
Alma Mater Studiorum · Università di Bologna
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“Io stimo più il trovar un vero,

benché di cosa leggiera,

che ’l disputar lungamente delle massime questioni

senza conseguir verità nissuna.”

Galileo Galilei





Introduction

Scope of this thesis is to study instruments of pattern recognition with appli-

cation to EMG prosthetic control. The majority of prostheses of upper limb used

nowadays are active myoelectric prostheses.

The fundamental object in myoelectric control is EMG (electromiography) signal,

which represents the “electrical manifestation of neuromuscolar activation asso-

ciated with a contracting muscle” [14]. This kind of signal is mainly measured

by non invasive surface electrodes and it activates the device when it passes over

a fixed threshold, allowing the prosthesis movement by an electric motor placed

in it.

The basic steps in a pattern recognition method are the measurements of the

object of interest and the definition of features able to describe them, feature

extraction and classification. It is common to have to deal with large dataset of

measurements, described by multiple variables mutually correlated. Thus, when

features are defined, it is usually applied a dimensionality reduction algorithm

such as Principal Component Analysis [11]. At the end, in supervised learning, a

classification is provided, which in the particular case of EMG problems predicts

the intended movements performed by the device. Other efficient classification

algorithms are Support Vector Machine [4] [1] and Neural Networks, which seem

to be the best choice to classify EMG data [16].

After giving a detailed review of the mentioned methods and others, we propose a

new classification method based on two main assumptions: firstly, the electrodes

location plays a role in pattern discrimination. Secondly, we suggest an approach

different from the one proposed in [16], basically based on the analysis of each

patient without any previous training phase on able-bodied subjects. It comes

as a result of comparison in the Fourier analysis between able-bodied and trans-

radial amputee subjects. The different approach of considering five time domain

features together with each electrode contribute separately has revealed an av-

erage classification accuracy equals to 75%. We consider this result a promising
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starting point for the computation of a classification algorithm for the control of

EMG prosthetic device.

This study was done in collaboration between the Math Department of Univer-

sity of Bologna, the Math Department of University Autonoma of Madrid and

Research and Training Area of Centro Protesi INAIL in Vigorso di Budrio (BO).

The thesis is organized as follows:

• in Chapter 1 we review the nature of electromiography signals, the mathe-

matical model which describes them and the way in which these signals can

be detected. We analyze the state-of-the-art in prosthetic control, describ-

ing the most commercially prosthetic hands based on myolectric approach.

We then report the fundamental steps in a pattern recognition based system

control, focusing in particular on the time domain features used in [16];

• in Chapter 2 we firstly introduce the Principal Component Analysis dimen-

sionality reduction method, based on the orthogonal transformation of the

axes which consists in the resolution of an eigenvalues/vectors problem. We

then describe three main classification algorithm, widely used in prosthetic

control and for each one we review the main results present in literature.

In particular, we describe Support Vector Machine, the hyperplane classifi-

cation method which from linearly separable data can be extended to non

separable data, Clustering methods with particular focus on the k-means al-

gorithm and the recent field of spectral clustering, which are deep analyzed

in [23]. Finally, in the last section we describe Artificial Neural Networks,

starting from the perceptron or logistic regression which has one input and

one output neurons and extend it to multi-layer perceptron, which is charac-

terized by hidden neurons and for which we describe the training algorithm

of back-propagation;

• in Chapter 3 we report the results of our research. Firstly, we describe the

preliminarly good results in the Fourier space based on three able-bodied

subjects, from the point of view of the FFT signal trend decay and as the

result of a frequency based classification algorithm composed by PCA di-

mensionality reduction and k-means in the reduced subspace spanned by

the first three principal components. Since the same approach fails when

applied to trans-radial amputee subjects, we propose a different classifica-

tion algorithm which considers each electrodes separately, computing for
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each one five time domain features. We report our classification results and

make considerations on them. Finally, we propose some future develop-

ments based on time windowing, data shuffle partition for the validation of

the model and an automatic features selection procedure as a minimization

problem.





Introduzione

Scopo di questa tesi è studiare strumenti di pattern recognition con appli-

cazione al controllo protesico EMG. Al giorno d’oggi, la maggir parte di protesi

per arto superiore in uso sono protesi attive mioelettriche.

L’oggetto fondamentale nel controllo mioelettrico è il segnale EMG (elettro-

miografico), che rappresenta la manifestazione elettrica di un’attivazione neu-

romuscolare associata ad una contrazione muscolare [14]. Tale tipologia di se-

gnale viene tipicamente misurata per mezzo di elettrodi superficiali non invasivi

e consente l’attivazione della protesi quando il segnale supera una soglia fissata,

consentendo il movimento del dispositivo per mezzo di un motore elettrico in esso

posizionato.

I passi fondamentali in un metodo di pattern recognition sono le misurazioni

dell’oggetto di interesse e la definizione di features capaci di descrivere tali oggetti,

l’estrazione di features e la classificazione. Tipicamente si lavora con dataset di

misure dimensionalmente grandi, descritte da molteplici variabili mutualmente

correlate. Pertanto, definite le features, si applicano algoritmi di riduzione della

dimensionalità come la Principal Component Analysis [11]. Infine, nell’apprendi-

mento supervisionato, si fornisce una classificazione, che nel caso particolare di

problemi EMG predice i movimenti pianificati eseguiti dalla protesi. Altri al-

goritmi efficienti di classificazione sono Support Vector Machine [4] [1] e Reti

Neurali, le quali sembrano essere la scelta migliore per classificare dati EMG [16].

Dopo avere fornito una dettagliata revisione dei metodi citati ed altri, propo-

niamo un nuovo metodo di classificazione basato su due ipotesi principali: in

primo luogo, il posizionamento degli elettrodi riveste un ruolo per il riconosci-

mento di patttern. In secondo luogo, suggeriamo un approccio differente rispetto

a quello proposto in [16], basato ossia sull’analisi singola di ciascun paziente

senza alcuna fase preliminare di training su soggetti normodotati. Esso giunge

come risultato dall’analisi di Fourier tra pazienti normodotati e soggetti amputati

transradiali. Il diverso approccio di considerare cinque features temporali insieme
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al contributo di ciascun sensore separatamente ha riportato una accuratezza di

classificazione in media pari al 75%. Consideriamo tale risultato un promettente

punto di partenza per l’implementazione di un algoritmo di classificazione per il

controllo di una mano protesica mioelettrica.

Il seguente studio è stato svolto in collaborazione tra il Dipartimento di Mate-

matica dell’Università di Bologna, il Dipartimento di Matematica dell’Università

Autonoma di Madrid e l’Area Ricerca e Formazione del Centro Protesi INAIL di

Vigorso di Budrio (BO).

La tesi è organizzata come segue:

• nel Capitolo 1 si analizza la natura dei segnali elettromiografici, in par-

ticolare il modello matematico che li descrive e il modo in cui tali se-

gnali vengono rilevati. Analizziamo lo stato dell’arte riguardo al controllo

protesico, descrivendo le mani protesiche basate sul controllo mioelettrico

maggiormente in commercio. In seguito, riportiamo i passaggi fondamentali

che caratterizzano un sistema di controllo basato sulla pattern recognition,

rivolgendo particolare attenzione alle features temporali utilizzate in [16];

• nel Capitolo 2 introduciamo in primo luogo il metodo di riduzione della di-

mensionalità Principal Component Analysis, basato su una trasformazione

ortogonale degli assi che consiste nella risoluzione di un problema agli au-

tovalori/autovettori. Descriviamo poi tre tra i principali algoritmi di clas-

sificazione, ampiamente utilizzati nel controllo protesico e per i quali ri-

portiamo alcuni risultati centrali presenti in letteratura. In particolare,

descriviamo Support Vector Machine, un metodo di classificazione a iperpi-

ani che a partire dalla versione lineare inerente dati separabili linearmente

può essere esteso alla classificazione di dati non separabili, metodi di clus-

tering con particolare attenzione all’algoritmo k-means e al recente settore

di clustering spettrale, analizzato nel dettaglio in [23]. Infine, nell’ultima

sezione vengono descritte le Reti Neurali Artificiali, assumendo come punto

di partenza il percettrone o logistic regression costituito da un neurone di

input ed uno di output, ed estendendolo al multi-layer perceptron, caratte-

rizzato da neuroni nascosti per i quali descriviamo l’algoritmo di apprendi-

mento back-propagation;

• nel Capitolo 3 riportiamo i risultati ottenuti in questa ricerca. In primo

luogo, descriviamo i risultati positivi ottenuti nello spazio di Fourier relativi
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a tre soggetti normodotati, dal punto di vista del decadimento della FFT e

come risultato di un algoritmo di classificazione nel dominio delle frequenze,

composto dall’algoritmo di riduzione di dimensionalità PCA e k-means nel

sottospazio ridotto generato dalle prime tre componenti principali. Poichè

tale approccio fallisce se applicato a soggetti amputati transradiali, propo-

niamo un diverso algoritmo di classificazione che considera separatamente

ciascun elettrodo, calcolando per ciascuno di essi cinque features temporali.

Riportiamo i risultati di classificazione ed elenchiamo alcune considerazioni

su di essi. In conclusione, proponiamo possibili sviluppi futuri basati su di

una suddivisione in finestre temporali, partizione per mescolamento dei dati

per la validazione del modello ed una procedura di selezione automatica di

features come un problema di minimizzazione.
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Chapter 1

EMG pattern recognition for

prosthetic control

In this chapter we introduce the fundamental motivations of the thesis, that

are electromiography (EMG) signal and its use for prosthetic control.

We first describe in Section 1.1 EMG signal from the anatomical and physiological

point of view, in order to have a general comprehension of the nature of the signal

and of the way it is produced. Then we describe the basic analysis techniques

and the mathematical model. Section 1.2 and 1.3 contain a review of the state of

the art in prosthetic control by pattern recognition, a field in great development

in the last decades. The last Section 1.4 presents some specifications on the data

used during this study, resulting from a stage at INAIL Centro Protesi in Vigorso

di Budrio (BO).

1.1 Electromiography signal

The nervous system is the motor of human body, consisting in elementary

cells called neurons that rapidly communicate with different parts of the body

by electric signals. Every voluntary and involuntary action is produced by the

nervous system.

A muscle is a soft tissue compound of cells, which can change in shape and

length and it can generate and transmit force. The coordinated activation of mus-

cles provides posture and produces both voluntary and involuntary movements.

There are three types of muscle tissue in human body: skeletal muscle, smooth

muscle and cardiac muscle. Our interest is focused on skeletal muscle, whose

tissue is attached to the bone and its contraction is responsible for supporting

1



2 1. EMG pattern recognition for prosthetic control

and moving the skeleton [14].

The fundamental functional unit of a muscle is the motor unit and it can gener-

ate a motor unit action potential (MUAP) when it is activated from the nervous

system. Whenever the action or the force is required, the activation of a motor

unit becomes continuous and this produces the motor unit action potential trains

(MUAPT).

In [5] an EMG signal is defined as the ”electrical manifestation of the neuromus-

colar activation associated with a contracting muscle”, while in [14] it is described

as ”the train of motor unit action potential (MUAPT) showing the muscle re-

sponse to neural stimulation”.

• The MUAPT may be expressed as

ui(t) =
n∑
k=1

hi(t− tk) (1.1)

where h(t) is a filter that represents the shape of the MUAP. Furthermore,

tk =
k∑
l=1

xl, for k, l = 1, ..., n

represents the time locations of the MUAPs, x represents the interpulse in-

tervals (time between adjacent MUAPs), n is the total number of interpulse

intervals in a MUAPT.

• The EMG signal may be expressed by a linear summing of MUAPTs, as

shown in the following expression

m(t, F ) =

p∑
i=1

ui(t, F ) (1.2)

where ui(t) represents the MUAPT defined in Eq. (1.1) and F is the force

generated by the muscle.

1.1.1 How to detect myolectric signals

Electromiography is defined as the discipline that studies the muscle electrical

signals as the result of muscles contraction [14]. In particular, surface electro-

miography is a non-invasive technique for measuring the electrical activity of
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skeletal muscles. In this section we describe different types of electrodes, the

principal devices used for detecting EMG signal and some typical precautions in

signal processing.

The most common way for revealing and evaluating electrical muscle activity

is via surface electromiography using electrodes. There are two main types of

electrodes: surface electrodes and inserted electrodes.

The first are widely used because of their non-invasive nature. Depending on the

construction, surface electrodes can be divided into active or passive electrodes.

Active electrodes contain a high input impedance electronics, while passive elec-

trodes consist of conductive detection surface that reveals the current on the skin

via its interface [5].

Nowadays, active electrodes are preferred because of their light mass and small

size; therefore they detect the electrical activity of a group of MUAP and not of

the single ones.

The inserted electrodes can be wire or needle electrodes. The most common is

the needle electrode, where one or more needles are inserted under the skin and

the cannula containing the needle remains inserted in the muscle for the time of

the test.

The reason why needle electrodes are preferred is the small size that enables the

devices to detect individual MUAP, another reason is the possibility of reposi-

tioning them within the muscle. However, wire electrodes are less painful than

needle ones. On one hand, it is not necessary to maintain them into the muscles

fibers throughout the duration of the test, on the other they tend to move from

the original insertion at the beginning of contractions.

Obviously, the choice of the type of electrode depends on the particular applica-

tion. In our case, we consider only surface active electrodes (more detailes can

be found in Section 1.4).

1.2 State of the art in prosthetic hand

This work concerns the control of an active prosthetic hand via EMG signals,

that is nowadays the most common way of control an artificial device. In this

section we present an overview on the causes of amputation and we illustrate

different level of amputation. Our interest is aimed at upper limb amputation,

which is largely common in Europe and US. We then present the developments

occured in prosthetic, in particular on myolectric devices.
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1.2.1 Amputation

Amputation is the removal of part of a limb by surgery, illness or trauma.

It is frequent to distinguish between different level of amputation, depending on

the characteristics of the remaining stump. According to [17], on average every

year there are more than 18,000 upper limb amputations considering Europe and

US, the most frequent of them are trans-humeral (28%), digit (22%), trans-radial

(19%) and partial hand amputations (19%).

This type of amputations are mainly due to traumatic, malignant or vascular

causes. Upper limb amputations are not as frequent as lower limb. Because of

the extreme complexitiy of human hand, the reliability of a prosthetic hand is

a topic in continuous development and different solutions of these devices are

offered to patients.

1.2.2 Prosthetic hands and myolectric control

A prosthesis is an artificial device that replaces a part of the body missing.

It is possible to classify upper limb prostheses on the base of prosthesis func-

tionality, that means in which way the prosthesis is activated. We can make the

classification as shown in Table (1.1).

Most commercially available upper limb prostheses are body-powered or elec-

trical motor powered. Body-powered prostheses enjoy benefits as low cost and

high reliability, whenever they are operated by movements of the amputees’ body

through cables and sometimes manual control. Therefore, this type of devices are

limited in utility and are slow to operate, although they are widely used.

We focus on myolectric prostheses, that are a competent alternative for mechan-

ical body-powered systems [13].

Myolectric control approach was firstly proposed in 1940s but the first commer-

cialized myolectric hand was developed in 1960. The control strategy of upper-

limb myolectric prostheses uses EMG signals to control the prosthetic devices.

The EMG signals are measured with electrodes, usually located on a pair of ag-

onist/antagonist muscles, that reveals the remnant muscle activity. When the

EMG amplitude is greater than a certain threshold, the associated prosthetic

movement is performed by an electric motor placed in the device.
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Passive prosthesis Active prosthesis

Widely commercially available, char-

acterized by the pinch gesture

Recover the functionality of missing

limb

Cosmetic Body powered (cinematic)

Reconstruction of missing limb aes-

thetic, mainly made up with silicone

Device powered by remnants mucles

that activate cables for moving pros-

thesis components

Working Extra powered

Pinch or hook that allows people to

work, without aesthetic aspects

More advanced, translate electrical en-

ergy in mechanical energy for moving

prosthesis components

Myoelectric control

based on EMG signal

Electric control

activated by a switch

Table 1.1: Functional classification of upper limb prosthesis

The use of myolectric prostheses have several advantages over body-powered

prostheses. For instance, it does not use invasive techniques for signal detect-

ing and the muscle activity required for prosthetic control is relatively small.

Other important aspects of controllability in myolectric control are the accuracy

of movement selection, the intuitiveness of actuating control and system response

time [13]. However, only the 50% of patients use that kind of devices [8].

