 13

2.2 Detecting user location . 23

2.3 Using deprecated methods . 26

2.3.1 getRecentTasks(), getRunningTasks() 27

2.3.2 MODE_WORLD_READABLE, MODE_WORLD_WRITABLE 29

2.3.3 Deprecated methods overview 29

2.4 Using HTTP instead of HTTPS 30

2.5 The hooking library manually imported in new projects 37

2.6 Test . 38

ix

x CONTENTS

3 Automatic Tool Feasibility 41

3.1 Permanent injection of the hooking library inside target apk . 41

4 Related Work 45

5 Conclusions & Future Work 49

List of Abbreviations

ADBI Android Dynamic Binary Instrumentation
API Application Programming Interface
App Application
APK Android Package
ARM Acorn/Advanced RISC Machine
ART Android Runtime
BID Base station Identifier
C&C Command & Control
CDMA Code Division Multiple Access
CERT Computer Emergency Response Team
CID Cell Identifier
DCL Dynamic Class Loading
DEX Dalvik Executable
DDoS Distributed Denial of Service
GID Group Identifier
GMS Google Mobile Services
GPS Global Positioning System
GSM Global System for Mobile Communications

(originally Groupe Spécial Mobile)
HAL Hardware Abstraction Layer
HTTP HyperText Transfer Protocol
HTTPS HyperText Transfer Protocol Secure
ICCID Integrated Circuit Card Identifier

xi

xii CONTENTS

JNI Java Native Interface
IMEI International Mobile Equipment Identity
IMSI International Mobile Subscriber Identity
IPv4 Internet Protocol version 4
LAC Location Area Code
LOC Lines Of Code
NID Network Identifier
OWASP Open Web Application Security Project
RISC Reduced Instruction Set Computing
SD Secure Digital
SID System Identifier
SIM Subscriber Identity Module
TLS Transport Layer Security
UID User Identifier
UMTS Universal Mobile Telecommunications System
URL Uniform Resource Locator
VM Virtual Machine

List of Figures

1.1 The Android software stack [1] 8

2.1 Malicious behaviour: getSimSerialNumber() 15
2.2 Malicious behaviour: getSimSerialNumber(), blocked 16
2.3 Malicious behaviour: getDeviceId() 18
2.4 Malicious behaviour: getDeviceId(), blocked 19
2.5 Malicious behaviour: getSubscriberId() 20
2.6 Malicious behaviour: getSubscriberId(), blocked 21
2.7 Malicious behaviour: getLine1Number() 22
2.8 Malicious behaviour: getLine1Number(), blocked 23

xiii

List of Tables

1.1 Personal Information Stealing attempts 4
1.2 Possible communication channels for private information leakage 4
1.3 Weak programming practices resulting in security threats . . . 5

2.1 List of methods that access device information 14
2.2 List of methods that access GSM device location data 24
2.3 List of methods that access CDMA device location data 25
2.4 List of methods, classes and constants that have been depre-

cated for security reasons . 29
2.5 URLConnection sub-methods 31
2.6 List of hooks and their test outcomes 39

xv

Chapter 1

Introduction

Over the past few years, mobile devices have overtaken laptops and desk-
top computers as the most popular technology for web browsing [2]. This led
malicious hackers to focus on mobile devices and to implement malwares1

especially created for this type of technology. Hiding malicious code inside
an application is extremely common nowadays, and it represents the major
threat in mobile security. The goal of this project is to provide a shield
against such threat by developing a library that can be packaged inside An-
droid applications to allow runtime analysis and to verify the application
security level. The library, that we will address as hooking library, must in-
vestigate several scenarios and check if the application tries to perform some
malicious activity or if it contains one or more vulnerabilities which could
be exploited by adversaries for malicious purposes. To ensure this achieve-
ment, we perform an accurate analysis of the main mobile weaknesses and
the malwares exploiting those weaknesses, in order to identify potential risks.
Then, we examine the state of the art of Android security measures and we
select the best strategy to implement our monitoring library. Lastly, as a
case study, we implement a test application containing malicious code to

1Malware: abbreviation for malicious software. “A piece of software (computer pro-
gram) written by someone with mischievous and/or criminal intent”. A malware usually
try to “spread itself by some means, and to do some sort of damage or theft” [3].

1

2 1. Introduction

experiment with the hooking library functionalities.

Malicious activities and malwares can be classified into a few major
groups:

– Personal Information Stealing : applications (hereinafter referred to as
apps) could try to access the users’ personal information without their
consent. Personal information may include photos stored in the phone
memory, SMS messages, contacts, banking details, etc. The app can re-
trieve all the data and leak it to the outside world using telephony and
radio networks or the Internet. According to Check Point2 Threat Intel-
ligence Research Team [5], HummingBad is the most common malware
used to attack mobile devices in 2016. This Android malware “estab-
lishes a persistent rootkit on the device, installs fraudulent applications
and enables additional malicious activity such as installing a key-logger,
stealing credentials and bypassing encrypted email containers used by
enterprises” [5];

– Ransomware: this type of malicious app usually encrypts users’ data as
soon as it gets installed on the device: adversaries then ask users to pay
a ransom if they want to get their data back. Trojan:Android/Koler
is the major example of ransomware for Android: “on installation, the
app sends the device International Mobile Subscriber Identity (IMEI)
number to a remote server. It then opens a browser page that displays
a fake notice over the Home screen saying the device has been locked
due to security violations and all files have been encrypted” [6], thus
demanding payment of a fine to decrypt the files;

– Dialer : once installed on the user’s device, a dialer app sends SMS
messages to premium numbers, or call them. These operations result
in the user unknowingly losing credit;

2Check Point Software Technologies Ltd. is one of the major security vendors protecting
customers from cyber attacks and malwares, both on enterprises’ networks and mobile
devices [4].

1. Introduction 3

– Privilege Escalation: privilege escalation attacks occur when apps with
minimum permissions try to gain root access to take full control of the
user’s device. Although every Android app runs in a separate envi-
ronment and its permissions are granted by the user during installa-
tion, Dengre and Kaushal [7] explain how “privileged permissions can
be obtained by malicious apps by launching privilege escalation attacks.
Through these attacks, an application may gain permission to perform
a privileged task which it is not authorized”;

– Botnets : a special kind of malicious app starts communicating with
a Command & Control (C&C) server as soon as it gets installed on
the user’s device and performs malicious activities as directed by the
C&C server: stealing information, installing or uninstalling other apps,
taking part in Distributed Denial of Service (DDoS)3 attacks, etc. The
C&C server connects many other compromised devices, forming a bot-
net4. Communications between the compromised devices and the C&C
server usually occur through SMS messages or the Internet;

– Deprecated Methods Exploits : “As programming languages evolve, func-
tions occasionally become obsolete”, hence deprecated, “due to an im-
proved understanding of how operations should be performed effectively
and securely” [9]. Therefore, “the use of deprecated functions may indi-
cate neglected code” and a potential risk for the app security.

1.1 System Requirements

Based on our malwares analysis, we believe a monitoring app should first
check if the target app attempts to access the user’s private information. A
user’s phone is in fact home to a lot of sensitive and private information,

3A DDoS is a cyber attack where the perpetrator exploits more than one machine to
flood the target infrastructure or network resource with superfluous requests, in order to
make the targeted resource unavailable to its legitimate users [8].

4Botnet: combination of the words robot and network.

4 1. Introduction

Action Threat Malware

Accessing SD Card Information Stealing AndroRATIntern [10]
Reading device information Information Stealing DroidDream [11]
Reading SMS messages Information Stealing Spitmo [12]
Detecting user location Information Stealing DroidDream [11]

Table 1.1: Personal Information Stealing attempts

such as login credentials, banking details, private conversations and Global
Positioning System (GPS) locations. This data is usually stored in the phone
internal memory or in Secure Digital (SD) and Subscriber Identity Module
(SIM) cards. The Android framework provides methods which can be used
to access this information. Table 1.1 provides a list of information stealing
attempts, with examples of malwares exploiting those actions.

After collecting private information, a malicious app would try to leak
that information to some C&C Server or just to the outside world using one or
more communication channels listed in Table 1.2. The hooking library should
scan the app code for possible Internet connections or telephony network
communications.

Action Threat Malware

Calling phone numbers $ Loss BaseBridge [13]
Sending SMS/MMS messages Privacy Leakage / $ Loss Fakenotify [14]
Accessing the network Privacy Leakage / Botnet AnserverBot [15]

Table 1.2: Possible communication channels for private information leakage

Moreover, due to reasons such as negligence or incompetence, some pro-
gramming practices, like using deprecated methods or using HyperText Trans-
fer Protocol (HTTP) instead of HyperText Transfer Protocol Secure (HTTPS)
might leave the app vulnerable to attacks. Also, critical information should
always be encrypted in the phone memory; storing such important infor-

1. Introduction 5

mation in world-readable locations is extremely dangerous. The app should
always communicate through secure channels and avoid deprecated methods
and classes. Our library should check the app code for such weak program-
ming practices or vulnerabilities. These weaknesses are listed in Table 1.3.

Action Threat

Using deprecated methods Privacy Leakage / Corrupt application
Using HTTP instead of HTTPS Privacy Leakage / Corrupt application

Table 1.3: Weak programming practices resulting in security threats

All the potentially malicious actions listed in tables 1.1, 1.2 and 1.3 can
be executed or are represented by specific Java methods or native functions,
that we will call pivotal functions. The first idea would be to use static
analysis to check if such functions are included in the app code. However,
as explained by Ahmad and Crispo [16], recent dynamic techniques such as
Reflection and Dynamic Class Loading (DCL) allow an app to change its
behaviour at runtime. These techniques are mainly used in Android apps
for extensibility. Nevertheless, malware developers take advantage of these
techniques to bypass static analysis tools and they empower malicious apps
to reveal their hidden code only when they are running on the user’s device.
Therefore, we focus on runtime analysis to prevent this threat. The goal of
this work is to identify and intercept the pivotal functions, access their data
dynamically and block their execution if illegitimate or insecure activities
are found. To achieve this, a good knowledge of the Android framework is
required.

