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Abstract

In this paper we study the notion of degree for submanifolds embedded in an
equiregular sub-Riemannian manifold and we provide the definition of their as-
sociated area functional. In this setting we prove that the Hausdorff dimension
of a submanifold coincides with its degree, as stated by Gromov in [19]. Using
these general definitions we compute the first variation for surfaces embedded in
low dimensional manifolds and we obtain the partial differential equation associ-
ated to minimal surfaces. These minimal surfaces have several applications in the
neurogeometry of the visual cortex.
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Sommario

In questa tesi studiamo la nozione di grado per sottovarietà immerse in una
varietà sub-riemanniana e forniamo la definizione del funzionale dell’area ad esse
associato. In questo ambiente proviamo che la dimensione di Hausdorff di una
sottovarietà coincide effettivamente con il suo grado, come affermò Gromov nel
suo lavoro [19]. Utilizzando queste definizioni generali calcoliamo la variazione
prima dell’area per sottovarietà immerse in varietà di dimensione bassa e otteniamo
l’equazione alle derivate parziali associata alle superfici minime. Queste superfici
minime hanno diverse applicazioni nella neurogeometria della corteccia celebrale.
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Introduction

In the last years variational problems in sub-Riemannian geometry have become
the object of many studies. In particular, Pauls in [30], Hurtado, Ritoré and
Rosales in [23], Capogna, Citti and Manfredini in [4] , Cheng Hwang and Yang
in [6] deal with minimal surfaces in Heisenberg group H1. Moreover, in [1,5,15–17]
these problems in a more general setting, as contact sub-Riemannian manifolds or
Caront groups, are studied

Our aim in this master thesis is to study the area functional for a smooth sub-
manifold embedded in a sub-Riemannian manifold. First of all, we recall that a
sub-Riemannian manifold N is a smooth manifold endowed with a distribution H

which is a subbundle of the tangent bundle and a horizontal metric h defined only
on the distribution. In the present work a crucial assumption is that distribution
H verifies the celebrated Hörmander rank condition at each point p in N . Let
X1, · · · , Xk be a local frame for H where k = dim(H), we say that H verifies the
Hörmander rank condition if the vector fields X1, · · · , Xk and all their commuta-
tors of any order generate all the tangent space. This condition has been deeply
studied after the first studies by Hörmander in [21], Rothschild and Stein in [34],
Nagel, Stein and Wainger in [29] and Montgomery in [28]. Under this condition,
Chow’s Theorem implies that any couple of points can be connected by horizontal
curves (see [7]). Thus, it is possible to define the Carnot-Carathéodory distance on
N as the infimum of length of horizontal curves joining two given points. Iterated
Lie brackets of horizontal vector fields generate a flag of subbundles

(1) H ⊂ H2 ⊂ · · · ⊂ Hr ⊂ · · · ⊂ Hs = TN,

where

Hr+1 = Hr + [H,Hr], [H,Hk] = {[X, Y ] : X ∈ H, Y ∈ Hk}.

Moreover, the integer list (n1(p), · · · , nr(p)) where ni(p) = dim(Hi) is called the
growth vector of H at p.

Our goal is to give a suitable definition of the area for a submanifold em-
bedded in N . Franchi, Serapioni and Serra Cassano deeply studied regular sur-
faces in sub-Riemannian structures (see [12–14]). In the present work, we follow
Magnani-Vittone [27] and Le Donne-Magnani [24] approach, consisting in con-
sidering submanifold, regular in Euclidean sense, and its associated degree. They
show that the area of a submanifold in the Engel’s group in [24] and in stratified

7



8 INTRODUCTION

Carnot groups in [27] and [26] is strictly connected to this notion of degree of a
submanifold. Here, we consider only equiregular sub-Riemannian manifolds where
the growth vector is pointwise constant in N . We define the degree on an adapted
basis (X1, · · · , Xn) to flag (1) that exists by the Hörmander rank condition. We
say that Xi has degree r if Xi lies in Hr but Xi does not belong to Hr−1. Then,
taking a m-vector XJ = Xj1 ∧· · ·∧Xjm we set the degree d(XJ) of XJ as the sum
of degrees of each vector in the wedge product

d(XJ) = d(Xj1) + · · ·+ d(Xjm).

Essentially, the degree is a pointwise property of the tangent space at p , indeed
the m-vector τΣ(p) which represents the tangent space of the submanifold is a
linear combination of m-vectors as XJ

τΣ(p) =
∑
J

τJX
J |p,

thanks to the linearity of the wedge product. Automatically, the degree of τΣ(p)
is the maximum integer d(XJ) such that τJ is different from zero. This definition
of degree is equivalent to Gromov’s definition of degree (see [19]). Basically the
degree measures the intersection between each layer of the flag and the tangent
space therefore it is strictly connected to the geometrical structure submanifold
inherited by the ambient sub-Riemannian structure.

When the ambient space is a Riemannian manifold equipped with a metric g it
is clear how we define the area of a submanifold, area(Σ, g), using the Riemannian
area element depending on the metric g. When we consider a sub-Riemannian
manifold there is a lack of a metric on the tangent bundle, since there exists only
a horizontal metric h on the subbundle given by the distribution. In order to give
the definition of area we extend the horizontal metric h to a Riemannian metric
g such that g makes Hi = Hi+1/Hi spaces orthogonal and g|H = h. Then it is
natural to construct a sequence of metrics gr defined on the basis (X1, · · · , Xn) as

(2) gr(Xi, Xj) =

(
r
d(Xi)+d(Xj)−2

2

)−1

g(Xi, Xj) i, j = 1, · · · , n.

Clearly, the restriction of gr to the distribution H is equal to the horizontal metric
h, gr|H = h and when we let r tend to zero the metric blows up out of H. Thus,
the metric gr in the limit provides a good representation of h and shows that only
horizontal curves are allowed. Indeed, a curve not tangent to the distribution at
each point has infinite length

Since we have a sequence that converges to the sub-Riemannian metric, we
define the sub-Riemannian area for a m-dimensional submanifold Σ of degree d
embedded in a sub-Riemannian structure by

(3) A(Σ) = lim
r→0

r
d−m

2 area(Σ, gr).
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Moreover, Gromov in his book [19] claimed that the Hausdorff dimension of a
submanifold M embedded in an equiregular sub-Riemannian manifold N is its
degree but he did not prove it. Ghezzi and Jean in [18] provided a proof of this
assertion only for a a strongly equiregular submanifold (see definition 2.10).

In the present work we provide a different proof for Ghezzi and Jean’s result
and then we give a proof Gromov’s affirmation. Basically, the intersection between
the tangent space ofM and each layer of the stratification generates a flag and the
strongly equiregular assumption assures that the dimension of each space of the
flag is constant pointwise inM . We consider privileged coordinates adapted to the
flag given by the exponential map in a neighborhood of a point p. Thanks to the
Ball-Box Theorem, balls are equivalent to boxes (see [28, Theorem 2.4.2]). Thus
we cover the intersection between boxes and submanifold M , which in privileged
coordinates is

Boxw(r′) ∩ {x ∈ Rn : xm+1 = · · · = xn = 0}

with boxes of size 1/k, thus we obtain that the Hausdorff dimension is equal to d.
Then we realize that the degree of vector fields is lower semicontinuos, therefore,
if we fix the degree of a submanifold M , a simple vector fields of m-vector tangent
to M can not switch its degree in a neighborhood of a point p. Hence, the flag
used in the previous proof has locally constant dimension, then we can apply the
precedent argument to a neighborhood of a point p.

In the Euclidean space a standard definition of the mean curvature for a sub-
manifold is obtained by the first variation of the area functional. Nowadays, a
central problem in Geometric Analysis is to provide a good definition of the mean
curvature in different settings, as in sub-Riemannian geometry, by computing the
first variation of the area functional. Our principal motivation to minimize the
area functional came from the neurogeometry of the brain where we learnt that
the order of the mean curvature operator could be greater that two.

A mathematical model of simple cells S of the visual cortex V1 using the sub-
Riemannian geometry of the roto-translational Lie group was proposed by Citti
and Sarti (see [8], [9]). In their work, the perceptual completion is obtained
through minimal surfaces and therefore they studied the regularity and foliation
properties of minimal surfaces in S= E(2). Their techniques have several applica-
tions in image completion. In [11] it was conjectured that endstopping cells E are
sensible to curvature and a sub-Riemannian structure modelling their structure
was proposed in [31]. In this work we shall consider an extension of the results
of [9] to this family of cells. The space S will be identified with R2 × S1. We shall
consider the distribution generated by the vector fields

X = cos(θ)∂x + sin(θ)∂y and Y = ∂θ,
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and we shall compute the first variation of the area for a θ-graph in S to obtain
the minimal surface equation

X

(
X(θ)√

1 +X(θ)2

)
= 0.

This equation along characteristic curves is equivalent to θ′′ = 0, where the deriva-
tive ′ is taken with respect to the arc-length parameter of the curve, see [15], [16].
Adding an additional variable, the curvature, to the three-dimensional space S we
obtain the space E= R2×S1×R, where we consider the distribution generated by

X1 = cos(θ)∂x + sin(θ)∂y + k∂θ and X2 = ∂k,

(see also [31]). In this setting we are interested in (θ, κ)-graphs which are 2-
dimensional surfaces. Notice that a (θ, k)-graph has a foliation property if and
only if the equation X1(θ) = κ holds. Moreover, this condition implies that the
degree of the surface is four. Thus applying definition (3) we obtain

A(Σ) =

∫
Ω

√
1 +X1(κ)2 dx dy.

Critical points of this area functional satisfy the following minimal PDE equation

(4) X4(X1(θ)) +X1(X4(θ))) +X1(g)X4(θ) +X2
1 (g) = 0,

where we set

g =
X1(κ)√

1 +X1(κ)2
.

Notice that equation (4) is a third-order partial differential equation which we
attempt to read along characteristic curves as we do in S. However, there is X4(θ)
term which corresponds to the derivative in the direction perpendicular to the
tangent direction of characteristic curves projected on the retinal plane. Therefore,
we consider different horizontal metrics h1, h2, h3 that imply different minimal
PDEs, but we have not succeeded in reading these equations along characteristic
curves.

In Chapter 1 we provide the definition of a sub-Riemannian manifold, of a dis-
tribution, with its natural Carnot-Carathéodory distance, and some basic notions
about the geodesic equation. Then we compare the involutive condition that im-
plies the Frobenius Theorem with the Hörmander rank condition that implies the
Chow Theorem. Furthermore, we define the exponential map, Lie derivative, reg-
ular surfaces and we report the Rothschild-Stein’s theorem that assures that the
tangent space to a sub-Riemannian structure is a Carnot group. In the last section
we supply some example of sub-Riemannian manifold as the rototraslation group
S and 2-jet space E, then we show that tangent space to S and E are respectively
the Heisenberg group and the Engel’s group.



INTRODUCTION 11

Chapter 2 focuses on the degree and the definition of area functional for an
embedded submanifold in an equiregular sub-Riemannian manifold. In this chapter
we find condition under which the area functional is independent of the extension
of the horizontal metric h up to a positive constant. Moreover, we show that this
general definition of area corresponds to the area of hypersurfaces in the Heisenberg
group. Then we study the geometry of surfaces and the area functional in S and
E. In conclusion we prove the Gromov’s conjecture about the Hausdorff dimension
of a submanifold.

Finally, in Chapter 3 we compute the first variation of the area functional for a
surface in S and E and we obtain the PDEs associated to the minimal surfaces. In
E we notice that only variations preserving degree four are allowed, otherwise the
area functional changes. Then we study general variations preserving the degree d
of a submanifold in a general equiregular sub-Riemannian manifold and we obtain
a PDE system of equations where the coefficients of the vector field X inducing
the variation are involved. This system restricts the range of permitted variations.
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CHAPTER 1

Introduction to sub-Riemannian geometry

1. Definition of sub-Riemannian structure

Following Montgomery, we give the following definition.

Definition 1.1. A sub-Riemannian geometry on a smooth manifoldN consists
of a distribution H ⊂ TN , which is a vector subbundle of the tangent bundle of
N , together with a fiber inner-product h on this subbundle.

We will call H the horizontal distribution and the inner product h will be
referred to as the horizontal metric. A vector field is horizontal if it is everywhere
tangent to H. A C1 curve in N is said to be horizontal if the tangent vector is
horizontal at every point. Let γ : [a, b] → N be a smooth horizontal curve, we
define the length of γ by

(5) l(γ) =

∫ b

a

√
h(γ̇(t), γ̇(t)) dt.

Notice that we define the length only for horizontal curves, where the inner product
exists. We use the length to define the distance between two points p and q in N ,
as in Riemannian geometry:

(6) d(p, q) = inf{l(γ) : γ is horizontal curve such that γ(a) = p, γ(b) = q}.
If there is not a horizontal curve which joints p and q, we set that the distance
is infinite. This is the well-known Carnot-Carathéodory distance, for brevity C-C
distance.

Now, it is natural to whether there is a condition that assures that the distance
between each points p and q in N is always finite. In other words, given every
pair of points p and q in N , we want to know under which condition there exists
a horizontal curve γ such that γ(a) = p and γ(b) = q. In order to answer this
question we have to introduce the Hörmander rank condition. Given a distribution
H of dimension k with inner product h, we can consider an orthonormal local frame
X1, · · · , Xk. On the other hand, we can give X1, · · · , Xk and say that H is the
distribution generated by these vector fields and set a horizontal inner product such
that X1, · · · , Xk is an orthonormal basis. We prefer the first approach, because in
visual cortex cases we know the vector fields which generate the distribution but
we have doubts about the choice of horizontal metric h.
Below, we recall some well-known definitions and theorems.
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16 1. INTRODUCTION TO SUB-RIEMANNIAN GEOMETRY

Definition 1.2. Let ϕ : M → N be smooth function. The vector fields X on
M and Y on N are called ϕ-related if dϕ ◦X = Y ◦ ϕ.

Definition 1.3. Let X, Y be first-order regular differential operators (i.e. vec-
tor fields). Their commutator is defined by

[X, Y ] = XY − Y X
and it is also a first-order differential operator. We define the Lie algebra generated
by X1, · · · , Xk and denote it by

L(X1, · · · , Xk)

the linear span of the operators X1, · · · , Xk and their commutators of any order.
We set that a commutator has degree r,

d(X) = r if X = [· · · [Xi1 , Xi2 ], · · · , Xir ] = Ad(Xi1 , · · · , Xir)

with i1, · · · , ir ∈ {1, · · · , k}.

In order to understand how the Hörmander rank condition is connected to the
connectivity it is useful to remind what is an involutive distribution.

Definition 1.4. A smooth distribution H is called involutive if [X, Y ] ∈ H

whenever X and Y are smooth vector fields lying in H. In other words, let
X1, · · · , Xk be a local frame of H, then

L(X1, · · · , Xk) = span{X1, · · · , Xk}.