An example of myolectric hand can be seen in Figure (1.1):

Figure 1.1: Upper limb myolectric prosthesis
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1.2.3 Polyarticular hands

Prothesic hand tries to be a compromise between functionality, aesthetic and

affordability. The main goal is to be as close as possible to human hand which

has 21 freedom degrees and it is able to make precision and force movements.

Different models of such devices are commercially available, but we focus on

the principal classes of tridigits hand and polyarticular hand. In the first, the

thumb and the index and set of medium are placed in opposition, while these

ones dragged passively ring finger and little finger. Therefore, tridigit hand al-

lows only one type of grasp, without any sensory feedback [22]. This device is

severley limited compared to human hand.

However, in the last decades polyarticular hand prototypes have been proposed,

with the aim of solving problems of control, sensory feedback and dexterity. From

2007, these laboratory hands has been transformed in devices available for pa-

tients and usable in everyday life, and pattern recognition techniques has been

used to control them (as described in Section 1.3).

Figure 1.2: Example of myolectric and tri-digit prothesic hand

We review the principal polyarticular hands commercially available (see Figure

(1.3)):

• iLimb: it is the first polyarticular hand, characterized by five fingers individ-

ually active connected to an aluminum frame that simulates the backbone

of the palm. This hand can realize 8 principal grasps, with closure velocity

proportional to EMG signal amplitude;

• Bebionic: polyarticular hand that allows 14 movements with quick closure

velocity;
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• Vincent: it is the first touch sensing hand prosthesis, which allows an active

individual agility of the fingers and the thumb. It is characterized by the

lateral movement of the opposable thumb to the ring finger, making it ver-

satile and interesting in terms of the development of new control strategies.

Figure 1.3: Example of polyarticular hands: iLimb, Bebionic, Vincent (from left

to right)

1.3 Pattern recognition in prosthetic control

A significant innovation in prosthetic control is the use of pattern recognition

techniques based on EMG signals. This new approach is due to use pattern clas-

sification techniques for detecting pattern and extract hidden signal informations.

Using a pattern classification technique, different pattern can be obtained from

EMG signals and used to identify the intended movements. Therefore, once a

pattern has been detected, the prosthesis is activated and the desired movement

is performed with the highest possible rate of accuracy. In general, an EMG

pattern recognition-based prosthetic control approach consists of EMG measure-

ments, feature extraction and classification.

At first, EMG measurements are performed in order to capture more and reli-

able myolectric signals, then features are extracted from data to retain the most

important discriminating information from the EMG signals, and at the end a

classification algorithm is applied to predict the intended movements [8].
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Figure 1.4: Pattern recognition-based system control

1.3.1 EMG measurements

The reason why pattern recognition is used for upper limb prostheses control

is that the forearm contains the residual wrist muscle and some residual hand

muscles, allowing therefore wrist and hand control movements.

The use of EMG signal as an estimator of motor intent is deeply affected by

electrodes location and electrodes number. While in a healthy subject the mucles

position is known, every amputee presents specific characteristics on muscle struc-

ture. Moreover, it is known that a progress in upper-limb prosthetic has been

the target muscle reinnervation, a surgical procedure introduced by Dr. Todd

Kuiken consisting in the selective transfer of brachial nerves to new muscle sites

[18]. The consequence is that the new EMG sites defined in this way contain a

mixture of functions corresponding to different nerves.

As reported in [5], the location of the electrodes should be done according to

signal/noise ratio, signal stability and cross-talk from adjacent mucles. With ref-

erence to signal/noise ratio, when electrodes are placed on the skin they reveal

a signal composed by all the action potential of the muscles under the device.

The resulting signal is commonly very noisy and difficult to manage. This is due

to motion artefacts, the electrode equipment noise and the floating ground noise.

Therefore, to obtain more useful information, it is required that electrodes remove

as much as possible the noise content. In this work, we consider pre-amplified

electrodes as Ottobock 13E200 sensors.

For myolectric transradial prostheses, the EMG signals are usually measured with

a number between 8 and 18 electrodes, typically placed around the circumference

of the stump [8]. Many studies demonstrate that the use of a high number of

electrodes increase the EMG patter recognition performance, but in [1] a study
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based on 4 sensors correctly placed and a light signl processing can give high

classification accuracy comparable with systems with more sensors. Overall, the

preferred location of a surface electrode is in the halfway between the center of

the innervation zone and the further tendom [5].

Moreover, EMG pattern recognition is performed on windowed data: from each

window a classification decision will be made. The window length is usually

100-250 ms, mainly with overlapped windows. More generally, window length is

chosen according to patient’s skill and real time application [8].

1.3.2 Feature extraction

The recording of an EMG signal is presented as a time sequence. It is not

practical to pass it directly to the classifier, also beacuse of high dimensionality

of data recorded. Therefore, the sequence must be mapped into a smaller dimen-

sion vector, called feature vector. In other words, an EMG pattern associated

to a limb movements is described with the feature vector extracted from EMG

recordings.

Furthermore, the success of any pattern recognition classification problem de-

pends almost on the selection or extraction of features.

There are three main feature categories: time domain, frequency (spectral) do-

main, and time-scale (time-frequency) domain.

Because of their computational simplicity and intuitiveness, time domain fea-

tures are the most popular in myolectric control and are mainly based on signal

amplitude [13].

In [16], after data segmentation using the overlapped windowing technique, the

following features are extracted from each time window:

• Mean (M): it represents the average value of the EMG amplitude

M =
1

W

W∑
i=1

xi (1.3)

• Root Mean Square (RMS): it represents the mean power of the signal

RMS =

√√√√ 1

W

W∑
i=1

x2
i (1.4)

• Willison Amplitude: it represents the number of counts for each change in
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the EMG signal amplitude that exceeds a predefined threshold

WA =
1

W

W−1∑
i=1

f(|xi − xi−1|), f(x) =

1, x ≥ threshold

0, otherwise
(1.5)

• Slope sign change (SSC): it represents the number of times the slope of the

EMG signal changes spin

SSC =
1

W

W−1∑
i=2

f [(xi − xi−1)× (xi − xi+1)], f(x) =

1, x ≥ threshold

0, otherwise

(1.6)

• Simple square integral (SSI): it represents the area under the curve of the

squared signal

SSI =
W∑
i=1

x2
i (1.7)

• Variance (V): it is a statistical measure thar represents how signal varies

from its average value M

V =
1

W − 1

W∑
i=1

(xi −M)2 (1.8)

• Waveform length (WL): it represents the cumulative length of the EMG

signal waveform

WL =
W−1∑
i=1

|xi+1 − xi| (1.9)

Spectral or frequency analysis is mostly used to study muscle fatigue and needs

more computational resources in comparison to time-domain features. Power

spectral density plays a fundamental role in spectral analysis; it is defined as a

Fourier transform of the autocorrelation function of a signal. Its two characteris-

tic variables, the mean and median frequency, give some information about signal

spectrum and its change over time.

Time-frequency analysis can be used for signal de-noising, identifying fatigue

in long-term activity and isolating coordinated muscle activities, [13]. In this

approach, the aim is to maintain both time and frequency content. Since Fourier

transform loses signal time domain information and so the time-localization of a



1.4 Acquisition of EMG signals 11

specific event, it can be used the Short-time Fourier transform. This takes into

account time and frequency, mapping a signal into a two-dimensional function

of them. Another common tool is Wavelet analysis, that reveals data aspects as

trends, breakdown points, discontinuities in higher derivatives and self-similarity

[13].

1.3.3 Classification

In this last stage, linear or non linear algorthms (classifier) assign the ex-

tracted features to the class they most probably belong to. In Chapter 2 we give

a detailed review about the most important results in literature on classification

methods on EMG signals for myolectric control.

1.4 Acquisition of EMG signals

In this section we finally describe the experimental setup, giving detailes about

materials and dataset obtained from measurements. The results obtained from

these data are explained in Chapter 3.

We consider both able-bodied subjects and amputee subjects. Three healthy

subjects, aged between 24 and 28, and twenty trans-radial amputee, aged between

18 and 65, free of known musclar and/pr neurological diseases, partecipated in the

experiments. For healthy subjects, data were recorded from the dominant arm,

while for amputees it was asked which hand they preferred in daily activities.

Six commercial active sEMG sensors (Ottobock 13E200=50) were placed on the

subjects’ forearm using a silicone bracelet. Sensors were equidistantly placed in

the bracelet: for healthy subjects, it was located about 5 cm below the elbow,

while for amputees it was placed on the circumference of the stump, about 5 cm

below the elbow. Sensors operate in 4-8.5 V, bandwidth of 90-450 Hz. Data were

collected using an acquisition system and transmitted to the PC via USB.

The subjects were sitting in front of a monitor interface, showing np = 5 different

gestures: rest (hand relaxed), fist (hand with all fingers closed), pinch (hand with

thumb and finger touching), spread (hand open), pointing (hand with all fingers

closed with only index pointing), as depicted in Fig. (1.6).

Each gesture was randomly repetead nc = 10 times, with a recording time T

equals to 2s. Since the sEMG signals are sampled at Fs frequency, from each

gesture registration we obtain a L×ns matrix, where L = Fs ·T data and ns = 6

number of sensors.

The overall matrix referred to the acquisition of the sequence of hand gestures
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has dimension np × L × ns, where np = 5 gestures. Finally, as the gestures are

repeated nc times, we obtain a dataset matrix nc×np×L×ns for each subject.

An example of EMG signal recorded from surface electrodes on amputee subject

is shown in Fig. (1.5).
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Figure 1.5: EMG signal from amputee subject: from left to right signals recorded

from sensors 1-6

Figure 1.6: The five hand gestures: rest (1), fist (2), pinch (3), spread (4), pointing

(5)



Chapter 2

Classification methods

In this chapter we introduce the most common classification methods used

in pattern recognition based system control, with reference to EMG prosthetic

control. In Section 2.1 we describe the Principal component analysis (PCA) algo-

rithm, that is an unsupervised dimensionality reduction method widely used that

does not make use of class information. Section 2.2 contains the explaination of

the Support vector machine (SVM), a linear classification algorithm, while in Sec-

tion 2.3 we review the clustering methods with focus on the K-means clustering.

Section 2.4 is about a different clustering method, based on graph theory and re-

lated to probabilistic notions, that is Spectral clustering. In conclusion, in Section

2.5 we describe Artificial Neural Network with details on the back-propagation

algorithm.

2.1 Principal component analysis

The first stage in a pattern recognition system is dimensionality reduction. It

is known that this technique is necessary to extract important informations for

class discrimination.

There exist two main dimensionality reduction categories, according to the

functional cost to be minimized: feature selection methods and feature extraction

methods. On the one hand, feature selection methods try to determine the best

subset of the original features set, using a metric to evaluate the features sub-

set. The simplest way is to find the best subset that minimizes the error rate.

On the other hand, feature extraction methods attempt to determine a new set

of variables as a linear combination of the original features that best represent

the original ones. A common method belonging to this category is Principal

13
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component analysis (PCA). These methods can be summarized as in the below

scheme:

feature selection :


x1

x2
...

xn

→

xi1

xi2
...

xin

 , feature extraction :


x1

x2
...

xn

→


y1

y2
...

ym

 = f


x1

x2
...

xn


Principal component analysis (PCA) is the oldest statistical technique of di-

mensionality reduction. It was first introduced by Pearson in 1901 and has several

applications in statistical data analysis, pattern recognition and data compres-

sion.

It is a multivariate statistics algorithm which implements a data orthogonal trans-

formation. Its aim is to reduce the dimensionality of multivariate measurements

finding a smaller set of uncorrelated variables able to give a good representation of

the data. In order to reach this goal, it performs a coordinate rotation such that

the new axes are the ones with maximum variance, projecting the data onto the

eigenvectors of the covariance matrix. The new variables so obtained are called

Principal Components (PCs). Because PCA does not make use of class informa-

tion, it may be regarded as an unsupervised method but it does not guarantee

that the axes with maximum variance contain good features for classification.

2.1.1 PCA algorithm

We consider a random vector x with n elements. Typically, the elements of

x are measurements mutually correlated and therefore there is some redundancy

in x.

As preliminary step, the vector x is centered subtracting its mean E[x], that

means

x←− x− E[x]

Then, x is linearly transformed into a different vector y of m components, with

m < n, such that redundancy is removed. This is done finding an orthogonal

transformation such that the elements of x in the new coordinates become un-

correlated. An important aspect in applications is that computing y from x does

not require high computational resources, beacuse of the linearity of the PCA

algorithm that we are going to describe.

Definition 2.1 (PCA problem).

For every vector x of components x1, ..., xn, and for every vector w1 of scalar
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weights w11, ..., wn1, we set

y1 = wT1 x =
n∑
j=1

wj1xj (2.1)

We define y1 as the first principal component if its variance is maximally large.

The solution of the PCA problem is a vector w which maximizes the variance of

y1.

To establish the weight vector w1, using the properties of the expected value

E[·] and the definition of the covariance matrix C, we have to maximize the

following functional cost

J(w1) = E[y2
1] = E[(wT1 x)2] = wT1 E[xxT ]w1 = wT1 Cw1, s.t. ||w1|| = 1 (2.2)

The constraint ||w1|| = 1 is due to fact that the variance of y1 depends on the

norm and orientation of w1 and it grows as the norm grows.

Assume w1 = (w11, ..., w1n), its norm ||w1|| is defined as the Euclidean norm

||w1|| = (wT1 w1)
1
2 =

( n∑
j=1

w2
j1

)1/2

The matrix C in Eq. (2.2) is the n× n covariance matrix of x, defined as

C = E[xxT ]

The solution of the PCA problem is given in terms of the unit-length eigenvectors

e1, ..., en of the covariance matrix C. The eigenvectors are in descendent order,

such that the corresponding eigenvalues d1, ..., dn satisfy d1 ≥ d2 ≥ ... ≥ dn.

More precisely, the solution maximizing Eq.(2.2) is given by w1 = e1, therefore

the first principal component of x is y1 = eT1 x.

If we generalize the criterion in Eq.(2.2) from one single principal component to m

components, with m < n and similarly denoting the m-th component ym = wTmx,

we have to generalize also the constraint of uncorrelation. This means that ym

must be uncorrelated with all the previous principal components.

From the preliminary assumption of zero means on x, we can observe that

E[ym] = E[wTmx] = wTmE[x] = 0

Therefore, also the m-th principal component have zero means.

The conditions of zero means for both x and ym implie that ym is uncorrelated

with all the previously found principal components if and only if

E[ymyk] = 0, k < m (2.3)
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Therefore,

E[ymyk] = E[(wTmx)(wTk x)] = wTmE[xxT ]wk = wTmCwk
(2.3)
= 0, k < m

In particular, for m = 2, we have to maximize E[y2
2] = E[(wT2 x)2] in the subspace

orthogonal to the first eigenvector e1 of C. Thus, the previous equation is maxi-

mized by w2 = e2.

Recursively, we obtain wk = ek =⇒ yk = eTk x is the k-th principal component

of x. In other words, the principal components are defined as weighted sums of

elements of x with maximum variance, where the weights are the ordered eigen-

vectors of the covariance matrix of x. It also follows that the variance of the

principal components are given directly by the eigenvalues d1, ..., dn of C.

The question that arises immediately is how many principal components have

to be considered. One approach can be the choice of the principal components

that represents about the 80-90% of global variability. Another is based on the

decreasing of the eigenvalues sequence. Hence a threshold is fixed and it deter-

mines how many principal components can be used (see Figure(2.1)).

Most of the time, a rather small number of principal components are sufficient.
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Figure 2.1: Example of PCs number selection. The screen plot shows that 5 PCs

are enough

We have shown that the principal components are defined as weighted sums of

the elements of the vector x with maximum variance, under the constraints that

the weights are normalized and the principal components are uncorrelated with

each other. This formulation is related to another way to pose the PCA problem,

that is the minimun mean-square error compression of x. In these terms, we
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search a set of m orthonormal basis vectors such that the mean-square error be-

tween x and its projection onto the subspace spanned by the m vectors is minimal.

In fact, if we assume that w1, ..., wm are the orthonormal basis vectors, that

means wTi wj = δij, the projection of the vector x on the subspace with dimen-

sionality equals to m is denoted by

x⊥ =
m∑
i=1

(wTi x)wi

Therefore, the vectors w1, ..., wm must minimize the mean-square error criterion

defined by

JMSE = E
[
||x− x⊥||2

]
= E

[
||x−

m∑
i=1

(wTi x)wi||2
]

=

= E[||x||2]− 2E < x,
m∑
i=1

(wTi x)wi > +E
[
||

m∑
i=1

(wTi x)wi||2]

= E[||x||2]− E
[ m∑
i=1

(wTi x)2
]

= tr(C)−
m∑
i=1

wTi Cwi.

