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Abstract

The recent years have witnessed increased development of small, autonomous
fixed-wing Unmanned Aerial Vehicles (UAVs).
In order to unlock widespread applicability of these platforms, they need to be
capable of operating under a variety of environmental conditions.
Due to their small size, low weight, and low speeds, they require the capability
of coping with wind speeds that are approaching or even faster than the nominal
airspeed.

In this thesis, a nonlinear-geometric guidance strategy is presented, addressing
this problem. More broadly, a methodology is proposed for the high-level control
of non-holonomic unicycle-like vehicles in the presence of strong flowfields (e.g.
winds, underwater currents) which may outreach the maximum vehicle speed.
The proposed strategy guarantees convergence to a safe and stable vehicle config-
uration with respect to the flowfield, while preserving some tracking performance
with respect to the target path.

As an alternative approach, an algorithm based on Model Predictive Control
(MPC) is developed, and a comparison between advantages and disadvantages of
both approaches is drawn.
Evaluations in simulations and a challenging real-world flight experiment in very
windy conditions confirm the feasibility of the proposed guidance approach.

Part of this abstract, Chapters 1 and 2 also appeared in [2] as a preprint, and
were submitted for publication at ACC-2017, Seattle.
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Symbols

Symbols

Indices

e east axis

n north axis

Acronyms and Abbreviations

ETH Eidgenössische Technische Hochschule

IMU Inertial Measurement Unit

UAV Unmanned Aerial Vehicle

MPC Model Predictive Control

NMPC Nonlinear Model Predictive Control

NL NonLinear

LALE Low Altitude Long Endurance

HIL Hardware In The Loop
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Chapter 1

Introduction

In recent years, the use of small fixed-wing Unmanned Aerial Vehicles (UAVs)
has steadily risen in a wide variety of applications due to increasing availability
of open-source and user-friendly autopilots, e.g. Pixhawk Autopilot [3], and low-
complexity operability, e.g. hand-launch.
Fixed-wing UAVs have particular merit in long-range and/or long-endurance re-
mote sensing applications. Research in ETH Zürich’s Autonomous Systems Lab
(ASL) has focused on Low-Altitude, Long-Endurance (LALE) solar-powered plat-
forms capable of multi-day, payload-equipped flight [4], already demonstrating
the utility of such small platforms in real-life humanitarian applications [5].

UAVs autonomously navigating large areas for long durations will inherently be
exposed to a variety of environmental conditions, namely, high winds and gusts.
With respect to larger and/or faster aircrafts, wind speeds rarely reach a signif-
icant ratio of the vehicle airmass-relative speed. Conversely, wind speeds rising
close to the vehicle maximum airspeed, and even surpassing it during gusts, is a
frequent scenario when dealing with a small-sized, low-speed aircraft.

Usually in aeronautics, windfields are handled as an unknown low-frequency
disturbance which may be dealt with either using robust control techniques,
e.g. loop-shaping in low-level loops, or simply including integral action within
guidance-level loops.
In the case of LALE vehicles, maximizing flight time would further require the
e�cient use of throttle, thus limiting airspeed bandwidth. In order to be able to
use such systems safely and e�ciently in a wide range of missions and di↵erent
environments, it is necessary to take care of such situations directly at the guid-
ance level of control, explicitly taking into account online wind estimates.

Goal of this thesis is to indeed develop guidance strategies that may cope with
extreme wind-scenarios reliably and without the aircraft entering in emergency
states.

1



Chapter 1. Introduction 2

Two di↵erent approaches will be explored. In chapter 2, a novel nonlinear-
geometric guidance algorithm will be developed, building on some earlier results,
in order to deal with arbitrarily strong and changing windfields. In chapter 3, we
will develop a Model Predictive Controller that thanks to an underlying optimiza-
tion procedure is able to automatically take care of the wind e↵ect. In chapter
4 the performances of the two approaches will be compared, and an attempt to
draw conclusions about the main advantages and disadvantages of approaches
will be made. Future extensions of this work will also be discussed in chapter 3.



Chapter 2

A Nonlinear-Geometric Guidance
Strategy to cope with arbitrarily
strong windfields

Throughout this chapter, a nonlinear-geometric approach for the guidance of
small UAVs in strong windfields will be developed. First, a brief review of existing
nonlinear guidance strategies and ways to take the wind into account will be
provided in Section 2.1. Then the mathematical framework and the problem
definition will be presented in Section 2.2, and the novel proposed nonlinear-
geometric guidance strategy will be developed through sections 2.3, 2.4. A proof
of stability in the case of higher winds will be provided in Section 2.5. Continuity
properties of the algorithm to changing winds will be shown in Section 2.6. The
behaviour of the algorithm when the actual roll-dynamics of real aircrafts are
considered is analyzed in Section 2.7. The validation of the algorithm through
real flight-tests will be presented in Section 2.8.

2.1 Nonlinear guidance algorithms for fixed-wing
UAVs: a brief review

Put simply, the goal of the guidance layer of control for UAVs is to make sure
the vehicle will converge to and follow a given desired path. Though it should be
noted there is a distinction between a path-following problem and a path-tracking
problem, which is that in the path-following framework the path is defined spa-
tially, while in the latter it is defined in the space-time domain (the vehicle is
required to be in a certain place at a certain time) ([1]).
As in typical applications for small fixed UAVs it is required to cover certain
areas to take images/perform patrolling task, we are most concerned about path-
following: this is the problem we will consider throughout the chapter.

3
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In [1], a point is made to remark that, ideally, the guidance layer of control for
path-following is required to be simple to understand and implement, compu-
tationally light for real-time flight, and as the path is defined geometrically it
should not put constraints on the actual speed of the vehicle.
Additionally, as far as non-linear guidance algorithms are concerned, it is of pri-
mary importance that the set of initial positions and velocities that allow to
achieve convergence to the path is very large, if not infinite. In case this is
not satisfied, it is required to switch between a manual-mode control and an
automatic-mode control when the vehicle reaches a narrow neighbourhood of the
path, which is far from being optimal in real applications ([1]).
Also note that many control-theoretic algorithms result in huge control inputs
as the vehicle is far from the path (one could simply think of a PID controller,
for example): this is another reason why the set of initial conditions might be
severely restricted. This is why a generalized law allowing to perform completely
autonomous flight starting from anywhere in the air is needed.
As also remarked in [1], specifically, the most used existing guidance methods for
path-following can be classified into two main categories: linear and nonlinear.

The linear methods can be based on Proportional-Integral-Derivative (PID) con-
trol as in [6], and the Linear Quadratic Regulator as for example in [7], [8].
As anticipated, these methods present several disadvantages, such as the initial
input-command being too large if the vehicle is not starting from an immediate
neighbourhood of the path, and the impossibility to take the wind directly into
account, which as we will see in the next subsection is something we are most
concerned about.

The nonlinear methods can be mainly subdivided into three categories ([1]).

• The “error-regulation-based method”: as for example in [9],[10], the error
model for the system is derived and well-known nonlinear control techniques
are applied to steer these error variables to zero (which can include cross-
track error, vehicle heading error, along-track error etc . . . ). The main
drawback of this approach is that it’s very model-dependent and therefore
pretty di�cult to implement. In addition to this, as the initial error is
larger, the control input will be larger. This is the same problem we had
with linear approaches.

• The “vector-field-based method”: a vector field is designed to steer the
vehicle onto the path. The main weakness is that one has to design the
vector field for the particular shape of the path at hand, therefore it is not
easily generalizable.

• The “virtual-target-following method”: the guidance command is conceived
to follow a virtual target point that moves along the path. This virtual
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vehicle is considered to be ahead of the vehicle, in order to obtain an “an-
ticipation” e↵ect on the path evolution. This method is geometric rather
than control-theoretic.

A method using the virtual-target-following approach is the nonlinear path-
following guidance law presented in [11], [12]. As clearly remarked in [1], the
strengths of this method are its simplicity and the so-called “look-ahead e↵ect”,
which enables tight tracking of curved paths by anticipating the upcoming desired
path and some degree of wind e↵ect compensation. This also provides robustness
against external disturbances and smooth incidence to the desired path. However,
this method also has a few drawbacks: the initial position of the vehicle should
be inside of the specified look-ahead distance from the desired path, therefore a
separate guidance law is needed if the initial position is outside of the look-ahead
distance. Additionally, some overshoot response is shown in the initial phase,
and the switching between a straight and a circular path always entails some
overshoot. This method also cannot achieve exact tracking of general 3D curves
of variable curvature ([1]).

In order to overcome these weaknesses, and most of all to allow the set of initial
conditions to include large deviations, the authors in [1] proposed a 3-D nonlin-
ear di↵erential geometric path-following guidance law. This guidance law takes
inspiration from pursuit guidance, similarly to the methods in the virtual-target-
following approach.

Notice that these guidance laws do not take the wind disturbances into account
directly. In the next subsection, some common approaches will be briefly de-
scribed.

2.1.1 Wind Compensation techniques

A common strategy to eliminate the influence of wind on path following is to
consider the inertial groundspeed of the vehicle, which inherently includes wind
e↵ects, see [13], [14]. Another approach is to take the wind explicitly into account,
either by available wind measurements [15] [16] or by exploiting a disturbance
observer, as in [9]. Another possibility is described in [17], where adaptive back-
stepping is used to get an estimate for the direction of the wind.
As to wind compensation techniques, a possible approach is vector fields [14]
[18]. In [14], a vector field approach is used to achieve asymptotic tracking of
circular and straight-line paths in the presence of non negligible persisting wind
disturbances: vector fields are proposed for specific curves (e.g. straight lines,
circles). This requires switching the commands when the target path is defined
as the union of di↵erent parts, which makes the algorithm less uniform and its
implementation trickier. Tuning of vector fields is also known to be di�cult, as
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highlighted in [18].
Another popular approach is based on nonlinear guidance. The strategy proposed
in [12], utilizes a look-ahead vector for improved tracking of upcoming paths. The
law was extended in [1] to any 3D path in the non-windy case. Great advantages
of this law are that it is easy and intuitive to tune, the magnitude of the guidance
commands is always upper-bounded, and it has flexibility in the set of feasible
initial conditions.