6 1. Introduction

1.2 The Android Stack

To support code reuse5 and to allow other developers to include our work
in their projects, we aim at implementing a shared library containing all the
monitoring code and we discourage developers from writing monitoring code
directly inside their apps core logic. To identify the best strategy for the
library implementation, we analyze the Android architecture.
Android is an open source, Linux-based mobile operative system consisting
of six major components (Fig. 1.1):

– Linux Kernel : the foundation of the Android platform is the Linux
kernel, which handles the most low-level system functionalities;

– Hardware Abstraction Layer : “the Hardware Abstraction Layer (HAL)
provides standard interfaces that expose device hardware capabilities to
the higher-level Java framework” [1]. HAL consists of multiple libraries,
each one implementing an interface for a specific hardware component
(e.g. Camera, Bluetooth);

– Android Runtime: Since Android version 5.0 — Application Program-
ming Interface (API) level 21 — “each app runs in its own process and
with its own instance of the Android Runtime (ART)” [1]. ART runs
multiple virtual machines — one for each application — by execut-
ing Dalvik Executable (DEX) files, a bytecode format optimized for
minimal memory footprint;

– Native C/C++ Libraries : Android system components require native
libraries written in C and C++;

– Java API Framework : this layer exposes the native libraries to the
higher-level apps;

5Code reuse consists in exploiting existing software or knowledge to implement new
programs, following the reusability principles [17].

1. Introduction 7

– System Apps : Android comes with a set of core apps (e.g. email, SMS
messaging, internet browsing) which provide key functionalities that
developers can include in their own apps.

Java is a high-level programming language, and Android reflects this trait.
High-level programming languages provide a great amount of abstraction
from machine language, which mainly implies a focus on usability and sim-
plicity over optimal program efficiency and access to the system architecture.
Not by chance, most of Java Android methods usually call basic functions
from the native libraries (e.g. socket, read, write), executing code that
cannot be changed or accessed from the Java level. For this reason, if we
want to intercept all malicious activities, we need to access the Native Li-
braries and to program both in Java and C, which is possible thanks to
Android NDK [18]. Once we have identified all the critical methods that
require monitoring, we can group them into two main categories:

1. Java methods with direct access to the information we need;

2. Java methods calling native functions that handle the information we
need;

The list of methods we want to intercept6 consists of all the Java methods
from group 1, plus all the native functions underlying the methods from
group 2. In the next section, we evaluate several possible solutions to select
the best candidate for the hooking library implementation.

1.3 Possible Solutions

“Securing Android devices often requires modifying their write-protected
underlying system components files” [19]. The simplest way to do this is to
root target devices to obtain full access to the system architecture. Rooting
is the process of granting the device user privileged control (known as root

6We draw up this list in Chapter 2.

8 1. Introduction

Figure 1.1: The Android software stack [1]

1. Introduction 9

access) over the system. This process is often performed in order to bypass
limitations set by carriers and hardware manufacturers. Therefore, rooting
gives permissions to alter system components and settings that are otherwise
inaccessible. In a rooted environment, we could provide a custom Android
framework with monitoring features. However, forcing users to root their
phones is not an acceptable solution. First, because the rooting process in-
validates the device warranty, but also because the vast majority of users do
not know how to do it, or they expect — with good reason — to have a per-
fectly secure device without having to do anything more than buying it. The
first possibility is to introduce a reset procedure, triggered when launching
the target application, that starts a new execution environment in which the
reference to the underlying system components is redirected to a security-
enhanced alternative. This technique is called reference hijacking [19]: in
the new environment, “the target application can load system class libraries
and native libraries from any place instead of the default folders”, allowing
to introduce extra security features on unrooted devices. The environment
reset is achieved by calling a native exec function, which completely replaces
the current process with the security-enhanced program. The problem with
this solution is that many vendors actually customize their firmwares instead
of using Android stock version. Therefore, the process may be different for
different versions of Android, depending upon how processes are started.
Besides, the reset procedure is quite invasive and it introduces a noticeable
overhead.

Another possible solution is to use ptrace, a system call provided by
Linux to trace all system calls made by the targeted process. It is possible
to deploy an app having two processes where the first one (the “tracer”)
observes and controls the execution of the other (the “tracee”) [20]. In our
case, the hooking library could run as the tracer process, attach ptrace

to the target app and monitor its system calls. The tracer process could
then intercept, extend or block the system calls, thus enforcing the desired
security policies. Unfortunately, ptrace can only be used when tracer and

10 1. Introduction

tracee process have the same User Identifier (UID) or Group Identifier (GID),
or when the tracer process has the CAP_SYS_PTRACE capability [21]. Before
Android 4.4, Zygote7 had this capability by default, therefore it could trace
every process. However, from Android 4.4, Zygote loses this ability, so the
only way to allow “ptracing” is to have both the processes with the same UID
or GID. A possible strategy is to create a sandbox where the target app runs
inside a “container” process, which forks on startup to spawn a child process,
thus sharing its UID [22]. This way, ptrace can work for newer versions of
Android as well. However, this solution is quite invasive, part of the target
app must be changed and the container app requires different structures for
different Android versions.

A third option found in the literature is to exploit Virtual Memory Tam-
pering : every Android app has a list of all the virtual methods and their
references in the app virtual memory. ART uses reflection or native meth-
ods to retrieve virtual methods references and invoke them. Tampering the
virtual methods table is a way to direct a method call to custom monitoring
code and then re-direct it back to the original code. This way, we can inter-
cept critical methods and detect malicious activities. This solution requires
root privileges to inject the hooking library in the virtual memory of the app
[23]. However, we identify a couple of workarounds to use this strategy for
unrooted devices as well:

1. the library can be packaged inside the app;

2. reverse engineering can be used to decompile the target app, inject the
library and repackage the app into a new security-enhanced Android

7Like many other Linux-based systems, Android provides a startup bootloader which
loads the kernel and starts the init process. This, in turn, launches all the daemons
handling the hardware interfaces, and then executes the Zygote process. Zygote basically
loads every Java class and resource used by the framework and the other applications, and
then it starts listening on a socket (/dev/socket/zygote) for application launch requests.
For every request, Zygote forks and spawns a new Virtual Machine (VM) in which the
specific application will be executed. This means that every Android application runs in
a separate process, and Zygote is the parent of every application process.

2. The hooking library 11

package (APK).

We believe that Virtual Memory Tampering is the best solution to reach our
project achievement. Therefore, the hooking library will be implemented by
following this strategy. To summarize, this work is organized as follows:

– we discuss the implementation of the hooking library in chapter 2;

– we evaluate the feasibility of an automatic tool that uses reverse engi-
neering to decompile the application, inject our library and recompile
the security-enhanced application in chapter 3;

– we discuss the project related works in chapter 4;

– we examine the project limitations and open challenges in chapter 5.

Chapter 2

The hooking library

The foundations of the hooking library are Android Dynamic Binary In-
strumentation (ADBI) [24] and Legend [25]. ADBI is a tool written in C
which injects code in the memory of an Android app and it implements vir-
tual memory tampering for functions hooking. It exploits in-line hooking
to perform redirection: by modifying the entry point of a function, the tool
makes the function jump to the address of a custom code, which returns
the control after performing the required processing. Legend is a hooking
framework for Dalvik and ART Android applications allowing to hook Java
methods without root privileges. It uses Java Native Interface (JNI) to call
Java methods from the native program implementing the hooking core. It
can run on Android versions 4.2—6.0.1. Both ADBI and Legend are compat-
ible with ARM-321 architectures (armeabi-v7a). The hooking library imports
ADBI and Legend and it implements the security verifications on top of it.

2.1 Reading device information

Some malicious apps will try to retrieve information about the device
in which they are running. Android provides some legitimate methods that

1ARM: originally Acorn RISC Machine, later Advanced RISC Machine. RISC stands
for Reduced Instruction Set Computing.

13

14 2. The hooking library

could be exploited by adversaries to achieve this goal. We consider them
pivotal functions and we show them in Table 2.2. All of the methods require
READ_PHONE_STATE permissions.

Method Class Information retrieved

getSimSerialNumber() TelephonyManager ICCID
getDeviceId() TelephonyManager IMEI
getSubscriberId() TelephonyManager IMSI
getLine1Number() TelephonyManager Telephone Number

Table 2.1: List of methods that access device information

The Integrated Circuit Card Identifier (ICCID), or SIM Serial Number,
is a global identifier for unique SIM cards. Adversaries might be interested in
stealing ICCID codes to do illegal activities while pretending to be someone
else, thus avoiding to be tracked. A SIM card ICCID can be retrieved using
the getSimSerialNumber() method. The following are hooking method for
getSimSerialNumber() and its test code:

1 @Hook("android.telephony.TelephonyManager ::

getSimSerialNumber")

2 public static String TelephonyManager_getSimSerialNumber(

TelephonyManager tm) {

3 if (! ALLOW_GETSIMSERIALNUMBER){

4 return "POTENTIAL INFORMATION LEAKAGE DETECTED:

getSimSerialNumber () hooked and blocked! The

app just tried to retrieve your SIM number!";

5 } else {

6 return ""+HookManager.getDefault ().callSuper(tm);

7 }

8 }

1 enableGetSimSerialNumberCheckBox.setOnCheckedChangeListener

(new CompoundButton.OnCheckedChangeListener () {

2 @Override

3 public void onCheckedChanged(CompoundButton buttonView ,

boolean isChecked) {

2. The hooking library 15

Figure 2.1: Malicious behaviour: getSimSerialNumber()

4 App.ALLOW_GETSIMSERIALNUMBER = isChecked;

5 }

6 });

7
8 button.setOnClickListener(new View.OnClickListener () {

9 @Override

10 public void onClick(View v) {

11 TelephonyManager telephonyManager = (

TelephonyManager) getSystemService(

TELEPHONY_SERVICE);

12 telephonyManager.getSimSerialNumber ();

13 String result = telephonyManager.getSimSerialNumber

();

14 String tv = ("SIM Number: " + result);

15 textView.setText(tv);

16 }

17 });

Our test app behaviour with getSimSerialNumber() enabled is showed in
Figure 2.1, while hooking behaviour is showed in Figure 2.2.

