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Introduction 

Stereo Vision is the subfield of Computer Vision whose aim is to infer the 3D coordinates of a 

scene starting from two pictures of that scene taken from two different positions.   

 A lot of research on this topic is being carried out because of its many applications: self-

driving cars, robots, drones and others. Basically everywhere there is a system that needs to 

move autonomously (i.e. without a human being driving it, either remotely or in place), 

Stereo Vision is needed.          

 The reason for this is that the first step for the system to be able to choose where to go 

and how to move is knowing its surroundings. For instance, if an autonomous car has an 

obstacle right in front of it and must therefore dodge it, it must first detect the object, and 

know its location and shape as precisely as possible.     

 The latter example introduces why we are not satisfied with the Stereo Vision algorithms 

we currently have. They need to be fast, because they are to be used in real time 

applications. And they need to be accurate.        

 State-of-the-art Stereo Vision algorithms do not yet meet a reasonable trade-off 

between these two conflicting requirements. This thesis is an attempt to perform a little 

step forward to produce more accurate algorithms.      

 To do that, I tried to use a Guided Filter with a Confidence Map as a guide. Chapters 1 to 

3 are the introductive chapters and present the notions needed to understand the research 

work I have done. More specifically, Chapter 1 is an overview of Stereo Vision (especially 

Stereo Matching). Chapter 2 is a brief explanation of what a Guided Filter is, while Chapter 3 

presents the concepts of Confidence and Confidence Map. Chapter 4 explains in detail what I 

have done. Chapter 5 shows the highlights of the experimental results. Finally, Chapter 6 

presents the Conclusions of this thesis.   
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Chapter 1.  Stereo Vision 

 

This chapter provides the theoretical framework to be able to understand this 

thesis work. It explains what Stereo Vision is, what is its goal and what are the 

techniques that belong to this field. It comprises all the foundations of Stereo 

Vision, ranging from Computer Vision notions to physical and optical laws. 

 

1.1  Problem definition 

As stated in the Introduction, the problem Stereo Vision aims to solve is: Given two (or more) 

images of the same scene taken at the same time from two cameras placed at different 

positions, infer the depth (as well as the other coordinates) of all the points that appear in 

both images.  The solution to this problem is split into two parts: 

1. Choose one picture as the reference (typically the leftmost one), and for every point in it 

find the corresponding point in the other image (target image): This problem is called 

Stereo Matching. 

2. With the information obtained at 1., use triangulation to compute the depth of all the 

points. 

  

Fig. 1.1 Stereo pair of cameras and Reference and Target images with corresponding points 

highlighted (red dots).  

 

Fig 1.1. shows a stereo rig (the pair of cameras), and the two pictures of the same scene. 

Corresponding points across the two images are signed as red dots.  Between the two 

aforementioned steps, 2. is rather simple and straightforward, while stereo matching is the 

most challenging one and is where all the research is being done. 
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1.2  Stereo matching  

 

1.2.1 Problem definition 

Consider a reference picture R and another picture, which we will call target T, of the same 

scene taken at the same time but from a different position. Now take a point p belonging to 

R. Stereo matching is the problem of finding where p ended up in T, that is to say, the point 

p’ in T that corresponds to p. What I mean by “corresponds” is that the two points p and p’ 

in R and T respectively, represent the same point of the scene being photographed. This step 

is shown in Fig. 1.2 where we have the left picture being the reference R, the right one being 

the target T, and for the red point in R we have to find the corresponding point in T. 

  

   

Fig. 1.2 The point in T corresponding to the red point in R must be found. 

 

As we are working with digital images, the points I mentioned in the previous paragraph will 

be pixels. In this context, stereo matching can be reformulated as: given the pixel p of 

coordinates (x,y) in R, find d_x and d_y such that the pixel p’ of coordinates (x + d_x, y + d_y) 

in T corresponds to p. 
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1.2.2 The epipolar constraint 

Considering what we have said this far, stereo matching appears to be a 2D search problem, 

because we have to determine both d_x and d_y, or, alternatively, both coordinates of pixel 

p’ in T. 

 Fortunately, we can simplify it to a 1D search problem thanks to the epipolar constraint: 

All the points belonging to the same line of sight of image R (red dashed line in Fig. 1.3) will 

be projected onto to the same line in T (green continuous line in Fig.1.3). 

  

  

Fig. 1.3 The red dashed line represents a Line of Sight of the left camera. All the points belonging to it 

are projected onto the same point on reference picture R and the same line on the target picture T. 

 

A consequence of the epipolar constraint is that there is always a setup of the stereo rig (i.e. 

the pair of cameras), called standard form, such that a pixel p in R will have the same y 

coordinate as pixel p’ in T (See Fig. 1.4 on next page).  

 The standard form of the stereo rig is impossible to achieve physically, because this 

would require calibration techniques that are more precise than what we can do. But, 

starting from a pair of pictures taken from a rig in non-standard form, we can apply a 

transformation and obtain the pictures that would have been taken if the rig had been in 

standard form. 

 Once we have the two images in standard form, stereo matching becomes a 1D 

problem, because we do not have to search for d_y, as it will always be d_y = 0. Now we only 

have to find the d_x such that pixel p(x,y) in R corresponds to pixel p’(x + d_x,y) in T. Because 
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of the lack of ambiguity that this simplification yields, we will start calling d_x d instead. The 

technical name for d is disparity. 

 

 

Fig. 1.4 With the Stereo Rig in Standard Form the points in R will have the same y coordinate of the 

corresponding points in T. 