The main contribution of this thesis is a simple, safe, and computationally ef-
ficient guidance strategy for navigation in arbitrarily strong windfields. To our
knowledge, in particular, there is no existing guidance law directly considering
the case of the windspeed being higher than the airspeed. The provided design
strategy relies on the solution provided in [1] in absence of wind whose choice for
the look-ahead vector will be properly modified in order to cope with arbitrarily
strong windspeed.

Notation. We shall use the bold notation to denote vectors in R3. For a vector
v 2 R3, v̂ denotes the associated versor and kvk the euclidean norm. For two
vectors v

1

,v
2

2 R3, their scalar and cross products are respectively indicated by
v
1

· v
2

2 R and v
1

⇥ v
2

2 R3.

2.2 Formal Problem Definition

As a first important hypothesis, throughout this thesis, we are going to consider
the most usual scenario of a mission involving path tracking of a horizontal path
defined at a fixed-altitude. The wind will be considered to be horizontal as well.
In addition to being the most usual scenario, one should also note that obtaining
precise estimate for the vertical component of the wind is a technical challenge
that is not yet completely overcome.

As we wish to extend the results obtained in [1], it is useful to define the same
mathematical framework. To have a better insight, we will clearly define the
control problem for each di↵erent scenario, and define a state-space nonlinear
formulation. This will allow us to state a robust control problem, which will be
useful for analysis in future work.

2.2.1 The Frenet-Serret framework for autonomous guid-
ance

The position of the vehicle is denoted by r
M

, which is a vector of R3 expressed
with respect to an inertial reference frame denoted by F

i

and described by an
orthonormal right-hand basis (i, j,k). We assume that (i, j) are co-planar with
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the flight plane, with k orthogonal to such a plane. The emphasis of the work is
on developing a controller able to cope with strong wind. The latter is a vector
w 2 R3 assumed to be constant and to lie on the flight plane, namely with zero
component along k. The vectors v

G

2 R3 and a
M

2 R3 in the plane (i, j) denote
the ground speed and acceleration of the vehicle, the dynamics of the latter is
described by

ṙ
M

= v
G

, v̇
G

= a
M

. (2.1)

Considering flight through a moving airmass, v
G

= v
M

+ w, in which v
M

is
the vehicle airmass-relative speed (or airspeed). Note that, since w is constant,
v̇
G

= v̇
M

. The acceleration a
M

represents the control input.
From a geometric viewpoint, the vehicle path is defined as the union of each
r
M

(t) for every time t. At each t � 0 the vehicle path can be geometrically
characterized in terms of the unit tangent vector, the actual orientation, the
tangential acceleration, the normal acceleration, the tangential acceleration, the
unit normal vector and the curvature of the vehicle path respectively defined as

T̂
G

(t) :=
v
G

(t)

kv
G

(t)k , T̂
M

(t) :=
v
M

(t)

kv
M

(t)k ,

aT

M

(t) := (a
M

(t) · T̂
M

(t))T̂
M

(t) ,

aN

M

(t) := (T̂
M

(t)⇥ a
M

(t))⇥ T̂
M

(t) ,

N̂
M

(t) :=
aN

M

(t)

kaN

M

(t)k
, k

M

(t) :=
ka

M

(t)k
kv

G

(t)k2 .

(2.2)

We observe that the unit normal vector is defined only for values of the accel-
eration such that kaN

M

(t)k 6= 0. Furthermore, all the previous vectors lie in the
plane (i, j). Having in mind the application to fixed-wing UAVs, we will consider
the vehicle to be unicycle-like, i.e. its speed norm kv

M

k will remain unchanged
in time and it will be then guided through normal acceleration commands aN

M

. In
other words, the control law for a

M

will be chosen in such a way that aT

M

(t) ⌘ 0.
According to this, and by bearing in mind (2.2), (2.1) can be rewritten as

ṙ
M

(t) = v

?

M

T̂
M

(t) +w(t), v

?

M

˙̂T
M

(t) = aM

N

(t) (2.3)

in which v

?

M

denotes the (constant) value of kv
M

k.
Inspired by [1], the desired (planar) path is a continuously di↵erentiable space
curve in the plane spanned by (i, j) represented by p(l), l 2 R, with associated a
Frenet-Serret frame composed of three orthonormal vectors (T̂

p

(l), N̂
p

(l), B̂
p

(l)),
a curvature 

p

(l) and a torsion ⌧
p

(`). In the following we let s 2 R the arc length
along the curve p(·) defined as

s(l) =

Z
l

l

0

kdp(`)
d`

kd` .
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The desired path is thus endowed with the Frenet-Serret dynamics given by

0

@
T̂0

p

(s)
N̂0

p

(s)
B̂0

p

(s)

1

A =

0

@
0 

p

(s) 0
�

p

(s) 0 ⌧

p

(s)
0 �⌧

p

(s) 0

1

A

0

@
T̂

p

(s)
N̂

p

(s)
B̂

p

(s)

1

A (2.4)

in which we used the notation (·)0 to denote the derivative with respect to s. As
in [1], we define the “footprint” of r

M

on p at time t as the closest point of r
M

(t)
on p(l) defined as

r
P

(s(t)) := arg min
r2p

kr
M

(t)� rk .

The point P on the desired path is identified by l

P

, which is the value of the curve
parameter l at the closest projection. The unit tangent vector, the unit normal
vector, the unit binormal vector, the curvature and the torsion of the desired path
at the point P will be indicated in the following as T̂

P

:= T̂
p

(l
P

), N̂
P

:= N̂
p

(l
P

),
B̂

P

:= B̂
p

(l
P

), 
P

:= 

p

(l
P

) and ⌧

P

:= ⌧

p

(l
P

). They are all functions of time
through s(t). By bearing in mind (2.4), it turns out that the vehicle dynamics
induce a Frenet-Serret dynamics on the desired path which is given by

0

BB@

˙̂T
P

(t)
˙̂N
P

(t)
˙̂B
P

(t)

1

CCA = ṡ(t)

0

@
0 

p

(t) 0
�

p

(t) 0 ⌧

p

(t)
0 �⌧

p

(t) 0

1

A

0

@
T̂

P

(t)
N̂

P

(t)
B̂

P

(t)

1

A (2.5)

in which ṡ(t) can be easily computed as (see Lemma 1 and Appendix B in [1]).

ṡ(t) =
(v?

M

T̂
M

(t) +w) · T̂
P

(t)

1 + 

P

(t)[(r
P

(t)� r
M

(t)) · N̂
P

(t)]
.

The (ideal) desired control objective is to asymptotically steer the position of
the vehicle r

M

(t) to the footprint r
P

(s(t)) by also aligning the unitary tangent
vectors T̂

G

(t) and T̂
P

(t) and their curvature. To this end it is worth introducing
an error e(t) defined as

e(t) := r
P

(t)� r
M

(t)

and to rewrite the relevant dynamics in error coordinates. In this respect, by
considering the system dynamics (2.1), the Frenet-Serret dynamics (2.5), it is
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simple to obtain (for compactness we omit the arguments t)

ė = �
⇣
v
G

· T̂
P

⌘ 


P

(e · N̂
P

)

1 + 

P

(e · N̂
P

)
T̂

P

+ N̂
P

!

˙̂T
P

=


P

(v
G

· T̂
P

)

1 + 

P

(e · N̂
P

)
N̂

P

˙̂N
P

=
(v

G

· T̂
P

)

1 + 

P

(e · N̂
P

)

⇣
⌧

P

B̂
P

� 

P

T̂
P

⌘

˙̂B
P

=
�⌧

P

(v
G

· T̂
P

)

1 + 

P

(e · N̂
P

)
N̂

P

v

?

M

˙̂T
M

= aN

M

(2.6)

with the ground speed v
G

that is a function of T̂
M

and w according to

v
G

= v

?

M

T̂
M

+w .

This is a system with state (e, T̂
P

, N̂
P

, B̂
P

, T̂
M

) with control input a
M

(to be
chosen so that aT

M

⌘ 0) subject to the wind disturbance w. Note that for planar
paths, ⌧

P

= 0.

Similarly to [1], the acceleration command will be chosen as

aN

M

= (v
M

⇥ u)⇥ v
M

(2.7)

with u 2 R3 an auxiliary input to be chosen. Note that this choice guarantees that
aT

M

(t) ⌘ 0 for all possible choices of u. The degree-of-freedom for the problem is
then the choice of the control input u to accomplish control goals.
Motivated by [19], the choice of u presented in this work relies on the so-called
look-ahead vector, denoted by L̂, which represents the desired groundspeed direc-
tion for the vehicle. The latter will be taken as a function of the system state and
of the wind, according to the objective conditions in which the vehicle operates.

2.2.2 Feasibility Cone and Control Objective Formulation

Although the ideal control objective is to steer the error e(t) asymptotically
to zero by also aligning the unitary tangent vectors T̂

G

(t) and T̂
P

(t) and their
curvature, the presence of “strong” wind could make this ideal objective infeasible
by forcing degraded tracking performances that take into account also safety
issues. For this reason we set two objectives that will be targeted according to
the wind conditions.
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Ideal Tracking Objective. Ideally, the control input u must be chosen so that
the following asymptotic objective is fulfilled

8
>>>><

>>>>:

lim
t�>1

e(t) = 0

lim
t�>1

(T̂
G

(t)� T̂
P

(t)) = 0

lim
t�>1

(
dT̂

G

(t)

dt

� dT̂
P

(t)

dt

) = 0

(2.8)

namely position, ground speed orientation, and ground speed curvature of the
vehicle converge to the path ones.
Safety Objective. When strong wind does not allow to achieve the ideal ob-
jective, the degraded safety objective consists of controlling the vehicle in such a
way that the vehicle acceleration is asymptotically set to zero, the groundspeed
value is asymptotically minimized (by pointing the nose the vehicle against wind)
and the vehicle nose asymptotically points to P, namely

8
>><

>>:

lim
t!1

aN

M

(t) = 0

lim
t!1

T̂
M

(t) = �ŵ

lim
t!1

ê(t) = �ŵ .

