
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE

Corso di Laurea Magistrale in Informatica

Design and development of a software

architecture for seamless vertical
handover in mobile communications

Relatore:
Chiar.mo Prof.
Vittorio Ghini

Presentata da:
Matteo Martelli

Sessione II
Anno Accademico 2015-2016

Copyright c©2016, Matteo Martelli, Università di Bologna, Italy. This work is licensed under the Creative Commons
Attribution-ShareAlike 3.0 License (CC-BY-SA). To view a copy of this license, visit http://creativecommons.org/licenses/
bysa/3.0/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.
The network topology icons used in figures of this document are property of Cisco Systems, Inc. Use of these element
icons (in an unmodified format) is authorized, without additional permission from Cisco. https://www.cisco.com/cisco/web/
siteassets/contacts/index.html, https://www.cisco.com/c/en/us/about/brand-center/network-topology-icons.html.

http://creativecommons.org/licenses/bysa/3.0/
http://creativecommons.org/licenses/bysa/3.0/
https://www.cisco.com/cisco/web/siteassets/contacts/index.html
https://www.cisco.com/cisco/web/siteassets/contacts/index.html
https://www.cisco.com/c/en/us/about/brand-center/network-topology-icons.html

Sommario

Gli ultimi anni sono stati caratterizzati da una notevole crescita di ven-
dite di smartphone. Si prevede infatti che per il 2017 più di un terzo della
popolazione mondiale ne possederà almeno uno. Questi dipositivi, insieme
alle odierne tecnologie wireless, ci forniscono quotidianamente accesso ad In-
ternet e la possibilità di interagire con il resto del mondo da qualsiasi luogo
in cui ci troviamo e durante ogni nostro spostamento. Ad ogni modo so-
no tuttora molte le problematiche da affrontare affinchè le attuali tecnologie
riescano a garantire alta qualità ed affidabilità nei servizi utilizzati, soprat-
tutto se di tipo real-time come ad esempio comunicazioni VoIP, servizi di
videoconferenza o servizi di online gaming.

Ulteriori complicazioni sorgono quando suddetti servizi vengono utilizzati
da utenti di dispositivi mobili durante i loro spostamenti geografici. Si pensi
per esempio ad un utente dinamico che partecipa ad una videoconferenza di
lavoro mentre si sposta da casa ad un altro luogo, e a come questo uten-
te possa utilizzare uno smartphone per continuare ad interagire con i suoi
colleghi fuori casa usufruendo della rete dati cellulare. Se con le classiche
comunicazioni telefoniche cellulari siamo abituati alla continuità di servizio,
possibili interruzioni di una comunicazione online (over IP) potrebbero inve-
ce verificarsi se un utente si sposta da un tipo di rete ad un altro, ad esempio
da WiFi a rete dati cellulare.

In questo lavoro nello specifico presento in prima istanza una panorami-
ca sulle attuali tecnologie wireless e sulla mobilità, concentrando l’attenzio-
ne sulle difficoltà e le problematiche che sorgono quando dei nodi mobili si
spostano tra punti di accesso di tecnologie diverse mentre utilizzano com-
municazioni e servizi real-time. In letteratura sono molte le soluzioni che
propongono diversi metodi e architetture software con lo scopo di migliorare
l’handover verticale, ovvero l’azione di trasferire una comunicazione tra due
reti eterogenee.

Secondariamente, dopo aver analizzato le possibili soluzioni esistenti, il
documento presenta un meccanismo di handover verticale per smartphone
Android implementato dal sottoscritto. Viene introdotto inoltre un confronto
sulle prestazioni e sull’affidabilità tra tale sistema implementato e l’attuale
sistema Android, entrambi testati in uno scenario in cui l’handover verticale
avveniva tra reti WiFi e reti cellulari mentre i nodi si servivano di servizi
di video streaming. I risulati di tale confronto mostrano come l’approccio
utilizzato nella mia implementazione sia promettente incoraggiando tuttavia
futuri sviluppi, alcuni di questi proposti alla fine del documento insieme alle
considerazioni finali.

Abstract

In this work I firstly present an overview on current wireless technology and
network mobility focusing on challenges and issues which arise when mobile
nodes migrate among different access networks, while employing real-time
communications and services. In literature many solutions propose different
methods and architectures to enhance vertical handover, the process of trans-
ferring a network communication between two technologically different points
of attachment. After an extensive review of such solutions this document de-
scribes my personal implementation of a fast vertical handover mechanism for
Android smartphones. I also performed a reliability and performance com-
parison between the current Android system and my enhanced architecture
which have both been tested in a scenario where vertical handover was taking
place between WiFi and cellular network while the mobile node was using
video streaming services. Results show the approach of my implementation
to be promising, encouraging future works, some of which are suggested at
the end of this dissertation together with concluding remarks.

Introduction

According to current statistics[33][27], the number of smartphone ship-
ments have almost tripled in the last five years and figures are still increasing.
It is expected that by 2017, more than one in three people globally will have
a smartphone. Such devices are nowadays almost always connected to the
Internet giving users the opportunity to constantly interact with the rest of
the world. Also wireless technologies and broadband systems are strongly
improving over time providing more reliability and higher data rates. This
drives users to involve more intruiguing and more performance demanding
services such as high definition voice and video calls, live video broadcasts
and online gamining. While employing these kind of services and their re-
lated real-time applications, users may move geographically among different
point of attachments to the Internet. Ensuring that no service interruption
is perceived by users in this scenario is a complex task.

The process of moving between different wireless network is referred to
handover (or handoff) and in literature many works focus on finding the best
way to manage situations in which handover takes place while users employ
real-time communications. After having inspected these related works I de-
cided to develop a set of software components and tools which aim to help
the vertical handover process on mobile devices.

In the first three chapters of this document we will see what mobile com-
munications consist of and which problematics mobility architectures have
to deal with. Chapters 4 and 5 will then focus on the design choices and the
development process of my personal project. In chapter 6 I will show how

iii

iv INTRODUCTION

my project suits well in a practical scenario through experimental results.
Finally, in the last chapter some possibile future works will be addressed
togheter with concluding considerations.

Before facing three lengthy chapters about the state of the art on current
wireless techonology and mobility related works, the following section sums
up the main characteristics and goals of my personal project in order to
introduce readers to the software I implemented.

Summary on my personal project
I worked on improving the handover process which takes place when An-

droid smartphones move from a WiFi technology access network to a cellular
technology access network and back while using a real-time video streaming
service. Currently such smartphones use a network technology with consid-
erable periods of service disruption during the network switch. The basic
idea behind my project is to allow smartphones to simultaneously use both
network technologies with the aim of improving handover reliability and per-
formances without involving any user application modification. This idea
comes from the ABPS project[53] which will be introduced in next chapters.
My implementation efforts took care of enhancing an existing software mod-
ule, called TED, designed to work with the linux kernel. Also I developed
a set of proxy applications which interact with each others, with TED and
with user applications. At the end I evaluated the overall enhanced system
behaviour by conducting a series of experiments.

For more details, see chapters 4, 5 and 6.

Contents

Introduction iii

1 Overview of mobile communications 1
1.1 Current scenarios . 1
1.2 Mobililty . 3

1.2.1 Current technologies 3
1.2.2 Goals and issues . 8

2 Seamless vertical handover: state of the art 9
2.1 Handover criteria . 11
2.2 MN-controlled Vertical Handover 12

2.2.1 Media Independent Handover 12
2.2.2 Transmission Error Detector 13
2.2.3 Enabling/Disabling NICs 13

3 Seamless host mobility: state of the art 15
3.1 Solutions at the network layer 15

3.1.1 Mobile IP . 15
3.1.2 LISP . 18

3.2 Solutions between the network and the transport layer 19
3.2.1 LIN6 . 19
3.2.2 Shim6 . 19

3.3 Solutions at the transport layer 20
3.4 Solutions at the session layer 21

v

vi CONTENTS

3.4.1 SIP . 21
3.4.2 Jingle . 22
3.4.3 Non standard signaling 24

3.5 NAT and Firewall issues . 24
3.6 External relay solutions . 25

3.6.1 ABPS . 25
3.6.2 UPMT . 28
3.6.3 FRHP . 28

4 Project goals and design 31
4.1 Project goals . 31
4.2 Mobile node . 32
4.3 Relay and Correspondent Node 37

5 Project development 39
5.1 TED . 39

5.1.1 Previous versions and working principles 39
5.1.2 IPv6 Fragmentation Support 42
5.1.3 TED porting on android custom linux kernel 3.4 45
5.1.4 Refactoring . 46
5.1.5 Open issues . 47

5.2 Proxy Client . 48
5.2.1 Network . 48
5.2.2 Handover parameters 50
5.2.3 Basis for datagram retransmission 51

5.3 Relay and CN tools . 51

6 Experimental tests 55
6.1 Experimental Setup . 56
6.2 Experimental Results . 58

Future works and conclusions 65

CONTENTS vii

A Testers and developers documentation 69
A.1 TED kernel and proxy application 69

A.1.1 Build Linux kernel . 70
A.1.2 Android . 71
A.1.3 Patch the kernel . 73

A.2 Build and run tedproxy . 78
A.2.1 Build . 78
A.2.2 Run . 79

A.3 Relay and CN tools . 80
A.3.1 Relay . 80
A.3.2 CN tools . 80
A.3.3 Put everything together 81

Bibliography 82

List of Figures

1.1 Mobility scenario . 2

2.1 Horizontal Handover . 10
2.2 Vertical Handover . 10

3.1 MIPv4 Triangular Routing . 17
3.2 LISP data-packets encapsulation and decapsulation 18
3.3 Jingle signaling and media relaying 23
3.4 Employment of a data relay to cope NATs and firewalls 25
3.5 The ABPS architecture . 27

4.1 MN desigin structure . 32
4.2 Android Platform Architecture 34
4.3 Picture of the MN device . 36

5.1 IPv6 Fixed Header format . 43
5.2 IPv6 Framgent Extension Header format 43
5.3 tedproxy internal output queues and socket input queues . . 49

6.1 Experimental setup. 56
6.2 Camera streamer application error 59
6.3 Results with TED and tedproxy disabled 60
6.4 Results with TED and tedproxy enabled 60
6.5 Results with TED and tedproxy disabled and application er-

ror occurrence . 62

ix

Chapter 1

Overview of mobile
communications

In the last years users gained easy access to both mobile terminals and
high bandwidth connections. In fact, both smartphones and wireless tech-
nologies rapidly evolved offering daily use of the Internet to their users. Voice
over IP (VoIP) and more generally real-time communications are increasingly
used in daily communications.

Typical scenarios, current technologies and common goals and challenges
in the context of network mobility will be introduced in this chapter.

1.1 Current scenarios

Modern cities are frequently covered with several public WiFi Access
Points (APs) which allow citizens and tourists to freely connect to the Inter-
net. Also, users may have personal access to private WiFi APs all over the
city or other daily visited locations. Moreover, users of smartphone devices
may likely have access to the Internet throgh cellular networks which provide
packet switching subsystems. For instance, let us consider a mobile terminal
user whome daily walks from its home to its workplace while making VoIP
calls. Let us assume that it mainly uses cellular networks for data exchange

1

2 1. Overview of mobile communications

Public
WiFi AP

Home
WiFi AP

UMTS

Cell

Mobile
Node

Office
WiFi AP

LTE

Cell

Figure 1.1: Mobility scenario

and that it encounters several WiFi APs along the path, for example its
home WiFi AP, some public WiFi APs and its office WiFi AP (figure 1.1).
Since data connection plans of cellular networks are usually provided with
metered data traffic, the user may prefer WiFi APs when available as they
often provide access to unmetered data traffic connections. Moreover, the
user may prefer WiFi over cellular network since the network coverage of the
latter may be poor in some indoor rooms, thus causing considerable battery
drain. On the other hand, communications over the cellular network may be
preferable when WiFi connectivity starts to deteriorate, for example moving
away from the AP or when the user is served by public APs in crowded places
(congestion).

Switching from one type of connection technology to another may cause
noticeable interruptions in the ongoing real-time conversations due to the
considerable amount of time needed for the handover to take place. Handover
is the process of moving between different wireless networks and it will be
described in the next chapter.

1.2 Mobililty 3

1.2 Mobililty

The term mobility refers to the ability to move freely and easily. In com-
puter networks, support for mobility refers to the ability to keep communica-
tions active during movement across different networks. More challenges arise
when communications are real-time, thus including VoIP, video-conferences,
online gaming, screen sharing and so on. Mobility support for real-time
communications is a hot research topic since it is considered a complex task
that involves many heterogeneous technologies and agents whose character-
istics are constantly evolving. In fact, a wide range of solutions that aim to
support mobility have been proposed in literature. They focus on different
aspects and operate at different layers of the protocol stack. However, they
often share the same goals, deal with similar issues and refer to a common
terminology. In particular, end-node terminals which can move across net-
works are often called Mobile Nodes (MNs), and end-node terminals which
are fixed and do not experience frequent network re-configurations are called
Correspondent Nodes (CNs). Generally both entities are taken into account
in order to cover two different typical situations: in the first scenario both
end nodes involved in the communication are MNs while in the second more
relaxed scenario one end-node is an MN and the other one is a CN. We will
see in the chapter 3 how some of the existing solutions suit well for the second
scenario but do not satisfy the necessary requirements when both end-points
can move to a different network at the same time.

1.2.1 Current technologies

Mobile devices are able to access the Internet network through wireless
points of attachment. Wireless technologies can work with short or long range
radio systems. Currently, the most used short range wireless technologies are
the following.

WiFi: WiFi (Wireless Fidelity) specifications are defined by the IEEE 802.11
standards and it allows electronic devices to connect to a wireless LAN

4 1. Overview of mobile communications

(WLAN) network. WiFi mainly operates at 2.4GHz and 5GHz fre-
quencies. Coverage range depends on many factors such as the specific
802.11 protocol the AP runs (a/ac/b/g/n/etc.), the transmitter power,
which antennas are used, the position of the AP (indoor or outdoor)
and so on. Anyway, the coverage range of typical WiFi installations can
vary from around 20 meters to 150 meters[70]. Like the coverage range,
also the experienced data rates can vary depending on many factors.
For instance, when the perceived signal is weak, WiFi stations tend to
operate at more reliable modulation schemes which ensure stable com-
munications but decrease the data rate. The majority of WiFi devices
are currently 802.11g and 802.11n compatible, offering maximum data
rates of 600Mbps with the 5GHz band. Anyway, it is worth noting that
at the time of writing, only few broadband internet access plans can
offer such data rates.

Bluetooth: Bluetooth is a wireless technology for exchanging data using
short range radio transmissions. Specifications and services are man-
tained by the Bluetooth Special Interest Group (SIG). Bluetooth was
intended for building Wireless Personal Area Networks (WPANs) used
for interconnecting personal devices in a short-range area. It is de-
signed for low power consumption indoor work. Coverage range can
vary from around 50cm to around 100 meters. Like the WiFi technol-
ogy, Bluetooth operates in the ISM radio band at 2.4GHz. Bluetooth
Low Energy[5] and Bluetooth High Speed[4] are two extensions which
expand on the Bluetooth application use case. The first one is intended
to work with devices that run for very long period of time thanks to
its power efficiency, while the second lets users quickly exchange large
amount of data by momentary enabling a second radio.

Generally, WiFi prevails over Bluetooth when devices must access the
Internet as it enables faster connections (higher bit-rates), better range from
the base station and better security. In any case, when MNs are not covered
by any WiFi AP, they rely on cellular network technologies which operate

1.2 Mobililty 5

with long range radio system. Cellular networks technology can be classified
by their generation number[71][47].

1G: In the first generation of cellular networks, the concept of cell system
were introduced (Japan 1979, US 1984). A cellular network is composed
by many cell sites, each covering a small area. The basic idea was
to assign a different operating frequency to each cell, allowing partial
overlapping.

2G: In the second generation of cellular networks (late 1980s), analog cell
systems were replaced by digital, circuit-switched cell systems defined
by the GSM standard. Voice calls started to be digitally encoded and
compressed allowing more calls to be transmitted in the same amount
of radio bandwidth. Other benefits introduced by digital signal were
encrypted conversations and data services such as SMS text messages
and emails.

2.5G: General Packet Radio Service (GPRS) is a 2G-3G transitional tech-
nology, thus often called 2.5G. GPRS was developed, and opened in
2000, to build packet-switching systems on the existing GSM networks
which were circuit-switching based. The main advantages introduced
by GPRS are the support for IP networking and higher data-rates,
typical 56Kbps downlink and 14.4Kbps uplink, compared to GSM data
rate, max 9.6Kbps both downlink and uplink. The popularity of GPRS
soared thanks to its ease of deployment. In fact, to provide GPRS ser-
vices on the top of GSM, it was sufficient to add few GPRS Support
Nodes (GNS), which acted as gateways to the Internet network, and to
do some other small changes to the existing 2G networks.

2.75G: Enhanced Data Rates for GSM Evolution (EDGE) was invented and
introduced by AT& T (former Cingular) as an upgrade to the existing
GPRS and 2G networks. EDGE substantial enhancements are at the
physical layer which includes a new form of modulation: 8 Phase Shift
Keying (8PSK) also used in 3G networks. The new modulation method

6 1. Overview of mobile communications

allowed data communications to be exchanged at a typical data rate of
384Kbps and the already existing GPRS infrastructure could be used.