16 2. The hooking library

Figure 2.2: Malicious behaviour: getSimSerialNumber(), blocked

The International Mobile Equipment Identity (IMEI) is a global identifier
for unique devices. IMEI code is sent during the handshake process when
connecting to a network, and the carrier can use it to identify the device
model. The main reasons why adversaries want their victims’ IMEI are the
following:

– they can pretend to possess their victims’ devices;

– they acquire more knowledge about their victims’ devices;

In the first place, let us consider the Samsung Case in September 2016, when
the South Korean company had to recall 2.5 million Galaxy Note 7s due to
exploding batteries [26]. The manufacturer offered a replacement process for
which if customers presented their device IMEI, the company would verify if
they were eligible for a free replacement or refund. Although, if their device
IMEI had been stolen, someone else could claim the free device in place of
the legitimate customers. In this kind of scenario, the company typically
asks every customer to provide a proof of purchase. However, adversaries try

2. The hooking library 17

to take advantage of the circumstances (e.g. telling the device was a gift,
threatening to make official complaints about customer dissatisfaction) so
that replacements can be granted more easily.

Secondly, an adversary can gather even more information about the vic-
tim’s device by using an IMEI analyzer tool or web service.

IMEI codes can be retrieved by using the getDeviceId() method. The
following are hooking method for getDeviceId() and its test code:

1 @Hook("android.telephony.TelephonyManager :: getDeviceId")

2 public static String TelephonyManager_getDeviceId(

TelephonyManager tm){

3 if (! ALLOW_GETDEVICEID) {

4 return "POTENTIAL INFORMATION LEAKAGE DETECTED:

getDeviceId () hooked and blocked! The app just

tried to retrieve your IMEI!";

5 } else {

6 return ""+HookManager.getDefault ().callSuper(tm);

7 }

8 }

1 enableGetDeviceIdCheckBox.setOnCheckedChangeListener(new

CompoundButton.OnCheckedChangeListener () {

2 @Override

3 public void onCheckedChanged(CompoundButton buttonView ,

boolean isChecked) {

4 App.ALLOW_GETDEVICEID = isChecked;

5 }

6 });

7
8 button5.setOnClickListener(new View.OnClickListener () {

9 @Override

10 public void onClick(View v) {

11 TelephonyManager telephonyManager = (

TelephonyManager) getSystemService(

TELEPHONY_SERVICE);

12 String IMEI = telephonyManager.getDeviceId ();

13 String tv = ("IMEI code: " + IMEI);

14 textView.setText(tv);

18 2. The hooking library

Figure 2.3: Malicious behaviour: getDeviceId()

15 }

16 });

Our test app behaviour with getDeviceId() enabled is showed in Figure
2.3, while hooking behaviour is showed in Figure 2.4.

The International Mobile Subscriber Identity (IMSI) is a global identifier
for unique subscribers to the wireless communications network. It has the
format MCC-MNC-MSIN, where MCC (the first 3 digits) is the Mobile Country
Code (e.g. 222 for Italy), MNC (2 or 3 digits) is the Mobile Network Code (e.g.
410 for AT&T) and MSIN is the Mobile Subscription Identification Number.
All communications through the Global System for Mobile Communications
(GSM) and the Universal Mobile Telecommunications System (UMTS) net-
works use IMSI as the primary identifier for every subscriber. Adversaries
target IMSI codes to enable interception and traffic analysis on the victims’
calls with the help of devices such as IMSI catchers and fake station gen-
erators [27]. IMSI codes can be retrieved by using the getSubscriberId()

method. The following are hooking method for getSubscriberId() and its
test code.

2. The hooking library 19

Figure 2.4: Malicious behaviour: getDeviceId(), blocked

1 @Hook("android.telephony.TelephonyManager :: getSubscriberId"

)

2 public static String TelephonyManager_getSubscriberId(

TelephonyManager tm){

3 if (! ALLOW_GETSUBSCRIBERID){

4 return "POTENTIAL INFORMATION LEAKAGE DETECTED:

getSubscriberId () hooked and blocked! The app

just tried to retrieve your IMSI!";

5 } else {

6 return ""+HookManager.getDefault ().callSuper(tm);

7 }

8 }

1 enableGetSubscriberIdCheckBox.setOnCheckedChangeListener(

new CompoundButton.OnCheckedChangeListener () {

2 @Override

3 public void onCheckedChanged(CompoundButton buttonView ,

boolean isChecked) {

4 App.ALLOW_GETSUBSCRIBERID = isChecked;

5 }

20 2. The hooking library

Figure 2.5: Malicious behaviour: getSubscriberId()

6 });

7
8 button4.setOnClickListener(new View.OnClickListener () {

9 @Override

10 public void onClick(View v) {

11 TelephonyManager telephonyManager = (

TelephonyManager) getSystemService(

TELEPHONY_SERVICE);

12 String IMSI = telephonyManager.getSubscriberId ();

13 String tv = ("IMSI code: " + IMSI);

14 textView.setText(tv);

15 }

16 });

Our test app behaviour with getSubscriberId() enabled is showed in Figure
2.5, while hooking behaviour is showed in Figure 2.6.

Lastly, adversaries can try to retrieve the telephone number of the victims
to send them spam messages and phishing attacks via SMS, or even to eaves-
drop on calls and read texts. The user telephone number can be retrieved by
calling the getLine1Number() method. The following are hooking method

2. The hooking library 21

Figure 2.6: Malicious behaviour: getSubscriberId(), blocked

for getLine1Number() and its test code:

1 @Hook("android.telephony.TelephonyManager :: getLine1Number")

2 public static String TelephonyManager_getLine1Number(

TelephonyManager tm){

3 if (! ALLOW_GETLINE1NUMBER){

4 return "POTENTIAL INFORMATION LEAKAGE DETECTED:

getLine1Number () hooked and blocked! The app

just tried to retrieve your telephone number!";

5 } else {

6 return ""+HookManager.getDefault ().callSuper(tm);

7 }

8 }

1 enableGetLine1NumberCheckBox.setOnCheckedChangeListener(new

CompoundButton.OnCheckedChangeListener () {

2 @Override

3 public void onCheckedChanged(CompoundButton buttonView ,

boolean isChecked) {

4 App.ALLOW_GETLINE1NUMBER = isChecked;

22 2. The hooking library

Figure 2.7: Malicious behaviour: getLine1Number()

5 }

6 });

7
8 buttonGetLine1Number.setOnClickListener(new View.

OnClickListener () {

9 @Override

10 public void onClick(View v) {

11 TelephonyManager telephonyManager = (

TelephonyManager) getSystemService(

TELEPHONY_SERVICE);

12 String TelephoneNumber = telephonyManager.

getLine1Number ();

13 String tv = ("Telephone Number: " + TelephoneNumber

);

14 textView.setText(tv);

15 }

16 });

Our test app behaviour with getLine1Number() enabled is showed in Figure
2.7, while hooking behaviour is showed in Figure 2.8.

2. The hooking library 23

Figure 2.8: Malicious behaviour: getLine1Number(), blocked

2.2 Detecting user location

A malicious app could try to detect the user location. There are two ways
to do it:

– exploiting GPS and Internet data;

– exploiting GSM and Code Division Multiple Access (CDMA) Tele-
phony data.

GPS consists of 24 satellites orbiting around the Earth. These satellites,
owned by the United States government, can locate world objects with an
average precision of 6-12 metres [28]. GPS receivers catch the satellites sig-
nals to determine the location. Conversely, GSM technology determines an
object location by using signal triangulation from base stations.

In this work, we focus on Telephony network exploits. User location de-
tection via Telephony network depends on whether the device uses GSM or
CDMA network. In the first case, which is the most common scenario, the

24 2. The hooking library

adversary must obtain the device MCC and MNC codes plus the Location
Area Code (LAC) and the Cell Identifier (CID). MCC and MNC can be re-
trieved by using getSubscriberId() to obtain the device IMSI, as explained
in p. 18. As for LAC and CID, they can be retrieved by calling their respec-
tive getter methods — getLac() and getCid() — on GsmCellLocation.
A GsmCellLocation instance with the device current location data can be
obtained by calling getCellLocation() on a TelephonyManager instance
with running on a GSM device. Pivotal functions for GSM user location
detection are listed in Table 2.3. getLac() and getCid() are sub-pivots of

Method Class Information retrieved

getCellLocation() TelephonyManager GsmCellLocation
↪→ getLac() GsmCellLocation LAC
↪→ getCid() GsmCellLocation CID
getSubscriberId() TelephonyManager IMSI

Table 2.2: List of methods that access GSM device location data

getCellLocation().

When the hacked device uses CDMA network (e.g. every tablet device
without SIM card2), the adversary must combine the MCC code with the cell
System Identifier (SID), Network Identifier (NID) and Base station Identifier
(BID) codes. The MCC code can be retrieved by using getSubscriberId()

to obtain the device IMSI, as explained in p. 18. The other identifiers can
be obtained by calling their respective getter methods — getSystemId(),
getNetworkid() and getBaseStationId() — on CdmaCellLocation. A
CdmaCellLocation instance with the device current location data can be
obtained by calling getCellLocation() on a TelephonyManager instance
running on a CDMA device. New pivotal functions for CMDA user loca-
tion detection are listed in Table 2.4. getSystemId(), getNetworkId() and
getBaseSystemId() are sub-pivots of getCellLocation().

2For example, the Samsung Galaxy Tab CDMA P100.