(2.9)

The targeted configuration, in particular, is the one in which the vehicle goes away
with the wind, by minimizing the groundspeed (safety objective), and minimizing
the distance to the closest point on the path. Note that this objective makes sense
for finite-length paths: the infinite-length linear path case is briefly discussed in
[2].
Ideal or degraded objectives are set according to the fulfillment of a “feasibility
condition” by the look ahead vector. More precisely, with w

? := kwk the wind
strength, let � be defined as

� :=

(
arcsin

v

?

M

w

?

w

? � v

?

M

⇡ w

?

< v

?

M

.

(2.10)

Then, we define the “feasibility cone” C as the cone with apex centered at the
vehicle position r

M

, main axis given by w and with aperture angle 2� (see Figure
2.8). All desired groundspeed vectors that lie in the cone can be indeed enforced
by appropriately choosing the control input u. This fact, and the fact that the
look ahead vector represents the desired groundspeed direction for the vehicle,
motivates the fact of considering the ideal tracking objective feasible at a certain
time t if it’s possible to shape the look ahead vector L̂(t) so that it lies in C. More
specifically, if

arccos ŵ · L̂(t) < � . (2.11)
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Otherwise, the ideal tracking objective is said infeasible at time t. The control
objectives are set consequently. In the next section we show how to design a
look-ahead vector such that if the ideal tracking objective is feasible then (2.9)
is achieved, otherwise the Safety Objective is enforced.

2.2.3 The Nominal Solution in Absence of Wind in [1]

In this section we briefly present the solution chosen in [1] for the look-ahead
vector in absence of wind, as it represents the basis for developing the windy
solution. A graphical sketch showing the notation is provided in Figure 2.1. The

Figure 2.1: Sketch of the nominal solution

authors in [1] proposed the control law

u = kL̂ (2.12)

in which k is a design parameter chosen so that k > max
P2p(l)

k

P

and L̂ is the look-

ahead vector chosen as

L̂ = cos (✓
L

(kdk))d̂+ sin (✓
L

(kdk))T̂
P

(2.13)

where d = e+d

shift

, N̂
P

= (kek+d

shift

)N̂
P

is the radially shifted distance, ✓
L

(kdk)
is a function satisfying
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•
�1 <

d✓

L

(kdk)
dkdk < 0

when |d| < �

BL

, where �
BL

is a boundary layer to be chosen (i.e., |d| < �

BL

means the vehicle is inside the boundary layer). This means that we require,
by considering 2.13, that as the vehicle approaches the path, the look-ahead
vector progressively aligns to T̂

P

.

•
d

2

✓

L

(kdk)
dkdk2 < 0

when |d| < �

BL

, i.e. inside the boundary layer. This means we require that
the look-ahead vector smoothly converges T̂

P

.

•
✓

L

(kdk) = 0

when |d| > �

BL

, i.e. outside the boundary layer. This means the look-ahead
vector points to P , as if the distance is very large our need is to approach
the path as fast as possible.

• ✓

L

(kdk = 0) = ⇡

2

and ✓

L

(kdk = �

BL

) = 0 to satisfy the boundary condi-
tions.

Technically the choice of �
BL

, the boundary layer parameter, is part of the control
input, but we are going to consider that to be a parameter fixed in advance, as it
would be in a realistic scenario. Several such functions can be found, for example

✓

L

(kdk) = ⇡

2

s

1� sat(
kdk
�

BL

) (2.14)

As to the d

shift

parameter, that must be chosen to guarantee the exact tracking
condition of the command:

(aN

M

cmd

· N̂
P

)|
r

M

=r

P

,

ˆ

T

M

=

ˆ

T

P

= k

P

kv
M

k2 (2.15)

In case we choose (2.14), then d

shift

= [1� ( 2
⇡

arccos |k
P

|
k

)2]�
BL

.

Instrumental for the next results, we also introduce the look-ahead vector com-
puted on the error e instead of the radially shifted distance d, that is

L̂
0

:= L̂|
d=e

. (2.16)

A way to look at the choice of L̂ as in 2.13, is that it considers a tradeo↵ between
“aggressive” maneuvers pointing directly to the path, and “smoother” maneuvers
that steer the vehicle onto the path direction. A further consideration, hinting to
the convergence of the law proposed in [1] ,as T̂

P

can be considered the geometric
derivative of the path at point P , is that L̂ as in 2.13 is acting as a sort of
nonlinear-time-varying “PD” controller.
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2.3 The Lower Wind Case

In this section, we consider the case where the wind is slower than the airspeed,
i.e. w?

< v

?

M

.

2.3.1 Previous solutions and their weaknesses

First thing it is worth trying is not to take the wind into account at all and apply
the Nominal Solution described in 2.2.3. Convergence cannot be achieved even
in the presence of very weak flowfields as can be observed in figure 2.2.

-200 -150 -100 -50 0 50
x

-100

-50

0

50

100

y

No Compensation

Figure 2.2: Wind is 7 m/s, airspeeed is 14 m/s. The Nominal Solution is applied,
without wind compensation, is applied.

If wind measurements are not directly available, a simple approach to achieve path
convergence with any wind, could be to apply the normal acceleration command

aN

M

= k(v?T̂
M

+w)⇥ L̂⇥ (v?T̂
M

+w) (2.17)

so that v
G

will eventually be aligned with the look-ahead vector L̂. This requires
the aircraft to accelerate/decelerate along its longitudinal axis: indeed, the accel-
eration command which is perpendicular to v

G

, which however has a longitudinal
component along the vehicle, whose speed will increase/decrease falling outside
our problem definition. A simulation with this approach is showed in figure 2.3.
If we use this strategy, we must be sure both not to ever overcome the maximum
achievable airspeed and also not to command the vehicle to go too slow and lose
too much lift force. In general, this approach is hence not applicable.
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Figure 2.3: Wind is 7 m/s, airspeeed starts at 14 m/s, and varies. The ground
speed is used in the nonlinear acceleration command.

A way to still preserve a constant airspeed is to consider the v
G

in the nonlinear
acceleration command, but then only apply that component of the acceleration
command which lies along the lateral body axis.
Even though this approach partially compensates for the wind, it entails a severe
discrepancy for slow vehicles, resulting in non easily predictable behaviours which
are largely undesirable and must be taken care of one by one: as an example, at
a given moment we could have v̂

G

⇡ �L̂, that incorrectly results in aN

M

⇡ 0. An
example of such suboptimal behaviours is shown in figure 2.4.

2.3.2 Proposed strategy

Here the goal is to find the control input u
slow

that satisfies the requirements in
2.8. We first find a basic control input, called u

e

, and improve on that to obtain
u
slow

. To this end, we are going to reason in steady state, i.e.

8
><

>:

e = 0

T̂
G

= T̂
P

d

ˆ

T

G

dt

= d

ˆ

T

P

dt

(2.18)

Initial control input

Here we are going to satisfy the first two requirements in (2.8). It is useful to
consider the geometry of the problem shown in Figure 2.5 and introduce the
following angles
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Corner Case: turn around

Figure 2.4: Initially, the ground speed is almost aligned with the look-ahead
vector, hence the aircraft is not commanded to change its attitude and gets
carried away by the wind. The aircraft is forced to perform a complete turn
around to get back on track.

(
�

e

= arccos ŵ · L̂
0

y = arccos�ŵ · L̂
1e

= ⇡ � �

e

� arcsin (w
?

sin (�

e

)

v

?

M

)
(2.19)

where L̂
1e

is an unknown target orientation for the aircraft to be computed. It
should be noted that these angles are not defined in case w = 0. We now aim
to satisfy the first two requirements stated in (2.8) through the choice of a basic
control input

u
e

= kL̂
1e

(2.20)

To find such a command, we assumed to already be at the Position/Orientation
steady state condition. Since we assume to be on the path with the desired
orientation, then k(v

M

⇥ L̂
1e

) ⇥ v
M

= 0, meaning that T̂
M

= L̂
1e

(T̂
M

= �L̂
1e

would be an unstable equilibrium, as showed in [1]).
The natural choice for the desired groundspeed direction is L̂

0

, as it was defined
in 2.16. Note that L̂

0

|
e=0

= T̂
P

. We need to find the desired direction L̂
1e

for
the aircraft by solving the geometry shown in picture 2.5, which means solving
the following equation in L̂

1e

:

w + v

?

M

L̂
1e

kw + v

?

M

L̂
1e

k
= L̂

0

(2.21)
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Figure 2.5: Notation.
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The solution, in terms of the angles defined in (2.19), is

(
L̂

1e

= sign([ŵ ⇥ L̂
0

] · k)rot(�ŵ, y) w

?

> 0

L̂
1e

= L̂
0

w

? = 0
(2.22)

where rot(a, ✓) is the function that rotates vector a 2 R3 by angle ✓ around
the vertical axis k. The basic u

e

will be improved in 2.3.2 to obtain curvature
convergence.

Improvement of the control input to satisfy the curvature convergence
requirement

Again, we will reason in steady state. In order to satisfy the curvature conver-
gence requirement, we need that

(aN

M

· N̂
P

)|
r

M

=r

P

,

ˆ

T

G

=

ˆ

T

P

= k

P

kv
G

k2 (2.23)

So we define a (scalar) amount of additional normal acceleration to be applied
for the v

G

to keep the curvature as

kaG

N

res

k = kkv
G

k2k(L̂
0

⇥ L̂)⇥ L̂
0

k (2.24)

L̂ and L̂
0

as defined in 2.2.3. It’s easy to verify that

kaG

N

res

k |
e=0

= kkv
G

k2k(T̂
P

⇥ L̂|d|=d

shift

)⇥ T̂
P

k
= kk

P

kkv
G

k2
(2.25)

The idea is to rotate the u
e

= kL̂
1e

by a proper angle ✓
s

, which is shaped soon
after. If we do so, then in steady state the normal acceleration applied to the
vehicle will not be null but

kaM

N

res

k = kv

?

M

2 sin (✓
s

) (2.26)

When w = 0 we have v

?