 

1.2.3 Disparity map 

So far we have been discussing the problem of how to compute a single pixel p depth. In 

order to do that we first have to compute its disparity d. As our final goal is to compute the 

depth of all the points of the scene being acquired with the two cameras, we must compute 

the disparity d for every pixel in the reference image R.  

 Thus, given a stereo pair of pictures R and T, we can define its disparity map as a 

function that assigns to every pixel p of R its disparity d. Conveniently for us, we can 

represent a disparity map Dm as a grayscale image. The intensity value of the pixel of 

coordinates (x,y) in Dm is proportional to the disparity value d of the pixel of coordinates 

(x,y) in R.  

 The advantage of this representation is that it makes a first-order evaluation of the 

disparity map quick and intuitive for a human being. A disparity map is shown in Fig. 1.5. 



Chapter 1.  Stereo Vision 

 

5 
 

   

Fig. 1.5 A stereo pair R (top-left) and T (top-right), with their disparity map (bottom). 

 

1.2.4 How to compute disparity 

In all the previous paragraphs, we haven’t explained yet how we can actually compute 

disparity, that is to say, how we can build a disparity map. We will do it now. 

 According to [7] and [9], all the stereo matching algorithms fall into two classes: local 

methods and global methods. Global methods perform the disparity assignment of all the 

pixels in the reference image R simultaneously, by looking for the overall assignment that 

minimizes a certain energy function. They are very accurate but very time consuming. We 

will not talk about them anymore, as they are out of the scope of this thesis, which treats 

only local stereo matching algorithms.  

 Local methods assign disparity to one pixel p at the time, and they make use of 

information about the pixels neighboring p. They choose the disparity d among a set of 

possible values by looking for the one which minimizes a given cost function. 

 

1.2.5 Disparity space image (DSI) 

Usually, in the context of stereo matching we can assume that disparity will always be within 

a given range dmin, …, dmax, called Horopter, where dmin and dmax are both known. Their actual 
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values will depend on the particular application, and for the sake of simplicity we will from 

now on assume dmin = 0 (as a matter of fact, it is often true). 

 Every local stereo matching algorithm follows, more or less, the same pattern: for every 

pixel p in the reference picture R, it considers all the possible disparity assignments 0, …, 

dmax. Then, for every possible assignment d, it computes the value of a given function called 

cost function (this value is the cost for assigning disparity d to pixel p).     

 Consequently, we can define a 3D matrix called disparity space image(DSI) where the 

element (x,y,d) is the cost for assigning disparity d to the pixel of the reference image R of 

coordinates (x,y). The disparity map is then built by analyzing the DSI and assigning to every 

pixel the disparity d with minimum cost (it’s rare, but some algorithms choose the disparity 

with the maximum cost when a similarity function is adopted). This approach is called 

Winner-Takes-All(WTA) selection. Fig. 1.6 shows an example of DSI. 

 

   

Fig. 1.6 A DSI. The element of coordinates (x,y,d) is the cost for assigning disparity d to the pixel of 

coordinates (x,y) of the Reference image. 

 

1.2.6 Cost aggregation 

The most intuitive and naïve cost function is the absolute difference of the intensity values 

of the two pixels of coordinates (x,y) and (x + d, y) in R and T respectively: 

 

           (1)   
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 This cost function produces very noisy results (see Fig. 1.7), thus something better is 

needed. A very popular approach which has emerged consists of aggregating costs near the 

pixel whose cost is being computed. 

 To put it in simpler words, it means that the cost for assigning disparity d to pixel p of 

coordinates (x,y) in R no longer depends only on p itself and the pixel of coordinates (x+d,y) 

in T(that’s the case of eq. (1)), but also on the pixels neighboring them. 

 

       

Fig. 1.7 Groundtruth (i.e. ideal) disparity map(left) and disparity map obtained through eq. 1 (right). 

 

 For instance, Fixed Window + SAD (Sum of Absolute Differences), is an algorithm that 

implements this idea. It builds a DSI where the costs are computed with eq. (1). Then, for 

every pixel p in R it considers a squared window S of fixed size centered on p. At this point it 

substitutes to every element of the DSI the sum of the costs (for the same disparity 

assignment d) of the pixels belonging to S. Thus, the cost function becomes: 

 

           (2)  

 

where (x,y) are the coordinates of the pixel p of R whose costs are being computed, d is the 

disparity assignment for which the cost is being computed, S is the squared window 

centered on p (Fig. 1.8) and u(xu , yu) is the generic pixel belonging to S. 
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Fig. 1.8 Aggregation window S on reference image and corresponding aggregation window on target 

image. The red dot in the left image is p(x,y), while the red dot in the right image is the pixel of 

coordinates (x+d,y). 

 

 While this algorithm is an improvement with respect to the first one, it still produces 

inaccurate results. As a consequence, some variations that use the same idea were 

proposed, such as one where the window S no longer has to be centered on p, another one 

where the size of S is variable, a combination of the aforementioned two, and many others. 

Another popular approach is to weight the contribute of each pixel in the aggregation 

window with the probability of it belonging to the same object as the pixel p (whose costs 

are being computed). [11] is a thorough survey of the cost aggregation methods that have 

been developed. 
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1.3  Depth from Triangulation 

Once we have inferred the disparity of a pixel in the reference image, we can compute its 

depth, by means of the triangulation: 

 

       

Fig. 1.9  OR and OT are the optical centers of reference and target respectively. f is the focal distance 

of the stereo pair cameras. P is the point whose depth is being computed. p and p’ are the 

projections of P on reference and target respectively. xR and xT are the x coordinates of p and p’. Z is 

the depth to compute. B is the distance between the optical centers of the two cameras. 