2. The hooking library 25

Method Class Information retrieved

getCellLocation() TelephonyManager CdmaCellLocation
↪→ getSystemId() CdmaCellLocation SID
↪→ getNetworkid() CdmaCellLocation NID
↪→ getBaseStationId() CdmaCellLocation BID
getSubscriberId() TelephonyManager IMSI

Table 2.3: List of methods that access CDMA device location data

We decide to hook the macro function getCellLocation() in place of
its sub-pivots for maximum security3. The following are hooking method for
getCellLocation() and its test code, which checks if the device uses GSM
or CDMA network and it executes its malicious code, accordingly:

1 buttonGetCellLocation.setOnClickListener(new View.

OnClickListener () {

2 @Override

3 public void onClick(View v) {

4 TelephonyManager telephonyManager = (

TelephonyManager) getSystemService(

TELEPHONY_SERVICE);

5 String tvloc = "";

6 if (telephonyManager.getPhoneType ()==

TelephonyManager.PHONE_TYPE_GSM){

7 GsmCellLocation location = (GsmCellLocation)

telephonyManager.getCellLocation ();

8 int cid = location.getCid ();

9 int lac = location.getLac ();

10 tvloc = ("CID: " + cid + ", LAC: " + lac);

11 } else if (telephonyManager.getPhoneType ()==

TelephonyManager.PHONE_TYPE_CDMA){

12 CdmaCellLocation location = (CdmaCellLocation)

telephonyManager.getCellLocation ();

13 int sid = location.getSystemId ();

3In a trade-off analysis, hooking the sub-pivots in place of their macro function could
reduce the number of false positives.

26 2. The hooking library

14 int nid = location.getNetworkId ();

15 int bid = location.getBaseStationId ();

16 tvloc = ("SID: " + sid + ", NID: " + nid + ",

BID: " + bid);

17 } else {

18 //

19 }

20 textView.setText(tvloc);

21 }

22 });

2.3 Using deprecated methods

The majority of methods deprecations have no security ramifications,
that is why blindly flagging all deprecated methods would produce many false
positives. For example, FontMetrics.getMaxDecentmethod was deprecated
because of a spelling error:

As of JDK version 1.1.1, replaced by getMaxDescent ().

In fact, according to The Open Web Application Security Project (OWASP),
“not all functions are deprecated or replaced because they pose a security risk”
[9]. However, deprecated functions may indicate that part of the code is
in a state of disrepair, which “raises the probability that there are security
problems lurking nearby” [9]. At the Computer Emergency Response Team
(CERT) of Carnegie Mellon University, experts say “never use deprecated
fields, methods, or classes in new code” [29], because it can lead to erroneous
behaviour that might become a threat for security in a second moment. The
point of deprecating a method is to let developers know that there is now a
better way to do what that method did, and that the deprecated code is likely
to be removed in a future release. Our goal is to draw up a list of methods,
classes and constants that have been deprecated for security reasons, so that
we can try to hook them from the target application. If a hook succeeds, it
means that the corresponding method is used by the application.

2. The hooking library 27

2.3.1 getRecentTasks(), getRunningTasks()

One of the changes in Android API 21, LOLLIPOP, is the deprecation
of ActivityManager methods getRecentTasks() and getRunningTasks(),
and the inclusion of their replacement ActivityManager.getAppTasks().
The main reason behind this change is the introduction of document-centric
recents, which make getRecentTasks() and getRunningTasks() exploitable
by adversaries for personal information leakage. Android say that these meth-
ods “should never be used for core logic in an application” [30]. Some banking
Trojans use a technique that invokes getRunningTasks() to determine which
process is currently running in the foreground. If the running process is a
banking app, the malware can push itself to the foreground to steal infor-
mation [31]. The following are hooking methods for getRecentTasks() and
getRunningTasks(), plus their test codes and outputs:

1 @Hook("android.app.ActivityManager :: getRecentTasks@int#int"

)

2 public static List <ActivityManager.RecentTaskInfo >

ActivityManager_getRecentTasks (ActivityManager

activityManager , int maxNum , int flags) {

3 if (! ENABLE_GETRUNNINGANDRECENTTASKS) {

4 System.out.println("getRecentTasks () hooked! This

method has been deprecated in API 21 for

security reasons and it should not be used!");

5 } else {

6 return HookManager.getDefault ().callSuper(

activityManager , maxNum , flags);

7 }

8 return null;

9 }

1 buttonGetRecentTasks.setOnClickListener(new View.

OnClickListener () {

2 @Override

3 public void onClick(View v) {

4 ActivityManager am = (ActivityManager)

getSystemService(ACTIVITY_SERVICE);

28 2. The hooking library

5 List <ActivityManager.RecentTaskInfo > tasksInfo = am

.getRecentTasks (1,1);

6 }

7 });

D/Legend-Log: [+++] ActivityManager_getRecentTasks hooked.

I/System.out: getRecentTasks () hooked! This method has

been deprecated in API 21 for security reasons and it

should not be used!

1 @Hook("android.app.ActivityManager :: getRunningTasks@int")

2 public static List <ActivityManager.RunningTaskInfo >

ActivityManager_getRunningTasks (ActivityManager

activityManager , int maxNum) {

3 if (! ENABLE_GETRUNNINGTASKS) {

4 System.out.println("getRunningTasks () hooked! This

method has been deprecated in API 21 for

security reasons and it should not be used!");

5 } else {

6 return HookManager.getDefault ().callSuper(

activityManager , maxNum);

7 }

8 return null;

9 }

1 button2.setOnClickListener(new View.OnClickListener () {

2 @Override

3 public void onClick(View v) {

4 ActivityManager am = (ActivityManager)

getSystemService(ACTIVITY_SERVICE);

5 List <ActivityManager.RunningTaskInfo > tasksInfo =

am.getRunningTasks (1);

6 }

7 });

D/Legend-Log: [+++] ActivityManager_getRunningTasks hooked.

I/System.out: getRunningTasks () hooked! This method has

been deprecated in API 21 for security reasons and it

should not be used!

2. The hooking library 29

2.3.2 MODE_WORLD_READABLE, MODE_WORLD_WRITABLE

MODE_WORLD_READABLE and MODE_WORLD_WRITABLE are two constants for
file creation allowing all other applications to have read access and write
access, respectively, to the created file. These constants were deprecated in
Android API 17 (JELLY_BEAN_MR1). “Creating world-readable” — and
world-writable — “files is very dangerous, and likely to cause security holes
in applications” [32]. Instead, applications should use ContentProvider,
BroadcastReceiver, or Service for interactions. “As of N, attempting
to use this mode will throw a SecurityException” [32]. To search for
MODE_WORLD_READABLE and MODE_WORLD_WRITABLE occurrences at runtime,
we can hook the openFileOutput method, which is used to “open a private
file for writing” or to “create the file if it doesn’t already exist” [33]. The sec-
ond parameter passed to this method is an integer indicating the file creation
mode. If our hook detect an openFileOutput(), it can access its mode and
check if Context.MODE_WORLD_READABLE or Context.MODE_WORLD_WRITABLE
are used.

2.3.3 Deprecated methods overview

The complete list of deprecated methods, classes and constants marked
as threats is shown in Table 2.5.

Element Type Risk Deprecated in

MODE_WORLD_READABLE Constant High API 17
MODE_WORLD_WRITABLE Constant High API 17
getRecentTasks() Method Medium API 21
getRunningTasks() Method Medium API 21

Table 2.4: List of methods, classes and constants that have been deprecated
for security reasons

30 2. The hooking library

2.4 Using HTTP instead of HTTPS

The Internet resources can be accessed via HTTP, the basic Internet
protocol, or HTTPS, which initializes encrypted connections to allow au-
thentication of the requested resource and protection of the integrity of the
exchanged data between client and server. HTTPS should always be pre-
ferred to HTTP, especially when the app manages user private information.
To check if an app opens secure connections when accessing the Internet, we
need to identify the main Java class used to open connections, analyze all of
its dependencies until we find the most low-level functions called by the Java
class, and access their data in search of information about the protocol and
the connection integrity.
This is how a basic HTTPS connection is created in Android [34]:

1 URL url = new URL("https :// wikipedia.org");

2 URLConnection urlConnection = url.openConnection ();

3 InputStream in = urlConnection.getInputStream ();

4 copyInputStreamToOutputStream(in , System.out);

URLConnection is the abstract class for every class that acts as communica-
tion link between the app and a Uniform Resource Locator (URL). In general,
creating a connection to a URL is a multistep process [35]: the connection
is initialized by invoking the openConnection() method on a specific URL,
and then it is completed by the connect() method, which makes the ac-
tual connection to the remote object and allows to access its content. The
connection process sub-methods are also listed in Table 2.1. We identify
URLConnection as the main Java class used to open connections, and we
acknowledge that connect() is the most low-level native function called by
the Java class.

Follows connect() declaration in /bionic/libc/bionic/connect.cpp:

1 #include "private/NetdClientDispatch.h"

2 #include <sys/socket.h>

3 int connect(int sockfd , const sockaddr* addr , socklen_t

addrlen) {

2. The hooking library 31

openConnection() Manipulates parameters that affect the connection
to the remote resource. High abstraction level.

connect() Interacts with the resource; queries header fields
and contents. Low abstraction level.

Table 2.5: URLConnection sub-methods

4 return __netdClientDispatch.connect(sockfd , addr ,

addrlen);

5 }

This function takes sockaddr* as a parameter, which is a struct storing an
array of characters, char sa_data[14].

