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Abstract
The work presented in this thesis is part of a research project of Leiden University

Medical Center (LUMC) in The Netherlands. It belongs to the field of Diagnostic

Radiology analysed from a Medical Physics point of view. After a short overview of

the weekly quality controls of an X-ray imaging device, performed using simple phan-

toms, the thesis focuses on a novel approach called ClinQC (Clinical images-based

Quality Control): it has the purpose to monitor the stability of imaging devices,

aiming at the early detection of changes in image quality or radiation dose, by de-

riving quality parameters from chest images of routine patient examinations. The

ClinQC algorithm extracts the noise from clinical images and derives the main dose

quantities. The noise study presented in this thesis comprehends a validation of the

algorithm, performed in several ways: image deteriorations, simulations, phantom

studies and real clinical examples. For dose and homogeneity studies only some pre-

liminary results are presented. The thesis collects also some ideas of improvement

that can be considered for the future versions of the algorithm and to extend the

ClinQC project to other X-ray anatomies and imaging modalities.

The obtained similar results for the two compared methods prove that ClinQC is

able to give immediate feedbacks of the quality of the imaging devices using patient

images. It provides reliable, on-the-fly and sensitive parameters of the quality of

the X-ray imaging system, that have the same physical meaning and similar relative

variation as the quality indicators of the gold standard QClight method. It can be

concluded that the ClinQC algorithm could be already applied in clinical practice,

with the initial support of the QClight weekly quality control. In this way, a com-

parison between the two methods in a real test period will be a guide to find the

necessary adjustments of the algorithm until the final version is being installed and

stably used in clinical practice.
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Sommario
Il lavoro presentato in questa tesi é parte di un progetto di ricerca dell’ospedale

universitario Leiden University Medical Center (LUMC) dei Paesi Bassi. La tesi

si inserisce nel campo della Radiologia Diagnostica dal punto di vista della Fisica

Medica. Dopo una breve panoramica sui controlli settimanali di qualitá di un sis-

tema di diagnostica per immagini a raggi X, eseguiti con semplici fantocci, la tesi si

concentra su un nuovo approccio chiamato ClinQC (Clinical images-based Quality

Control). Esso ha lo scopo di monitorare la stabilitá del dispositivo, mirando alla

rilevazione precoce delle variazioni nella qualitá delle immagini o nella dose di ra-

diazioni, derivando parametri di qualitá a partire da immagini di esami di routine

al torace dei pazienti. L’algoritmo ClinQC estrae il rumore dalle immagini cliniche

e ricava le principali grandezze dosimetriche. Lo studio sul rumore presentato in

questa tesi comprende la validazione dell’algoritmo, eseguita in diversi modi: dete-

rioramento delle immagini, simulazioni, studi su fantocci ed esempi clinici reali. Per

quanto riguarda gli studi di dose ed omogeneitá, sono illustrati solo alcuni risultati

preliminari. La tesi raccoglie anche alcune idee di miglioramento per le future ver-

sioni dell’algoritmo e per estendere il progetto ClinQC ad altre anatomie e modalitá

di imaging.

I risultati simili ottenuti per i due metodi a confronto dimostrano che ClinQC é

in grado di dare un’immediata valutazione della qualitá del dispositivo utilizzando

le immagini dei pazienti e, in particolare, fornisce affidabili e sensibili parametri

di qualitá dei sistemi di diagnostica per immagini a raggi X, che hanno lo stesso

significato fisico e simili fluttuazioni relative degli indicatori di qualitá utilizzati nel

metodo standard di riferimento QClight. Si puó concludere che l’algoritmo ClinQC

potrebbe giá essere applicato nella pratica clinica, con il supporto iniziale del con-

trollo di qualitá settimanale QClight. Un vero periodo di prova e confronto tra

i due metodi, servirá anche come guida per effettuare gli aggiustamenti necessari

all’algoritmo finché la versione finale non venga installata e stabilmente utilizzata

nella pratica clinica.
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Chapter 1

Introduction

This Master’s thesis is the result of my six months internship within the group of

Medical Physics at the Radiology Department of Leiden University Medical Center

(LUMC) in The Netherlands [1]. LUMC is a modern university medical center

for research, education and patient care with a high quality profile and a strong

scientific orientation, that employs around 7000 people (Fig. 1.1). I had the chance

Figure 1.1: The main building entrance of LUMC.

to work at LUMC from March until August 2016 as one of the students that won

the Erasmus+ : Mobility for Traineeship competition [2] with the ClinQC project
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(Clinical images-based Quality Control).

This project started at LUMC in 2015 after some initial ideas by the two medical

physicists in training J. Chiel den Harder and Pieternel van der Tol, resulting in an

algorithm that was further developed under the lead of the medical physicist Wouter

J. H. Veldkamp, in the group of Medical Physics of LUMC headed by Koos Geleijns.

Their aim was to perform a quality control (QC) of an X-ray imaging system without

the use of routine phantoms, instead performing measurements of dose and image

quality on the large number of clinical images of patient studies acquired with the

system everyday. The use of clinical image quality with the purpose to early detect

any quality regression of diagnostic X-ray machines is an innovative approach.

I entered the project under the lead of the previously mentioned medical physicists

and of Berend C. Stoel (associate professor at the Division of Image Processing,

Radiology Department, LUMC), because there was the need of a student to do

additional analysis to show the benefit of implementing this QC algorithm in the

daily clinical practice of the imaging systems at Radiology Department. In fact, the

goal of my internship and the aim of this Thesis was to validate the existing algorithm

for the QCs of the diagnostic X-ray imaging device and to invent or develop new

measures of the quality of the system based on the planar chest radiograph of the

patients. More details about the starting point of the ClinQC project and my role

in it are explained at the end of Chapter 2.

The Thesis is structured in three main subjects: Dose study (Chapter 4), Noise study

(Chapter 3) and Homogeneity study (Chapter 5). Each Chapter is divided in three

main Sections: Methods, Results and Discussion. The final Chapter, Discussion and

Conclusions (Chapter 6), will give an overview of the ClinQC project achievement

and an outlook for future steps. The focus will mostly be on the Noise study

(Chapter 3), the ClinQC algorithm validation and its improvements, since I mainly

worked on this topic during my internship. The Homogeneity Chapter (Chapter 5)

contains a pilot study that still needs some improvements and a concrete validation

before it can be applied in clinical practice.

Before going through these main topics, the specific properties of the analysed chest

X-ray imaging system will be discussed in Section 2.1 and the currently existing

procedure to measure its quality and stability using phantom images in Section 2.2.
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Chapter 2

Background

2.1 A typical chest X-ray imaging system

The chest X-ray is one of the most commonly performed diagnostic X-ray exami-

nations; it evaluates the lungs, heart and chest wall. The basic equipment typically

used for chest X-rays consists of an X-ray tube producing a divergent beam and a

wall-mounted bucky system (Fig. 2.1), containing the digital flat panel detector,

the anti-scatter grid and the ionization chambers of the AEC [3]. In this kind of ex-

amination the X-ray tube is positioned at 2.00 m Source-Image Distance (SID) from

the detector, this can vary for other examined anatomies. Two views of the chest

are taken, one from the back where the patient stands with hands on hips and chest

pressed against the image plate, Postero-Anterior chest X-ray projection (PA), and

the other from the side of the body, Lateral chest X-ray projection (LAT), where the

patient stands against the image recording plate holding the bucky. In this thesis

only chest PA projections will be analysed.

In the next paragraphs some of the components of the imaging system matter of

interest for this thesis will be illustrated, along with the patient acquisition protocol

and the output image format and processing.
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Figure 2.1: A chest X-ray imaging system at LUMC.

Components

Anti-scatter grid The anti-scatter grid is the mobile device that is placed be-

tween the patient and the detector and that reduces the arrival of scattered radiation

to the detector, decreasing the noise and enhancing the contrast in the X-ray im-

age. The grid is designed with a series of alternating strips of lead and air that are

angled to match the divergence of the X-ray beam. The primary beam radiation

passes through the space between the lead strips only if it travels parallel to them,

but scattered radiation which deviates from the divergent beam encounters the lead

strips at a different angle, defined by the grid focal distance, and is attenuated from

the beam. This device is useful in examinations where a large quantity of scattered

radiation is created, with large tissue thicknesses and high peak kilovoltage (kVp).

The employment of a grid requires a greater exposure to the patient since the pri-

mary beam is also attenuated by the lead strips [4].
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AEC The Automatic Exposure Control (AEC) has the purpose to deliver con-

sistent, reproducible exposures across a wide range of anatomical thicknesses and

kVp [4]. On the detector there are three ionization chambers that count the number

of photons that pass through the patient in three positions of interest: the spine in

the center, and the two lung regions left and right (Fig. 2.2). The manufacturer

Figure 2.2: The three ionization chambers of the AEC on an LUMC bucky system.

does not share its complete knowledge about the functioning of this device, but what

is known is that the results of the three chambers are combined in a unique output

that allows to stop the X-ray exposure when the detector receives the desired dose

in at least one of those three areas. For example, if a patient has an implant like

a pacemaker, the sensor behind it will receive less photons than the other two and

the AEC, according only to that output, would increase the exposure time, but the

contribution of the other two ionization chambers will stop the source after a shorter

exposure time.

Anode heel effect The anode heel effect appears in X-ray images as a gradient

in the pixel values, due to the reduction of the intensity of the X-ray beam towards

the anode side of the inner geometry of the tube [4]. This effect could change in

appearance when the anode deteriorates over time, and this might produce in the

images a more evident gradient in the grey values. This is an information about the
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quality of the imaging system that can be retrieved from phantom images performing

a QC (Section 2.2).

Acquisition protocol

The acquisition protocol is set up in order to obtain the optimal image quality for

a diagnosis with the lowest patient dose. For an average weighted adult patient the

typical acquisition protocol for a PA chest X-ray examination is:

� SID = 2.00 m

� kVp = 133 kV

(gives the optimal contrast between the different body tissues and organs)

� AEC = ON

(automatically corrects for different body thicknesses)

� image post-processing = ON

DICOM images and digital processing

The Digital Imaging and Communications in Medicine (DICOM) is the standard for

handling, storing, printing, and transmitting information in medical imaging. The

DICOM images are characterised by a header of DICOM tags that contain all the

available technical data regarding the imaging system and the acquisition together

with patient information [5].

The X-ray raw image that is captured by the detector sensors is always processed.

This first image processing is the collection of operations and filtering that are

applied on the digital images just after their acquisition, it is usually called pre-

processing and compensates for different gain of different detector areas. This is an

automated algorithm implemented by the manufacturer and is not accessible by the

user: it can be said that the pre-processing is a black-box to the user.

Other operations and filtering, such as noise reduction in the background, are cho-

sen by the user when selecting a chest X-ray protocol and can be classified as post-

processing. Then there is additional post-processing, that can be adapted by the

user by applying the appropriate parameter settings in the acquisition protocol and
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that controls the Look-Up Table (LUT) and filtering like edge-enhancement. For

patient examinations this post-processing is always used, but for some analysis with

phantoms it can be useful to set it OFF switching the acquisition protocol. The

post-processing is defined based on the clinicians experience with the aim to im-

prove the diagnostic quality of the image.

2.2 QClight: phantom-based quality control

The quality control of a diagnostic X-ray imaging system comprises monitoring

and evaluation of all characteristics of performance that can be measured and con-

trolled [6]. The QC should not only measure the technical stability of the system,

but also the dose given to the patients and the resulting image quality, that are

relevant parameters for radiation protection and for a correct diagnosis made by

the radiologist. Nowadays the most common way to measure these features is the

employment of phantoms that are particularly designed to produce the same global

attenuation of the X-ray beam intensity as a patient body [7].

QClight is the name of the approach and the phantom that are currently used at

LUMC for weekly QCs in planar X-ray systems. QClight is a 2 mm thick copper

plate phantom that has to be placed in front of the beam exit passage from the

tube (Fig. 2.3). Each monday morning, before the first patient, the radiographer

Figure 2.3: The QClight phantom is positioned for image acquisition.
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places the QClight uniform phantom in this position and acquires with a specific

protocol three images, activating the three ionization chambers of the AEC one at a

time: only with three images it is possible to see if the three devices are working in

the same consistent way to produce the desired combined AEC result (Section 2.1).

The acquisition protocol of QClight phantom images is defined by some rules. The

most important for our aim are:

� SID = 1.50 m

(this distance is standardized for all the QClight acquisition protocols of

LUMC: it is the same for all the X-ray rooms where different body anatomies

are imaged)

� kVp = 133 kV

(this is the same kVp used for adult patients who come for a chest X-ray

examination)

� AEC = ON (in only one ionization chamber at a time)

� image post-processing = OFF

From the acquired images it is possible to retrieve all the necessary information that

allow to assess a QC of the X-ray imaging system, including some dose parameters

and image quality figures that are directly related to the system performances.

Dose The main dose quantities [8] are available in the DICOM tags of the QClight

images: exposure, peak kilovoltage (kVp), Reached Exposure (REX) and Dose Area

Product (DAP) for example. It is also possible to derive some other dose parame-

ters to gain more complex information, combining different existing quantities given

from the manufacturer of the X-ray imaging system (Chapter 4).

The constancy of all these dose parameters within their conventionally accepted

ranges is investigated each monday with the QClight analysis; then, if the QC regis-

ters some differences from the usual behaviour of the system, an alarm is produced

and the medical physicist job is to find out what are the causes and a possible so-

lution.
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Noise The noise in an image is the stochastic variation in the signal that compro-

mises the image quality. The presence of the noise in X-ray images is due to three

major causes. First, there is a statistical component, namely quantum noise, inher-

ent to the fluctuations of the electromagnetic field that make the noise in the image

depend on the intensity of the X-ray source: if the exposure (mAs) is increased

the noise becomes higher, but the signal increases faster with increasing mAs, so

the noise-to-signal ratio decreases, and in medical imaging this translates in giving

higher dose to the patients. Second, all the electronic components of the system,

mainly the digital detector, generate noise and interferences in their outputs that

appear in the image as electronic noise. Then, the noise is due for large part to

the scattered radiation that results from the interaction between the X-ray primary

beam and patient tissue. A QC that includes the monitoring of some image quality

figures, like the noise, gives the chance to check both the detector performances,

together with all the electronic parts of the system, and the patients exposure [9].