M

= kv
G

k, then we can trivially observe that kaG

N

res

k =
kaM

N

res

k. As kaG

N

res

k is obtained through (2.24), then considering (2.26) we can
already obtain the needed shifting angle:

✓

s

= arcsin [sat(k(L̂
0

⇥ L̂)⇥ L̂
0

k)] (2.27)

where L̂ defined as in 2.14, the sat(·) function bounds the argument to be in
the interval [-1,1]. As to the general case w

?

> 0, where the angles �
e

and y

are defined, remember that in general for any normal acceleration a
N

= ⌦ ⇥V,
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where ⌦ is the angular speed vector V is the linear speed vector. Then, using
the angles introduced before, it holds

8
>>><

>>>:

�̇

e

=
kaG

N

res

k
kv

G

k

ẏ = ��̇
e

� w

? cos (�
e

)�̇
e

v

?

M

q
1� (w

?

sin(�

e

)

v

?

M

)2

(2.28)

Since it is also true that ẏ =
kaM

N

res

k
v

?

M

, by comparison with the (2.26) we obtain

the formulation for ✓
s

✓

s

= arcsin [sat(
ẏ

kv

?

M

)] (2.29)

The conclusion is that by choosing the control input

u
slow

= rot(u
e

, ✓

s

) (2.30)

u
e

defined as in 2.20, the goals in (2.8) are satisfied. We report in Figure 2.6 a
phase portrait showing global convergence in numerical simulations for a large
variety of initial conditions and di↵erent windspeeds. That said, attractiveness
to the equilibrium will have to be formally proved in future work. In Figure 2.7,
we can observe the performance of the algorithm for strong constant wind, still
slower than the airspeed.

Choice of k

Still we have to determine the parameter k. In order for the algorithm to keep
null error in steady state, we have as a lower bound on the choice of k:

k > max|k
P

|
4w?

v

?

M

|k
P

| (2.31)

The lower bound on k can be derived from the worst case scenario (L̂
0

= ŵ,
groundspeed in favour of the wind) by posing the argument of the arcsin in
equation (2.29) to be in the interval [-1,1] when e = 0. If we pick an even
greater k, it is also possible to guarantee that the argument of the arcsin will
not ever saturate during the transient when e 6= 0, resulting in better transient
performance.

2.4 The Higher Wind Case

Let us define the desired direction for the groundspeed L̂
0

as in equation (2.16),
and the corresponding basic control input u

e

as in equation (2.20). It is convenient
to reason considering the angles introduced in (2.19): refer to Figure 2.8 for a
better visualization.
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Figure 2.6: Phase portraits of the proposed lower wind solution for w

?=0 m/s

(left), 7m/s (middle), and 13.5m/s (right), respectively. The tracking angular

error ⌘ = atan2
⇣
T̂

P

y

, T̂
P

x

⌘
� atan2

⇣
T̂

G

y

, T̂
G

x

⌘
2 [�⇡, ⇡] is compared with the

signed, one-dimensional cross-track error e⇤ = e · r

M

kr
M

k to demonstrate algorithm
convergence within the bounds of �

BL

= 50 m, for k = 0.05, R = 100 m, and
v

?

M

=14 m/s
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Figure 2.7: Airspeed 14 m/s. Windspeed 12 m/s. The proposed control input
lets the vehicle achieve the objectives stated in 2.8.
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2.4.1 Solution for L̂
0

feasible

As the desired groundspeed direction L̂
0

is feasible, the idea is then to reason
as in 2.3.2: choose the basic control input u

e

as in (2.20) and shift it by the
correct shifting angle ✓

s

in order to achieve curvature convergence: this would
mean u

fast,1

= u
slow

, and doing so we would achieve curvature convergence as
long as the L̂

0

continues to be feasible. However, with usual shapes for the target
curved path, at some point the desired direction will become infeasible: when this
happens, we need the control input not to change abruptly, i.e. to be a continuous
function of the desired L̂

0

. Since we cannot in general achieve the goals in (2.8),
we actually make a slightly di↵erent choice for u

fast,1

that guarantees continuity
in the sense mentioned before (as better explained in [2]), while keeping almost
perfect curvature convergence as long as the L̂

0

is feasible:

✓

s2

=

q
[1� (w

?

sin (�

e

)

v

?

M

)2]

cos (�
e

)
✓

s

(2.32)

So, in the end,
u
fast,1

= rot(u
e

, ✓

s2

) (2.33)

2.4.2 Infeasible desired direction: the state of the art.

As anticipated, the case of windspeeds being so strong as to force the aircraft to
fly backwards is usually neglected in the field of aeronautics, as it is a pretty rare
event. This is indeed quite frequent with LALE UAVs.
When this happens, the main goal we can easily think of, as the aircraft is bound
to flow away from the target path together with the wind, is to “minimize the
damage”: this results in trying to minimize the norm of the groundspeed. This
is achieved if the aircraft turns against the windfield.

The easiest way to do so is to instantaneously ask the aircraft to turn against the
wind as soon as it is not possible for it to follow the desired path, and hope for
the wind to stop: this is what was done before starting this thesis.
Although this could be a suitable emergency way of acting in case the windspeed
rarely overcomes the aircraft airspeed, this is indeed suboptimal and could result
in very poor tracking performance in the case of persisting strong winds.

In Figure 2.9, an example of such suboptimal behaviour is shown:
As soon as the target direction becomes infeasible, the aircraft abruptly turns
against the wind, and cannot change its mind until the direction becomes feasible
again “by chance”. Another reason why this behaviour is undesirable can be seen
by thinking of a wind profile that often crosses the line between w

?

< v

?

M

and
w

?

> v

?

M

: as the commands would be largely discontinuous, this would result in
dangerous aircraft behaviour.
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Figure 2.9: Wind is 15m/s, directed from left to right, airspeed is 14m/s.

2.4.3 Solution for L̂
0

infeasible

We define an infeasibility parameter ↵

out

and a safety function �

safe

(↵
out

) as
follows:

↵

out

=
�� �

⇡ � �

�

safe

=
⇡

2

� � � y(↵
out

)
⇡

2

� �

(2.34)

both indices have maximum value equal to 1. When �
safe

= 1, it means that we act
conservatively and choose u

fast,2

k

= �ŵ: this has to happen only in the absolutely

worst scenario of L̂
0

= �ŵ, which corresponds to the maximum ↵

out

= 1. In
all the intermediate cases, we want to guarantee a tradeo↵ between conservatism
and tracking performance, i.e we want �

safe

(↵
out

) to be increasing with ↵
out

.
This can be achieved by finding a proper mapping f from angle ⌫ = ⇡ � �

e

to
angle y in the following form

f : ⌫ 2 [0, ⇡ � �] ! y 2 [0,
⇡

2
� �] (2.35)

This mapping should satisfy the following 3 properties:

f(0) = 0

f(⇡ � �) =
⇡

2
� �

f(a) < f(b) 8a > b, a, b 2 [0,
⇡

2
� �]

(2.36)

The first requirement is to guarantee that �
safe

= 1 when L̂
0

= �w. The second
one is a boundary condition to guarantee that the input is continuous to the L̂

0

switching from being feasible to infeasible (or vice versa). The third requirement
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is for finding a tradeo↵ between safety and performance: put in words, the more
the L̂

0

is infeasible for the groundspeed, the more we want to turn against the
wind and wait for it to stop.
By looking at picture 2.8, a natural choice that follows geometric intuition and
is coherent with the requirements that we have just stated, is

u
fast,2

= k

p
w

?

2 � v

?

M

2L̂
0

�w

k
p
w

?

2 � v

?

M

2L̂
0

�wk
(2.37)

In terms of the mapping that has been defined before, this choice corresponds to

f(⌫ = ⇡ � �) = y = arcsin
sin ⌫ cos �p

1 + cos2 � + 2 cos � cos ⌫
(2.38)

this mapping satisfies the requirements (2.36), as can easily be verified by sub-
stitution and derivation with respect to ⌫. For clarity, the function is plotted in
Figure 2.10 for di↵erent values of the wind-cone opening angle �
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Figure 2.10: proposed mapping y = f(⌫) for di↵erent values of �

In Figure 2.11 the performance of the algorithm is shown.
It is also worth highlighting the tradeo↵ introduced between performance and
security (incremental safety) by computing the safety function �

safe

(↵
out

) :

�

safe

=
� � ⇡

2

+ arcsin ( sin (⇡���(⇡��)↵

out

) cos�p
1+cos�

2

+2 cos� cos (⇡���(⇡��)↵

out

)

)

� � ⇡

2

(2.39)

as is also shown in Figure 2.12.
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Figure 2.11: wind is 16 m/s, airspeed is 14 m/s. The proposed law is used.
Magenta line: feasible desired direction. Red line: infeasible desired direction
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2.5 Proof Of Stability

We are in the scenario of w?

> v

?

M

. For finite-length paths, we want to show that
we achieve the requirements in 2.9.
Here we will also consider briefly the case of infinite paths: the only realistic case
in UAV application is that of infinite linear paths. In this case we want to show
that: 8

<

:
lim
t!1

aM

N

(t) = 0

T̂
M

t!1
= �rot(�ŵ, f(⇡

2

� µ))
(2.40)

where µ = arccos ŵ · ⇤̂, ⇤̂ is the direction of the target linear path, mapping
f : ⌫ ! y has to be chosen. The second requirement in 2.40 asks for a tradeo↵
between the linear-path direction and the anti-wind direction for the T̂

M

, that
results in an e�cient direction for the actual T̂

G

.
In both cases, the proof for the proposed algorithm will be structured as follows:

• First the so called geometric case will be tackled: the vehicle is considered
to always be at the desired heading angle, i.e. T̂

M

(t) = u

fast,2

k

(t), 8t.

• Then, the so called dynamical case (the vehicle is not always at the desired
heading angle) will be considered and shown to fall into the geometrical
case as time goes to infinity.

2.5.1 Geometric case: finite paths

Subcase 0. Single point path

Here we consider the path to be very far away and hence similar to a single point
P for the aircraft to be reached. The radially shifted distance is indistinguishable
from the error, so ✓

s

(t) ⇡ 0 8t. Also, notice that with a point-path, ê = L̂
0

. By
defining

a =
q
w

?