 

With respect to Fig. 1.9, we have: 

                (3)  

          (4)  

 

  Thus: 

 

          (5) 

          (6)  

          (7) 
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Chapter 2.  Guided Filtering 
 

This brief chapter introduces the broad ideas underpinning the Guided Filter 

operation. While a high-level understanding of this type of filter is necessary to 

understand this thesis work, the details are not, hence they are not presented. 

If you wish to have a deeper knowledge on this topic, you can read [2]. 

 

2.1  Guided Filter 

In [2] a new image filter was proposed. Its purpose was to serve as an edge-preserving 

smoothing filter, making it suited for noise reduction. 

 It was called guided filter as the value of the pixels of the output image (i.e. filtered 

image) depends on the values of the pixels of a second input image. From a high-level 

perspective, the second image, called guidance, is “guiding” the filtering/smoothing process, 

hence the name. 

 Going a little bit more into details, the guided filter was inspired by the idea that the 

output pixel qi of coordinates (x,y) should be a weighted average of the pixels from the input 

image in a squared window centered at (x,y): 

 

        (10)   

    

where i and j are pixel indexes, I is the guidance image, p is the input image, and Wij   

depends on I and is independent of p. This is not a new idea as there are many filters that 

use it, such as the bilateral filter ([10]). 

 Another key assumption in the development of this filter was the local-linearity between 

the guidance image I and the output q. The idea is that q is a linear model of I in a window wk   

centered at pixel k: 

 

         (11)  

         

where ak and bk are linear coefficients and are constant in wk . 
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 Note that a property of such a filter is that q has an edge only if I has an edge, because 

. Hence the edge-preserving property. For the sake of honesty, this is not 

exactly how a guided filter works and these properties are slightly different from the ones a 

guided filter actually has, but for the scope of this thesis it suffices to know about the local-

linearity property, and that the actual behavior of the guided filter was derived starting from 

the features and formulas above.   

 Also, note that these types of filters applications go beyond image smoothing, as they 

can also be successfully used for image matting ([4]) and haze-removal ([3]). 

 Finally, one last thing worth mentioning is that, unlike many similar filters (such as the 

one proposed in [10]), the run-time of the guided filter does not depend on the radius of the 

window used to compute the weighted average of pixels (wk in (11)), but only on the size of 

the input images (there being the constraint of them having the same size). This yields a very 

low runtime for the guided filter when compared against the one of other filters alike, 

especially when the size of the image to filter grows, as this requires the radius of the 

aggregating window to grow too. 
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Chapter 3. Confidence measures  

 
This chapter explains the concept of Confidence, the last piece needed to 

understand this research. It starts by giving a general overview of Confidence, 

and then the focus moves on the aspects that are more closely related to this 

thesis. 

 

  

3.1   Confidence and Confidence map  

In Chapter 1 we explained what a disparity map is and that it is the output of stereo 

matching algorithms. As there are different stereo matching algorithms and different cost 

functions, for the same input stereo pair different algorithms will produce different disparity 

maps. Since there is the need to understand how good a disparity map is, a measure of their 

quality was introduced: confidence. 

 With respect to a pixel p(x,y) of a disparity map, its confidence is a measure of “how 

confident” we are about the fact that its value(i.e. the disparity of the pixel of coordinates 

(x,y) in R) is correct(or close to correctness).  

 If we have a disparity map D, we can compute the confidence value of every pixel. 

Therefore, just like we did for disparity maps, if we consider the function that assigns to 

every pixel of D its confidence value, we can represent this function as a grayscale image 

where the value of the pixel of coordinates (x,y) is proportional to the confidence value of 

pixel (x,y) of D. For completeness, Fig. 3.1 shows two disparity maps with their 

corresponding confidence maps. As a rule of thumb to interpret them, the darker the pixel, 

the lower the confidence. 
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Fig. 3.1 Two disparity maps (upper row), and their confidence maps (lower row). 

3.2  PKR and PKRN confidence measures 

As for how to compute confidence, there are many different measures. 

[5] is a thorough study of most of the confidence measures that have been proposed so far, 

and provides some experimental results to evaluate and rank them. 

 As this thesis is an attempt to use confidence to produce good-quality disparity maps, a 

choice had to be made on which measures to use. The choice has fallen on PKR(Peak Ratio) 

and PKRN(Peak Ratio Naive) confidence, as they are very simple to implement and ranked 

among the bests according to [5]. 

 Both measures take as input the DSI from which the disparity map was produced (with 

WTA selection), and consider the cost-over-disparity curve for a pixel to compute its 

confidence. The underlying assumption is that a disparity assignment d is a good candidate if 

its cost is small and if the costs decrease as disparity gets closer to d (that is to say, the cost 

of d is a local minimum). The next two sections explain PKR and PKRN confidence. 

 

3.2.1  PKR Confidence 

As stated above, PKR stands for Peak Ratio. Consider a DSI and a pixel of coordinates (x,y). 

Now consider the column of the DSI with the costs for (x,y). Let c1 and c2m  be the minimum 

cost and the second smallest local minimum of the cost-over-disparity curve respectively. 