Definition 1.5. Let (M,ϕ) be a submanifold of N . We say that M is an
integral manifold of a distribution H on N if

dϕ(TpM) = H|ϕ(p) for each p ∈M.

Theorem 1.1 (Frobenius). Let D be a k-dimensional smooth distribution on
N . Then, D is involutive if and only if there exists an integral manifold of D

passing through every point of N .

Proof. Here, we prove only that the existence of an integral manifold of D
implies that D is involutive. We have to prove that [X, Y ] ∈ D whenever X and
Y are smooth vector fields lying in D. By hypothesis, let (M,ϕ) be an integral
manifold of D through p = ϕ(m), therefore

dϕ : TmM → D|ϕ(m)

is a isomorphism. Then, there exist vector fields X̄ and Ȳ such that

dϕ(X̄|m) = X|ϕ(m), dϕ(Ȳ|m) = Y|ϕ(m).

Moreover, X̄ and Ȳ are smooth and ϕ-related. By [36, Proposition 1.55], which
assures that if X̄ and Ȳ are ϕ-related then [X̄, Ȳ ] and [X, Y ] are ϕ-related, we have
[X, Y ] = dϕ([X̄, Ȳ ]) ∈ D. The proof of other implication is done by induction on
the dimension of the distribution, for further details see [36, Theorem 1.60]. �
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When a k-dimensional distribution H on N is involutive and we consider a
point p, by Frobenius Theorem, we have that there exists an integral manifold
passing through p. This integral manifold of dimension k, called the leaf through
p, is generated by the set of horizontal paths through the fixed point p. Therefore,
if q does not lie in the leaf of p we can not connect p and q by a horizontal curve.
Thus, the distance between p and q would be infinite. Opposite to involutive
distributions we have the ones that verify Hörmander rank condition, also known
as bracket-generating distributions.

Definition 1.6. We say that a distribution H on a n-dimensional manifold
N verifies the Hörmander rank condition if any local frame {X1, · · · , Xk} for H

satisfies
dim(L(X1, · · · , Xk))(p) = n ∀ p ∈ N.

In other words, the Lie algebra generated by X1, · · · , Xk is all the tangent bundle.
Let s be the smallest natural number such that X1, · · · , Xk and their commutators
of degree smaller that or equal to s span the all tangent space. We will call s the
step at a point p and the local basis X1, · · · , Xk, Xk+1, · · · , Xn made out of com-
mutators of X1, · · · , Xk is chosen such that, for every point, the local homogeneous
dimension

(7) Q =
n∑
j=1

d(Xj)

is minimal.

Theorem 1.2 (Chow). If a distribution H ⊂ TN verifies Hörmander rank
condition, then the set of points that can be connected to p in N by a horizontal
path is the connected component of N containing p.

We suggest the reader to see [28, 2.2] for the heuristic Hermman’s proof of
Chow Theorem or [28, 2.4] for a standard proof.

Example 1.1. Let us show two examples of sub-Riemannian manifolds that
do not verify the Hörmander rank condition at each point. Let R2 be the plane
and let

f(x) =

{
0 if x = 0

e−
1
x2 if x 6= 0

be a C∞ function such that f (n)(0) = 0 for all n = 1, 2, 3, · · · . We consider the
distribution generated by the vector fields

X1 =

(
1
0

)
, X2 =

(
0

f(x)

)
.

If we consider a point p = (x, y) such that x 6= 0, X1 and X2 generate all the
tangent space. Let p = (x, y) be a point in R2 such that x = 0, we have X2(p) = 0.
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Moreover, all brackets of length n are equal to zero at p = (0, y), the proof follows
from induction. At first for n = 1, we have

[X1, X2](0, y) =

(
lim
h→0

e−
1
h2 − 0

h

)
∂y =

(
lim
x→∞

x e−x
2
)
∂y = 0.

Now, we assume that

Xn+2 := [X1, · · · , [X1, X2], · · · ] = f (n)(0)∂y = 0.

Moreover, since it holds

f (n)(x) =
P2n−2(x) e−

1
x2

x3n
,

we have

Xn+3(p) = [X1, Xn+2](p) = lim
h→0

P2n−2(h) e−
1
h2

h3n
− 0

h
∂y|p

= lim
x→∞

Pk(x)e−x
2

∂y|p = 0.

Hence, this distribution does not verify the Hörmander rank condition. However,
it is possible to possible to connect all possible points with integral curves. Indeed,
the only problem could be at point (0, y), but it is possible to leave this point by
the vector field X1 and there we can reach every point.

Thus, Hörmander rank condition assures that the Carnot-Carathéodory dis-
tance is finite. Furthermore, in definition (6) there is an infimum over all possible
horizontal path with fixed endponits. A natural question may be when this infi-
mum is reached. To answer this question we have to minimize the length functional
l(γ) defined in (5) over all possible horizontal curves γ with fixed endponits. As
in Riemannian geometry minimizing the length functional is equal to minimizing
the energy functional

(8) E(γ) =

∫
γ

1

2
‖γ̇‖2, where ‖γ̇‖2 = h(γ̇, γ̇).

Indeed, thanks to Cauchy-Schwarz inequality, we have

l(γ) =

∫
γ

‖γ̇‖ · 1 6

√∫
γ

‖γ̇‖2
√
b− a =

√
2 E(γ)

√
b− a

with equality if and only if ‖γ̇‖ = c. We denote ᾱ the curve α covered at constant
speed ‖ ˙̄α‖ = c. Therefore, if γ minimizes E and η is another horizontal path
connecting p and q, it follows

l(γ) 6
√

2 E(γ)
√
b− a 6

√
2 E(η̄)

√
b− a = l(η̄) = l(η),



1. DEFINITION OF SUB-RIEMANNIAN STRUCTURE 19

then γ minimizes the length functional l. On the other hand, if γ minimizes l and
η is another horizontal path connecting p and q, we have√

2 E(γ̄)
√
b− a = l(γ̄) = l(γ) 6 l(η) 6

√
2 E(η)

√
b− a,

then γ minimizes the energy functional E.

Definition 1.7. An absolutely continuous horizontal path that realizes the
distance between two points is called a minimizing geodesic or simply a geodesic.

In a sub-Riemannian setting there is a lack of a covariant two-tensor like the
Riemannian metric in Riemannian geometry. However, it is possible to define
a contravariant symmetric two-tensor, a section of TN ⊗ TN . This tensor is
called the cometric and has rank k, the dimension of the distribution. In [28, 1.5]
Montgomery shows that from this cometric acting on covectors it is possible to
define the sub-Riemannian Hamiltonian or kinetic energy

H : T ∗N → R, H(q, p) =
1

2
((p, p))q,

where q ∈ N , p ∈ T ∗qN and ((·, ·)) is the cometric, such that 1
2
‖γ̇‖2 = H(q, p).

Here, q = γ(t) and p such that γ̇(t) = βγ(t)(p). Minimizing the energy functional
E we obtain the Hamiltonian differential equations

(9) ẋi =
∂H

∂pi
, ṗi = −∂H

∂xi

These Hamiltonian differential equations are called the normal geodetic equations.
The following theorem holds

Theorem 1.3. Let (γ(t), p(t)) be a solution to Hamilton’s differential equations
on T ∗N for the sub-Riemannian Hamiltonian H and let γ(t) be its projection to N .
Then every sufficiently short arc of γ is a minimizing sub-Riemannian geodesic.
Moreover γ is the unique minimizing geodesic joining its endpoints.

Definition 1.8. The projection γ of the previous theorem is called a normal
geodesics.

Remark 1.1. There are sub-Riemannian manifolds that admit minimizing
geodesics that do not solve the Hamilton’s differential equations. These geodesics
are called singular geodesics. Montgomery in his book [28] deeply studied this
topic.

It is also worth mentioning another important theorem which shows that the
topology induced by the Carnot-Carathéodory distance has the same topology of
the smooth manifold N .

Theorem 1.4. If the distribution H on N satisfies the Hörmander rank con-
dition, then the topology on N induced by the Carnot-Carathéodory distance is the
usual manifold topology.
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The proof follow from the well-known Ball-Box Theorem 2.2 (see [28, 2.4 and
2.5]).

Remark 1.2. In the present work we follow Montgomery’s approach. Some
authors include the Hörmander rank condition in the definition of sub-Riemannian
manifold.

1.1. Lie group and Carnot group. Let (G, ·) be a Lie group (see [36,
Definition 3.1]) and let g be its Lie algebra. We consider V ⊂ g a linear subspace
of the Lie algebra. We can see the Lie Algebra as the space of all left invariant
vector fields, i.e. lg-related to themselves where the left translation by g in G is

lg(h) = g · h.

In this way, V is a left invariant distribution and the Hörmander rank condition
corresponds to the fact that V Lie-generates g. If we set an inner product h on
V we obtain a sub-Riemannian metric. Therefore (G, V, h) has a sub-Riemannian
structure.

Definition 1.9. We say that G is a graded nilpotent Lie group if the Lie
algebra g has the form

g = V1 ⊕ V2 ⊕ · · · ⊕ Vs
where [Vi, Vj] = Vi+j and Vr = 0 if r > s. Therefore, all iterated brackets of length
r > s are zero. If we define an inner product h on V1 and we suppose that V1

Lie-generates g, then we obtain a sub-Riemannian manifold (G, V1, h). We will
call this structure a Carnot group.

1.2. Exponential mapping. Another tool we need in this work is the expo-
nential mapping induced by vector fields. As we need local results, we work in an
open set (U, ψ) of N . Therefore, we enunciate the results for an open coordinate
set Ω in Rn, then we compose with diffeomorphism ψ−1 to see it in the manifold.
Let Ω ⊂ Rn be an open set and X be a smooth vector field on Ω. Fixed x in Ω, X
induces a local one parameter group of transformations on Ω, {σX(t, x) = σ(t, x)}t
which is the unique solution of the Cauchy problem

(10)


∂ σ(t, x)

∂t
= X|σ(t,x)

σ(0, x) = x.

This unique solution always exists for |t| sufficiently small. Moreover, if X =
X(u1, · · · , ul) depends in smooth way on parameters (u1, · · · , ul) in an open set
U ⊂ Rl and we consider compact sets L ⊂ U and K ⊂ Ω, there exists a constant
ε0 such that

(11) σ : L×]− ε0, ε0[×K → Ω
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is a smooth function. Thanks to the uniqueness of (10), there holds

σ(s, σ(t, x)) = σ(s+ t, x) when x ∈ K, |s+ t| < ε0,(12)
σλX(t, x) = σX(λt, x) when x ∈ K, |λt| < ε0.(13)

Now, by equation (12) the function x → σ(−t, x) is a C∞ inverse of x → σ(t, x).
Therefore, x→ σ(t, x) is a diffeomorphism on a compact set of Ω, for |t| sufficiently
small. In this sense we construct a parameter group of diffeomorphisms.

Definition 1.10. We define the exponential mapping by

exp(X)(x) = σX(1, x)

whenever the right hand side is defined.

For all t sufficiently small, σX(t, x) = σtX(1, x) = exp(tX)(x) is always well-
defined. Now, let X1, · · · , Xl be smooth vector fields on Ω and (u1, · · · , ul) be
parameters in Rk. Then, if

(14) |u| =

√√√√ l∑
i=1

u2
i

is sufficiently small, |u| < ε0, we have that the function

(15) (u1, · · · , ul, x)→ exp

(
l∑

i=1

ui Xi

)
(x)

is well-defined and smooth. For further details see [29, Appendix]. Notice that if
X a vector field in H on N

γ(t) = exp (tX) (p) = σX(t, p)

is a horizontal curve. Here, we denote in the same way the exponential mapping
defined on Ω ⊂ Rn and its image through φ−1, where φ : U → Ω is a diffeomor-
phism, U is an open set in N and p = φ(x).

Since the exponential mapping is a local diffeomorphism between the tangent
space and the manifold, it makes sense the following definition

Definition 1.11. Given X1, · · · , Xk local frame of H around p and commuta-
tors Xk+1, · · · , Xn that minimize the local homogeneous dimension Q. The canon-
ical coordinates of q around p are the coefficients (u1, · · · , un) such that

q = exp

(
n∑
i=1

ui Xi

)
(p)
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Let h be the metric making X1, · · · , Xk orthonormal, we can extend the norm
(14), with l = k, to a homogeneous norm on the whole space

(16) ‖u‖ =

(
n∑
i=1

|ui|Q/d(Xi)

)1/Q

.

2. Differential Operators

The notion of exponential mapping allow us to define the Lie derivative in the
direction X.

Definition 1.12. Let X be a fixed vector field. We call Lie derivative of f in
the direction of the vector X on the tangent space to N at a point p the derivative
with respect to t of the function f(exp(tX)(p)) at t = 0.

Obviously, if f is C1 the Lie derivative
d

dt

∣∣∣
t=0
f(exp(tX)(p)) = dfp

(
d

dt

∣∣∣
t=0

exp(tX)(p)

)
= dfp(Xp) = Xp(f)

is equal to the directional derivative Xf , but the Lie derivative can exist even if
the directional derivative does not.

Definition 1.13. Let U ⊂ N be an open set. Let X1, · · · , Xk be a family
of smooth vector fields defined on U and f : U → Rm. If the Lie derivatives
Xjf

i exist at p in U , for j = 1, · · · , k and i = 1, · · · ,m, we define the horizontal
Jacobian of f at p as the matrix:

JHf(p) =

 X1f
1(p) · · · Xkf

1(p)
... . . . ...

X1f
m(p) · · · Xkf

m(p)

 =

 ∇Hf
1

...
∇Hf

m

 .

A function f is of class C1
H if every element of JHf is continuous with respect to

the Carnot-Carathéodory distance (6). A function f is C2
H if every element of JHf

is of class C1
H. The space Ck

H is defined by induction.

Remark 1.3. Let f : U → Rm be a C1
E function. Then, JHf is the (1, 0)

version of the restriction of the differential df to H, df |H, when the inner product
h is the one which makes X1, . . . , Xk an orthonormal basis. Indeed, we have

df |H(Xj) =

 Xjf
1

...
Xjf

m

 =

 h(grad(f 1), Xj)
...

h(grad(fm), Xj)

 ,

where grad(f i) =
∑k

l=1 a
l
i Xl and we have

Xjf
i = h

(
k∑
l=1

ali Xl, Xj

)
= aji .
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Therefore, gradf i = ∇Hf
i.

Remark 1.4. Obviously, a function of class C1
H need not to be of class C1

E. If
X1, · · · , Xk satisfy the Hörmander rank condition with step s, then a function f
of class Cs

H belongs to C1
E. Hence, let X1, · · · , Xk be vector fields that satisfy the

Hörmander rank condition, then

f ∈ C∞H if and only if f ∈ C∞E .