2 � v

?

M

2

, l = kaL̂
0

�wk (2.41)

we obtain
v
G

⇥ L̂
0

= (w? + v

?

M

L̂
1e

)⇥ L̂
0

=

= (w +
v

?

M

(L̂
0

a�w)

l

)⇥ L̂
0

=

= ((1� v

?

M

l

)
| {z }

>0

w +
av

?

M

l

L̂
0

)⇥ L̂
0

= (1� v

?

M

l

)
| {z }

>0

w ⇥ L̂
0

+ 0

(2.42)
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Now let the line directed as L̂
0

divide the plane into two half-planes: the previous
considerations imply that v

G

and w both lie in the same half-plane, so the L̂
0

will
rotate more towards the �w direction in time until eventually lim

t!1
L̂

0

= lim
t!1

ê =

�ŵ. Another way to see this: the path-point P acts as a rotational joint for
the error vector e, which is fixed at one end in P : the v

G

is rotating the error
vector in the same direction as the wind would rotate it, meaning that it will
point instantaneously more in the anti-wind direction, i.e. even more outwardly
with respect to the cone, until it reaches the anti-wind direction (the “torque”
around point P is null at that point).
As in this case L̂

0

= ê, the L̂
0

rotation must stop here. Since f(0) = 0, then also
lim
t!1

u

fast,2

k

= �ŵ by construction. By hypothesis of geometrical case, this means

lim
t!1

T̂
M

(t) = �ŵ. Then, by definition of the normal acceleration command, also

lim
t!1

aM

N

= 0 so we reach asymptotic safety as defined in 2.9.

As an additional feature, note that

sign[(v
G

⇥w) · k](t
0

) =
sign[(v

G

⇥w) · k](t), 8t > t

0

(2.43)

so we reach the equilibrium without oscillations around that line such that ê =
�ŵ.

Subcase 1. Finite length paths

In this case, the L̂
0

versor is a function of the particular path we are considering,
so we can no longer assume it to coincide with ê as in the single point path case.
However, consider the following two facts:

• The path is finite

• 8t 2 R, r
M

(t) · ŵ � r
M

(0) · ŵ + (w? � v

?

M

)| {z }
>0

t

That is, as the wind is constantly stronger than the airspeed, the minimum growth
of the projection of the error onto the wind direction has rate (w? � v

?

M

)t. This
implies that

lim
t!+1

kr
M

(t)k = +1 (2.44)

and since the path is finite

lim
t!+1

kd(t)k = lim
t!+1

ke(t)k = +1 (2.45)

As the distance grows to infinity, the path will look like a single point P1, that
is the center of the smallest circle that contains the whole path. Then, we fall
into the single point-path subcase.
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2.5.2 Geometric case: infinite linear paths

Here the path is not finite. However, a common case in UAV applications is when
the path is an infinite line. If this line is outside the wind-cone or the intersection
with the cone is finite, it is not possible for the v

G

to align to it. In this case,
the proposed algorithm achieves e�cient wind stability, i.e. the objectives
in 2.40. To show this, simply notice that if d > �

BL

, then whatever the vehicle
position, we have L̂

0

? ⇤̂, as the error direction will always be perpendicular to
the line. A simulation for this situation is shown in Figure 2.13.
The interpretation for this result is that the proposed algorithm finds some e�-
cient compromise for the v

G

direction between the anti-wind direction and the
path direction, which is a tradeo↵ between safety and tracking performance.
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Figure 2.13: Airspeed is 14 m/s. Windspeed is 30 m/s, indicated by the magenta

arrow on the aircraft. ⇤̂ = (
p
2

2

,

p
2

2

). Line direction is hence infeasible.

2.5.3 Dynamical case

Here we will extend the proof for the geometric case, so as to consider the dy-
namics imposed by the nonlinear acceleration command. As the subcase of finite-
length paths was shown to fall into the subcase of single-point paths, studying
the dynamic extension for the single-point paths is all we need. The extension
for the infinite linear path is trivial and will be omitted, as the L̂

0

stops changing
as soon as d > �

BL

.
In the following, it is clearer to directly refer to Figure (2.14) for the symbols
definition.
Depending on the desired groundspeed direction L̂

0

, we have two subcases.



Chapter 2. A Nonlinear-Geometric Guidance Strategy to cope with arbitrarily
strong windfields 28

y z

path

E

E

Figure 2.14: Symbols used in the proof

Subcase 1

If
� < ⌫ < ⇡ � � (2.46)

corresponding to L̂
0

pointing outside of the “specular” cone, then it is easy to
see that

↵

Lg

< ⇡, 8✓
g

(2.47)

meaning that
⌫̇ < 0 (2.48)

independently from the actual aircraft orientation. This holds until we fall into
subcase 2.

Subcase 2

If
0 < ⌫ < � (2.49)
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corresponding to L̂
0

pointing inside of the “specular” cone, we need further con-
siderations. It is not true anymore that ↵

Lg

< ⇡, 8✓
g

. Instead we have

(
↵

Lg

< ⇡, if ✓
g

> �⌫
↵

Lg

� ⇡ otherwise
(2.50)

Then it’s possible that, depending on how the aircraft is oriented, ⌫ will increase
while the angle between T̂

M

and the commanded direction u

fast,2

k

is smaller than

⇡, which is undesirable as it would mean the L̂
0

is “running away” from T̂
M

.
To show that eventually the aircraft can be considered to be aligned with its
commanded control input versor u

fast,2

k

, consider the following:

• We can increase parameter k in order to make the vehicle turn with faster
dynamics.

• As time goes to infinity, eventually the “chasing” angle z will decrease to
0.

To show this last fact, first notice that for any given T̂
M

, if ⌫̇ > 0 then ⌫̇ is a
decreasing function of |e ·w| that goes to 0 as 1

|e·w| or faster. Indeed, consider the

case when ⌫̇ > 0 and has the maximum value, i.e. ⌫ = 0 and T̂

M

?w. We have

⌫̇

MAX

=
v

?

M

|e ·w| (2.51)

which acts as an upperbound for all the other situations. Irrespectively from T̂
M

,
since w

?

> v

?

M

, |e · w| indeed increases, hence ⌫̇ must decrease and tend to 0.
Since y is a function of ⌫ such that 8 ⌫, y(⌫) < ⌫, than also ẏ decreases and tends
to 0 as time goes to infinity. Now consider the time derivative of the “chasing”
angle z

ż = ẏ + ⇠̇ (2.52)

Since we showed lim
t!+1

⌫̇(t) = 0 = lim
t!+1

ẏ(⌫(t)), irrespectively of what the orien-

tation of the vehicle could be at any time, then, as ⇠ indicates the heading angle
of the aircraft,

lim
t!1

ż(t) = ⇠̇(t) (2.53)

As the acceleration command is designed to steer the vehicle orientation onto
the chosen look-ahead vector, which now is u

fast,2

k

, as the look-ahead is bound to
asymptotically stop changing as the vehicle gets further away from the path, then
we actually have that lim

t!1
⇠̇(t) = 0, with the vehicle aligned to the look-ahead

vector. This, together with the 2.53, translates in

lim
t!1

z(t) = 0 (2.54)

Then we can say that we asymptotically fall into the geometrical case, and the
proof holds.
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2.6 Continuity

In realistic scenarios, the wind is not going to be constant, but will likely switch
between w

?

< v

?

M

and w

?

> v

?

M

several times. Not only that, the path is going
to be curved, so the desired direction for the groundspeed L̂

0

is going to switch
between being feasible and infeasible. All these switchings mean that it is very
important for the command input u to be continuous to changing winds and
changing L̂

0

.
The control input was derived separately for the three subcases (slower winds,
higher winds with feasible desired direction, higher winds with infeasible desired
direction) in 2.3, 2.4.1, 2.4.3. We want to show here that the complete control
input

u =

8
><

>:

u
slow

, w

?  v

?

M

u
fast,1

, w

?

> v

?

M

, �  �

u
fast,2

, w

?

> v

?

M

, � > �

(2.55)

indeed guarantees continuity in this sense.

• Switching between u
slow

and u
fast,1

: this happens as the wind passes
from w

?

< v

?

M

to w

?

> v

?

M

. Let t⇤ be the boundary time instant in which
w

?(t⇤) = v

?

M

(t⇤). Also, in this case, �
e

(t⇤)  ⇡

2

. Looking at the formulation
for ✓

s

and ✓
s2

in (2.32), we have:

✓

s2

|
w

?

=v

?

M

= ✓

s

|
w

?

=v

?

M

(2.56)

and so u
slow

(t⇤) = u
fast,1

(t⇤)

so the command u(t) is continuous at this boundary condition

• Switching between u
slow

and u
fast,2

: this happens as the wind passes
from w

?

< v

?

M

to w

?

> v

?

M

. Let t⇤ be the boundary time instant in which
w

?(t⇤) = v

?

M

(t⇤). Also, in this case, �
e

(t⇤) >

⇡

2

. Solving the geometry in
2.5, we have that u

e

= �w. Since �(t⇤) = ⇡

2

, this implies that y(t⇤) = 0

as computed in (2.38): so u
fast,2

(t⇤) = �w as well. Assuming T̂
M

⇡ L̂
1e

,
which is the case after some transient, we have that kv

G

k ⇡ 0. So by (2.28),
we have ✓

s

⇡ 0, implying

u
slow

(t⇤) ⇡ �w ⇡ u
fast,2

(t⇤) (2.57)

• Switching between u
fast,1

and u
fast,2

: this happens when w

?

> v
M

and
L̂

0

passes from being feasible to being infeasible. Let t

⇤ be the boundary
time instant. Then

w

?(t⇤) sin�
e

(t⇤) = v

?

M

(t⇤) (2.58)
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so ✓
s2

(t⇤) = 0. This guarantees continuity, as no shifting angle is applied in
the infeasible case.