3G: 3G is a family of standards used for mobile devices and mobile telecom-
munication services that comply with the International Mobile
Telecommunications-2000 (IMT-2000) specifications by the Interna-
tional Telecommunication Union. Telecommunications companies em-
ploying networks advertised as 3G had to fulfill the IMT-2000 re-
quirements. Many technologies were accepted as 3G standard like
CDMA2000 developed in US, WCDMA (Wideband-CDMA) developed
in Europe and TD-SCDMA developed in China. WCDMA and TD-
SCDMA are both access methods used in the Universal Mobile Telecom-
munication System (UMTS) technology officially launched in 2002.
WCDMA uses a code division multiple access method (as the UMTS
competitor CMDA2000) while TD-SCDMA combines both code divi-
sion and time division multiple access methods.

Data rates in 3G networks can reach around 2Mbps downlink and
384Kbps uplink with UMTS. Later enhancements of UMTS are High
Speed Downlink Packet Access (HSDPA) and High Speed Uplink Packet
Access (HSUPA) which belong to the High Speed Packet Access (HSPA)
family, sometimes also called 3.5G. A later version of HSPA called
HSPA+ enables data rates up to 42Mbps introducing MIMO (Multiple-
Input, Multiple Output) technology and higher order modulation (64QAM)
techniques.

4G: The fourth generation of cellular networks is intended to be an all-IP
based solution. The purpose is to integrate different radio access net-
works together relying on the Internet network as the backbone. The
IMT-Advanced is a set of requirements for 4G standards and defines
100Mbps and 1Gbps as the peak speeds for high mobility communica-
tions (e.g. trains, cars) and low mobility communications (e.g. pedes-
trians) respectively. Even if LTE and WiMax technologies do not fulfill

1.2 Mobililty 7

the IMT-Advanced requirements, the ITU Radiocommunication Sector
(ITU-R) agreed that the term “4G” can be applied to these technolo-
gies since they provide a substantial improvement with respect of the
3G technologies. ITU indicated “LTE-Advanced” and “WirelessMAN-
Advanced” as the official designation of IMT-Advanced[22]. In fact,
4G with LTE-Advanded can reach data peak speeds of 1Gbps down-
link and 500Mbps uplink, which is considerably higher than the respec-
tive 100Mbps downlink and 50Mpbs uplink of LTE and WiMax. 4G
requirements also mandate smooth handoff across heterogeneous net-
works, global roaming across multiple networks and spectral efficient
system. Orthogonal Frequency-Division Multiple Access (OFDMA) was
chosen as the multiple access method to the wireless medium.

5G: At the time of writing, there is no standard for 5G deployment. The
Next Generation Mobile Networks Alliance defines some requirements
the fifth generation of cellular networks should fulfill[75]. They focus
on increasing the capacity support of the mobile networks, allowing
high data rate communications for more users per unit, reducing la-
tency, enhancing the spectral efficiency and supporting the Internet Of
Things and massive wireless sensor networks requirements. The Next
Generation Mobile Networks Alliance’s work tries to cover the expected
scenarios and challenges of 2020, covering measures that may support
the expected dramatic increase of the data volume by that date.

Since in some areas, cells and cellular network subsystems do not still pro-
vide support for new technologies, smartphone users can experience different
data rates and throughputs in their communications. A recent report[32],
shows the comparison between 3G and 4G worldwide coverage. While many
countries are improving their 4G coverage, many areas around the world
lack of 4G coverage. A quote from the report well summarizes the current
situation of 3G and 4G network coverage in Europe:

Europe in particular is still leaning heavily on its extensive 3G

8 1. Overview of mobile communications

infrastructure. In Germany, Italy, France and the U.K., the
chances a 4G subscriber will connect to an LTE network are little
better than a coin flip.

Furthermore, many carriers around the world decided to turn off their
GSM networks in 2017 in order to free up more bandwidth for faster 3G
and 4G networks. However since many older devices and legacy services are
still using 2G networks, some network operators in Europe will postpone the
GSM turnoff date[24].

1.2.2 Goals and issues

Research in network mobility focuses on the main task of guaranteeing
continuative network connectivity to mobile devices as they move geographi-
cally. This is not an easy task since we live in a world of heterogeneous wire-
less networks which all merge into the global Internet infrastructure, built
and designed in the era of wired networks. Things become more difficult if
voice and video real-time applications are involved, since they often require
high data rates and low latencies. It is true that wireless technologies and
broadband systems are strongly improving but at the same time users are ex-
pecting more reliability, better service quality from mobile communications
and support for new use cases such as high definition video broadcasts and
calls, augmented/virtual reality online games[30], real-time data streaming
from sensor networks and so on.

In the next chapters we will see many solutions that cover network mobil-
ity. After that, an implementation of an early-packet-loss-detection method
will be described in this document as my personal contribution to the Always
Best Packet Switching (ABSP) project, which aims to improve the handover
process and the continuative network connectivity in VoIP communications.

Chapter 2

Seamless vertical handover:
state of the art

A mobile node can connect to the Internet through connection points of
the wireless access networks (e.g. WiFi, LTE, etc.), often called points of
attachment. Handover (or handoff) is the process of transferring a network
communication from one point of attachment to another. A handover process
is called seamless if the MN does not perceive any interruption while moving
between two points of attachment. There are two different types of handover:
horinzontal, when the MN moves between access points of the same wireless
technology (e.g. between two UTMS cells), and vertical, when the MN moves
between access points of different wireless technology (e.g. switching between
WiFi to cellular network and viceversa). The figure 2.2 outlines the two
different types of the handover process.

MNs can be equipped with multiple Network Interface Cards (NICs) since
they can connect to different wireless technologies access points. In fact,
today’s common MNs are often equipped with a WiFi NIC and a cellular
network NIC. Thus, this document focuses on the vertical handover process
which takes place when MNs move between WiFi networks and cellular net-
works and back. In this chapter we will cover various approaches and metrics
that may be considered for the handover decision.

9

10 2. Seamless vertical handover: state of the art

 UMTS

Cell B

 UMTS

Cell A

1 2 3

MN moves MN moves

Figure 2.1: Horizontal handover: a MN changes access network using the
same NIC, while moving.

UMTS

Cell

1 2 3

MN moves MN moves

Public
WiFi AP

Figure 2.2: Vertical handover: a MN changes access network and the NIC
used, while moving.

2.1 Handover criteria 11

2.1 Handover criteria

The decision of whether to perform a handover is taken according to
status information constantly gathered by the MNs about current and the
neighbor access networks. In literature, some works[51][88][63] outline the
metrics that can be used for the handover decisions. The most frequently
used metrics or most considered in research are:

RSSI: The Received Signal Strength Indicator (RSSI) is a measurement of
the power level being received by a radio interface. Thus the higher
the RSSI, the stronger the signal. Currently, Signal Strength is one
of the most used metrics for handover decision as it directly relates to
network coverage. It is calculated at the physical layer of the NIC and
continuously updated by the MN while moving in order to determine
if network coverage is still available.

Bandwidth: Bandwidth is directly related with QoS. Sometimes the signal
strength metric is not sufficient to determine which network can offer
a better service quality, for instance when two networks of different
access radio technologies overlap. In this case it may be convenient
to choose the access network which can provide the higher bandwidth.
The maximum bandwidth can be easily estimated from the type of
radio technology if the modulation scheme is known. However, the
actual bandwidth may be far lower than the estimated one. Thus, the
actual bandwidth calculation may require some practical tests which
are often time consuming and can slow down the handover process. It
is worth mentioning that bandwidth per user may also vary depending
on the network load.

Frame Retransmission: Another metric that can be used for the handover
decision is the number of frame retransmissions. Like the RSSI, the
number of frame retransmissions can be used to estimate the reduction
of signal strength: the higher the retransmission number, the weaker

12 2. Seamless vertical handover: state of the art

the signal. Moreover, a high number of frame retransmissions may
indicate the presence of radio interference. In this case the RSSI may
not be affected and thus may fail to indicate low link quality[62].

Battery Power: One of the handover metrics that can be considered is the
battery power. Sometimes it may be preferable to handover to the
more power efficient network.

Traffic limit: At the time of writing, Internet access through cellular net-
works is often limited in the amount of traffic, for instance a user can
navigate at full speed only up to N GigaBytes of traffic per month.
Hence this may be considered in the handover decision but obviously it
is directly dependent on the user’s mobile plans and user preferences.

2.2 MN-controlled Vertical Handover

The handover process between cellular network cells or between WiFi APs
is controlled or partially assisted by the network subsystems. Differently, the
handover process between a WiFi network and a cellular network must be
entirely controlled by the MN since there is no external link-layer entity that
can interconnect the two networks.

In this section we will analyze some mechanisms and software tools devel-
oped for handling the vertical handover process between WiFi and cellular
networks.

2.2.1 Media Independent Handover

The IEEE standard 802.21[84] defines a media-independent handover (MIH)
framework that includes a set of tools to exchange information, events and
commands between heterogeneous link-layer entities in order to facilitate the
vertical handover process. It requires the implementation of an additional
layer of the protocol stack, between the data-link-layer and the network layer,

2.2 MN-controlled Vertical Handover 13

on both mobile terminals and network entities (such as APs) in order to pro-
vide a standard interface of interaction. ODTONE is an implementation
of the 802.21 standard, developed as an open source OS independent MIH
framework. The ODTONE interface that communicates with the link-layer
devices is called Link SAP whose current implementation offers only two
types of events that can be used as handover metrics: link down and link
up events[14]. Anyway, the Link SAP interface can be enanched with future
extensions[17].

2.2.2 Transmission Error Detector

Transmission Error Detector (TED) is a component of the Always Best
Packet Switching (ABPS) [53] architecture and it is essentially a software
tool able to provide the MN with 802.11 data-link-layer information about
frame retransmissions and successful (unsuccessful) frame receptions at the
AP. TED can then deliver this information to the software modules at the
application layer providing metrics for the handover decision. Currently,
TED supports WiFi only but it could be extended to other technologies in
the future.

The ABPS architecture, that will be described in the next chapter, and
the TED module are the bases for my personal project which will be explained
in details in the chapter 4.

2.2.3 Enabling/Disabling NICs

In order to save battery power, smartphone users often tend to disable the
NIC that is known to be useless in certain situations or for a certain period
of time: for instance, users may turn off their WiFi NIC while walking away
from their home WiFi AP and they are sure there will be no accessible WiFi
APs along the path they’re going to traverse.

The automatic vertical handover operation requires all NICs to be active
in order to perform scans looking for suitable points of attachment. In [50],

14 2. Seamless vertical handover: state of the art

the authors of ABPS proposed a solution called “Oracle” that automatically
understands when to activate or deactivate NICs according to geo-located
information about WiFi APs. Essentially, the geographic positions of user
accessible WiFi APs are stored in a local database on the MN during an initial
mapping phase. Later in the daily use of the mobile device the database is
frequently queried in order to deactivate the WiFi NIC when not needed,
for example when, according to the database, there is no suitable WiFi AP
within a suitable distance. Moreover, the Oracle can decide to deactivate the
cellular network NIC when the MN is associated to a WiFi AP and to re-
activate it when the WiFi communication starts to deteriorate (using RSSI
or other QoS metrics). A recent implementation of the Oracle for Android
devices has been developed by Luca Milioli in his master’s thesis work[55].
He has also introduced a functionality to geo-localize the WiFi APs according
to the identifiers of cellular network cells. Even if less accurate than GPS
geo-localization, this method is less battery consuming.

It is clear that the Oracle does not perform vertical handover by itself, but
it is an interesting tool able to optimize power consumption in multi-homed
mobile devices that employ vertical handover features.

Chapter 3

Seamless host mobility: state of
the art

In the previous chapter, we have seen some of the fundamental aspects of
several vertical handover mechanisms. Those mechanism mostly give the end
user devices the capability to decide whenever it might be reasonable to move
from one layer 2 access technology to another. However, other elements must
be taken into account while dealing with host mobility, such as communica-
tion continuity and reachability. In fact, after a Mobile Node (MN) performs
a handover, it should remain reachable from its Correspondent Node (CN)
and the previously initiated communication should not be interrupted.

A recent survey[51] exhaustively analyses the main architectural solutions
for mobility support in wireless networks. In the following sections some of
them will be covered, leaving out those which are conceptually similar and
share the same approach with the most noted ones.

3.1 Solutions at the network layer

3.1.1 Mobile IP

Mobile IPv4 (or MIPv4)[77] and Mobile IPv6 (or MIPv6)[78] are two
IETF standard network protocols that were introduced in order to address

15

16 3. Seamless host mobility: state of the art

the need of MNs to be reached while moving between different IP sub-
networks. In fact, the IP protocol assumes that a node’s point of attach-
ment to the Internet is uniquely identified by its IP address. Thus, when a
node accesses the Internet through a different sub-network, it changes its IP
address as well, and packets destined to its old IP address would be dropped.

The key idea behind Mobile IP is that each MN is always identified by
two IP addresses, a home address and a care-of address. When a MN is at
home, it can be directly reached through its home address. Otherwise when
it is situated away from its home, IP packets addressed to its home address
are routed to its care-of address, which correspond to the node’s current
location.

The IPv4 version of the Mobile IP protocol introduces new entities called
agents:

Home Agent: a router that tunnels and forwards IP packets to the MN
when it is away from home. It is located on a MN’s home network and
maintains an up-to-date node’s care-of address.

Foreign Agent: a router which is located on the MN’s current network,
when this is different from its home network. The Foreign Agent is
responsible of de-tunneling and delivering to the MN packets tunneled
by the Home Agent.

Figure 3.1 shows the communication paths between the CN and the MN.
As introduced before, we notice that all the packets transmitted by the CN
are directed to the Home Agent which tunnels and forwards all traffic to the
current Foreign Agent. It is worth noting how the traffic originated by the
MN is directly routed to the CN without involving the Home Agent. This
routing scheme is often called triangular routing, since the backward routing
path is different from the original routing path.

In [60] and [57], the authors cover some of the issues that MIPv4 leads
to. One of the most discussed is the ingress filtering: a protection filter
mechanism against IP address spoofing attacks widely used in routers[39][49].

3.1 Solutions at the network layer 17

Home
Network

CN

HA

FA MN

Visited
Network

Reply Path

T
u
n
n
el

in
g

Figure 3.1: Mobile IPv4 Triangular Routing.

To overcome this problem, reverse tunnelling[72] was introduced in MIPv4.
Its main downside resides is its inefficiency. In fact, as the authors of
[69] state, “reverse tunneling causes lower mobile connection throughput and
higher roundtrip times”.

MIPv6 has several benefits over MIPv4. This is mostly given by the inner
features of IPv6, such as neighbour discovery and address auto-reconfiguration[46].
Furthermore, the Foreign Agent is no longer required by the fact that an IPv6
MN obtains a new unique IPv6 address when it moves to any different ac-
cess network. Obviously, MIPv6 only works on infrastructures with IPv6
capabilities.

Monami6[85], a later extension of MIPv6, allows MNs to register multi-
ple care-of addresses to their Home Agents. With this approach, a MN can
configure an IPv6 global address for each of its NIC. In fact, Monami6 in-
troduces the multihoming capability in MIPv6. Besides that, all the Mobile
IP approaches do not overcome the potential presence of symmetric firewall
systems.

In the next sections we will cover more solutions and protocols concerning
host mobility.

18 3. Seamless host mobility: state of the art

Figure 3.2: LISP data-packets encapsulation and decapsulation[42].

3.1.2 LISP

Location/ID Separation Protocol (LISP)[48] is another network layer tun-
neling solution. LISP considers two type of IP addresses: Endpoint Identifiers
(EIDs), which identify hosts, and Routing Locators (RLOCs), which identify
network attachment points.

Essentially, when a host A wants to communicate with a second host B,
it transmits its data to the EID IP address of the second host. When data-
packets originated from A reach the first LISP-enabled border router, the
Mapping System finds the RLOC identifier which corresponds to the EID of
B. Packets are then encapsulated and sent to the exit LISP-enabled border
router, identified by the found RLOC, which the host B is attached to. This
latter router eventually decapsulates and forwards the packets originated by
host A to host B. Figure 3.2 shows these LISP tunnelling operations.

When a host changes its point of attachment, its EID will remain un-
changed but it will obtain a new RLOC identifier. Also, the Mapping System
will take care of updating the EID-to-RLOC binding. Leaving aside the de-
tails of the Mapping System entities and operations, it is worth noting that
LISP introduces some form of NAT traversal[64]. However it is clear that

3.2 Solutions between the network and the transport layer 19

the main drawback of this architecture is the requirement of LISP-enabled
border routers.

3.2 Solutions between the network and the
transport layer

Location Independent Addressing for IPv6 (LIN6)[66] and Shim6 [74] are
two of the existing solutions that insert an intermediate layer between the
network and transport layers of the protocol stack.

The main downside of this type of architectures is the requirement to
modify the protocol stacks of both the MNs and the CNs. While it may be
reasonable for the MNs to support specific mobility implementations of the
protocol stack, the CNs may not be interested in such mobility support.

3.2.1 LIN6

The LIN6 architecture is the IPv6 compatible implementation of LINA,
which stands for Location Indipendent Network Architecture. Similarly to
LISP, LINA’s basic idea is to introduce two concepts that are node identifier
and interface locator. Instead of splitting the IP addresses and tunnelling
data, the authors of LINA and LIN6 propose to split the network layer of
the current protocol stacks in two sublayers: an identification sublayer and a
delivery sublayer. Moreover, LINA uses Mapping Agents at the identification
sublayer to deal with the resolution of the interface locator which correspond
to an actual node indentifier. Mapping Agents can be located externally
to the nodes’ networks and their addresses must be obtained through DNS
lookups before being cached.