Definition 1.14. Let U be an open set in N . A function f : U → Rl is
differentiable at a point p ∈ U ⊂ N in the intrinsic sense if

f i(exp(
n∑
j=1

ujXj)(p))− f i(p) =
k∑
j=1

ujXjf
i(p) + o(‖u‖) i = 1, · · · , l,

or in other words

f(exp(
n∑
j=1

ujXj))(p)− f(p) = JHf(p)(u1, · · · , uk)T + o(‖u‖)

Theorem 1.5. Let U ⊂ N be a connected open set and suppose that f : U → Rl

is differentiable in the intrinsic sense at every point of p ∈ U . Fix p in U , let

q = exp(
n∑
j=1

ujXj)(p)

be a point next to p and ξ in Rl. Then there exists z in U such that

〈f(q)− f(p), ξ〉 = 〈JHf(z)(u1, · · · , uk)T , ξ〉.

Proof.

F : [0, 1]→ R, F (t) = 〈f(exp(
n∑
j=1

tujXj)(x)), ξ〉.
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F is continuous in [0, 1]. For every t ∈]0, 1[,

F ′(t) =
d

dt

(
l∑

i=1

f i(exp(
n∑
j=1

tejXj)(p)) ξi

)

=
l∑

i=1

lim
t′→t

1

t′

(
f i(exp(

n∑
j=1

t′ujXj)exp(
n∑
j=1

tujXj)(p))+

− f i(exp(
n∑
j=1

tujXj)(p))
)
ξi

=
l∑

i=1

k∑
j=1

ujXjf
i(exp(

n∑
j=1

tujXj)(p)) ξi

=
l∑

i=1

(JHf(exp(
n∑
j=1

tejXj)(p))(u1, · · · , uk)t)i ξi.

By the mean value theorem, there exists τ ∈ [0, 1] such that F (1)−F (0) = F ′(τ).

Hence, for z = exp
(∑n

j=1 τujXj

)
(p) there follows

〈f(q)− f(p), ξ〉 = F (1)− F (0) = 〈JHf(z)(u1, · · · , um)t, ξ〉.

�

Franchi, Serapioni and Serra Cassano gave a definition of a regular hypersur-
faces in a Carnot group in [13, Definition 1.6]. A natural generalization of this
definition is the following definition of a regular submanifold in a sub-Riemannian
manifold.

Definition 1.15. A regular submanifold of dimension m is a subset of N that
can be locally represented as the zero-set of a function f in C1

H(N,Rl), where
l = n−m such the rank of JHf is equal to l.

However, in the present study we consider general smooth submanifolds in N
and then we study the relation between their tangent space and the distribution
by the notion of degree. Magnani, Vittone and Le Donne further expanded this
approach in [24,26,27].

Here, we report an important result, the Rothschild-Stein’s Theorem of lifting
and approximation [34, Theorem 5] that shows how it is possible to approximate
general free up vector fields (i.e. the vector field of the distribution and their
commutators up to step s are linear independents see [34]) with polynomial vector
field generating a free Lie Group. The proof of this theorem is connected to
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the Mitchell’s Theorem which shows that the tangent space to a sub-Riemannian
manifold is its nilpotentization, which is a Carnot group.

Theorem 1.6 ( Rothschild-Stein’s theorem of lifting and approximation).
Let H be a distribution generated by X1, · · · , Xk vector fields on N and let p be a
point in N such that H

(i) verifies the Hörmander rank condition
(ii) is free up to step s at p.

Choose Xk+1, · · · , Xn commutators such that X1, · · · , Xn span the all tangent bun-
dle, there they determine a canonical coordinates (u1, · · · , un) around p. Let G be
the Carnot Group of step s with k generators and g its Lie algebra. Then there
are Y1, · · · , Yn vector field in g and neighborhoods U of p in N and Ω of 0 in G
with the following properties. We consider

Θ : U × U → Ω, Θ(ξ, η) = exp

(
n∑
i=1

uiYi

)
(0),

where η = exp (
∑n

i=1 uiYi) (ξ). Therefore, if we fix ξ in U the mapping

η → Θξ(η) = Θ(ξ, η) = (u1, · · · , un)

is a coordinate chart for U centered at ξ. In this chart

Xi = Yi +Ri i = 1, · · · , k
where Ri is a differential operator of local degree 6 0.

3. Examples and applications

3.1. Heisenberg group. Let (H3, ∗) be a simply connected Lie group whose
Lie algebra is

h = h1 ⊕ h2

where h1 = span{X, Y } and h2 = span{Z} with X, Y, Z satisfying the following
bracket relations

(17) [X, Y ] = 2Z [X,Z] = 0 [Y, Z] = 0.

We can identify h with R3, since the exponential mapping

exp : h −→ H3

is a global diffeomorphism. Indeed we can introduce global coordinates on H3 by

ϕ : R3 −→ H3

(x, y, t) 7→ exp(xX + yY + tZ)

Therefore, we can identify H3 with R3 and on R3 a pair of vector fields that satisfy
(17) are

X = ∂x − y∂t, Y = ∂y + x∂t.
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These vector fields lie on the kernel of the contact form

w = dt− (xdy − ydx).

The group operation on R3 with these two vector fields and Z = ∂t is

(x, y, t)· (x′, y′, t′) = (x+ x′, y + y′, t+ t′ + xy′ − yx′).

Moreover, we have that (H3, h1, h) is a Carnot group, where h is a arbitrary metric
on the distribution h1. Notice that the coefficient 2 in front of Z in (17) does not
affect the structure of Carnot group and would change only the group operation
providing a group isomorphic to the one just now presented . Therefore, we should
define the Heisenberg group as the only one Carnot group of dimension three such
that Lie algebra h = h1 ⊕ h2 satisfies the following conditions

rank(h1) = 2 and rank(h2) = 1.

Montgomery in [28] shows the connection between the Dido problem and the
geodesics in Heisenberg group. We suggest the reader this lecture.

3.2. Rototraslation Group. Citti and Sarti in [9] proposed a model of low-
level vision to mathematically model the functional structures of the primary visual
cortex, they based their model on the previous works [20] by Hoffman and [32]
by Petitot-Tondut where differential geometry models the visual cortex. To un-
derstand this model we make a brief exposition of the functional architecture of
the visual cortex, see for further details [22, Chapter 4]. The acquisition of the
visual system starts in the retina, that after projects the information to the lateral
geniculate nucleus and from there to the primary visual cortex V1. We can iden-
tify the retinal structure with a plane R2. The primary visual cortex V1 processes
the orientation via the simple cells and other features by complex cells (estima-
tion of motion direction, detection of angles, curvature). The receptive field of a
cell is the domain of the retinal plane to which the cell is connected with neural
synapses of the retinal-geniculate-cortical path. When the receptive field of a cell
is stimulated by a visual signal, the cell reacts generating spikes. On the recep-
tive field there area “on”, if the spikes respond to positive signal, and “off” area, if
the spikes respond to negative signal. This behavior can be mathematically mod-
eled by a function Ψ0 defined on the retinal plane. The retinotopic structure is a
logarithmic conformal mapping between the retina and V1, that Citti and Sarti
ignored in their study. Cortical cells are organized in columns corresponding to
parameters as orientation, curvature, ocular dominance and color by the hyper-
columnar structure. This structure, for simple cells, means that over each point of
the retina there is a set of cells (hypercolumn) which are sensitive to all possible
orientations. The non-maxima suppression selects the orientation of maximum
output of the hypercolumn in response to a visual stimulus and suppresses all the
others. There is also the connectivity structure that connects cells with the same
orientation belonging to different hypercolumns.
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Citti and Sarti consider a gray level image I on the retina as a real stimulus
and they assume that over each point (x, y) in the retina plane the cells in the
hypercolumn can code the direction of the level line of I. They assume that
the cell in the hypercolumn, which gives a maximal response, is sensible to the
direction of the level line of I in a point (x, y). The gradient ∇I = (Ix, Iy) is
perpendicular to the level lines, then a tangent vector to a level line is (−Iy, Ix)
or (Iy,−Ix). In order to save the information of direction they consider the angle
θ(x, y) = −arctan(Ix, Iy), θ ∈ [0, π]. This process associates to each retinal
point (x, y) a point (x, y, θ) in the three-dimensional space R2 × S1. Therefore,
each level line γ(t) = (x(t), y(t)) is lifted to a curve γ̃(t) = (x(t), y(t), θ(x(t), y(t)))
in R2 × S1. Notice that the vector field on the retinal plane tangent to the level
lines of I, γ, at the point (x, y) is

(18) Xθ = cos(θ(x, y))∂x + sin(θ(x, y))∂y.

A tangent vector on R2 × S1 to the lifted curve γ̃ is a linear combination of the
vector field

X = cos(θ)∂x + sin(θ)∂y, Y = ∂θ.

We define the distribution H = span{X, Y }, which is the kernel of the one-form

ω = sin(θ)dx− cos(θ)dy.

The horizontal inner product h is the one which makes X and Y an orthonormal
basis. Therefore, (S := R2×S1,H, h) is a contact sub-Riemannian manifold, which
verifies the Hörmander rank condition. Indeed, we have

T = [X, Y ] = sin(θ)∂x − cos(θ)∂y

and the rank of  cos(θ) sin(θ) 0
0 0 1

sin(θ) − cos(θ) 0


is three, since the matrix is invertible. One can think that each level line is lifted to
space S separately, but the mechanism of non-maxima suppression is applied to the
whole image producing a regular surface, see [9, 1.4.2] for the simple cell activity
and [9, 1.6.1] in order to understand the non-maxima suppression. Therefore a
image lifted to S is a regular surface in particular a θ-graph,

Gθ = {(x, y, θ) ∈ S : θ = θ(x, y)}.
In [9] they apply the iteration of the joint work of sub-Riemannian diffusion and
non-maxima suppression toGθ in order to provide a succession of surfaces that con-
verges to a minimal surface in the rototraslation space. This minimal surface would
be the surface we elaborate in the visual cortex and allows to propagate existing
information and to complete the boundaries. Thus, we understand the reason why
it is useful to study the PDE for minimal surfaces in this sub-Riemannian setting,
a topic deeply studied by Galli in [15] and Galli and Ritoré in [16].
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If we consider a curve in the retinal plane γ(t) = (x(t), y(t)) with tangent
vector Xθ defined in (18), it follows that γ is parametrized by the arc. Indeed,

|γ̇(t)|2 = ẋ(t)2 + ẏ(t)2 = cos(θ)2 + sin(θ)2 = 1.

When we lift the curve γ to S, we obtain (γ̃)(t) = (x(t), y(t), θ(x(t), y(t)). The
length of γ̃ is

(19) l(γ̃) =

∫ b

a

√
h(γ̃(t), γ̃(t)) dt =

∫ b

a

√
1 + θ̇(t)2 dt.

Notice that θ̇(t) = k, where k is the curvature of the curve γ in the retinal plane.
Let us remind that the elastica functional for a curve in the plane is

E(γ) =

∫
γ

√
1 + k2,

therefore, it follows that the length of a lifted curve γ̃ is equal to the elastica
functional of γ on the plane.

Now, we show an application of the Rothschild-Stein’s Theorem at this simple
case. We expand cos(θ) and sin(θ) at the first order at the point (x0, y0, θ0)

X = (cos(θ0)− sin(θ0)(θ − θ0)) ∂x + (sin(θ0) + cos(θ0)(θ − θ0)) ∂y︸ ︷︷ ︸
X̃

+ o(|θ − θ0|) ∂x + o(|θ − θ0|) ∂y︸ ︷︷ ︸
R

,

Y =∂θ.

Now, we have

X̃ = (cos(θ0)− sin(θ0)(θ − θ0)) ∂x + (sin(θ0) + cos(θ0)(θ − θ0)) ∂y,

Y =∂θ,

[X̃, Y ] =− sin(θ0)∂x + cos(θ0)∂y.

Let us consider the following transformation, that is essentially the exponential
mapping in S,

(20)

 x′

y′

θ′

 =

 cos(θ0) x+ sin(θ0)y
− sin(θ0) x+ cos(θ0)y

θ − θ0


and

∂

∂x
= cos(θ0)

∂

∂x′
− sin(θ0)

∂

∂y′

∂

∂y
= sin(θ0)

∂

∂x′
+ cos(θ0)

∂

∂y′
.
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In these new coordinates

X̃ =∂x′ + θ′ ∂y′ ,

Y =∂θ′ ,

[X̃, Y ] =− ∂y′ .

This is the Heisenberg algebra.

3.3. Engel group. The Engel group E is a simply connected Carnot group
whose Lie algebra is

e = V1 ⊕ V2 ⊕ V3

where
rank(V1) = 2, rank(V2) = 1 and rank(V3) = 1.

Since the exponential is a global diffeomorphism

exp : e −→ E

we can represent the Engel group by R4 where

X1 = ∂x1 − x3∂x2 − x4∂x3 and X2 = ∂x4 that generate V1,

X3 = [X1, X2] = ∂x3 that generates V2,

X4 = [X1, [X1, X2]] = ∂x2 that generates V3.

This representation will be useful in the following section to show that this group is
the tangent space to a four dimensional Engel sub-Riemannian manifold. Whereas
Le Donne and Magnani present a more standard representation in [24] where

X1 = ∂x1 , X2 = ∂x2 + x1∂x3 +
x2

1

2
∂x4 ,

X3 = [X1, X2] = ∂x3 + x1∂x4 ,

X4 = [X1, [X1, X2]] = ∂x4 .

3.4. Curvature and orientation. Let E = R2 × S1 × R and let

(21) X1 = cos(θ)∂x + sin(θ)∂y + k∂θ, X2 = ∂k

be vector fields on E, we set H = span{X1, X2}. To define a sub-Riemannian
manifolds we need an inner product on the distribution H. In the present work
we will use two different metrics on the distribution H: h1, the one which makes
X1 and X2 orthonormal, and h2, the one induced by the Euclidean metric

(22) h1 =

(
1 0
0 1

)
h2 =

(
1 + k2 0

0 1

)
.



30 1. INTRODUCTION TO SUB-RIEMANNIAN GEOMETRY

Therefore, (E,H, h1) and (E,H, h2) are sub-Riemannian manifolds, we will specify
the metric we use. These vector fields satisfy the Hörmander rank condition.
Indeed, we have

X3 = [X1, X2] = −∂θ(23)
X4 = [X1, [X1, X2]] = − sin(θ)∂x + cos(θ)∂y.(24)

We are interested in studying minimal surface in this setting, in particular
(θ,κ)-graphs. Therefore, we need the implicit function theorem to provide a man-
ageable parametrization. It would be a problem if we considered the definition of
regular surface adopted in [13]. Indeed we should take into account

JHf =

(
X1f

1 X2f
1

X1f
2 X2f

2

)
.

Magnani in [26] deal with implicit function theorem in stratified groups with re-
spect to the intrinsic notion differentiability. However, we consider smooth sub-
manifolds. Therefore our implicit function theorem is standard.

Theorem 1.7 (Implicit Function Theorem). Let Ω ⊂ E be an open set and let
f : Ω→ R2 be a continuous and C2

H(Ω,R2) function. If

Σ = {ξ = (x, y, θ, k) ∈ Ω : f(x, y, θ, k) = 0}

and suppose that

(25) det

(
X2f

1 X3f
1

X2f
2 X3f

2

)
(ξ̄) 6= 0.