(2.4)

Then, the minimum of JMSE, under the constraint of orthonormality of the wi,

is given by any orthonormal basis of the PCA subspace spanned by the m first

eigenvectors e1, ..., em. This solution does not specify the basis of the subspace,

but states that any orthonormal basis of the subspace gives the same optimal

compression.

It has been proved that if we change the orthonormality condition from (i) to (ii)

(i) wTi wj = δij −→ (ii) wTj wk = λkδjk,

with λk positive and different, then the mean-square error problem has a unique

solution given by scaled eigenvectors.

2.1.2 On-line methods and recursive least-squares approach

We have seen that the fundamental object in computing the PCA is the reso-

lution of the eigenvalues/vectors problem for the covariance matrix, which allows

the definition of the principal components in terms of its eigenvectors. However,

it is not always feasible to solve this problem with standard numerical methods,

as QR method, mainly because of the computational resourses required when the

dimensionalty n of C is large. Different apporaches have been proposed, in par-

ticular we mention the gradient ascent algorithms for solving the minimization

problem in Eq. (2.2) and the PAST Algorithm.
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Gradient ascent algorithms

One alternative to the resolution of eigenvalues/vectors problem for C may

be the use of gradient ascent algorithms or on-line methods that minimize the

PCA criterion in Eq. (2.2), finding the eigenvectors of the covariance matrix C.

The main advantage is that these algorithms work on-line, therefore using each

input vector one time, without computing the covariance matrix at all. This way

represents the basis of the PCA neural network learning rules. The PCA network

learns the principal components by unsupervised learning rules: it basically up-

dates the weight vectors until they become orthonormal, making corrections on

the eigenvectors. This kind of learning algorithm and the implementation in neu-

ral network is useful in feature detection and data compression problems. More

detailes on these algorithms can be found in [11].

The PAST Algorithm

The Projection Approximation Subspace (PAST) Algorithm is a fast algo-

rithm with low computational cost, largely used in signal processing and control.

We review its implementation as an alternative resolution of the PCA problem.

Recall the mean-square error criterion from Eq. (2.4). Having fixed a sample

{x(j)}Tj=1 ⊂ Rn, and using the matrix notation W = (w1, ..., wm)T ∈ Rn×m, m ≤
n, JMSE can be estimated as

J̄MSE =
1

T

T∑
i=1

[
||x(i)−W TWx(i)||2

]

The problem is now to find W recursively. The coefficient 1
T

can be replaced by

an exponential βt−i, where β ∈ [0, 1], obtaining, for t ≤ T

JMSE(t) =
t∑
i=1

βt−i||x(i)−W T (t)W (t)x(i)||2

Introducing y(i) = W (i−1)x(i), we can approximate the previous expression and

the modified least-squares criterion becomes

J ′MSE =
t∑
i=1

βt−i||x(i)−W T (t)y(i)||2
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The PAST algorithm, proposed by Yang, can be summarized in the following

steps [11]:

y(t) = W (t− 1)x(t)

h(t) = P (t− 1)y(t)

m(t) =
h(t)

β + yT (t)h(t)

P (t) =
1

β
Tri[P (t− 1)−m(t)hT (t)]

e(t) = x(t)−W T (t− 1)y(t)

W (t) = W (t− 1) +m(t)eT (t)

where Tri stands for the upper triangular part of the current matrix. It is common

to choose as initial values W (0) and P (0) the n × n unit matrices. The most

complicated operation in this algorithm is division by a scalar, therefore no matrix

inversion is required. It has also been proved that it has low computation cost

and its convergence is rather fast. Because of this positive computational aspects,

it is a competent alternative to the formal computation of the PCA problem via

diagonalization of the covariance matrix.

2.1.3 PCA in EMG pattern recognition

In EMG pattern recognition systems, PCA is the main technique used in the

pre-processing stage for dimensionality reduction. The reason why it is preferred

is its simplicity in formulation and computation, as we have shown in the previous

paragraphs, supported by a lot of good numerical results on experiments.

In particular, by projecting the data with the goal of determining new uncorre-

lated variables, the covariance structure is lost. Morover, if the data are dispersed

in the original feature space, then the PCA tries to consolidate the informations

more than feature selection does. Because PCA is an unsupervised method, there

is no possibility to deteriorate the efficacy of dimensionality reduction with the

knowledge of class membership [7].

An interesting analysis of PCA applied to myolectric signals is provided by [7],

where Class separability (CS) criterion and Principal component analysis (PCA)

are compared. The former uses the Euclidean distance for feature extraction and

makes use of class membership information, while the latter does not make use

of class information. Both techniques specify a subset of k < n most informative

features, where n is the dimensionality of the feature space. The study has shown
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that PCA is widely superior to CS based dimensionality reduction, in particu-

lar when time-frequency representaion based features are used. Moreover, it has

been proved that using a PCA/LDA (Linear discriminant analysis) combination,

with the high-dimensional feature space of the Wavelet packet transform, have

reached an average classification error of 6.25%. The positive result is that apply-

ing PCA does not degrade performance of an easy linear classifier as LDA rather

than Multi layer perceptron (MLP), which has a more difficul implementation

and training.

In [16], PCA and CSP (Common spatial pattern) are compared, revealing that

the best/optimized feature vector for PCA preprocessing techinque is the pair

Root Mean Square (RMS) - Willison Amplitude (WA) with an Artificial neural

network (ANN) classifier, with the highest classification accuracy of 87.34±7.30%.

Another application can be found in [4], where PCA is applied to five EMG signals

measured by five surface electrodes revealing that they can be linearly reduced

to two signals, losing on average 7.7 ± 4.4% of the signal variance. However, it

must be observed that the reduction in the number of feature vectors does not

mean that only two electrodes are sufficient to obtain the same results.

2.2 Support vector machine

Support vector machine (SVM) is a supervised machine learning algorithm

proposed by V. Vapnik, both for pattern regression and classification, widely

used since 1990s. It is basically a binary learning machine, that can be extended

to more general problems. The main idea behind the method can be summed up

as follows:

” Given a training set, the Support Vector Machine constructs a separating hy-

perplane between the two classes in order to have maximum margin 1.”

In this section we introduce the geometrical interpretation of SVM as a binary

classification problem, then we will be able to extend it to the more general case

of non-separable data. We define some central notions as support vectors and the

inner-product kernels. At the end, we review some results occured in literature

on the applications of that kind of classifier to EMG signal classification.

2.2.1 Geometrical interpretation of linearly separable data

Consider the training sample D = {(xi, yi)}Ni=1, where xi ∈ Rn represents

the input pattern for the i-th example and yi ∈ Y is the corresponding desired

1The margin is defined as the maximal distance between the hyperplane and the set of data.
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response. We denote Y the label set. In this context, we assume that the sample

are linearly separable into two classes in the input space, with Y = {+1,−1}.
Therefore, the equation of a separating hyperplane between the positive (yi = +1)

class and the negative (yi = −1) one can be written as

wTx+ b = 0 (2.5)

where w ∈ Rn is a weight vector and b is the bias.

Because of the assumption made on Y , we may write

wTxi + b ≥ 0 for i such that yi = +1 (2.6)

wTxi + b ≤ 0 for i such that yi = −1 (2.7)

For a given weight vector w and bias b, we denote with ρ the margin between the

hyperplane and the data in the corresponding two regions. The goal of a support

vector machine is to find a particular hyperplane in the form of Eq. (2.5) for

which ρ is maximized. From this formulation, the decision surface is referred to

be the optimal hyperplane. We refer to Fig.(2.2) for a graphical representation

of the problem:

Figure 2.2: Linear SVM: optimal separating hyperplane between positive (black

circular points) and negative class (white circular points).

Consider that (w0, b0) define the optimal hyperplane, it follows immediately

that wT0 x+ b0 = 0, for x on the hyperplane. We can denote g(x) := wT0 x+ b0, as

the linear discriminating function that gives an algebraic measure of the distance

from x to the optimal hyperplane. If we consider an input vector x and the
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optimal hyperplane, x can be decomposed as

x = xρ + r
w0

||w0||

where xρ is the normal projection of x onto the hyperplane and r is the desired

value of the algebraic distance. Therefore,

g(x) = g

(
xρ + r

w0

||w0||

)
g(xρ)=0
=⇒ g(x) = r||w0|| (2.8)

Primal problem

Now, given the training set D = {(xi, yi)}i=1,...,N , (w0, b0) must satisfy also

the following constraints

wT0 xi + b0 ≥ 1 for yi = +1 (2.9)

wT0 xi + b0 ≤ −1 for yi = −1 (2.10)

which can be obtained by rescaling the inequalities in Eq.(2.6)-(2.7), dealing with

linearly separable data.

The data points (xi, yi) for which Eq. (2.9) or (2.10) are satistifed by the equality

sign are called support vectors. They become the most important for the location

of the optimal hyperplane: in fact, they are the closest vectors to the hyperplane

and the most difficult to classify. Their number is usually much smaller than the

total number of samples used in the training phase.

Consider, in conclusion, a support vector xs. By definition, we have

g(xs) = wT0 x
s + b0 = ∓1, for ys = ∓1 (2.11)

From Eq. (2.8), it follows that the desired algebraic distance is

r =
g(xs)

||w0||
=

 1
||w0|| , if ys = +1

−1
||w0|| , if ys = −1

Then, denoting with ρ the optimal value for the margin of the hyperplane, it

follows that

ρ = 2r =
2

||w0||

In summary, we have shown that the problem of maximizing the margin of

the separating hyperplane can be reformulated as a minimization problem for the

Euclidean norm of the weight vector w.
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Combining the constraints in Eq.(2.9) with Eq.(2.10) in the compact form

yi(w
T
0 xi + b0) ≥ 1, the problem can be formulated as a constraint-optimization

problem:

”Given the training set D, find the optimal values of (w,b), such that

yi(w
Txi + b) ≥ 1, with w minimizing φ(w) =

1

2
wTw”

This formulation is called the primal problem. Therefore, the primal problem

deals with a convex cost function φ(w) and linear constraints.

Introducing the method of Lagrangian multipliers, we can define the Lagrangian

function

L(w, b, α) =
1

2
wTw −

N∑
i=1

αi
[
yi(w

Txi + b)− 1
]

(2.12)

where αi are the Lagrangian multipliers, the first term in the r.h.s of Eq. (2.12)

is the convex cost function φ(w) and the second term is the algebraic equations

of the linear constraints. The solution of the constrained-optimization problem is

determined by the saddle point of the function L. Thus, differentiating L(w, b, α)

with respect to w and b and setting the results equal to 0, we obtain the following

optimality conditions: 
∂L(w,b,α)

∂w
= 0

∂L(w,b,α)
∂b

= 0

Applying these conditions to the Eq. (2.12), we obtain

w =
N∑
i=1

αiyixi,

N∑
i=1

αiyi = 0 (2.13)

In addition, for all the constraints that are not satisfied as equalities, the cor-

responding Lagrangian multiplier αi must be zero. This means that only the

multipliers αi that exactely satisfy

αi
[
yi(w

Txi + b)− 1
]

= 0

may assume non zero values, thus corresponding to the support vectors.

Dual problem

We can formulate another problem called the dual problem, which has the

same optimal values of the primal one but for which the Lagrangian multipliers

αi provide the optimal solution.
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Let us expand Eq.(2.12)

L(w, b, α) =
1

2
wTw −

N∑
i=1

αiyiw
Txi − b

N∑
i=1

αiyi +
N∑
i=1

αi

Because of Eq.(2.13), we have

wTw =
N∑
i=1

αiyiw
Txi =

N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj

Denoting Q(α) := L(w, b, α), it follows that

Q(α) =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj (2.14)

It can be noted that the functional Q(α) to be maximized depends only on the

data input xi, in particular on the dot products xTi xj.

We can now state the dual problem as follows:

”Given the training set D, find the Lagrangian multipliers αi that maximize the

objective function Q(α) defined in Eq. (2.14), under the constraints

(1)
N∑
i=1

αiyi = 0; (2) αi ≥ 0, ∀i = 1, ..., N”

It must be observed that the constraint (2) is satisfied by inequality sign for all

the support vectors which have a non zero coefficient αi, while it is satisfied with

the equality sign for all the training data for which the αi are zero. Therefore,

having obtained the optimum value for the Lagrangian multipliers, denoted α0,i,

we can find the optimum value for the weight vector w and for the bias b.

In particular, from Eq.(2.13) we have

w0 =
Ns∑
i=1

α0,iyixi (2.15)

where Ns denotes the number of support vectors; from Eq.(2.11) it follows that

wT0 x
s + b0 = +1 for yi = +1 =⇒ b0 = 1−

Ns∑
i=1

α0,iyix
T
i x

s (2.16)

To sum up, the separating hyperplane for separable data is defined by (w0, b0)

just obtained in Eq. (2.15) and Eq. (2.16).

Finally, the previous argument is based on the following
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Theorem 2.2.1 (Duality theorem, Bertsekas-1995).

(i) If the primal problem has an optimal solution, the dual problem also has an

optimal solution, and the corresponding optimal values are equal.

(ii) In order for w0 to be an optimal primal solution and α0 to be an optimal dual

solution, it is necessary and sufficient that w0 is feasible for the primal problem,

and

φ(w0) = L(w0, b0, α0) = min
w
L(w, b, α)

2.2.2 Non separable data

Consider the extension to data which are not linearly separable. The aim is

to find an optimal hyperplane that minimizes the misclassification error.

Definition 2.2 (Soft margin). The margin of a separating surface is said to be

soft if a data point (xi, yi) of the training set violates the constraint

yi(w
T
i xi + b) ≥ 1, for i = 1, ..., N

It can occur in two different ways: if the data point (xi, yi) falls in the region

of separation and on the correct side, or if the point (xi, yi) falls in the region

of separation but on the wrong side. In the first way, the point will be correctly

classified, while in the second one it will be misclassified.

Because of these observations, we can introduce in the hyperplane definition non-

negative variables ξ1, ..., ξN that measure the deviation of a point from the ideal

condition of separability, named slack variables, as shown

yi(w
T
i xi + b) ≥ 1− ξi, for i = 1, ..., N (2.17)

Thus, if 0 ≤ ξi ≤ 1, the point falls inside the region of separation on the correct

side, while if ξi > 1 it falls inside the region of separation on the wrong side.

As we said previously, the aim is now to find the optimal hyperplane for which the

misclassification error is minimized. One way for doing it is by the minimization

of the following functional

φ(ξ) =
N∑
i=1

I(ξi − 1)

where I represents an indicator function 2. However, it can be noted that the

2In this context, an indicator function I(ξ) is defined as

I(ξ) =

0, if ξ ≤ 0

1, if ξ ≥ 0
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minimization of φ(ξ) with respect to ξ is a non-convex optimization problem, and

therefore φ(ξ) is usually approximated with another functional

φ1(ξ) =
N∑
i=1

ξi

Furthermore, the resulting functional to be minimized with respect to w and

{ξi}i=1,...,N , under the constraint (2.17), becomes

φ(w, ξ) =
1

2
wTw + C

n∑
i=1

ξi (2.18)

The parameter C represents a tradeoff between the complexity of the algorithm

and the number of non separable data. Most of the time, it has to be determined

by the user.

It follows immediately that the linearly separable problem is included in this

formulation, considering ξi = 0, for i = 1, ..., N in (2.17) and (2.18).

We can now formulate the primal problem in the case of non separable data:

” Given a training set D={(xi, yi)}i=1,...,N , find the optimum values of the weight

vector w and the bias b such that they satisfy the constraints

(i) yi(w
Txi + b) ≥ 1− ξi, for i = 1, ..., N

(ii) ξi ≥ 0, for i = 1, ..., N

and such that w and the slack variables {ξi}i=1,...,N minimize the functional cost

φ(w, ξ) =
1

2
wTw + C

n∑
i=1

ξi

where C is a positive parameter chosen by the user. ”

Applying a similar procedure used in Section 2.2.1 for the linear case, we can

state the dual problem for non separable data, making use of the Lagrangian

multipliers:

” Given the training set D, find the Lagrangian multipliers {αi}i=1,...,N that

maximize the objective function

Q(α) =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj
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subject to the contraints

N∑
i=1

αiyi = 0, 0 ≤ αi ≤ C

where C is a positive parameter chosen by the user. ”

Observation 1. Firstly, it can be noted that the dual formulation for non sepa-

rable data does not make use of the slack variables, therefore it is much similar

to the dual formulation seen in Section 2.2.1. The objective function Q(α) to

be maximized is the same in both cases, but subject to different constraints: the

condition αi ≥ 0 for the first problem is substitued by 0 ≤ αi ≤ C for non separa-

ble data. Thus, for non separable data, the constrained optimization problem for

detecting the optimum values of (w, b) proceeds in the same way as for separable

data.