The QClight images are homogeneous, so their pixel grey values fluctuations directly

represent the noise. Selecting a Region Of Interest (ROI) of 30 % of the Field Of

View (FOV) in the center, for example, makes it possible to quantify the amount of

noise as the standard deviation of the pixel values that belong to this ROI. Since

the system deals with an AEC that may change the exposure time for each QClight

image that is acquired every week, the average grey value of the QClight image could

be varying among all the acquisitions, giving to the noise measure a dependence to

the image intensity that can easily be corrected. So the normalized QClight noise

indicator is defined as

Noise QClight =
σROI
µROI

=

√
1

NM−1

N∑
i=1

M∑
j=1

(p(i, j)− µ)2

µ
, (2.1)

where NM is the number of pixels p(i, j) inside the selected ROI of the image, σ is

the standard deviation of their grey values and µ is the average

µROI =
1

NM

N∑
i=1

M∑
j=1

p(i, j). (2.2)
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Homogeneity Another image quality figure that is linked to the system perfor-

mances is the image homogeneity. It reflects in particular the uniformity of the

response of the detector. The QClight image is expected to be homogeneous as the

phantom attenuation is, except for the inhomogeneities due to the detector mal-

functioning or non-uniform response and inhomogeneities in the X-ray beam. There

are many formulas to measure this quantity on an image of a uniform phantom, the

one used at LUMC takes into account five square ROIs (R1, R2, ... , R5) of width

approximately 20 % of the FOV, one in the center of the image and the others close

to the four corners. The average pixel value µ in each one of these five ROIs is

computed using Eq. 2.2. Then the inhomogeneity is defined as:

Inhomogeneity (%) =
max (µR1 , µR2 , ..., µR5)−min (µR1 , µR2 , ..., µR5)

mean (µR1 , µR2 , ..., µR5)
%. (2.3)

2.3 ClinQC: clinical images-based quality control

The long term goal of the ClinQC project will be the replacement of phantom-based

QCs with measurements based directly on clinical images that will give a complete

overview of the efficiency of the X-ray imaging devices. With the current imaging

system for the chest, there is a need of a weekly standardized procedure to monitor

its constancy using phantoms, i.e. the QClight analysis, but with other X-ray imag-

ing modalities the QClight is not performed. This method required the training of

the radiographers for the phantom acquisition procedure and 10 minutes per week

to be performed. That is why it seems simpler and quicker to use a clinical images-

based approach measuring the stability of the X-ray imaging device based on clinical

images. The ClinQC method enables more frequent QCs, even for X-ray anatomies

and imaging modalities where the QC measurements are not available. In addition,

with this innovative approach, it is also possible to enter the universe of big data, us-

ing the large statistics of hospitals made by thousands of patient images: at LUMC

approximately 50 patients/day come for a chest X-ray examination, which makes a

total amount of 250 patients/week, 1000 patients/month and 12 000 patients/year.

In 2015 at LUMC a new clinical images-based QC was developed: the ClinQC algo-

rithm now monitors different dose parameters and the noise of the imaging system

from patient images, while the homogeneity measure is still in progress. With these
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measurements on each new clinical image, the ClinQC algorithm now provides a

significant knowledge about the stability of the system, and it can work side by side

with the QClight method to validate the ClinQC tool.

The aim of this Thesis is to show all the steps of the ClinQC algorithm validation

process that I implemented during my internship at LUMC and an important exam-

ple of how the Noise and Exposure measurements would work if applied in clinical

practice.

After the first steps of the ClinQC project, it has been presented in two important

occasions. In 2016 J. Chiel den Harder gave a talk about the ClinQC project and

received the Young Researcher Prize (JOP) for the best scientific presentation of

the Dutch Society for Medical Physics (NVKF). In the same year Pieternel van

der Tol presented the ClinQC project at the 1st European Congress of Medical

Physics (ECMP) in Athens, Greece [10]. Moreover the work shown in this Thesis

will hopefully be published as a scientific paper in 2017.
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Chapter 3

Noise study

3.1 Methods

In this Section all the methods adopted and developed to implement and validate

the ClinQC noise extraction algorithm are illustrated.

3.1.1 ClinQC algorithm: noise extraction from clinical im-

ages

In 2015 at LUMC the ClinQC algorithm was invented [11], which extracts the noise

directly from chest patient images in two main steps1.

1. Subtraction from the chest original image (Fig. 3.1) of a smoothed version of

the same image (Fig. 3.2). The smoothing is obtained with a Gaussian blur-

ring filter with a kernel of 7×7 pixel size (pixelsize = 0.12×0.12 mm), shaped

as a Gaussian distribution defined with σ = 0.6 pixel. The smoothed image

is a version of the original image where the noise is partially removed: so it

contains mainly the low spatial frequencies, which represent the anatomical

signal. The output of this subtraction is the ClinQC high spatial frequencies

map (Fig. 3.3): this image contains mainly noise but also some body signal,

in the example the lung region can clearly be distinguished from the abdomen

1A similar method for noise extraction is applied to Computed Tomography (CT) [12].
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region. To measure the noise directly on this first image would result in a sig-

nificant patient dependent noise parameter, and the aim of the ClinQC project

is to find patient-independent measurements of the quality and stability of the

system that are not affected by patient variability.

2. Normalization of the ClinQC high spatial frequencies map by the smoothed

low frequencies image is then required for two different reasons. First, to

remove the dependence to the different image intensities that vary among all

the patients examinations due to the presence of the AEC device: for the

same purpose, in the QClight noise measure (Section 2.2) the normalization

is represented in Eq. 2.1 by the ratio of each image to its average pixel value

µ. Second, the image normalization is implemented also to try to remove the

evident remaining body signal from the noise map. From the example in Fig.

3.4 it is clear that the new obtained ClinQC normalized noise map contains

less patient anatomical signal than the output image after step 1 (Fig. 3.3),

in fact only the main patient external edges can be seen.

Figure 3.1: Original image. Figure 3.2: Smoothed image.

The final step to extract the noise from clinical images using the ClinQC algorithm

consists in drawing a big ROI (Fig. 3.5) in the middle of the ClinQC normalized

noise image of size 30% of the FOV, the same used in the QClight method. In this
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Figure 3.3: High spatial frequencies im-
age.

Figure 3.4: Normalized high spatial fre-
quencies image.

way, the ClinQC normalized noise value can be computed as the standard deviation

of the pixels p(i, j) inside the defined ROI:

Noise ClinQC = σROI =

√√√√ 1

NM − 1

N∑
i=1

M∑
j=1

(p(i, j)− µ)2, (3.1)

where NM is the number of pixels inside the selected ROI of the ClinQC normalized

noise image, σ and µ are, respectively, the standard deviation and the average of its

grey values (Eq. 2.2).

Please note that Eq. 3.1 is different from the one used in the QClight method (Eq.

2.1), but the aim and the meaning are the same: the normalization here is com-

puted pixel-by-pixel on the images at step 2, while in the QClight method there are

no arithmetic operations in the phantom image and the normalization is a simple

ratio of σ and µ of the pixels in the ROI of the QClight image. In this way the

phantom based QC and the clinical images-based QC can be compared: the nor-

malized QClight noise indicator has the same meaning as the ClinQC normalized

noise value.

In order to perform a periodical QC of the system that can investigate the sta-

bility of the noise levels, all the ClinQC normalized noise values computed for the
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Figure 3.5: The ROI selected for the noise measurement on the ClinQC normalized noise
image.

desired number of images extracted from the Picture Archiving Communication Sys-

tem (PACS) can be represented in a time line. Then, it is necessary to define the

acceptance levels for the mean and the spread of the noise values (Section 3.2.1.2)

and implement an automated algorithm that will check regularly whether the ob-

tained values are acceptable or not. In this Thesis, the acceptance level for the mean

is chosen as the average ClinQC noise value of all the images extracted from two

weeks after the last calibration or maintenance of the imaging system. The fluctu-

ations of the noise values that appear in the stability diagram usually fall within

the limits of two times the standard deviation. However, a more accurate statistical

analysis is required to understand how many patient images are needed, before real-

izing that something in the system has changed or is still changing (Section 3.1.3.2).

A validation is needed to know if the ClinQC noise values are sensitive to a change

in the quality of the imaging system (Section 3.1.3.2).
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3.1.1.1 Properties of the ClinQC extracted noise images

The study of the effect of the ClinQC algorithm on patient images requires to look

at the properties of the extracted noise images at each step of the algorithm (Sec-

tion 3.1.1), before and after the normalization. Two examples of images that the

ClinQC algorithm extracts are shown in Fig. 3.3 and Fig. 3.4. The method which

has been chosen to compare the properties of these two images is to draw a simple

but computationally slow diagram. The so called high-low frequencies plot (Fig.

3.11). As the name implies, this plot represents the relationship between the pixel

values in the noise map (high spatial frequencies, y-axis) as a function of the pixel

values that belong to the smoothed image (low spatial frequencies, x-axis). From

the relationship that appears in the plot it is possible to understand whether or not

the noise in each pixel has a dependence on the anatomical signal.

Since in each chest X-ray image there are around 10 thousand pixels, to plot this

relationship for each pair of twin pixels, belonging respectively to the noise map and

the smoothed image, requires a lot of computation time. If a correlation appears and

more analyses are required to study the plot (like fitting or clustering procedures),

to perform calculations on this diagram becomes a real challenge. It is easier to work

directly with the histogram of the noise images, the distribution of the grey values

in the high frequencies image or the normalized high frequencies image (the ClinQC

noise maps), which is exactly the vertical distribution of the high-low frequencies

plot along the y-axis.

In Section 3.2.1.1 an example of high-low frequencies plot and the correspondent

noise image histogram will be shown for the ClinQC normalized noise map. An

image segmentation based on the histogram [13] will be implemented to identify

particular regions in the ClinQC normalized noise map where the anatomy of the

patient is still visible after the normalization.

Lastly, the same high-low frequencies plot and correspondent histogram will be com-

puted for the central ROI cropped from the ClinQC normalized noise map, to prove

that the remaining patient signal it contains is not significant.
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3.1.2 The ClinQC algorithm - alternative versions

The algorithm that has been used and validated in this Thesis work is the one

introduced in Section 3.1.1.

In this Section new alternative versions of the ClinQC algorithm will be presented

giving an outlook for the future possible improvements and extensions of the project.

3.1.2.1 Grid sampling approach

The first improvement that can be included in the ClinQC noise extraction algorithm

updates a more accurate statistical analysis, that has been used also for low contrast

detectability studies [14].

In the original ClinQC algorithm the final output is the normalized noise map, and

the ClinQC noise value is the standard deviation of pixels in the selected ROI of

this image. The proposed approach to modify the algorithm enters at this point as

a third step:

Step 3) perform a grid sampling inside the original ROI of the ClinQC normalized

noise map, selecting a grid of sub-ROIs (an example is shown in Fig. 3.6). For each

new sub-ROI measure the ClinQC noise value as the standard deviation of its pixel

values. Then compute the distribution of these many obtained ClinQC noise values.

The final ClinQC-alternative noise value will be the median value of this distribution.

This is a better representation of the true value of the noise that the ClinQC al-

gorithm should derive. In the original unmodified algorithm this final value corre-

sponds to the mean value of the noise distribution, while in this alternative version

it is proposed to use the median value. The mean value would be a good estimate

of the noise distribution only in case the original ROI is uniform and does not con-

tain any different structures, and if the noise distribution is symmetrical. Looking

at the chest X-ray examinations, the selected ROI over the chest and abdomen of

the patient often contains implants, pacemakers, catheters and internal or external

electrodes of different medical instruments. So the ClinQC original noise extraction

algorithm might misclassify some of these structures (Fig. 3.24 and Fig. 3.25),

identifying them as noise because they have sharp edges (high spatial frequencies).
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Figure 3.6: An example of the sampling grid that can be used to improve the ClinQC
noise extraction algorithm.

While this sampling grid approach may help to reduce the influence of those outliers

of the noise distribution, that can be due also to patients who have nodules with

well defined edges.

3.1.2.2 ClinQC applied to mammography

To extend the use of this noise extraction algorithm to different X-ray anatomies and

imaging modalities will be a challenge in the future of the ClinQC project. A first

trial has been performed on a small dataset of planar digital mammograms and on a

stack of breast tomosynthesis pictures that are projected onto a single reconstructed

view.

The algorithm has been adapted only in the final step of selection of the ROI where

to perform the noise measure, in order to recognize in which side of the image the

breast was positioned (laterality), and to take as ROI a rectangular region smaller

than the FOV. The background pixel values inside this ROI are equal to 0 from both

the digital imaging systems, so they can easily be ignored in the measurement of the
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standard deviation. This was a fast way to implement the new ClinQC alternative

version for a preliminary test, but the ROI includes also parts of the breast edges

and skin where the noise might have different dependence on the body signal than

inside the breast (the same happening for chest X-ray images), so the most correct

way to implement this alternative version would be to select automatically a region

that contains only the inner breast tissue and that has the same amount of pixels

for all the analysed patient images.

Mammograms and tomosynthesis reconstructed projections can be generated from

different exposures, but also different kVp, depending on the patients breast thick-

nesses. This can introduce another source of variability on the noise measurement,

that is not dependent on the imaging system quality and that for chest X-ray im-

ages was irrelevant since only patient images acquired with 133 kV were used in

this study. In this preliminary test all the images generated from both the imag-

ing modalities mentioned before at different exposure levels and kVp were analysed

together. The preliminary results are displayed in Section 3.2.2.2.
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3.1.3 Validation of the ClinQC algorithm

In this Section, all the Methods developed for the validation of the ClinQC noise

extraction algorithm are presented. A validation is the process that tests the algo-

rithm under different conditions to see if its results are reproducible and dependent

on the quality of the imaging system.

3.1.3.1 Image deterioration study

The first Method that has been invented in order to simulate a decrease or an

increase in the quality of the imaging system is the image deterioration study. As

explained in the Introduction (Section 2.3) the chest X-ray imaging systems can

be really stable over long time periods, in fact there are no examples in the last

years of a slow or fast quality degradation that we can use to verify if the ClinQC

algorithm can detect it. So the only way to test if the algorithm is able to detect a

deterioration of the imaging system is to deteriorate the quality of the images that

it produces.

Two symmetrical approaches are presented.

3.1.3.1.1 Blur To blur the images is a way to reduce their amount of noise, so

the expected result of the test after blurring the images is to observe a decrease in

their ClinQC noise values. If so, the decrease has to be significant to prove that the

algorithm is sensitive to a change in the quality of the imaging system and in order

to be recognized automatically with a detection algorithm. A reduction in the noise

values could simulate an increase in the quality of the imaging system, that can

occur if a new proper anti-scatter grid is installed for example (as can be observed

in the examples in Section 3.2.1.3), or it can represent an increase in the exposure

(mAs) given to the patients during the image acquisition. To verify if blurring the

images is actually a way to simulate an increase of the exposure levels, a phantom

study has been performed (Section 3.1.3.6).

The blurring study consists of smoothing at different levels different groups of im-

ages, to run the ClinQC algorithm and to plot all the results in a time line. The

increasing amount of blur was obtained linearly changing the σ of the Gaussian

blurring kernel used to smooth the images, from σ = 0.5 pixel to σ = 2.05 pixel
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(pixelsize = 0.12×0.12 mm). The first group consists of original unmodified images

(instead of σ = 0 pixel). The sizes of the Gaussian blurring kernels varied automati-

cally with the values of σ, according to the law: kernel size = 2·ceil(2σ)+1 (pixel)2.

To study how the average noise value of the group of images changes, it is better not

to use for every deterioration level the same group of images, but the approach used

here was to randomly sub-sample different images every time. Instead, to study if

and how the spread of the noise values changes, it is more meaningful to use the

same group of images for each blurring level.

3.1.3.1.2 Gaussian noise The addition of noise to the images is done to observe

an increasing trend in the ClinQC noise values, that can occur when the detector or

the electronics of the system reach their end of life, or if the anti-scatter grid is not

present into its slot during the image acquisition (as can be observed in the examples

in Section 3.2.1.3). An increase in the noise levels can simulate also a decrease in

the dose (mAs) given to the patients. Different shapes of noise distributions can be

added to the images to achieve different results: in the simulation presented in this

thesis the symmetric distribution of Gaussian noise has been chosen to approximate

the combined effect of all these deterioration phenomena in the most simple case.