Then there exist neighborhoods I, J ⊂ R2 such that

Σ ∩ (I × J) = {(x, y, u1(x, y), u2(x, y)) : (x, y) ∈ I}.

Proof. First of all, notice that f in C2
H(Ω,R2) implies C1

E(Ω,R2) by Remark
1.4. Let (R3×]0, 2π[, 1× eiθ = ψ1) and (R3×]− π, π[, 1× ei(π+θ) = ψ2) be the two
cards of E. If we want to express a point p of E we can use the coordinates

ψ−1
i : Ui → Wi, ψ−1

i (p) = (x, y, θ, k) i = 1, 2

where we have set

U1 = R3 × S1
/(1,0), W1 = R3×]0, 2π[, U2 = R3 × S1

/(−1,0) W2 = R3×]− π, π[.

Now we have X2 = ∂k, X3 = −∂θ and we can define the transformation

G(x, y, θ, k) = (x, y,−θ, k).

With this choice it follows

∂k(f ◦G) = X2f ∂θ(f ◦G) = dG(∂θ) = X3f.
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Therefore the condition (25) is equivalent to

(26) det

(
∂θ(f ◦G)1 ∂k(f ◦G)1

∂θ(f ◦G)2 ∂k(f ◦G)2

)
(x̄, ȳ,−θ̄, k̄) 6= 0.

Now thanks to the classic implicit function theorem, there exist neighborhoods I
of (x̄, ȳ) and ũ1 : I → R and u2 : I → R such that

(f ◦G)(x, y, ũ1(x, y), u2(x, y)) = 0.

Therefore we set u1 = −ũ1 it follows

f(x, y, u1(x, y), u2(x, y)) = 0

and the proof is complete. �

Now, we show that the Carnot group that approximates the structure of E is
the Engel group. As we did in (3.2), we want to deduce approximate vector fields
for this structure. Then, we expand at the first order sin(θ) and cos(θ) around θ0

X1 = (cos(θ0)− sin(θ0)(θ − θ0)) ∂x + (sin(θ0) + cos(θ0)(θ − θ0)) ∂y + k ∂θ︸ ︷︷ ︸
Y1

+ o(|θ − θ0|) ∂x + o(|θ − θ0|) ∂y︸ ︷︷ ︸
R

,

X2 =∂k.

Therefore, we have

[X1, X2] = −∂θ
[X1, [X1, X2]] = sin(θ0)∂x − cos(θ0)∂y︸ ︷︷ ︸

Y4

+o(1)∂x + o(1)∂y.

If we cut at the first order, we obtain the following structure

Y1 = cos(θ0)− sin(θ0)(θ − θ0) ∂x + sin(θ0) + cos(θ0)(θ − θ0) ∂y + k ∂θ,

Y2 = ∂k,

Y3 = −∂θ,
Y4 = − sin(θ0)∂x + cos(θ0)∂y.

Under the following transformations

(27)


x′

y′

θ′

k′

 =


cos(θ0) x+ sin(θ0)y
− sin(θ0) x+ cos(θ0)y

θ − θ0

k

 .
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Renaming (x′, y′, θ′, k′) = (x, y, θ, k), we obtain

Y1 = ∂x + θ∂y + k∂θ, Y2 = ∂k,

Y3 = −∂θ,
Y4 = ∂y.

This algebra generates a four dimensional Carnot group which is known as the
Engel group.

In the sub-Riemannian manifold E we have already presented we have

X1 = X + k Y,

where X and Y are the vector field of S. We can lift a horizontal curve γ =
(x(t), y(t), θ(t)) in S to a curve γ̄ = (x(t), y(t), θ(t), θ̇(t)) in E. Therefore we have

˙̄γ(t) = (ẋ(t), ẏ(t), θ̇(t), θ̈(t)) = X1 + θ̈(t)X2,

| ˙̄γ(t)|2h1
= 1 + θ̈(t)2,

| ˙̄γ(t)|2h2
= 1 + ˙θ(t)

2
+ θ̈(t)2,

and the length of the curve γ̄ is

lhi(γ̄) =

∫ b

a

| ˙̄γ(t)|hi dt.

After all, to know the curvature Ks(γ) of the horizontal curve γ in S we have to
derive the orthonormal tangent vector

E1(t) =
X(t) + θ̇(t)Y√

1 + θ̇(t)2

.

Hence, it follows

dE1

dt
(t) =

θ̈(t)

1 + θ̇(t)2

Y − θ̇(t)X√
1 + θ̇(t)2

+
θ̇(t)√

1 + θ̇(t)2

T.

We have only the metric h1 on the distribution, therefore for us the orthonormal
to E1 is

N =
Y − θ̇(t)X√

1 + θ̇(t)2

and the curvature for the horizontal curve is

(28) KS(γ) =
θ̈(t)

1 + θ̇(t)2
.
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In this setting the elastica functional on a horizontal curve in S is not equal to
the length of the lifted curve in E. Therefore, in order to deduce the previous
property we substitute the vector field X1 and X2 by

Z1 = cos(ϕ)X + sin(ϕ)Y

Z2 = ∂ϕ

where we have set k = tan(ϕ). In this way, if we set H = span{Z1, Z2} and we
choose as horizontal metric h3 the one making Z1 and Z2 orthonormal, we have a
sub-Riemannian manifold

(Ẽ = R2 × S1 × S1,H, h3)

where H is bracket-generating distribution. Indeed, there holds

Z3 = [Z1, Z2] = sin(ϕ)X − cos(ϕ)Y

Z4 = [Z1, Z3] = − sin(θ)∂x + cos(θ)∂y

and Z1, · · · , Z4 are linear independents

det


cos(ϕ) cos(θ) cos(ϕ) sin(θ) sin(ϕ) 0

0 0 0 1
sin(ϕ) cos(θ) sin(ϕ) sin(θ) − cos(ϕ) 0
− sin(θ) cos(θ) 0 0

 6= 0.

Here, if we consider a lifted curve γ form R2 to S ϕ is the real number in ]− π, π[
such that

γ̇(t) = cos(ϕ)X + sin(ϕ)Y.

Therefore, the tangent vector to a lifted curve γ̄(t) = (γ(t), ϕ(t)) is

| ˙̄γ(t)|2 = 1 + ϕ̇(t)2

and its length

l(γ̄(t)) =

∫ b

a

√
1 + ϕ̇(t)2.

Now, we set ϕ(t) = arctan(θ̇(t)), thus

ϕ̇(t) =
θ̈(t)

1 + θ̇(t)2
,

that is equal to (28). Hence, the length of a lifted curve γ̄ = (γ, ϕ) in Ẽ is equal
to the elastica functional in S evaluate in γ

E(γ) =

∫ b

a

1 +

(
θ̈(t)

1 + θ̇(t)2

)2
 1

2

dt.
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Remark 1.5. Notice that locally k = tan(ϕ) is a change of coordinates. There-
fore we can see Ẽ locally as E with an other metric h3. Indeed, under this change
of coordinates

X1 =
1

cos(ϕ)
(cos(ϕ)X + sin(ϕ)Y ),

X2 =
1

cos(ϕ)2
∂ϕ.

Therefore, h3 on the distribution generated by X1, X2 should be

h3 =

(
cos(ϕ)2 0

0 cos(ϕ)4

)
.

In these coordinates the commutators change but they are proportional to Z3 and
Z4 where the factors depend only on ϕ.



CHAPTER 2

Area in a sub-Riemannian manifold

Our purpose in this chapter is to give a general definition of the area in a sub-
Riemannian manifold for a submanifold of arbitrary dimension using the notion
of degree studied by Magnani-Vittone in [27] and Le Donne-Magnani in [24]. In
this chapter we prove basic properties of the degree and the area, then we show
that our definition of area for a hypersurface in the Heisenberg group coincides
with the one used in [33] and we provide a suitable definition of area for a surface
in S and E. Finally, in the last section we compare the Hausdorff dimension of a
submanifold to the notion of degree.

Let N be a smooth manifold and n be the dimension of N . Let H be a
distribution on N and U be an open subset of N . Locally {X1, · · · , Xk} span H

on the open set U . The distribution H is a subbundle of constant dimension k
of the tangent space TU , see [28]. Moreover, h is a metric defined only on the
subbundle H. Therefore, (N,H, h) has a structure of sub-Riemannian manifold
and furthermore we suppose thatX1, · · · , Xk verify the Hörmander rank condition.
The Lie brackets of vector fields in H generate a flag of subbundles

(29) H ⊂ H2 ⊂ · · · ⊂ Hr ⊂ · · · ⊂ TN,

with
H2 = H + [H,H], Hr+1 = Hr + [H,Hr],

where
[H,Hk] = {[X, Y ] : X ∈ H, Y ∈ Hk}.

The fact that X1, · · · , Xk verify Hörmander rank condition is equivalent, at least
in the case of N compact, to the assumption that there is an s such that Hs = TN .
Henceforth, we will do this assumption. Here, we follow Montgomery’s book [28,
2.3]. The flag of subbundles at a point p is a flag of subspaces of TpN

(30) Hp ⊂ H2
p ⊂ · · · ⊂ Hs

p = TpN

and we set ni(p) = dimHi
p. The integer list (n1(p), · · · , ns(p)) of dimensions is

called the growth vector of H at p. Moreover, the smallest s such that Hs
p = TpN

is called the step of the distribution H at the point p.

Definition 2.1. A distribution H on a manifold N is regular at a point p in
N if the growth vector is constant in a neighborhood of p.

35
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Example 2.1. In order to show an example of sub-Riemannian manifold with
not regular points, we consider the Grǔsin plane G2. Let us consider the plane R2

with coordinates x, y and the sub-Riemannian metric which makes orthonormal
the vector fields

X1 =

(
1
0

)
, X2 =

(
0
x

)
.

These vector fields span all the tangent space, except along the line x = 0. There,
if we add the Lie bracket

[X1, X2] =

(
0
1

)
,

the distribution verifies the Hörmander rank condition and thus the hypothesis of
the Chow Theorem. Outside the line x = 0, the sub-Riemannian metric is

ds = dx2 +
1

x2
dy2,

that it is essentially a Riemannian metric. Now, if we consider a point p in
{(x, y) ∈ R2 : x 6= 0} then we can find a sufficiently small neighborhood where
the dimension of the growth vector n1(p) is constantly equal to two. Hence, p is a
regular point. If we suppose that p ∈ {(x, y) ∈ R2 : x = 0} the growth vector
will be (n1(p), n2(p)) = (1, 1). Then an open neighborhood of p has to intersect
the set where x 6= 0, and so the growth vector is equal to n1(p) = 2. Therefore, for
each neighborhood of a point in the line x = 0, we have that the growth is not con-
stant. Hence, this is not a regular point. We suggest the reader to see [2, page 31]
for an example of singular point where the dimension of the first layer is constant.
There the sub-Riemaniann structure is R3 equipped of the distribution

H = span{X1 = ∂x +
1

2
y2∂z, X2 = ∂y}.

Each point in the surface π = {y = 0} is a singular point. Indeed, the growth
vector for p in π is n(p) = (2, 2, 3) and for p not in π is n(p) = (2, 3), since

[X1, X2] = −y∂z [X2, [X1, X2]] = −∂z.

We set Hi = Hi/Hi−1 and define

(31) Gr(H) = H ⊕H2/H ⊕ · · · ⊕Hs/Hs−1 = H1 ⊕ · · · ⊕Hs,

which is the graded bundle corresponding to the flag of bundles Hi. When p is a
regular point for the distribution, we call Gr(H))(p) the nilpotentization of H at
p.

Definition 2.2. Given a set of vector fields X1, · · · , Xk ∈ TN and a multi-
index

J = (j1, · · · , jl) ∈ {1, · · · , k}l,
we set

XJ = [· · · [Xj1 , Xj2 ], · · · , Xjl ].
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We say that XJ is the commutator of length l of X1, · · · , Xk if XJ ∈ Hl and
XJ /∈ Hl−1.

Let U be a neighborhood of a regular point p in N , the tangent bundle TU
can be written as

TU = H1 ⊕ · · · ⊕Hs,

where

H1 = span{X1, · · · , Xk},
H2 = span{[Xi, Xj] i 6= j i, j = 1, · · · , k : [Xi, Xj] /∈ H1}

= span{Xk+1, · · · , Xn2},
...

Hl = span{ XJ a commutator of length l : J ∈ {1, · · · , k}l}
= span{Xnl−1+1, · · · , Xnl},
...

Hs = span{ XJ a commutator of length s : J ∈ {1, · · · , k}s}
= span{Xns−1+1, · · · , Xn}.

Where s is the step defined in 1.6. A frame

(X1, · · · , Xk, Xn1+1 · · · , Xn2 , · · · , Xns−1+1, · · · , Xn)

is an adapted basis to the flag (30) at each point.

Definition 2.3. An order basis (v1, · · · , vn) is said to be adapted to a flag

V1 ⊂ V2 ⊂ · · · ⊂ Vs

if the first di = dim(Vi) vectors form a basis Vi.

For each Xi in the adapted basis we can assign its length, which is also called
weight. The assignment i 7→ wi is called the weighting associated to the growth
vector.

Moreover, we assume that the dimension dim Hi(p) is constant in p in N for
each i = 1, · · · , s, which is known as the equiregularity assumption, for further
details see [19, page 95].

1. Degree of a submanifold in a sub-Riemannian manifold

Definition 2.4. Let (X1, X2, · · · , Xn) be an adapted basis to the flag of TN .
The degree d(j) of Xj is the unique integer r such that Xj ∈ Hr. Let

XJ := Xj1 ∧ · · · ∧Xjm m 6 n
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be a simplem-vector of Λm(N), where J = (j1, j2, · · · , jm) and 1 6 j1 < j2 < · · · <
jm 6 n. The degree of XJ is the integer d(J) defined by the sum d(j1)+· · ·+d(jm).

Let
τ =

∑
J

τJX
J

be a m-vector in Λm(N) represented with respect to the fixed adapted basis
(X1, · · · , Xn) where τJ are functions. The degree of τ is defined as the integer

d(τ) = max{d(XJ) ∈ N : τJ 6= 0}.

Let M be a manifold such that dim(M) = m < n = dim(N) and let Φ : M →
N be an embedding, which is defined to be an injective immersion which is an
homeomorphism onto its image. We have that dΦ(TpM) ⊂ TΦ(p)N for each p in
M and that the dimension dim(dΦ(TpM)) = m, due to the differential dΦ being
injective. We set Σ = Φ(M). Therefore, the degree of a point p in M is defined as

dΣ(p) = d(τΣ(p)),

where

τΣ(p) ∈ {v1 ∧ · · · ∧ vm : B = (v1, · · · , vm) a basis of dΦ(TpM)}.