Observation 2. A different method when dealing with a k-multiclass classification

problem (k > 2) can be found in [3]. It is based on the simplest intuition about

the problem: a multiclass classifier can be seen as a combination of a number

of linear discriminant classifiers. There are two main approaches based on this

idea. The one-vs-the-rest is the most used strategy that constructs k separate

SVMs, in which for each class Ci, i = 1, ..., k, the elements in the current class Ci

are considered as the positive data and the data of the remaining k − 1 classes

as the negative ones. Therefore, the multiclass classifier is obtained by using

k− 1 binary classifiers. The main disadvantage of this construction is that there

may be some examples assigned to multiple classes simultaneously. A different

approach is called the one-vs-one classifier, where the positive class has target +1,

while the negative class has target −1
k−1

, thus a weight coefficient for the classes is

introduced.

2.2.3 Kernels, feature map and feature space

The Support vector machine is also referred as a kernel machine. The main

idea is that if data in the input space are not linearly separable, the SVM algo-

rithm can map the input space on a higher dimensional one, where it is possible to

separate the data. Thus, it can occur that the resulting system becomes too com-

plex and the calculation of the Euclidean distance between each training point

and the separating surface becomes too hard. In this case, SVM may introduce

kernel functions, which operate in a feature space and calculate only the inner

product between images of points in the feature space, instead of the Euclidean
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distance. This ’trick’ is computationally simple and therefore allows SVM to be

used in high dimensional classification problem. We explain in this section the

fundamental notions of kernel, feature map, feature space, with reference to [20]

and [9].

Definition 2.3 (Kernel). Let X be a non-empty finite dimensional set. A function

k: X×X → R is called a kernel on X if there exists a R-Hilbert space H =

(H, 〈·, ·〉) and a map φ: X→ H such that ∀x, x′ ∈ X we have

k(x, x′) = 〈φ(x), φ(x′)〉

where φ is called feature map and H is called the feature space of k.

In other words, a kernel is a function that computes the inner product of the

images produced in the feature space under the embedding φ of two data points

x, x′ in the input space X.

Observation 3. φ and H are not uniquely determined.

Observation 4. We can consider k(x, x′) as the ij-th element of a symmetric N×N
matrix K. The matrix K is a nonnegative definite matrix called the kernel matrix.

Whenever H is separable, since it has a countable orthonormal basis it follows

the isomorphism H ∼= `2, we have

Proposition 2.2.2 (Series representation of kernel).

Let X be a non-empty set, consider fn : X → C, n ∈ N, such that
(
fn(x)

)
∈

`2, ∀x ∈ X. Then

k(x, x′) :=
∞∑
i=1

fn(x)fn(x′), for x, x′ ∈ X

defines a kernel on X.

Proof. It follows from the definition and from the fact that the scalar product in

`2 is defined as the sum of the series:

k(x, x′) = 〈f(x), f(x′)〉`2

More details on kernels properties can be found in [20].
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Observation 5 (Gaussian RBF kernel). An example of real-valued kernel, one of

the most used in practice, is the Gaussian RBF (radial basis function) kernel with

width γ, defined by

kγ(x, x
′) := exp

(
− ‖x− x

′‖2
2

γ2

)
, with x, x′ ∈ Rd

It can be derived as the restriction to Rd of the more general complex kernel

defined in Cd:

kγ,Cd(z, z
′) := exp

(
− γ−2

d∑
j=1

(zj − z̄j)2

)
The introduction of these notions allow us to derive the equation of the optimal

hyperplane using a kernel function. The basic motivation behind this approach

is due to Cover’s theorem, which can be formulated in the following form [9]

Theorem 2.2.3 (Cover’s Theorem).

A complex pattern-classification problem, cast in a high-dimensional space non-

linearly, is more likely to be linearly separable than in a low-dimensional space,

provided that the space is not densely populated.

This result plays a central role when we have non separable data, and we want

to classify them with a Support vector machine in a different manner from what

exposed in Observation 2.

Consider an input vector x in a finite dimensional input space X. Let {φi}∞i=1

be an infinte set of feature map, defined by X to a Hilbert space H. We may define

a separating hyperplane according to the formula
∞∑
i=1

wiφi(x) = 0

where {wi}∞i=1 defines an infinite set of weights that tranform the feature space

in the output space. In a more compact way, this can be written as

wTϕ(x) = 0 (2.19)

where ϕ(x) is the feature vector and w is the corresponding weight vector.

Our aim is now to find a separating hyperplane in the feature space H, as we

have done in Section 2.2.1 and 2.2.2.

From Eq. (2.15), in this particular context it becomes

w =
Ns∑
i=1

αiyiϕ(xi) = 0
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with Ns the number of support vectors. Substituing Eq. (2.19), we can write the

separating hyperplane in the output space as follows

Ns∑
i=1

αiyiϕ
T (xi)ϕ(x) = 0 =⇒

k(xi,x)=ϕT (xi)ϕ(x)

Ns∑
i=1

αiyik(xi, x) = 0 (2.20)

Because of the last equation, it can be observed the reason why Support vector

machine is often referred to be a kernel machine. In fact, from Eq. (2.20), it

follows that we have never to calculate the weight vector w0, because specifying

the kernel is sufficient. This also motivates the reason why Eq. (2.20) is called

the kernel-trick. An important observation, in particular for applications, is that

whenever the feature space is defined as an infinite dimensional space, the Eq.

(2.20) defining the optimal hyperplane consists of a linear finite sum of terms, in

particular equal to the number of support vectors.

2.2.4 SVM in EMG pattern recognition

In literature, we can find a lot of papers in which comparisons between SVM

and other classification algorithms are proposed. For istance, in [16] three differ-

ent classifiers are tested on twenty able-bodied subjects and one transradial am-

putee, namely Linear discriminant analysis (LDA), Support vector machine and

Artificial neural networks (ANN). A Gaussian kernel has been considered. The

classifiers’ performances are compared, both with Principal component analysis

and Common spatial pattern technique, revealing that Artificial neural networks

performs higher than SVM or LDA do. Therefore, this paper shows that in a

pattern recognition based system control, analyzing the EMG in the time do-

main with that specific features, the best classification accuracy is obtained by a

neural networks algorithm rather than a support vector machine. Thus, SVM is

not universally the best classifier for EMG signals classification.

Another interesting study based on SVM as EMG classifiers can be found in [4],

where EMG signals and force signals are used to train Support vector machine

with Radial basis function kernel. The experimental subjects are three hand am-

putees; five surface electrodes are used, with the goal of discriminating phantom

limb postures and approximating the required force. A supervised learning strat-

egy is followed, in which the recordings are made according to the modalities

of teacher imitation, bilateral action and mirror box. In particular, the hyper-

parameters γ (width of the Gaussian kernel) and C are found by a logarithmic

grid search. Each subject reveals an highest performance in a specific recording
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modality, but on average their best performances with the use of a SVM classi-

fication algorithm are between 92.64 ± 0.74% and 95.74 ± 1.15%. Furthermore,

the low percentage of support vectors found in the best models indicate that the

problem is not difficult from the point of view of machine learning.

A different experiment concerning the use of SVM is [1], with the particular goal

of analyzing the best placement of four sensors and the variability of training

data along different days with reference to different positions of arm and forearm

during the recordings. The results show that the use of four correctly placed

electrodes and a slight signal pre-processing can give good result of classification.

Therefore, focusing on the correct experimental procedure, high classification ac-

curacies can be obtained with a SVM classifier using four electrodes, and thus is

not necessary to look for more complex algorithms with more electrodes.

A further development based on [1] is presented in [17], where an hybrid EMG

classifier is proposed by combining a Support vector machine and an Hidden

markov model (HMM). In particular, HMM is used to distinguish between steady-

state signals from transient one, and then SVM is used to classify the EMG signal

during steady-state. The reason why HMM is introduced is to allow the classi-

fication of transients, not made possible by a time depending algorithm. In

conclusion, the results of the experiment show that an increase on the gesture

classification higher than 12% is reached by the hybrid approach.

2.3 Clustering

Clustering is a method of exploratory data analysis based on the grouping of

data according to a certain notion of similarity between them. Its aim is to con-

struct groups of data (clusters), such that data in the same cluster share similar

characteristics, while data in different clusters are dissimilar. It is a technique

used in many fields, as statistical data analysis, machine learning, pattern recog-

nition and data compression.

One approach can be a statistical method, based on the assumption that there is

a probabilistic model that generates the data points, while one of great interest is

the similarity-based method. It defines a similarity function between pairs of data

points and formulates a criterion based on it, so that the clustering method must

optimize. The central point for clustering optimality is therefore the definition of

a ’good’ similarity function.

In particular, there exist two main categories of clustering: partitioning methods

and hierarchical methods. The first construct k clusters such that for each cluster
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there exists at least one element, and each element belongs to one and only one

group. These requirements may be summarized as follows

(i) ∀Ci, ∃xj ∈ Ci, ∀i = 1, ..., k

(ii) ∀i, j ∈ {1, ..., k}, Ci ∩ Cj = ∅

where Ci is the i-th cluster, X = {x1, ..., xN} is the set of observations to be

grouped in k clusters.

The hierarchical methods instead build a hierarchy of clusters, on the basis of

the directions followed in the construction: there is an agglomerative approach, if

a bottom-up strategy is followed, or a divisive approach, if the top down strategy

is used. In general, the choice of the kind of clustering depends on the structure

of data available and on the specific purpose of the study.

In this Section we focus on one of the most used partitioning methods, namely

the K-means clustering, which is more suitable dealing with large datasets.

2.3.1 K-means algorithm

Let Y = {xn}n=1,...,N be a set of N realizations/samples of a random variable

X in RD. As first assumption, we consider that the number K of clusters is given

by the user.

Definition 2.4 (1-of-K encoder). We call 1-of-K encoder the function rnk ∈ {0, 1}
which assigns each data point to one cluster. Equivalentely,

rnk =

1, if xn ∈ Ck

0, otherwise

with Ck denoting the k-th cluster.

As we said above, the idea of the k-means is to assign both xi and x′i to the

same cluster if the similarity distance between them is small enough, otherwise

to different clusters, and repeat this procedure for all the pairs of data points.

In the specific, the k-means is characterized by the use of the squared Euclidean

distance as similarity distance, therefore, denoting µk the prototype of cluster Ck,

we may introduce an objective function as

J(rnk, µk) :=
N∑
n=1

K∑
k=1

rnk||xn − µk||2 (2.21)

It is a summation over all the data available of the sum of the squared Eu-

clidean distances between each data point to its prototype µk. Our goal is to find
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the values of {rnk} and {µk} that minimize Eq. (2.21). It can be obtained with

an iterative procedure where, for each step, two optimization problems have to

be solved, one concerned {rnk} and the other concerned {µk}. Given some initial

values for the µk, the algorithm can be summarized as in the following table:

K-means algorithm

Repeat until convergence:

1. Fixed µk, solve

min
rnk

J(rnk, µk)

2. Fixed rnk, solve

min
µk

J(rnk, µk)

Table 2.1: K-means algorithm iterative scheme

On the one hand, to execute (1) in Table (2.1) we can use the linearity of Eq.

(2.21) with respect to rnk. We can optimize for each n separately, assigning each

xn to the closest cluster center, according with the formula

rnk =

1, if k = argminj ||xn − µj||2

0, otherwise
(2.22)

On the other hand, as Eq. (2.21) is quadratic with respect to µk, we can differ-

entiate and pose the result equal to zero, as follows

∂J(rnk, µk)

∂µk
= 2

N∑
n=1

rnk(xn − µk) = 0⇔ µk =

∑
n rnkxn∑
n rnk

(2.23)

It can be observed that the denominator of Eq. (2.23) is equal to the total number

of data assigned to cluster k, because of its definition. Therefore Eq. (2.23) is an

estimate of the mean value of data belonging to the k-th cluster.

Keeping in mind this observation, the functional cost in Eq. (2.21) can be seen

as the sum over the total number of clusters of the squared Euclidean distance

between each point and the estimate of the mean value of the cluster. In other

words, it is a linear summation of the estimates of the variances associated to

each cluster

J(rnk, µk) =
K∑
k=1

σ2
k
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The two steps illustrated in Table (2.1) are reapeated until the total number

of iterations is reached or when no more assignment is possible. Usually, the

algorithm used for solving these optimization problems is the gradient descent,

but it may occur that J converges to local minima rather than global minima. An

important observation may be done about the choice of the initial prototypes µk.

If they are deliberately chosen by the user, the algorithm may take several steps to

reach convergence. It is suggested in literature that the best choice for improving

the running time and the quality of the final solution should be a random subset

of k data points, as implemented in the kmeans algorithm for Matlab [?].

Observation 6. In this study, we use the K-means algorithm as a supervised

method for individuating exactly a number of clusters equals to the number of

gestures an artificial device should have to reproduce. Therefore, we do not

mention the techniques most used for the choice of the number of clusters.

2.4 Spectral clustering

Recently, spectral methods have become popular methods in the similarity-

based approach. These methods find theoretical motivation in the field of graph

theory. The growing success of such approach is mainly due to the simple im-

plementation, because spectral methods are formulated as eigenvalues/vectors

problems, thus requiring standard linear algebra methods.

In this section we recall some basics of graph theory, then we formulate the sim-

ilarity graph approach. Following [12], we also discuss a random walks view of

spectral clustering and connections with graph cut point of view.

2.4.1 Similarity graphs

We introduce some basic concepts of graph theory and discuss different type

of graphs that can be constructed.

Notation 1 (Basic concepts of graph theory). A graph is defined as a pair G =

(V,E), with |V | = n. We call V = {v1, ..., vn} the set of vertices and E the set of

edges.

A similarity graph is a pair G = (V,E), together with a similarity matrix (sij).

Two vertices vi, vj are connected if the similarity sij between them is sij ≥ 0 or

sij ≥ threshold; therefore the edge between vi and vj will be weighted by sij.
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Let X be the set of data point xi, with i ∈ I. Let G = (V,E) be an undi-

rected graph with vertex set V = {v1, ..., vn}, which means that edges have no

orientation, and each vertex vi represents a data point xi. We assume that G is

weighted, meaning that two vertices vi, vj are connected by an edge weighted by

a non-negative weight wij. If vi and vj are not connected, wij = 0.

We call adjacency matrix of the graph G the matrix with n×n elements, defined

by W = (wij)i,j=1,...,n.

As G is undirected, we require that wij = wji.

The degree of a vertex vi ∈ V is defined as

di =
n∑
j=1

wij

We define degree matrix D the diagonal n× n matrix with elements d1, ..., dn

on the diagonal.

Given a set of data points x1, ..., xn with pairwise similarities sij, there exist

different methods for constructing a graph. The aim is, as we noted above, to

create graphs where neighborhood data points are grouped on the base of similar

properties. We report three main approaches:

1. The ε−neighborhood graph: for every pairwise verteces vi, vj, we connect

them if sij ≤ ε. This construction makes the resulting graph unweighted:

as connected points have at most distances equal to ε, considering weighted

edges do not increase informations on the graph.

2. K-nearest neighborhood graph: the idea is to connect vi with vj if vj belongs

to the k-nearest neighborhood of vi and vice versa. If the edges’ orientation

is ignored, the k-nearest neighbor graph is obtained; otherwise, it is called

mutual k-nearest neighbor graph.

3. The fully connected graph: all the points are connected with each other with

positive similarity and all edges are weighted by sij. A common example

for similarity function is the Gaussian similarity function

s(xi, xj) = exp

(
− ‖xi − xj‖

2

2σ2

)
where the parameter σ plays an analogous role of the ε in the ε-neighborhood

graph.
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2.4.2 Graph Laplacians

The fundamental tool in spectral clustering is the graph Laplacian. There

exist different ways of defining it and its apllication in graph theory are discussed

below.

In the following we assume that G = (V,E) is an undirected, weighted graph

with adjacency matrix W = (wij), wij ≥ 0. With the statement ’the first k

eigenvectors’ we will refer to the eigenvectors corresponding to the k smallest

eigenvalues.