1 struct sockaddr {

2 sa_family_t sa_family;

3 char sa_data[14];

4 };

This array of characters contains information about the opening connection
port number, which could be our first classifier for HTTP and HTTPS con-
nections, but unfortunately it comes as raw data. However, in Network
Programming, whenever we have a function taking a sockaddr* struct as a
parameter, we can play with the struct sockaddr_in instead, and cast it to
sockaddr* type with safety. The struct sockaddr_in is the basic Internet
Protocol version 4 (IPv4) structure used for all system calls and functions
dealing with Internet addresses, and it is of the same memory size of the
struct sockaddr, so we can freely cast the pointer of one type to the other
without any risk [36]. The struct sockaddr_in stores an address family in
sin_family, a port in sin_port, and an IPv4 address in sin_addr:

1 #include <netinet/in.h>

2 // IPv4 AF_INET sockets:

3 struct sockaddr_in {

4 short sin_family; // e.g. AF_INET

5 unsigned short sin_port; // e.g. htons (3490)

6 struct in_addr sin_addr;

32 2. The hooking library

7 char sin_zero[8];

8 };

This trick will grant us access to the connection port number every time we
hook the connect(), which becomes our first pivotal function. Follows the
hooking method for connect():

1 int my_connect(int sockfd , struct sockaddr* addr , socklen_t

addrlen)

2 {

3 int (* orig_connect)(int sockfd , struct sockaddr* addr ,

socklen_t addrlen);

4 orig_connect = (void*)eph.orig;

5 struct sockaddr_in *addr_in = (struct sockaddr_in *)addr

;

6 log("my_connect () called!");

7 log("Port: %d", ntohs(addr_in->sin_port));

8 hook_precall (&eph);

9 int res = orig_connect(sockfd , addr , addrlen);

10 hook_postcall (&eph);

11 return res;

12 }

The ntohs function [37] converts the port number from network byte or-
der (big-endian4) to host byte order (little-endian5 on Intel and many ARM
processors6).

To verify the hooking function efficacy, we want our test app to open a
basic HTTP connection. To do that, we create the class NetworkTask.java
and we call its execution from the MainActivity.

1 package disi.unitn.test.adbitest;

2 import android.os.AsyncTask;

4Parameters are always sent most significant byte first.
5Parameters are always sent least significant byte first.
6The ARM architecture was purely little-endian before version 3, when it became bi-

endian. Bi-endianness allows for switchable endianness in data and instruction fetches. A
bi-endian machine can compute or send data in either endian format. The vast majority
of architectures use little-endian as host byte order, anyway.

2. The hooking library 33

3 import android.util.Log;

4 import java.net.HttpURLConnection;

5 import java.net.URL;

6
7 public class NetworkTask extends AsyncTask <String , Void ,

Void > {

8 private Exception exception;

9
10 @Override

11 protected Void doInBackground(String... urls) {

12 try {

13 URL url = new URL(urls[0]);

14 HttpURLConnection conn = null;

15 conn = (HttpURLConnection) url.openConnection ()

;

16 conn.connect ();

17 Log.d("NetworkTask:", "After Connect!");

18 } catch (Exception e) {

19 this.exception = e;

20 return null;

21 }

22 return null;

23 }

24 }

1 String link = "http ://www.google.com";

2 Log.d("Return fr. N HTTP Task", new NetworkTask ().execute(

link).toString ());

The following is the output of the program: the hooking code tampers the
virtual method reference, invokes the custom connect(), which retrieves the
port number, and then it resumes the original connect() execution.

I/HOOKLIB: name: connect 11c99

I/HOOKLIB: hooking: connect = 0xb6d7ec99

I/HOOKLIB: THUMB using 0xb03ad659

I/HOOKLIB: my_connect () called!

I/HOOKLIB: Port: 80

D/NetworkTask :: After Connect!

34 2. The hooking library

The port detected is 80, which is in line with the type of protocol requested.
If we open a secure HttpsURLConnection() instead of the HTTP based
connection, the output will change accordingly.

1 package disi.unitn.test.adbitest;

2 import android.os.AsyncTask;

3 import android.util.Log;

4 import java.net.HttpURLConnection;

5 import java.net.URL;

6 import javax.net.ssl.HttpsURLConnection;

7
8 public class NetworkHTTPSTask extends AsyncTask <String ,

Void , Void > {

9 private Exception exception;

10
11 @Override

12 protected Void doInBackground(String... urls) {

13 try {

14 /* HTTPS connection test */

15 URL url = new URL("https :// wikipedia.org");

16 URLConnection urlConnection = url.

openConnection ();

17 InputStream in = urlConnection.getInputStream ()

;

18 copyInputStreamToOutputStream(in , System.out);

19 Log.d("NetworkTask:", "After HTTPS Connection!"

);

20 } catch (Exception e) {

21 this.exception = e;

22 return null;

23 }

24 return null;

25 }

26 }

1 String link = "https ://www.google.com";

2 Log.d("Return fr. N HTTPS Task", new NetworkHTTPSTask ().

execute(link).toString ());

2. The hooking library 35

I/HOOKLIB: name: connect 11c99

I/HOOKLIB: hooking: connect = 0xb6d7ec99

I/HOOKLIB: THUMB using 0xb03b3659

I/HOOKLIB: my_connect () called!

I/HOOKLIB: Port: 443

D/NetworkTask :: After HTTPS connection!

In the majority of cases, this verification will detect insecure connections
of the malicious application. However, a skilled adversary could force an
insecure connection on port 443, thus avoiding to be spotted. Therefore,
checking the connection port number is not enough to tell if the connection
is truly secure. To go deeper into the analysis, we examine other native
libraries, such as libssl and libcrypto, in search of functions which could
be useful to extract data related to the Transport Layer Security (TLS)
handshake. For example, we could retrieve information about certificates,
cipher suites and their validity.

However, hooking native functions included in the libssl or libcrypto
libraries is much more complicated than hooking libc functions. Initially,
we thought that these libraries were public, meaning that we could access
their functions directly from our program. On the contrary, we found out that
libssl and libcrypto are not public libraries, but platform private libraries.
Private libraries can not be accessed from the program unless we manually
include the library header files in the project, to override access to the library.
Moreover, from API 24 (N7), Android imposes stricter restrictions on the type
of libraries that can be loaded. More specifically, the dynamic linker does
not load private libraries anymore. Consequently, apps do not access libssl
and libcrypto directly. Instead, they use Google Mobile Services (GMS)
Security Provider, when required. This implies that access to libssl and
libcrypto libraries from our native code program might not be possible.
Therefore, we conclude that our solution is not compatible with Android
Nougat, which limits the hooking library compatibility to Android API 23

7Nougat.

36 2. The hooking library

(M8).

In order to hook libssl and libcrypto functions from our native code
program, we build them locally by including their header files in the project9.
We identify SSL_connect as the first pivotal function from the libssl li-
brary. This function takes the SSL* struct as a parameter, and it access
lots of TLS information and values. The following are attempt of hooking
function for SSL_connect and its output:

1 int my_SSL_connect(SSL* ssl){

2 int (* orig_SSL_connect)(SSL*);

3 orig_SSL_connect = (void*)eph.orig;

4 log("my_SSL_connect () called!");

5 log("cipher_list: %d", ssl->cipher_list->ciphers);

6 log("client_CA: %d", ssl->client_CA);

7 log("cert: %d", ssl->cert);

8 log("ctx: %d", ssl->ctx);

9 log("enc_method: %d", ssl->enc_method);

10 log("handshake_func: %d", ssl->handshake_func);

11 log("param: %d", ssl->param);

12 hook_precall (&eph);

13 int *res = orig_SSL_connect(ssl);

14 hook_postcall (&eph);

15 return res;

16 }

I/HOOKLIB: hooking: SSL_connect = 0xb5d0ff21

I/HOOKLIB: my_SSL_connect () called!

I/HOOKLIB: cipher_list: 197398

I/HOOKLIB: client_CA: 0

I/HOOKLIB: cert: 0

I/HOOKLIB: ctx: 0

I/HOOKLIB: enc_method: -1219687888

I/HOOKLIB: handshake_func: 1

I/HOOKLIB: param: 0

D/NetworkTask :: After HTTPS connection!

8Marshmallow.
9Header files for libssl and libcrypto can be downloaded from OpenSSL repository.

2. The hooking library 37

We are successful in hooking the function from libssl, but we access raw
data instead of human readable information. We address this problem in
Chapter 5, where we highlight TLS analysis as one of the major future works
to be done in this research.

2.5 The hooking library manually imported in

new projects

In this section we show how we set up the configuration files for An-
droid NDK correct usage. If developers want to include our project in their
apps, they can simply import the hooking library source code, containing
Android.mk and Application.mk makefiles configured as follows:
Android.mk

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := base

#LOCAL_SRC_FILES := base/obj/local/armeabi -v7a/libbase.a

#LOCAL_SRC_FILES += base/obj/local/x86/libbase.a

LOCAL_SRC_FILES := base/obj/local/armeabi/libbase.a

LOCAL_EXPORT_C_INCLUDES := base

include $(PREBUILT_STATIC_LIBRARY)

include $(CLEAR_VARS)

LOCAL_MODULE := myjni

LOCAL_SRC_FILES := HookLibJNI.c epoll_arm.c.arm

LOCAL_CFLAGS := -g

LOCAL_SHARED_LIBRARIES := dl

LOCAL_STATIC_LIBRARIES := base

#LOCAL_SHARED_LIBRARIES += base

include $(BUILD_SHARED_LIBRARY)

####

#LOCAL_PATH := $(call my -dir)

#include $(CLEAR_VARS)

#LOCAL_MODULE := myjni

#LOCAL_SRC_FILES := HookLibJNI.c

38 2. The hooking library

#LOCAL_SRC_FILES += elf_hook.c

#LOCAL_SRC_FILES += libtest2.c

#LOCAL_LDLIBS := -L$(SYSROOT)/usr/lib -llog

#include $(BUILD_SHARED_LIBRARY)

#LOCAL_SHARED_LIBRARIES += myjni

#include $(CLEAR_VARS)

#LOCAL_MODULE = libtest2

#LOCAL_SRC_FILES = libtest2.c

#LOCAL_LDLIBS := -L$(SYSROOT)/usr/lib -llog

#include $(BUILD_SHARED_LIBRARY)

#LOCAL_SHARED_LIBRARIES += libtest2

Application.mk

#APP_ABI := armeabi -v7a

#TARGET_ARCH_ABI := armeabi -v7a

APP_ABI := armeabi

#APP_PLATFORM := android -16

Alternatively, the hooking library project can be exported as a shared ob-
ject (.so) and consequently imported in new projects as a static library, as
follows:

1 public class MainActivity extends Activity {

2 static {

3 System.loadLibrary("myjni"); // .dll in Windows

4 // .so in Unix

5 }

6 ...