Obviously, the degree is independent of the choice of the basis of the tangent
subspace. Indeed, if we consider another basis B′ = (v′1, · · · , v′m) of dΦ(TpM),
there holds

v1 ∧ · · · ∧ vm = det(MB,B′) v
′
1 ∧ · · · ∧ v′m.

Since det(MB,B′) 6= 0, the degree is well-defined.

Definition 2.5. The projection of τ onto m-vectors of degree r is defined by

(τ)r =
∑
d(J)=r

τJX
J .

The degree d(Σ) of a submanifold Σ is the integer

max
p∈Σ

dΣ(p).

2. Equivalence between our degree and Gromov’s degree

Mikhael Gromov gave a definition of degree in [19, 0.6.B], we want to show
that his definition is equivalent to ours given in Section 1 of this Chapter.

Definition 2.6 (Gromov’s degree). LetM be a submanifold of an equiregular
sub-Riemannian manifold N equipped with its flag of subbundles

H1 ⊂ H2 ⊂ · · · ⊂ Hs = TN.
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We set H̃j
p = TpM ∩Hj

p, then it follows

H̃1
p ⊂ H̃2

p ⊂ · · · ⊂ H̃s
p = TpM.

We denote m̃j = dim(H̃j
p/H̃

j−1
p ), then we set

D̃H(p) =
s∑
j=1

j m̃j.

This definition of degree is much more geometrical than the one we gave before,
because it expresses the intersection between the tangent space of the submanifold
and the flag of subbudles. The intersection of the tangent space TpM and the flag
of subbundles will be constant for k1 subbudles and it will change at k1 + 1, then
it will be constant until the subbudle k2 and then it will change at k2 + 1 and
then again constant until subbudle k3. Iterating this process, we obtain the finite
sequence k1, · · · , kr ∈ {1, · · · , s− 1}. Therefore we have

M1 = TpM ∩H1 = · · · = TpM ∩Hk1 (
M2 = TpM ∩Hk1+1 = · · · = TpM ∩Hk2 (

...

Mr = TpM ∩Hkr+1 = · · · = TpM ∩Hs,

where we set Li = dim(Mi) i = 1, · · · , r. Obviously,

M1 ⊂M2 ⊂ · · · ⊂Mr = TpM, L1 < L2 < · · · < Lr = m.

Now, we can choose v1, · · · , vL1 , vL1+1, · · · , vL2 , · · · , vLr−1+1, · · · , vLr a basis of the
tangent space TpM such that

v1, · · · , vL1 ∈ M1

vL1+1, · · · , vL2 ∈M2 rM1

...
vLi−1+1, · · · , vLi ∈Mi rMi−1

...
vLr−1+1, · · · , vLr ∈Mr rMr−1.

If v is a vector in {vLi−1+1, · · · , vLi} then v belongs to Hki−1+1 rHki−1 . Therefore,
the degree d(v) of v is equal to ki−1 + 1. Thanks to our definition of degree (2.4),



40 2. AREA IN A SUB-RIEMANNIAN MANIFOLD

it follows that the degree of the m-vector is equal to
d(v1 ∧ · · · ∧ vL1 ∧ vL1+1 ∧ · · · ∧ vL2 ∧ · · · ∧ vLr−1+1 ∧ · · · ∧ vLr) =

L1 + (L2 − L1)(k1 + 1) + · · ·+ (Li − Li−1)(ki−1 + 1)+

+ · · ·+ (Lr − Lr−1)(kr−1 + 1).

Now, let us compute Gromov’s degree. In order to determine it we recall that
m̃j = dim(H̃j

p/H̃
j−1
p ), where H̃j

p = TpM ∩Hj
p. Thus, we have

m̃1 = L1, m̃2 = 0, · · · , m̃k1 = 0,

m̃k1+1 = L2 − L1, m̃k1+2 = 0, · · · , m̃k2 = 0,

...
m̃ki−1+1 = Li − Li−1, m̃ki−1+2 = 0, · · · , m̃ki = 0,

...
m̃kr−1+1 = Lr − Lr−1, m̃kr−1+2 = 0, · · · , m̃kr = 0.

Therefore, the Gromov’s degree at the point p is

D̃H(p) =L1 + (L2 − L1)(k1 + 1) + · · ·+ (Li − Li−1)(ki−1 + 1)

+ · · ·+ (Lr − Lr−1)(kr−1 + 1).

Hence, the two definitions of degree are equivalent.

Remark 2.1. In [25] Magnani writes about horizontal and non-horizontal
points and also about the degree of a submanifold in a Carnot group. He sets
that p in Σ is a non-horizontal point when TpΣ and Hp are transversal and p is
horizontal when these subspaces are not transversal. In other words, a point p is
horizontal if

Hp − dim(TpΣ ∩Hp) < k.

Overall, the notion of degree is more sophisticated than the one of horizontal
point, because the degree detects all possible intersections between the tangent
space and each layer of the distribution, not only between the tangent space and
the distribution.

3. Semicontinuity of the degree

Here our aim is to prove that the degree of a vector field on a sub-Riemaniann
manifold (N,H), defined in 2.4, is lower semicontinuous at a regular point p in N .
Let U ⊂ N be an open neighborhood of p and let

(32) v(q) =
s∑
i=1

ni∑
j=ni−1

cij(q)(Xj)q
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be a smooth vector field on U , where (X1, · · · , Xn) is an adapted basis to the flag
of the tangent space generated by the bracket-generating distribution

H = span{X1, · · · , Xk}.

In (32) we adopt the convention that n0 = 1. Let d be an integer number such
that cdk(p) 6= 0 where k is a integer in {nd−1, · · · , nd} and cij(p) = 0 when i =
d+1, · · · , s. Therefore, the degree d(v(p)) of v at p is equal to d. Since coefficients
are continuous, there exists U ′ ⊂ U neighborhood such that cdk(q) 6= 0 for each q
in U ′. Therefore for each q in U ′ the degree of v(q) is greater than or equal to the
degree of v(p),

d(v(q)) > d(v(p)) = d.

The degree at q could be strictly greater than d if there is a coefficient cij(p) with
i = d + 1, · · · , s that is equal to zero at p but over U ′ is different to zero. Hence,
we have

lim inf
q→p

d(v(q)) > d(v(p)).

4. Sub-Riemaniann area of a submanifold

We extend the metric h defined on H to a Riemaniann metric g such that
g|H = h and the spaces Hi(p) are orthogonal for each p in N . Now, let r > 0 be a
real number and we will consider the Riemannian metrics gr such that

(33) gr(Xi, Xj) =

(
r
d(Xi)+d(Xj)−2

2

)−1

g(Xi, Xj) i, j = 1, · · · , n,

where Xi and Xj belongs to the adapted basis (X1, · · · , Xn). We will consider the
m-vector fields

X̃J =

(
r
d(Xj1

)−1

2 Xj1

)
∧ · · · ∧

(
r
d(Xjm )−1

2 Xjm

)
,

J = (j1, j2, · · · , jm), 1 6 j1 < · · · < jm 6 n.

Let (U,ϕ = y1, · · · , ym) be local coordinates in p ∈ M and

(
∂

∂y1

∣∣∣∣
p

, · · · , ∂

∂ym

∣∣∣∣
p

)
is a basis of TpM . Furthermore,

B =

(
dΦ

(
∂

∂y1

∣∣∣∣
p

)
, · · · , dΦ

(
∂

∂ym

∣∣∣∣
p

))
is a basis of dΦ(TpM) and we can express

dΦ

(
∂

∂y1

∣∣∣∣
p

)
∧ · · · ∧ dΦ

(
∂

∂ym

∣∣∣∣
p

)
=
∑
J

τ̃J X̃J
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with respect to the basis {X̃J : J = (j1, · · · , jm)}. We can take into account the
Jacobian matrix (gij) which is equal to

gr

(
dΦ

(
∂

∂y1

∣∣∣∣
p

)
, dΦ

(
∂

∂y1

∣∣∣∣
p

))
· · · gr

(
dΦ

(
∂

∂y1

∣∣∣∣
p

)
, dΦ

(
∂

∂ym

∣∣∣∣
p

))
... . . . ...

gr

(
dΦ

(
∂

∂ym

∣∣∣∣
p

)
, dΦ

(
∂

∂y1

∣∣∣∣
p

))
· · · gr

(
dΦ

(
∂

∂ym

∣∣∣∣
p

)
, dΦ

(
∂

∂ym

∣∣∣∣
p

))
 .

Now, we will define a metric on the m-vectors using the metric gr. Let e1, · · · , em
and e′1, · · · , e′m be vectors in dΦ(TpM). Thanks to the metric we can define the
one-forms

wi(v) = gr(v, ei) ∀ v ∈ dΦ(TpM), i = 1, · · · ,m.
We set
(34)
gr(e1 ∧ · · · ∧ em, e′1 ∧ · · · ∧ e′m) = (w1 ∧ · · · ∧ wm)(e′1, · · · , e′m)

=
∑
σ∈Sm

sgn(σ)(w1 ⊗ · · · ⊗ wm)(e′σ(1), · · · , e′σ(m))

=
∑
σ∈Sm

sgn(σ)gr(e
′
σ(1), e1) · · · gr(e′σ(m), em).

Therefore, by (34) and the Leibniz formula for the determinant there follows∣∣∣∣dΦ

(
∂

∂y1

∣∣∣∣
p

)
∧ · · · ∧ dΦ

(
∂

∂ym

∣∣∣∣
p

)∣∣∣∣2
gr

= det(gij)(p).

Let {(Uα, ϕα)}α∈I be an atlas of the manifold M and let {Ψα}α∈I be a partition of
unity subordinated to the cover {Uα} such that the compact supports of Ψα are
completely contained in Uα. Therefore the Riemannian area is

area(Φ(M), gr) =
∑
α∈I

∫
ϕ(Uα)

∣∣∣∣d(Φ ◦Ψα)

(
∂

∂y1

∣∣∣∣
ϕ−1
α (ξ)

)
∧ · · ·

· · · ∧ d(Φ ◦Ψα)

(
∂

∂ym

∣∣∣∣
ϕ−1
α (ξ)

)∣∣∣∣
gr

◦ ϕ−1
α (ξ) dξ,

where ξ ∈ Rm and dξ = dξ1 · · · dξm. Notice that here we consider the Lebesgue
measure on the chart, but the same argument holds if M is equipped with a
different measure µ. When we consider the measure µ we will compute the integral
respect dµ instead of dξ.

If we set
Φ(M)i = {p ∈M : dΦ(M)(p) = i}



5. AN INTERESTING CASE OF SUB-RIEMANIAN AREA 43

the submanifold Φ(M) can be written as
Φ(M) = Φ(M)m ∪ · · · ∪ Φ(M)d,

where d = d(Φ(M)) is the degree of the submanifold. Finally, we define the sub-
Riemannian area of Φ(M) as

(35) A(Φ(M), g) = lim
r→0

d∑
i=m

r
i−m

2 area(Φ(M)i, gr).

Remark 2.2. Let (M,µ) a manifold of degree d embedded in N . Notice that
only coefficients of m-vector fields of degree d survive because when r tends to zero
the metric factor depending on the degree neutralize the factor r

d−k
2 that multiplies

the Riemannian area. Therefore, we have

A(Φ(M), g) =
∑
α∈I

∫
ϕ(Uα)

∣∣∣∣∣
(
d(Φ ◦Ψα)

(
∂

∂y1

∣∣∣∣
ϕ−1
α (ξ)

)
∧ · · ·

· · · ∧ d(Φ ◦Ψα)

(
∂

∂ym

∣∣∣∣
ϕ−1
α (ξ)

))
d

∣∣∣∣∣
g

◦ ϕ−1
α (ξ) dµ,

where | · |g denotes the norm on the m-vector induced by g and (·)d denotes the
projection on the m-vector of degree d.

5. An interesting case of sub-Riemanian area

In general the sub-Riemanian area is dependent of the metric extension of the
horizontal metric h.

Example 2.2. Let H1 ⊗ H1 be the direct product of Heisenberg space where
we consider real coordinates (x, y, z, x′, y′, z′) and the Lie algebra is generated by

X = ∂x − y∂z, Y = ∂y + x∂z, Z = ∂z,

X ′ = ∂x′ − y′∂z′ , Y ′ = ∂y′ + x∂z′ , Z ′ = ∂′z,

and the only commutator relations not null are
[X, Y ] = 2Z [X ′, Y ′] = 2Z ′.

Therefore we have 4-dimensional distribution H generated by X, Y,X ′, Y ′ and let
h the horizontal metric making X, Y,X ′, Y ′ an orthonormal basis. Let Ω be a
bounded open set of R2, there we consider the surface Σ parametrized by

Φ : Ω −→ H1 ⊗ H1

(s, t) → (s, 0, u(s, t), 0, t, u(s, t))

where u is a smooth function such that ut(s, t) ≡ 0. Therefore, it follows
Φs =(1, 0, us, 0, 0, us) = X + us Z + us Z

′,

Φt =(0, 0, 0, 0, 1, 0) = Y ′.
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and we have
Φs ∧ Φt = X ∧ Y ′ + us(Z ∧ Y ′ + Z ′ ∧ Y ′).

When us(s, t) is different from zero the degree is three. Now, we consider the
following metrics

gλ,ν =

 I4 0 0
0 λ 0
0 0 ν


on the basis (X, Y,X ′, Y ′, Z, Z ′). These metrics extend the horizontal metric and
make H1 and H2 spaces orthogonal. The sub-Riemannian area of Σ depends on
the metric elected, indeed

A(Σ, gλ,ν) =

∫
Ω

us(λ+ ν) dxdy.

Therefore, the PDE for the minimal surfaces obtain by the first variation of the
area functional depends on the metric extension of h.

However, let d = d(Σ) be the degree of the submanifold of dimension m. We
assume that m-vector

v := dΦ

(
∂

∂y1

∣∣∣∣
p

)
∧ · · · ∧ dΦ

(
∂

∂ym

∣∣∣∣
p

)
is expressed as the m-vector of an adapted basis, we suppose that the terms of
degree d are a wedge product of m− 1 vectors of the first layer H1 and one vector
of Hd−m+1. Moreover, we suppose that the Hd−m+1 has dimension one. We will
call all these assumptions the HC hypothesis. In the definition of this condition we
have been inspired by the fact that in the Heisenberg group, in the visual cortex
S and E the required assumptions are satisfied.

Here, we assume the HC hypothesis. Therefore, let Xi1 , · · · , Xim−1 be elements
of the basis in the first layer and Xm be the only vector of the basis in Hd−m+1

and the terms of degree d of v are
l∑

i=1

aiXi1 ∧ · · · ∧Xim−1 ∧Xm

If we apply the metric gr extended to the m-vectors

(36)
gr(Xi1 ∧ · · · ∧Xim−1 ∧Xim , Xi1 ∧ · · · ∧Xim−1 ∧Xim)

=
∑
σ∈Sm

sgn(σ)gr(Xσ(i1), Xi1) · · · gr(Xσ(im−1), Xim−1)gr(Xσ(m), Xm)

Since the metric makes the layer orthogonal the permutation σ must fix the last
index m, i.e. σ(m) = m. Let g and ḡ be two metrics such that g|H = h, ḡ|H = h,
then there exists λ a positive real number such that

gr(Xm, Xm) = λḡr(Xm, Xm) =
λ

rd−m
ḡ(Xm, Xm).
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Going back to (36), we have

(36) =
λ

rd−m
ḡ(Xm, Xm)

∑
τ∈Sm−1

sgn(τ)h(Xτ(i1), Xi1) · · ·h(Xτ(im−1), Xim−1)

= λḡr(Xi1 ∧ · · · ∧Xim−1 ∧Xim , Xi1 ∧ · · · ∧Xim−1 ∧Xim).