Definition 2.5 (Unnormalized graph Laplacians).

Given D the degree matrix and W the adjacency matrix of a graph G, the un-

normalized graph Laplacian matrix is defined as

L = D −W

Proposition 2.4.1 (Properties of L).

The matrix L satisfies the following properties:

(i) ∀f ∈ Rn, denoting by f ′ its transpose, we have

f ′Lf =
1

2

n∑
i,j=1

wij(fi − fj)2

(ii) L is symmetric and positive semi-definite

(iii) The smallest eigenvalue of L is 0, the corresponding eigenvector is the

costant one vector 1

(iv) L has non-negative, real valued eigenvalues, 0 = λ1 ≤ ... ≤ λn.

Proof. (i) Remembering the definitions, we have

f ′Lf = f ′Df − f ′Wf =
n∑
i=1

dif
2
i −

n∑
i,j=1

fifjwij =

=
1

2

( n∑
i=1

dif
2
i − 2

n∑
i,j=1

fifjwij +
n∑
j=1

djf
2
j

)
=

=
1

2

( n∑
i,j=1

wijf
2
i − 2

n∑
i,j=1

fifjwij +
n∑

i,j=1

wijf
2
j

)
=

=
1

2

n∑
i,j=1

wij(fi − fj)2.
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(ii) L is symmetric: in fact, because we have assumed G as an undirected

graph, that is wij = wji, it follows that both W and D are symmetric. The

positive semi-definiteness results from (i), because f ′Lf ≥ 0, ∀f ∈ Rn.

(iii) It follows immediately from the definition and (i), (ii).

(iv) It follows from (i) and (iii).

Unnormalized graph Laplacians together with their eigenvalues and eigen-

vectors are able to describe many properties of graphs. There is an important

result that allows a better comprehension of spectral clustering, as shown in the

following

Proposition 2.4.2 (Number of connected components).

Let G be an undirected graph with weights wij ≥ 0. Then, the multiplicity k of

the eigenvalue 0 of L equals the number of connected components A1, ..., Ak in

the graph. The eigenspace of eigenvalue 0 is spanned by the indicator vectors

1A1 , ..., 1Ak of those components.

For a better clarification of the matrix construction and in particular on the

Laplacian matrix structure, see the example below.

Example 1. Consider the graph in Figure (2.3),

Figure 2.3: Example: undirected graph G=(V,E), with |V | = 6
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Let construct the degree matrix D and the adjacency matrix W:

D =



3 0 0 0 0 0

0 1 0 0 0 0

0 0 2 0 0 0

0 0 0 4 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, W =



0 1 1 1 0 0

1 0 0 0 0 0

1 0 0 1 0 0

1 0 1 0 1 1

0 0 0 1 0 0

0 0 0 1 0 0


Therefore,

L = D −W =



3 −1 −1 −1 0 0

−1 1 0 0 0 0

−1 0 2 −1 0 0

−1 0 −1 4 −1 −1

0 0 0 −1 1 0

0 0 0 −1 0 1


It directly follows that L is symmetric and positive semi-definite.

Definition 2.6 (Normalized graph Laplacians). There are two different matrices

called normalized graph Laplacians. They are

Lsym = D−1/2LD−1/2 = D−1/2(D −W )D−1/2 = I −D−1/2WD−1/2

Lrw = D−1L = D−1(D −W ) = I −D−1W

These notations are useful to remind the symmetry property of Lsym, and the

connection to random walks for Lrw.

As in the case of unnormalized graph Laplacians, the main properties of Lsym

and Lrw are summarized in the following two Propositions:

Proposition 2.4.3 (Properties of Lsym and Lrw).

The normalized graph Laplacians satisfy the following properties:

(i) ∀f ∈ Rn,

f ′Lsymf =
1

2

n∑
i,j=1

wij
( fi√

di
− fj√

dj

)2

(ii) λ is an eigenvalue of Lrw with eigenvector u if and only if λ is an eigen-

value of Lsym with eigenvector w = D1/2u

(iii) λ is an eigenvalue of Lrw wih eigenvector u if and only if λ and u solve

the generalized eigenproblem Lu = λDu
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(iv) 0 is and eigenvalue of Lrw with the constant one vector 1 as eigenvector.

0 is an eigenvalue of Lsym with eigenvector D1/21

(v) Lsym and Lrw are positive semi-definite and have n non-negative real-

valued eigenvalues 0 = λ1 ≤ ... ≤ λn.

Proof. (i) It can be proved in the same way as (i) in Proposition (2.4.1).

(ii) Let consider the eigenvalue equation Lsymw = λw. From the hypothesis

w = D1/2u, applying D−1/2 on the left, we obtain

D−1/2Lsymw = D−1/2λw ⇔ D−1/2Lsymw = λu⇔ D−1/2D−1/2LD−1/2w = λu

⇔ D−1LD−1/2w = λu⇔ Lrwu = λu.

(iii) It follows immediately that

Lrwu = λu⇔ DLrwu = Dλu⇔ Lu = λDu.

(iv) The first statement is obvious from (iii), because Lrw1 = 0. The second

statement follows from (ii).

(v) The semi-definite positiveness of Lsym follows from (i), while the same

property for Lrw follows from (ii).

Proposition 2.4.4 (Number of connected components).

Let G be an undirected graph with non-negative weights. Then the multiplicity k of

the eigenvalue 0 of both Lrw and Lsym equals the number of connected components

A1, ..., Ak in the graph. For Lrw, the eigenspace of 0 is spanned by the indicator

vectors 1Ai of those components. For Lsym, the eigenspace of 0 is spanned by the

vectors D1/21Ai.

2.4.3 Graph cut point of view

Consider data x1, ..., xn given in form of a similarity graph, that means that we

have their pairwise similarities sij = s(xi, xj), defined by some similarity function

which is symmetric and non-negative. The goal of spectral clustering is there-

fore to obtain a partition of the graph such that points in different clusters are

dissimilar from each other, while points in the same cluster are similar to each

other. This may be reformulated asking that edges between different groups have

low weights, while edges between the same group have high weights.

In this section we explain how spectral clustering can be derived as an approxi-

mation to such graph partitioning problems.
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Given a similarity graph G = (V,E) with adjacency matrix W = (wij), we

introduce some notations:

• if A,B ⊂ V , we define

W (A,B) :=
∑

i∈A,j∈B

wij

• measures for the ’size’ of a subset A ⊂ V :

|A| := the number of vertices in A

vol(A) :=
∑
i∈A

di

• if A ⊂ V , we denote Ā = V \ A as the complemet of A. The set of edges

between A and Ā is called a cut.

One of the most easy and direct way for constructing a partition of the graph

is to solve the mincut problem: for a given number k of subsets A1, ..., Ak , the

mincut approach consists on minimize

cut(A1, ..., Ak) :=
1

2

k∑
i=1

W (Ai, Āi) (2.24)

However, most of the time this approach does not give good partitions of the

graph. This is due to the fact that the minimization of Eq. (2.24) usually sepa-

rates one single vertex from the rest of the graph, and this is not an acceptable

result because clustering’s aim is to define large regions of points. To overcome

this problem we can ask that the subsets A1, ..., Ak have acceptable size. For

doing so, objective functions that take into account a measure of the subsets

Ai, i = 1, .., k have been introduced. The two common functions used are Ratio-

Cut and NCut, defined as above

RatioCut(A1, ..., Ak) :=
1

2

k∑
i=1

W (Ai, Āi)

|Ai|
(2.21)
=

k∑
i=1

cut(Ai, Āi)

|Ai|

NCut(A1, ..., Ak) :=
1

2

k∑
i=1

W (Ai, Āi)

vol(Ai)

(2.21)
=

k∑
i=1

cut(Ai, Āi)

vol(Ai)

(2.25)

It can be observed that both objective functions try to create balances clusters,

in terms of number of vertices (RatioCut) or edge weights (NCut).

Unfortunately, the addition of balancing functions increase the difficulty of the
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minimization problem, in the first time somewhat simple. Spectral clustering is

a way to solve relaxed versions of those problems.

We now focus on the approximation of the NCut algorithm, which is deeply

connected with random walks on graphs.

The Normalized cut criterion and algorithm

The NCut algorithm was introduced in [19] as a method for solving the mincut

problem using the Laplacian matrix as an eigenvalues/vectors problem. For the

shake of simplicity, consider only the case of k=2 clusters (to obtain more than

two part, procede recursively). We define the cluster indicator vector f by

fi =


√

vol(Ā)
vol(A)

, if vi ∈ A

−
√

vol(Ā)
vol(A)

, if vi ∈ Ā

From this assumption, it follows that (Df ′)1 = 0, f ′Df = vol(V ), f ′Lf =

vol(V )Ncut(A, Ā). The minimization problem for Ncut can be rewritten as

min
A
f ′Lf s.t. f as above, Df⊥1, f ′Df = vol(V )

Relaxing the problem allowing f ∈ Rn and substituing g := D1/2f , we obtain

min
g∈Rn

g′D−1/2LD−1/2g s.t. g⊥D1/21, ||g|| = vol(V )

Recalling the definition of Lsym, from Rayleigh-Ritz theorem, it follows that the

solution g is given by the second eigenvector of Lsym. In conclusion, re-substituing

and recalling the definition of Lrw, it follows tha f is the second eigenvector of the

generalized eigevalues/vectors problem Lx = λDx. Then f is used to bipartition
3 the graph.

2.4.4 Random walks point of view

A different approach to explain spectral clustering is based on random walks

on the similarity graph. In this terms, spectral clustering can be considered as

a method that tries to find a partition of the graph such that the random walk

stays long within the same cluster and jumps from one cluster to another.

Definition 2.7 (Random walk on a graph). Given a graph G, a random walk on

G is a stochastic process
(
Xt

)
t∈N which randomly jumps from vertex to vertex.

3A bi-partite graph is a graph whose vertices can be divided into two disjoint sets A,B such

that every edge connects a vertex of A to one in B.
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The transition probability of jumping in one step from vertex vi to vertex vj is

proportional to the weight wij, given by:

pij :=
wij
di

We define the transition matrix of the random walk as

P = (pij)i,j=1,..,n, P = D−1W

where D is the degree matrix and W is the adjacency matrix. P can be considered

as the stochastic matrix obtained from W by ’normalizing’ with D.

Observation 7 (Stationary distribution of the random walk). Let G=(V,E) be a

connected and non bi-partite graph with |V | = n, then the random walk has a

unique stationary distribution

π = (π1, ..., πn)′, where πi =
di

vol(V )

In fact, recalling that

pij =
wij
di

; vol(V ) =
n∑
i=1

di; di =
n∑
j=1

wij

and that π = (π1, ..., πn) is a discrete probability distribution such that

∀i = 1, ..., n, πi ≥ 0;
n∑
i=1

πi = 1; ∀j = 1, ..., n,
n∑
i=1

πipij = πj

it follows that

πj =
n∑
i=1

πipij =
n∑
i=1

πi
wij
di

=
n∑
i=1

di
vol(V )

wij
di

=
1

vol(V )

n∑
i=1

wij =
dj

vol(V )
.

Reminding the Definition (2.5), the relation between the normalized graph

Laplacian Lrw and a random walk is now clear: in fact, Lrw = I−D−1W = I−P .

Then, λ is an eigenvalue of Lrw with eigenvector u if and only if 1 − λ is an

eigenvalue of P with the same eigenvector u.

An important result on the relation between graphs and random walks is due

to [12], in particular it is shown the equivalence between the spectral problem

formulated by the Ncut algorithm and the eigenvalues/vectors of the transition

matrix P.
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Proposition 2.4.5. Consider the two eigenvalues/vector problems:

Lx = λDx (2.26)

Px = λx (2.27)

where (2.26) is the generalized problem solved by NCut algorithm, while (2.24) is

the spectral problem for the matrix P. Then,

if λ, x are solutions of (2.27), and P = D−1W , then (1− λ), x are solutions of

(2.26).

We can also reformulate the NCut criterion in terms of transition probabilities:

Proposition 2.4.6. Let G be a connected and non bi-partite graph. Assume that

we run the random walk
(
Xt

)
t∈N starting with X0 in the stationary distribution

π. For disjoint subsets A,B ∈ V , we denote P (B|A) := P (X1 ∈ B|X0 ∈ A).

Then

NCut(A, Ā) = P (Ā|A) + P (A|Ā)

Equivalentely, if the NCut is small for a certain partition A, Ā, it means that

the probabilities of evading A once the random walk is in it, and of evading its

complement, are both small. Therefore, we have determined a partition of the

graph such that the random walk tends to remain in the part where it is, accord-

ing to the aim we stated at the beginning of this section.

2.5 Neural network

Neural networks, also called artificial neural networks, are machine learning

algorithms inspired by biological neural networks. The first introduction of neu-

ral network as computing machines dates back to 1943, when the first artificial

neurons was introduced by McCulloch and Pitts. The main idea behind the func-

tionality of an artificial neural networks is that it is possible to model the way in

which the brain performs a particular task as a network of interconnected artifi-

cial neurons.

With reference to [9], we briefly give a description of the neuron model, which

consists of three basic elements, as shown in Fig. (2.4):

• a set of synapses, that are elementary functional and structural units that

mediate the interconnections between neurons. Each synapse is character-

ized by a weight or strenght which can assume both positive and negative
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values, corresponding respectively to excitatory and inhibitory connections.

In other terms, when a signal xj at the input of synapse j is connected to

neuron k, it is multiplied by the synaptic weight wkj;

• an adder that executes the summation of input signals weighted by synaptic

weights;

• an activation function that constraints the amplitude of the output of a

neuron.

Figure 2.4: Model of an artificial neuron, labelled k

In mathematical terms, the neuron k can be described by the following equa-

tion

uk =
m∑
j=1

wkjxj (2.28)

where (x1, ..., xm) is an input signal, wk1, ..., wkm are the synaptic weights of

neuron k, and uk is called the linear combiner output. Denoting with ϕ the

activation function, we obtain that the output signal of the neuron k is given by

yk = ϕ(uk + bk) (2.29)

where bk represents a possible bias. We can introduce the activation potential

vk = uk + bk, which allows us to summarize the above equations as follows

vk =
m∑
j=0

wkjxj, yk = ϕ(vk) (2.30)

where in the formula of vk we have added a new synaptic weight wk0, correspond-

ing to the input signal x0 = +1; so the weight becomes wk0 = bk.
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In particular, two basic types of activation function are used: one is the threshold

function (i), that allows the output to assume the discrete values 0 or 1, while

the sigmoid function (ii) allows the output to assume continuous values in range

between 0 and 1. More explicitly:

(i) ϕ(v) =

1, if v ≥ 0

0, if v < 0
, (ii) ϕ(v) =

1

1 + exp(−av)
, a > 0

In the first paragraph we describe the perceptron, which is the first algorithmi-

cally description of neural networks due to Rosenblatt in 1958. Because it suffers

of some limitations, as shown by the exclusive-OR problem, in the second para-

graph we present the description of the multi-layer perceptron that allows the

classification of nonlinearly separable data.

2.5.1 The perceptron

The perceptron is the simplest form of neural network used for classification

of linearly separable data. It consists of one single neuron layer with adjustable

synaptic weights and bias, which uses the threshold function as activation func-

tion. Its goal is to separate with a plane two collections of input signals belonging

to classes C1 and C2.

Denoting with n the time-step in applying the perceptron algorithm and denoting

with N the total number of signals in the training sample, let us introduce the

following notations:

• input vector (also called the impulse): x(k) = (x0(k), x1(k), ..., xm(k)) =

(+1, x1(k), ..., xm(k)), with k = 1, ..., N . For every input vector, it is known

the belonging of one of the classes C1, C2;

• weight vector: w(n) = (w0(n), w1(n), ..., wm(n)) = (b, w1(n), ..., wm(n))

Substituing these notations in Eq. (2.30), we obtain

v(n) =
m∑
j=0

wj(n)xj(k(n)) = w(n)Tx(k(n))

Therefore, the decision boundary between classes C1 (s.t. 〈w, x〉 > 0) and C2 (s.t.