3.2.2 Shim6

Shim6’s approach is based upon adding an additional layer between the
network and the transport layers. Shim6 proposes the use of network layer

20 3. Seamless host mobility: state of the art

IPv6 addresses as locators and Upper Layer Identifiers (ULID) for nodes
identification.

Shim6 defines a mechanism of failure detection used to detect outages.
In case of outage, Shim6 uses the Reachability Protocol (REAP)[34] to de-
termine and update valid locator pairs. Moreover, unlike the previously
described solutions, the approach of Shim6 for locator updates is related to
timer expiration and not to movement detection. For this reason it has been
considered not suitable for highly dynamic environments[51].

3.3 Solutions at the transport layer

Many solutions that work at the transport layer consider the end nodes
as proactive location registry. In fact, in many protocols such as Datagram
Congestion Control Protocol (DCCP)[65], Mobile Stream Control Transport
Protocol (m-SCTP) [86] and TCP enhancement TCP-migrate[82], each end-
system directly informs the CN when its IP address changes. This approach
fails when both the end nodes involved in a communication are mobile and
try to simultaneously perform a handover. It is obvious that both the MNs
may become mutually unreachable since there is no third agent involved in
the communication.

To overcome the mutual unreachability issue, MSOCKS [68] proposes the
use of an external proxy that splits the TCP connection between two end-
points. With this scheme, the external proxy can migrate a connection when
the MN changes its IP address. In addition, the proxy relies on a tech-
nique called TCP Splice that, as stated by the MSOCKS authors, “gives split
connection proxy systems the same end-to-end semantics as normal TCP”.
Essentially the goal of a TCP Splice is to let the end nodes believe they
are directly connected by a single TCP connection. To achieve this goal,
the TCP Splice technique is implemented by altering the headers of TCP
packets, including TCP ACKs, received from one connection to make them
appear to belong to the second connection. It is worth noting that this ap-

3.4 Solutions at the session layer 21

proach is not compatible with IPSec since the content, or even the headers,
of IP packets, may be encrypted and alterations of IP and TCP headers may
not be feasible. The authors of [43] point at the existence of this downside
for a similar approach used by Performance Enhancing Proxies (PEPs)[41].

3.4 Solutions at the session layer

A key-role in establishing sessions between end nodes might be played
by signalling protocols. These protocols deal with the initialization and con-
trol of communication sessions and multimedia streams. Since a signalling
method is fundamental for establishing multimedia communications between
end nodes, we review in this section the basic properties and functionalities
of two common and widely used signalling protocols: the Session Initiation
Protocol (SIP)[79] and Jingle[67], a signaling method extension for the Ex-
tensible Messaging and Presence Protocol (XMPP)[80]. Let us notice that
after a communication session is initiated, the multimedia streams exchanged
between the end nodes often rely on the Real-Time Transport Protocol (RTP)
and the RTP Control Protocol (RTCP). They run over UDP and are used
to transfer and control real-time traffic. Sometimes multimedia streams can
be directly exchanged with UDP or TCP.

3.4.1 SIP

SIP works at the session layer of the protocol stack and relies on SIP
public servers for end nodes discovery. Each end-point user has a unique
SIP identifier. SIP users, before communication initiation, must register to
a SIP registrar server. The SIP registrar server sends back their contact list
to end-users where each contact corresponds to a hostname (or IP address).
When a user A wants to initiate a SIP-communication with B, it sends an
INVITE message directly to B. If some communication parameter changes
(such as IP address), a re-INVITE message can be used.

Another interesting aspect is that SIP allows the presence of SIP proxies

22 3. Seamless host mobility: state of the art

that play the role of routing requests between end nodes. This gives the
opportunity to user A to send an INVITE message to user B through a
proxy server which will take care of finding the next SIP hop (the client B

or another proxy). With this approach end nodes do not need to deal with
configuration changes of their counterparts.

However the SIP architecture introduces an additional delay due to the
message/response behaviour. In particular when an MN changes its IP ad-
dress, it interrupts the communication, sends a re-INVITE message to the
CN and resumes the transmission only after receiving a response from the
CN. Clearly this behaviour does neither satisfy mobility efficiency goals nor
seamless handover requirements. To optimize handover management of SIP-
based mobile communications, the authors of [36] propose a technique for
session continuity that exploits a SIP-based mechanism able to establish
new SIP-connections without interrupting the multimedia flows of the old
connections.

3.4.2 Jingle

Jingle is an XMPP protocol extension for initiating and managing mul-
timedia communication between XMPP entities[67]. It was originally de-
veloped by Google and implemented in the Google Talk service[58]. In
2013 Google replaced Google Talk with Hangouts which does not support
XMPP[25] at all. Jingle however is still used in many VoIP and videoconfer-
encing applications[59][87][10].

XMPP allows the exchange of XML structured data over a network be-
tween any two (or more) entities[80]. It is implemented using a client-server
based architecture. A client needs to contact a server in order to exchange
XML data with other clients. Similarly to SIP proxies, two or more XMPP
servers can connect to each other to enable inter-domain or inter-server com-
munications. XMPP natively uses TCP transport for its communications.
Essentially, clients open long-lived TCP connections with the servers. In this
way long sessions of XML streams are allowed.

3.4 Solutions at the session layer 23

Figure 3.3: Jingle signaling and media relaying[20].

Moreover, since most restrictive firewalls may block outgoing connections
on XMPP ports, the XMPP community developed an HTTP transport mode
for XMPP communication. This because HTTP and HTTPS ports are often
non blocked by firewalls. Protocols such as BOSH [76] or Websockets[83] are
used for keeping alive long TCP connections and exchanging bidirectional
XML data streams over HTTP requests/responses.

Jingle uses XMPP messages to set up, manage, and tear down multimedia
sessions. Sessions can use TCP, UDP, RTP, or even in-band XMPP itself
as transport methods. Like SIP, once the session is established, the media
is exchanged directly peer-to-peer or through a media relay (Jingle Relay
Nodes[44]).

Figure 3.3 shows a multimedia communication between two peers initi-
ated with Jingle and then relayed through a Jingle Relay Node. It is im-
portant to note that the two proxies could be running on the same server
machine.

The stream management XMPP extension[61] introduces the Resumption

24 3. Seamless host mobility: state of the art

operation which, similarly to SIP re-INVITE events, allows clients to quickly
resume former streams rather than re-establishing them after a network out-
age or a vertical handover.

3.4.3 Non standard signaling

Nowadays, many VoIP and videoconferencing services, such as Skype[35],
Google Hangouts[28] and the recent Google Duo[29] for instance, do not rely
on standard signaling protocols. Even WebRTC[38], which is a collection of
communications protocols and APIs for developing applications with Real-
Time Communications (RTC) capabilities, does not mandate a signaling pro-
tocol leaving the choice to the applications. This consideration wants to point
out that while implementations of standard signaling protocols exist, many
services and applications still use non-standard ad-hoc signaling solutions.

3.5 NAT and Firewall issues

As introduced before when both MN and CN are behind symmetric
NAT/firewall systems, many additional complications should be considered.
In these cases, end nodes usually cannot accept incoming traffic if it is not
related to any previously outgoing traffic. For instance, if an end-node be-
hind a restrictive firewall tries to listen to incoming traffic on a certain port,
external packets directed to that port would be likely dropped. Otherwise,
when an end-node first transmits some data to a certain server, its Operat-
ing System will create a socket listening on a randomly chosen source port
which the server could respond to. As a further complication, hosts’ IP ad-
dresses are often masqueraded by NATs installed on border routers that act
as gateways between home networks and the Internet. In fact, end-users
behind NATs cannot expose their hosts’ IP addresses to be directly reached
by external hosts. In this case, an external relay must be employed, which
can receive from and forward to both end-users. Also, both end-users must
contact the relay before initiating the communication (figure 3.4).

3.6 External relay solutions 25

Private
Network

A

Firewall
/ NAT

CN

Relay

1 2
MN

3

6

4

5
Private
Network

B

Firewall
/ NAT

Figure 3.4: Employment of a data relay to cope NATs and firewalls[53].

As already pointed out before, the architectures and protocols we have
covered in the previous section do not take into account the presence of NAT
and firewall systems.

3.6 External relay solutions
Solutions that employ external relays overcome NAT and firewall systems

and do not require modifications to the current network infrastructure. Some
modifications are required to MNs and end-to-end communications are split
in two paths: one from the first end-node to the relay and one from the relay
to the second end-node. External relays are called visible when end-system
applications are aware of them, or invisible when they are hidden to the
applications.

3.6.1 ABPS

Always Best Packet Switching (ABPS)[53] is a distributed architecture
which provides a better host mobility approach to cope with the issues de-
scribed in the previous sections. It is essentially a session layer visible re-
lay/proxy based solution. Also, it deals with the MN vertical handover capa-

26 3. Seamless host mobility: state of the art

bilities monitoring all the concurrent NICs available on the MN and recon-
figuring the system according to the current status of the NICs. Moreover
the SIP-RTP communications originated from the high level applications, are
transparently transmitted through the most appropriate NIC or simultane-
ously through multiple NICs.

Specifically at the MN two components are introduced by the ABPS ar-
chitecture: a network interfaces manager called Oracle (sec. 2.2.3), which
enables or disables the NICs according to various parameters, and a client
proxy that can decide which NIC should be used to transmit the application
packets. This decision is taken according to the information provided by the
TED component (section 2.2.2). A simple “WiFi first” policy is adopted by
the client proxy: if the WiFi NIC is available and the WiFi transmission is
is in a good status (high rate of frames successfully delivered to the AP), the
client proxy forwards the application packets through the WiFi NIC only.
Otherwise, when the WiFi transmission starts to deteriorate (high rate of
frames not successfully delivered to the AP or high rate of frame retransmis-
sions), the client proxy also starts forwarding the application packets through
the cellular network NIC.

An important characteristic is that the client proxy receives TED no-
tifications per each frame sent through the WiFi NIC. This mechanism is
called early-packet-loss-detection and means that the client proxy is aware of
the delivery status and number of retransmissions for each sent WiFI frame.
Since the client proxy can decide which NICs a single datagram should be
sent through, the architecture is called “Always Best Packet Switching”. The
name also wants to differentiate the architecture from the “Always Best Con-
nected” (ABC) type of services, in which usually only one NIC at time can be
used. Thus, the ABPS model tries to reduce the handover timing overhead
anticipating the use of a second (or more) NIC(s) before the communication
breaks or degrades too much. Also, a second or more NICs can be used in
parallel with the first NIC when the handover is not going to take place,
because for instance the communication deteriorates only for a short period

3.6 External relay solutions 27

MN
Multi-homed
Mobile Node

CN
Correspondent

Node

Internet

Wireless Network Infrastructures

ISP A

NAT
FW

3G

WiFi

multi-path virtual channel

ISP B

NAT
FW

FS
Fixed Server

ABPS
Client
proxy

SIP / RTP

Policies
(Load Balancing,

Recovery)

ABPS- SIP/RTP

Apps

SIP / RTP

Policies
(Load Balancing,

Recovery)

ABPS- SIP/RTP

Apps

ABPS
Server
proxy

Figure 3.5: The ABPS architecture[53].

of time, but in any case redundant transmissions would lead to a better
communication quality, reinforcing reliability.

Let us remember that, whenever it is “convenient”, the Oracle may choose
to turn off one or more interfaces in order to save battery power. For instance,
it may be convenient to turn off the WiFi NIC when it is not associated to
any AP. However, if it is known that in the proximity of the MN there is an
accessible AP, it may not be convenient to turn off the WiFi NIC.

The ABPS architecture also relies on SIP-compliant visible proxy servers
which store the source IP addresses of the MN network interfaces in order
to allow communication continuity between the MNs and their CNs. More-
over an ABPS proxy server can act as a relay that lets an MN and its CN
communicate even if they are both behind symmetric NATs and firewalls.

Figure 3.5 shows the ABPS architecture in a typical use case scenario:
the MN is equipped with multiple NICs and wants to communicate with the
CN using a SIP-RTP VoIP application. The application sends data packets
to the Client Proxy that elects a NIC to forward traffic to the Fixed Server.
SIP-RTP data packets are eventually relayed to the CN by the Fixed Server.
Also, a backward path is used to let the CN transmit its own SIP-RTP stream
to the MN.

An obvious limit of ABPS is that, at the time of writing, it is strictly

28 3. Seamless host mobility: state of the art

dedicated to SIP-RTP based applications and cannot be exploited for other
applications. Extending ABPS to other protocols is a current goal of its
authors.

3.6.2 UPMT

Many applications are not designed to work with proxies. To overcome
this limitation, invisible relay solutions transparently intercept network traf-
fic generated by the application running on a MN and redirect it to a local
proxy. The local proxy then forwards the application traffic to a server prox-
y/relay. In fact, like ABPS, invisible relay services also rely on two proxy
entities but applications are unaware of their existence. One interesting invis-
ible relay solution is Universal Per-application Mobility management using
Tunnels (UPMT)[40] which is based on a modification of the MNs’ linux
kernel. In particular, the UPMT modification alters the netfilter [73] subsys-
tem of the Linux kernel. In brief, it allows the exposure of a virtual NIC
to the user space and tunnels all the virtual NIC outgoing traffic adding an
UDP+IP encapsulation layer. The tunneled traffic is then forwarded to the
external relay through one of the currently available physical NICs. This
allows support to applications that are not suitable for the explicit use of
external proxies. Despite its interesting approach and its open source imple-
mentation, UPMT respects the ABC model and does not implement a per
packet loss detection.

3.6.3 FRHP

The term Fast Reactive Hidden Proxy (or FRHP) has been introduced
in [51] in order to refer to a class of solutions which combine both invisible
proxy and the feature of early-packet-loss-detection. At the time of writing
no implementation of such class of solutions exists. In any case this approach
has been utilized in vehicular networks[56] and might form the basis for an
interesting extension of existing external relay solutions such as ABPS and

3.6 External relay solutions 29

UPMT. The first one would benefit from the inclusion of non-proxy-suitable
applications while the second one would take advantage of the early-packet-
loss-detection technique, with a likely improvement in terms of handover
latency.

30 3. Seamless host mobility: state of the art

Chapter 4

Project goals and design

The previous chapters summed up the state of the art of vertical handover
and host mobility. From now on, this document focuses on the design choices
and the development process of my personal project.

4.1 Project goals

The project presented in this document aims to help the vertical han-
dover process on mobile devices. In particular, I wanted to consider a today’s
practical scenario focusing on a moving smparthone user’s vertical handover.
According to current statistics[31], Android is the most popular Operating
System for smartphones. It is based on the Linux kernel and some of its sys-
tem characteristics are similar to the common GNU/Linux OS distributions.
Furthermore my project is based on some components of the ABPS archi-
tecture whose previous implementations were developed for Linux systems.
Hence the main goal of my project is to provide a fast vertical handover
functionality to today’s Android multi-homed smartphones equipped with
one WiFi NIC and one cellular network NIC in order to improve mobile
real-time and VoIP communications. An enhanced TED component (sec.
2.2.2) has been used and ported to the Android kernel to let it rely on the
“early-packet-loss-detection” mechanism. Moreover early implementations of

31

32 4. Project goals and design

the ABPS client proxy (called client proxy or tedproxy), the ABPS relay
(called relay) and some dummy CN software tools have been developed in
order to present a working demo application and inspire future development.
Such demo application shows fast vertical handover functionality during the
use of a camera streamer application which runs on an Android smartphone
and streams its captured video to a remote CN while the user is moving.

We will see in the next sections the design choices while the implemen-
tation details will be explained in the next chapter. At the end, in chapter
6, an analysis of some experimental results and a discussion about possible
future works will be covered.

4.2 Mobile node

MN Android smartphone

RTP camera

streamer

client proxy

cellular

network NIC

kernel

TED

info

WiFi NIC

user space

Figure 4.1: MN desigin structure

4.2 Mobile node 33

As mentioned before, the MN is in practice an Android smartphone. I
chose to use an LG Nexus 5 as a reference device since it ships out with
the stock Android OS. On the top of the Operating System I chose to use a
camera streamer application that periodically sends captured video frames
to a remote relay. Also, such camera streamer application allows to specify
the destination IP address and the destination port so that the local client
proxy can be employed. In fact all the traffic originated by the application
passes through the client proxy which in turn forwards all the packets to
the relay. Both the application camera streamer and the client proxy reside
in Android OS user space while the TED component should be built in
the Android kernel. The MN design structure is shown in figure 4.1 and
it is clearly a stack: the user interacts with the camera application which
exchanges packets with the local client proxy. The latter interacts with the
TED module and takes decisions about which NIC it should transmit from.

Figure 4.2 outlines the Android software stack. System applications and
user applications such as email clients, games, messaging apps, etc., rely on
the Java API Framework. This also applies to many real-time and VoIP
user applications. For this reason an RTP camera streamer built in Java
has been chosen to be the real-time user application running on top of the
Java API Framework stack layer. The client proxy instead directly resides
on top of the Native C libraries stack layer. This choice comes from the
fact that the original ABPS client proxy for GNU Linux distributions was
implemented in C directly employing the GNU libc library. Thus, adapting
the ABPS client proxy to the Android architecture does not require the
Java API Framework. Moreover such proxy application is not intended to
provide any user interaction facilities and the Java API Framework would
only introduce needless complexity.