Hence, we have

A(Φ(M), g) = lim
r→0

r
d−m

2 A(Φ(M), gr)

= lim
r→0

r
d−m

2

∫
M

(
k∑
i=1

a2
i |Xi1 ∧ · · · ∧Xim−1 ∧Xm|gr

) 1
2

=

∫
M

 k∑
i=1

a2
i g(Xm, Xm)

∑
τ∈Sm−1

sgn(τ)h(Xτ(i1), Xi1) · · ·h(Xτ(im−1), Xim−1)

 1
2

=

∫
M

 k∑
i=1

a2
i λḡ(Xm, Xm)

∑
τ∈Sm−1

sgn(τ)h(Xτ(i1), Xi1) · · ·h(Xτ(im−1), Xim−1)

 1
2

= λA(Φ(M), ḡ).

In conclusion, when the HC hypothesis holds the sub-Riemannian area definition
is independent of the extension of the metric h up to a positive constant

(37) A(Φ(M)) = lim
r→0

d∑
i=m

λi r
i−m

2 A(Φ(M)i, gr).

6. Area of a hypersurface in the Heisenberg group

The Heisenberg group Hn is the Lie group (R2n+1, ∗) where the product is
defined, for any pair of points (z, t) = (z1, · · · , zn, t), (z′, t′) = (z′1, · · · , z′n, t′) in
R2n+1 = C2n × R, by

(z, t) ∗ (z′, t′) =

(
z + z′, t+ t′ +

n∑
i=1

Im(ziz̄i
′)

)
.

A basis of left invariant vector fields is given by {X1, · · · , Xn, Y1, · · · , Yn, T}, where

Xi =
∂

∂xi
+ yi

∂

∂t
, Yi =

∂

∂yi
− xi

∂

∂t
i = 1, · · · , n, T =

∂

∂t
.

The only non-trivial relation is [Xi, Yi] = −2T . The horizontal distribution at p
in Hn is defined by Hp = span{(Xi)p, (Yi)p, i = 1, · · · , n}. Let Ω ⊂ R2n+1 be an
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open set and let Σ be a C1 hypersurface given by the zero set level of the function

f(x1, y1, · · · , xn, yn, t) = u(x1, y1, · · · , xn, yn)− t = 0.

Let Σ0 be the set of characteristic points, where the tangent hyperplane coincides
with the horizontal distribution. It is given by the condition

∇Hf = (ux1 − y1, uy1 + x1, · · · , uxn − yn, uyn + xn) = 0.

We can see the hypersurface as the embedding

Φ : R2n → Hn, Φ(x1, y1, · · · , xn, yn) = (x1, y1, · · · , xn, yn, u(x1, y1, · · · , xn, yn)).

We set a metric h on the subbundle H such that Xi, Yi orthonormal for each
i = 1, · · · , n and we extend the metric h to g that makes Xi, Yi, T orthonormal,
then we have by (33)

gr = g|H +
1

r
g|T .

Now, we have Zi =
∑2n+1

j=1 Bj
i (ξ)ej, where we set

Z1 = X1, Z2 = Y1, · · · , Z2n−1 = Xn, Z2n = Yn, Z2n+1 = T

and

B(ξ) =



y1

−x1

I2n
...
yn
−xn

0 · · · 0 1

 .

We write the canonical basis respect to (Z1, · · · , Z2n+1) using the inverse matrix
B(ξ)

(38) ei =
2n+1∑
j=1

(B(ξ)−1)jiZj,

where

B(ξ)−1 =



−y1

x1

I2n
...
−yn
xn

0 · · · 0 1

 .
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We consider Φxi =
∑2n+1

j=1 Φj
xi
ej and by equation (38) we obtain

Φxi =
2n+1∑
j=1

Φj
xi

2n+1∑
k=1

(B(ξ)−1)kjZk = Xi + (uxi − yi)T,

Φyi = Yi + (uyi + xi)T.

In this case we have

Z̃J2n+1 = Z1 ∧ · · · ∧ Z2n,

Z̃J2i−1 = (r
1
2 ) Z1 ∧ · · · ∧ Ẑ2i+1 ∧ · · · ∧ Z2n+1,

Z̃J2i = (r
1
2 ) Z1 ∧ · · · ∧ Ẑ2i ∧ · · · ∧ Z2n+1.

Then, we make the wedge product

v :=Φxi ∧ Φy1 ∧ · · · ∧ Φxn ∧ Φyn

=X1 ∧ · · · ∧ Yn

+
n∑
i=1

(uxi − yi)X1 ∧ · · · ∧ X̂i ∧ · · · ∧ Yn ∧ T

+
n∑
i=1

(uyi + xi)X1 ∧ · · · ∧ Ŷi ∧ · · · ∧ Yn ∧ T

=Z̃J2n+1 +
n∑
i=1

(uxi − yi) r−
1
2 Z̃J2i−1 +

n∑
i=1

(uyi + xi) r
− 1

2 Z̃J2i

Therefore,

gr(v, v) = 1 +
n∑
i=1

(uxi − yi)2 r−1 +
n∑
i=1

(uyi + xi)
2 r−1

and the Riemaniann area is

area(Σ \ Σ0, gr) =

∫
Ω

(
1 +

n∑
i=1

(uxi − yi)2 r−1 +
n∑
i=1

(uyi + xi)
2 r−1

) 1
2

dλ

where dλ = dx1dy1 · · · dxndyn is the Lebesgue measure.
Notice that in Σ \ Σ0 the degree is equal to 2n + 1 and the dimension of the

hypersurface is equal to 2n thus, thanks to the definition (35) of sub-Riemannian
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area, we have

A(Σ \ Σ0) = lim
r→0

∫
Ω

r
2n+1−2n

2

(
1 +

n∑
i=1

(uxi − yi)2 r−1 +
n∑
i=1

(uyi + xi)
2 r−1

) 1
2

dλ

= lim
r→0

∫
Ω

(
r +

n∑
i=1

(uxi − yi)2 +
n∑
i=1

(uyi + xi)
2

) 1
2

dλ

=

∫
Ω

(
n∑
i=1

(uxi − yi)2 +
n∑
i=1

(uyi + xi)
2

) 1
2

dλ

7. Area of a surface in a sub-Riemannian manifold

We are interested in surfaces in a sub-Riemaniann manifold N , therefore in this
section we will show all the terms defined in section 4 for a surface. Obviously,
(N,H, h) satisfies Hörmander rank condition and locally

H = span{X1, · · · , Xk}.
By Hörmander rank condition we consider a local frame X1, · · · , Xn where Xk+1,
· · · , Xn are commutators of X1, · · · , Xk. As we show in section 4 the tangent space
is

TN = H1 ⊕ · · · ⊕Hs

Let Ω be a subset of R2, we take into account the surface Σ parametrized by

Φ : Ω→ N.

Let g be the metric that extends h and makes the layers orthogonal. Furthermore,
let gr be the metric defined in (33), we will consider the 2-vector fields

X̃i ∧ X̃j =
(
r
d(Xi)−1

2 Xi

)
∧
(
r
d(Xj)−1

2 Xj

)
i, j = 1, · · · , n i 6= j

and we express
Φx ∧ Φy =

∑
16i<j6n

τ̃ij X̃i ∧ X̃j

with respect to the basis {X̃i ∧ X̃j : 1 6 i < j 6 n}. Let

(gij) =

(
gr(Φx,Φx) gr(Φx,Φy)
gr(Φx,Φy) gr(Φy,Φy)

)
.

be the metric matrix of gr which induces on the 2-vector the new metric

gr(X ∧ Y, Z ∧ T ) = gr(X,Z)gr(Y, T )− gr(X,T )gr(Y, Z).

Thanks to this definition, we have

gr(Φx ∧ Φy,Φx ∧ Φy) = gr(Φx,Φx)gr(Φy,Φy)− gr(Φx,Φy)gr(Φx,Φy) = det(gij).
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Hence,

A(Σ, gr) =

∫
Ω

√
gr(Φx ∧ Φy,Φx ∧ Φy) dxdy.

Setting Σi = {p ∈ Σ : dΣ(p) = i} the surface Σ can be written as

Σ = Σ2 ∪ · · · ∪ Σd, where d = d(Σ) is the degree of the surface.

Finally, the sub-Riemannian area of Σ is

(39) A(Σ, g) = lim
r→0

d∑
i=2

∫
Φ−1(Σi)

r
i−2

2

√
gr(Φx ∧ Φy,Φx ∧ Φy) dxdy.

8. Sub-Riemannian area of a surface in S

Let H1 = H be the subbundle of the tangent bundle TS generated by

X = cos(θ)∂x + sin(θ)∂y and Y = ∂θ.

The tangent space can be written as

TS = H1 ⊕H2

where
H2 = span{T = sin(θ)∂x − cos(θ)∂y}.

We shall equip S with a sub-Riemannian metric h defined on its horizontal distri-
bution, such that X, Y are an orthonormal basis for this metric. Thus, we extend
the metric h with a Riemaniann metric g such that g|H0 = h and H2 is orthogonal
to H1. By definition (33), it follows

gr = g|H1 +
1

r
g|H2 .

Now, let Ω be an open set of R2. We consider a f -graph parametrized by

Φ : Ω −→ S
(x, y) 7→ (x, y, f(x, y))

and its tangent vectors

Φx = ∂x + fx∂θ = cos(θ)X + sin(θ)T + fxY

Φy = ∂y + fy∂θ = sin(θ)X − cos(θ)T + fyY.

Therefore, the wedge product of these tangent vectors is

Φx ∧ Φy = −X ∧ T − T (f)X ∧ Y +X(f)T ∧ Y.
The degree of this surface is three and it can not change due to the coefficient of
X ∧ T never vanishes , hence the sub-Riemaniann area is

A(Φ(Ω)) =

∫
Ω

(
1 +X(f)2

) 1
2 dxdy.
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9. Geometry of surfaces in 4-dimensional sub-Riemannian manifolds

Our aim in this section is to introduce a suitable area functional for 2 - dimen-
sional surfaces embedded in two different 4-dimensional sub-Riemannian manifolds
E and Ẽ defined in the first chapter section 3.4. We are interested in surfaces that
are union of lifted curves of the level set of an image on the retinal plane to the
space E or Ẽ. Therefore, we have to study the geometry of these particular sur-
face, their foliation properties and their degree, so that we can provide a suitable
area functional. Let us remind that

(E = R2 × S1 × R,HE, hi), (Ẽ = R2 × S1 × S1,HẼ, h3)

where we have

HE = span{X1, X2}, HẼ = span{Z1, Z2}.

The tangent bundles can be written as

TE = H1 ⊕H2 ⊕H3, T Ẽ = H1 ⊕H2 ⊕H3

where H2 = span{X3} (respectively H2 = span{Z3}) and H3 = span{X4} (respec-
tively H2 = span{Z3}).

9.1. Degree of a surface. Let Σ be a 2-dimensional submanifold in E. The
degree of a 2-vector

τ =
∑

16i<j64

τijXi ∧Xj ∈ Λ2(E)

is given by
d(τ) = max{di + dj | τij 6= 0}

where di is the degree of Xi, hence d1 = d2 = 1, d3 = 2 and d4 = 3. Then define
the pointwise degree at x of a 2-dimensional submanifold Σ in E by

dΣ(x) = d(τΣ(x))

where τΣ(x) is a 2-vector of Σ at x ∈ Σ, in other words

τΣ(x) ∈ {v1 ∧ v2 : ∀ (v1, v2) basis of TxΣ}.

Let (e1, e2) and (v1, v2) be two basis of TxΣ then there exists λ 6= 0 such that

e1 ∧ e2 = λ(v1 ∧ v2).

Hence, the definition of degree is independent of the choice of the basis. The degree
d(Σ) of Σ is the integer

max
x∈Σ

dΣ(x).
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In E, we have Xi =
∑4

j=1 A
j
i (ξ)ej, where

A(ξ) =


cos(θ) sin(θ) k 0

0 0 0 1
0 0 −1 0

− sin(θ) cos(θ) 0 0

 .

We can write the canonical basis respect to X1, · · · , X4

(40) ei =
4∑
j=1

(A(ξ)−1)jiXj,

where

A(ξ)−1 =


cos(θ) 0 k cos(θ) − sin(θ)
sin(θ) 0 k sin(θ) cos(θ)

0 0 −1 0
0 1 0 0

 .

We set (u1, u2) = (x, y) and Φ = (Φ1,Φ2,Φ3,Φ4). We consider Φui =
∑4

j=1 Φj
ui
ej

and by equation (40) we obtain

Φui =
4∑
j=1

Φj
ui

4∑
k=1

(A(ξ)−1)kjXk

=Φ1
ui

(cos(θ)X1 + k cos(θ)X3 − sin(θ)X4)

+ Φ2
ui

(sin(θ)X1 + k sin(θ)X3 + cos(θ)X4)

− Φ3
ui
X3 + Φ4

ui
X2

=(cos(Φ3)Φ1
ui

+ sin(Φ3)Φ2
ui

)X1 + Φ4
ui
X2 + (Φ4(cos(Φ3)Φ1

ui
+ sin(Φ3)Φ2

ui
)

− Φ3
ui

)X3 + (− sin(Φ3)Φ1
ui

+ cos(Φ3)Φ2
ui

)X4.

Computing the wedge product, it follows

(41)

Φx ∧ Φy =(cos(Φ3)Φ14
u + sin(Φ3)Φ24

u )X1 ∧X2

− (cos(Φ3)Φ13
u + sin(Φ3)Φ23

u )X1 ∧X3

+ Φ12
u X1 ∧X4

+ (Φ34
u − Φ4(cos(Φ3)Φ14

u + sin(Φ3)Φ24
u ))X2 ∧X3

+ (sin(Φ3)Φ14
u − cos(Φ3)Φ24

u )X2 ∧X4

+ (Φ4Φ12
u − sin(Φ3)Φ13

u + cos(Φ3)Φ23
u )X3 ∧X4,

where we set

Φij
u = det

(
Φi
x Φi

y

Φj
x Φj

y

)
.
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According to the notion of pointwise degree, we have that
(42)

dΣ(Φ(u)) =


5 if c34(u) 6= 0

4 if |c14(u)|+ |c24(u)| > 0 and c34(u) = 0

3 if |c13(u)|+ |c23(u)| > 0 and c34(u) = c14(u) = c24(u) = 0

2 if c34(u) = c14(u) = c24(u) = c13(u) = c23(u) = 0

where we set
Φu1 ∧ Φu2 =

∑
16i<j64

cij(u)Xi ∧Xj.