〈w, x〉 < 0) is defined by the equation wTx = 0, which defines a hyperplane in

a m-dimensional space. Thus, the learning rule consists on varying the direction

of the decision boundary, that is varying the weight vector, in such a way that

positive and negative samples are separated by the boundary itself.
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In simple terms, at time step n, if the impulse x(k(n)) is correctly classified, the

perceptron does not have to adjust the vector weight w; otherwise, a learning

rule for adjusting w has to be followed, as summarized below:

w(n+ 1) = w(n)− η(n)x(k(n)) if w(n)Tx(k(n)) > 0 and x(k(n)) ∈ C2

w(n+ 1) = w(n) + η(n)x(k(n)) if w(n)Tx(k(n)) < 0 and x(k(n)) ∈ C1

The parameter η(n) is the learning parameter and it controls how much the vector

weight has to be adjusted. It takes values in the range 0 < η ≤ 1.

An interesting result, known in literature as the perceptron convergence the-

orem, states that for any set of linearly separable data, the perceptron learning

rule converges in a finite number of iterations. We present the proof of this the-

orem in the case of η(n) = 1. Then, we summarize the algorithm for η a positive

constant value.

Theorem 2.5.1 (Fixed-increment convergence theorem for the perceptron -

Rosenblatt 1962). Let H1 be the subspace of training vectors belonging to class

C1, and let H2 be the subspace of training vectors belonging to class C2. Let

H1 and H2 be linearly separable and at the input presented to the perceptron be-

long to these subspaces. Then, the perceptron converges after a finite number of

iterations.

Proof. Consider w(0) = 0 and suppose that, for n=1,2,..., w(n)Tx(k(n)) < 0

with x(k(n)) ∈ C1, that means that the perceptron does not correctly classify

the input x(k(1)), x(k(2)), .... Without loss of generality, consider η(n) = 1 (this

assumption justifies the fixed-increment name).

Because of the assumption, we have w(n+1) = w(n)+x(k(n)), for x(k(n)) ∈ C1.

Since w(0) = 0, it follows that w(n+1) = x(k(1))+x(k(2))+...+x(k(n)). Because

we have assumed that the two classes are linearly separable, there must exists a

solution w0 for which wTx(k(n)) > 0 for x(k(1)), x(k(2)), ..., x(k(n)) ∈ H1.

Now consider w0 a fixed solution, and define α := minx(k(n))∈H1 w
T
0 x(k(n)). By

multiplying wT0 for the update rule for w, we obtain

wT0 w(n+ 1) = wT0 x(k(1)) + ...+ wT0 x(k(n))⇒ wT0 w(n+ 1) ≥ nα

If we apply the Cauchy-Schwarz inequality to the vectors w0 and w(n + 1), it

follows that

‖w0‖2‖w(n+ 1)‖2 ≥
(
wT0 w(n+ 1)

)2 ≥ n2α2 ⇒ ‖w(n+ 1)‖2 ≥ n2α2

‖w0‖2



2.5 Neural network 47

We can rewrite the update rule for w as w(j+1) = w(j)+x(k(j)), for j=1,2,...,n,

and for x(k(j)) ∈ H1. Considering the squared Euclidean norm and the hypoth-

esis w(j)Tx(k(j)) < 0, it follows that

‖w(j + 1)‖2 − ‖w(j)‖2 ≤ ‖x(k(j))‖2 ⇒ ‖w(n+ 1)‖2 ≤
n∑
j=1

‖x(k(j))‖2 ≤ nβ

where β := maxx(k(j))∈H1 ||x(k(j))||2. This last inequality shows that the weight

vector grows at least linearly with the number of iterations n. Therefore, we have

obtained
n2α2

‖w0‖2
≤ ‖w(n+ 1)‖2 ≤ nβ

n≤nmax
=⇒ n2

maxα
2

‖w0‖2
= nmaxβ

where nmax is the maximum number of iterations that n can assume, and for which

the previous inequality hold with the equality sign. In conclusion, it follows that

nmax =
β‖w0‖2

α2

Therefore, we have proved that under the hypothesis of w(0) = 0, η(n) = 1 and

the assumption of the existance of a solution weight w0, the learning perceptron

rule terminates after at most nmax iterations. Thus the proof is conclused.

In the more general case of η(n) constant but not equal to unity, the previous

algorithm can be summarized as in Table (2.2).
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The perceptron convergence algorithm

Given:

input vector x(k) = (+1, x1(k), x2(k), ..., xm(k))T , with k = 1, ..., N

weight vector w(n) = (b, w1(n), w2(n), ..., wm(n))T

Set w(0)=0

For n=1,2,...

1. k(n)=n (mod N)

2. activate the perceptron by applying x(k(n)) and desired response

d(k(n))

3. compute y(k(n)) = sgn(w(n)Tx(k(n)))

4. update the weight vector with the error-correction learning rule

w(n+ 1) = w(n) + η(d(k(n))− y(k(n)))x(k(n))

where d(n) =

+1, if x(k(n)) ∈ C1

−1, if x(k(n)) ∈ C2

Table 2.2: Summary of the perceptron convergence algorithm

Referring to Table (2.2), the vector y(k(n)) is called the actual quantized

response and η is the learning rate parameter which assumes values 0 < η ≤ 1.

In addition, the difference d(k(n))−y(k(n)) in the learning rule represents an error

signal as the difference between the desired response with the actual response.

One of the main difficulties with the perceptron learning rule is that, when data

are not linearly separable, then the learning algorithm described in Table (2.2)

will never converge.

A famuous example which shows the inefficacy of the perceptron out of linearly

separable data is the excluse - OR (XOR) problem reported in the following

example:

Example 2 (XOR example). Consider in a two-dimensional space four patterns

as shown in Fig. (2.5). The input vectors (0,0) and (1,1) belong to class C1 while

the input vectors (1,0) and (0,1) belong to class C2. It is evident that there is no

linear decision boundary which separates class C1 from class C2. This example

can be generalized to d-dimensions and it is known as the d-bit parity problem.

In the general case, the input set consists of all possible binary input vectors of

length d, which are members of class C1 if the input vector has an even number

of 1’s, and are members of class C2 otherwise.
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Figure 2.5: Exclusive - OR problem

2.5.2 The multi-layer perceptron

We have seen that the perceptron is a single-layer neural network appliable

only when data are linearly separable. To overcome the limitations of this al-

gorithm, we can analyze a more complex neural network structure known as

multi-layer perceptron. The main differences between the two typologies of neu-

ral networks are due to the number of neurons involved in the network and the

different kind of activation function. In fact, the multi-layer perceptron is com-

posed by multiple neurons positioned in multiple layers with a possibly high

number of interconnections between them, and it makes use of sigmoidal activa-

tion function. Basically, the multi-layer perceptron is individuated by the three

following characteristics:

• each neuron in the network is characterized by the use of a nonlinear acti-

vation function which is differentiable;

• between the input and output layers there are one or more hidden layers;

• the network has a high connectivity.

A powerful and computationally efficient method for training the multi-layer per-

ceptron is the back-propagation algorithm, which is performed by two following

steps. At first there is a forward phase, in which the vector weight is fixed and

the signal is propagated layer by layer from the input to the output. After, the

backward phase computes the error signal between the desired network response

and the effective response, and propagates it in the opposite direction, layer by

layer from the output to the input.
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In Fig. (2.6) it is shown the architectural graph of a multi-layer perceptron with

one hidden layer. Each neuron is represented as a node in the network and each

neuron in any layer is connected to all the neurons in the previous layer (network

fully connected). The impulse flow progresses in a forward direction, layer by

layer from the input to the ouput layer.

Figure 2.6: Example of multi-layer perceptron fully connected with 4 input neu-

rons, 5 hidden neurons and a single output neuron.

A multi-layer perceptron is characterized also by two different kind of signals

which follow different directions through the network. On the one hand there

exists the function signal which is an input stimulus which comes at the input

end of the network and propagates forward through the network, emerging at

the output end of the network as an output signal. On the other hand, the

error signal follows the opposite direction of propagation through the network,

since it generates at an output neuron. However, the fundamental difference

between the multi-layer perceptron and the perceptron is the existance of hidden

layers of neurons. They act as feature detectors, in the sense that they try to

find informative characteristics which characterize the training samples. Training

the network becomes therefore complicated when we deal with a hidden layer of

neurons. We show below how the back-propagation algorithm works when hidden

neurons are present in the network.
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Preliminary notations

We now introduce some preliminary notations for the description of the back-

propagation algorithm.

Let I = {x(k), d(k)}k=1,...,N denote the training sample used to train a multi-layer

perceptron, with an input layer of neurons, one or more hidden layers and one or

more output neurons. With x(k(n)) we denote the vector of input stimuli applied

to the input layer at time n, while d(k(n)) is the corresponding desired-response

vector. Considering a stimulus x(k(n)) applied to the input layer, let yj(k(n))

denote the function signal produced at the output of neuron j. Therefore, the

error signal produced at the output of neuron j is defined by

ej(n) = dj(n)− yj(n)

We introduce the istantaneous error energy of neuron j as

Ej(n) =
1

2
e2
j(n)

Let C denote the set of all the neurons in the output layer. Since neuron j is one

of the neurons in the output layer, summing all the error-energy contributions

Ej(n), we have

E(n) =
∑
j∈C

Ej(n) =
1

2

∑
j∈C

e2
j(n)

In addition, we recall the activation potential associated to neuron j as

vj(k(n)) =
m∑
i=0

wji(n)yi(k(n))

and the function signal appearing at the output of neuron j is defined by

yj(k(n)) = ϕj(vj(k(n)))

The back-propagation algorithm

The back-propagation algorithm applies a correction ∆wji to the synaptic

weight connecting neuron i to neuron j, which is proportional to the partial

derivative ∂E(n)
∂wji(n)

. Expanding the partial derivative and recalling the notations

above, we have

∂E(n)

∂wji(n)
=
∂E(n)

∂ej(n)

∂ej(n)

∂yj(k(n))

∂yj(k(n))

∂vj(k(n))

∂vj(k(n))

∂wji(n)
= −ej(n)ϕ′j(vj(k(n)))yi(k(n))

(2.31)
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Therefore, the correction ∆wji(n) is defined by

∆wji(n) = −η ∂E(n)

∂wji(n)
(2.32)

where η is called the learning-rate parameter. Thus, substituing Eq. (2.31) in

Eq. (2.32), it follows that

∆wji(n) = ηδj(n)yi(k(n)) (2.33)

where

δj(k(n)) =
∂E(n)

∂vj(k(n))
=
∂E(n)

∂ej(n)

∂ej(n)

∂yj(k(n))

∂yj(k(n))

∂vj(k(n))
= ej(n)ϕ′j(vj(k(n)))

is called the local gradient. In other terms, the weight correction is defined by

multipling the leaning-rate parameter with the local gradient and the input signal.

Now, the key factor in the learning rule is the computation of the error signal

ej(n). It follows immediately that we have to treat separately the case of neuron

j as an output unit and the case of neuron j as hidden neuron:

• if neuron j is located in the output layer, the error signal ej(n) is directly

computed by the equation ej(n) = dj(n)− yj(n). Once obtained this value,

the local gradient may be directly computed and the correction in the vector

weight follows immediately by Eq. (2.33);

• if neuron j is a hidden node, the error signal has to be determined recur-

sively. In particular, we have to redefine the local gradient δj(k(n)) for j

hidden neuron as

δj(k(n)) = − ∂E(n)

∂yj(k(n))

∂yj(k(n))

∂vj(k(n))
= − ∂E(n)

∂yj(k(n))
ϕ′j(vj(k(n))) (2.34)

The total error energy can also be rewritten as E(n) = 1
2

∑
i∈C e

2
i (n). Now,

differentiting E(n) with respect to yj(k(n)), we have

∂E(n)

∂yj(k(n))
=
∑
i∈C

ei(n)
∂ei(n)

∂yj(k(n))
=
∑
i∈C

ei(n)
∂ei(n)

∂vi(k(n))

∂vi(k(n))

∂yj(k(n))
=

= −
∑
i∈C

ei(n)ϕ′i(vi(k(n)))
∂vi(k(n))

∂yj(k(n))
= −

∑
i∈C

ei(n)ϕ′i(vi(k(n)))wij =

= −
∑
i∈C

δi(k(n))wij(n)

(2.35)
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Therefore, from Eq. (2.34) we obtain the following back-propagation formula

for the local gradient δj(k(n)):

δj(k(n)) = − ∂E(n)

∂yj(k(n))
ϕ′j(vj(k(n))) = ϕ′j(vj(k(n)))

∑
i

δi(k(n))wij(n)

In conclusion, if neuron j is a hidden node, the local gradient equals the

product of the factor ϕ′j(vj(k(n))) and the weighted sum of the local gradi-

ents δi with i ∈ C, that are the neurons in the next hidden or output layer

connected to neuron j.

2.5.3 Neural networks and EMG signals

It is not surprising that neural networks have attracted attention due to their

good trainability, adaptability and non-linear separability, in particular in EMG

signal analysis.

An interesting application of neural networks in the control of a prosthetic de-

vice can be found in [10]. More precisely, artificial neural networks are expected

to learn the relationship between the EMG signals and the corresponding move-

ments of a prosthetic hand or arm. The aim of the cited paper is to present

the ”Artificial body image”, which consists on the constructing of the body im-

age by using the automatic learning of neural networks, insted of by the users

of the prosthesis. The network thus learns the relationship between the EMG

patterns and the intended finger motions, torque or joint angle of fingers. We

focus on the finger motion recognition experiment, in which five stationary fin-

ger positions are performed and EMG signals are detected by surface electrodes.

The detected signals are FFT-analyzed and passed as input to a typical neural

network with back-propagation algorithm. The network consists on 10 input, 7

hidden and 5 output neurons, where the output units correspond to the five finger

positions. Thirty training data samples are used to train the network, where the

right category related to a FFT-analyzed EMG signal is given to the network

as the desired response dj. Then the synaptic weights wji are corrected by the

learning rule with the aim of reducing the error signal between the desired and

the actual responses ej = dj−yj. During the experimental session, 1’000 training

cycles are performed. As a result, 20 out of 30 new EMG patterns are successfully

recognized with a recognition rate of 67%. Moreover, if two-channel EMG are

used, by adding another electrode on the extensor digitorum, the recognition rate

updates up to 86%. In this case a neural network with 20 input, 20 hidden and

5 output neurons is used.
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A different study is presented in [16], where it is found out that neural networks

are the best choice to classify EMG data. Twenty able-bodied subjects were

asked to perform five different hand gestures and EMG signals are recorded by

six surface electrode. In this paper, a neural network with 10 hidden and 5 output

neurons is applied, with the scale conjugate gradient back-propagation algorithm.

An accurate analysis on validation set is done: the 15% of the training dataset

is randomly chosen as validation set, and the network is optimized by repeating

the training stage until the validation set reaches a classification accuracy higher

than 90%. As a result, Artificial neural network (ANN) revels to be the best

classifier for the purpose of the article, compared to Support vector machine and

Linear discriminant analysis. In fact, with both Principal component analysis

(PCA) and Common spatial pattern (CSP) pre-processing techniques, the aver-

age classification accuracies reached by the use of ANN are 87, 34± 7, 3% (PCA

with feature vector Root mean square- Willison Amplitude), and 86, 62± 7, 34%

(CSP with feature vector Mean- Root mean square- Willison Amplitude).



Chapter 3

Experiments and results

In this chapter we report the results obtained during the study.

It is not known at all which is the information included in EMG signals and

expecially where it is located. Therefore, machine learning algorithms are widely

used for pattern classification, as we reviewed in Chapter 2.

The motivation behind our study is to construct a fast and low computational

cost classification algorithm, which considers the sensors separately along with a

few time features. We list the various experiments that enabled us to reach this

proposal. More specifically, we first focus on healthy subjects and show how the

analysis in the frequency domain may perform good results of clustering, rather

than applied on upper limb amputees. In fact, from the comparison between the

results obtained in the frequency domain for both the typologies of patients, we

can do some considerations on the frequency behavior of EMG amputees’ signals.

After this first observation, we find interesting that looking at signals as they are,

there are some electrodes which are more activated rather than others, suggesting

that by themselves they play a discriminating role in pattern classification. From

these visual inspections, we may change the perspective and start considering

the electrodes separately. Using five domain features and mainly the Euclidean

norm, we compute the reciprocal distances between each pair of acquisitions

in what we call distance matrices. Making use of them, we firstly construct a

manual-classifier, which reveals a global classification accuracy around the 75%.

Since the results obtained seem to be quite promising, we try to automate the

feature selection.

In Section 3.1 we show the results obtained on healty subjects in the frequency

domain. In Section 3.2, after giving a brief review of bad results on amputee

subjects in the frequency domain, it is described an easy and computationally

55
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advantageous approach based on the selection of four pairs of time features and

distances. In Section 3.3 we present some possibile future developments of our

classification method and problems still open in literature.