Then the confidence of pixel (x,y) is defined as: 
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         (8) 

 

 To understand what is the idea behind this measure, let’s consider two different cost 

curves, in Fig. 3.2(taken from [5]) on the next page. Let’s begin with curve (a): There is only 

one local minimum, and all the other costs are much bigger. Consequently, the resulting PKR 

confidence value will be big. This is good, because since there is only one minimum which is 

considerably smaller than all the other costs, we are quite confident that the right disparity 

is the one at which the minimum occurs. 

 On the other hand, if we consider curve (b) we see that besides the minimum c1 there is 

another local minimum c2m that is close to it. Thus, the PKR confidence value will be small. 

Once again, this is what we want, because even if the disparity that will be chosen is the one 

at which the minimum c1 occurs (by virtue of the WTA selection), there was another disparity 

which yielded a good cost(c2m). 

 

       

Fig. 3.2 Cost curve (a) is ideal because there is only one local minimum and it is much smaller than all 

the other costs. Cost curve (b) is more ambiguous: there are three local minimum and they have 

relatively similar values.   
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3.2.2 PKRN Confidence 

PKRN stands for Peak Ratio Naïve, and it is a simplified and less accurate version of the PKR 

confidence. The formula is the same as the one for PKR, but instead of the second smallest 

local minimum of the cost-over-disparity curve the second smallest cost is used at the 

numerator. With respect to Fig. 3.2, if we compute the PKRN confidence for cost curve (b), 

we have: 

              (9) 

 Why is this measure less accurate? Because the disparity at which c2 occurs might not be 

a good candidate, as it might be next to a disparity with a smaller cost. To better understand 

this, consider the cost curve in Fig. 3.3. 

 As the curve is strictly increasing, the confidence should be really high, since there is 

only one strong candidate, that is, d = 1. But if we were to use the PKRN measure, a low 

confidence value would be computed as c2 is very close to c1. 

 Interestingly enough, despite these arguments, both my experimental results and those 

in [5] suggest that PKRN produces more accurate results than PKR. 

 

         

Fig. 3.3 A cost-over-disparity curve. Note that there is only one local minimum. 
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Chapter 4. Proposed algorithms  

 

 As mentioned in the Introduction, the goal of this thesis is to 

propose new Stereo Matching algorithms that achieve better 

accuracy than current ones by using confidence. This chapter 

describes the proposed algorithms. There are eight, and they are all 

very similar because they are based on the same idea: smoothing a 

DSI with a guided filter using a confidence map as the guidance 

image.  

 

4.1   The general idea 

Both Rhemann et al. in [6] and De-Maeztu et al. in [1] described a new stereo matching 

algorithm that made use of a guided filter. The algorithm in [1] was called “Linear Stereo 

matching”, while the authors of [6] called their “Fast Cost-Volume Filtering”, and from now 

on I will refer to it with the acronym of FCVF. Their idea was to build a DSI with punctual 

costs (albeit a variation with respect to the one described by eq. (1) on page 8), and then 

smooth every slice of the DSI where d is constant with a guided filter, using the Reference 

image (left) of the stereo pair itself as the guide. Then they chose the disparity assignments 

with a WTA selection. Fig. 4.1 is a schema of this algorithm. 

 

Fig. 4.1 Schema of the algorithms proposed by Rhemann et al. in [6] and De-Maetzu et al. [1] 

 

 The initial idea for this thesis was to do exactly what they had done, but using a 

confidence map as the guidance image of the guided filter. As their algorithm has a pipeline-

like structure, fostering the addition of other filtering stages upstream or downstream the 

central one (i.e. DSI smoothing with left image as a guide), we also thought about some 

other modifications, such as smoothing the DSI twice, once with confidence and once with 
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the reference(left) image, both in this order and the opposite one. Another experiment we 

tried was the use confidence to smooth a disparity map itself rather than the DSI it was built 

from.            

 Finally note that the algorithms proposed in [6] and [1] made use of a left-right 

consistency check, a downstream pipeline stage used to exclude occluded pixels (those that 

appear only on one of the images of the stereo pair) from the final disparity map (see [6] and 

[1] for details). For the sake of simplicity, we chose not to do that in the proposed 

algorithms, as it requires, without deploying algorithmic manipulation to the DSI, to execute 

every step of the algorithm twice, once using the left image as the reference, then using the 

right image, and finally comparing the two disparity maps against each other (this means 

that the runtime is increased up to twice as long as the “normal algorithm”).    

 A consequence of this choice is that when in Ch. 5 we compare the results of the 

proposed algorithms with the ones of the original algorithm (linear stereo in [1], FCVF in [6]), 

in particular the latter is a modified version of the one proposed in [6], the only difference 

being that there is no left-right consistency check. 

 

4.2  Algorithms description 

Each one of the following sections describes one of the algorithms proposed in this thesis. 

For every one of them there is also a schema similar to the one on Fig. 4.1. Each section 

name is the abbreviated name used to reference the corresponding algorithm in Chapter 5 

where the experimental results are presented. Note that only four algorithms are shown, 

and that they all make use of the PKRN confidence measure. For every one of them, there is 

also an absolutely identical algorithm that makes use of the PKR confidence measure 

instead. In all the following algorithms, when I say “build punctual DSI” the said DSI is built in 

the same way as the one in the original algorithm proposed in [6] and [1].   

 As all the algorithms involve at least one smoothing of a DSI with a guided filter, the 

name of the algorithm represents what is used as the guidance image for the smoothing.   

For instance, if the name of the algorithm is “PKRN”, it means the smoothing is performed 

using a PKRN confidence map as the guidance image.       