Notice that the degree of Σ can never be equal to 2. Indeed, if dΣ was equal to
2 the submanifold Σ would be a integrable manifold for the distribution H, then
H would be involutive by Frobenius Theorem. However, the distribution H is
bracket-generating and not involutive.

Now, we want to study the degree for a submanifold Σ in Ẽ. Evidently, each
Zi has the same degree of Xi and let Φ = (Φ1,Φ2,Φ3,Φ4) be a parametrization of
Σ. We set (x, y) = (u1, u2) and we consider

Φui =
4∑
j=1

Φj
ui
ej

As we did before, we can express the canonical basis respect to Z1, · · · , Z4

(43) ei =
4∑
j=1

(A(ξ)−1)jiZj,

where

A(ξ) =


cos(ϕ) cos(θ) cos(ϕ) sin(θ) sin(ϕ) 0

0 0 0 1
sin(ϕ) cos(θ) sin(ϕ) sin(θ) − cos(ϕ) 0
− sin(θ) cos(θ) 0 0

 ,

A(ξ)−1 =


cos(ϕ) cos(θ) 0 sin(ϕ) cos(θ) − sin(θ)
cos(ϕ) sin(θ) 0 sin(ϕ) sin(θ) cos(θ)

sin(ϕ) 0 − cos(ϕ) 0
0 1 0 0

 .

Therefore, we have

Φui =
4∑
j=1

Φj
ui
ej

=
(
cos(Φ4) cos(Φ3) Φ1

ui
+ cos(Φ4) sin(Φ3) Φ2

ui
+ sin(Φ4) Φ3

ui

)
Z1

+ Φ4
ui
Z2 +

(
sin(Φ4) cos(Φ3)Φ1

ui
+ sin(Φ4) sin(Φ3)Φ2

ui
− cos(Φ4)Φ3

ui

)
Z3

+
(
− sin(Φ3)Φ1

ui
+ cos(Φ3)Φ2

ui

)
Z4.
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Now, we make the wedge product
(44)

Φx ∧ Φy =
(
cos(Φ4) cos(Φ3)Φ14

u + cos(Φ4) sin(Φ3)Φ24
u + sin(Φ4)Φ34

u

)
Z1 ∧ Z2

−
(
cos(Φ3)Φ13

u + sin(Φ3)Φ23
u

)
Z1 ∧ Z3

+
(
cos(Φ4)Φ12

u + sin(Φ4) sin(Φ3)Φ13
u − sin(Φ4) cos(Φ3)Φ23

u

)
Z1 ∧ Z4

−
(
sin(Φ4) cos(Φ3)Φ14

u + sin(Φ4) sin(Φ3)Φ24
u − cos(Φ4)Φ34

u

)
Z2 ∧ Z3

+
(
sin(Φ3)Φ14

u − cos(Φ3)Φ24
u

)
Z2 ∧ Z4

+
(
sin(Φ4)Φ12

u − cos(Φ4) sin(Φ3)Φ13
u + cos(Φ4) cos(Φ3)Φ23

u

)
Z3 ∧ Z4.

The argument (42) holds also in this case.

9.2. Structure of surfaces. Let Σ be a surface of E. It is useful to define
the set of characteristic points as

Σ0 = {p ∈ Σ : TpΣ = Hp},

where Hp is the horizontal plane generated by the vectors X1(p) and X2(p).
Now we consider the surface Σ = {(x, y, θ(x, y), k(x, y))} and we are interested in
the intersection between the tangent space of the surface TpΣ and the horizontal
plane Hp. With this parametrization the tangent vectors are

Φx = (1, 0, θx, kx) Φy = (0, 1, θy, ky)

and the horizontal plane is spanned by

X1 = cos(θ)∂x + sen(θ)∂y + k∂θ, X2 = ∂k.

In order to know TpΣ∩Hp it is necessary to take in account the rank of the matrix

(45) B =


1 0 θx kx
0 1 θy ky

cos(θ) sin(θ) k 0
0 0 0 1

 .

Obvious rank(B) > 3, indeed

det

 1 0 kx
0 1 ky
0 0 1

 6= 0.

The surface would have characteristic points if the vectors Φx and Φy were a linear
combination of X1 and X2, i.e. rank(B) = 2. Hence, this surface Σ does not have
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characteristic points, i.e. Σ0 = ∅. Moreover,

rank(B) = 3 ⇔ det

 cos(θ) sin(θ) k
1 0 θx
0 1 θy

 = 0(46)

⇔ k − θx cos(θ)− θy sin(θ) = 0.(47)

Let us apply the same argument to a surface in the sub-Riemannian manifold
Ẽ. Here, we consider the surface Σ = {(x, y, θ(x, y), ϕ(x, y))} and its tangent
vectors

Φx = (1, 0, θx, ϕx), Φy = (0, 1, θy, ϕy).

Now, in order to know TpΣ∩Hp it is necessary to take in account the rank of the
matrix

(48) B =


1 0 θx ϕx
0 1 θy ϕy

cos(ϕ) cos(θ) cos(ϕ) sin(θ) sin(ϕ) 0
0 0 0 1

 .

Clearly, the rank(B) > 3, indeed

det

 1 0 ϕx
0 1 ϕy
0 0 1

 6= 0.

Therefore, the surface does not have characteristic points and has a foliation prop-
erty if and only if

rank(B) = 3 ⇔ det

 1 0 θx
0 1 θy

cos(ϕ) cos(θ) cos(ϕ) sin(θ) sin(ϕ)

 = 0(49)

⇔ sin(ϕ)− cos(ϕ) (θx cos(θ)− θy sin(θ)) = 0.(50)

9.3. Sub-Riemannian area of a surface. Let Σ be the surface parametrized
by Φ(x, y) = (x, y, θ(x, y), k(x, y)). Thanks to (41), we have
(51)

Φx ∧ Φy =(cos(θ)ky − sin(θ)kx)X1 ∧X2 − (cos(θ)θy − sin(θ)θx)X1 ∧X3+

+X1 ∧X4 + (θxky − θykx − k(cos(θ)ky − sin(θ)kx))X2 ∧X3

+ (sin(θ)ky + cos(θ)kx)X2 ∧X4 + (k − sin(θ)θy − cos(θ)θx)X3 ∧X4.

By the foliation condition (47),

k − θx cos(θ)− θy sin(θ) = 0 ⇔ X1(θ) = k

we have that d(Σ) 6 4. Moreover, the coefficient of X1 ∧ X4 never vanishes,
therefore d(Σ) = 4. Let Ω a subset R2, let Φ : Ω → E be a parametrization of Σ.
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Now we use the tools developed in this chapter to define the area of Σ. We set the
metric g such that

g(Xi, Xi) = 1 i = 1, · · · , 4 and g(Xi, Xj) = 0 i 6= j.

Therefore, here we equip the distribution H on E with the metric h1, later we will
consider also the metric h2. Now, let r > 0 be a real number and we will consider
the Riemannian metrics

gr = g|H1 +
1

r
g|H2 +

1

r2
g|H3 .

An orthonormal basis for gr is

X̃1 = X1, X̃2 = X2, X̃3 =
√
rX3, X̃4 = rX4

Taking into account the surface

Σ = {(x, y, θ, k) : θ(x, y)− θ = 0, k − k(x, y) = 0)}
and setting

X̃i ∧ X̃j =
(
r
d(Xi)−1

2 Xi

)
∧
(
r
d(Xj)−1

2 Xj

)
we express the 2-vector (51) respect to basis (X̃1, · · · , X̃4)
(52)

Φx ∧ Φy =(cos(θ)ky − sin(θ)kx)X̃1 ∧ X̃2 − r−
1
2 (cos(θ)θy − sin(θ)θx)X̃1 ∧ X̃3

+ r−1X̃1 ∧ X̃4 + r−
1
2 (θxky − θykx − k(cos(θ)ky − sin(θ)kx))X̃2 ∧ X̃3

+ r−1(sin(θ)ky + cos(θ)kx)X̃2 ∧ X̃4

+
(((((((((((((((((((

r−
3
2 (k − sin(θ)θy − cos(θ)θx)X̃3 ∧ X̃4.

Then we take into account the Jacobian matrix

(gij) =

(
gr(Φx,Φx) gr(Φx,Φy)
gr(Φx,Φy) gr(Φy,Φy)

)
.

In this case the metric on the 2-vector induced by the metric gr is

gr(X ∧ Y, Z ∧ T ) = gr(X,Z)gr(Y, T )− gr(X,T )gr(Y, Z).

We have taken into account the definition (34), where there are only even and odd
permutations. Thanks to this definition, we have

gr(Φx ∧ Φy,Φx ∧ Φy) = gr(Φx,Φx)gr(Φy,Φy)− gr(Φx,Φy)gr(Φx,Φy) = det(gij).

Hence, it follows

|Φx ∧ Φy|2 = gr(Φx ∧ Φy,Φx ∧ Φy) =
∑

c2
ij r
−d(Xi∧Xj)+2.

The area element is

dΣr =
(∑

c2
ij r
−d(Xi∧Xj)+2

) 1
2
dxdy,
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therefore, the area of the surface Σ with the metric gr is

A(Σ, gr) =

∫
Ω

(∑
c2
ij r
−d(Xi∧Xj)+2

) 1
2
dxdy.

Now by the definition of the area of a surface in the a sub-Riemannian manifold
(39), it follows

A(Σ) = lim
r→0

r
d(Σ)−2

2 A(Σ, gr)

= lim
r→0

r
d(Σ)−2

2

∫
Ω

r−
d(Σ)+2

2

(∑
c2
ij r
−d(Xi∧Xj)+2+d(Σ)−2

) 1
2
dxdy

= lim
r→0

∫
Ω

(∑
c2
ij r
−d(Xi∧Xj)+d(Σ)

) 1
2
dxdy.

If |r| < 1 and the functions cij are in L2(Ω) it is possible to apply dominated
convergence theorem

A(Σ) =

∫
Ω

lim
r→0

(∑
c2
ij r
−d(Xi∧Xj)+d(Σ)

) 1
2
dxdy

=

∫
Ω

(
c2

14 + c2
24

) 1
2 dxdy =

∫
Ω

(1 + (X1k)2)
1
2 dxdy

=

∫
Ω

(1 + (X2
1θ)

2)
1
2 dxdy.

Let us apply the same arguments to a surface Σ in Ẽ, parametrized by

Φ(x, y) = (x, y, θ(x, y), ϕ(x, y)).

By equation (44), it follows

(53)

Φx ∧ Φy =
(
cos(ϕ) cos(θ)ϕy − cos(ϕ) sin(θ)ϕx + sin(ϕ)Φ34

u

)
Z1 ∧ Z2

− (cos(θ)θy − sin(θ)θx)Z1 ∧ Z3

+ (cos(ϕ) + sin(ϕ) sin(θ)θy + sin(ϕ) cos(θ)θx)Z1 ∧ Z4

−
(
sin(ϕ) cos(θ)ϕy − sin(ϕ) sin(θ)ϕx − cos(ϕ)Φ34

u

)
Z2 ∧ Z3

+ (sin(θ)ϕy + cos(θ)ϕx)Z2 ∧ Z4

+ (sin(ϕ)− cos(ϕ) sin(θ)θy − cos(ϕ) cos(θ)θx)Z3 ∧ Z4

By the foliation property (50)

sin(ϕ)− cos(ϕ) (θx cos(θ)− θy sin(θ)) = 0 ⇔ tan(ϕ) = X(θ)
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the degree of Σ, d(Σ) 6 4. Moreover, taking into account the coefficient of Z1∧Z4

we notice that it does not vanish everywhere. Indeed, we have

cos(ϕ) + sin(ϕ)X(θ) =
cos(ϕ)2 + sin(ϕ)2

cos(ϕ)
=

1

cos(ϕ)
6= 0.

Hence, assuming the foliation condition the surface Σ has degree four, d(Σ) = 4.
In conclusion, the area of a surface Σ = Φ(Ω) in Ẽ is
(54)

A(Σ) =

∫
Ω

(
1

cos(ϕ)2
+ (cos(θ)ϕx + sin(θ)ϕy)

2

) 1
2

dxdy =

∫
Ω

(1 + Z1(ϕ)2)
1
2

cos(ϕ)
dxdy.

Indeed, we consider only terms that have degree four which survive when we let
the metric gr blows up.

9.4. Sub-Riemannian area of a surface in E with an arbitrary hori-
zontal metric. Now, we want to deduce the sub-Riemannian area formula for a
(θ,κ)-graph embedded in E equipped with an arbitrary metric h on the horizontal
subbudle

(55) (hij)(p) =

(
h(X1, X1)(p) h(X1, X2)(p)
h(X2, X1)(p) h(X2, X2)(p)

)
,

where p = (x, y, θ(x, y), κ(x, y)). We will use the same notation of the previous
section, therefore we have

TE = H1 ⊕H2 ⊕H3.

We extend the metric h to a metric g such that

g(v, w) = 0 v ∈ H1, w ∈ H2 ⊕H3,

g(Xi, Xj) = 0 3 6 i < j 6 4, g(X3, X3) = g(X4, X4) = 1.

In this case the HC hypothesis holds, then, by the section 5, we know that the
definition of sub-Riemannian area is independent of the metric extension up to a
constant, see equation (37). Here, we consider the equation (52), the only different
from the previous case are the follows terms

gr(X̃1 ∧ X̃4, X̃1 ∧ X̃4) = g(X1, X1)g(X4, X4)− g(X1, X4)2 = h(X1, X1)

gr(X̃2 ∧ X̃4, X̃2 ∧ X̃4) = g(X2, X2)g(X4, X4)− g(X2, X4)2 = h(X2, X2)

Therefore, we have

(56) A(Σ) = λ

∫
Ω

(
h(X1, X1) + h(X2, X2) X1(k))2

) 1
2 dxdy.
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Hence, when we consider the horizontal metric h2, induced by the euclidean metric,
the area functional will be

(57) A(Σ) =

∫
Ω

(1 + k2 +X1(k)2)
1
2 dxdy.

10. Hausdorff dimension

Our goal in this section is to prove that Hausdorff dimension of a submanifold
embedded in an equiregular sub-Riemannian manifold is equal to its degree. This
result was speculated by Gromov in [19, O.6.B], but it hasn’t been proved yet.
Ghezzi and Jean in [18] proved the result only for a strongly equiregular submani-
fold, where intersection of tangent space and each layer Hi has constant dimension
for each point of the submanifold. First of all we undertake an alternative way
to show Ghezzi and Jean’s result. In Section 10.4 we remove strongly equiregular
hypothesis and will prove Gromov’s conjecture.

10.1. Hausdorff measure. Here we report some relevant definitions and the-
orems about the Hausdorff theory of measure, for a complete dissertation see [3].