3.1 Analysis on healthy subjects

In this Section we present the classification results obtained from three healthy

subjects, by working in the frequency domain. Data were acquired at INAIL Cen-

tro Protesi in Vigorso di Budrio in June 2016. The subjects were two women and

one man, aged between 24 and 28, all with right dominant hand. They were

asked to perform five hand postures (np) with their dominant hand: rest, fist,

pinch, pointing and pronation of the wrist. Each gesture was repeated 10 times

(nc), with a random order in the execution. The subjects wore a silicone bracelet

placed around the circumference of the arm, about 5cm below the elbow. Six com-

mercially sEMG electrodes (Ottobock 13E200=50) were placed on the bracelet,

with frequency sample Fs chosen to be equal to 800 Hz and recording time T for

each gesture equals to two seconds.

At the end of the experiment, the resulting dataset is a matrix of dimension

[T · Fs · np · nc×M ], where each row corresponds to an acquisition istant time,

while the first column corresponds to the target label (an integer number between

1 and 5) and the remaining six colomns correspond to the index of the sensor.

This preliminary step is only based on the analysis of the Fourier Transform of the

EMG signals. This is due to the fact that signal analysis typically concerns the

study of the signal in the frequency domain, thus changing the recorded signals

from time or spatial domain into the frequency domain. The goal is to indentify

the frequency components inside a signal, and try to characterize the signal on

the base of its frequency features. We thus make use of the Fast Fourier Trans-

form (FFT) 1 to look for the presence of the most significant oscillations.

After the separation of the dataset into the np · nc acquisitions, we can move

from the time domain, where the signals are presented as time measurements,

to the frequency domain. For each acquisition, we calculate the FFT, making

the following observations: since an EMG signal is a real signal, the Fourier

1Given a vector X of length n, Y = FFT (X) implements the discrete Fourier transform,

which is defined by

Y (k) =

n∑
j=1

X(j)W (j−1)(k−1)
n

where Wn = exp(− 2πi
n )
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Transform is symmetric, thus we may consider only the first half of the Fourier’s

coefficients. In addition, once computed the absolute value of the FFT, we may

visualize where the frequency band with most significant frequencies is located.

In general, considering the six sensors sperately, it may be noted that the most

informative content is concentrated in the first 100 coefficients, since we may ob-

serve that most of the energy is concentrated up to the 100th coefficient rather

than in the following ones. In Fig. (3.1) we present an example which justyfies

this assumption.
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Figure 3.1: Example of simplifications made on the FFT of an EMG signal: in

(a) is represented the entire Y = |FFT (X)| of the input signal X, in (b) it

is represented the first half of Y, in (c) there are only the first 100 Fourier’s

coefficient

Making all these simplifications, we obtain, from each sensor, 50 vectors consist-

ing of 100 components in the frequency domain. In a matrix notation, we may

construct a global matrix S of 600 rows, as the result of concatenating the fea-

tures computed for each electrode, and 50 columns.

Once computed this matrix, we can apply the PCA dimensionality reduction al-

gorithm, finding out that three principal components are enough to describe the

entire dataset, obtaining uncorrelated variables.

Afterwards, we may apply the Matlab predefined function kmeans, with k=5,
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(http://it.mathworks.com/help/stats/kmeans.html), for grouping the 50 acquisi-

tions in the frequency domain in order to obtain the corresponding clusters of

hand gestures.

As final analysis, to evaluate the goodness of our classification, we may construct

two distance matrices based on the reciprocal distances between acquisitions: the

main idea is to obtain squared matrices with diagonal blocks, corresponding to

the five hand gestures.

The metrics we consider are defined as follows: for two given vectors u, v of N

elements, chosen within the totality of acquisitions, we define:

(i) d1(u, v) = ||u− v||2 =

( N∑
j=1

|uj − vj|2
)1/2

(ii) d2(u, v) = exp

[
−
(√

1−
∣∣∣∣ u · v
‖u‖2 · ‖v‖2

∣∣∣∣2)2] (3.1)

The algorithm described above is summarized in Table (3.1).



3.1 Analysis on healthy subjects 59

The frequency based classification algorithm for healthy subjects

Given a matrix D of m × n dimension, representing the entire registration of

EMG signals, where

m = T · Fs · np · nc, with T the time of a single acquisition, Fs the

sample frequency, np the number of gestures, nc the number

of cycles for each gesture;

n = Label + ns, where Label is the vector containing the taget labels,

ns is the number of electrodes used.

Proceed as follows:

1. separate the np · nc acquisitions from D according to the target label;

2. for every acquisition aj with j = 1, ..., np · nc, calculate y = |FFT (aj)|;
3. reduce the dimension of y by considering the first F Fourier’s coefficient;

4. concatenate the ns sensor contributions to construct a global matrix in

the frequency domain, denoted by S of (ns · F )× (np · nc) dimension;

5. solve the PCA problem for reducing the dimensionality of S:

- let C = cov(ST )

- solve the eigenvalues/vector problem [V,D] = eig(C)

- sort in descending order both V and D

- compute the PCs as wki = ST · vki, for k = 1, .., np · nc, i = 1, ..., ns · F
6. apply the np-means to the reduced PCs (Matlab kmeans default function);

7. compute the distance matrices with d1 and d2 between the first p compo-

nents of the reduced PCs (3 ≤ p ≤ 7), and evaluate the rate of accuracy of the

algorithm.

Table 3.1: Summary of the classification algorithm in the frequency domain for

healthy subjects
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3.1.1 Healthy patients results

We report the results obtained applying the method described in Table (3.1)

to the three healthy subjects: each figure shows in a the plot of the first 10 eigen-

values of the covariance matrix C, in b the 5-means applied to the first three

principal components, in c the distance matrix computed with d1 and in d the

distance matrix computed with d2.

With reference to Fig. (3.2), (3.3), (3.4), we report the numerical results con-

cerning our analysis into Table (3.2).
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Figure 3.2: Able-bodied subject 1
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Figure 3.3: Able-bodied subject 2
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Figure 3.4: Able-bodied subject 3
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n of elements per cluster execution time

Subject 1 (10,10,10,9,11) 1.78 s

Subject 2 (10,10,9,10,11) 1.35 s

Subject 3 (13,10,7,10,10) 1.05 s

Table 3.2: Numerical results on the classification algorithm: for each subject it

is reported the number of elements for each cluster and the execution time

3.1.2 Comments on healthy patients results

In general, the results obtained in this preliminary study are quite promising.

Firstly we observe the common decrease of the eigenvalues for all the subjecs: in

particular, for subjects 1 and 2, three principal components are enough to project

the original variables in order to obtain a good representation of the data, while

subject 3 requires one more principal component. In other words, computing the

PCA algorithm allows us to obtain a few number of new uncorrelated variables,

obtained from an orthogonal rotation of the original axes. We know that the new

axes with maximum variance do not garantee to have good features for classifi-

cation. Therefore, in the reduced space of the first three principal components,

we apply the 5-means clustering algorithm. It actually shows five clusters, but

analyzing the results reported in Table (3.2), not all the clusters count precisely

ten data. This result may be justified by the way in which kmeans works, in

particular in the way it chooses the initial cluster centroid.

With reference to the distance matrices, it may be noted that they present more

pronounced diagonal blocks rather than the others extra-diagonal. Since we have

ordered the dataset with respect to the gestures’ execution, this means that the

distances between the acquisitions of the same class are closer than the ones be-

tween different gestures. Furthermore, we may also individuate some acquisitions

which are different from the others (for instance in Fig. (3.4) the 34th acquisition

is completely different from all the others around it), calling these ones singular

acquisitions. This detection may be done searching some atypical vertical or hor-

izontal lines in the distance matrices plot. We think that this kind of observation

is connected to the identification of wrong acquisitions, during the entire cycle of

EMG signal registration.
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3.2 Analysis on trans-radial amputee subjects

The analysis reported in Section 5.1 shows that working with healthy patient

EMG signals in the frequency domain allow us to find clusters between the data

projected into the subspace spanned by the first few principal components. What

we expect, based on the previous approach used in [16], as a preliminary step,

is the possibility of extending this approach to amputee subjects and check if

well separated clusters of data may be detectable. Therefore, we firstly want to

analyze if the EMG signals of trans-radial amputees share a similar trend in the

Fourier space. Since this does not occur, we change the approach constructing

a classifier which considers the sensors separately together with five temporal

features.

The subjects of the experiment were 20 trans-radial amputees subjects, patients

of INAIL Centro Protesi, aged between 18 and 65, who were already experienced

in myolectric control of prosthetic hands. Each of them gave informed consent

before performing the experiment. Six commercial sEMG electrodes were used

(Ottobock 13E200=50), equidistantly placed on a silicon bracelet, situated on

the patient’s stump, about 5cm below the elbow. The first sensor was located on

the flexor carpi-radialis muscle, while the sixth sensor was located on the brachio-

radialis muscle. The experiment consisted on the execution of the same five hand

gestures described in Chapter 1, calling the execution of five consecutive hand

gestures a cycle. With the support of a monitor interface which depicted, for each

gesture, the corresponding image on the display, each execution was recorded for

2 seconds trying to let go the transient signal and considering as much as possible

only the steady-state EMG signal. For every patient 10 completed cycles were

executed.

3.2.1 Able-bodied vs amputee subjects

Firstly, we compare the decreasing trend of healthy subjects signals to the one

of trans-radial amputees, which reveals a deep difference. As first investigation,

looking at the Fourier Transform of EMG signals, we can say that the most of

information is not concentrated in the first hundreds of coefficients, as it is for

healthy subjects. In fact, the Fourier coefficients series does not decay as it does

for healthy subjects. An example of this result is shown in Figure (3.5), where

we consider the absolute value of the FFT of the EMG signal of a single patient,
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centered with respect to the mean 2. This assumption is supported by a global

analysis we have made during this work on the entire dataset. A similar result

may be obtained if we look at the first derivative of the signal, computed directly

by Definition (3.1). An example of result is depicted in Fig. (3.6).

Definition 3.1 (First derivative of an EMG signal). Let S denote the L×ns×nc
array of a complete cycle of EMG signal acquisition, where L is the number

of times acquisition, ns is the number of electrodes and nc is the number of

repetitions for each hand gesture. The first derivative of S is defined as

∂S(l, s, c) = S(l + 1, s, c)− S(l, s, c), for l = 1, ..., L

with s = 1, ..., ns fixed sensor and c = 1, ..., nc fixed repetition.
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Figure 3.5: Example of the simplifications made on the FFT of an EMG signal for

a trans-radial amputee subject: a is the absolute value of the FFT of the signal,

centered with respect to the mean, b is the plot of the first half of Fourier’s

coefficient, c is the plot of the first 100 coefficients

2It may be observed that if we do not remove the mean from the data, a first peak at zero

may be found. Therefore, in order to obtain clearer plots, we subtract the mean from each

registration.



3.2 Analysis on trans-radial amputee subjects 65

0 200 400 600 800 1000 1200 1400 1600 1800 2000

time

0

20

40

fr
e

q
u

e
n

c
y

(a)

0 100 200 300 400 500 600 700 800 900 1000

time

0

20

40

fr
e

q
u

e
n

c
y

(b)

0 10 20 30 40 50 60 70 80 90 100

time

0

10

20

fr
e

q
u

e
n

c
y

(c)

Figure 3.6: Example of the simplifications made on the FFT of the derivative of

EMG signal (∂S) for a trans-radial amputee subject: a is the absolute value of

the FFT of the first derivative of the signal, centered with respect to the mean,

b is the plot of the first half of Fourier’s coefficient, c is the plot of the first 100

coefficients

One first observation concerns the non-decay of the Fourier transform of both

the signals and the derivatives, and the absence of relevant peaks. This may

be due to the non stationarity of the signals. In fact, if the EMG signals were

stationary, we would expect the absolute value of the FFT to be similar within

the repetitions of the same gestures and different from the other gestures.

One additional reason behind these results of non decay should concern a noise

component intrinsic in the signal. To evaluate this possibility, we apply to the

entire dataset a noise-reduction algorithm (HaarDenoise), but we do not observe

significant differences after the denoising procedure.

Another different reason should be related to the patient’s remnant muscle activ-

ity. In this context, each subject should be characterized by a different ability in

performing the gestures required, with non constant muscle contraction during

the totality of the repetitions.

To sum up, we report in Fig. (3.7) the classification results obtained from the

frequency-based approach described in Section 1 on one single patient between

the 20 trans-radial amputee subjects.
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Even if we find a similar decay of the eigenvalues sequence, if we project the data

into the subspace spanned by the first principal components and cluster them

with 5-means, we obtain a non-equal disposition of the data into the 5 groups

(precisely, here we have n = (10, 4, 4, 19, 3)). Therefore, the distance matrices

depicted in c and in d are confusing and far from the ones obtained for healthy

subjects, which had more pronounced diagonal blocks.

To support these considerations, we have applied the same procedure to the

totality of the patients, obtaining always bad results of classification.

Therefore, we consider that changing the perspective can bring more promising

results of classification of the five hand gestures.

Figure 3.7: Example of frequency-based classification algorithm performed via

PCA and 5-means clustering on a trans-radial amputee subject: b shows the

5-means applied to the first principal components, c is the distance matrix com-

puted via d1 and d is the distance matrix computed via d2

3.2.2 A new classification approach

We have noted that it is difficult for upper limb amputees to obtain good re-

sults of clustering and classification using only the Fourier transform of the EMG

signals as for healthy subjects. We describe now a different promising approach.
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Up to here, we have followed the procedure described in [16] to train the classifier

on healthy subjects and then test it on one amputee. From the Fourier analysis

we have seen that this approach can provide bad results. Therefore, we suggest

to focus on each patient separately and proceed with the training of a pattern

recognition classifier for each subject.

Secondly, the main idea is to change the perspective to analyze the problem: until

now, we have assumed the electrodes all together, without a distinct separation

between them but concatenating them into a single vector. What we now suggest

is to consider the electrodes separately. This fact is basically motivated by two

factors: one is the location of the sensor, the other is the specific rule of each

electrodes in the detection of different gestures. In fact, it can be quickly observed

that for every gesture there are some electrodes activated more than others, and

hopefully within the same gesture the same sensors would be active.

For a better clarification, we show in Fig. (3.8) and (3.9) the EMG signal am-

plitudes for every electrode (reported on the vertical line), in color scale for two

different gestures, spread and fist, in nine consecutive repetitions by the same

patient. It can be seen that inside the same gesture, some electrodes are more

active than others. For instance, in Fig. (3.8) the second electrode works more

than the others, in the majority of the repetitions depicted. This suggests that

it may characterize the gesture, but the different times at which it is active may

represent some differences or errors in the acquisition procedure, since the peaks

of the EMG signal are not ordered always in the same way. In other words,

we can see that except in the 6th and 9th repetitions, sensor 2 is the one which

records the majority of muscle activity for the spread gesture, but at different

time instances.

Once observed the behavior of the sensors, we want to construct a classifier

which takes the sensors into account separately and computes some basic time

domain features. Precisely, we compute the five following time domain features,

defined by:

• Normalized EMG signal: it is the amplitude of the signal x(t) normalized

by its maximum value for each gesture, between the six electrodes

xN(i, s, j) =
x(i, s, j)

max(x(j))

where i = 1, ..., T with T the total number of acquisitions istant time, s

denotes the number of electrodes used and j denotes the index of acquisition
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• Derivative of EMG signal: it represents the ’jumps’ of the signal

x′(i, s, j) = x(i+ 1, s, j)− x(i, s, j)

• Energy of EMG signal: it corresponds to the gesture’s strength of activation

En(s, j) =
T∑
i=1

x(i, s, j)2

• Local mean of EMG signal: it is a variable parameter, computed as the

mean value of the EMG signal in 1/10 s

M(i, s, j) = E[x(I, s, j)]

where I refers to a time interval of 1/10 s

• Local standard deviation of EMG signal: it is a variable parameter, com-

puted as

V (i, s, j) =
√
var(x′(I, s, j))

The metrics used to evaluate the distances between each pair of acquisitions are

the 2-norm and the absolute value.
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Figure 3.8: EMG signal amplitude of spread hand gesture. The amplitude values

are represented in color scale, with respect to the time istances (1-2000) and to

the six electrodes
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Figure 3.9: EMG signal amplitude of fist hand gesture. The amplitude values are

represented in color scale, with respect to the time istances (1-2000) and to the

six electrodes

To sum up, we describe the fundamental steps of the new classification method

in Table (3.3), with the resulting classification accuracy for each subject reported

in Table (3.4).