2.6 Test

In this section we show the results of our testing of the hooking library
on different devices. Testing is done on the following devices:

1. a physical rooted Motorola Moto E running custom Android 5.1.1;

2. a physical unrooted Xiaomi Redmi Note 3 running custom Android
5.0.2;

2. The hooking library 39

3. a Google Nexus 5 emulator running stock Android 6.0.1.

The hooking library is able to initialize the hooks in 92% of cases10. 82% of
those hooks are successful in intercepting pivotal functions and performing
monitoring, while 18% of them are successful in function redirection but they
do not manage to retrieve enough data to verify the presence of malicious
activity. Lastly, two hooks, accounting for 8% of the cases, failed due to
segmentation faults. We consider this a good result, but we expect to achieve
a better outcome in the near future. A complete list of the library hooks is
shown in Table 2.6.

Pivotal function Language HookDev1 HookDev2 HookDev3

connect() C Success Success Success
getSimSerialNumber() Java Success Success NA
getDeviceId() Java Success Success NA
getSubscriberId() Java Success Success NA
getLine1Number() Java Success Success NA
getRecentTasks() Java Success Success Success
getRunningTasks() Java Success Success Success
getCellLocation() Java Success Failed NA
sendTextMessage() Java Initialized Initialized NA
SSL_connect() C Initialized Initialized Failed

Table 2.6: List of hooks and their test outcomes

10We exclude from the analysis every scenario in which a method that requires a working
telephony network and/or a SIM card is monitored inside the emulator (Not Applicable
— NA in Table 2.6).

Chapter 3

Automatic Tool Feasibility

The hooking library can be used in the following ways:

– developers embed the hooking library inside their applications during
project phase;

– developers or users inject the hooking library inside target finished
applications.

In this chapter, we evaluate the feasibility of an automatic tool that allows
to permanently inject the hooking library inside target finished applications.
We analyze some reverse engineering tools and strategies to verify the prac-
ticability of this idea.

3.1 Permanent injection of the hooking library

inside target apk

Apktool is “a tool for reverse engineering 3rd party, closed, binary An-
droid apps” [38]. It allows to decode Android APKs into source code, thus
granting access to the application structure and functions.
The following shell command decompiles an APK into its DEX classes, eX-
tensible Markup Language (XML) files and global resources:

apktool d app.apk

41

42 3. Automatic Tool Feasibility

where d stands for decode and app.apk is the target Android application.
Apktool decoding and recompiling processes are based on Smali and its coun-
terpart baksmali [39], which are assembler and disassembler, respectively, for
the dex format used by Dalvik, Android’s Java VM. Based on Jasmin [40]
syntax, they allow to modify Android applications structure and behaviour.
Apktool exploits smali/baksmali to decompile the application package into
editable intermediate files and then it recompiles them into a new signable
application. Working at this intermediate level allows to edit the application
logic without altering its functionality. It is thus possible to deploy a recom-
piled application that basically executes the same code as the original one,
but also with new features on top of it. The automatic tool should:

1. decompile the target apk;

2. copy the hooking library .so or package inside the decompiled app
source folders;

3. edit the app source code to add the import line;

4. recompile the app;

5. generate a keystore (optional);

6. resign the app with the generated keystore or an existing one.

All of these actions can be automated by a script that exploits apktool, a shell
text editor, keytool and jarsigner. The first one enables reverse engineering,
while keytool and jarsigner are tools for creating keystores and signing apks,
respectively. A keystore can be generated with the following command:

keytool -genkey -v -keystore hooklib.keystore -alias

hooklib -keyalg RSA -keysize 2048 -validity 10000

After creating a keystore, the new apk can be signed with jarsigner:

jarsigner -verbose -sigalg SHA1withRSA -digestalg SHA1 -

keystore hooklib.keystore app.apk hooklib

3. Automatic Tool Feasibility 43

The automatic tool should also allow to use an already existing keystore: the
keystore path could be specified as a parameter of the process command. For
example:

hooklibtool -keystore user.keystore targetapp.apk

We do not go any further with this analysis, but we conclude that the idea
of an automatic tool is practicable, and we leave it as an open challenge for
future works.

Chapter 4

Related Work

To the best of our knowledge, the hooking library is the first library for
Android projects that dynamically verifies if the app shows compliance to
the security standards discussed in chapter 1. Nonetheless, we acknowledge
that this library is not sufficient to ensure full protection from adversaries’
malicious intent. There exist many other researches and tools with back-
ground and goals similar to our project’s. Developers should always consider
multiple state of the art options and possibly combine them, adding extra
layers of security to their apps.

AndroTotal [41] allows to scan Android apps against an arbitrary set of
malware detectors, and it is publicly available as a web service. TraceDroid
[42] is another tool for automated analysis which emulates a few actions,
“such as user interaction, incoming calls and SMS messages” to trigger the
app’s malicious behaviour. Androwarn [43], similar to the hooking library
in functionalities, tries to detect geolocation information leakage, telephony
services abuse, external memory operations and many other malicious activ-
ities. Androguard [44] can disassemble Dalvik bytecode back to Java source
code, detect repackaged apps or known malwares and retrieve useful infor-
mation about the app integrity from the app manifest1. However, all of these

1“The app manifest file provides essential information about your app to the Android
system, which the system must have before it can run any of the app’s code” [45].

45

46 4. Related Work

projects have different approaches to security. For example, Androwarn and
Androguard use static analysis to scan the app data flow and they generate
a security report. Differently, the hooking library is a dynamic analyzer op-
erating at runtime. As explained in Chapter 1 (p. 5), dynamic analysis have
the advantage of detecting hidden malicious behaviour loaded with Reflection
& DCL.

Moreover, these related projects do not address the risk of using methods
that have been deprecated for security reasons: they just focus on intention-
ally malicious code. Instead, the goal of this work was also to search for weak
programming practices and vulnerabilities inside the app. The only tool we
found in the literature that deals with code vulnerabilities is Quick Android
Review Kit (QARK) by LinkedIn. QARK is a tool designed to “look for sev-
eral security related Android application vulnerabilities, either in source code
or packaged APKs” [46]. It is based on Python and it uses static analysis
to generate reports on the app flaws. Among the vulnerabilities that can be
detected by QARK: improper x.509 certificate validation, private keys hard-
coded in the source and, just like our hooking library but more exhaustively,
creation of world-readable or world-writeable files and use of outdated API
with known vulnerabilities.

We have analyzed tools with dynamic support and tools that aim at
detecting weak programming practices, but we found very few works that
accomplished both goals. For example, Hooker can dynamically intercept
and modify API calls made by the target application. However, it is based
on Cydia Substrate [47], which means that it can work on rooted devices
only, thus violating our design restrictions. Besides, since Cydia Substrate is
not compatible with Android 4.4 and higher versions, Hooker compatibility
is limited to Android 4.3 as well. Frida [48] is a multi-platform hooking
tool supporting many architectures, such as x86 and ARM (both 32 and 64
bit versions). It uses a JavaScript runtime framework as an interface for
the underlying hooking engine written in C. Frida consists of approximately
250.000 Lines Of Code (LOC). Including such a huge framework inside a

4. Related Work 47

mobile project necessarily adds a noticeable overhead. Besides, Frida offers
many functions that are not strictly related to hooking Java methods and
system calls, which means that most of its code would be superfluous. To
make a comparison, the hooking library is below 5.000 LOC, including ADBI
and Legend. Some Android security solutions combine Client side and Server
side analysis to reduce performance overhead on the user device and to reach
maximum protection. Examples of analysis that can be performed on the
server side are:

– maintaining an updated blacklist of known malicious or vulnerable li-
braries, and flagging the app as dangerous if it contains any library
from this list2 [49];

– if the app code is not obfuscated, disassembling the app and inspecting
calls to libraries in its bytecode3;

– checking the entropy of class names, method names and variable names
to obtain information about obfuscation quality4;

– checking the presence of executables such as .sh, .exe, .elf and .so

inside the app package. A malicious app can execute code from such
files.

Delosières and García [50] propose a security infrastructure that combines
static and dynamic analysis: static analysis is provided by Androguard, while
dynamic analysis is provided by DroidBox [51]. “Both analyzers work jointly
in order to extract as many Android characteristics as possible” [50]. Static
and dynamic analysis combination is also investigated by Spreitzenbarth et

2Alternatively, the server could keep an updated whitelist of libraries that can be used
by the app. This strategy is more suitable for ad-hoc projects, since it would be impossible
to draw up a global list of all legitimate libraries.

3For obfuscated code, we must rely on the Client side runtime analysis.
4The primary motivation of using obfuscation is to protect the app from being reverse

engineered by adversaries, which may want to attack the app after understanding its
weaknesses, or to plagiarize the app. A weak obfuscation may result in the app being
exploited by adversaries.

48 4. Related Work

al. [52]: a static and dynamic analyzer is merged with machine learning
techniques to support malware analysts in detecting malicious behaviour.

The strength of the hooking library is to provide a way to perform runtime
analysis also on areas where static analysis is generally used. For this reason,
we believe the hooking library does enhance the app security by adding an
extra layer of monitoring, and it represents a good choice for Android security,
especially when combined with other static and dynamic analysis tools.

Chapter 5

Conclusions & Future Work

In this work, we have designed and implemented a security library for
Android applications exploiting the hooking of Java and native functions
to enable runtime analysis. The library verifies if the application contains
malicious code or weak programming practices that might threaten the user
privacy. Testing of the library showed that it successfully intercepts the
targeted functions and it blocks the application malicious behaviour in the
majority of cases. We have also assessed the feasibility of an automatic
tool that uses reverse engineering to decompile the application, inject our
library and recompile the security-enhanced application. We have identified
a possible strategy for its implementation, and we have concluded that the
idea is perfectly practicable.