34 4. Project goals and design

Figure 4.2: Android Platform Architecture[26]

4.2 Mobile node 35

The third ABPS component of interest that runs on the MN is the TED
module which resides in the Linux Kernel layer. In particular TED is a soft-
ware patch that modifies some of the linux kernel components such as the
socket structure, the UDP message handler, the IP packet handler and the
mac80211 kernel subsystem. The latter consists of driver APIs for 802.11
WiFi SoftMAC devices which are those network interfaces whose frame man-
agement is expected to be done in software by the kernel[1]. In fact TED
interacts with the mac80211 subsystem software part that handles frames
transmission and frames delivery status providing data-link-layer informa-
tion to the client proxy.

A similar feature makes use of the 802.11 frame ACK status to the appli-
cation layer already exists in the Linux Kernel and can be employed through
the SO WIFI STATUS socket option. This option was introduced because
802.1X EAPOL handshake implemented in hostapd requires knowing the
delivery status of 802.11 frames[23]. However this option does not provide
information about retransmissions and does not support packets fragmen-
tation: if the application sends a transport layer packet that is big enough
to be fragmented then the socket with the SO WIFI STATUS option enabled
reports to the application the ack status of the first fragment only. On
the contrary TED provides support for both retransmission information and
packets fragmentation. In any case developing TED as an integration of the
SO WIFI STATUS option would be an interesting future work.

The main problem for these approaches is that most of the WiFi chips
integrated in smartphones are of the FullMAC type thus implementing all
the data-link-layer management in their firmwares. FullMAC wireless NICs
do not support mac80211 and both TED and the SO WIFI STATUS option
cannot be employed in this kind of WiFi chips. The choice of FullMAC NICs
comes form the fact they allow smartphones’ processors to save power by of-
floading certain operations such as association, authentication, scanning, etc.
Also, most of the FullMAC NICs’ firmwares are closed source and directly
maintained by chip vendors which do not allow any external modification.

36 4. Project goals and design

Figure 4.3: Picture of the MN device. An LG Nexus 5 smartphone with an
USB WiFi dongle which integrates a Ralink RT2870 chipset.

While the authors of NexMon[81] disassembled and patched the closed
source firmware of the Nexus 5 WiFi chip successfully enabling monitor mode,
performing reverse engineering for many different chips guaranteeing a reli-
able QoS is an obviously too difficult task and would introduce enormous
complications. On the other hand open source firmwares are not expected to
be released by WiFi chips vendors in the early future and a reverse engineer-
ing approach for enabling TED functionality in firmwares may be worth a try
in future works. Hopefully, the spreading of this kind of works may convince
chip vendors to release source code of their firmwares or at least provide a
software interface able to access some information internally hold by these
FullMAC chips. In any case I opted for an external USB WiFi dongle (figure
4.3) with a Ralink RT2879 chip which is of the SoftMAC type and supports
the mac80211 subsystem.

4.3 Relay and Correspondent Node 37

This let me focus on developing the client proxy, enhancing the TED module
and testing their behaviour. Moreover, fast vertical handover capabilities
may also be advantageous in other contexts with less strict power consump-
tion requirements and different hardware environments such as connected
cars[9].

4.3 Relay and Correspondent Node

In order to deploy the MN described in the previous section in a practical
scenario, other two components are required: the external relay and the CN.

The external relay is required since I consider both the MN and the CN
being behind NATs and firewalls as most of current end nodes are today.
The idea was to develop a simple UDP relay application which listens on two
UDP ports, one per end-node. If end nodes send an initialization datagram
to the relay, the latter would be able to forward incoming datagrams in both
directions and the MN and CN can bypass NATs and firewalls. It is important
to remember that the MN is equipped with multiple NICs and may encounter
network reconfigurations thus the relay may receive initialization messages
from different source IP addresses and ports of the same MN. In this case
the relay should store and continuously update all the current MN’s source
IP addresses and ports in order to forward incoming traffic from the CN to
all the MN’s active NICs. Moreover an authentication mechanism must be
employed to avoid undesired forwarding to third-parties. Such authentication
mechanism is out of the scope of this work but must be covered in future
enhancements.

In this project the CN simply refers to the receiving counterpart of the
MN. It should be able to send an initialization message to the external relay in
order to be reachable since, like the MN, it resides behind a symmetric NAT
and firewall. After the initialization phase the CN should simply listen to
incoming RTP (over UDP) messages from the relay, decode the RTP stream,
re-encode it into video frames and eventually storing them into an output

38 4. Project goals and design

file. The idea is to achieve a real-time video streaming service which would
be easily extensible to a VoIP or videoconference service in future works.

Chapter 5

Project development

5.1 TED

In this section we will see in detail how TED works and how I contributed
to its development.

5.1.1 Previous versions and working principles

Previous implementations of TED already existed for the Linux Kernel.
After being developed by Vittorio Ghini and presented in 2011 as part of the
ABPS architecture[53], it has been reviewed and modified several times as
the Linux Kernel was evolving and being updated. The last working version
of TED before my contribution was developed for version 4.0.1 of the Linux
Kernel by Gabriele Di Bernardo and Alesssandro Mengoli in their bache-
lor’s thesis works[54][52]. They introduced support for IPv6 and based the
interlayer information passing mechanism on the sk buff kernel structure.
Simplifying, an allocation of the sk buff structure contains the headers and
the payload of a packet together with some additional information that the
kernel may use to correctly manage it. We can then think of a direct re-
lation between packets and sk buff structures. When a user space process
sends a packet through a TCP or UDP socket, the kernel will create a new
sk buff structure and link it to the transport layer header and the payload

39

40 5. Project development

of the packet. Then the sk buff structure is passed to the IP management
module of the kernel. At this stage if the payload of the transport layer
packet is bigger than the MTU then the kernel splits the sk buff structure
in as many sk buff fragments as it needs. That is, each new IP packet
fragment correspond to a separate sk buff structure. These new sk buff

structures are stored in a linked list for future retrieval. Each new sk buff

structure, or the old one if fragmentation is not required, are passed to the
layer 2 module of the selected transmitting NIC. In case the selected NIC
is a SoftMAC WiFi device, sk buff structures land on the mac80211 mod-
ule which manage 802.11 frames and where the TED core logic resides. For
each sk buff structure mac80211 creates a data-link-layer frame which is
then passed to the NIC device driver. Just before the actual transmission,
TED stores in internal ted info structures some information about every
new created frame. ted info structures are collected in a linked list and in-
dexed through frame sequence numbers. When the corresponding AP sends
an acknowledgement frame back to the station or when the station gives up
after a certain amount of retransmissions, TED retrieves the corresponding
ted info structure from its list, enriching it with the delivery status infor-
mation and the retransmission count.

The following snippet shows the ted info structure.
struct ted_info
{

__le16 mac_frameid ; /* 802.11 frame id */
uint32_t transport_pktid ; /* UDP datagram id */

/* 80211 layer info */
u8 acked;
u8 retry_count ;
/* network layer fragment info */
u16 fragment_data_len ;
u16 fragment_offset ;
u8 more_fragment ;

struct timespec tx_time ;
struct timespec rx_time ;
struct ted_info *next;

};

5.1 TED 41

Some of the information contained in the ted info structure will be
delivered to the user space process which started the send operation.

Currently TED only works with UDP transport layer packets.
To let the user space process receive TED notifications it has to send

datagrams using the sendmsg() function. This function allows sending ad-
ditional control information to the kernel along with the payload. Such piece
of information consists of a pointer address to an internal integer variable
(the UDP datagram id).

This is done through the msg header structure which must be passed as
argument to sendmsg():

msg_header . msg_iov = iov; /* Contains the datagram */
msg_header . msg_iovlen = 1;
msg_header . msg_control = cbuf;
msg_header . msg_controllen = sizeof (cbuf);
cmsg = CMSG_FIRSTHDR (& msg_header); /* Contains ctl info */
cmsg -> cmsg_level = SOL_UDP ;
cmsg -> cmsg_type = TED_CMSG_TYPE ;
cmsg -> cmsg_len = CMSG_LEN (sizeof (id_pointer));

/* Copy the address of our user space pointer (id_pointer)
* into the cmsg data. Later the kernel will put a new id
* directly in our user space pointer accessing cmsg data. */

memcpy ((uint32_t *) CMSG_DATA (cmsg), &id_pointer , sizeof (id_pointer));
msg_header . msg_controllen = cmsg -> cmsg_len ;
sendmsg (sd , &msg_header , MSG_NOSIGNAL | MSG_DONTWAIT);

In this way when the kernel takes control of the datagram to be sent,
it generates a datagram identifier and copies it directly to the user space
variable. Such identifier is also stored in the sk buff structure in order to
let it pass through the transport and network layers, finally allowing TED
to store it in the transport pktid variable of the corresponding ted info

structure(s). Let us notice that since the transport layer datagram may
be fragmented, more ted info structures can refer to the same datagram.
After TED is aware of the delivery status and the retransmission number
of a transmitted frame it can send a notification the user space process. It
achieves that by putting a message in the socket error queue containing deliv-
ery status, retransmission count and fragment information. In practice TED

42 5. Project development

creates a new sk buff, which corresponds to the notification message and
passes it as argument to the sock queue err skb() function. Such func-
tion also requires the pointer to the sock structure that identifies the socket
which owns the original sent datagram as argument. This latter pointer to
the socket structure is stored in every sk buff. Clearly, the user space pro-
cess must have enabled error notifications through the IP RECVERR socket
option during the socket creation and should be listening for error messages
from the socket after sending datagrams. From the asynchronous nature of
this approach comes the importance of a shared identifier between kernel
and user space. For instance the user space process may receive TED no-
tifications referring to old sent datagrams and without identifiers it may be
hard to know which datagram the notification refers to. This also applies
to fragmentation information: even if the user space process identifies the
correct datagram, the latter may be composed of many fragments. How the
user space process uses such information is application dependent but take
for instance the case of the client proxy: it may retransmit a non delivered
datagram through the second NIC. We will see in the next section that at
the moment the client proxy does not perform datagram retransmission but
relies on TED notifications to decide when to start transmitting the follow-
ing datagrams to the second NIC too. After the efforts of Mengoli and Di
Bernardo, TED provided a good implementation of the ABPS “early-packet-
loss-detection” mechanism. Hower it did lack IPv6 fragmentation support
thus my first contribution in TED was implementing such functionality.

5.1.2 IPv6 Fragmentation Support

Before showing kernel modifications which enable support for IPv6 frag-
mentation, let us remember how IPv6 packet headers are structured. Essen-
tially IPv6 headers consists of two parts: a fixed header and a variable set
of optional headers called extension headers. The Next Header field in the
fixed header indicates the type of the first extension header. It is present in
all the extension headers indicating the type of the following header (if any).

5.1 TED 43

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version Traffic Class Flow Label
Payload Length Next Header Hop Limit

Source Address

Destination Address

Figure 5.1: IPv6 Fixed Header format

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Next Header Reserved Fragment Offset Res M
Identification

Figure 5.2: IPv6 Fragment Extension Header format. The M field refers to
the More Fragment flag and indicates if the current fragment is the last one
(0) or if there are successive fragments (1).

The Next Header field of the last extension header, or of the fixed header
if no extension header is present, specifies the type of the upper layer pro-
tocol header (e.g. UDP or TCP). In fact, extension headers form a chain
connecting the fixed header and the upper layer protocol headers through
the Next Header field.

Figure 5.1 shows the IPv6 fixed header format. Let us notice that the
IPv6 fixed header does not include Flags and Fragment Offset fields which
are instead used in the IPv4 header to specify fragment information. In IPv6
headers the Fragment Extension Header (fig. 5.2) includes such information.

44 5. Project development

Let us see now how I introduced support for IPv6 fragmentation in TED.
The ipv6 get udp info() function retrieves IPv6 fragment information of a
frame to be transmitted before being passed to the NIC driver. The modified
ipv6 get udp info() function scans the whole extension header chain until
it finds the fragment header:
* fragment_offset = * more_fragment = hdrs_len = error = 0;
nexthdr = ipv6_hdr (skb)->nexthdr ;
target = NEXTHDR_FRAGMENT ;
do {

struct ipv6_opt_hdr _hdr , *hp;
unsigned int hdrlen ;
found = (nexthdr == target);
if ((! ipv6_ext_hdr (nexthdr)) || nexthdr == NEXTHDR_NONE)

break;
hp = skb_header_pointer (skb , offset , sizeof (_hdr), &_hdr);
if (hp == NULL) {

error = -EBADMSG ;
break;

}
if (nexthdr == NEXTHDR_FRAGMENT)

hdrlen = 8;
else if (nexthdr == NEXTHDR_AUTH)

hdrlen = (hp -> hdrlen + 2) << 2;
else

hdrlen = ipv6_optlen (hp);
if (! found) {

nexthdr = hp -> nexthdr ;
offset += hdrlen ;

}
hdrs_len += hdrlen ;

} while (! found);

Actually this is just a sanity check because the fragment header should be
the first successor of the fixed header according to RFC 2460 specifications[45].
In any case, once the fragment header is found the frag off bitmask can
be accessed and the Fragment Offset and the More Fragment fields can be
retrieved:
/* fh is the pointer to the fragment header struct accessed through

* its offset from the beginning of the fixed header */
fh = skb_header_pointer (skb , offset , sizeof (_frag), &_frag);
if (fh) {

* fragment_offset = ntohs(fh -> frag_off) & ∼0x7;
* more_fragment = ((fh -> frag_off & htons(IP6_MF)) > 0);

}

5.1 TED 45

The last information we need to obtain is the Fragment Length. When
a transport layer packet is fragment in more IPv6 packets, only the fixed
header and the fragment extension header must be replicated in each frag-
ment. Thus the correct length of a fragment must not include the fixed
header length and the extension header length. The Payload field in the
fixed header already excludes the fixed header length thus the correct frag-
ment length is calculated subtracting the fragment extension header length
from the payload field value. Actually, in consistency with the previous san-
ity check, everything between the end of the fixed header and the end of the
fragment header is subtracted from the payload:
* fragment_data_length = ntohs(payload_iphdr -> payload_len) - hdrs_len ;

5.1.3 TED porting on android custom linux kernel 3.4

Once TED also supported IPv6 fragmentation I started with adapting
TED for the linux kernel version installed on the Nexus 5. Most of the
Android smartphones run with old versions of the linux kernel. In detail,
the Google team periodically forks the official kernel, often called vanilla[21],
and starts adding support for new device drivers and for the Android IPC
system called Binder[2]. It is important to notice that these modifications
the Google team implements are maintained in a separate repository and
are not pushed on the vanilla kernel. At the time I started this project the
Nexus 5 smartphone was running with Android modified linux kernel version
3.4. Thus I had to backport the TED module to such linux kernel version
and test it on the Nexus 5 device. After this operation an unexpected issue
was occurring which did not allow TED to work properly: essentially I found
that in version 3.4 the sk buff structure was being orphaned before being
passed down to the mac80211 module except for the case SO WIFI STATUS or
SO TIMESTAMP socket options were being set in socket creation. Orphaning a
sk buff structure means cutting its reference to the socket (sock structure)
which owns it. This prevented TED from correctly sending error message
to the user space process since the socket error queue was not accessible.

46 5. Project development

This behaviour changed at some point of the vanilla kernel around version
3.11 with a kernel patch that removed the sk buff orphaning. Interestingly,
this patch was also introduced in a later subversion of the vanilla kernel
3.4, precisely in the 3.4.35, but not in the Android custom kernel 3.4. This
shows how the Android custom linux kernel and the official vanilla linux
kernel follow two completely different development branches. However, after
having spotted the patch I applied it to the Android custom kernel and TED
started working correctly.

5.1.4 Refactoring

Different developers put their hands on TED often focusing on different
features without any implementation process guidelines. Obviously such ap-
proach is preferable when a quick proof of concept must be released in a
short time but it may increase the risk of messy code which would be hard
to maintain in future. Things become worse if the software to be maintained
depends on other highly dynamic piece of software which is continuously
changing over time such as the linux kernel. When I started looking at the
TED source code it required me some time before understanding all of its
parts and how it was interacting with the kernel. Moreover the TED core
included duplicated functions, code written following different coding styles;
also it lacked clear comments.

These characteristics reflected the development life of this software thus I
thought a refactoring phase was necessary for simplifying future development
of TED. First of all I adopted the linux kernel coding style[16] as best I could
for re-writing TED in order to enhance readability and coherence with the
rest of the kernel source code. Then I removed unreachable code and tried
merging duplicate functions and structures where possible. As a last step I
put all the modification TED introduced in a set of patches, one for each
supported version of the kernel. Patches allow developers to quickly spot
where modifications are. Moreover, patches are easily adaptable to different
software versions.

5.1 TED 47

Hoping future developers would benefit from my TED refactoring efforts,
I encourage them to maintain good code quality in future works.

5.1.5 Open issues

Currently TED presents two implementation bugs which must be resolved
in future developments:

1. Few datagrams which pass through the TED module seem to not be
transmitted at all. At some point after the sendmsg() invocation the
TED patched kernel fails the send operation. This issue has been spot-
ted during tests and such lost datagrams have not been counted as
“losses” in the experimental results since they occurred in an area with
good WiFi signal and far from the handover area.

2. TED sometimes notifies the user space process with false positives. For
instance just after a TED notification indicating a non acknowledged
frame a successive TED notification arrives, indicating its frame has
been acknowledged and no data-link-layer retransmission has occurred.
These frames are suspicious since they are not being delivered to the
relay. This issue seems to occur more frequently in consecutive tests
without rebooting the device.