In Figure 2.15 we report a plot that highlights the continuity of the input as the
wind increases and for a fixed L̂

0

. We indicate the associated angles y for the u
direction and ⌫ for the L̂

0

.
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Figure 2.15: Switching w

? lower/higher than v

?

M

. Magenta: inside the cone.

2.6.1 Sinusoidal Winds

As an example of a more realistic varying wind profile, in order to show that the
commands do not switch abruptly and are continuous, we consider the case of
the wind having this sinusoidal profile

w(t) = W sin (⌦t)
⇥
1 0 0

⇤
T

(2.59)

for some wind pulsation ⌦ and amplitude W > v

?

M

. The result is shown in Figure
2.16, and the same is shown (more clearly) in an accompanying video1.
Switching between any couple of the three parts of the control input can happen
in this case. The least smooth behaviour, as we have only approximate continuity,
is when the switching is between u

slow

and u
fast,2

.

2.6.2 Rotating Winds

The wind has the following expression

w(t) = W

⇥
cos⌦t sin⌦t 0

⇤
T

(2.60)

1
Sinusoidal wind simulation: <https://www.youtube.com/watch?v=fpV5KkmrrUc>
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Figure 2.16: Sinusoidal winds. Blue: u
slow

is applied. Magenta: u
fast,1

is applied.
Red: u

fast,2

is applied
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for some wind pulsation ⌦ and amplitude W > v

?

M

. When the direction becomes
feasible, the vehicle exploits the wind so as to progress faster on the path while
keeping the curvature. During the unfeasible direction parts, it tries to follow
the progression of the circle. This also helps in making the required direction
feasible again in a shorter time, as the wind rotates. This would be impossible
with the old methods. A plot can be seen in Figure 2.17. An accompanying video
is provided 2.
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Rotating High Winds

Figure 2.17: Rotating high winds. Magenta: faster wind, inside wind-cone. Red:
faster wind, outside wind-cone

2
Rotating wind simulation: <https://www.youtube.com/watch?v=AQWLYWPMvqk>
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2.7 Roll Dynamics

The guidance algorithm was developed by considering the vehicle to behave as a
point-mass, i.e. we assumed that each acceleration command from the nonlinear
guidance could be matched perfectly and instantaneously by the vehicle. This is
clearly not the case for a nonholonomic vehicle such as the fixed-wing UAV. In
particular the nonlinear lateral dynamics of a fixed-wing UAV can be described
in north-east coordinates as follows ([20]):

8
>>>>>><

>>>>>>:

ṅ = v

?

M

cos + w

n

ė = v

?

M

sin + w

e

 ̇ = g tan�

v

?

M

�̇ = p

ṗ = b

0

�

cmd

� a

1

p� a

0

�

(2.61)

where
�
w

e

w

n

�
T

= w is the nonlinear wind e↵ect, g ⇡ 9.81 is the acceleration
of gravity,  is the heading of the aircraft (computed from the north-axis), � is
the roll angle that translates into  if we enforce the so called coordinated turn
hypothesis that holds in steady-state flight ([21]), and the parameters a

0

, a

1

, b

0

describe the roll-dynamics, i.e. the dynamics between a roll command and the
actual aircraft roll.
From the equations, we can deduce the transfer function between roll commands
and actual roll:

�(s)

�

cmd

(s)
=

b

0

s

2 + a

1

s+ a

0

(2.62)

Higher order dynamics could be used, however it has been found in [20] through
the identification procedures, that second-order fits appropriately the closed loop
low-level autopilot attitude control response. The test-bed platform available in
ASL-ETHZ is shown in Figure 2.18
Through the identification procedure outlined in [20], it was possible to identify
the roll dynamics for the Techpod:

b

0

= 13.48 a

1

= 6.577 a

0

= 13.97 (2.63)

In order to translate the acceleration aN

M

into a roll command �

cmd

, a simplified
formulation was derived from the coordinated turn hypothesis ([21]):

�

cmd

= arctan (
k�aM

N

k
g

) (2.64)

where g is the acceleration of gravity and � is a parameter we can choose to
achieve better performance. Usually � = 1 is a proper choice.
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Figure 2.18: Fixed-Wing Test Platform: Techpod. Credits to [20]

With the real data at hand, some simulations were run to observe the perfor-
mance of the nonlinear algorithm on the Techpod.
In figure 2.19, the wind is such that w

?

< v

?

M

, so we showed in 2.3.2 that the
proposed guidance algorithm let the point-mass vehicle achieve the goals in 2.8,
i.e. position/orientation/curvature convergence. As the algorithm does NOT
consider the actual roll-dynamics directly, however, it is not possible to achieve
perfect convergence. A delicate tuning of the parameters k and �

BL

, can partially
take care of the roll-dynamics and make it possible to achieve very good perfor-
mance. A simulation with the Techpod roll-dynamics and strong wind still such
that w?

< v

?

M

is shown in Figure 2.19.
As to the case of w?

> v

?

M

, the same considerations hold. Thanks to a fine tuning
of the parameters it was possible to achieve good tracking performance and the
objectives in 2.9. A simulation is shown in Figure 2.20.

2.8 Flight Results

The proposed algorithm was implemented on a Pixhawk Autopilot in C++, and
thoroughly tested in HIL simulations. This was necessary to obtain a fine-tuning
of the control parameters in the guidance law and be sure everything was right
before actually flying. Subsequently, it was tested on a small fixed-wing UAV in
high wind conditions. The Pixhawk Autopilot platform is shown in Figure 2.21.
The test-bed platform aircraft for these flight tests was the so called “EasyGlider”
(Figure 2.22, whose identification step gave the following minimum order roll-
dynamics:

�(s)

�

cmd

=
1.649

s+ 1.26
(2.65)
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Figure 2.19: Wind is 10 m/s, flowing from left to right. Airspeed is 14 m/s.
Techpod Roll Dynamics are considered.

After successful implementation, in Figure 2.23, 2.24, we show the results (taken
directly from the stored data in the IMU of the aircraft) from the flight tests.
The aircraft was commanded to follow a circular trajectory in counter-clockwise
direction at a nominal airspeed of 8 m/s. The wind vector is represented in
the figures using the following arrow, color scheme: w

?

< v

?

M

(black), w

?

>

v

?

M

\ (L̂
0

feasible) (magenta), w?

> v

?

M

\ (L̂
0

infeasible) (red).

In Figure 2.23, the UAV can be seen to attempt curvature following despite the
infeasible look-ahead direction until a point where the wind speed reduces and
allows the start to convergence back to the path.

Figure 2.24 shows a wind-stabilized approach towards the trajectory until the
point where simply pointing into the wind is the only option to reduce “runaway”
from the track, recall the tracking direction is counter-clockwise.
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Figure 2.20: Wind is 15 m/s, flowing from left to right. Airspeed is 14 m/s.
Techpod Roll Dynamics are considered.

Figure 2.21: The PixHawk PX4 plat-
form. Credits to [3]

Figure 2.22: The EasyGlider
PRO. Credits to http://www.green-
eyes.it/Modellismo/EasyGlider.htm
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Figure 2.23: First moment from the flight test
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Figure 2.24: Second moment from the flight test



Chapter 3

A Guidance Approach Based On
Model Predictive Control

In this chapter, we will investigate a completely di↵erent guidance approach. In
chapter 2, we developed a novel nonlinear guidance algorithm able to cope with
arbitrarily strong windfields: the solution is easy to implement and computation-
ally very light, however the following should be noted.

• Having in mind the application to real fixed-wing UAVs, we cannot assume
that the acceleration commands from the nonlinear guidance law will be
matched perfectly by the (nonholonomic) vehicle. This will result in the
necessity of fine-tuning the control parameters very carefully for each dif-
ferent aircraft and for each path, depending on the wind profile, which is
doable but inconvenient in many situations.

• The tradeo↵ between performance and safety does not consider the mini-
mization of a cost function, and relies on the particular choice we make for
the mapping function 2.35. This means the tradeo↵ is built upon common-
sense, and cannot be the mathematically best choice in every situation. We
are giving up on optimality in exchange for simplicity and computational
lightness.

For these reasons, it seemed natural to compare the performance of the proposed
nonlinear algorithm with a controller based on an optimizer. As the model of the
aircraft we can obtain is not perfect and the wind profile can vary in time, we
chose to implement a Model Predictive Controller (MPC).

The MPC control framework is briefly outlined in 3.1. The application to fixed-
wing UAVs is described in 3.2. After showing some preliminary simulation results
in 3.3, the reshaping of the cost function to envision the possibility of winds such
that w?

> v

M

? and obtain the safety objectives in 2.9 is described in 3.4. Finally,
simulation results are shown in 3.5.

39
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3.1 The (Nonlinear) MPC Framework

The introduction about MPC given in this section is partially quoted from the
Preface of the book [22], as it is a very clear introduction to the problem.

Dynamic optimization has become a standard tool for decision making in a wide
range of areas. The basis for these dynamic optimization problems is a dynamic
model in the form

ẋ(t) = f(x(t), u(t)), x(0) = x

0

(3.1)

that describes the evolution of state x(t) in time as it is influenced by a control
input u(t). In general, function g(·) is a nonlinear function of its arguments. The
goal of the dynamic optimization is to find, at each time ⌧ , that control input
u([⌧, ⌧ +N ])? (where [⌧, ⌧ +N ] indicates the time interval between ⌧ and ⌧ +N)
such that some objective function is optimized over some time horizon [⌧, ⌧ +N ],
for some chosen N .
Usually, the minimization of the objective function takes the following form:

min
u(⌧,⌧+N)

Z
⌧+N

⌧

q(x(t), u(t))dt + p(x(⌧ +N)) (3.2)

The terms q(x, u) and and p(x) are referred to as the stage cost and terminal
cost. Many realistic problems can be put into this framework and a lot of algo-
rithms and software packages are available to come up with the optimal input
u([⌧, ⌧ +N ])?. Even large problems described by complex models and involving
many degrees of freedom can be solved e�ciently and reliably.
To this point, it seems that finding the proper u([⌧, ⌧ + N ])? is everything we
need: however, this structure still lacks some feedback to compensate for model
imprecision and external disturbances, which combined could make the system
deviate from its predicted future behaviour. This would ruin the procedure and
make it unreliable.
For this reason, it is common practice to measure the state after some time pe-
riod, say one time step, and to solve the dynamic optimization problem again,
starting from the measured state x(⌧+T

s

t) (where T

s

is the time needed for two
consecutive sensing steps) as the new initial condition. This feedback of the mea-
surement information to the optimization endows the whole procedure with a
robustness typical of closed-loop systems.