However, our hooking library does not come without limitations or open
challenges. First, it is compatible with ARM-32 architectures only. A signif-
icant improvement would be porting the project to ARM-64 architectures.
At the moment, ARM-32 is more popular than ARM-64, but the latter is
recently gaining more and more importance among manufacturers, and it is
likely to become very common in the near future. Since ADBI and Legend
run on ARM-32 architectures only, we should rewrite part of their C code,
as well as the assembly code to be injected into the app memory for func-
tion redirection. To achieve this, a detailed study on ARM-32 and ARM-64

49

50 5. Conclusions & Future Work

architectures instruction sets would be essential. We should understand the
way registers are used and how exactly memory is accessed. We have briefly
investigated this and we have found that the major difference between the
two architectures is in the size and in the number of registers. The use of
the stack and the way memory is accessed are different. However, most of
the assembly instructions are similar. Therefore, porting the hooking library
to ARM-64 while keeping ADBI and Legend as the core for function redi-
rection is possible, but very expensive in terms of know-how and time. A
possible alternative is to replace ADBI and Legend with tools already set up
for ARM-64 compatibility. Samsung has realized its own version of ADBI
[53] and it seems that both ARM architectures are supported. ElfHook [54]
is another tool that could enable function hooking for ARM-64. Even though
more analysis is required, we believe that realizing the hooking library for
ARM-64 architectures is a concrete possibility, and we consider it the next
major work in this research.

Secondly, TLS analysis should be investigated further. Advanced hackers
can force insecure connections on port 443 to bypass our main protocol ver-
ification based on the connection port number. The goal here is to retrieve
certificates, cipher suites and encryption algorithms data, and to check if
they show anomalies that could suggest malicious intent. Weak or outdated
encryption API should be avoided as well.

Also, our list of methods that have been deprecated for security reasons is
limited and it should be extended. It is not a simple task and it could require
a lot of research, but it is definitely something that should be realized in the
future. LinkedIn QARK source code could provide some useful information
to simplify the analysis work.

Moreover, we should find a way to extend the project compatibility to
Android N. The hooking core must probably be reengineered because of N
stricter restrictions on the type of libraries that can be loaded, but we can
work on it and, eventually, find a solution.

Finally, implementing the reverse engineering tool hooklibtool for which

5. Conclusions & Future Work 51

we provide a basic analysis in Chapter 3 would be the perfect way to bring
this research to its final stage.

References

[1] Android.
https://developer.android.com/guide/platform/index.html.
Accessed: 2016-11-12.

[2] StatCounter, “Mobile and tablet internet usage exceeds desktop for
first time worldwide.”
http://gs.statcounter.com/press/mobile-and-tablet-

internet-usage-exceeds-desktop-for-first-time-worldwide.
Accessed: 2016-12-01.

[3] University of Cambridge, “Computer viruses and other malware: what
you need to know.”
http://www.ucs.cam.ac.uk/security/malware.
Accessed: 2016-12-01.

[4] Check Point Software Technologies Ltd.
https://www.checkpoint.com/about-us/facts-a-glance/.
Accessed: 2016-10-04.

[5] Check Point Software Technologies Ltd., “September’s ‘most wanted’
malware list.”
http://blog.checkpoint.com/2016/10/21/septembers-top-

wanted-malware-list-ransomware-top-3-first-time/, 2016.
Accessed: 2016-10-04.

53

https://developer.android.com/guide/platform/index.html
http://gs.statcounter.com/press/mobile-and-tablet-internet-usage-exceeds-desktop-for-first-time-worldwide
http://gs.statcounter.com/press/mobile-and-tablet-internet-usage-exceeds-desktop-for-first-time-worldwide
http://www.ucs.cam.ac.uk/security/malware
https://www.checkpoint.com/about-us/facts-a-glance/
http://blog.checkpoint.com/2016/10/21/septembers-top-wanted-malware-list-ransomware-top-3-first-time/
http://blog.checkpoint.com/2016/10/21/septembers-top-wanted-malware-list-ransomware-top-3-first-time/

54 REFERENCES

[6] F-Secure, “Trojan:Android/Koler Threat Description.”
https://www.f-secure.com/v-descs/trojan_android_koler.

shtml.
Accessed: 2016-10-04.

[7] S. Dengre and R. Kaushal, “Privilege Escalation Attacks in Android:
Their Approaches, Detection and Defense Techniques.”
http://cerc.iiitd.ac.in/spsymp15/papers/25.pdf.
Accessed: 2016-09-11.

[8] United States Computer Emergency Readiness Team (US-CERT), “Se-
curity Tip (ST04-015): Understanding Denial-of-Service Attacks.”
https://www.us-cert.gov/ncas/tips/ST04-015.
Accessed: 2016-12-01.

[9] OWASP, “Use of Obsolete Methods.”
https://www.owasp.org/index.php/Use_of_Obsolete_Methods.
Accessed: 2016-09-10.

[10] Lookout, Inc., “AndroRATIntern: A Japanese Mobile Threat With
Global Implications for Mobile Data Security.”
https://info.lookout.com/rs/051-ESQ-475/images/Lookout_

AndroRATIntern_Whitepaper_v2.1_10-31-2016.pdf, 2015.
Accessed: 2016-11-12.

[11] T. Strazzere, Lookout, Inc., “Update: Android Malware DroidDream:
How It Works.”
https://blog.lookout.com/blog/2011/03/02/android-malware-

droiddream-how-it-works/, 2011.
Accessed: 2016-11-12.

[12] Symantec Corporation, “Android.Spitmo.”
https://www.symantec.com/security_response/writeup.jsp?

docid=2011-091407-1435-99.
Accessed: 2016-07-29.

https://www.f-secure.com/v-descs/trojan_android_koler.shtml
https://www.f-secure.com/v-descs/trojan_android_koler.shtml
http://cerc.iiitd.ac.in/spsymp15/papers/25.pdf
https://www.us-cert.gov/ncas/tips/ST04-015
https://www.owasp.org/index.php/Use_of_Obsolete_Methods
https://info.lookout.com/rs/051-ESQ-475/images/Lookout_AndroRATIntern_Whitepaper_v2.1_10-31-2016.pdf
https://info.lookout.com/rs/051-ESQ-475/images/Lookout_AndroRATIntern_Whitepaper_v2.1_10-31-2016.pdf
https://blog.lookout.com/blog/2011/03/02/android-malware-droiddream-how-it-works/
https://blog.lookout.com/blog/2011/03/02/android-malware-droiddream-how-it-works/
https://www.symantec.com/security_response/writeup.jsp?docid=2011-091407-1435-99
https://www.symantec.com/security_response/writeup.jsp?docid=2011-091407-1435-99

5. Conclusions & Future Work 55

[13] F-Secure, “Trojan:Android/BaseBridge.A Threat Description.”
https://www.f-secure.com/v-descs/trojan_android_basebridge.

shtml.
Accessed: 2016-09-10.

[14] Trend Micro Incorporated, “AndroidOS_FakeNotify.A.”
http://www.trendmicro.com/vinfo/us/threat-encyclopedia/

malware/androidos_fakenotify.a.
Accessed: 2016-09-10.

[15] Y. Zhou and X. Jiang, “An Analysis of the AnserverBot Trojan.”
https://www.csc.ncsu.edu/faculty/jiang/pubs/AnserverBot_

Analysis.pdf.
Accessed: 2016-11-12.

[16] M. Ahmad, B. Crispo, and T. Gebremichael, “Empirical Analysis on
the Use of Dynamic Code Updates in Android and Its Security Implica-
tions,” in Nordic Conference on Secure IT Systems, pp. 119–134, 2016.

[17] W.B. Frakes and Kyo Kang, “Software Reuse Research: Status and
Future,” in IEEE Transactions on Software Engineering, vol. 31,
p. 529–536, 7 2005.

[18] Android, “Android NDK.”
https://developer.android.com/ndk/index.html.
Accessed: 2016-11-12.

[19] W. You, B. Liang, W. Shi, S. Zhu, P. Wang, and S. Xie, “Reference Hi-
jacking: Patching, Protecting and Analyzing on Unmodified and Non-
Rooted Android Devices,” in ICSE ’16 Proceedings of the 38th Interna-
tional Conference on Software Engineering, pp. 959–970, 2016.

[20] M. Kerrisk, “Linux Programmer’s Manual - ptrace.”
http://man7.org/linux/man-pages/man2/ptrace.2.html.
Accessed: 2016-11-12.

https://www.f-secure.com/v-descs/trojan_android_basebridge.shtml
https://www.f-secure.com/v-descs/trojan_android_basebridge.shtml
http://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/androidos_fakenotify.a
http://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/androidos_fakenotify.a
https://www.csc.ncsu.edu/faculty/jiang/pubs/AnserverBot_Analysis.pdf
https://www.csc.ncsu.edu/faculty/jiang/pubs/AnserverBot_Analysis.pdf
https://developer.android.com/ndk/index.html
http://man7.org/linux/man-pages/man2/ptrace.2.html

56 REFERENCES

[21] N. Kralevich, Android Platform Security Engineering Lead/Manager,
“Permission Changes for ptrace in Kitkat.”
http://android-security-discuss.narkive.com/mttOQjz2/

permission-changes-for-ptrace-in-kitkat.
Accessed: 2016-11-12.

[22] A. Bianchi, Y. Fratantonio, C. Kruegel, and G. Vigna, “NJAS: Sand-
boxing Unmodified Applications in non-rooted Devices Running stock
Android,” in 5th Annual ACM CCS Workshop on Security and Privacy
in Smartphones and Mobile Devices (SPSM), 2015.

[23] V. Costamagna and C. Zheng, “ARTDroid: a virtual-method hooking
framework on Android ART runtime,” in Proceedings of the Workshop
on Innovations in Mobile Privacy and Security IMPS at ESSoS’16 (D.
Aspinall, L. Cavallaro, M. N. Seghir, M. Volkamer, ed.), 2016.