Both issues are serious and their cause is hard to spot by analysing the
source code. A deep debug would be required to fix them. Also sniffing
radio traffic may be a good strategy in order to determine the actual status
of frames. Future developers could however consider to re-implement TED
features as an extension of SO WIFI STATUS option. Since the latter is already
well integrated in the kernel, such choice may resolve the aforementioned
issues.

48 5. Project development

5.2 Proxy Client

In the previous chapter we have seen how the ABPS proxy client logic
works. Let us now focus on its implementation details. I started developing
such proxy enhancing an old application which aimed to test TED capabili-
ties.

5.2.1 Network

Let us remember that the ABPS proxy client (called tedproxy) must
be able to forwards datagrams originated by the real-time user application
(RTP camera streamer) to the external relay through one chosen NIC or
through both NICs simultaneously. Also, tedproxy must be able to for-
ward datagrams received from the external relay back to the application. To
achieve these goals tedproxy creates one UDP socket for receiving/sending
datagrams from/to the application and two UDP sockets, one for each NIC,
for sending/receiving datagrams to/from the external relay. The latter two
sockets are directly bound on the NICs by enabling the SO BINDTODEVICE

socket option during their creation phase. Such option allows tedproxy to
avoid reconfiguring internal routing tables every time a NIC obtains a new
IP address after a network reconfiguration.

I chose to handle forwarding of datagrams according to an event based
policy. Essentially when a datagram is placed by the kernel in the input
queue of a socket, an “input” event arises in tedproxy which reads and
forwards such datagram. More precisely the forward operation is “lazy”,
meaning that the read datagram is first placed in an output queue and then
eventually forwarded after tedproxy finishes reading pending messages from
the input queue or it reaches a maximum number of reads. For instance, when
the RTP camera streamer sends a datagram (or more) to tedproxy, this one
awakes from its event-waiting state, reads the datagram content and pushes
it to one of its internal outgoing queues. That is, tedproxy keeps an internal
output queue for each socket. Thus in case the read datagram was sent from

5.2 Proxy Client 49

RTP camera
streamer

tedproxy

WiFi NIC

output queue

output queue

output queue

input queue

input queue
input queue

cellular
network NIC

Figure 5.3: tedproxy internal output queues and socket input queues.

the local application the outgoing queue is the one whose socket is bound to
the currently selected transmitting NIC. Clearly since tedproxy may decide
to transmit through both NICs simultaneously, datagrams may be pushed
to both output queues. Figure 5.3 outlines tedproxy internal output queues
and socket input queues. To clarify, socket input queues are handled by the
kernel while output queues are internally defined (in tedproxy) arrays of
messages used to implement lazy forwarding. Indeed sockets also have their
output queues which are handled by the kernel but for simplicity they are
not shown in figure 5.3.

For convenience let us call “TED-enabled socket” the socket whose related
datagrams are sent with TED notifications enabled and which is bound to
a mac80211 compliant WiFi NIC. As we have seen in the previous section
TED notifies the user space process, tedproxy in this case, by pushing error
messages in the error queue of the TED-enabled socket. Thus tedproxy also
awakes for error events related to the socket which is bound to the WiFi
NIC (if supporting mac80211). Thanks to error messages tedproxy becomes
aware of the delivery status and retransmission count of previously sent (over
WiFi) datagram fragments. According to such information it decides whether
or not to also start sending datagrams from the cellular NIC. It is important
to note that if a NIC loses connectivity (e.g. disassociates form the AP or is
turned off) tedproxy simply suppresses related error messages and no socket
recreation is required thanks to the SO BINDTODEVICE option and since only
UDP sockets are taken into account.

50 5. Project development

5.2.2 Handover parameters

The following code snippet is executed every time a TED notification is
received:

if (! ted_info -> status || (ted_info -> retry_count > conf. retry_th)) {
esock -> pkt_risk ++;

} else {
esock -> pkt_ok ++;

}
risk_ratio = ((float)esock -> pkt_risk)/conf.cwin;
if (risk_ratio > (float)conf. ratio_th) {

/* Enabling support device */
* ted_dev_only = 0;
esock -> pkt_risk = esock -> pkt_ok = 0;

}
if (esock -> pkt_risk + esock -> pkt_ok > conf.cwin) {

if (risk_ratio <= conf. tolerance && !(* ted_dev_only)) {
/* WiFi link is stable , deactivating support device */
* ted_dev_only = 1;
/* ... omitted code ... */

}
esock -> pkt_risk = esock -> pkt_ok = 0;

}

Essentially tedproxy maintains two counters for the TED-enabled socket:
pkt ok which counts the number of acknowledged frames and pkt risk

which counts the number of non delivered frames plus the number of frames
which have been retransmitted more than retry th times. This latter is
in fact a threshold over which a frame is considered at risk. Actually such
frame may be delivered but the high number of retransmissions indicates a
bad link and subsequent frames may be lost. For every received TED no-
tification tedproxy calculates the ratio of risky frames over all the frame
sent inside a certain window, called critical window or cwin. If such ratio,
called risk ratio, is higher than a predefined threshold, called ratio th,
than subsequent datagrams will be sent from the support (cellular network)
NIC too. Moreover when the cwin limit is reached tedproxy resets counters
and checks if risk ratio has decreased below a certain tolerance. If so
tedproxy deactivates the support NIC considering the WiFi link as stable.
This approach reflects the “WiFi first” policy of ABPS.

5.3 Relay and CN tools 51

5.2.3 Basis for datagram retransmission

In addition to delivery status and retransmissions information, the TED-
originated datagram id and information about fragmentation are also present
in TED notifications. These values are required to understand which data-
gram and which fragment the notification refers to in order to perform data-
gram retransmission on the support NIC. At the moment datagram retrans-
mission is not yet implemented in tedproxy but I already worked developing
some of the core features it requires: when a datagram is sent through the
TED-enabled socket, tedproxy stores it into a hashtable1 indexing it by its
TED originated datagram id. Later, when tedproxy receives a TED notifi-
cation, it retrieves the original datagram from its internal hastable. Moreover
it can identify which fragment of the retreived datagram the TED notifica-
tion refers to. This might be useful to determine a criterion for datagram
retransmission. For instance if a sent datagram is composed of many frag-
ments and just few of them encountered retransmissions, datagram retrans-
mission through the support NIC may be unnecessary. On the other hand if
many fragments of a big datagram are considered at risk (due to high retry
count or not being delivered to the AP), datagram retransmission through
the support NIC may be convenient. More investigations and analysis are
encouraged for future works.

5.3 Relay and CN tools

In order to experiment with MN behaviour in a realistic environment I
developed a simple relay application written in python and software tools to
let the CN work with the relay and the ffmpeg application.

In the first place, the relay application essentially advertises two UDP
ports which both the MN and the CN can send datagrams to. Once both end

1I used a hashtable implementation written by Davide Berardi[37]. Thanks to its
macro-based and compact design I could easily include it in tedproxy without any external
dependency.

52 5. Project development

nodes sent their first datagram to the relay, the latter can forward subsequent
datagrams to both directions.

The following simplified code snippet outlines the simple logic of the
relay:
while True:

ready_socks ,_,_ = select . select ([sl , sr], [], [])
for sock in ready_socks :

data , addr = sock. recvfrom (MAX_BUFF_SIZE)
if sock. fileno () == sl. fileno ():

Received packet from left

if leftSources is None:
leftSources = []

if addr not in leftSources :
leftSources . append (addr);

if rightSource is not None:
if sn > lastSN :

sr. sendto (data , rightSource)
elif sock. fileno () == sr. fileno ():

rightSource = addr;
if leftSources is not None:

for addr in leftSources :
sl. sendto (data , addr)

Essentially the relay waits for input events from two sockets, a “left
socket” sl and a “right socket” sr. The first one is related to the MN’s
incoming datagrams while the second one is related to CN’s incoming data-
grams. When the first datagram is received by the right socket (CN side)
the relay marks the datagram’s source address as rightSource. On the
other hand since the MN is likely equipped with multiple NICs and can de-
liver datagrams with different source IP addresses, when a datagram arrives
from the left socket the relay checks if its source IP address has already
been registered and if it’s not it adds it to the leftSources array. When
both rightSource and leftSources have been initialized, meaning both
end nodes have sent their first message, the relay can start forwarding from
left to right and from right to left. In the latter case the relay forwards
datagrams to all the registered MN’s source IP addresses. At the moment
the relay does not implement any aging policy for such IP addresses but a

5.3 Relay and CN tools 53

simple solution may consists in maintaining only one MN source IP address
per MN NIC.

Another thing to notice is that the relay also implements a simple policy to
discard duplicate datagrams coming from the MN. To achieve these features
the relay reads the RTP serial number sn from the payload of all incoming
datagrams from the MN. Thus it forwards a datagram from left to right
only if its sn is more recent than the most recent sn obtained until such
reception. Such policy is obviously naive and fails when datagrams are not
received in a sorted fashion. However it resulted sufficiently reliable for initial
experimentation and analysis. A simple solution for future works would be to
maintain a limited buffer of forwarded datagrams’ serial numbers and forward
an incoming datagram only if its sn is not still contained in the buffer.

The CN tools I implemented are quite simple. One of the them, called
cnproxy, is essentially a local proxy which begins with sending an initializa-
tion datagram to the external relay and then starts listening for relay response
datagrams. It should be clear now that those response datagrams the relay
sends to the CN are originated by the MN. cnproxy then forwards all the
relay response datagrams to a local running instance of ffmpeg which, as
already mentioned before, is able to decode RTP messages, re-encode them
into video frames and create an output video file. The second tool I im-
plemented simply acts as a local HTTP server which provides video format
specifications to ffmpeg through an SDP formatted file. This is required
since no SIP handshake is yet performed between end nodes.

Trough the external relay and the CN tools both nodes are able to bypass
their NATs and firewalls and initiate an RTP communication. The imple-
mented system supports a bidirectional RTP communication at the moment
but the CN only provides a receiving entity. We will see in chapter 6.2 how
extensions of the current implemented architecture would be easy to develop
in future works.

54 5. Project development

Chapter 6

Experimental tests

In this chapter I will show results obtained from tests conducted in a
typical scenario in which an MN first leaves the coverage area of the current
selected WiFi AP, then uses the cellular network for a certain amount of
time and eventually connects back to the previously accessed WiFi AP. In
particular the MN was a LG Nexus 5 device running Android 6 Marshmallow
with a TED-enabled kernel and the ABPS client proxy. An RTP camera
streamer was used as a simple real-time application. The captured video of
the smartphone camera was being sent to an intermediate relay server and
lastly forwarded to a remote CN.

The purpose of these tests is to show how the ABPS components at the
MN can improve vertical handover process. In the following sections we
will see some technical aspects of the experimental setup and an analysis of
obtained experimental results. At the end, considerations about future works
will be addressed.

55

56 6. Experimental tests

MN smartphone

Bologna, IT

RTP camera
streamer

client proxy

UDP 5006

wlan1

rmnet0
kernel

TED

info
10.10.10.10

10.44.176.214

130.136.152.154

NAT+FW

Proxy/Relay

Bologna, IT

130.136.4.138

UDP 5001

CN

California, US

192.168.23.127

NAT+FW

UDP 5002

CN proxy

127.0.0.1

151.36.20.123

eth0

127.0.0.1
UDP 5006

ffmpeg
RTP-receiver
video-encoder

192.198.95.71

Figure 6.1: Experimental setup.

6.1 Experimental Setup

Figure 6.1 outlines the setup in which I conducted the experiments. I
used a LG Nexus 5 smartphone as a multi-homed MN which could connect to
both WiFi and cellular networks (UMTS, HSPA, LTE, etc.). As mentioned
before, I modified the MN Android system substituting the factory kernel
with a TED-patched kernel in order to enable support for the “early-packet-
loss-detection” mechanism. Let us remember that the inner WiFi module
is of the type FullMAC and could not be used with TED since it does not
support the mac80211 subsystem (sec. 5.1.5), thus an external USB WiFi
dongle was used instead (4.3). The MN also employed the ABPS client proxy,
called tedproxy, which dealt with traffic redirection to the NICs. The real-
time application I used was simply streaming video frames captured from
the camera to tedproxy which bound an UDP socket to a custom port
on localhost. In fact, the camera application was streaming UDP datagrams

6.1 Experimental Setup 57

containing data frames encoded with the RTP format and it essentially acted
as the sending part of a real-time VoIP or videoconferencing application.

On the opposite side, the CN was a remote Linux Virtual Private Server
(VPS) running two software components: a local proxy which was simply
forwarding incoming RTP traffic to a localhost UDP port, and ffmpeg which
is a video converter capable of decoding an RTP data stream, re-encoding the
stream in video frames and storing them in a video output file. In practice
ffmpeg acted as the receiving part of a real-time VoIP or videoconferencing
application reading UDP datagrams on a local UDP port which the CN local
proxy was forwarding traffic to.

Both proxies of the two end nodes had to contact the intermediate remote
relay first in order to bypass firewalls. As explained before, the intermediate
relay first exposes two UDP ports, one per end node, then the MN and
the CN send an initialization packet to the relay to let their OSes open the
corresponding ephemeral ports to which the relay can then respond to. Also
both end nodes are behind NATs and could not reach each other through
their NIC IP addresses without relying on a public intermediate proxy or
forwarding ports at their borders routers. Thus the remote relay server lets
end nodes bypass firewalls and NATs and it relays RTP traffic between them.
Let us also remember that each time the MN transmits from a different NIC
and each time a network reconfiguration occurs on the MN, the relay registers
the new source IP address and port in order to forward traffic from the CN
back to all the MN’s NICs.

Tests were performed physically at the Department of Computer Science
in Bologna (Italy) where both the MN and the intermediate relay were lo-
cated while the CN was deployed in California (US). Network RTTs were:
∼60ms between MN cellular network NIC (with LTE technology) and the
relay, ∼20ms between MN WiFi NIC (with optimal coverage range) and the
relay and ∼125ms between the relay and the CN. The camera application
was transmitting at a variable data-rate of ∼400Kbps.

With these tests I wanted to investigate the behaviour of the MN’s soft-

58 6. Experimental tests

ware parts which aim to enhance the vertical handover process. In particular
I focused on client proxy responsiveness and TED reliability in a realistic
mobility scenario. It is clear that the setup does not take into account trans-
missions originated by the CN directed to the MN. It actually considers uni-
directional communications only. Providing bidirectional communications to
the environment however would be a simple enhancement for future works.

Appendix A contains detailed documentation explaining the steps re-
quired to retrieve, build, install and configure all the software parts necessary
for deploying the experimental setup and reproducing the experiments. In
the next section we will examine some experimental results.

6.2 Experimental Results

I performed 20 tests, 10 while enabling tedproxy and the TED module on
the MN and 10 without involving TED and tedproxy at all. Each test lasted
around 2 minutes during which I was walking from inside the CS department
laboratory, where the WiFi AP was located, to the outdoor environment out
of WiFi AP coverage and then moving back to the starting point close to
the WiFi AP. During these experiments the MN was in the coverage range of
LTE technology cells with poor signal strength inside the laboratory but bet-
ter signal strength once outdoors. In all the tests both NICs were activated
and the OS had just to reconfigure routing tables when associating/disasso-
ciating to/from the WiFi AP. In half of the experiments, 5 over 10, that I
performed without involving TED and tedproxy the camera streamer ap-
plication was drastically interrupting the RTP stream during the handover
process. Figure 6.2 shows the resulting camera streamer error message. Also
the camera streamer application was restarting the RTP stream only after a
30 seconds timeout or after the user pressed the “Try again” button. With
the new stream, the RTP packet counter was also being reset to 0. Such
error message is likely due to the fact that the application tried to send a
datagram before the underlying system recognized the WiFi link disruption

6.2 Experimental Results 59

Figure 6.2: Camera streamer application error.

and reconfigured the routing tables in order to let packets be transmitted
through the cellular NIC. This did not happen in any of the tests in which
TED and tedproxy were not used since the camera application was always
transmitting to tedproxy thus always having a stable route to it. Moreover,
since tedproxy relied on sockets created with the SO BINDTODEVICE it could
always choose to transmit from both NICs, however the routing tables were
configured. Indeed a more aggressive application could suppress such error
message and directly retry sending without waiting any timeout. In any case,
waiting for a timeout before restarting the session may be reasonable for user
applications since they are not aware of the MN’s connection status. Also
remember that ABPS aims to work with any applications without requiring
any modifications.

In the 5 remaining tests conducted without involving TED and tedproxy

that did not fail with any error message the camera application can be con-
sidered as an application with a more aggressive approach that does not wait
any timeout before re-starting the RTP-stream. We are now going to see
that in any case tedproxy and TED caused the vertical handover process to
be more seamless.

60 6. Experimental tests

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Packets

WiFi received
LTE received
WiFi relayed
LTE relayed
losses (276)

Figure 6.3: Results of one experiment in which TED and tedproxy were
disabled.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
E

D
 t

x
ri

sk
 r

at
io

Packets

WiFi received (with tx risk ratio)
LTE received
WiFi relayed
LTE relayed

losses (22)

Figure 6.4: Results of one experiment in which TED and tedproxy were
enabled.