A different approach must be adopted in this case, since with this simulation we

are changing something in the images that is exactly the quantity that we want to

measure. So it would be a circular reasoning to add the same amount of noise to all

the images and to measure if and how the ClinQC noise values change, since each

image has a different initial level of noise. For example, two images A and B have

different σnoise A and σnoise B, if Gaussian noise with σnoise ADD is added to both

images, the ClinQC algorithm would register only a meaningless shift in the two

noise values, while their difference |σnoise B − σnoise A| would stay the same, since

the added noise is the same for both images. This inserts only a perturbation in the

simulation result and does not give any new information on the extraction algorithm

behaviour.

Instead, we don’t want to interfere in the measurement, but we want to add noise

2ceil = function that rounds to the nearest integer greater than or equal to the number in
parenthesis
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only to simulate a controlled decrease in the quality of the imaging system. So the

approach proposed here has the purpose to add different amounts of noise to the

images according to their original estimated quality, and this is made possible by

following three steps:

1) Estimate the original quality of each patient image by measuring its Signal to

Noise Ratio (SNR). This can be made in two manners, the first one measures the

SNR in decibel (dB) using the information from the entire image [15], the second

one is more used in case the SNR of a single object or ROI in the image is measured:

SNRoriginal image = 10log10
σ2
original image

σ2
noise image

[dB] (3.2)

SNRoriginal image =
µoriginal image (or ROI)

σnoise image (or ROI)

(3.3)

where the noise image is the ClinQC high frequencies map, so the noise image

extracted at the first step of the algorithm.

2) Choose the desired levels of deteriorations of the estimated SNR that have to be

achieved by adding noise to the clinical images: linearly decreased percentages of

the SNR, for example from 2% to 30%.

3) Use the inverse formula of Eq. 3.2, or Eq. 3.3, to compute the variance of

the Gaussian noise with 0 mean that has to be added to the clinical image, with

an image processing tool (in this case MATLAB3), in order to achieve the desired

deterioration level of the estimated SNR.

σ2
noise achieved =

σ2
original image

10
SNRdeteriorated

10

[dB] (3.4)

But the additional step that avoids interfering in the measurement, as said be-

fore, is to consider that each patient image has a different initial amount of noise.

So the noise that has to be added to the image, in order to achieve the cho-

sen level of deterioration of the SNR, must be reduced by the original amount

of noise. Since these two amounts of noise are described by two distributions

with respective standard deviations σnoise added and σoriginal image, their addition

3The MathWorks Inc., Novi, MI, USA.
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will result in a distribution with a standard deviation σnoise achieved that satisfies

σ2
noise achieved = σ2

original image + σ2
noise added [16]. So the variance of the Gaussian

noise with 0 mean that has to be added to the image is:

σ2
noise added = σ2

noise achieved − σ2
original image (3.5)

Also in this case, to study how the average noise value of the group of images changes,

the approach is to random sub-sample different images for each deterioration level.

Instead, to study if and how the spread of the noise values changes, the same group

of images has to be used.
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3.1.3.2 Statistical analysis with simulations

This Section presents a statistical analysis regarding the stability of the ClinQC

noise values performed by implementing two different types of simulations. These

simulations are designed in order to produce output curves that answer the question:

how many new clinical images have to be collected before an automated algorithm

can detect a step or a trend in the noise values with a certain significance level? So

we want to assess how fast is the response of the ClinQC algorithm to the simulated

deterioration of the system, and how soon will the algorithm be able to provide an

alarm, based on the noise level of each new clinical image acquired.

The purpose of the Step simulation (Section 3.1.3.2.1) is to detect a sharp breaking

in the system that translates in a sudden change in the noise values from one patient

to another. This can happen, for example, when the anti-scatter grid is replaced or

removed (as can be observed in the examples in Section 3.2.1.3). While the Trend

simulation provides different examples on the detection of the long term increase or

decrease in the noise values.

Figure 3.7: Graphic reproduction of how a step in the noise values would appear.

3.1.3.2.1 Step simulation The general idea is to simulate a step in the noise

values (Fig. 3.7) with respect to the baseline (Section 3.2.1.2), and to understand

how many clinical images are needed to detect it with a certain significance level.

The following recipe explains the step simulation algorithm:

1) Find the parameters that describe the distribution of the ClinQC noise values
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baseline dataset: µ, σ, skewness and kurtosis (Section 3.2.1.2).

2) Increase the baseline mean (µbaseline) with a different increasing factor at every

loop.

(example: µsimulated = µbaseline · increasing factor, where the increasing factors are num-

bers like 1.03, 1.15, . . . , that indicate an increase of 3%, 15%, . . . )

3) Use each new increased mean µsimulated, with the original other parameters that

characterize the distribution of the ClinQC noise values baseline dataset σ, skewness

and kurtosis, to simulate from the same designed distribution new groups of noise

values of increasing sizes: for each loop (so for each new simulated mean) generate

M (very high) new datasets of each size.

(example: µsimulated 1 = 0.0060 (baseline mean increased by 3%)

1st new dataset (size = 2 noise values) → [0.00596 , 0.00633] → ×M iterations

2nd new dataset (size = 3 noise values) → [0.00591 , 0.00594 , 0.00621] → ×M iterations

. . .

Nth new dataset (size = N+1 noise values) → [0.00628 , 0.00605 , . . . , 0.00594] → ×M

iterations.)

4) For each one of the new N·M datasets of simulated groups of noise values of

different sizes, perform an unpaired T-test to test the null hypothesis that the sim-

ulated datasets come from normal distributions with the same mean and equal but

unknown variance as the baseline of the ClinQC noise values.

In some cases, especially when small sizes of the noise values groups are simulated,

it is possible that the T-test cannot reject the null hypothesis based on so small

datasets. That is why M iterations are required: in this way the rejection ratio of

T-test for each one of the new dataset sizes is

Rejection Ratio =
number of times the null hypothesis is rejected

M total T − tests (iterations)
. (3.6)

A plot of how the Rejection Ratio varies with the different sizes of the simulated

datasets indicates the scoring of the T-test in detecting a change in the noise values,

when a certain number of new images produces noise values distributed with a mean

higher than the baseline. This results in a diagram with similar meaning and shape

as a ROC [17].

5) Now if a threshold is chosen in the y-axis of the Rejection Ratio representation,

for example at 99.5%, the first integer size of the simulated datasets that exceeds
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the threshold in the rejection ratio curve is the minimum number of images that

we need to say, with a high level of certainty, that the mean of the simulated noise

values is actually higher than the baseline, and that the two distributions can be

considered unequal.

6) If this analysis is done for each one of the increasing factors for the baseline mean,

so for each different µsimulated, it is possible to find the minimum number of images

to reject the null hypothesis in function of the baseline increase in percentage: and

this is the curve that answers the original question (how many new clinical images

have to be collected before an automated algorithm can detect a step or a trend in

the noise values with a certain significance level? ).

If the question is less general, in particular if the user wants to know how many

images are needed to detect a step exactly like the one produced by a known effect

like the anti-scatter grid removal or replacement (history examples shown in Section

3.2.1.3), the step simulation can be adapted for this purpose. In this specific case,

there is no need to simulate many baseline increases, since the difference between

µbaseline and µNO grid or µOLD grid in percentage is already known (Section 3.2.1.3).

So the Rejection Ratio with the proper threshold already tells the user how many

images are needed to detect the expected step in a specific occasion.

Figure 3.8: Graphic reproduction of how a trend in the noise values would appear.

3.1.3.2.2 Trend simulation The trend simulation, instead, generates a slope

of noise values and uses a moving window to establish how soon the increasing trend
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(Fig. 3.8) is detected.

1) Find the parameters that describe the distribution of the ClinQC noise values

baseline dataset: µ, σ, skewness and kurtosis (Section 3.2.1.2).

2) Generate new baseline values from the same distribution described with the

parameters found at step 1.

3) Generate new noise values from the same distribution arranged in a slope and

align them to the baseline data points simulated at step 2. The number of simulated

points represents a specific time line (like one week or one month of patients exams),

while the slope reflects the strength of the simulated deterioration occurring in the

imaging system.

4) Choose different sizes of a moving window, that can be dragged point-by-point

on the simulated slope of noise values in order to perform series of unpaired T-test,

between the average value of the simulated noise values that fall inside the moving

window and the baseline distribution of the ClinQC noise values.

5) Each time the moving window of a chosen size is shifted, the T-test scoring

is recorded and normalized by the total number of iterations. This results in the

Rejection Ratio (Eq. 3.6) that can be plotted against the position in the slope when

the alarm is produced.

6) Then a similar approach used in the step simulation (point 5) is adopted: a

threshold of 99.5% in the Rejection Ratio plot specifies the percentage of increase

of the baseline on the slope where the T-test has been able to reveal a change in the

noise values in at least the 99.5% of the iterations.

7) If points 4, 5 and 6 are repeated for different sizes of the moving window, the final

curve of the trend simulation can be obtained by plotting the percentage of increase

of the baseline simulated by the slope, against the size of the window that was able

to detect it. The most important difference between the two simulations presented

in this Section is that the Trend simulation curve is dependent on the chosen time

line and strength of the slope, but both simulations give curves that indicate the

detectability of different conditions by using the ClinQC algorithm.
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3.1.3.3 The ClinQC performance in clinical practice

How would the ClinQC noise algorithm work in clinical practice?

The stable history of the imaging system, monitored with the QClight phantom

analysis, shows the device is in good health. During routine clinical use the anti-

scatter grid was unintendedly inserted facing the wrong direction. This was detected

during the QClight measurement the next Monday morning in July 2016. The

QClight images acquired during the weekly QC were extremely inhomogeneous but

symmetrical along the vertical axis. The noise measurement was lower than the

average QClight baseline. The medical physicists hypothesized that the anti-scatter

grid had been flipped, this was confirmed after a manual check on the imaging

system.

But when exactly did it happen during the previous week? This very specific answer

can’t be given by a weekly QC as the QClight. So here is where the performance of

the ClinQC algorithm has been tested on an actual problem of the imaging system.

It has been possible to observe and study the effects of this human mistake using

the ClinQC algorithm and this became an important part of its validation.

All the clinical images acquired with the X-ray imaging system during the two weeks

when the problem was identified with the QClight analysis were extracted from the

PACS. The ClinQC noise extraction algorithm was run on all the images producing

values that fell within the range of acceptance defined by the baseline limits, while

a clearly visible step down in the noise values and up in the exposure levels was

observed in almost three complete days. Since the noise values after the step differ

from the baseline of a certain percentage that has been measured in Section 3.2.5,

according to the Step simulation output curve (Fig. 3.2.4.1), the minimum size of

the moving window that can be used to detect the step in the noise values is defined.

All these results and procedures are illustrated in Section 3.2.5.

3.1.3.4 Outlier analysis

The analysis of the outlier noise values produced by the ClinQC algorithm is useful

to understand if there are specific categories of patients that are more susceptible

to produce outliers. All the images acquired after the update of the anti-scatter

grid by the end of 2014, extracted from the PACS during my thesis internship, were
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the input of the ClinQC algorithm and their noise values were compared to the

ClinQC baseline. First of all, a correlation between the ClinQC noise outliers and

the exposure outliers was investigated. Second, the sex of the outliers was compared

to the percentage of males and females undergoing a chest X-ray examination. It

was not possible to compare the histogram of ages of the outliers to the distribution

of ages of all the patients of one year, since it would have meant to extract more than

300 GB of additional images from the PACS archive to retrieve patient ages from

their DICOM tags and draw the annual age distribution of patients in the examined

imaging system. For the same reason it was not possible to study the presence in

the noise outliers of patients with nodules or sharp objects in the chest area, since

an automated search algorithm for these structures would have needed to run not

only in the already available images but also in the annual dataset of images that

was not possible to extract, in order to establish a statistical correlation.
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3.1.3.5 Image Pyramids noise extraction algorithm comparison

The image Pyramids are a multi-scale representation of an image which is subject

to repeated smoothing, sub-sampling and/or other manipulations. They are now

widely used for image compression, object recognition and multi-scale analysis, but

also for noise extraction from clinical images [18]. This last approach uses a Lapla-

cian pyramid to decompose the chest images into many digressive spatial frequency

sub-bands, in order to separate the high frequencies (mainly noise) from the low

frequencies (mainly anatomical signal). A Gaussian pyramid is formed by an image

G0 that is subsequently filtered with average blurring kernels and downscaled many

times (first line of the example Fig. 3.9). All the images of the Gi series (with i

= 0 . . .Nlevels of the Pyramid) can then be up-sampled back to the original size,

observing an increasing smoothed appearance (second line, Fig. 3.9). The Laplacian

Pyramid [19] stores the differences pixel-by-pixel of the images at each adjacent stage

of the Gaussian Pyramid Li = Gi − Gi−1, obtaining many residuals images (third

line, Fig. 3.9). The first stage of the Laplacian Pyramid L1 = G1−G0 (original image)

will show mainly the noise information, while at higher levels the noise will be grad-

ually replaced by the low frequency coarse structures.

The ClinQC noise extraction algorithm and the Pyramids method are based on the

same ideas, while the implementation is different. In fact to achieve the extraction

of a noise map from a clinical image both methods combine a smoothing and a

subtraction. The additional step that only the ClinQC algorithm includes is a

normalization by the low frequencies image.

A comparison between these two methods has been performed using the clinical

images forming the baseline dataset Section 3.2.1.2. The Laplacian Pyramid at the

first stage was used as the ClinQC noise map taking a square ROI in the center

and measuring a not normalized noise value but, to better compare the noise values

produced by the two methods, the Laplacian Pyramid at the first stage L1 has been

also normalized by the corresponding low frequencies stage G1. The results are

illustrated in Section 3.2.7.
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Figure 3.9: Example of Gaussian and Laplacian Pyramids.

3.1.3.6 Phantom comparisons

The ClinQC algorithm for noise extraction has been validated performing also a

phantom comparison study. The two phantoms available at LUMC for this purpose

were the QClight copper plate (Section 2.2) and RANDO4 anthropomorphic chest

phantom, representing the skull and trunk of a 175 cm tall male weighing 73.5 kg

(Fig. 3.10).

In order to establish if the ClinQC is a reliable algorithm to extract and measure

noise from clinical images, a correlation between this new patient-based approach

and the QClight phantom-based method has been investigated: the patient-based

technique was simulated by applying the ClinQC algorithm to RANDO anthro-

pomorphic phantom images, acquired with the same protocol used for patients at

different exposures (since images at different exposure levels of the same patient

were not available). The QClight images were acquired within the same range of

4The Phantom Laboratory, Salem, NY, USA
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Figure 3.10: RANDO anthropomorphic phantom.

mAs, using both the phantom and the patient acquisition protocols.

The QClight noise data, saved each Monday during the history of the imaging sys-

tem with the actual setting, have been compared with the ClinQC noise value of one

clinical image per week in the same time line. In this case, only the CoV of the noise

values obtained with the two methods have been compared, while the correlation

was not expected to be observed, since both the clinical and the phantom images

are acquired at approximately constant exposures.