 If the DSI is smoothed twice, the name of the algorithm will comprise both guidance 

images (in the same order they are used). For example, if the name is “PKRN + left” it means 
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that the first smoothing is performed with a PKRN confidence map while the second one 

with the left image.          

 Finally, if a smoothing is performed on a disparity map instead of a DSI, what was used 

as the guidance image will appear in the algorithm name followed by the word 

“downstream” (e.g. PKRN downstream).       

 Note that the names in the following sections are the names used in Chapter 5 to 

reference the algorithms when presenting the experimental results. 

 

4.2.1 PKRN 

This algorithm is the same as the FCFV ([6]), but a PKRN confidence map is used to smooth 

the DSI instead of the reference image. 

Algorithm reference name in Ch. 5: PKRN. 

Equivalent PKR algorithm reference name in Ch. 5: PKR. 

The steps for this algorithm are: 

1. Build punctual DSI. 

2. Compute the PKRN(PKR) confidence map from the DSI. 

3. Smooth the DSI slices where d is constant with a guided filter using the PKRN(PKR) 

confidence map as the guidance image. 

4. Build the disparity map with a WTA selection on the smoothed DSI. 

 

  

Fig. 4.2 “PKRN” algorithm pipeline schema. 
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4.2.2 PKRN + left 

In this algorithm a punctual DSI is built and then is smoothed twice: first with its PKRN 

confidence map, then with the reference(left) image. 

Algorithm reference name in Ch. 5: PKRN + left. 

Equivalent PKR algorithm reference name in Ch. 5: PKR + left. 

The steps for this algorithm are: 

1. Build punctual DSI. 

2. Compute the PKRN(PKR) confidence map from the DSI. 

3. Smooth the DSI slices where d is constant with a guided filter using the PKRN(PKR) 

confidence map as the guidance image. 

4. Smooth the DSI (obtained from 3.) slices where d is constant with a guided filter using 

the reference(left) image as a guide. 

5. Build the disparity map with a WTA selection on the DSI obtained from the previous step. 

 

Fig. 4.3 “PKRN + left” algorithm pipeline schema. 

 

4.2.3 left + PKRN  

This algorithm is similar to “PKRN + left”, but the order of the two smoothing stages is 

reversed: the first smoothing is performed with the reference(left) image as the guidance 

image, while the second one uses a PKRN(PKR) confidence map. 

Algorithm reference name in Ch. 5: left + PKRN. 

Equivalent PKR algorithm reference name in Ch. 5: left + PKR. 

The steps for this algorithm are: 

1. Build punctual DSI. 
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2. Smooth the DSI slices where d is constant with a guided filter using the reference(left) 

image as the guidance image. 

3. Use the DSI obtained from 2. to compute a PKRN(PKR) confidence map. 

4. Smooth the DSI slices where d is constant with a guided filter using the PKRN(PKR) 

confidence map as the guidance image. 

5. Build the disparity map with a WTA selection on the DSI obtained from the previous step. 

 

Fig. 4.4 “left + PKRN” algorithm pipeline schema. 

  

4.2.4 left + PKRN downstream 

This algorithm is different with respect to the previous ones, as one smoothing is performed 

on a disparity map instead of the DSI. It consists of building a punctual DSI, smoothing it with 

the reference(left) image, then using it (the smoothed DSI) to compute both a PKRN(PKR) 

confidence map and a disparity map (with WTA selection), and filtering the latter disparity 

map with the confidence map. 

Algorithm reference name in Ch. 5: left + PKRN downstream. 

Equivalent PKR algorithm reference name in Ch. 5: left + PKR downstream. 

The steps for this algorithm are: 

1. Build punctual DSI (in the same way as the original algorithm). 

2. Smooth the DSI slices where d is constant with a guided filter using the reference(left) 

image as the guidance image. 

3. Use the DSI obtained from 2. to compute a PKRN(PKR) confidence map. 

4. Use the DSI obtained from 2. to compute a disparity map through WTA selection. 
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5. Smooth the disparity map obtained from 4. with a guided filter and the PKRN(PKR) 

confidence map obtained from 3. as the guidance image.  

 

 

Fig. 4.5 “left + PKRN Downstream” algorithm pipeline schema. 
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Chapter 5. Experimental results 

 

 In this chapter, we present the experimental results of the execution of 

the proposed algorithms on four stereo pairs from the Middlebury Stereo 

benchmark [8]. The data is presented both in aggregated form (i.e. 

averages) and for every single picture. 

   

5.1  Preliminary considerations  

In [6], the authors made available a Matlab implementation of the proposed algorithm and a 

demo with four Stereo pairs from the Middlebury Stereo benchmark [8]: Tsukuba, Teddy, 

Cones and Venus.          

 As the algorithms in this thesis are built on top of the algorithm in [6], it came as a 

natural choice to test them on the very same stereo pairs, to facilitate the comparison of the 

results between the original and the modifications. In Fig. 5.1 the four stereo pairs are 

shown. 

 

Fig. 5.1 The four stereo pairs from the Middlebury stereo benchmark I tested the algorithms with. 

Starting from the top-left corner, going clockwise: Tsukuba, Cones, Teddy, Venus. 

 
 As for the language to implement them with, the choice fell on Matlab, because of its 

high abstraction and wide range of predefined high-level image processing functions. This 

made the implementation process faster and simpler with respect to other languages, such 
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as C/C++. One drawback of this choice was that it made an analysis of the runtime of the 

algorithms impossible, because Matlab is very slow by nature, and the same algorithm 

implemented in C/C++ would run much faster. Thus, this work focus is on the accuracy of the 

results, not the runtime of the algorithms that yielded those results.    