6.2 Experimental Results 61

Figure 6.3 and 6.4 show plotted results of two experiments: TED and
tedproxy were disabled in the first and the camera application did not fail
during vertical handover, in the second TED and tedproxy were enabled
and used. Plotted data represent RTP packets received by the relay. Violet
and green points in particular represent packets received by the relay that
were sent from the MN’s WiFi NIC and from the MN’s cellular network NIC
respectively, light blue and yellow points represent packets received by the
relay and forwarded to the CN that were sent from the MN’s WiFi NIC and
from the MN’s cellular network NIC respectively. Let us remember that when
the relay receives two duplicate packets it only forwards the one which arrives
first, hence light blue and yellow points also indicate which NIC prevailed.
The x-axis indicates the RTP packet identifiers while the y-axis indicates the
risk ratio value calculated by tedproxy. In fact the y-axis is relevant only
for violet points of figure 6.4. Lastly red points indicate packets not received
at all by the relay (losses). Actually in TED enabled experiments a small
amount of losses caused by an unresolved bug, mentioned in section 5.1.5,
have not been considered since they were not sent at all by the WiFi NIC
and because they occurred when both signal strength and TED notifications
indicated good link quality. Indeed, these results do not claim to be accurate
and do not provide reliable metrics but want to offer a first order analysis
of the ABPS components’ behaviour in a realistic scenario. In figure 6.4
we can observe how the MN was starting to transmit from both NICs when
risk ratio was reaching the 0.1 threshold (risk th). Also, cwin was set
to 30, retry th to 4 and tolerance to 0.07. I refer to section 5.2.2 for an
explanation of such parameters. Briefly this means that if the number of risky
packets was reaching 10 percent of all the sent packets then tedproxy was
starting to use the cellular network NIC too. Every 30 packets sent, tedproxy

was resetting packet counters and if risk ratio was decreasing back below
the tolerance value then tedproxy was considering the WiFi link as stable
and thus disabling the cellular network NIC. In contrast figure 6.3 shows how,
without relying on tedproxy and TED, the MN starts transmitting from the

62 6. Experimental tests

cellular network NIC only after the WiFi signal completely deteriorates and
the station disassociates from its AP. This leads to higher data loss and
longer unavailability periods.

For completeness figure 6.5 shows results of one of the experiments in
which TED and tedproxy were disabled and the application was restarting
the RTP stream after displaying an error message and a “retry” button. In
these tests in particular I pressed the “retry” button as soon as possible.
In such figure the x-axis indicates elapsed seconds from the beginning of the
experiment instead of RTP packet ids. This modification was necessary since
the camera application was resetting the RTP packet counter generating a
fresh session. While previous figures showed a comparison of packet losses,
figure 6.5 wants to give an idea of the long unavailability period, ∼13 seconds
between the WiFi disassociation and the communication recovery. I refer to
unavailability period as the longest time passed between the reception of two
consecutive datagrams at the relay in one experiment.

0 20 40 60 80 100

Seconds

WiFi received
LTE received
WiFi relayed
LTE relayed

Unavailability
 ~13s

Application

sendto failed:
"Network is
unreachable"

Figure 6.5: Results of one experiment in which TED and tedproxy were
disabled and the application camera raised an error.

6.2 Experimental Results 63

tedproxy
& TED

no tedproxy
no TED

no tedproxy no TED
with error app

average
packet loss 36 364 450estimate

average
unavailability
time

458 ms 7219 ms 10393 ms

Table 6.1: Results of conducted experiments in average.

Let us now consider some results in average which have been calculated
considering the handover period only, excluding possibly corrupted and non
handover related data caused by TED issues documented in section 5.1.5. Ex-
periments involving TED and tedproxy resulted in an average packet loss
of 36 packets and an average unavailability period of 458ms. Moreover, the
experiments that did not involve TED and tedproxy and in which the appli-
cation did not raise any error resulted in an average packet loss of 364 packets
and an average unavailability period of 7210ms. Lastly the experiments that
did not involve TED and tedproxy and in which the application failed with
the previously mentioned error resulted in an average unavailability period
of 10393ms. In these last experiments the correct number of packet losses
was not calculated because the application reset the counter of RTP packets
after failure. However a simple estimate considering the average bitrate and
the average unavailability period resulted in around 400 − 450 packet losses.
Important to note is that these estimated losses refer only to the unavailabil-
ity period while in the other experiments those losses concerned the whole
handover period. Table 6.1 sums up these values.

Even if still inaccurate these results highlight the potentiality of the
ABPS fast vertical handover method encouraging further developments and
enhancements. Also it is worth noticing that when the MN moved again
closer to the WiFi AP, its station did not re-associate to the AP until signal
strength reached a certain threshold. This late association policy of Android

64 6. Experimental tests

OS helps the handover process in this particular scenario where a good LTE
coverage was provided. Further investigations may point out that with poor
cellular network signal strength it may be convenient to associate earlier to
the WiFi AP with lower signal threshold and start transmitting from both
NICs sooner.

Future works and conclusions

Future works

As already pointed out in this document, ABPS software is in early de-
velopment stage. Despite the promising idea behind the project more effort
must be put in its implementation. Some of the most important features
future developers should focus on are:

• Integrate TED features with the SO WIFI STATUS socket option. TED
would benefit from a clearer implementation and sockets used for send-
ing TED notifications would have a specific option set and would be
treated differently by the kernel. Moreover, maintaining TED between
different kernel versions would be easier and the TED patch size would
be considerably reduced as the SO WIFI STATUS option already exists
in the mainline kernel. Also features enabled by the SO WIFI STATUS

socket option would benefit from fragmentation support and retrans-
mission information advertisement which might attract the interest of
other developers, giving TED features more chances to be accepted in
the mainline linux kernel.

• In section 5.1.5 we have seen some currently unresolved issues in TED.
Indeed resolving such issues would be a high priority task for future
works. However, adapting TED to the SO WIFI STATUS socket option
would require significant modification to TED’s current implementation
and that may resolve those issues by itself.

65

66 FUTURE WORKS AND CONCLUSIONS

• More handover criteria: an interesting enhancement could consists in
adding more information in TED notifications, such as the current bi-
trate. For instance a MN that is moving far from a WiFi AP may
decide to start transmitting earlier from the cellular network NIC too
after detecting the advertised bitrate over WiFi has decreased, even if
frames are still being acknowledged. Also tedproxy might introduce
more handover criteria such as RSSI, bandwidth, RTT, jitter, etc. on
both NICs’ communication channels. Obviously such information can
not be retrieved with a “per-packet” granularity because it would re-
quire some time to be calculated. It may be however worth considering
to improve the handover decision.

• Since TED notifications contain information about fragmentation it
would be quite easy to add support for datagram retransmission in
tedproxy. As already mentioned in section 5.2.3, tedproxy was im-
plemented with this feature in mind. In fact a set of functions and
the environment to achieve datagram retransmission already exist in
tedproxy core.

• An implementation of the ABPS Oracle described in section 2.2.3 ex-
ists for Android 4.4 (KitKat). Integrating it with other ABPS software
components would be essential to offer more credibility to the whole
architecture. At the time of writing in fact the device which tedproxy

runs on must have both NICs always active to let parallel NICs trans-
mission work properly. This clearly lead to a faster battery drain.
The ABPS Oracle would take care of activating and deactivating NICs
only when necessary according to an internal database of WiFi APs
and cellular network cells mapping. Integration should be quite simple
and would require porting the existing Oracle implementation to the
current and next versions of Android.

• Future developments should provide signalling capabilities to ABPS
intermediate proxies in order to support SIP or Jingle compliant ap-

FUTURE WORKS AND CONCLUSIONS 67

plications. Also in order to support those closed source applications
which rely on proprietary signalling protocols and do not allow explicit
definition of proxies further investigations may focus on implementing
ABPS services with a hidden proxy based architecture. In this way ap-
plications would not be aware of ABPS intermediate proxies working
to enhance vertical handover process.

• For future experiments extending the test scenario would be a strong
requirement. At the moment the experimental environment only sup-
ports tests employing unidirectional RTP streams. Testing bidirec-
tional RTP streams would be easily achievable by adding an RTP
receiver on the MN and a RTP streamer on the CN. Then the suc-
cessive step would be experimenting real-time communication applica-
tions. Jitsi[11] may be a good candidate application since it supports
explicit proxy definition and both SIP and Jingle signalling.

• At the moment the most hard to solve limitation for ABPS approach
in smartphone devices is that their integrated WiFi chips are of the
FullMAC type. As we have seen in section 4.2 this prevents TED to
access data-link-layer information held inside the WiFi chip firmware.
Future investigations should focus on discovering the presence of mo-
bile devices with SoftMAC chips or FullMAC chips with open source
firmwares. Since this direction seems quite discouraging it may be
worth to try contributing to the NexMon project[81] or similar works
in order to inject custom TED code into closed binary firmware. Also
the spreading of this kind of works may convince chip vendors to adopt
a more open policy about their firmwares.

68 FUTURE WORKS AND CONCLUSIONS

Conclusions
In this document we have seen the main aspects concerning real-time

communications in the context of mobility. Despite facing it in our daily life,
there is still a long way to go before we can say mobile communication fully
meets our expectations of reliability and high service quality. In fact, mobile
users still have to deal with many issues while on the move and using VoIP
calls, videoconference applications, video-broadcasting services, etc. at the
same time. In particular I focused on some issues which arise during the
vertical handover process such as session discontinuity, host unreachability
and communication unavailability.

In the first half of this document we have studied different solutions sev-
eral researchers have put forward. However, only a few of them are deployable
in today’s network infrastructures which includes NATs and firewalls. Thus
I strove to keep my efforts feasible on currently deployed infrastructure. I
opted to contribute to the ABPS project, an architecture for enhancing host
mobility and vertical handover which is also capable of dealing with NATs
and firewalls. We have seen how the software I developed fulfills initial ex-
pectations, enhancing vertical handover process in a realistic scenario. In
fact results shown in the previous chapter are promising: during the han-
dover process, no communication interruption is perceived by applications
while employing ABPS components with evident indications of performance
improvements such as considerable packet loss reduction and better service
availability.

It is clear the current implementation of this project is quite immature
and results are still inaccurate. However my work confirms how the ABPS
architecture is still innovative and promising and it encourages future devel-
opment and investigation.

Appendix A

Testers and developers
documentation

The following sections describe the steps and actions required for building
all the ABPS software parts I have implemented. They form essentially an
early “documentation for testers and developers” whose intent is to provide
a guideline for deploying the same test scenarios I used in my analysis phase
and for setting up an implementation starting point for future developers.

At the time of writing this documentation is maintained on my personal
ABPS github repository: https://github.com/matteomartelli/ABPS. Often in
the next sections it will be used the terms “this repository” or the “abps repo”
in reference of such repository. Thus the first required step is to clone the
repository since it contains all the software tools which this documentation
refers to:
git clone https :// github .com/ matteomartelli /ABPS.git

A.1 TED kernel and proxy application

This section explains how to to build a custom kernel with the support for
TED (Transmission Error Detector) and how to use it with the TED proxy
application. Different build methods are needed whether you want to build

69

70 Testers and developers documentation

the TED kernel for a GNU Linux distribution or Android distribution, since
some additional steps are required for the latter.

A.1.1 Build Linux kernel

Get kernel sources

Clone the linux kernel repository in your local machine.
git clone git :// git. kernel .org/pub/scm/linux/ kernel /git/ torvalds /linux

.git linuxrepo

Then move to the version branch you want to build. TED patches are
currently available for versions 4.1.0 and 3.4.0 but you can always move to a
different version branch and manually adjust the TED patch. Let’s assume
you chose the 4.1.0 version.
cd linuxrepo
git checkout v4.1

In order to be sure your git head is at the desired version, just check the
first 3 lines of the Makefile located in the repository root directory.

Patch the kernel

If you chose the version 3.4.0 of the kernel you should first apply an official
patch needed by TED to work properly. This patch was introduced in later
versions and allows TED to read some information about its socket at lower
levels of the network stack.

From the root directory of the linux kernel repository:
patch -p1 < abps_repo / ted_proxy / kernel_patches /net -remove -

skb_orphan_try .3.4.5. patch

Then apply the TED patch. For the 4.1.0 version only this step is needed
to patch the kernel sources.
patch -p1 < abps_repo / ted_proxy / kernel_patches / ted_linux_ (

your_chosen_version).patch

Testers and developers documentation 71

Build kernel

Several well documented guides explaining how to build a custom kernel
exists in the web[13][12].

As guide [13] explains, make localmodconf is recommended for faster
compilation but be sure that all the modules you will need later are currently
loaded. At the end, just run to start the build:
make -jN

(where N is the number of parallel compilation processes you want to
spawn).

After your custom kernel is built just run with root privileges:
make modules_install
make install

or refer to your linux distribution kernel install method.

A.1.2 Android

The following steps are known to be working, at the time of writing, for
the LG Nexus 5 with Android 6 Marshmallow.

Prerequisites

You will need some Android tools such as adb and fastboot. In de-
bian like distributions and Arch linux distributions they should be available
through the android-tools package. Also you need the “Android NDK
toolset”. This toolset will be used to compile the tedproxy application and
can be downloaded from the Android developers reference website[3].

Enable root privileges

Since TED requires a device which supports mac80211, the inner WiFi
module (Broadcom BCM4329) of the LG Nexus 5 can’t be used. In fact the
BCM4329 module works as a Full MAC device with a proprietary and closed

72 Testers and developers documentation

source firmware, without any support for the mac80211 subsystem. Anyway
the TED kernel and its proxy application can be tested using an external
USB WiFi dongle which supports the mac80211 driver interface. To do so,
some Android system configuration files must be edited with root privileges.
Also, the tedproxy application binds the sockets directly to the network
interfaces through the socket option SO BINDTODEVICE which requires root
privileges. Root tools for Android, essentially allow users to execute the su

binary file which is missing by default for security purposes.

The tool I used is Superuser[18]. It is open source and offers both the boot
image that includes the su binary file and the permissions control application.
The installation procedure for the Nexus 5 is quite simple since the superuser
community already provides pre-built boot images at https://superuser.

phh.me.

Once you have obtained the boot image for your device, first you have to
unlock the bootloader, then simply flash the boot image with the fastboot
tool (it may damage your device):

fastboot oem unlock
fastboot boot nameofrecovery .img

You can also use a custom recovery such as TWRP[19] which allows you to
backup the original boot image first.

If a pre-built image for your device is not available you should execute
the content of the superuser.zip installation file in a custom recovery such as
TWRP since it can run scripts with root privileges. In brief, if you “flash”
the zip file in the TWRP recovery, it extract the zip file and executes the
extracted scripts. These scripts essentially copy the current boot partition
in a boot image file, extract the boot image, extract the inner ramdisk image
and copy the su binary file into the extracted ramdisk. Lastly a modified
boot image will be re-created and actually flashed to the device.

https://superuser.phh.me
https://superuser.phh.me

Testers and developers documentation 73

Get tools and kernel sources

First take a look at the official android documentation[8] in order to
understand which kernel version you need depending on your device and get
the right tools. These are the steps needed to get the right tools and kernel
version for a LG Nexus 5 device.

Get the pre-built toolchain (compiler, liker, etc..), move it wherever you
like and export its path:
git clone https :// android . googlesource .com/ platform / prebuilts /gcc/

linux -x86/arm/arm -eabi -4.6
sudo mv arm -eabi -4.6 /opt/
export PATH =/ opt/arm -eabi -4.6/ bin :\ $PATH

You can also copy the last line inside your .bashrc.
Get the kernel sources:

git clone https :// android . googlesource .com/ kernel /msm
git checkout android -msm -hammerhead -3.4 - marshmallow -mr2

A.1.3 Patch the kernel

From the root directory of the android kernel repository:
patch -p1 < abps_repo / ted_proxy / kernel_patches /net -remove -

skb_orphan_try .3.4.5. patch
patch -p1 < abps_repo / ted_proxy / kernel_patches / ted_linux_3 .4. patch

Configure and build

In order to test TED with the Nexus 5 you should add in your custom
kernel the support for a USB Wi-Fi dongle that is mac80211 capable. This
repo provide a custom configuration which add the support for the Atheros
ath9k htc and Ralink rt2800. You can of course make your own configura-
tion to add the support for different devices.

First of all let’s prepare the environment. From the root directory of the
android kernel repository:

74 Testers and developers documentation

export ARCH=arm
export SUBARCH =arm
export CROSS_COMPILE =arm -eabi -

Then let’s make the configuration. If you are fine with my custom configu-
ration:
cp abps_repo / tedproxy / android_build / hammerhead_defconfig_ted . config

Otherwise if you want to make your own configuration:
cp arch/arm/ configs / hammerhead_deconfig . config
make menuconfig

Then start the build:
make -jN

(where N is the number of parallel compilation processes you want to
spawn).

Common issues

Compiling old kernels from a new linux distribution may require some
workaround.

If you encounter an error on scripts/gcc-wrapper.py, it may be caused
by the fact that your default python binary links to python3 while that script
wants python2.

A simple workaround consists in replacing the first line of scripts/gcc-wrapper.py

with:
#! /usr/bin/env python2

Another error that you may encounter is
Can ’t use ’defined (@array) (Maybe you should just omit the defined ()?)

at kernel / timeconst .pl

To avoid this just remove all the defined() invocation, without removing
the inner array variables, from kernel/timeconst.pl as the comment in the
error suggests.

Once the build is finished, the kernel image is located at arch/arm/boot/zImage-dtb.

Testers and developers documentation 75

Enable the USB Wi-Fi Dongle

As many Android devices, the Nexus 5 boot process is handled by an init
script contained in the ramdisk filesystem image, which is itself contained in
the boot image together with the kernel image.