The final test that was performed using phantoms was to confirm the findings of

the image deterioration study using blurring deterioration. In fact, the test was

implemented in order to investigate if blurring the images is the correct way to sim-

ulate an increase of the mAs, in addition to a noise decrease that can be observed in

Section 3.2.3.1. The same images of RANDO and QClight, previously acquired us-

ing, respectively, patient and phantom acquisition protocols at different exposures,
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were used. The images acquired at 1.6 mAs were blurred applying filters with differ-

ent increasing sigma of Gaussian blurring kernels. The resulting noise values were

computed using the ClinQC algorithm for RANDO images, and with the original

method for the QClight images. The dependency of the noise on the exposure and

blur setting were compared by plotting the resulting noise values together in one

figure.

The 2D Noise Power Spectrum (NPS) of the images obtained at different exposures

and after each blurring deterioration are also displayed to compare the effect of mAs

and blurring on the noise frequencies.
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3.2 Results

In this Section all the results of the ClinQC noise study will be presented.

3.2.1 The ClinQC algorithm: noise extraction from clinical

images

3.2.1.1 Properties of the ClinQC extracted noise images

In the high-low frequencies plot of the example shown in Fig. 3.11 we see three major

structures: the central main cluster distributed around 0 and two other secondary

clusters with different slopes.

Figure 3.11: An example of high-low frequencies plot of the ClinQC high frequencies
map, the output of the algorithm at the first step, before the normalization.

After the normalization the high-low frequencies plot changes significantly (Fig.

3.12): we can still see different clusters, but they are more constant and even
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the secondary clusters don’t correlate with the low spatial frequencies any more.

The remaining offset of the secondary clusters in the y-axis is a consequence of the

normalization of the slopes, and represents that there are regions of pixels in the

normalized noise map with some higher or lower intensity than the average noise

signal, which is distributed around 0. In those regions the dependence of the noise

from the body signal, so the slopes in Fig. 3.11, is successfully removed by the

normalization.

Figure 3.12: An example of high-low frequencies plot of the ClinQC normalized noise
map, the final output of the algorithm after the second step of the normalization.

As described in the Methods (Section 3.1.1.1), the histogram of the ClinQC noise

and normalized noise maps is a computationally faster tool that provides the same

information as the high-low frequencies plot. Then, with a simple image segmenta-

tion based on the histogram of the noise maps, it is possible to identify the regions

in the image where the noise was dependent on the anatomical signal and that now

have a offset in their pixel intensities, so the regions of pixels that still belong to the
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lateral clusters.

In Fig. 3.13 the histogram of the ClinQC normalized noise map can be compared
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Figure 3.13: The histogram of the ClinQC normalized noise map. This corresponds to
the high-low frequencies plot shown in Fig. 3.12.

to the high-low frequencies plot shown in Fig. 3.12. The histogram distribution re-

flects the vertical shape of the correspondent plot. The main additional information

that the histogram can give, despite the diagram, is the number of pixels that show

a certain correlation, the y-scale is logarithmic in Fig. 3.13: almost all the pixels

belong to the central peak of the histogram, which is exactly the central cluster of

the correspondent high-low frequencies plot, while the pixels in the lateral cluster

are only a few compared to more than 10 million pixels in the whole image.

To select anatomy dependent noise and define where the lateral clusters of pixels

are located in the ClinQC normalized noise map, a segmentation based on the his-

togram central peak has been performed. The result of the segmentation-based pixel

selection is shown in Fig. 3.14, using two thresholds next to the central peak of the

histogram: -0.1090 and 0.0625 normalized grey values. The binary image shows in

white the few pixels belonging to the lateral peaks of the histogram, and in black
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the majority of pixels coming from the central peak. The white pixels represent

the remaining fingerprint of the patient external body edges and the annotations

automatically burned on the image pixel values (upper right corner). The high-low

Figure 3.14: The result of the histogram-based segmentation performed on the ClinQC
normalized noise image.

frequencies plot and the histogram of the central ROI cropped from the ClinQC

normalized noise map are shown respectively in Fig. 3.15 and Fig. 3.16 in yellow

colour, overlaid onto to the light blue data series belonging to the whole image,

previously shown in Fig. 3.12 and Fig. 3.13. In both the equivalent examples it can

be observed that the central ROI pixel values are distributed around 0 and belong

to the central peak of the histogram without additional peaks. Taking an ROI of

30% of the FOV limits the number of pixels involved in the measurement, in fact the

yellow data series in Fig. 3.15 and Fig. 3.16 do not cover respectively the central

cluster and the central peak of the light blue data series just for this reason. In

Section 6 an idea to better use all the pixels in the image is illustrated, for future

reference.

These properties have been observed for around fifty clinical chest images, even if
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Figure 3.15: High-low frequencies plot for the central ROI (yellow) cropped from the
ClinQC normalized noise map (light blue).

in this Section only one example was shown. The high-low frequencies plots and the

histograms demonstrated to have the same characteristics for all the extracted noise

images, except for different slopes, sizes and shapes of the secondary clusters, but

this does not affect the general meaning of the results.

In Section 3.3.1.1 these results will be interpreted to better understand the properties

of the ClinQC extracted noise images.
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Figure 3.16: Histogram of the central ROI (yellow) cropped from the ClinQC normalized
noise map (light blue).

3.2.1.2 The ClinQC noise values: baseline

The baseline of acceptance for the ClinQC noise values is chosen from all the clinical

images of two weeks after the last maintenance of the system in April 2015. In Fig.

3.17 the baseline for the noise study is displayed, after an outliers removal of the

eleven points that exceeded two times the standard deviation limit around the mean.

The reason to remove the outliers is to have a more stable baseline, that could more

appropriately represent future datasets. The new baseline mean of the ClinQC noise

values after the outliers removal is µ baseline = 0.0058 normalizedgreyvalues5, this is

the reference level for all the future QCs until the next maintenance of the imaging

system. The standard deviation of the noise values forming the baseline is σ baseline

= 0.0003. The red limits in Fig. 3.17 are placed in µ baseline ± 2σ baseline, so the

5The unit measure of the ClinQC normalized noise values is normalized grey values and will be
omitted in all the future Sections and Figures for simplicity.
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Figure 3.17: The ClinQC noise values baseline.

relative spread of acceptance around the mean is:

Relative spread baseline =
4σ baseline

µ baseline

· 100 = 21%, (3.7)

that is exactly four times the commonly used Coefficient of Variation (CoV), de-

fined as CoV = σ baseline/µ baseline = 5%. The normality of the distribution of the

ClinQC noise values in the baseline dataset (Fig. 3.18) has been tested using the

Kolmogorov-Smirnov (K-S) test [20]. The K-S test, with a p-value of 0.43, failed to

reject the null hypothesis at 1% significance level. So the distribution of the ClinQC

noise values in the baseline dataset can’t be considered significantly different than

a standard normal distribution. The Cumulative Distribution Function (CDF) esti-

mated from the ClinQC baseline dataset was compared to the standard normal CDF

by the K-S test, the visual similarity of the two CDFs is clear in Fig. 3.19. Since

the distribution of the ClinQC noise values in the baseline dataset has a slightly

skewed appearance, the additional distribution parameters skewness and kurtosis

were computed for completeness.

Skewness baseline = −0.17

Kurtosis baseline = 2.44
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Figure 3.18: Distribution of the ClinQC noise values baseline, where the black dashed
line is the normal fit of the histogram.
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Figure 3.19: Estimated CDF of the ClinQC noise values baseline dataset, and standard
normal CDF compared by the K-S test.

The skewness is negative, this means that the distribution has a tail towards low

noise values, while a higher occurrence of high noise values is observed. The value is

really small, and usually so small values are not considered to describe a real skewed
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distribution. The same for kurtosis, which is a small value. These computed values

were useful in the simulations (Section 3.1.3.2) in order to generate new random

noise values from the same distribution as the ClinQC noise values baseline dataset,

described by its proper mean, standard deviation, skewness and kurtosis.

An interpretation of the shape of the ClinQC noise values baseline distribution is

given in Section 3.3.1.2.

3.2.1.3 The ClinQC noise values: Relevant clinical examples

In Fig. 3.20 we see some good examples of what happens to the ClinQC noise values

if we change something in the imaging system or if we change the entire imaging

system itself.

For this purpose, many images from different periods in the past were extracted

clinical images
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Figure 3.20: The ClinQC noise values historical examples.

from the PACS. An old imaging system called Thorascan was installed until 2013

in the same X-ray room used now for the ClinQC project. In yellow there are only

few images from that system, but we can clearly see that both the mean and the

standard deviation of the data series were higher if compared with the data series

45



Lisa Bravaglieri: ClinQC

of the new system. When the system was replaced, an old anti-scatter grid with a

focal distance fold = 1.50 m was installed, until December 2014. The average of the

green noise values is 6.4% higher than the blue one, that belongs to images acquired

with the system in the actual conditions, as it is used now with an anti-scatter grid

that has a focal distance fnew = 1.80 m. In light blue we see the results obtained

with some patient images unfortunately acquired when there was no anti-scatter

grid into the new imaging system. Even though there are only few points, it is clear

that the average noise is higher than the baseline, in this case 8.5%.
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3.2.2 The ClinQC algorithm - alternative versions: valida-

tion

In this Section all the preliminary results of the tests of the ClinQC alternative

versions will be presented as an overview of what can be done in the future of the

ClinQC project.

3.2.2.1 Grid sampling approach

Two typical distributions of all the ClinQC noise values measured on the grid of

50×50 sub-ROIs from the ClinQC normalized noise map are shown in Fig. 3.21

and Fig. 3.22 for two different patients, where the mean value of the distribution is

represented in red and the median value in green.

The distribution for Patient # 1 (Fig. 3.21) is unimodal with a long tail towards
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Figure 3.21: Distribution of the ClinQC noise values obtained using the grid sampling
approach for Patient # 1. In red: mean value of the distribution. In green: median value

of the distribution.

higher noise values. The peak is formed by almost all the sub-ROIs, while only

few ROIs register higher noise levels. The median value better falls inside the peak

of the noise distribution and so it represents a different estimation of the image

noise than the mean value, that is shifted to higher noise levels for the presence of

this low counts tail in the distribution of the ClinQC noise values. Using the mean

allows to remove the sub-ROIs that give a higher standard deviation, so to remove

the influence of the regions in the normalized noise map that contain more than

noise, like the signal generated by nodules or implants edges for example. It can
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Figure 3.22: Distribution of the ClinQC noise values obtained using the grid sampling
approach for Patient # 2. In red: mean value of the distribution. In green: median value

of the distribution.

also happen that the distribution of the noise values is bimodal when the intruder

object in the ROI (pacemaker, implant or medical device) is more prominent, like

for Patient # 2 (Fig. 3.22).

Fig. 3.23 shows the comparison between the ClinQC original algorithm and the

clinical images (baseline)
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Figure 3.23: Comparison of the ClinQC original algorithm and the ClinQC modified
method using the sampling grid approach for the images of the baseline (Section 3.2.1.2).

ClinQC modified algorithm using the sampling grid approach for the same group

of images: the noise is globally lower using the ClinQC-alternative algorithm; this
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means that taking only one big ROI, instead of doing this analysis, can make us

measure something more than the noise itself for patients with implants, that origin

asymmetries in the noise distribution and affect the noise measurement. The two

images where we saw the biggest difference in percentage using one method or the

other (the histogram of the differences between the two methods is shown in Fig.

3.26) were images of patients with exactly a pacemaker and other medical devices,

suggesting that the large deviation in these cases was due to those objects. The two

images are shown in Fig. 3.25 and Fig. 3.24.

Figure 3.24: Patient with pacemaker. Figure 3.25: Patient with medical device.
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ClinQC original - ClinQC modified with sampling grid (%)
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Figure 3.26: Histogram of the biggest differences in percentage in the ClinQC noise
values obtained using the ClinQC original algorithm and the ClinQC modified algorithm
using the sampling grid approach, for the images in the baseline period (Section 3.2.1.2).

3.2.2.2 ClinQC applied to mammography

An example of the ClinQC mammography normalized noise map and the selected

ROI is displayed in Fig. 3.28 and the original image in Fig. 3.27.

The results obtained running the ClinQC-alternative algorithm on the entire

dataset of mammograms and tomosynthesis reconstructed projections are shown

in Fig. 3.29. The CoV of the ClinQC noise values is 14%. This might be due to

the use of different kVp filtration for each patient, that could have played a more

important role in the variability of the noise values, than in the ClinQC noise values

baseline dataset for chest images that are acquired with a fixed kVp and present a

CoV of 5%.

Four noise values are considered outliers since they exceed the red acceptance limit

of +2σ and these four images contained some surgery staples, a medical implant

used during surgeries, that made significantly increase the noise values over the up-

per acceptance limit. Similar considerations as in Section 3.2.2.1 can be made since

these artefacts can leave a clear sign in the noise map producing a shift towards

higher noise values.
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Figure 3.27: A typical mammogram. Figure 3.28: The ClinQC noise map of a
mammogram with the ROI marked in yel-

low.
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Figure 3.29: The ClinQC noise values, exposure and kVp computed on the dataset of
mammograms and tomosynthesis reconstructed projections.
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3.2.3 Image deterioration study

In this Section all the results of the image deterioration study (Section 3.1.3.1) will

be displayed.

3.2.3.1 Blur
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Figure 3.30: Output of the image deterioration study that shows the decrease of the
mean of the noise values measured after blurring, with different increasing amounts of blur,
41 different groups of 50 images, together with the first blue group made of 50 original

X-ray images of the chest.

In Fig. 3.30 is displayed the decrease of the mean of the noise values measured after

blurring, with different increasing amounts of blur, 41 different groups of 50 images,

together with the first blue group made of 50 original X-ray images of the chest.

The ClinQC noise values start to be clearly reduced when the σ of the Gaussian
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blurring kernel used to smooth the images is high enough to actually produce a

noise reduction on the images, so when σ=0.4 pixel and the kernel size is 3×3pixel

(pixelsize = 0.12×0.12 mm). Then a rapid fell of the ClinQC noise values is observed,

until a saturation to the lowest values around 0.5 · 10−3. At low noise values, after

σ=1 pixel all the noise has been erased from the image by the blurring.

In Fig. 3.31 is shown the percentage of variation of the average value of each group

of the ClinQC noise values represented in the previous Fig. 3.30, and the error bar

is the relative spread of each group of values. The average values are normalized by

the mean of the ClinQC noise values of the first group of original chest images. The

decrease of the ClinQC noise indicator in percentage is extremely fast with a high

slope, even with small amounts of blur.

The appearances of the same detail in the lung of a patient chest X-ray image
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Figure 3.31: The decrease in percentage of the mean of the noise values measured during
the image deterioration study with blurring.

used for this analysis, before and after blurring with σ = 1 pixel, are represented

respectively in Fig. 3.32 and Fig. 3.33. This slightly smoothed effect is barely

detectable by visual inspection, but the ClinQC translates it in 70% lower noise

values.
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Figure 3.32: A detail in the lung of a pa-
tient chest X-ray image.

Figure 3.33: A detail in the lung of a pa-
tient chest X-ray image after blurring with

σ = 1 pixel.

Also the variation of the relative spread (Eq. 3.7) of the ClinQC noise values has

been investigated, using for each blurring level the same group of 25 original images

(Fig. 3.34). The percentage of variation of the relative spread of each group of

noise values of the deteriorated images is displayed in Fig. 3.35. When the mean of

the noise values decreases by 70% (Fig. 3.31), their relative spread increases three

times, following a logarithmic trend (Fig. 3.35).