In particular, the accuracy rate is computed on the validation samples as

AC =
n of validation data correctly classified

total n of validation samples
· 100%
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The sensor-features classification method

Given the dataset of an entire registration of a single patient, maintaining the

electrodes contributions separated, order the signals according to the gestures’

order.

1. Compute the time-features previously defined:

- xN normalized signal

- x′ derivative of the signal

- En energy

- M local mean

- V local standard deviation

2. Compute for each pair of acquisitions i, j, the following distances:

- d1 = ‖xN(i)− xN(j)‖2
2

- d = ‖x′(i)− x′(j)‖2
2 → d2 = exp(−(d

4
)0.00001)

- d3 = (En(i)− En(j))2 or d3 = |En(i)− En(j)|

- d4 = ‖M(i)−M(j)‖2
2

- d5 = ‖V (i)− V (j)‖2
2

3. Construct a global array of such distances, of dimension (nc ·np)×(nc ·np)×
ns, where nc is the number of repetitions for each gesture, np is the number of

gestures, ns is the number of electrodes.

4. Divide the total of nc · np acquisitions in training and validation set:

Training set → consider the first 60% of data recorded from each gesture

Validation set → consider the remaining 40% of data

5. Choose the best configuration of 4 pair features-distances, in order to obtain

an optimal separation of the diagonal blocks from the distance matrices

6. Validate the features selected on the validation set and compute the accuracy

rate of classification, comparing with the desired target labels

Table 3.3: Summary of the classification method
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Subject Classification accuracy

S1 60%

S2 95%

S3 65%

S4 100%

S5 95%

S6 65%

S7 75%

S8 75%

S9 45%

S10 85%

Subject Classification accuracy

S11 80%

S12 40%

S13 65%

S14 100%

S15 65%

S16 65%

S17 75%

S18 80%

S19 25%

S20 80%

Table 3.4: Classification accuracy from the method of Table (3.3) applied on the

sample of 20 trans-radial amputee subjects

In Table (3.4) may be found the numerical results obtained from the method

described in Table (3.3), on the totality of the 20 trans-radial amputee subjects.

From these results, some observations can be made. Firstly, we note that 10%

of the samples reveal a perfect classification, namely S4 and S14, while 5% of

the samples performs bad results with an accuracy under 40%. Except for two

patients, the remnants have a rate of classification between 60% and 95%. As a

preliminary step, these results seem to be promising and may be increased. We

proceed in two ways: one is the analysis of threshold signals, with respect to the

rest gesture. The other consists of focusing on particular subjects analyzing their

results.

In a first time our interest is to compare the signals with respect to the rest

gesture level. The motivation is that, in experiment session, the rest plays the

same role of the zero-level, and data below the threshold may be considered

as noise. We want thus to individuate the presence of acquisitions below the

threshold, because they could influence in a negative way our classification. This

assumption is supported by a first visul inspection on the signals as they are

recorded, comparing the five gestures for each subject. In fact, the EMG signal

is the eletric manifestation of a neuromuscolar activation and, in physical terms,

it may be considered as the necessary energy for moving the fingers or the art

involved in the required gesture. This also justify the reason why we compute

the energy as threshold value, as shown below.
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A summary of the rest-threshold procedure is reported in Table (3.5), while its

application on the entire dataset reveals the results reported in Table (3.6).

The rest-threshold procedure

Given k acquisitions of the rest gesture, compute the threshold value M as the

maximum value of the energy associated to these acquisitions.

For j = 1, ..., nr acquisitions of any other gesture, compute

N the maximum value of the energy of acquisition j

if N > M
2

acquisition j above threshold → the patient is executing a gesture

above the zero-level

else

acquisition j below threshold → remove j from the dataset

Table 3.5: Summary of the rest-threshold procedure for trans-radial amputee

subjects

Subject N of acquisitions subthreshold Old Accuracy

S1 6 60%

S5 1 95%

S12 1 40%

S18 7 80%

S19 5 25%

Table 3.6: Numerical results of the rest-threshold procedure described in Table

(3.5), with rereference to the corresponding accuracy rate of Table (3.4)
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Once normalized the signals with respect to the rest gesture, what we expect

is an increase in the accuracy rate. Firstly, we compare the acquisitions detected

above threshold matching the EMG signals plot, and in affirmative case we do a

new classification. We now focus on every subject that appears in Table (3.6),

describing each particular situation.

Subject 1

We have observed that applying the procedure of threshold in Table (3.5),

six acquisitions reveal to be below the threshold, but they do not have a graphic

confirmation from the amplitudes of the EMG signals. Desiring to justify this

result, we may focus on the amplitudes of the rest EMG signals as shown in Fig.

(3.10) and we note that within the same gesture, the amplitude of the signals

vary in different ranges. This is not we expect to see, since within the same ges-

ture, the goal is to repeat the gesture as similar as possible, with the same space

orientation, sensor location and strength activation.

For this specific subject, it seems thus to be more suitable to consider the mean

value of the energy rather than the maximum, as threshold value. In fact, with

this assumption, we obtain an average of the activation level of the rest gesture

repetitions, which takes into account all the different levels of activation. We

could say that the first, third, fourth and sixth acquisitions are not comparable

with the others, and we thus may consider them as wrong acquisitions inside the

rest gesture. In our opinion, this assumption is too restrictive, also because we

would remove 40% of acquisitions without any other hypothesis on the patient.

In conclusion, we decide to treat this patient differently from the others, substitu-

ing the threshold condition of Table (3.5) as follows: we consider M equals to the

mean value of the energy of the rest acquisitions, and N equals to the mean value

of the energy of each other acquisition. Therefore, the classification accuracy is

still equal to 60%.
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Figure 3.10: Subject 1, nine consecutive repetitions of the rest gesture

Subject 5

In this case, the removal of one single acquisition from the entire dataset would

involve a decrease of 30% in the accuracy rate. This contradicts our expectations,

since removing bad data should improve the classification accuracy. Therefore,

we focus on the acquisitions of the rest gesture, as shown in Fig. (3.11).

In this case, we find the third and fifth acquisitions completely different from the

remnants, and we may suppose that these are wrong repetitions of the actual hand

gesture. In fact, removing these from the rest gesture, we have no registrations

below the threshold, so and the classification accuracy remains equal to 95%.

Subject 12

He is the only patient for whom the removal of one single acquisition involves

an increase of the classification accuracy, precisely from 40% to 60%.
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Figure 3.11: Subject 5, nine consecutive repetitions of the rest gesture

Subject 18

In this case it seems that the patient is not able to control his arm. This is

evident if we look at the rest gesture, depicted in Fig. (3.12) where no acquisition

is equal to the other, and he has strong and brief contractions during this gesture.

Moreover, he reveals strong irregularities in executing all other desired hand ges-

tures. Thus, consider the maximum value of the energy of the rest should be

not significant for the purpose of our analysis, since it could a be a high value at

which the patient is not actually at rest.

As a result, we consider to not include this patient in our analysis, although his

preliminary accuracy was equal to 80%.

Subject 19

We consider this patient a confusing patient, who has great difficulty in exe-

cuting the different hand gestures. In fact, we do not observe any diagonal blocks

and sharp distance matrices. We report in Fig. (3.13) and (3.14) the configura-

tion of the four best configuration of features, before and after the removal of the

subthreshold acquisitions.
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Figure 3.12: Subject 18, nine consecutive repetitions of the rest gesture
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Figure 3.13: Subject 19, best features configuration on the training set composed

by the first 60% of registrations

Although we observe an accuracy increase of 5% after removing the acqui-

sitions below the threshold, we decide to not include this patient in our study,
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considering him not suitable for pattern recognition prosthesis control.

In conclusion, we summarize the results from Table (3.4) and (3.5) with the pre-

vious observations in Table (3.7).

The overall accuracy is therefore computed as

Ac =

∑N
i=1Class. accuracy

N
= 75%

with N = 18, since we neglected Subject 18 and 19 from our analysis.
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Figure 3.14: Subject 19, best features configuration on the training set composed

by the first 60% of registrations, after threshold procedure

Subject Ac

S1 60%

S2 95%

S3 65%

S4 100%

S5 95%

S6 65%

Subject Ac

S7 75%

S8 75%

S9 45%

S10 85%

S11 80%

S12 60%

Subject Ac

S13 65%

S14 100%

S15 65%

S16 65%

S17 75%

S20 80%

Table 3.7: Classification accuracy of the corrected-classification method applied

on the accepted 18 trans-radial amputee subjects



78 3. Experiments and results

3.3 Conclusions and future developments

In this last section we explain some considerations based on our analysis on

able-bodied and amputee subjects. We first suggest some motivations behind the

different results obtained in the Fourier space, then we underly the importance

of performing a good acquisition procedure, proposing some adjustments. At

the end, we suggest a way for improving the feature selection as a minimization

problem, for which we have obtained preliminarly good results.

3.3.1 EMG signals of amputees in the Fourier space

We have observed that analyze the EMG amputee signals in the Fourier space

does not reveal any kind of pattern classification. This result was somewhat

expected. In fact, in order to study the frequency behavior of the signals, it

should probably be more useful to consider the signal in its raw state. This is

motivated by the fact that the surface electrodes used in this work just execute

an amplification and sampling pre-processing. Thus, because of the frequency

limit, they elaborate the signal and pass it amplified and sampled to the PC.

In this context we deal with a contentious issue: on the one hand, for analyzing

EMG signals from the frequency domain point of view, it should be necessary to

have rough signals; on the other hand, dealing with signals at their raw state is

not useful from the application point of view.

However, we propose a way in which the Fourier analysis could reveal interest-

ing results. It has been proved that EMG signals from amputee subjects improve

with the experience [15]. This means that, giving a myolectric prosthesis to a pa-

tient for a training phase, we expect to have better signals after a training step.

Moreover, the constraint of prosthesis real-time execution plays a central role in

signals improvement. While the tridigit prosthesis response time is equal to 40

ms, the myoelectric prosthesis response time is expected to be within 100 ms,

and when the movement starts to be performed, the patient will undoubtly make

corrections and change the impulse if the movement performed by the device does

not correspond to the one desired. Thus, when better signals are recorded, we

would expect that Fourier analysis provides better results rather than what we

exposed in this chapter, in a similar way as for able-bodied subjects.

Since we have noted an evident difference between healthy subjects and trans-

radial amputee signals, we may focus on different aspects which could be the cause
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of the hard upper limb control. For instance, there may be a central nervous

system problem, which supervises the main control and processing functions,

that could cause a not clear mapping of the intentions. Otherwise, it could be

a surgical problem, depending on the way the muscles and nerves were operated

and thus the possibility of their damage and reinnervation. The justification of

this deep difference is still an argument of investigation.

In any case, we have to underline that there is the possibilty for some patients

to be not suitable for pattern recognition based system control. With reference

to this observation, in Section 2.2 we have decided to neglect Subject 18 and

Subject 19 from our study.

3.3.2 Acquisition procedure and individuation of pattern

recognition suitable patients

In our opinion, the acquisition procedure is a complicated and not uniquely

well defined step. We have observed that it is common to detect transient signals

at the external phases of some recordings, which are detectable as more intense

band rather than the remnant registration. In order to execute a good acquisition,

the operator should follow some steps as described below. In the acquisition

phase, we have used a monitor interface which depicted the EMG plots for each

sensors. This support helps the operator to detect when the patient is executing

the asked gesture. In simple terms, the operator should ask the patient to perform

the gesture, analyzing the activation of the sensors and waiting for few seconds in

order to let the signal to regularize and let the transient to pass. Then, the gesture

is acquired for the acquisition time decided preliminarly (in our study, we have

always considered an acquisition time equals to 2 seconds) and do the same for

all the acquisition phase. In this way, we would have as much as possible steady-

state signals, from which we could normalize the entire dataset with respect to

the zero-level of the acquisition procedure (in our analysis, we have standardized

the signals with respect to the rest gesture).

Thanks to this normalization procedure, we have a strategy for the individuation

of pattern recognition suitable patients. In fact, in the acquisition procedure we

are able to compute the threshold level of activity, as described by the procedure of

Table (3.5), on the basis of the rest gesture acquisition. Each following acquisition

can be compared to this zero-level value, allowing the operator to individuate

effective gestures and below threshold ones, which can be considered as noise
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component. At the time this procedure ends, we have the number of wrong data

with respect to the rest gesture, which can be confirmed by a visual matching

with the amplitudes of the EMG signals. In this terms, it is operator’s choice to

make corrections on the rest-threshold procedure: the threshold condition can be

modified by considering the mean value of the energy rather than the maximum

value, as we have done in our study for Subject 1, or abnormal rest acquisitions

can be removed, if they totally disagree from the others, or more simply he

can decide to neglect the subject since he is not able to make dinstict signals,

considering him a non suitable pattern recognition patient.

3.3.3 Improvements of the classification

From the application point of view, we suggest three possible ways to increase

our classification procedure. One concerns the data segmentation in time windows

in order to work with a major number of data, the other is about a different

procedure in data partition and finally an automated scheme for the optimal

feature extraction.

Windowing technique

As a first observation, working with time windows of 1/10 of elements rather

than a complete acquisition could represent an improvement from the point of

view of accuracy rate. This approach would have a double benefit: on the one

hand, it allows us to work with a major number of data, for each of which we

compute the features, on the other hand it has a more real-time applicability,

since we should not wait for the end of a recording bur we calculate the features

a little at time.

Data partition

A second observation concerns a different partitioning procedure for training

and test subsets. The results presented in Section 2.2 were based on an arbitrary

selection of training and validation data: in fact, we considered, for each gesture,

the first six acquisitions as training set and the remaining four acquisitions as val-

idation set. In order to let the classifier to achieve robustness and generalization

properties, we should split the dataset in a shuffle modality, always considering

the percentages of 60% as training and 40% as validation, but in all the possible

combinations within the totality of registrations.
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Automatic selection of the best sensor-feature pairs

We describe now a way to improve the features extraction procedure, based

on an automatic search of them, not only based on the visual inspection and

detection but formulated as a minimization problem.

We want to obtain squared distance matrices whose diagonal marked blocks cor-

respond to the hand gestures involved in the experiment, choosing the best config-

uration of distance matrices and electrodes. Until now we have chosen manually

the features which best separated each diagonal block from the others extra-

diagonal. In order to improve the method and its robustness, we may implement

an features automatic search on the training set as a minimization problem. For

a better clarification, our goal is to obtain a matrix as depicted in Fig. (3.15). In

this context, we would obtain blocks on the principal diagonal which values are

closest to zero. They represent the distances computed between each pair of ac-

quisitions of the same gesture, so being closed to zero, they may be identified and

are able to individuate each gesture. The extra-diagonal blocks would be instead

far from zero, representing the distances between pairs of different gestures.
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Figure 3.15: Target diagonal block matrix

In our study, we have considered five temporal features for each of the six surface

electrodes involved in the acquisition phase. Therefore, we have to search for the

best combination of features within 30 possible features.

Let denote each feature-distance matrix as Hi, with i = 1, ..., 30, and for each

one let introduce a weight coefficient denoted as hi, with i = 1, ..., 30.

Let introduce the target distance block matrix referring to the training set as a
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matrix Σ of 30× 30 elements, as

Σ =



0 s1 s2 s3 s4

s1 0 s5 s6 s7

s2 s5 0 s8 s9

s3 s6 s8 0 s10

s4 s7 s9 s10 0


where each matrix element si, i = 1, ..., 10 corresponds to a block of six elements.

We want to minimize the functional cost defined by

J = ‖h1 ·H1 + h2 ·H2 + ...+ h30 ·H30 − Σ‖2
2 = ‖

30∑
i=1

hi ·Hi − Σ‖2
2 (3.2)

In other words, we search the best combination of distance matrices so that the

squared Euclidean norm between their linear combination and the target Σ is

minimal.

We implement this method using the predefined Matlab function fmincon

(https://it.mathworks.com/help/optim/ug/fmincon.html) for constrained opti-

mization problems, , given an initial point h0 for the weight coefficients and

the extra diagonal blocks all equal to the constant value 1.

At last, we suggest from the one hand to not incorporate in the functional cost

defined by Eq. (3.2) the matrices which do not contain any kind of information,

that are the ones which are not able to detect blocks corresponding to the gestures

and maybe the most responsible of noise content. On the other hand, we could

also start with the ones able to individuate some marked blocks, and add the

others at little at time, looking for improvements in the optimal solutions.
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