 To compare and analyze the results, we made use of the groundtruth disparity maps for 

the four stereo pairs. A groundtruth disparity map is an almost perfect disparity map, 

obtained through the usage of structured light patterns. Fig. 5.2 shows the four groundtruth 

disparity maps. 

  

Fig. 5.2 Groundtruth disparity maps for the four stereo pairs from the Middlebury Stereo benchmark, 

from the top-left corner, going clockwise: Tsukuba, Cones, Teddy, Venus. 

 

 Section 5.2 presents the aggregated data(averages) on the four stereo pairs. Section 5.3 

presents the results separately for every stereo pair. In both sections, the algorithms are 

referenced with the names defined in Chapter 4, while the original algorithm ([6] and [1]) is 

referenced as “FCVF”. Section 5.4 contains some observations on the experimental results. 
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5.2  Aggregated results 

Table 5.1 reports the ranking of the algorithms (with names as defined in Ch. 4) according to 

the average (considering all of the four stereo pairs) percent error of the disparity map they 

produce, with respect to the corresponding groundtruth map.    

 We chose to count a pixel disparity as an error if its distance from the corresponding 

groundtruth disparity is bigger than 3. The choice of this threshold against more intuitive 

values (such as 0) is a standard in literature, and it is due to the fact that even groundtruth 

values might not be 100% accurate and usually have an uncertainty of value 3. The 

algorithms are ranked from the best(top) to the worst(bottom), and the original FCVF 

algorithm (as proposed in [6]) is in boldface to make clear which algorithms are an 

improvement and which are retrogressions.  

Algorithm name Avg. err %, 

thresh. = 3  

Rank 

left + PKRN 18.91 1 

left + PKR 19.1425 2 

PKR + left 19.45 3 

PKRN + left 19.4525 4 

FCVF 19.785 5 

left + PKRN down 20.2875 6 

PKRN 20.7275 7 

PKR 20.7325 8 

left + PKR down 20.7725 9 

 

Table 5.1 Ranking of the algorithms by average % error and threshold = 3. The FCVF algorithm as 

proposed in [6] is in boldface. 

 

 What stands out the most from Table 5.1 is that all the algorithms that perform a double 

smoothing of the DSI rank better than the original, while all the algorithms that smooth the 

DSI only once rank worse than the original. This is even clearer from Table 5.2, that shows 

the average percent error reduction with respect to the percent error of FCVF. As we can see 

all the algorithms that smooth the DSI twice are characterized by a reduction of the average 
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percent error, while the other algorithms increase it.     

 Finally, both the best average percent error reduction (left + PKRN) and the worst 

average percent error increase (left + PKR downstream) are smaller than 1%, with 0.875% 

and -0.9875 % respectively. Thus, even if there has been an improvement, it is relatively 

small. 

Algorithm name Avg. err. reduction %, 

thresh. = 3  

Rank 

left + PKRN  0.875 1 

left + PKR  0.6425 2 

PKR + left  0.335 3 

PKRN + left  0.3325 4 

left + PKRN down -0.5025 5 

PKRN -0.9425 6 

PKR -0.9475 7 

left + PKR down -0.9875 8 

 

Table 5.2 Algorithms ranked by average percent error reduction with respect to the FCVF algorithm 

as proposed in [6]. The algorithms that achieved an improvement are characterized by a positive 

value in the central column. Those that did worse than the original are characterized by a negative 

value in the central column. 

 

5.3  Picture by picture results  

Each one of the following sections presents the ranking with the same criteria as Table 5.1, 

but for only one of the four stereo pairs used in the experiments.   

 As a note about the notation used, when I use the expression “algorithms couple”, I 

mean two algorithms identical in everything but the confidence measure they use. 

5.3.1 Tsukuba  

Table 5.3 reports the ranking of the algorithms according to the percent error with threshold 

3 on the Tsukuba disparity map. As the groundtruth Tsukuba disparity map has an all-zero 

padding near the boundaries, visible as a black frame (see Fig. 5.2 or Fig. 5.3), the 

comparison has been performed without considering those pixels.    

 In this case, all the algorithms but left + PKRN downstream perform worse than FCVF. 
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Another interesting property is that the ranking is affected by the algorithm structure rather 

than the confidence measure used. What I mean is that it is possible to define a ranking 

between the algorithms couples. Alternatively, if an algorithm A that makes use of the 

PKRN(PKR) confidence does better than another algorithm B with the PKRN(PKR) confidence, 

the algorithm A’ identical to A except for the fact that it uses the PKR confidence does better 

than B too. The vice versa is also true.  

Algorithm name % err Rank 

left + PKRN down 2.43 1 

FCVF 2.78 2 

left + PKR down 2,83 3 

left + PKRN 2.91 4 

left + PKR 3.22 5 

PKR + left 5.54 6 

PKRN + left 5.55 7 

PKRN 6.51 8 

PKR 6.51 8 

 

Table 5.3 Algorithms ranked by percent error with threshold at 3 for Tsukuba. 

 

 To have an idea of what these results mean, let’s consider the best disparity map, which 

is produced by the left + PKRN downstream, in Fig. 5.3. We can see that from a first look the 

original(FCVF) map looks more similar to the groundtruth. But if we look at it we see that all 

over the background there are some patches that are not in the groundtruth, and that are 

probably counted as errors. As for the left + PKRN downstream map, while it is quite blurry 

the patches in the background are less evident and are therefore probably counted as 

correct disparity assignments.        