55



Lisa Bravaglieri: ClinQC

C
lin

Q
C

 n
or

m
al

iz
ed

 n
oi

se
 v

al
ue

s

×10-3

0

1

2

3

4

5

6

7
Image deterioration study: blur

SIGMA of the GAUSSIAN BLURRING KERNEL (pixel)or
ig

in
al

 im
ag

e
Si

gm
a 

0.
1

Si
gm

a 
0.

2
Si

gm
a 

0.
3

Si
gm

a 
0.

4
Si

gm
a 

0.
5

Si
gm

a 
0.

6
Si

gm
a 

0.
7

Si
gm

a 
0.

8
Si

gm
a 

0.
9

Si
gm

a 
1

Si
gm

a 
1.

1
Si

gm
a 

1.
2

Si
gm

a 
1.

3
Si

gm
a 

1.
4

Si
gm

a 
1.

5
Si

gm
a 

1.
6

Si
gm

a 
1.

7
Si

gm
a 

1.
8

Si
gm

a 
1.

9
Si

gm
a 

2

Figure 3.34: Output of the image deterioration study that shows the decrease of the
spread of the noise values measured after blurring, with different increasing amounts of

blur, the same group of 25 original X-ray images of the chest.
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Figure 3.35: The increase in percentage of the relative spread of each group of noise
values of the deteriorated images measured during the image deterioration study with

blurring.
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3.2.3.2 Gaussian noise
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Figure 3.36: Output of the image deterioration study that shows the increase of the
mean of the noise values, measured after the addition of Gaussian noise with 0 mean and
variances computed in order to achieve prefixed levels of deterioration of the estimated

SNR of different random sub-sampled groups of 25 original chest X-ray images.

Adding to different groups of 25 chest images different amounts of Gaussian noise,

with 0 mean and variances computed in order to achieve prefixed levels of deteri-

oration of the estimated SNR, such as linearly decreasing the SNR by 2% to 30%,

leads to a huge and rapid increase in the ClinQC noise values.

In Fig. 3.37 the percentage of variation of the ClinQC noise values after addition of

Gaussian noise is displayed setting the baseline at 100%.

The SNR was computed using the Eq. 3.2 with a unit measure in dB, since it

allows to use the entire image signal and so the entire noise map information. While
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Figure 3.37: The increase in percentage of the mean of the noise values measured during
the image deterioration study with Gaussian noise.

the traditional Eq. 3.3 required the automated selection of specific ROIs in the

image, for example a rectangular region on the spine which is nearly always placed

in the same central position for different patients. The traditional approach, from a

first analysis, seemed to be less robust and less appropriate for this study than the

method that uses the entire image signal and measures the SNR in dB.

An example of the appearance of one detail in the lung of a patient is represented,

respectively before and after addition of Gaussian noise, in Fig. 3.38 and Fig. 3.39.

In this example, reducing the estimated SNR by 30%, the ClinQC noise values be-

come three times higher (300%).
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Figure 3.38: A detail in the lung of a pa-
tient chest X-ray image.

Figure 3.39: A detail in the lung of a
patient chest X-ray image after addition of
Gaussian noise, with 0 mean and variance
computed in order to achieve a decrease of

the estimated SNR by 30%.

Also in this case, the variation of the relative spread (Eq. 3.7) of the ClinQC noise

values has been investigated, using for each different addition of Gaussian noise the

same group of 28 original images (Fig. 3.40).

The relative spread of the ClinQC noise values of each group of deteriorated images

is displayed in Fig. 3.41, and it follows a quadratic law.
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Figure 3.40: Output of the image deterioration study that shows the increase of the
spread of the noise values, measured after the addition of Gaussian noise with 0 mean and
variances computed in order to achieve prefixed levels of deterioration of the estimated

SNR of different random sub-sampled groups of 28 original chest X-ray images.
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y = - 0.014*x2 + 1.1*x + 25

Figure 3.41: The increase in percentage of the relative spread of the noise values mea-
sured during the image deterioration study with Gaussian noise.
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3.2.4 Statistical analysis with simulations

3.2.4.1 Step simulation

An example of the rejection ratio plot that is obtained at point 4 of the step simula-

tion is displayed in Fig. 3.42: the mean of each simulated group of noise values was

3% higher than the baseline, and the sizes of the groups started from 2 to 150 images

at steps of 2 with M = 1000 iterations. This plot represents the score of the T-test

in a large number of iterations for each simulated dataset size, so the percentage of

iterations when the T-test has been able to detect that the simulated noise values

of a certain size where actually generated from a distribution with a mean higher

than the baseline. Considering the 99.5% threshold in the rejection ratio graph,
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Figure 3.42: Rejection ratio (%) resulting from the step simulation when the baseline
was increased by 3%.

with a dataset of at least 98 new images we are nearly always able to reject the

null hypothesis that the simulated dataset come from a normal distribution with

the same mean and equal but unknown variance as the baseline of the ClinQC noise

values (significance level set at p¿0.005): so it is nearly always possible to detect that

the simulated points are generated from a distribution with equal variance as the

baseline dataset but a 3% higher mean. While with new datasets of only 25 images
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the T-test is able only in 30%-40% of cases to detect this change. So if something

happens to the system that produce a noise increase of 3%, an automated algorithm

cannot always detect for sure a deviation from the baseline mean on the following

25 clinical images. This is why a high threshold of 99.5% is chosen for the rejection

ratio graph, and this allows us to state that with at least 98 random patient images

acquired after the onset of the problem, a detection algorithm based on T-test would

be able to reveal a change in the noise levels.

Following the next points of the step simulation algorithm introduced in Section

3.1.3.2.1, the same analysis just shown is repeated for a set of baseline increases in

percentage from 3% to 15% higher simulated mean. The final output curve of the

step simulation is displayed in Fig. 3.43. This final curve shows that, simulating a
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Figure 3.43: Final output curve of the step simulation (pink). The light blue stars
represent the output values of the two simulations of the anti-scatter grid removal and

replacement.

set of noise increases that corresponds to different possible changes in the imaging
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system quality, the algorithm needs the acquisition of different numbers of new

clinical images before the detection of the step in the noise levels is possible in the

99.5% of cases. This follows the exponential trend

y = aebx + cedx

with parameter values a = 895.70, b = −0.83, c = 38.76 and d = −0.15.

This curve means that in only one day, with 50 new clinical chest X-ray images, it

would be possible to observe an increase in the noise levels of 4%, that can be linked

to a decrease in the exposure (mAs) of 8%.

The second study that used a slightly modified version of the step simulation code

is more specific to the imaging system in use. The minimum number of clinical

images needed to detect an accidental anti-scatter grid removal is derived from the

Rejection ratio diagram and is shown in Fig. 3.44. The simulation was run with 2000

iterations and the mean of the new groups of simulated noise values was µNO grid =

8.5% higher than the baseline. The minimum number of images to check with an

automated algorithm based on T-test if the anti-scatter grid has been removed is 10

images.

In Fig. 3.45 the same analysis is done in case the anti-scatter grid is replaced with

the old one installed in the system until 2014, or with an equivalent one with the

same focal distance as the old one. Since the average noise values registered with

the old anti-scatter grid were 6.4% higher than the actual baseline, the automated

QC algorithm would need 19 images to detect the hypothetical downgrade of the

anti-scatter grid, of course more than with the previous example, since the two

distributions of the noise values of the baseline and the new simulated points are

more overlapped. The two output values of these simulations correspond to the fit

of the more general step simulation output curve (light blue stars in Fig. 3.43).
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Figure 3.44: Rejection ratio (%) obtained with the step simulation of the anti-scatter
grid removal.
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Figure 3.45: Rejection ratio (%) obtained with the step simulation of the anti-scatter
grid replacement.
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3.2.4.2 Trend simulation

The trend simulation was implemented to simulate two different linear time depen-

dent deteriorations of the imaging system. The first example used a time line of

one week (250 images) and the second one a time line of one month (800 images).

In both the examples the increasing slope started at the baseline level and reached

30% higher noise values. Both the simulated baseline points and the simulated slope

points were randomly generated at every iteration, the example of the one month

time line is shown in Fig. 3.46.

The sizes of the moving windows moved along the month time line were 50, 120,
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Figure 3.46: Example of the one month time line of the simulated ClinQC noise values
generated by the trend simulation.

190, 260, 330 and 400 images. The Rejection ratio in Fig. 3.47 shows the scoring re-

sults of the T-test using a moving window of size 50 images on the simulated month

time line. With a threshold of 99.5%, only when the moving window of 50 noise

values reaches an average 5% higher than the baseline, the T-test is able to reveal

that something in the noise values has changed, that in this case is not a step but a

simulated trend: since the 50 points falling each time inside the moving window are
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arranged on a slope, this simulation becomes a specific case of the step simulation

by considering the average noise value inside the window.

Repeating this analysis for all the sizes of the moving windows listed before, the
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Figure 3.47: Example of the rejection ratio (%) obtained performing the trend simulation
on the month time line.

green curve in Fig. 3.48 is obtained. The data points were fitted with an exponential

curve y = aebx with parameter values a = 1.13 · 103 and b = −0.64.

The same analysis was performed on the week time line, with window sizes of 10,

28, 46, 64, 82 and 100 images. The final curve is represented in the same diagram,

the pink data points have been fitted using an exponential curve y = aebx with

parameter values a = 7.03 · 102 and b = −0.69.

From the two final output curves it is easy to observe that a faster slope (week time

line) can be detected easier than a slower slope (month time line), where more im-

ages have to be included using a larger window to detect the same baseline increase

in percentage.
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Figure 3.48: Output curves of the trend simulations performed on the one week time
line and the one month time line.

3.2.5 The ClinQC performance in clinical practice

In this Section two interesting examples of the performance of the ClinQC noise

extraction algorithm in clinical practice are shown.

3.2.5.1 Detection of flipped anti-scatter grid

The appearance of the QClight images acquired with the anti-scatter grid in its

correct positioning and with a flipped anti-scatter grid are displayed in Fig. 3.49

and Fig. 3.50. The correct positioning makes the image appear homogeneous, while

the flipped grid blocks the lateral photons that make the image appear whiter in

the lateral vertical sides and darker in the center, where the majority of photons

arrived.

Also the clinical image quality is strongly reduced when the anti-scatter grid is not
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Figure 3.49: The appearance of a typi-
cal QClight phantom image acquired dur-

ing the weekly QC.

Figure 3.50: The appearance of QClight
phantom image acquired with a flipped

anti-scatter grid.

placed in its correct positioning. The contrast between the lung region and the

surrounding chest structures becomes weaker, degrading the diagnostic quality of

the image. The appearance of two images of the same patient who came for multiple

examinations in the past and during the days where the anti-scatter grid was flipped

are displayed respectively in Fig. 3.51 and Fig. 3.52.

Fig. 3.53 represents the noise values and the exposures measured on all the clinical

images of the week when the anti-scatter grid was flipped. Monday 11 July 2016

the QClight image was homogeneous (Fig. 3.49), while on Monday 18 July 2016 the

grey levels were not uniform at all (Fig. 3.50). By visual inspection, it is possible

to identify the days where the anti-scatter grid was flipped since it produced higher

exposures and lower noise values. The AEC uses three ionization chambers, one in

the center of the acquisition field and two on the lateral sides where less photons

reached them due to a flipped grid. So the AEC stopped the flux of photons at

a later acquisition time and the exposures of the patients became generally higher

than for the baseline. The noise in the QClight images is measured on a central ROI

so where more photons reached the detector, which generally produced lower noise

values than usual.

70



3 – Noise study

Figure 3.51: The appearance of one pa-
tient image acquired in 2015 with the same

imaging system now in use.

Figure 3.52: The appearance of the same
patient image acquired in 2016 with the

anti-scatter grid flipped.

The points where the human eye could observe lower noise values had actually

an average noise level 9.3% lower than the baseline. So, according to the step

simulation output curve (Fig. 3.43), the minimum number of images, coming from

a distribution with a mean 9.3% lower than the baseline, that are needed to be able

to detect the step using a T-test within a moving window are at least 10. The result

of the alerts produced by a moving window of size 12 images moved along all the

images of the complete week are shown as example in Fig. 3.54. The window was

chosen slightly larger, since the step simulation does not simulate outliers in the noise

distribution, that can appear instead in regular clinical practice: so the minimum

number of images suggested by the step simulation output curves does not keep in

account that in the real clinical practice there could be more patients giving outliers

than the ones belonging to the tails of the noise values distribution. So the window

is kept larger as an approximation to correct for this lack of simulated outliers

patients. A red vertical line is an alert that the algorithm produces at the ending

position of the moving windows when the T-test is able to detect a change. There

are false positive alerts the 12th of July, but the radiologists did not notice something

abnormal in the image quality on the images of that day, so these false alerts are
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Figure 3.53: The noise values and the exposures measured on all the clinical images of
the week when the anti-scatter grid was flipped in July 2016.

probably due to the presence of outliers. From this dataset, the patient images that

were outliers both in terms of noise and dose were removed from the time line, since

a change in the exposure is linked to a change in the noise but not necessarily to

a change in the quality of the imaging system. Despite these first false alerts, the

interesting thing is that in the three days after there is a continuum of alerts that

corresponds perfectly to the period where also one of the radiologists working at

LUMC realized a decrease in the image quality of the chest X-ray examinations. So

the ClinQC detection algorithm was successfully able to select the days where the

anti-scatter grid was flipped.

An improvement of the detection of specific problems in the imaging system may

be achieved by using a machine learning tool [21]. The idea would be to perform

a statistical classification using the noise and dose parameters derived from clinical
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Figure 3.54: The result of the alerts produced by a moving window of size 12 images
moved along the ClinQC noise values of all the images of the complete week when the

anti-scatter grid was flipped in July 2016.

images as features. The example of the flipped anti-scatter grid could be partially

used as training set, to train the classifier to recognize future occurrences of the

same situation from the knowledge about the combination of noise and dose values.

This hypothesis is supported by one first simple representation (Fig. 3.55) of the

distribution of regular clinical data (in blue) and clinical data from images acquired

with the flipped anti-scatter grid (in red). This diagram shows that the data of the

two classes can be separated which suggests that these two features could be the

correct input for a classifier used with the purpose to recognize if the anti-scatter grid

has been flipped. More thorough analyses and the implementation of the classifier

need to be performed in order to investigate if the use of pattern recognition tools

could be a way to find a better detection parameter for the QC, and if this can be

applied for the detection of other problems in the imaging system.
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Figure 3.55: Representation of ClinQC noise values and exposures recorded from regular
clinical data (in blue) and clinical data from images acquired with the flipped anti-scatter

grid (in red), with lateral distributions.

3.2.5.2 Detection of anti-scatter grid replacement

The second example of the performances of the ClinQC detection algorithm in clini-

cal practice regarded the anti-scatter grid update that happened at the end of 2014.

The noise values and the exposure of a selection of images acquired from September

2014 until February 2016 are displayed in a time line in Fig. 3.56. This example

required a ”backward” implementation: the moving window of 19 images was moved

backward to simulate the detection of a downgrade of the imaging system, so a pas-

sage from the actual anti-scatter grid to the old one. The result of the detection is

successful also in this case and without any false alerts, since the period where the

old anti-scatter grid was detected with a continuum of alerts between September

2014 and November 2014 where the old anti-scatter grid was still being mounted on

the actual imaging system.
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Figure 3.56: The result of the alerts produced by a moving window of size 19 images
moved along the ClinQC noise values of a dataset of clinical chest X-ray images at the

turn of the anti-scatter grid update occurred at the end of 2014.