The init script is the one who starts the wpa supplicant daemon with
the default interface wlan0. I had to modify the init script inside the ramdisk
image in order to start wpa supplicant with the external usb dongle, which
is wlan1. To do so, you’d need to extract the original boot image from
your device, extract the ramdisk image, modify the init.hammerhead.rc

file substituting all the wlan0 with wlan1.
This repository already provides a modified ramdisk image, anyway these

are the steps you’d need to follow in order to retrieve your original boot image
from the Nexus 5:

Get the original boot.img

#use the following commands to find the boot partition
ls -l /dev/block/ platform /
#now we know the device platform is msm_sdcc .1
ls -l /dev/block/ platform / msm_sdcc .1/by -name
#now we know the boot partition is mmcblk0p19
#by [boot -> /dev/block/ mmcblk0p19]
#use the following command to retrieve the boot.img
su
cat /dev/block/ mmcblk0p19 > \

/ sdcard /boot -from -android - device .img
chmod 0666 / sdcard /boot -from -android - device .img

You can then copy the image to your machine with adb pull or the MTP
protocol.

Extract the original boot.img Once you have your original boot image
in your hand, you can proceed with the extraction.

I recommend to read this guide[7] and use this tool[6] for the boot im-
age extraction. The latter is also mirrored in this repository also under
abps repo/tedproxy/android build/boot/boot-extract.

76 Testers and developers documentation

./boot - extract boot.img

Store the output of the extraction, since it will be necessary later for the
boot image re-creation. In my case this is the output:
Boot header

flash page size 2048
kernel size 0 x86e968
kernel load addr 0x8000
ramdisk size 0 x12dab8
ramdisk load addr 0 x2900000
second size 0x0
second load addr 0 xf00000
tags addr 0 x2700000
product name ’’
kernel cmdline ’console =ttyHSL0 ,115200 , n8 androidboot .

hardware = hammerhead user_debug =31 maxcpus =2 msm_watchdog_v2 .
enable =1’

zImage extracted
ramdisk offset 8845312 (0 x86f800)
ramdisk .cpio.gz extracted

Extract and edit the original ramdisk Once you have your ramdisk
image ramdisk.cpio.gz you can extract it with:
mkdir ramdisk_dir
cd ramdisk_dir
zcat ../ ramdisk .cpio.gz | cpio -i

Finally you can edit the init.hammerhead.rc file substituting all the
wlan0 with wlan1.

Create the custom ramdisk After that, re-create the ramdisk filesystem
image with the mkbootfs tool:
cd ..
abps_repo / tedproxy / android_build /boot/ mkbootfs / mkbootfs ramdisk_dir >

ramdisk .ted.cpio
gzip ramdisk .ted.cpio

The result is a modified ramdisk image: ramdisk.ted.cpio.gz. If this
fails to boot you can try with the pre-made custom ramdisk available at
path to abps repo/tedproxy/android build/boot/ramdisk.ted.cpio.gz.

Testers and developers documentation 77

Create the custom boot.img Now re-create the boot image from both
the custom kernel and the custom ramdisk image:
abps_repo / tedproxy / android_build /boot/ mkbootimg / mkbootimg --base 0 --

pagesize 2048 --kernel_offset 0 x00008000 \
--ramdisk_offset 0 x02900000 --second_offset 0 x00f00000 --tags_offset 0

x02700000 \
--cmdline ’console =ttyHSL0 ,115200 , n8 androidboot . hardware = hammerhead

user_debug =31 maxcpus =2 msm_watchdog_v2 . enable =1’ \
--kernel path_to_kernel /zImage -dtb --ramdisk path_to_ramdisk / ramdisk .

ted.cpio.gz -o boot.img

Note how the offsets correspond to the addresses printed out by the boot
image extract script.

Enable wlan1 in system files Editing the init.rc file is not enough, as
some other Android services still refer to the wlan0 device.

You need also to substitute wlan0 with wlan1 in /system/build.prop

and /system/etc/dhcpcd/dhcpcd.conf. These files are persistent in the
Android system partition thus you just need to edit them once.

Also you need to copy the firmware of your WiFi dongle in /system/etc/-
firmware. You can copy directly from your working machine or from the
official repository[15].

At the end you can boot the custom boot.img with fastboot:
adb reboot bootloader
sudo fastboot boot boot.img

Or if you are sure of what you are doing you can flash it:
sudo fastboot flash boot boot.img

Once the Nexus rebooted it can be useful to activate the remote adb
access:
adb tcpip 5555

Then you can plug the external Wi-Fi dongle with an OTG cable and
control the device with remote adb:
adb connect nexus_ip_address :5555

78 Testers and developers documentation

Open issue The sleep mode of the external Wi-Fi dongle is not handled
properly. In fact turning off the LCD screen cause the Wi-Fi device to de-
associate from the network. As a simple workaround you can use an Android
App to force your screen active but consider that this approach will lead your
device to rapidly exhaust its battery power.

A.2 Build and run tedproxy

A.2.1 Build

Before you can build the tedproxy application you must ensure you are
running a TED custom kernel. Then some header files called “user api (or
uapi)” must be modified. These headers simply contain declarations of kernel
constants and macros that also the user applications may need to recall. If
you want to build the tedproxy application for linux distributions:
su
cp /usr/ include /linux/ errqueue .h \

/usr/ include /linux/ errqueue .h.bkp
cp /usr/ include /linux/ socket .h \

/usr/ include /linux/ socket .h.bkp
cp abps_repo / tedproxy /uapi/ errqueue .h \

/usr/ include /linux/ errqueue .h
cp abps_repo / tedproxy /uapi/ socket .h \

/usr/ include /linux/ socket .h

Otherwise if you want to build the tedproxy application for Android:
cd path_to_ndk / platforms /android -21/ arch -arm/usr/ include /linux
cp errqueue .h errqueue .h.bkp ; cp socket .h socket .h.bkp
cp abps_repo / tedproxy /uapi/ errqueue .h errqueue .h
cp abps_repo / tedproxy /uapi/ socket .h socket .h

At the end you just need to run the build.sh script with linux or
android as argument for building the respective versions of teproxy. The
build.sh is at path to abps repo/tedproxy/tedproxy.

The Android version binary file will be placed at libs/jni/tedproxy

and you can copy it on your device with adb push.

Testers and developers documentation 79

A.2.2 Run

tedproxy is intended to work as a local proxy which listens UDP traffic
from a local bound socket and forwards all the input packets to the remote
host through one or multiple network interfaces binding a socket for each
one. With the ‘-i‘ option you can specify the name of the chosen network
interfaces. If one of them is a WiFi mac80211 capable device, you can put the
‘t:‘ prefix before the device name and tproxy will enable TED notification for
that device. In this case, packets will be forwarded to the “TED interface”
only as long as the number of packets received at the AP is sufficiently high.
Whenever this condition is no longer satisfied, tedproxy also enables the
other network interfaces for forwarding traffic.

For instance tedproxy can listen to UDP local port 5006 and forward ev-
erything to host 130.136.4.138 at UDP port 5001 through the wlan1 mac80211
device and the rmnet0 device which is usually the cellular network interface
on Android smartphones:
tedproxy -b -i t:wlan1 -i rmnet0 5006 130.136.4.138 5001

80 Testers and developers documentation

A.3 Relay and CN tools

A.3.1 Relay

The relay activation is quite simple. From the proxy server that you
elected as the RTP relay do the following:
cd abps_repo / udprelay
python3 udprelay .py 5001:5002

Start the udprelay process which listens on two UDP ports. Indeed you
can specify any ports you like but keep in mind the first is where the MN
attaches to and the second is where the fixed CN attaches to.

A.3.2 CN tools

CN tools is a set of software tools collected in abps repo/cntools that
are required to enable an RTP receiving end on the CN. First of all you need
ffmpeg installed on the CN machine. At the time of writing ffmpeg is not
present on debian distributions since it has been replaced with avconv. I
did not investigate further but avconv did not work well in my test envi-
ronment. Thus since my CN was running a debian “jessie” distribution I
compiled ffmpeg from sources. Once you obtained ffmpeg working on your
CN machine you can run the launcher.sh script:
cd abps_repo / cntools
./ launcher .sh 130.136.4.138 5002 5006 outputvideo .ogg

where 130.136.4.138 is the remote host IP address, 5002 the remote UDP
port and 5006 the local UDP port.

The script first launches the dummystdserver HTTP server which serves
an SDP file at the address http://127.0.0.1:8080/camera.sdp. Then it
launches cnproxy passing to it the host IP address and both ports as argu-
ments and runs ffmpeg as last step. When launched cnproxy sends an ini-
tialization datagram to the remote host then starts forwarding remote host’s
responses to the local UDP port, 5006 in this case, which ffmpeg listens to.

Testers and developers documentation 81

Thus ffmpeg first gets the camera.sdp file from the dummystdserver then
receives on a local UDP port, specified in the sdp file, datagrams forwarded
by cnproxy and eventually writes the output video file. Be sure the remote
UDP port corresponds to the one the destination is listening to and that the
local UDP port corresponds to the one specified in the sdp file.

A.3.3 Put everything together

Now that you have everything installed and configured you can stream
some UDP traffic from the multi-homed mobile device to the CN passing
through the relay. For instance let us consider an RTP camera streamer
installed on the mobile device that sends RTP packets to the CN. On the
mobile device you must first run tedproxy:
tedproxy -b -i t:wlan1 -i rmnet0 5006 130.136.4.138 5001

then activate the relay application on the remote proxy:
python3 udprelay .py 5001:5002

Now start the CN tools with the launcher.sh script:
./ launcher .sh 130.136.4.138 5002 5006 outputvideo .ogg

It will send an initialization packet to the relay and then it will wait for
user confirmation before starting ffmpeg. Before confirming, start the stream
from the mobile device. Be sure the RTP streamer application sends packets
to 127.0.0.1 and UDP port 5006 which is the port tedproxy is listening to.
I used a proprietary camera streamer application (https://play.google.

com/store/apps/details?id=com.miv.rtpcamera). However any similar
application should work well.

https://play.google.com/store/apps/details?id=com.miv.rtpcamera
https://play.google.com/store/apps/details?id=com.miv.rtpcamera

82 BIBLIOGRAPHY

Bibliography

[1] About mac80211. http://web.archive.org/web/20160915033548/https://

wireless.wiki.kernel.org/en/developers/documentation/mac80211.

[2] Android binder. http://web.archive.org/web/20160625113918/http://elinux.

org/Android_Binder.

[3] Android ndk downloads page. https://developer.android.com/ndk/downloads/

index.html.

[4] Bluetooth high speed. http://web.archive.org/web/20161026135102/

https://www.bluetooth.com/what-is-bluetooth-technology/

bluetooth-technology-basics/low-energy.

[5] Bluetooth low energy. http://web.archive.org/web/20161026135102/

https://www.bluetooth.com/what-is-bluetooth-technology/

bluetooth-technology-basics/low-energy.

[6] boot-extract. https://github.com/csimmonds/boot-extract.

[7] Booting android. http://www.slideshare.net/chrissimmonds/

android-bootslides20.

[8] Building kernels. http://web.archive.org/web/20161021065948/http:

//source.android.com/source/building-kernels.html.

[9] Definition of connected car – what is the connected car? defined.
http://web.archive.org/web/20160610023540/http://www.autoconnectedcar.

com/definition-of-connected-car-what-is-the-connected-car-defined/.

[10] Empathy. https://wiki.gnome.org/Apps/Empathy.

[11] Jitsi - open source and video calls and chats. https://jitsi.org.

[12] KernelBuild. http://web.archive.org/web/20160825174928/https:

//kernelnewbies.org/KernelBuild.

83

http://web.archive.org/web/20160915033548/https://wireless.wiki.kernel.org/en/developers/documentation/mac80211
http://web.archive.org/web/20160915033548/https://wireless.wiki.kernel.org/en/developers/documentation/mac80211
http://web.archive.org/web/20160625113918/http://elinux.org/Android_Binder
http://web.archive.org/web/20160625113918/http://elinux.org/Android_Binder
https://developer.android.com/ndk/downloads/index.html
https://developer.android.com/ndk/downloads/index.html
http://web.archive.org/web/20161026135102/https://www.bluetooth.com/what-is-bluetooth-technology/bluetooth-technology-basics/low-energy
http://web.archive.org/web/20161026135102/https://www.bluetooth.com/what-is-bluetooth-technology/bluetooth-technology-basics/low-energy
http://web.archive.org/web/20161026135102/https://www.bluetooth.com/what-is-bluetooth-technology/bluetooth-technology-basics/low-energy
http://web.archive.org/web/20161026135102/https://www.bluetooth.com/what-is-bluetooth-technology/bluetooth-technology-basics/low-energy
http://web.archive.org/web/20161026135102/https://www.bluetooth.com/what-is-bluetooth-technology/bluetooth-technology-basics/low-energy
http://web.archive.org/web/20161026135102/https://www.bluetooth.com/what-is-bluetooth-technology/bluetooth-technology-basics/low-energy
https://github.com/csimmonds/boot-extract
http://www.slideshare.net/chrissimmonds/android-bootslides20
http://www.slideshare.net/chrissimmonds/android-bootslides20
http://web.archive.org/web/20161021065948/http://source.android.com/source/building-kernels.html
http://web.archive.org/web/20161021065948/http://source.android.com/source/building-kernels.html
http://web.archive.org/web/20160610023540/http://www.autoconnectedcar.com/definition-of-connected-car-what-is-the-connected-car-defined/
http://web.archive.org/web/20160610023540/http://www.autoconnectedcar.com/definition-of-connected-car-what-is-the-connected-car-defined/
https://wiki.gnome.org/Apps/Empathy
https://jitsi.org
http://web.archive.org/web/20160825174928/https://kernelnewbies.org/KernelBuild
http://web.archive.org/web/20160825174928/https://kernelnewbies.org/KernelBuild

84 BIBLIOGRAPHY

[13] Kernels/Traditional compilation. http://web.archive.org/web/20161107160059/

https://wiki.archlinux.org/index.php/Kernels/Traditional_compilation.

[14] Link sap. http://web.archive.org/web/20161101105514/http://atnog.github.

io/ODTONE/documentation/odtone/app/link_sap_index.html.

[15] linux firmware. http://git.kernel.org/cgit/linux/kernel/git/firmware/

linux-firmware.git.

[16] Linux kernel coding style. http://web.archive.org/web/20160818090632/https:

//www.kernel.org/doc/Documentation/CodingStyle.

[17] Odtone faq. http://web.archive.org/web/20161101110546/http://atnog.

github.io/ODTONE//faq.html.

[18] Superuser. https://github.com/koush/Superuser.

[19] Twrp. https://twrp.me/about.

[20] Jingle media relaying, 2006. http://antecipate.blogspot.it/2006/10/

jingle-media-relaying.html.

[21] Vanilla kernel, 2009. http://web.archive.org/web/20160103124026/https://

wiki.debian.org/vanilla.

[22] Itu world radiocommunication seminar highlights future communication technologies,
2010. http://web.archive.org/web/20161028154219/http://www.itu.int/net/

pressoffice/press_releases/2010/48.aspx.

[23] [rfc] net: add wireless tx status socket option, 2011. http://web.archive.org/web/

20161116155805/http://www.spinics.net/lists/netdev/msg176403.html.

[24] Carriers to switch off gsm networks in 2017, 2015. http://

web.archive.org/web/20150622055109/http://www.techwalls.com/

carriers-switch-off-gsm-networks-2017.

[25] Google talk discontinued; users told to switch to
hangouts app, 2015. http://web.archive.org/web/

20151222130559/http://en.yibada.com/articles/13790/20150216/

google-talk-being-discontinued-users-instructed-switch-chrome-app-hangouts.

htm.

[26] Adroid platform architecture, 2016. https://web.archive.org/web/

20161106210627/https://developer.android.com/guide/platform/index.

html.

http://web.archive.org/web/20161107160059/https://wiki.archlinux.org/index.php/Kernels/Traditional_compilation
http://web.archive.org/web/20161107160059/https://wiki.archlinux.org/index.php/Kernels/Traditional_compilation
http://web.archive.org/web/20161101105514/http://atnog.github.io/ODTONE/documentation/odtone/app/link_sap_index.html
http://web.archive.org/web/20161101105514/http://atnog.github.io/ODTONE/documentation/odtone/app/link_sap_index.html
http://git.kernel.org/cgit/linux/kernel/git/firmware/linux-firmware.git
http://git.kernel.org/cgit/linux/kernel/git/firmware/linux-firmware.git
http://web.archive.org/web/20160818090632/https://www.kernel.org/doc/Documentation/CodingStyle
http://web.archive.org/web/20160818090632/https://www.kernel.org/doc/Documentation/CodingStyle
http://web.archive.org/web/20161101110546/http://atnog.github.io/ODTONE//faq.html
http://web.archive.org/web/20161101110546/http://atnog.github.io/ODTONE//faq.html
https://github.com/koush/Superuser
https://twrp.me/about
http://antecipate.blogspot.it/2006/10/jingle-media-relaying.html
http://antecipate.blogspot.it/2006/10/jingle-media-relaying.html
http://web.archive.org/web/20160103124026/https://wiki.debian.org/vanilla
http://web.archive.org/web/20160103124026/https://wiki.debian.org/vanilla
http://web.archive.org/web/20161028154219/http://www.itu.int/net/pressoffice/press_releases/2010/48.aspx
http://web.archive.org/web/20161028154219/http://www.itu.int/net/pressoffice/press_releases/2010/48.aspx
http://web.archive.org/web/20161116155805/http://www.spinics.net/lists/netdev/msg176403.html
http://web.archive.org/web/20161116155805/http://www.spinics.net/lists/netdev/msg176403.html
http://web.archive.org/web/20150622055109/http://www.techwalls.com/carriers-switch-off-gsm-networks-2017
http://web.archive.org/web/20150622055109/http://www.techwalls.com/carriers-switch-off-gsm-networks-2017
http://web.archive.org/web/20150622055109/http://www.techwalls.com/carriers-switch-off-gsm-networks-2017
http://web.archive.org/web/20151222130559/http://en.yibada.com/articles/13790/20150216/google-talk-being-discontinued-users-instructed-switch-chrome-app-hangouts.htm
http://web.archive.org/web/20151222130559/http://en.yibada.com/articles/13790/20150216/google-talk-being-discontinued-users-instructed-switch-chrome-app-hangouts.htm
http://web.archive.org/web/20151222130559/http://en.yibada.com/articles/13790/20150216/google-talk-being-discontinued-users-instructed-switch-chrome-app-hangouts.htm
http://web.archive.org/web/20151222130559/http://en.yibada.com/articles/13790/20150216/google-talk-being-discontinued-users-instructed-switch-chrome-app-hangouts.htm
https://web.archive.org/web/20161106210627/https://developer.android.com/guide/platform/index.html
https://web.archive.org/web/20161106210627/https://developer.android.com/guide/platform/index.html
https://web.archive.org/web/20161106210627/https://developer.android.com/guide/platform/index.html

BIBLIOGRAPHY 85

[27] Global smartphone shipments forecast 2010-2020, 2016. https://www.statista.

com/statistics/263441/global-smartphone-shipments-forecast.