 Fig. 5.4 reports the PKR disparity map, that is, the worst map. The edges accuracy is lost 

and the silhouette of the lamp is completely misshapen, thus the poor ranking. 
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Fig. 5.3 From top-left picture, going clockwise: Original (FCVF) disparity map, left + PKRN downstream 

disparity map, groundtruth disparity map. 

  

   

Fig. 5.4 From the top-left picture, going clockwise: Original (FCVF) disparity map, PKR disparity map, 

groundtruth disparity map. 
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5.3.2  Teddy 

Table 5.4 reports the ranking of the algorithms according to the percent error with threshold 

3 on the Teddy disparity map.         

 In this case 6 out of the 8 proposed algorithms performed better than the original. 

Similarly to the Tsukuba case, the differences between the algorithms seem to be related to 

the general structure of the algorithm rather than the confidence measure adopted, and 

within every algorithms couple PKRN does better than PKR.     

 Finally, the ranking is completely different from the one for Tsukuba, with the left + 

PKR/PKRN downstream ranking last, being the only ones unable to better the original 

results.  

Algorithm % err Rank 

PKRN + left 25,57 1 

PKR + left 25,57 1 

left + PKRN 26,34 3 

left + PKR 26,7 4 

PKRN 26,78 5 

PKR 26,79 6 

FCVF 27,87 7 

left + PKRN down 32,44 8 

left + PKR down 32,44 8 

 

Table 5.4 Algorithms ranked by percent error with threshold at 3 for Teddy. 

 

 Fig. 5.5 shows one of the best map, that is, the one produced by PKR + left. The map 

produced by the original algorithm and the groundtruth map are shown as well. 
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Fig. 5.5 From top-left picture, going clockwise: Original (FCVF) disparity map, PKRN + left disparity 

map, groundtruth disparity map. 

 

   

Fig. 5.6 From the top-left picture, going clockwise: Original (FCVF) disparity map, left + PKR 

downstream map, groundtruth map. 
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The left + PKR downstream map is heavily blurred, the edges are not preserved well and the 

black and white noise is still visible, although blurred. This could explain the poor ranking. 

 

5.3.3  Cones 

Table 5.5 reports the ranking of the algorithms according to the percent error with threshold 

3 on the Cones disparity map.        

 Six out of the eight proposed algorithms achieve better accuracy than the original one. 

What stands out in this ranking is that all the algorithms that smooth with the left image first 

do better. PKRN confidence performs a little bit better than the PKR confidence, but this 

time the hierarchy of the algorithms couples is not present.     

 Fig 5.7 shows the left + PKRN downstream map, which is the best one, together with the 

map produced by the FCVF algorithm and the groundtruth map. The left + PKRN 

downstream is blurred and less precise near the edges, but by virtue of the blurring process, 

the anomalies in the original map (black stains close to the cones) are made less evident. 

This could explain the improvement.   

 

Algorithm Err % Rank 

left + PKRN down 41.19 1 

left + PKRN 42.24 2 

left + PKR down 42.64 3 

left + PKR 42.7 4 

PKRN + left 42.74 5 

PKR + left 42.74 5 

FCVF 43.46 6 

PKR 44.76 8 

PKRN 44.77 9 

 

Table 5.5 Algorithms ranked by percent error with threshold at 3 for Cones. 
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Fig. 5.7 From the top-left picture, going clockwise: Original (FCVF) disparity map, left + PKRN 

downstream map, groundtruth map. 

 

 Fig. 5.8 shows the worst map, that is, the PKRN map. The edges of the cones are heavily 

curled. Probably this is the reason for the poor ranking.  

    

Fig. 5.8 From the top-left picture, going clockwise: Original (FCVF) disparity map, PKRN disparity map, 

groundtruth map. 
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5.3.4 Venus 

Table 5.4 reports the ranking of the algorithms according to the percent error with threshold 

3 on the Venus disparity map.        

 This time too, six of the proposed algorithms out of eight improved the original result. 

For the first time, the PKR confidence seems to be as accurate as the PKRN. Also, the 

PKR/PKRN + left and left + PKR/PKRN are characterized by very similar percent error and 

rank higher than the other four algorithms, the difference between the error of the worst of 

the first group and the best of the second group being of 0.70 %, a relatively big amount.  

            

Algorithm Err % Rank 

left + PKR 3.95 1 

PKR + left 3.95 1 

PKRN + left 3.95 1 

left + PKRN 4.15 4 

PKRN 4.85 5 

PKR 4.87 6 

FCVF 5.03 7 

left + PKRN down 5.09 8 

left + PKR down 5.18 9 

 

Table 5.6 Algorithms ranking by percent error with threshold 3 for Venus 

 

 Fig. 5.9 shows one of the best disparity maps, PKR + left. While both maps are far from 

being as precise as the groundtruth, the PKR + left is “cleaner”, meaning that there aren’t all 

the black and white stains that affect the original map.  
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Fig. 5.9 From the top-left picture, going clockwise: Original(FCVF) disparity map, PKR + left 

downstream map, groundtruth map. 

 

 Fig. 5.10 shows the worst map, that is to say, the left + PKR downstream. There is the 

usual blur given by the downstream smoothing, but the noise is still clearly visible. The 

difference in accuracy is not evident from a first glance at the maps, and as a matter of fact 

is really small, 0.15 %.   