3.2.6 Outlier analysis

In Fig. 3.57 the ClinQC noise values of all the clinical images acquired with the

actual system setup are displayed in a time line, and the outliers are marked in

red according to the acceptance limits derived from the baseline (red lines). The

exposure levels of the same images are represented in Fig. 3.58, with the mAs of

the ClinQC noise outliers marked in red. Only 10% of the images with noise outlier

values were made with outlier exposure values, so it is not possible to imply that

there is a causality between an outlier exposure value and an outlier noise value.

Fig. 3.59 shows that 70% of the ClinQC noise outliers are females, while only 30%

are males. It has been possible to retrieve the sex of patients undergoing a chest

X-ray examination from the PACS, without extracting all the images of one year:

among approximately 15 thousands patients per year, only 47% are females. So in

this case is possible to establish that there is an influence of the sex of the patients
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Figure 3.57: The ClinQC noise values of all the clinical images acquired with the actual
system setup displayed in a time line; in red are marked the outliers according to the

baseline red acceptance limits.

on the chance of finding the ClinQC noise outliers: in particular, the probability

that a female patient produce a noise outlier P (o | f) is almost 3 times higher than

for a male patient (respectively 7% and 2.6%). This can be obtained from a simple

probabilistic analysis applying

Nfemale outliers = Nfemales · P (o | f).
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Figure 3.58: The exposures of all the clinical images acquired with the actual system
setup displayed in a time line; in red are marked the exposures of the outlier images in

terms of the noise (Fig. 3.57).
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Figure 3.59: Percentage of outliers in terms of the noise that are images of female or
male patients.
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3.2.7 Image Pyramids noise extraction algorithm compari-

son

An example of the chest noise maps extracted with the Pyramids method is rep-

resented in Fig. 3.60 as first level of the Laplacian Pyramid, and Fig. 3.61 shows

the same image normalized by the first level of the Gaussian Pyramid. It can be

observed that in the left noise map the anatomy of the patient is still prominent, like

in the intermediate image that the ClinQC algorithm produces; while, after the nor-

malization, only the main external edges of the patient body can be distinguished.

Figure 3.60: L1 Pyramid image example. Figure 3.61: L1 norm Pyramid image ex-
ample.

Also the high-low frequencies plots (Fig. 3.62 and Fig. 3.63) and the histograms (Fig.

3.64 and Fig. 3.65) of the extracted Pyramid images show the same characteristics

observed for the ClinQC intermediate images and normalized noise maps. Also in

this case, taking a central ROI in the noise images is a way to reduce in the noise

measurement the anatomical information that is present in these maps.

The comparison between the ClinQC normalized noise values and the Pyramid nor-

malized and not normalized noise values measured on all the images forming the

baseline dataset is shown in Fig. 3.66.
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Figure 3.62: High-low frequencies plot of
L1 Pyramid image.

Figure 3.63: High-low frequencies plot of
L1 norm Pyramid image.
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Figure 3.64: Histogram of L1 Pyramid
image.
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Figure 3.65: Histogram of L1 norm Pyra-
mid image.

The ClinQC algorithm and Pyramid (normalized) algorithm have 55% of their

outliers in common, while the ClinQC algorithm and Pyramid algorithm have only

9% of outliers in common. The CoV of the ClinQC noise values is 5%. Instead,

the CoV of Pyramid normalized noise values is 8.5%. Pearson correlation coefficient

computed for the noise values obtained with the ClinQC algorithm and the Pyramid

(normalized) algorithm is 0.83, the clear correlation is visually represented also in

Fig. 3.67.
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Figure 3.66: The comparison between the ClinQC normalized noise values and the
Pyramid normalized and not normalized noise values measured on all the images forming

the baseline dataset.
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3.2.8 Phantom comparisons

In Fig. 3.68 the red dataset represents the noise values decrease observed by acquir-

ing 4 RANDO and 4 QClight images at increasing mAs. A clear correlation between

the two methods can be observed with a high Pearson correlation coefficient of 0.98.

Fig. 3.68 also displays the simulated exposure decrease achieved by blurring the

images acquired at 1.6 mAs with increasing σ of Gaussian blurring kernels (in blue).

The simulated and the real mAs increase lead to noise values that show very similar

trends, which however do not perfectly overlap.
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Figure 3.68: The blurring-induced decreasing effect (in blue) and the exposure-induced
increase (in red) of the ClinQC noise values, measured on RANDO images, and the QClight

noise values.

To better understand these two effects the 2D NPS of the images of both phantoms

was computed: Fig. 3.69, Fig. 3.70 for the QClight images and Fig. 3.71, Fig. 3.72

for RANDO images. As can be observed, the increasing exposure during the image
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acquisition does not significantly change the frequency distribution of the noise for

both phantoms, while the blurring effect suppresses the high frequencies of the noise

more efficiently, being a low-pass filter. This slightly different behaviour can explain

why with an image deterioration study with blurring is not able to achieve exactly

the same decrease of the noise values observed in Fig. 3.68 acquiring the images at

different exposure levels. This is a limitation to be considered in the interpretation

of the results of the image deterioration study with blurring.

Exposure = 1.6 mAs Exposure = 2.5 mAs Exposure = 4.0 mAs Exposure = 6.3 mAs

Figure 3.69: The 2D NPS of the QClight images acquired at different exposure levels.

Original QClight image σ = 0.35 pixel σ = 0.42 pixel σ = 0.48 pixel σ = 0.55 pixel

Figure 3.70: The 2D NPS of the QClight images blurred with different σ of Gaussian
blurring kernels.

Exposure = 1.6 mAs Exposure = 2.5 mAs Exposure = 4.0 mAs Exposure = 6.3 mAs

Figure 3.71: The 2D NPS of RANDO images acquired at different exposure levels.

Fig. 3.73 shows a comparison between the ClinQC and the QClight methods: the

graph shows the noise values obtained applying the ClinQC algorithm on one clinical
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Original RANDO image σ = 0.35 pixel σ = 0.42 pixel σ = 0.48 pixel σ = 0.55 pixel

Figure 3.72: The 2D NPS of RANDO images blurred with different σ of Gaussian
blurring kernels.
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Figure 3.73: A comparison between the ClinQC and the QClight methods applied on the
history dataset of, respectively, one clinical chest X-ray image per week and one phantom

image per week.

image per week (in blue), acquired each Monday morning in the same time line of

the QClight dataset. Only with ClinQC it is possible to observe the initial globally

higher noise levels, corresponding to the period when the old anti-scatter grid was

installed. This is not observable using the QClight method since the focal distance

of the old grid was comparable to the SID setted for the QClight images, so the old

grid was optimal for the phantom-based QC acquisition protocol, and the measured
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noise was generally lower than the one registered after 2014 with the actual imaging

system setup. After 2014, in fact, the new anti-scatter grid was optimal for the

patients acquisition protocol and the noise in patient images was reduced by 6.4%,

while with the QClight method the noise increased by 2.7%.

The CoV of the QClight history data after the anti-scatter grid update is 10%,

against the 5% of the ClinQC baseline dataset.
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3.3 Discussions

In this Section, all the interpretations of the results of the ClinQC noise study and

the assumptions will be presented.

Since patient images are always double-processed, the implemented unknown filters

and corrections might change a lot the characteristics of the raw patient images

affecting the QC measurements. In the end, the information that we can get about

the imaging system studying its clinical images is altered by all these operations.

The assumptions that we can make after analysing the results are slightly weaker

than if we had the chance to work directly on the unprocessed raw images. This

is one of the main limitations of the ClinQC project and is one of the reasons why

working on clinical image quality is a big challenge, especially with the purpose

of deriving secondary information about the system quality directly from clinical

images. For example, part of the noise is always lost after the image processing,

and some filters or the flat field correction might flatten all the inhomogeneities.

Even with these limitations, there is still a lot of interesting work that can be done

towards this direction.

3.3.1 The ClinQC algorithm: noise extraction from clinical

images

3.3.1.1 Properties of the ClinQC extracted noise images

The results in Section 3.2.1.1 show why the ClinQC noise extraction algorithm needs

a normalization step. If there is a slope in the high-low frequencies plot, a correlation

between high and low spatial frequencies, it means that the noise map extracted at

the first step of the ClinQC algorithm is still patient-dependent. Because there is

still the influence of the anatomy of the patient, represented by the clusters of pixels

in the noise map that correlates with the body signal, and this fingerprint is also

clearly visible (Fig. 3.3).

That is why in the ClinQC algorithm a normalization is included, dividing the

high frequencies map (representing mainly noise) by the smoothed image a more

patient-independent noise map can be observed (Fig. 3.4). The normalized high-

low frequencies plot, computed on the final noise image after the normalization step
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(Fig. 3.12), demonstrate that the correlation between the noise and the anatomical

signal is reduced by the normalization.

But where do the pixels in the lateral clusters come from? The answer to this

questions is the first step towards the comprehension of the ClinQC algorithm func-

tioning. As described in the Results (Section 3.2.1.1), the lateral clusters belong

to some regions in the image where the presence of the noise increased with the

intensity of the body signal and where, after the normalization, the noise intensity

has an offset with respect to the average noise level distributed around 0. Those

pixels represent the presence of the patient in the scene and not the noise intrin-

sically generated during the image acquisition: that signal mustn’t be included in

the QC measure, otherwise the ClinQC noise value will be a patient-dependent met-

ric, not relevant for the system stability investigation that have to be performed.

Instead, the pixels in the noise map that contain only the noise generated by the

imaging system and the patient during the image acquisition belong to the central

cluster of the high-low frequencies plot and they should be the only ones involved in

the ClinQC algorithm noise measurement. From the study of the properties of the

ClinQC extracted noise images using the high-low frequencies plot and the histogram

(Section 3.1.1.1), and after a simple image segmentation, it has been possible to un-

derstand that the ClinQC normalized noise map has only a small remaining trace of

patient-dependent noise which is visible and measurable only over the external edges

of the patient body and that can be easily cut off taking a square ROI in the center

of the image, since the positioning of the patients is standardized and that region

does not contain the external body edges. The properties of the ROI pixel values

(high-low frequencies plot in Fig. 3.15 and histogram in Fig. 3.16) enlightened this

conclusion. In this way, selecting an ROI in the center of the chest radiography, a

less patient-dependent noise measure is obtained from the ClinQC normalized noise

map; and the ClinQC noise values represent the noise generated by the imaging sys-

tem during the clinical image acquisition without a strong influence of the presence

of a patient.
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3.3.1.2 The ClinQC noise values: baseline

As shown in Section 3.2.1.2 the distribution of the ClinQC noise values in the baseline

dataset can be considered normal with small values of skewness and kurtosis. The

skewness value is negative and small, this means that some patient images contains

higher noise values than the average. Since the relationship between the noise and

exposure in radiographic images is known, the ClinQC normalized noise map lead

to measure a noise-to-signal ratio that is proportional to 1/
√
mAs, and Section 4.2.1

shows that also the distribution of the exposure in the baseline dataset has a tail, and

the peak is shifted to smaller mAs than the average. This is due to the AEC device

that allows different mAs to different patients according to their body thicknesses

and attenuations. Two main reasons can explain these shapes. First, the average

body weight in the world is not symmetrically distributed but skewed, the peak

is shifted towards smaller weights [22], so the smaller thicknesses of people could

lead to non-symmetrically distributed exposures, that are then inversely reflected

in non-symmetrically distributed noise values. For a complete analysis it should be

better to study the distribution of patient weights only on patients that come for

a chest examination in the selected X-ray room. Second reason, the optimization

of the acquisition protocol could have been set to give always the lowest possible

dose to patients in order to have a uniformly distributed quality of the images, so

the exposure could be set non-linearly to the patients body weight. This could

introduce a worse image quality in some clinical images, that could be corrected in

the post-processing, in order to have a uniformly distributed image quality for all

the patients even if the exposures are not linearly distributed. This has not been

verified in the scope of this Thesis.

3.3.1.3 The ClinQC noise values: Relevant clinical examples

The interesting historical examples shown in Fig. 3.20 are useful to realize that the

ClinQC noise values really change significantly if the imaging system is different or if

something in the imaging system changes, like the focal distance of the anti-scatter

grid, its presence or its correct positioning. It is easy to understand why the noise

is higher without the anti-scatter grid since it is placed there to remove the noise

and enhance the sharpness, and the reason why the noise is lower with the new
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installed anti-scatter grid is because it has an optimal focal distance for this specific

X-ray examination, since it is comparable to the source-patient distance of 2.00 m.

These were interesting examples of the detection of the quality and the settings

of the system but they were not strong enough to be used as the only source of

validation for the project, this is the reason why other sources of validation have

been implemented in this Thesis work, such as the image deterioration study, the

statistical analysis with simulations and the performance of the ClinQC algorithm

in clinical practice.

3.3.2 The ClinQC algorithm - alternative versions

3.3.2.1 Grid sampling approach

The grid sampling approach demonstrated to be the first possible improvement to

the ClinQC noise extraction algorithm. The importance of this addition to the algo-

rithm is due to the fact that many patients that come for a chest X-ray examination

have some artificial objects placed inside or outside their body. These sharp struc-

tures leave clear signs in the noise maps extracted with the ClinQC algorithm, and

this additional signal is included in the noise measurement, giving a higher estima-

tion of the noise level than the true value. With the grid sampling approach, it is

possible to remove the influence of these outliers in the noise distribution on the

final ClinQC noise value. The median value of the distribution is less sensitive to

implant induced deviations and hence better represents the true value of the noise

generated during the imaging examination that the ClinQC algorithm wants to find.

For this reason the ClinQC-alternative algorithm results may be more robust and

efficient even in presence of patients with implants, catheters, pacemakers or other

medical devices covering the chest area.

3.3.2.2 ClinQC applied to mammography

From the preliminary results presented in Section 3.2.2.2 we understood that more

accurate analyses are required to investigate if the kVp could have played a key

role in giving a higher spread in the noise values than in the chest baseline dataset.

Probably, in addition to this adaptation of the acquisition protocol to different
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patients, the higher spread is due to the fact that two different obtained types of

images are considered together in this preliminary study.

However, the algorithm with some small updates seems to be applicable also to other

imaging anatomies, giving normalized noise maps with the same visual appearance

as for the chest. More analyses are needed in order to study the properties of these

images and to tune the algorithm parameters, before applying this QC algorithm in

clinical practice.

3.3.3 Image deterioration study

With the image deterioration study we proved that the ClinQC noise extraction

algorithm provides a highly sensitive parameter for the noise measurement in an

X-ray imaging system QC.

Blur With a blurring deterioration it has been possible to observe a fast decrease

in the ClinQC noise values. In particular, its response curve to the introduced

smoothing presents a high slope, which means that even small changes in the noise

of the imaging system are translated in high variations of the ClinQC noise values.

The simulation of a decrease in the noise values represents, as explained in Section

3.1.3.1, an increase in the quality of the imaging system, that can occur if a new

proper anti-scatter grid is installed for example, or it can represent an increase in

the exposure (mAs) given to the patients during the image acquisition. This is why

from the ClinQC noise extraction algorithm it is possible to double check the AEC

device that controls the flux of X-ray photons that are released from the tube, pass

through the patient and reach the detector. If there is a malfunctioning of this

complex system the ClinQC algorithm will detect it both with the ClinQC noise

values and with the exposure registered in the DICOM tags of each image.