[28] Google+ hangouts app hands-on, 2016. https://www.engadget.com/2013/05/15/

google-hangouts-app-hands-on.

[29] Meet google duo, a simple 1-to-1 video calling app for everyone, 2016. https:

//googleblog.blogspot.it/2016/08/meet-google-duo-simple-1-to-1-video.

html.

[30] The pokémon go effect on the network, 2016. https://web.archive.org/web/

20160818234741/http://www.networkworld.com/article/3095796/lan-wan/

the-pokmon-go-effect-on-the-network.html.

[31] Smartphone os market share, 2016 q2, 2016. http://web.

archive.org/web/20161026052346/http://www.idc.com/prodserv/

smartphone-os-market-share.jsp.

[32] The state of lte, 2016. http://web.archive.org/web/20161027104614/http://

opensignal.com/reports/2016/02/state-of-lte-q4-2015/.

[33] Worldwide smartphone forecast update, 2016–2020: September 2016, 2016. https:

//www.idc.com/getdoc.jsp?containerId=US41725515.

[34] J Arkko and I van Beijnum. Rfc 5534: Failure detection and locator pair exploration
protocol for ipv6 multihoming, 2011.

[35] Salman A Baset and Henning Schulzrinne. An analysis of the skype peer-to-peer
internet telephony protocol. arXiv preprint cs/0412017, 2004.

[36] Paolo Bellavista, Antonio Corradi, and Luca Foschini. Ims-compliant management
of vertical handoffs for mobile multimedia session continuity. IEEE Communications
Magazine, 48(4):114–121, 2010.

[37] Davide Berardi. Hashtable implementation, 2016. http://web.archive.org/save/

_embed/https://raw.githubusercontent.com/berdav/macro-hashtab/master/

hashtable.h.

[38] Adam Bergkvist, D Burnett, and Cullen Jennings. A. narayanan,” webrtc 1.0: Real-
time communication between browsers. World Wide Web Consortium WD WD-
webrtc-20120821, 2012.

[39] Matt Bishop and LT Heberlein. Attack class: Address spoofing. In Proceedings of the
Nineteenth National Information Systems Security Conference, pages 371–377, 1996.

https://www.statista.com/statistics/263441/global-smartphone-shipments-forecast
https://www.statista.com/statistics/263441/global-smartphone-shipments-forecast
https://www.engadget.com/2013/05/15/google-hangouts-app-hands-on
https://www.engadget.com/2013/05/15/google-hangouts-app-hands-on
https://googleblog.blogspot.it/2016/08/meet-google-duo-simple-1-to-1-video.html
https://googleblog.blogspot.it/2016/08/meet-google-duo-simple-1-to-1-video.html
https://googleblog.blogspot.it/2016/08/meet-google-duo-simple-1-to-1-video.html
https://web.archive.org/web/20160818234741/http://www.networkworld.com/article/3095796/lan-wan/the-pokmon-go-effect-on-the-network.html
https://web.archive.org/web/20160818234741/http://www.networkworld.com/article/3095796/lan-wan/the-pokmon-go-effect-on-the-network.html
https://web.archive.org/web/20160818234741/http://www.networkworld.com/article/3095796/lan-wan/the-pokmon-go-effect-on-the-network.html
http://web.archive.org/web/20161026052346/http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://web.archive.org/web/20161026052346/http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://web.archive.org/web/20161026052346/http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://web.archive.org/web/20161027104614/http://opensignal.com/reports/2016/02/state-of-lte-q4-2015/
http://web.archive.org/web/20161027104614/http://opensignal.com/reports/2016/02/state-of-lte-q4-2015/
https://www.idc.com/getdoc.jsp?containerId=US41725515
https://www.idc.com/getdoc.jsp?containerId=US41725515
http://web.archive.org/save/_embed/https://raw.githubusercontent.com/berdav/macro-hashtab/master/hashtable.h
http://web.archive.org/save/_embed/https://raw.githubusercontent.com/berdav/macro-hashtab/master/hashtable.h
http://web.archive.org/save/_embed/https://raw.githubusercontent.com/berdav/macro-hashtab/master/hashtable.h

86 BIBLIOGRAPHY

[40] Marco Bonola, Stefano Salsano, and Andrea Polidoro. Upmt: universal per-
application mobility management using tunnels. In Global Telecommunications Con-
ference, 2009. GLOBECOM 2009. IEEE, pages 1–8. IEEE, 2009.

[41] John Border, Markku Kojo, Jim Griner, Gabriel Montenegro, and Zach Shelby. Per-
formance enhancing proxies intended to mitigate link-related degradations. Technical
report, 2001.

[42] Albert Cabellos, Alberto Rodŕıguez Natal, Loránd Jakab, Vina Ermagan, Preethi
Natarajan, and Fabio Maino. Lispmob: Mobile networking through lisp. LISPmob
white paper.

[43] Carlo Caini, Haitham Cruickshank, Stephen Farrell, and Mario Marchese. Delay-
and disruption-tolerant networking (dtn): an alternative solution for future satellite
networking applications. Proceedings of the IEEE, 99(11):1980–1997, 2011.

[44] Thiago Camargo. Xep-0278: Jingle relay nodes. XEP XEP-0278, June, 2011.

[45] S Deering and R Hinden. Rfc 2460: internet protocol, version 6 (ipv6). Proposed
Standard) http://tools.ietf.org/pdf/rfc2460.pdf, 1998.

[46] Stephen E Deering. Internet protocol, version 6 (ipv6) specification. 1998.

[47] Noor Mohammad’s Faltoos. A survey report on ”generations of networks: 1g, 2g,
3g, 4g, 5g, 2013. http://web.archive.org/web/20150415050515/http://www.

slideshare.net/noorec786/generations-of-network-1-g-2g-3g-4g-5g.

[48] Dino Farinacci, Darrel Lewis, David Meyer, and Vince Fuller. The locator/id sepa-
ration protocol (lisp). 2013.

[49] Paul Ferguson and Daniel Senie. Network ingress filtering: Defeating denial of service
attacks which employ ip source address spoofing. Technical report, 1997.

[50] Stefano Ferretti, Vittorio Ghini, Moreno Marzolla, and Fabio Panzieri. Walking with
the oracle: Efficient use of mobile networks through location-awareness. In Wireless
Days (WD), 2012 IFIP, pages 1–6. IEEE, 2012.

[51] Stefano Ferretti, Vittorio Ghini, and Fabio Panzieri. A survey on handover manage-
ment in mobility architectures. Computer Networks, 94:390–413, 2016.

[52] Vittorio Ghini and Gabriele Di Bernardo. Transmission error detector per wi-fi su
kernel linux 4.0. 2015.

[53] Vittorio Ghini, Stefano Ferretti, and Fabio Panzieri. The ”always best packet switch-
ing” architecture for sip-based mobile multimedia services. Journal of Systems and
Software, 84(11):1827–1851, 2011.

http://web.archive.org/web/20150415050515/http://www.slideshare.net/noorec786/generations-of-network-1-g-2g-3g-4g-5g
http://web.archive.org/web/20150415050515/http://www.slideshare.net/noorec786/generations-of-network-1-g-2g-3g-4g-5g

BIBLIOGRAPHY 87

[54] Vittorio Ghini and Alessandro Mengoli. Un approccio cross-layer all’affidabilita gui-
data dalle applicazioni. 2015.

[55] Vittorio Ghini and Luca Milioli. Studio ed implementazione di un algoritmo per la
gestione dell’handover in ambiente android. 2014.

[56] Eugenio Giordano, Lara Codecà, Brian Geffon, Giulio Grassi, Giovanni Pau, and
Mario Gerla. Movit: the mobile network virtualized testbed. In Proceedings of
the ninth ACM international workshop on Vehicular inter-networking, systems, and
applications, pages 3–12. ACM, 2012.

[57] Youn-Hen Han. Mipv4 & mipv6 - overview of ip mobility protocols. http://www.

cs.unibo.it/˜ghini/didattica/sistdistrib/MIPv4_MIPv6.pdf.

[58] Henrik Ingo. Session initiation protocol (sip) and other voice over ip (voip) protocols
and applications. Sesca Technologies, Finland, 2011.

[59] Emil Ivov. Hangout-like video conferences with jitsi videobridge and xmpp.

[60] Nikita Jora. Mobile ip and comparison between mobile ipv4 and ipv6. Journal
of Network Communications and Emerging Technologies (JNCET) www. jncet. org,
2(1), 2015.

[61] Justin Karneges, Peter Saint-Andre, Joe Hildebrand, Fabio Forno, Dave Cridland,
and Matthew Wild. Stream management. 2015.

[62] Shigeru Kashihara, Kazuya Tsukamoto, and Yuji Oie. Service-oriented mobility man-
agement architecture for seamless handover in ubiquitous networks. IEEE Wireless
Communications, 14(2):28–34, 2007.

[63] Meriem Kassar, Brigitte Kervella, and Guy Pujolle. An overview of vertical handover
decision strategies in heterogeneous wireless networks. Computer Communications,
31(10):2607–2620, 2008.

[64] Dominik Klein, Matthias Hartmann, and Michael Menth. Nat traversal for lisp mobile
node. In Proceedings of the Re-Architecting the Internet Workshop, page 8. ACM,
2010.

[65] Eddie Kohler, Mark Handley, and F Floyd. Rfc 4340: Datagram congestion control
protocol (dccp). 2006.

[66] Mitsunobu Kunishi, Masahiro Ishiyama, Keisuke Uehara, Hiroshi Esaki, and Fumio
Teraoka. Lin6: A new approach to mobility support in ipv6. In Proceedings of
the Third Inernational Sympsium on Wireless Personal Multimedia Communications,
volume 43, 2000.

http://www.cs.unibo.it/~ghini/didattica/sistdistrib/MIPv4_MIPv6.pdf
http://www.cs.unibo.it/~ghini/didattica/sistdistrib/MIPv4_MIPv6.pdf

88 BIBLIOGRAPHY

[67] Scott Ludwig, Joe Beda, Peter Saint-Andre, Robert McQueen, Sean Egan, and Joe
Hildebrand. Xep-0166: Jingle. XMPP Standards Foundation, 2009.

[68] David A Maltz and Pravin Bhagwat. Msocks: An architecture for transport layer
mobility. In INFOCOM’98. Seventeenth Annual Joint Conference of the IEEE Com-
puter and Communications Societies. Proceedings. IEEE, volume 3, pages 1037–1045.
IEEE, 1998.

[69] Mirco Marchetti and Michele Colajanni. Adaptive traffic filtering for efficient and
secure ip-mobility. In Proceedings of the 4th ACM symposium on QoS and security
for wireless and mobile networks, pages 43–50. ACM, 2008.

[70] Bradley Mitchell. What is the range of a typical wi-fi network?, 2016.
https://web.archive.org/web/20161026103757/https://www.lifewire.com/

range-of-typical-wifi-network-816564.

[71] Sarmistha Mondal, Anindita Sinha, and Jayati Routh. A survey on evolution of
wireless generations 0g to 7g. International Journal of Advance Research in Science
and Engineering-IJARSE, 1(2):5–10.

[72] G Montenegro. Rfc 3024, reverse tunneling for mobile ip, revised, 2001.

[73] Linux Netfilter. Firewall, nat, and packet mangling for linux.

[74] Erik Nordmark and Marcelo Bagnulo. Shim6: Level 3 multihoming shim protocol for
ipv6. Technical report, 2009.

[75] Afif Osseiran, Federico Boccardi, Volker Braun, Katsutoshi Kusume, Patrick Marsch,
Michal Maternia, Olav Queseth, Malte Schellmann, Hans Schotten, Hidekazu Taoka,
et al. Scenarios for 5g mobile and wireless communications: the vision of the metis
project. IEEE Communications Magazine, 52(5):26–35, 2014.

[76] Ian Paterson, Dave Smith, Peter Saint-Andre, Jack Moffitt, Lance Stout, and Win-
fried Tilanus. Xep-0124: Bidirectional-streams over synchronous http (bosh). Draft
Standard. Accessed January, 16, 2013.

[77] C Perkins et al. Rfc 5944 ip mobility support for ipv4, 2010.

[78] C Perkins, D Johnson, and J Arkko. Rfc 6275: mobility support in ipv6. Internet
Engineering Task Force (IETF), 2011.

[79] Jonathan Rosenberg, Henning Schulzrinne, Gonzalo Camarillo, Alan Johnston, Jon
Peterson, Robert Sparks, Mark Handley, and Eve Schooler. Sip: session initiation
protocol. Technical report, 2002.

[80] Peter Saint-Andre. Extensible messaging and presence protocol (xmpp): Core. 2011.

https://web.archive.org/web/20161026103757/https://www.lifewire.com/range-of-typical-wifi-network-816564
https://web.archive.org/web/20161026103757/https://www.lifewire.com/range-of-typical-wifi-network-816564

BIBLIOGRAPHY 89

[81] Matthias Schulz, Daniel Wegemer, and Matthias Hollick. Nexmon: A cookbook
for firmware modifications on smartphones to enable monitor mode. arXiv preprint
arXiv:1601.07077, 2015.

[82] Alex C Snoeren, Hari Balakrishnan, and M Frans Kaashoek. Reconsidering inter-
net mobility. In Hot Topics in Operating Systems, 2001. Proceedings of the Eighth
Workshop on, pages 41–46. IEEE, 2001.

[83] L Stout, J Moffitt, and E Cestari. An extensible messaging and presence protocol
(xmpp) subprotocol for websocket. Technical report, 2014.

[84] Kenichi Taniuchi, Yoshihiro Ohba, Victor Fajardo, Subir Das, Miriam Tauil, Yuu-
Heng Cheng, Ashutosh Dutta, Donald Baker, Maya Yajnik, and David Famolari. Ieee
802.21: Media independent handover: Features, applicability, and realization. IEEE
Communications Magazine, 47(1):112–120, 2009.

[85] R Wakikawa, T Ernst, K Nagami, and V Devarapalli. Draft-ietf-monami6-
multiplecoa-07,“. Multiple Care-of Addresses Registration, 2008.

[86] Wei Xing, Holger Karl, Adam Wolisz, and Harald Müller. M-sctp: Design and pro-
totypical implementation of an end-to-end mobility concept. In In Proc. 5th Intl.
Workshop The Internet Challenge: Technology and Applications, page 43, 2002.

[87] GUO Yangyong. An enterprise instant messaging software design and implementa-
tion. Computer Programming Skills & Maintenance, 24:036, 2010.

[88] Mariem Zekri, Badii Jouaber, and Djamal Zeghlache. A review on mobility manage-
ment and vertical handover solutions over heterogeneous wireless networks. Computer
Communications, 35(17):2055–2068, 2012.

	Introduction
	Overview of mobile communications
	Current scenarios
	Mobililty
	Current technologies
	Goals and issues

	Seamless vertical handover: state of the art
	Handover criteria
	MN-controlled Vertical Handover
	Media Independent Handover
	Transmission Error Detector
	Enabling/Disabling NICs

	Seamless host mobility: state of the art
	Solutions at the network layer
	Mobile IP
	LISP

	Solutions between the network and the transport layer
	LIN6
	Shim6

	Solutions at the transport layer
	Solutions at the session layer
	SIP
	Jingle
	Non standard signaling

	NAT and Firewall issues
	External relay solutions
	ABPS
	UPMT
	FRHP

	Project goals and design
	Project goals
	Mobile node
	Relay and Correspondent Node

	Project development
	TED
	Previous versions and working principles
	IPv6 Fragmentation Support
	TED porting on android custom linux kernel 3.4
	Refactoring
	Open issues

	Proxy Client
	Network
	Handover parameters
	Basis for datagram retransmission

	Relay and CN tools

	Experimental tests
	Experimental Setup
	Experimental Results

	Future works and conclusions
	Testers and developers documentation
	TED kernel and proxy application
	Build Linux kernel
	Android
	Patch the kernel

	Build and run tedproxy
	Build
	Run

	Relay and CN tools
	Relay
	CN tools
	Put everything together

	Bibliography