         

Fig. 5.10 From the top-left picture, going clockwise: Original (FCVF) disparity map, left + PKR 

downstream map, groundtruth map. 
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5.4  Observations on the results 

As we can see from the individual results, the ranking between the algorithms varies greatly 

across the four tested stereo pairs. Table 5.7 shows the number of first placements in the 

individual rankings, the number of last placements in the individual rankings, and the 

number of times the algorithm did better than FCVF, for every algorithm. Note that the total 

sum over the column “Nbr. of 1st placements” is bigger than 4 because there are some ties. 

This is true for the column “Nbr. of last placements” too.     

 By looking at table 5.7 and considering tables 5.1 and 5.2, we can infer some interesting 

relationships between the algorithms. One remarkable thing is that in the aggregated 

ranking left + PKRN is first, but it never ranks first in the single-pair charts. Instead PKRN + 

left and left + PKRN downstream, despite the fact that they both rank first for two stereo 

pairs, do worse in the aggregated standing. What this suggests is that the latter two 

algorithms accuracy depends on the specific stereo pair more than left + PKRN accuracy 

does. Therefore, while PKRN + left and left + PKRN downstream are capable to outperform 

left + PKRN for some pictures, they fail to do much better than FCVF for other stereo pairs, 

while left + PKRN performance remains rather consistent across all the tested stereo pairs. 

The same considerations apply to the equivalent PKR algorithms. Another thing worth 

mentioning is that PKRN seems to do better than PKR. This is shown in table 5.7, and also by 

the fact that for three stereo pairs out of four every algorithm using PKRN did better than 

the equivalent algorithm with PKR.        

 Finally, in the aggregated rankings Tables (Table 5.1, Table 5.2) the algorithms that 

smooth the DSI twice rank much better than the others. This fact is confirmed by Table 5.9 

too, that divides the algorithms in the two categories “double DSI smoothing” and “others”, 

and for every category shows the same data as Table 5.8.  
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Algorithm Nbr. Of 1st 

placements 

Nbr. Of last 

placements 

Nbr. of 

improv.  

left + PKRN 0 0 3 

left + PKR 1 0 3 

PKRN + left 2 0 3 

PKR + left 2 0 3 

Left + PKRN 

downstream 

2 1 2 

left + PKR 

downstream 

0 2 1 

PKRN 0 2 2 

PKR 0 1 2 

 

Table 5.7 For every algorithm, the number of first placements, last placements and improvements 

with respect to FCVF across all the individual rankings is shown. Note that the sum over the first two 

columns (first and last placements) is bigger than 4 as there are some ties. 

 

Confidence measure Total Nbr. Of 1st 

placements 

Total Nbr. Of last 

placements 

Total nbr of 

improvements. 

PKRN 4 3 10 

PKR 3 3 9 

 

Table 5.8 The total number of first placement, total number of last placements, and total number of 

improvements across all the individual rankings for PKRN and PKR algorithms. 

  

Algorithms category Total Nbr. Of 1st 

placements 

Total Nbr. Of last 

placements 

Total Nbr. of 

improvements. 

Double DSI smoothing  5 0 12 

Others 2 6 7 

 

Table 5.9 The total number of first placement, total number of last placements, and total number of 

improvements across all the individual rankings for algorithms that perform a double smoothing and 

all the others algorithms. 
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5.5  The negative costs problem  

While executing the experiments, we noticed an anomaly which affected all the algorithms 

that smooth the DSI with confidence before the smoothing with the left image, that is to say, 

PKR + left, PKRN + left, PKR and PKRN.        

 What happened was that after the first smoothing the DSI contained some negative 

costs. The computed costs are the output of the guided filter, and while their mathematical 

expression can evaluate to negative values, their semantic rules that out. As it was pointed 

out in the conclusions of [2], “as a locally based operator, the guided filter is not directly 

applicable for sparse inputs like strokes”.  One possible explanation for this behavior could 

be the fact that in all the algorithms affected from this problem the confidence map used to 

perform the first smoothing is sparse (i.e. black with a lot of white dots), because it is 

computed from the punctual DSI, which presumably contains a lot of ambiguous (with many 

local minima) cost-over disparity curves. Fig. 5.11 shows a sparse confidence map and a 

dense confidence map. Note that despite this anomaly, some of the affected algorithms 

performed very well. 

 

Fig. 5.11 A sparse confidence map(left) and a dense confidence map(right).
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Chapter 6.  Conclusions and future work 

The results presented in the previous chapter show that confidence can be successfully used 

to develop new, more accurate stereo matching algorithms. More specifically, all the 

algorithms that perform only one smoothing with confidence did not achieve a good 

accuracy, while those that couple a confidence smoothing with another DSI smoothing, such 

as one with the left image, led to more accurate results.      

 Given this premise, the improvements achieved are all rather small, the decrease of 

erroneous disparity assignments usually being around 0.5 % - 1.5 %. One possible 

development for this research could be an attempt to further increase accuracy. Also, two 

more problems that arose could be investigated to find a solution to: first, while most of the 

algorithms achieved an accuracy improvement, the ranking between them changed 

dramatically depending on which stereo pair was being tested. Thus, the said improvement 

is too heavily linked to the particular stereo pair properties to be considered a general effect 

of a given algorithm among the proposed ones. An effort to develop an algorithm with even 

a small but consistent improvement in accuracy across all the stereo pairs, possibly on a 

larger dataset, such as the whole Middlebury or the KITTI, could be worthwhile. Finally, a 

more precise insight on the negative costs problem would cast a better understanding of 

these confidence-driven algorithms. 
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