The increasing behaviour of the relative spread, that we observe the more we smooth

the images, means that the relative distribution of the noise values becomes wider

the more the noise is artificially reduced: so we might erroneously imply that low

noise values correlate with wider noise distributions, and this assumption might lead

to the premature consideration that if the noise in an imaging system is lower than

the nominal value (baseline), so for example with future or more optimal imaging
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systems, and the relative noise distribution computed from clinical images is wide,

it becomes harder to detect if something in the system is changing. But these

are simulated images. To make assumptions like these, the distributions of many

different imaging systems should be compared, while the validation presented in this

Thesis is made on one imaging system only.

Gaussian noise Also in this case we proved that the ClinQC algorithm produces

a highly sensitive parameter to detect an increase of the Gaussian noise, which is

a way to simulate the deterioration of the imaging system, that can occur when

the detector or the electronics of the system reach their end of life, or if the anti-

scatter grid is not present into its slot during the image acquisition, or if there is an

increase in the exposure (mAs) given to the patients. The Gaussian noise symmetric

distribution was chosen to simulate in the simplest way the effect of all the possible

combined deterioration phenomena occurring in an imaging system. More specific

simulations can be performed using different noise distributions.

3.3.4 Statistical analysis with simulations

3.3.4.1 Step simulation

The step simulation output curve (Fig. 3.43) mainly proves that in only one day,

with 50 new clinical chest X-ray images, it would be possible, by applying the

ClinQC detection algorithm, to observe an increase in the noise levels of 4% with

respect to the baseline, that can be linked to a decrease in the exposure (mAs)

given to the patients of 8%. This is important not only to check the noise levels

of the imaging system potentially on-the-fly, depending on when the extraction of

the clinical images from the PACS is planned, but also to have an automatic report

about the functioning of the AEC device.

3.3.4.2 Trend simulation

The trend simulation was implemented to simulate two different linear time depen-

dent deteriorations of the imaging system: a strong deterioration that produced

30% increase of the noise values happening in one week, and a weaker one reaching
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the same noise levels in a slower time line of one month. The output curves of the

trend simulation (Fig. 3.48) can be used to understand the optimal size of a moving

window that is moved along the ClinQC noise data in order to detect a certain

percentage of increase of the noise in one week or one month. These simulations are

dependent on the simulated slopes and are a particular case of the step simulation,

they give specific examples of application of how the ClinQC detection algorithm

would work if applied in clinical practice.

3.3.5 The ClinQC performance in clinical practice

The performance of the ClinQC noise extraction algorithm has been tested with

two important cases for clinical practice, apart from any kind of simulation. These

tests proved that the ClinQC noise extraction algorithm can be used to implement a

powerful detection tool, that extracts every night the images of the patients acquired

during the day from the PACS and perform a statistical analysis on their ClinQC

noise values in order to investigate the stability of the noise of the imaging system.

In addition, the step simulation output curve demonstrated to be accurate enough

in its approximation to be used as a guideline for the detection of specific steps of

noise levels increase or decrease in percentage.

If with the QClight method there is 1 alert/week with the Monday morning measure-

ment, with the ClinQC method it could be possible to extract all the images of the

day from the PACS during the night and have a detection parameter that can give

1 feedback/day defined as the number of alerts per day normalized by the number of

possible step-by-step movements of the moving window. This will estimate each

day if there are serious problems in the imaging system and if it is necessary to

perform an additional QClight phantom analysis. If this tool would have already

been available for clinical practice in that period, the hospital might have avoided

to acquire 72 new patient images with a lower diagnostic image quality due to the

flipped anti-scatter grid.

Since in these first examples the few image outliers in terms of the noise that were

also outliers in terms of the exposure were left out from the analysis to help the

detection algorithm to better observe a contrast in the noise levels before and after

a change in the system setting, it would be interesting to try to find a new clinical
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detection parameter that combine these two measures of noise and exposure to op-

timize the detection instead of excluding them from the analysis. This search could

include also some machine learning techniques.

The detection of the flipped anti-scatter grid was completely successful, but pro-

duced also some false positive alerts that are not relevant compared to the number

of displacements that the moving window can do every day on the total number of

images. In this specific case the number of false positive alerts is only the 10% of

all the possible alerts that the algorithm could have produced in one day.

Also the detection of the anti-scatter grid replacement, that required a ”backward”

implementation of the moving window algorithm, was successful without any false

positive alerts. This proved that the step simulation predicted well the optimal size

of the moving window that has to be used for a correct check in case the anti-scatter

grid now in use is replaced with another one with smaller focal distance.

3.3.6 Outlier analysis

The ClinQC noise outlier analysis proved that there is a really low probability (10%)

that an image with outlier noise value was made with an outlier exposure value. This

can be useful knowledge to guide the invention of a new ClinQC detection parameter

that can be used in clinical practice (see previous discussion in Section 3.3.5), but

more studies need to be performed in order to establish what the other factors

are that induce the presence of noise outliers even when the mAs falls within the

accepted range.

Instead, there is a higher chance that the ClinQC algorithm results in outlier noise

values if the patient is female than male. This can be related to the fact that the

major volume of female breast tissue causes more scattering of the radiation and

hence increases the noise. It would be interesting to study if outlier noise values can

be correlated also to patient age, using hospital data.
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3.3.7 Image Pyramids noise extraction algorithm compari-

son

The noise maps extracted with the Pyramid method on the baseline dataset show

the same properties as the ClinQC noise maps. A clear correlation between the

ClinQC and the Pyramid (normalized) algorithms is representative of the fact that

the two methods are based on the same idea while their implementation is different.

The higher relative spread of the normalized Pyramid algorithm might suggests that

it would be more difficult to detect some changes in the noise values if this methods

is applied in clinical practice instead of the ClinQC. However more analyses need

to be performed to establish whether or not Pyramid noise parameter would be less

sensitive than the ClinQC noise value.

3.3.8 Phantom comparisons

A high correlation coefficient between the ClinQC noise values, measured from

RANDO images acquired with patient protocol, and the noise values of the QClight

images, acquired with phantom protocol, indicates that both methods are sensitive

to a noise reduction produced by an exposure increase and either of them can be

used to measure the noise of the imaging system.

The results in Section 3.2.8 demonstrate a limitation of using the blurring method

in the image deterioration study to simulate an exposure increase in clinical images,

however since the difference between the real and simulated phenomena is small,

and can be explained by analysing the effect of blurring to the noise frequencies of

both phantoms images, the image deterioration study with blurring was adopted in

order to simulate an exposure increase in clinical images.

Finally, the visual comparison between the phantom-based QC and the ClinQC

method showed that the ClinQC algorithm is more representative of what happens

to clinical images with the actual imaging system setup. The CoV of the ClinQC

baseline noise values is half the CoV of the QClight method, and since these two

methods correlates, so they reacts in similar ways to the same changes in the expo-

sure levels, it can be concluded that the ClinQC method detects similar changes in

the device quality, with a sensitive and reliable noise parameter.
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Dose study

The dose study was conducted in parallel with the noise study and it contains

preliminary results and examples.

4.1 Methods

The dose results can be extracted by applying the ClinQC algorithm in order to

have an overview of the performances of the imaging system. In fact, the ClinQC

algorithm for noise extraction was designed to retrieve dose related quantities from

the DICOM tags of clinical images. In this way it is possible to monitor both the

noise and the dose parameters from clinical images.

4.1.1 Exposure and tube output

The Exposure of patients to X-rays during a radiological examination is defined

by the current-time product (mAs), which combines the time of radiation exposure

(in seconds, s) and the tube current (mA). This is the current of electrons being

accelerated from the X-ray tube cathode towards the anode where they produce

X-rays (bremsstrahlung) by interaction with the anode. An increasing tube current

or exposure time results in more X-ray photons, and thus a higher patient dose. The

dose is proportional to mAs but also depends on other parameters, such as the kVp

and filtration which shape the X-ray beam spectrum and the SID that influences

the dose according to the inverse square law. The Jarque-Bera (J-B) test [23] was
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used to test the normality of the baseline exposure values distribution. The use of

this parametric test based on the sample skewness was preferred to the K-S test in

this specific case, since the mAs distribution (Fig. 4.1) was skewed with a longer

tail compared to the ClinQC noise values baseline distribution (Fig. 3.18) and the

J-B test proved to have better performances in these cases [24]. The exposure and

the ClinQC noise-to-signal ratio, obtained after the noise map normalization, vary

together following an inverse relationship, that is expected to be

N

S
∝ 1√

mAs
,

considering that the noise in digital radiographies depends on the number of discrete

X-ray photons reaching the detector, and so it increases with the square root of mAs

(N ∝
√
mAs), while the signal increases linearly with mAs (N ∝ mAs).

The Dose Area Product (DAP) is defined as the absorbed dose in air multiplied

by the area being irradiated (mGy cm2). This depends on the current-time product

and so a measure of the DAP mainly verifies whether the AEC device works properly.

Due to the divergence of the beam emitted from the X-ray source, the irradiated

area A increases with the square of distance from the source (A ∝ SID2), while

radiation intensity I decreases according to the inverse square of distance (I∝ 1/SID2).

Therefore the product of intensity and area is independent to the distance from the

source. The diverging beam is collimated for each patient to image only the relevant

area. Consequently, not only the dose, but also the area, and thus the DAP are

different for each patient. With the phantom-based QC this is not the case, since

the geometry of the phantom being irradiated is the same every week. With a clinical

images-based QC as ClinQC, the dose parameter needs to be independent to the

different patient thicknesses in order to have a measure of the quality of the system

that is not affected by patient variability. This is why the tube output (mGy/mAs)

is introduced, defined as the dose the X-ray tube delivers per unit of tube load (i.e.

charge)

Tube output =
Dose (mGy)

Exposure (mAs)
=

DAP (mGy cm2)

Exposure (mAs) · A (cm2)
· SID

2

SDD2
,

where A is the image area, measured from clinical images as A = rows · columns ·
resolution2, and SDD is the Source-DAP-meter Distance while the SID is the Source-

Image Distance. The main reason to include the monitoring of the tube output in
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ClinQC algorithm is the control of the X-ray spectrum that is related to the state

of the anode of the X-ray tube and the filters.

4.2 Results

In this Section the preliminary results and examples of the dose study (Section 4.1.1)

are presented.

4.2.1 Exposure

The exposure (mAs) of the ClinQC baseline dataset is displayed in Fig. 4.1 with

the lateral distribution obtained using a kernel density estimation based on the

histogram of data. The distribution is positively skewed with a tail to high mAs,

the skewness value is 1.7, and the kurtosis of the distribution is 7.4. The Jarque-Bera

test [23] rejected the null hypothesis that the data come from a normal distribution

with an unknown mean and variance at 5% significance level, with a p-value of

3 · 10−3. In Fig. 4.1 the mAs are discretised due to the AEC device design.
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Figure 4.1: Exposure (mAs) of the ClinQC baseline dataset with lateral distribution,
with red acceptance limits of ±2σ.

Other exposure results have already been presented alongside the results of the noise

study, for example in Section 3.2.5 (Fig. 3.53 and Fig. 3.56) with the performance
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of the ClinQC noise extraction algorithm in clinical practice. Here it is clear that

the exposure and the ClinQC noise-to-signal ratio, obtained after the noise map

normalization, vary together following the inverse relationship presented in Section

4.1.1. This relationship explains the presence of some patient images being outliers

in terms of the noise while also being outliers in terms of the dose (Fig. 3.58).

In this case is not useful to perform a comparison between the clinical mAs data

and the QClight phantom exposure data, since the geometry of the phantom is the

same for each acquisition and also the kVp is fixed by the acquisition protocol, so if

the AEC device is working properly the QClight current-time product is always the

same value. If there are issues with the imaging system this value will change. This

is only marginally indicative of the functioning of the AEC device, that is designed to

adapt the current-time product to different patients. The measurements of exposure

with different attenuations (e.g. patients) is much more telling of the performance

of this device over a range of exposures.

4.2.2 Tube output

In Fig. 4.2 a representation of the stability of the tube output measured from

the baseline dataset of clinical images of April 2015 is shown. The tube output

combines the dose, measured by the DAP-meter, with the exposure current-time

product, set by the AEC device.In a phantom-based QC all parameters in the tube

output calculation would be constant, with the exception of the dose measured by

the DAP-meter. Since the tube output computed with the QClight method from

phantom images would be proportional to the DAP, the ClinQC tube output re-

trieved from clinical images is then compared to the QClight DAP in Fig. 4.2.

The CoV of tube output obtained from the clinical images of the baseline dataset is

7.7% while the CoV of the DAP values registered for the QClight phantom images

is 3.2%.

The step simulation, presented as a validation tool for the ClinQC noise extraction

algorithm (Section 3.1.3.2.1), has been applied to assess how many images are needed

to detect a change in the clinical tube output values, producing the curve in Fig.

4.3. The result shows that in one day, with approximately 50 clinical images, it is
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Figure 4.2: Tube output (mGy/mAs) of the ClinQC baseline dataset and DAP
(mGycm2) of the QClight history data of 2015/2016.

possible to detect a change in the tube output levels of at least 6%, attributable to

deterioration of the anode of the X-ray tube or the filtration system.
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Figure 4.3: Output curve of the step simulation applied to clinical tube output values.

4.3 Discussion

With the dose study it has been possible to obtain some preliminary results, regard-

ing the exposure (mAs) and the tube output (mGy/mAs), retrieved and computed

from the DICOM tags of clinical and the QClight phantom images.

In particular, the exposure results obtained with the clinical images-based QC were

analysed together with the ClinQC noise results and are more representative of the

functioning of the AEC device as an entire range of attenuation is covered, rather

than just one single phantom using QClight method.

The tube output that was introduced in the clinical-images based QC, was com-

pared to the DAP of the phantom-based QC. Being independent of patient size and

having a relative spread of the same order of magnitude as the QClight DAP values,

the tube output can be considered a new dose indicator to be used for QCs of X-ray

imaging systems from clinical images.

These dose parameters can be used not only to monitor the levels of dose absorbed

by the patients, but also to monitor the imaging system functioning, from the X-ray

tube to the AEC device, including the patient acquisition protocol. A change in the

exposure levels can be also indicative of a change in anti-scatter grid positioning or
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focal distance. To understand if this and other simulated effects can be detected

also by the tube output parameter, a proper validation is needed.
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Chapter 5

Homogeneity study

In this Chapter the preliminary results on a homogeneity study in clinical images

are presented.

5.1 Methods

As introduced in Section 2.2 the inhomogeneity of the QClight method is computed

after having extracted five square ROIs in the phantom image, one in the center

and the others close to the four corners. The easiest way to produce a measure of

the inhomogeneity of the imaging system from patient images, that is comparable

to the QClight parameter, is to segment four ROIs close to the corners of the image

that contains the background, and use the same QClight formula (Eq. 2.3) to

compute the inhomogeneity value. To segment the background areas close to the

corners of patient images, several thresholding algorithms have been tested (Section

5.1.1). Furthermore, in order to try to bypass some of the problems linked to the

thresholding algorithms, discussed in Section 5.3, an alternative approach based on

image profiles is presented (Section 5.1.2).