[24] C. Mulliner, “ADBI.”
https://github.com/crmulliner/adbi.
Accessed: 2016-11-22.

[25] asLody, “Legend.”
https://github.com/asLody/legend.
Accessed: 2016-11-22.

[26] Paul Mozur and Su-Hyun Lee for The New York Times , “Samsung to
Recall 2.5 Million Galaxy Note 7s Over Battery Fires.”
http://www.nytimes.com/2016/09/03/business/samsung-galaxy-

note-battery.html.
Accessed: 2016-11-22.

[27] A. Dabrowski, N. Pianta, T. Klepp and M. Mulazzani and E. Weippl,
“IMSI-Catch Me If You Can: IMSI-Catcher-Catchers,” in ACSAC ’14
Proceedings of the 30th Annual Computer Security Applications Confer-
ence, pp. 246–255, 12 2014.

http://android-security-discuss.narkive.com/mttOQjz2/permission-changes-for-ptrace-in-kitkat
http://android-security-discuss.narkive.com/mttOQjz2/permission-changes-for-ptrace-in-kitkat
https://github.com/crmulliner/adbi
https://github.com/asLody/legend
http://www.nytimes.com/2016/09/03/business/samsung-galaxy-note-battery.html
http://www.nytimes.com/2016/09/03/business/samsung-galaxy-note-battery.html

5. Conclusions & Future Work 57

[28] US Department of Transportation, “Global Positioning System (GPS)
Civil Monitoring Performance Specification.”
http://www.gps.gov/technical/ps/2009-civil-monitoring-

performance-specification.pdf.
Accessed: 2016-11-24.

[29] Carnegie Mellon University, Software Engineering Institute (SEI)
CERT, “MET02-J. Do not use deprecated or obsolete classes or
methods.”
https://www.securecoding.cert.org/confluence/display/java/

MET02-J.+Do+not+use+deprecated+or+obsolete+classes+or+

methods.
Accessed: 2016-11-15.

[30] Android, “ActivityManager, getRecentTasks().”
https://developer.android.com/reference/android/app/

ActivityManager.html#getRecentTasks(int,int).
Accessed: 2016-11-25.

[31] Symantec Corporation, “Malware may abuse Android’s accessibility
service to bypass security enhancements.”
https://www.symantec.com/connect/blogs/malware-may-

abuse-android-s-accessibility-service-bypass-security-

enhancements. Accessed: 2016-11-15.

[32] Android, “Context.”
https://developer.android.com/reference/android/content/

Context.html#MODE_WORLD_READABLE.
Accessed: 2016-11-20.

[33] Android, “Context, openFileOutput().”
https://developer.android.com/reference/android/content/

Context.html#openFileOutput(java.lang.String,int).
Accessed: 2016-11-30.

http://www.gps.gov/technical/ps/2009-civil-monitoring-performance-specification.pdf
http://www.gps.gov/technical/ps/2009-civil-monitoring-performance-specification.pdf
https://www.securecoding.cert.org/confluence/display/java/MET02-J.+Do+not+use+deprecated+or+obsolete+classes+or+methods
https://www.securecoding.cert.org/confluence/display/java/MET02-J.+Do+not+use+deprecated+or+obsolete+classes+or+methods
https://www.securecoding.cert.org/confluence/display/java/MET02-J.+Do+not+use+deprecated+or+obsolete+classes+or+methods
https://developer.android.com/reference/android/app/ActivityManager.html#getRecentTasks(int, int)
https://developer.android.com/reference/android/app/ActivityManager.html#getRecentTasks(int, int)
https://www.symantec.com/connect/blogs/malware-may-abuse-android-s-accessibility-service-bypass-security-enhancements
https://www.symantec.com/connect/blogs/malware-may-abuse-android-s-accessibility-service-bypass-security-enhancements
https://www.symantec.com/connect/blogs/malware-may-abuse-android-s-accessibility-service-bypass-security-enhancements
https://developer.android.com/reference/android/content/Context.html#MODE_WORLD_READABLE
https://developer.android.com/reference/android/content/Context.html#MODE_WORLD_READABLE
https://developer.android.com/reference/android/content/Context.html#openFileOutput(java.lang.String, int)
https://developer.android.com/reference/android/content/Context.html#openFileOutput(java.lang.String, int)

58 REFERENCES

[34] Android, “Security with HTTPS and SSL.”
https://developer.android.com/training/articles/security-

ssl.html.
Accessed: 2016-11-14.

[35] Android, “URLConnection.”
https://developer.android.com/reference/java/net/

URLConnection.html.
Accessed: 2016-11-14.

[36] B. Hall, “Beej’s Guide to Network Programming, Using Internet
Sockets.”
http://beej.us/guide/bgnet/output/html/multipage/sockaddr_

inman.html.
Accessed: 2016-07-22.

[37] Microsoft, “ntohs function.”
https://msdn.microsoft.com/it-it/library/windows/desktop/

ms740075(v=vs.85).aspx.
Accessed: 2016-11-16.

[38] C. Tumbleson, “Apktool.”
http://ibotpeaches.github.io/Apktool/.
Accessed: 2016-07-22.

[39] J. Freke, “smali/baksmali.”
https://github.com/JesusFreke/smali.
Accessed: 2016-07-22.

[40] J. Meyer and D. Reynaud, “Jasmin.”
http://jasmin.sourceforge.net/.
Accessed: 2016-07-13.

[41] F. Maggi, A. Valdi, and S. Zanero, “AndroTotal: A Flexible, Scalable
Toolbox and Service for Testing Mobile Malware Detectors,” in 3rd

https://developer.android.com/training/articles/security-ssl.html
https://developer.android.com/training/articles/security-ssl.html
https://developer.android.com/reference/java/net/URLConnection.html
https://developer.android.com/reference/java/net/URLConnection.html
http://beej.us/guide/bgnet/output/html/multipage/sockaddr_inman.html
http://beej.us/guide/bgnet/output/html/multipage/sockaddr_inman.html
https://msdn.microsoft.com/it-it/library/windows/desktop/ms740075(v=vs.85).aspx
https://msdn.microsoft.com/it-it/library/windows/desktop/ms740075(v=vs.85).aspx
http://ibotpeaches.github.io/Apktool/
https://github.com/JesusFreke/smali
http://jasmin.sourceforge.net/

5. Conclusions & Future Work 59

Annual ACM CCS Workshop on Security and Privacy in Smartphones
and Mobile Devices (SPSM), 2013.
http://www.syssec-project.eu/m/page-media/3/spsm07s-

maggi.pdf.

[42] V. Van Der Veen, “TraceDroid: A Fast and Complete Android Method
Tracer.”
https://www.owasp.org/images/7/7c/TraceDroid.pdf.

[43] T. Debize, “Androwarn, Yet another static code analyzer for malicious
Android applications.”
https://github.com/maaaaz/androwarn.
Accessed: 2016-07-28.

[44] A. Desnos and G. Gueguen, “Android: From Reversing to Decompila-
tion,” in Proceedings of the Black Hat Conference, Operational Cryptol-
ogy and Virology Laboratory, 7 2011.

[45] Android, “App Manifest.”
https://developer.android.com/guide/topics/manifest/

manifest-intro.html.
Accessed: 2016-12-02.

[46] LinkedIn, “Quick Android Review Kit (QARK).”
https://github.com/linkedin/qark/.
Accessed: 2016-11-28.

[47] SaurikIT, LLC, “Cydia Substrate, The powerful code modification plat-
form behind Cydia.”
http://www.cydiasubstrate.com/.
Accessed: 2016-12-02.

[48] NowSecure, “Frida: Inject JavaScript to explore native apps on Win-
dows, Mac, Linux, iOS, Android, and QNX.”

http://www.syssec-project.eu/m/page-media/3/spsm07s-maggi.pdf
http://www.syssec-project.eu/m/page-media/3/spsm07s-maggi.pdf
https://www.owasp.org/images/7/7c/TraceDroid.pdf
https://github.com/maaaaz/androwarn
https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://github.com/linkedin/qark/
http://www.cydiasubstrate.com/

60 REFERENCES

http://www.frida.re/.
Accessed: 2016-12-02.

[49] J.-H. Hoepman and S. Katzenbeisser, “ICT Systems Security and Pri-
vacy Protection,” in 31st IFIP TC 11 International Conference, SEC
2016, (Ghent, Belgium), 6 2016.

[50] L. Delosières and D. Garciía, “Infrastructure for Detecting Android Mal-
ware,” in Information Sciences and Systems 2013, Proceedings of the
28th International Symposium on Computer and Information Sciences,
pp. 389–398, Springer International Publishing, 2013.

[51] P. Lantz and A. Desnos, “Droidbox.”
https://github.com/pjlantz/droidbox.
Accessed: 2016-12-02.

[52] M. Spreitzenbarth, T. Schreck, F. Echtler, D. Arp and J. Hoffmann,
“Mobile-Sandbox: combining static and dynamic analysis with machine-
learning techniques,” in Int. J. Inf. Secur., pp. 141–153, Springer Berlin
Heidelberg, 4 2015. doi:10.1007/s10207-014-0250-0.

[53] Samsung, “ADBI.”
https://github.com/Samsung/ADBI.
Accessed: 2016-11-22.

[54] asLody, “ElfHook.”
https://github.com/asLody/ElfHook.
Accessed: 2016-11-22.

http://www.frida.re/
https://github.com/pjlantz/droidbox
https://github.com/Samsung/ADBI
https://github.com/asLody/ElfHook

	Abstract
	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	System Requirements
	The Android Stack
	Possible Solutions

	The hooking library
	Reading device information
	Detecting user location
	Using deprecated methods
	getRecentTasks(), getRunningTasks()
	MODE_WORLD_READABLE, MODE_WORLD_WRITABLE
	Deprecated methods overview

	Using HTTP instead of HTTPS
	The hooking library manually imported in new projects
	Test

	Automatic Tool Feasibility
	Permanent injection of the hooking library inside target apk

	Related Work
	Conclusions & Future Work