A big limitation of MPC is that running the optimization procedure online at each
time step requires a huge amount of time and computational resources. However,
as explained in [22], “today, fast computational platforms together with advances
in the field of operation research and optimal control have enlarged in a very
significant way the scope of applicability of MPC to fast-sampled applications.
One approach is to use tailored optimization routines which exploit both the
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structure of the MPC problem and the architecture of the embedded computing
platform to implement MPC in the order of milliseconds.
The second approach is to have the result of the optimization pre-computed and
stored for each state in the form of a look-up table or as an algebraic function
u(t) = g(x(t)) which can be easily evaluated. Whatever approach we may choose,
the optimization guidance is not easy to implement and generally require a great
amount of on-board computational power.”

3.2 The MPC Guidance Approach For Fixed-
wing Vehicles

Several control schemes based on Model Predictive Control were developed in
the literature. In [23], a nonlinear model predictive controller (NMPC) is built
on the kinematic fixed-wing model of the UAV, in order to track a desired line,
and a stability analysis is performed. In [24], this approach is extended to tackle
the case of multiple line segments with obstacle avoidance. In [25], the problems
inherent to real-time implementation are tackled: an adaptive-horizon approach
is proposed based on the curvature of the target path. An alternative approach
based on model predictive control and backstepping techniques is proposed in
[26].
The case of windy scenarios is directly tackled in [27], but the wind is supposed
to be slower than the aircraft airspeed. We are indeed interested in tackling the
case of arbitrary windspeeds.

To test the algorithm which will be proposed in the following, we took the frame-
work described in [20]. There, the formulation and implementation of a Nonlin-
ear MPC controller for general high-level fixed-wing lateral-directional trajectory
tracking was developed. The ACADO Toolkit [28] for generation of a fast C code
based nonlinear solver was used.

The optimization problem takes the following form

min
u,x

Z
T

t=0

⇣
(y(t)� y

ref

(t))T Q

y

(y(t)� y

ref

(t)) + (u(t)� u

ref

(t))T R

u

(u(t)� u

ref

(t))
⌘
dt

+ (y(T )� y

ref

(T ))T P (y(T )� y

ref

(T ))

subject to ẋ = f(x, u)

y = h(x, u)

u(t) 2 U
x(0) = x

(

t

0

)
(3.3)
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where h(x, u) is the selection function that maps states and inputs into the pe-
nalization variables that appear into the objective function. The choice of the
proper penalization variables for the application at hand is very important, as we
will see in what follows. Considering the aircraft dynamics in 2.61, we come up
with the state vector x =

⇥
n e  � p

⇤
T

and the control input u = �

cmd

. As
the set of achievable rolls is bound, then U denotes the (convex) set of possible
inputs, which is directly taken into account into the optimization problem.

The standard approach is to create the following error variables

e

t

= e · N̂
P

e

�

= �

d

� �

(3.4)

where e, N̂
P

are the same as defined in 2.2, �
d

= arctan 2
⇣
T̂

P

e

, T̂
P

n

⌘
, � =

arctan 2(v
G

e

,v
G

n

). So, e
t

represents the track-error and e

�

represents the course
error, i.e. how much the groundspeed direction is di↵erent from the tangent di-
rection to the path at its closest point.
Having defined these error variables, the usual choice for the penalization vari-
ables vector is the following:

y =
⇥
e

t

e

�

� p �

r

⇤
T

(3.5)

By a proper choice of the weight matrices Q
y

, R

u

, P it is then possible to achieve
convergence to arbitrarily shaped paths, provided the maximum curvature does
not exceeds the minimum turn-radius of the aircraft at its maximum speed (which
is when the wind is in favour of the aircraft).
However, the ratio of the weights inside matrix Q

y

is tricky to be chosen, and
depends on both the path shape and the wind profile.
Taking inspiration from the Look-Ahead method in [1], in order to have a simpler
tuning, we created the following penalization variable:

e

ˆ

L

= arctan 2
⇣
L̂

e

, L̂
n

⌘
� � (3.6)

where L̂ is chosen as in 2.13, and considered the following penalization variables
vector:

y =
⇥
e

ˆ

L

� p �

r

⇤
T

(3.7)

By doing so, we are actually dividing the tuning step in two parts:

• Tune the parameters k, �
BL

for the Look-Ahead guidance, in order to define
the desired behaviour we want to see the aircraft perform.

• Tune matrices Q

y

, R

u

, P , but this is much easier than before as we don’t
have to find the correct ratio between cross-track and course errors.
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So, now the MPC control problem is set. The wind is considered to be constant
for all the prediction horizon. In what follows, we investigate the performance of
the MPC controller we have set on the Techpod aircraft, for a loitering mission,
for di↵erent windfields

3.3 Simulation Results: A First Attempt

First, the wind is considered to be slower than the airspeed (w?

< v

?

M

). We
considered a time-horizon N = 50, where each step is 0.1s long. This means the
optimizer considers a time-frame of 5 seconds in the future, which is reasonable
for fixed-wing UAVs as their dynamics are quite slow.
The result of the simulation is shown in Figure 3.1.
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Figure 3.1: Wind is 8m/s, directed from left to right, airspeed is 14m/s

Almost perfect convergence to the path is achieved by the MPC controller. When
it is not the case, it simply means that it’s physically impossible for the vehicle
to keep the curvature, as the minimum turn-radius is lower bounded by the input
set U. The behaviour is also generally very smooth.

Now, the wind is considered to be faster than the airspeed (w?

> v

?

M

). as before,
we considered N = 50. In this case, as the vehicle is bound to leave the path
behind, we obtained bad behaviours by considering the penalization variables in
3.6. An example of such behaviours is shown in Figure 3.2.
The explanation for such behaviour, is that the L̂ vector changes its direction
depending on the vehicle position, even as we are going far away from the path.
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As the only goal for the optimizer is to align the groundspeed to the look ahead
vector, the best choice seems to try and follow the L̂ “swinging” by letting the
vehicle “swing” in return. As the prediction horizon is limited, the swing direction
changes from time to time.
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Figure 3.2: Wind is 15m/s, directed from left to right, airspeed is 14m/s

The first solution that comes to mind in order to avoid this unpredictable and
undesirable behaviour, is to insert again the cross-track error e

t

into the penal-
ization variables vector, and slightly penalize it through matrix Q

y

. In this case
we obtain the behaviour highlighted in Figure 3.3
As it is easy to notice, the behaviour is quite “sketchy” as the vehicle gets away
from the path following the wind. This is due to the fact that the e

t

variable
brings in more weight as the distance to the path grows, so until its value is not
large enough the e

ˆ

L

error variable penalization will try to enforce the oscillating
behaviour we observed in Figure 3.2.

The conclusion is that the look-ahead error as it was defined in 3.6 is not suitable
for the case of w?

> v

?

M

. In what follows we reshape the error variable to be
penalized in order to obtain satisfactory behaviour as the vehicle flows away with
the wind.

3.4 Reshaping Of The Penalization Variable

As we would like to achieve the asymptotic safety objective in 2.9, the idea to
obtain this behaviour through MPC was to also penalize the norm of the ground-
speed, and give up on following the L̂ when the vehicle is flowing away from the



45 3.4. Reshaping Of The Penalization Variable

-100 -50 0 50 100 150 200
x

-100

-50

0

50

100

y

Techpod, MPC, Stronger Winds, sketchy

Figure 3.3: Wind is 15m/s, directed from left to right, airspeed is 14m/s

path together with the wind.

As with an MPC approach it is di�cult to define a complex behaviour only
through the shaping of cost functions and penalization variables, this task was
tricky to tackle. In particular, it was necessary to define a new penalization
variable e

1

ˆ

L

as follows

e
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=

8
>>>>>>>>><

>>>>>>>>>:

(1� sat

✓
kek
�

w

◆
)e

ˆ

L

+

+ sat

✓
kek
�

w

◆
(ekvGk), if w?

> v

?

M

and (r
M

� r
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) ·w > 0

e

ˆ

L

, otherwise

(3.8)

where r
C

indicates the vector to the center of the circle, �
w

is a boundary pa-
rameter to be shaped and ekvGk = kv

G

k � w

? + v

?

M

. In case we are not dealing
with a circular path, r

C

indicates the center of the smallest circle that encloses
the path.
To say it in words, the old look-ahead error variable e

ˆ

L

is modified when the
following two conditions hold together:

• The wind is stronger than the airspeed w

?

> v

?

M

.

• The vehicle is leaving the path behind, with respect to the wind direction
( (r

M

� r
C

) ·w > 0 ). As the wind is considered to be non-stopping, this
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means that from now on the vehicle is bound to flow away with the wind
indefinitely by leaving the path behind it.

When these two conditions are verified, we need to shape the cost function so that
the minimization leads to the desired behaviour of asymptotic safety described
in 2.9. The way to obtain this is to penalize the norm of the groundspeed (ekv

G

k)

and gradually stop considering the L̂. In order to obtain the third objective in
2.9, we also need to slightly penalize the cross-track error e

t

. If the vehicle is
near the path, though, we still want to preserve tracking performance. In order
for it to happen, we define e

1

ˆ

L

as a tradeo↵ between e

ˆ

L

and ekv
G

k as in the first
part of 3.8: the more the distance grows, the more we stop considering tracking
performance and try to reach asymptotic safety. If the distance grows over a
boundary parameter �

w

, whose choice is a degree of freedom, we stop to consider
e

ˆ

L

completely.

To sum it up, the penalization variables vector will be defined as follows

y =
⇥
e

t

e

1

ˆ

L

� p �

r

⇤
T

(3.9)

Notice that the vector defined in 3.9 is the same as the one in 3.7 if w?

< v

?