5.1.1 Thresholding algorithms

All the thresholding algorithms presented in this Section are intensity-dependent, so

they are based directly on the image pixel values or on the image histogram of grey

levels. In order to segment the information that is available in the background, all

103



Lisa Bravaglieri: ClinQC

these methods are separately applied on four rectangular ROIs respectively placed

near the corners of each image: the upper left, upper right, lower left and lower right

corners, where most of the patients don’t cover the entire detector area with their

body.

The first segmentation algorithm being tested was Otsu method [25] with multi-

threshold. This method is widely used in image processing; the original algorithm is

based on the assumption that the image histogram has a bimodal distribution, so the

two histogram classes, representing background and foreground, can be separated

computing the Otsu threshold that maximizes the variance between the classes. The

multi-threshold version of the algorithm is more appropriate in this case, since the

histogram of chest X-ray images is not bimodal but shows a more complex shape

(Fig. 5.3).

Two other segmentation methods being tested are also based on the knowledge of

the histogram of chest X-ray images and implement, respectively, a fixed threshold

at the 350th gray level of the image and a threshold based on the minimum point

of the first class of the image histogram: these values have been classified as the

limit of the background pixel class, as an evidence from many observations of chest

X-ray image histograms Fig. 5.3.

The final algorithm being tested is the Fast Marching Method (FMM) [26] that

is available in MATLAB1. This is based on the computed normalized geodesic map

of differences in gray scale intensity from the image pixels to a seed. In this case, the

seed is chosen as the background average gray value, which can be estimated from

the knowledge of the image histogram. Then a threshold level T is chosen, and all

the pixels that have normalized geodesic distance values less than T are considered

background pixels; changing T, different segmentation results can be obtained.

5.1.2 Normalized profiles

The normalized profiles method was invented and developed as a trial. This al-

gorithm divides one chest patient image in two vertical sides and draws a vertical

profile of the pixels on the left rows and one on the right rows (example in Fig. 5.1).

1The MathWorks Inc., Novi, MI, USA.
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This is done for a large number of patient images of one week when the QClight

method recorded a low optimal level of inhomogeneities (approximately 200 clinical

images). This way, it is possible to calculate two average profiles (left and right)

that can be used to normalize all profiles of new patients. Then in each left and

right normalized patient profile it is possible to select two intervals, one up and one

down, and compute their average intensity values. These average intensity values

are then used as input for Eq. 2.3. In this way, segmentation of the background

regions is not required, giving an advantage in applying the algorithm to images

where there is no visible background or it is difficult to extract automatically.

Figure 5.1: Example of how the normalized profiles algorithm divides one chest patient
image in two vertical sides and draws a vertical profile of the pixels on the left rows (yellow)

and one on the right rows (pink).

5.1.3 Validation method

When the appropriate robust method to measure the inhomogeneity from patient

images is found, it can be validated by performing an image deterioration study,

similar to what has been implemented for the validation of the ClinQC noise study

(Section 3.1.3.1). For the homogeneity study, different strengths of the anode heel

effect can be simulated. This way it can be verified if the homogeneity algorithm
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can detect a rise in the inhomogeneity values due to the change in pixel values after

the simulation. This will indicate if the chosen method is actually able to measure

changes in the homogeneity values of the imaging system.

5.2 Results

In this Section all the preliminary results regarding the homogeneity study are pre-

sented.
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Figure 5.2: The history of the recorded QClight homogeneity parameter.

In Fig. 5.2 the history of the QClight homogeneity values is represented. In 2014,

with the anti-scatter grid with focal distance of 1.40 m and the QClight SID of

1.50 m, the inhomogeneity computed from the phantom images was globally lower

than with the actual anti-scatter grid; this was also the case for the QClight noise

values. The reason for this is that the new anti-scatter grid with focal distance

1.80 m, instead, is optimal for the patients SID of 2.00 m, while is not well suited

for the QClight phantom acquisition, with a SID of 1.50 m. For this reason the

inhomogeneity measured with QClight is higher with the new anti-scatter grid.

It has been observed, after looking at the histogram of several chest X-ray images
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Figure 5.3: Example of the histogram of a typical chest X-ray patient image, where the
highlighted black class represents mainly the background and ends at the 350th grey level.

obtained with the actual imaging system, that the background pixel values consti-

tute a well separated class in the global image histogram, that has a limit around

the 350th grey level (example in Fig. 5.3). In fact, one method that has been used

to segment the background pixels is be to implement a fixed threshold on the 350th

grey level of the image. The histogram minima method is a similar approach but it

looks for the real position of the minima of the first class of the histogram that can

be slightly different from 350 for each patient image.

All the thresholding algorithm listed in Section 5.1.1 have been tested on several

clinical chest X-ray images. After a first visual analysis, none of them seemed to

be robust enough to correctly crop the background ROIs in the corners of all the

patient images being analysed, since the segmented regions often contained also part

of the patient skin. The best result was obtained using the FMM, the example is

shown in Fig. 5.4.

All the clinical homogeneity extraction algorithms, both the segmentation tools and

the normalized profiles method, have been tested on the same dataset of clinical im-

ages, acquired during one week in March 2016 when an average acceptable QClight

homogeneity value was recorded. This is considered as the baseline dataset of clini-

cal images for homogeneity.

The distributions of the inhomogeneity values obtained with all the clinical homo-

geneity algorithms are represented by the boxes in the left side of Fig. 5.5. On the
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Figure 5.4: Example of the segmentation of the background pixel values in a chest X-ray
image using the Fast Marching Method (FMM).
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Figure 5.5: Left side: each box represents the distributions of the inhomogeneity values
obtained applying the specified clinical homogeneity algorithm on the baseline dataset.

Right side: comparison between the normalized profiles algorithm and the QClight
method, both applied on the history dataset. The y-scale is zoomed.

right side a comparison between the normalized profiles algorithm and the QClight

method is displayed. Both are applied on the history dataset made of respectively
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one clinical and one phantom image per week in the history of the imaging sys-

tem in the current setup (these comparison values are also shown in a time line in

Fig. 5.6). The y-scale in Fig. 5.5 is zoomed so that it can be observed that the

main differences between the inhomogeneity values obtained with clinical images-

based algorithms and with the QClight method are the mean and the spread. The

histogram minima method and the fixed threshold method lead to similar results

for the baseline dataset, but the inhomogeneity values were much higher compared

to the values measured with the QClight method on the history dataset, with the

highest relative spread. Both the FMM and the profiles method recorded lower

inhomogeneity values with even a lower variation, but were not comparable to the

QClight values distribution.

Profiles method (clinical images)
Sep

te
m

be
r2

01
4

Octo
be

r2
01

4

Nov
em

be
r2

01
4

Dec
em

be
r2

01
4

Ja
nu

ar
y2

01
5

Feb
ru

ar
y2

01
5

M
ar

ch
20

15

Apr
il2

01
5

M
ay

20
15

Ju
ne

20
15

Ju
ly2

01
5

Aug
us

t2
01

5

Sep
te

m
be

r2
01

5

Octo
be

r2
01

5

Nov
em

be
r2

01
5

Dec
em

be
r2

01
5

Ja
nu

ar
y2

01
6

Feb
ru

ar
y2

01
6

M
ar

ch
20

16

Apr
il2

01
6

In
ho

m
og

en
ei

ty
 (

%
)

-10

0

10

20

30

40

50

QClight images
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Figure 5.6: Top: the inhomogeneity values computed using the normalized profiles
algorithm on the history dataset of clinical images. Bottom: the inhomogeneity values
computed using the QClight method on the history dataset of QClight phantom images.
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The proposed validation method (Section 5.1.3) is based on the image deterioration

study with a simulation of the anode heel effect in the clinical images (example in

Fig. 5.7).

When the proper clinical homogeneity algorithm is found, the validation can be

Figure 5.7: Example of a strong simulated anode heel effect on a clinical chest X-ray
image.

made by simulating an increasing strength of the anode heel effect in the clinical

images and recording the response of the homogeneity algorithm. An example of

how this would work for the Fast Marching Method is shown in Fig. 5.8: the same

clinical image is segmented before and after applying the simulated anode heel effect

in two different strengths (with gradients of, respectively, 1 and 5 grey values for

100 pixel).

The result is that the segmented lower right ROI becomes smaller when the simu-

lated anode heel effect is increased towards its direction: the reduction of the lower

right ROI area of the original image is respectively 3% and 40% for the two sim-

ulated images in Fig. 5.8. This happens because all the thresholding methods are

intensity-dependent. It is often segmented with the background information also the

primary X-ray beam shadow, that appears like an image frame on the background
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Figure 5.8: Example of the segmentation using the FMM on the same chest X-ray image,
respectively in its original appearance (left) and after simulating two different strength of
the anode heel effect with gradients of 1 (center) and 5 (right) grey values for 100 pixel.

areas around the patient (example in Fig. 5.9).

Figure 5.9: Example of the primary X-ray beam shadow, that appears as an image frame
on the background areas around the patient.

5.3 Discussion

The large variations in the homogeneity values obtained applying clinical images-

based algorithms demonstrate that these algorithms cannot be used to measure the

inhomogeneity of an X-ray imaging system from clinical images. The high variations

suggest that the tested algorithms are not robust enough to be used in clinical prac-

tice, but more tests are required in order to investigate what are the main causes

and find alternative algorithms. The major limitation of the thresholding-based

algorithms is that they are intensity-dependent, and therefore are affected by the

patient anatomical signal nearby the background regions, by the dose that was used
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to achieve a pre-fixed image quality and by the post-processing. In particular, the

post-processing might equalize the image histogram, changing the average grey value

of the background and/or enhancing the patient edges, darkening the regions of pixel

surrounding the patient. Another reason that caused a variability in the homogene-

ity measures is that in the segmented ROIs is often clearly visible the primary X-ray

beam shadow, that appears like an image frame on the background areas around

the patient and is also emphasized by the post-processing filters. So if these large

variations in pixel values are segmented with the background, they might lead to

high percentages of inhomogeneity, not truly representative of the inhomogeneity of

the imaging system. If a real homogeneity-related problem occurs in the imaging

system, due to a damage of the detector or to a significant change in the X-ray

beam uniformity or a problem with the detector calibration, a thresholding-based

algorithm will hardly be able to segment the background as in a normal situation,

since the background could be brighter than usual and even with adaptive filters it

could be confused with the patient signal.

To find a clinical images-based algorithm that measure the inhomogeneity from clini-

cal images avoiding the background segmentation would make the ClinQC algorithm

applicable also to modalities where there is no available background or it is diffi-

cult to extract. This could have been the case of the normalized profiles method,

which is more robust than the thresholding-based algorithms since it avoids the

background segmentation, but it produced much highly fluctuating inhomogeneity

measures compared to the gold standard QClight homogeneity method.

After this first trial, it can be concluded that the ClinQC homogeneity measure

is not ready to be applied in clinical practice until the appropriate clinical images-

based homogeneity extraction algorithm is found, tested and validated. A number of

limitations of segmentation-based algorithms has been illustrated and can be useful

input in the development of a new ClinQC homogeneity algorithm.
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Discussions and conclusions

The aim of the ClinQC project was to perform a QC of an X-ray imaging system

using clinical images. Regarding both the dose and the noise studies, the ClinQC

algorithm introduced new reliable and sensitive parameters of the quality of the

imaging system, that have the same physical meaning and similar relative variation

as the QClight method gold standard quality indicators.

Specifically concerning the noise study, the ClinQC noise extraction algorithm from

clinical images has been validated in several ways with both statistical simulations,

phantom studies and real clinical examples proving that it is able to give an on-the-

fly and highly sensitive feedback on the performances of the imaging system with

a relatively low number of false alarms. The results were also comparable with a

good correlation coefficient to the published Pyramid noise extraction algorithm,

and some positive preliminary results showed that it can be easily improved by

implementing a grid sampling approach that will help in reducing the influence

of outliers such as pacemakers, implants and other medical devices in the noise

measurement.

The dose study suggested that monitoring the stability of the exposure of patients

from clinical images, instead of using the QClight phantom images, gives a better

overview of the functioning of the AEC device, and truly helps to monitor if the AEC

is delivering consistent and reproducible exposures across a wide range of anatomical

thicknesses. In addition, the introduced tube output metric can be considered a

new dose indicator employed in QCs of X-ray imaging systems from clinical images,
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comparable to the DAP used in phantom-based QCs.

Since this project is still at the beginning, there are some limitations to consider.

First, the studied images are only chest X-ray examinations. Up to now only a

preliminary test has been performed with mammographies. Second, the ClinQC

algorithm contains a limited set of dose and image quality parameters and the

algorithms are simple. Future updates may result in more quality parameters and

even better performances. Lastly, although some first initial interesting results were

obtained, for both dose and homogeneity studies more analyses and validation need

to be performed before the new tools can be applied in clinical practice side-by-side

with the QClight.

By contrast, the ClinQC project proved to have also many advantages : using the

ClinQC algorithm is a fast and reliable way to monitor both the health and correct

installation of the hardware of an X-ray imaging system, to supervise the patient

acquisition protocols and the image post-processing. This algorithm also allows

to perform a QC without additional phantom acquisitions. Lastly, the world of

Big Data is accessible by using this method since the numbers of patients per day,

week, month and year are surprisingly high in big hospitals, so a large amount of

information can be gained from the study of patient data and their clinical images,

allowing the users to perform more extended statistical analyses.

After the studies of the ClinQC noise and dose parameter performances and all

the kinds of validation designed in this thesis work, it can be concluded that the

ClinQC algorithm for noise and dose monitoring of an X-ray imaging system could

be already applied in clinical practice, with the initial support of the QClight weekly

quality control. In this way a real test period, with a comparison between the two

methods, will indicate the necessary final adjustments on the algorithm until the

final version is being installed. In the meantime, all the ideas presented in the next

Section can be considered to improve the future versions of the algorithm and to

extend the ClinQC project to other anatomies and/or imaging modalities.
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Outlook for the future

In this Section some new ideas that can improve the ClinQC algorithm during the

project continuation are presented.

� Taking an ROI of 30% of the FOV in the last step of the ClinQC noise extrac-

tion algorithm limits the number of pixels involved in the measurement. An

idea to use all the pixels in the final noise map, in order to reach better statis-

tics and improve the measurement accuracy, could be to use the histogram of

the image or the high-low frequencies plot knowledge to crop out the patient

edges, burned-in annotations and background and use all the original image

area instead of the ROI to measure the ClinQC noise value. A similar method

is used for CT images [27].

� The development of a new ClinQC detection algorithm that combines noise and

dose information could be useful to minimize the production of false positive

alerts as the output of the clinical images-based QC and could be achieved by

implementing also some pattern recognition tools.

� The validation of the ClinQC tube output parameter is needed before it can

be used in clinical practice, side-by-side with the DAP information retrieved

from the QClight phantom images.

� With the implementation and validation of the ClinQC-alternative algorithm,

updated with the sampling grid approach (Section 3.1.2.1), the influence of

the structures in the ClinQC normalized noise image that change the noise

distribution are reduced.

� It would be interesting to study if the ClinQC outlier noise values can be

correlated to patient age, using hospital data.

� New alternative versions of the ClinQC algorithm can be adapted to different

anatomies and/or imaging modalities, both introducing new noise and dose

indicators or using the same noise and dose parameters, but considering that

many factors can change and affect the measurements, such as the acquisition
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protocols, as has been shown for mammography. The feasibility of each new

method has to be investigated with a proper validation.
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