M

and we keep the part of Q
y

that acts on e

t

to 0. Also notice that if the part of
Q

y

that acts on e

t

is kept to a very low value di↵erent from 0, the behaviour will
almost be exactly the same for the case of w?

< v

?

M

: the cross-track error e
t

gets
to 0 as soon as the vehicle reaches the path, and will keep being almost 0 forever.
This is the reason why using the penalization variables vector as in 3.9, with Q

y

kept small in the part that acts on e

t

, is the correct choice even in the case of
changing winds.

3.5 Simulation Results: Tackling Strong Winds

We report here some simulation results with the penalization variables defined
as in 3.4.
In Figure 3.4, the aircraft started already heading against the wind. As perform-
ing a considerable turn would result in huge groundspeed, that would last for
quite some time as the roll-dynamics of the Techpod are quite slow, the opti-
mizer understands that the best thing to do to achieve tracking performance is
performing small and slow turns and follow the path by going backwards.
This kind of behaviour was not possible to obtain with the nonlinear-geometric
approach, as the model was not considered in the equations (so performing huge
turns was not considered to be a problem by the guidance controller), and the
continuity constraints on changing winds were not consistent with a behaviour
similar to the one shown in Figure 3.4.
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Figure 3.4: Wind is 15m/s, directed from left to right, airspeed is 14m/s

A similar behaviour is shown in Figure 3.5, the only di↵erence being that the
aircraft is starting headed down. Even though the aircraft is forced to perform a
huge turn while the roll-dynamics are very slow, the optimizer still manages to
understand that the best thing to do is to follow the circle backwards.

In Figure 3.6, however this was not the case: getting the airplane to turn by 180
degrees in order to follow the path backwards was not convenient, as that would
have resulted in a oddly-shaped and suboptimal vehicle path. So, the optimizer
way of reasoning is still consistent.

These simulations show some problems inherent to the MPC approach:

• The resulting behaviour is extremely di�cult to predict. This is because we
are trying to enforce a complex behaviour by only acting on penalization
variables, without knowing what the optimizer will actually decide in each
situation. We are left with a lot of subcases to be taken care of one by one.

• We might lose smoothness of the behaviour if the wind is changing between
w

?

< v

?

M

and w

?

> v

?

M

. In particular, as we’ve seen in Figures 3.4 and 3.5,
the optimizer might choose to let the aircraft follow the path backwards
when w

?

> v

?

M

. As soon as w

?

< v

?

M

, going backwards is not an option
anymore: this will result in the optimizer being forced to ask the aircraft to
abruptly change its heading, resulting in non-smooth behaviour to changing
winds.
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Figure 3.5: Wind is 15m/s, directed from left to right, airspeed is 14m/s
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Figure 3.6: Wind is 15m/s, directed from left to right, airspeed is 14m/s



Chapter 4

Comparison Of Performance and
Conclusions

Purpose of this chapter is to draw some conclusions about the advantages and
disadvantages of the two guidance approaches presented in chapters 2 and 3.
Even though some of them were already highlighted through this work, it is
worth trying to compare quantitatively the performance: this is the goal of the
next section. In the last section, future work will be discussed.

4.1 Spatial Performance

As the main application for fixed-wing UAVs in windy scenarios is surveillance
and inspection of large areas, the mission to be accomplished is defined “spa-
tially”: our main concern is to cover the given area as precisely as possible,
by tight tracking of the given path. In other words, the vehicle path should
correspond to the target path as precisely as possible, without defining time-
constraints. This means we are not concerned about following the track at a
given inertial speed, as we just need to use the on-board camera to photograph
certain areas from the correct viewpoints.

The most natural way to compare the performances of the nonlinear-geometric
approach and the MPC approach could seemingly be to compute the following
time-wise average distance:

µ

avg,time-wise

=

R
T

f

0

k[r
M

(t)� r
P

(t)]kdt
T

f

(4.1)

where T

f

is the final time for the flight, r
M

and r
P

defined as in 2.2. We can
compare the results for this parameter for the nonlinear-geometric and MPC al-
gorithms: a lower value would indicate a better tracking performance.
As explained above, however, we are not concerned about following the path at a

49
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given speed, so the changing kv
G

(t)k over time would influence the computation
and lead to deceiving results.

Instead, the following space-wise average distance parameter was considered:

µ

avg,space-wise

=

R
L

0

k[r
M

(l)� r
P

(l)]kdl
L

(4.2)

where L =
R

T

f

0

kv
G

k(t)dt is the length of the vehicle path. In particular, notice
that dl = kv

G

k(t)dt.
The parameter in 4.2 is better suited to compare the spatial performance of the
two algorithms.

We can see in Figure 4.1 the comparison of performance between the MPC and
the NL/Geometric Guidance applied on the Techpod, and lastly the performance
of the NL/Geometric Guidance applied on a point mass.

Figure 4.1: Comparison of Performance: MPC and NL/Geometric law on Tech-
pod, NL/Geometric law on PointMass. Windspeed is 16m/s, airspeed is 14m/s.

As it was easy to predict, the NL/Geometric approach does not take the roll-
dynamics of the Techpod into account, resulting in lower tracking performance.
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The MPC understands that the best thing to do is to follow the circle backwards.
The performance for the NL/Geometric approach applied on a point mass is
pretty good, as the discrepancy caused by the roll-dynamics is not present.

The space-wise average distance parameter µ

avg,space-wise

was computed in this
case for the three vehicle trajectories. To do it numerically without having to
solve the integral in 4.2, the procedure was to sample the distance from the vehicle
path to the circle from a large number of equally spaced points on the vehicle
path. This is highlighted in Figure 4.2, together with the obtained values for the
µ

avg,space-wise

Figure 4.2: Comparison of Performance: MPC and NL/Geometric law on Tech-
pod, NL/Geometric law on PointMass. Windspeed is 16m/s, airspeed is 14m/s.
The trajectories are the same as those in Figure 4.1. The green circles, equally
spaced, indicate the points from where the distance from the circle was sampled.

Some observations:

• Tracking performance is way better achieved with an MPC approach, as
the roll-dynamics of the aircraft are directly taken into account through an
optimization procedure.

• The performance for MPC is similar to the NL/Geometric guidance per-
formance, in case the pointmass dynamics are considered. This means that
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the advantage of the optimization almost completely lies in the model com-
pensation. The logical tradeo↵ between safety and performance is then
achieved through the NL/Geometric guidance.

4.2 Conclusions

In chapter 2 a novel nonlinear guidance method, taking arbitrarily strong wind
into account, was developed. The approach showed good performance and coher-
ent behaviour, and was also validated through real flight tests in windy scenarios.
The main advantages inherent to the approach are:

• Convergence to path, i.e. fulfillment of the objectives in 2.8, whenever
w

?

< v

?

M

, when the roll-dynamics are neglected.

• Good tracking performance, until it’s possible, when w

?

> v

?

M

. Convergence
to a safe configuration (i.e. asymptotic safety as formulated in 2.9) and
smooth behaviour.

• Continuity to varying winds, in every situation, as shown in 2.6.

• Computationally light. A single list of computations is required, in order
to come up with the control input to the system. The tradeo↵ is found
without any optimization procedure.

That said, there are some disadvantages:

• The tuning of the parameters, especially when the roll-dynamics are con-
sidered, is very tricky and delicate if we want to achieve good performance.
This is because we have to adapt to the particular path shape, wind profile,
and roll-dynamics of the vehicle at hand.

• The fact that we can’t take the roll-dynamics into consideration directly
(but only through the choice of parameters k and �

BL

), generally results in
poor tracking performance in the case w

?

> v

?

M

.

As to the MPC Guidance approach, the good sides are:

• Convergence to path when w

?

< v

?

M

, even when the roll-dynamics are
considered, as far as it is physically possible.

• Good tracking performance, until it’s possible, when w

?

> v

?

M

, and conver-
gence to a safe configuration (2.9).

• Cost function tuning is easy. No need to fine tune with respect to any
particular wind profile.
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The downsides inherent to MPC are:

• Computationally very heavy. A successful real-time implementation re-
quires su�cient computational power onboard (which is not always the
case) and tailored e�cient implementation of the optimization procedure.
Complex implementation.

• It is di�cult to impose any complex behaviour in extreme scenarios, such
as when w

?

> v

?

M

. In order to achieve the goals in 2.9 it was necessary to
define a complex penalization variable e

1

ˆ

L

.

• As we are not defining mathematically the control inputs with respect to
time, it is di�cult to predict in advance the actual behaviour of the vehicle.
The more the penalization variables are complex, the more we will incur
in unpredicted behaviours: consider for example the di↵erent behaviour
shown in Figures 3.5 and 3.6.

• With our particular MPC implementation, we may lose continuity to chang-
ing winds: the option of “following the path backwards” is not available
when w

?

< v

?

M

, so if the wind changes intensity we might experience a
sudden aircraft turn.

4.3 Future Work

Several extensions are possible for future work.

As one of the main innovations introduced by the non-windy guidance algo-
rithm shown in [1], which we took inspiration from, was the extension to three-
dimensional paths, it will be necessary to consider three-dimensional paths in the
windy scenario as well. Not only that, the wind could also have a vertical com-
ponent (ascensional currents) which we might need to take care of for acrobatic
maneuvers and tight tracking of complex 3D paths.

A mathematical proof of convergence to the goals in 2.8 for the windy algorithm
in case w

?

< v

?

M

should be provided.

As one of the main drawbacks of the NL/Geometric approach was the delicate
tuning, an automatic procedure to come up adaptively with parameters k and
�

BL

should be thought of, at least in an approximate form.

As the normal-acceleration commands are at the present state translated into
roll/pitch commands by taking advantage of approximate and simplified formu-
lations that neglect dynamic couplings, better performance could be achieved by
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implementing ameta-optimization procedure that finds the most proper roll/pitch
commands by considering the full nonlinear aircraft dynamics

An in-depth analysis of the stability and the hidden unpredicted behaviours in-
herent to the MPC approach should be enforced. This would allow to come up
with a simpler formulation for the penalization variables to obtain the desired
behaviours.
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