Definition 2.7. Let (X, d) be a metric space and α be a real number. Let
{Si}i∈I be a countable covering of X, i.e. a collection of sets such that X ⊂

⋃
Si,

we define its α-weight wα({Si}) by the formula

wα({Si}) =
∑
i∈I

(diam Si)
α.

For an ε > 0 define Hα
ε (X) by

Hα
ε (X) = inf{wα({Si}) : diam Si < ε for all i}

where the infimum is taken over all countable coverings of X by sets of diameter
smaller that ε. If there is not a covering set the infimum is +∞. Now, the α-
dimensional Hausdorff measure of X is defined by the formula

Hα(X) = C(α) lim
ε→0

Hα
ε (X)

where C(α) is a positive normalization constant. We set Hα(∅) = 0. Since we
estimate a infimum over a smaller set we have Hα

ε1
(X) > Hα

ε2
(X) when ε1 < ε2.

Therefore, Hα(X) can be a nonnegative real number or +∞.

Theorem 2.1. For a metric space X there exists a α0 ∈ [0,+∞] such that
Hα(X) = 0 for all α > α0 and Hα(X) = +∞ for all α < α0 .

Definition 2.8. The value α0 from Theorem 2.1 is called the Hausdorff di-
mension of X and denoted by dimH(X)

In order to define the α-dimensional spherical Hausdorff measure Sα(X) we
provide the same definition of the α-dimensional Hausdorff measure, but all possi-
ble countable coverings are {B(xi, ri)}i∈I instead of general sets Si. Here B(xi, ri)
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denotes a ball respect to the metric d centered in xi. Moreover, we will consider a
subset of a metric space that is a metric space with the restricted metric.

10.2. Ball-Box Theorem. Let us remind that a ball of radius ε in sub-
Riemannian manifold N is defined as

B(p, ε) = {q ∈ N : dc(p, q) < ε},
where dc denotes the Carnot-Carathéodory distance. In order to understand Ball-
Box Theorem we have to remind what are adapted coordinates and boxes.

Definition 2.9. Coordinates y1, · · · , yn centered in p are said to be linearly
adapted to the distribution H at p if Hi(p) is annihilated by the differentials
dyni+1, · · · , dyn at p, where ni = ni(p) are components of growth vector at p. We
define the w-weighted box at p of size ε as

Boxw(0, ε) = {y ∈ Rn : |yi| < εwi , i = 1, · · · , n}.

The Ball-Box Theorem claims that the image through the coordinates of C-C
balls are uniformly equivalent to the boxes.

Theorem 2.2 (Ball-Box Theorem). There exist linearly adapted coordinates
ϕ = (y1, ..., yn) and positive constants c < C and ε0 > 0 such that for all ε < ε0,

Boxw(cε) ⊂ ϕ(B(p, ε)) ⊂ Boxw(Cε).

We suggest the reader to see [28, 2.4] for a detailed proof of this theorem.

10.3. Hausdorff dimension of a strongly equiregular submanifold of
degree d. Since in this subsection we consider strongly equiregular submanifolds
giving the definition may be appropriate, for further details see [18].

Definition 2.10. Let M be a submanifold of dimension m of equiregular sub-
Riemannian mainfold N and p in M . We consider the flag at p

(58) {0} ⊂ (Hp ∩ TpM) ⊂ (H2
p ∩ TpM) ⊂ · · · ⊂ (Hs

p ∩ TpM) = TpM.

Let us remind that we set, in section 1,

H̃j
p = TpM ∩Hj

p, m̃j = rank(H̃j
p/H̃

j−1
p ).

A submanifold is said strongly equiregular if H̃j
p = TpM ∩Hj

p has constant dimen-
sion for each p in M and i = 1, · · · , s.

The Hausdorff dimension at a point p in N has a local nature, therefore it is
sufficient to work in a small neighborhood of p, B(p, r)∩N . Bellaïche in [2, Chapter
4] show how to construct polynomial privileged coordinates. However, we use the
exponential map, as Ghezzi and Jean did in [18], in order to provide privileged
coordinates such that we have M ∩B(p, r) = {xm+1 = · · · = xn = 0}.
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Definition 2.11. A system of privileged coordinates is a system of local co-
ordinates z1, ..., zn centered at p such that:

(i) z1, ..., zn are linearly adapted at p
(ii) The order of zj at p is exactly wj.

Now, we show how it is possible to create privileged coordinates using the
exponential map. Thanks to the strongly equiregular hypothesis, given r > 0
small enough, we can find m vector fields Y1, · · · , Ym adapted to the flag (58) at
each q in B(p, r)∩M . Moreover reducing r if necessary, we can find Ym+1, · · · , Yn
vector fields such that Y1, · · · , Yn is an adapted basis to flag (29) at each q in
B(p, r) ∩N . We define the local diffeomorphism Φp : Rn −→ N by

(59) Φp(x) = exp

(
n∑

i=m+1

xi Yi

)
◦ exp

(
m∑
i=1

xi Yi

)
(p)

The inverse ϕp = Φ−1
p provides a system of coordinates which are privileged.

Therefore, in these coordinates ϕp the set M ∩B(p, r) coincides with
(60){

exp

(
m∑
i=1

xi Yi

)
(p) : x1, · · · , xm ∈ Ω

}
⊂
{

Φp(x) : xm+1 = · · · = xn = 0
}
,

where Ω is an open set of Rm.
From now on we will work in these coordinates ϕ = (x1, · · · , xn) centered in p.

By the Ball-Box Theorem we have that a ball is uniformly equivalent to a box in
Rn. Therefore, instead of ϕp(M ∩B(p, r)) we consider

S := Boxw(r′) ∩ {x ∈ Rn : xm+1 = · · · = xn = 0},

where r′ < r. Now, if we want to know the Hausdorff dimension we have to cover
this set with boxes of size ε = 1

k
and we have to know how many boxes we need.

(61)

H l
1/k(S) =

∑
boxes

( c
k

)l
= ([r′k] + 1)m̃1 ([r′k] + 1)2m̃2 · · · ([r′k] + 1)sm̃s

( c
k

)l
=

(
s∏
i=1

([r′k] + 1)im̃i

)( c
k

)l
= ([r′k] + 1)

∑s
i=1 im̃i

( c
k

)l
≈ r′d cl

kd

kl
.

Therefore, we have

(62) lim
k→∞

H l
1/k(S) =

{
∞ l < d

0 l > d

Now, thanks to Theorem 2.1 and Definition 2.8 it follows that the Hausdorff di-
mension of a strongly equiregular submanifold in sub-Riemanian manifold is its
degree.
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10.4. Hausdorff dimension of equiregular submanifold of degree d.
The strongly equiregularity is a global property of N and the Hausdorff dimension
at a point p has a local nature. Therefore, to prove that the Hausdorff dimension
at p of a submanifold of degree d is equal to d we need only strongly regularity.

Definition 2.12. A submanifold M is said strongly regular at p if N is an
equiregular manifold and there exists an open neighborhood U of p in N such that
H̃j
q = TqM ∩Hj

q has constant dimension for each q in M ∩ U and i = 1, · · · , s.

Proposition 2.1. Let M be a submanifold of a sub-Riemannian manifold N
with constant degree d. Then, a regular point p in M is strongly regular at p.

Proof. Let (v1(q), · · · , vm(q)) be a basis of the tangent space to M for each
q in M and we consider a smooth m-tensor on M

v = v1 ∧ · · · ∧ vm.

The degree of v, which is the sum of the degree of the simple vector vi

d(v(q)) =
m∑
i=1

d(vi(q)),

must be equal to d, for each q in M . By the semicontinuity of the degree, for each
i = 1, · · · ,m there exists an open neighborhood Ui of p such that

d(vi(q)) > d(vi(p)) q ∈ Ui.

Now, we consider the open set

U = U1 ∩ · · · ∩ Um.

Let q be a point in U , we claim that

d(vi(q)) = d(vi(p)).

Indeed, suppose that there exists a j ∈ {1, · · · ,m} such that d(vj(q)) > d(vj(p))
then it follows

d = d(vj(p)) +
m∑
i=1,
i 6=j

d(vi(p)) 6 d(vj(p)) +
m∑
i=1,
i 6=j

d(vi(q)) <
m∑
i=1

d(vi(q)) = d

which is impossible. Thus, we have d(vi(q)) = d(vi(p)) for each i = 1, · · · ,m and
q in U . This means that if l tangent vectors to M at p lie in the j layer then l
tangent vectors to M at q in U lie in the j layer. In other words, we have

rank(H̃j
q) = rank(TqM ∩Hj

q) = rank(TpM ∩Hj
p) = rank(H̃j

p).

Hence, M is strongly regular at p. �
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Now, if we consider a B(p, r) ⊂ U , where U is the one used in the previous
proof, we can consider Y1, · · · , Ym vector fields adapted to the flag (58) at each
point q in B(p, r) ∩ N as we did in section 10.4 and we can repeat the proof we
did for the strongly equiregular submanifold. Overall, the degree of a smooth
submanifold in a equiregular sub-Riemaniann manifold N represents its Hausdorff
dimension.

It would be really interesting to try to prove that the measure of area for a
submanifold of degree d given (35) is absolutely continuous respect to d-Hausdorff
measure of the submanifold. In [27] Vittone and Magnani dealt with this problem
for a submanifold in a Carnot group and Franchi, Serapioni and Serra Cassano
in [13] faced this problem for an hypersurface in an Heisenberg group.



CHAPTER 3

First variation of area functional

First of all in this chapter we compute the first variation of the area functional
for a θ-graph in S and we obtain the well known second-order partial differential
equation (65) (for further details see [15]). Then we make the first variation of a
(θ,κ)-graph embedded in E endowed with the horizontal metric making X1 and X2

orthonormal and the one induced by the Euclidean metric. Moreover, we compute
the first variation of a (θ,κ)-graph in Ẽ. Basically, as the minimal equation has
a local nature working in Ẽ with Z1, · · · , Z4 is the same as working in E with
X1, · · · , X4 with a change of coordinates and a new horizontal metric. Thus, we
obtain three different minimal equations which are third-order partial differential
equations. The high order is due to the fact that only variations preserving the
degree are allowed otherwise the area functional could change expression. In sec-
tion 4 we study general variations, induced by a vector field X, that preserve the
degree d of submanifold in a general equiregular sub-Riemannian manifold. Hence,
we obtain a PDE system of equations where the coefficients of the vector field X
inducing the variation are involved . This system restricts the range of permitted
variations. At the end of this chapter we verify that this PDE system is only an
equation for (θ,κ)-graphs and it is the same condition determined in section 2 by
the implicit function theorem.

Remark 3.1. In the sequel we will use the vector fields X1, · · · , X4 to derive
functions which depend only on the variable x and y, above all because we are
interested in (θ, k)-graphs. Let f : Ω→ R be a function from an open set Ω ⊂ R2,
then we consider the derivate at the point p = (x, y, k, θ)

X1(f(x, y)) = cos(θ)∂x(f(x, y)) + sin(θ)∂y(f(x, y)) + k∂θ(f(x, y))

= cos(θ)∂x(f(x, y)) + sin(θ)∂y(f(x, y)).

This derivative acts on the functions as if the vector field X1 were projected onto
the retinal plane, we will denote this projection by X1. Therefore when the vector
field X1 acts on a function f depending on x, y, we will use the notation X1(f)
instead of X1(f), in order to remember that the partial derivate ∂θ respect to θ
vanishes. When X2 and X3 act on a function depending only on x, y they vanish

X2(f(x, y)) = 0, X3(f(x, y)) = 0.

63
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Whereas the projection of X4 is equal to X4. We will apply the same notation to
Z1, · · · , Z4 vector fields on Ẽ. They will be projected to Z1, · · · , Z4 vector fields
on the retinal plane.

1. Minimal surface equation in S

We consider the group of rigid motions of the Euclidean plane, i.e. E(2). The
underlying manifold is R2 × S1 where the horizontal distribution H is generated
by the vector fields

X = cos(θ)∂x + sin(θ)∂y, Y = ∂θ,

the Reeb vector field is
T = sin(θ)∂x − cos(θ)∂y

and the contact for is ω = sin(θ)dx − cos(θ)dy. We shall consider E(2) with a
sub-Riemannian metric h defined on its horizontal distribution, such that X, Y
are an orthonormal basis for this metric. A surface Σ in E(2) is the zero level set
of a function u(x, y, θ). We are interested in surfaces which have the following zero
set level

u(x, y, θ) = f(x, y)− θ.
We gave a definition of area of a f -graph in section 8 of chapter 2 and we showed
that

A(Σ) =

∫
Ω

(
1 +X(f)2

) 1
2 dxdy.

Here, we want to show that we obtain the same functional A(Σ) if we consider the
following definition of area

Definition 3.1. Let Σ be a surface in E(2). We define the area of Σ by

A(Σ) =

∫
Σ

|Nh|dΣ,

whereNh is the horizontal projection of the Riemannian normal onto the horizontal
distribution and dΣ is the Riemannian area measure.

In this case the unit normal vector of Σ is

N =
(Xu)X + (Y u)Y + (Tu)T√

(Xu)2 + (Y u)2 + (Tu)2

=
X(f)X − Y + T (f)T√

f 2
x + f 2

y + 1

and the projection of N onto the horizontal plane is

Nh =
X(f)X − Y√
f 2
x + f 2

y + 1
.
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Now we are interested in calculating the Riemannian area measure dΣ. In order
to develop this computation we can consider the graph of function f

Gf = {(x, y, f(x, y)) : (x, y) ∈ Ω}.
Let us consider U = Ω×]0, π[, we define the diffeomorphism

ϕ : U −→ R3 ϕ(x, y, t) = (x, y, t− f(x, y))

and its inverse ϕ−1(x, y, z) = (x, y, z + f(x, y)). Therefore, we have

dϕ−1
( ∂
∂x

)
= (1, 0, fx), dϕ−1

( ∂
∂y

)
= (0, 1, fy).

Taking into account this matrix

(gij) =

(
1 + (fx)

2 fxfy
fxfy 1 + (fy)

2

)
,

it is possible to compute the Riemannian area measure

(63) dΣ =
√
det(gij) dxdy =

(
1 + |∇f |2

) 1
2 dxdy.

Finally, by definition (3.1) the area of a surface Gf is

(64) A(Gf ) =

∫
Ω

|Nh|dΣ =

∫
Ω

√
1 + (X(f))2√
1 + |∇f |2

√
1 + |∇f |2 dxdy

which is the same functional A(Gf ) deduced in section 8.
Now let v be a function in C∞0 (Ω). We will compute the first variation of area

formula with respect to a variation θ + tv to obtain
d

dt

∣∣∣∣
t=0

A(Gθ+tv) =

∫
Ω

X(θ)√
1 +X(θ)2

d

dt

∣∣∣∣
t=0

Xθ+tv(θ + tv).

Now we use
d

dt

∣∣∣∣
t=0

Xθ+tv(θ + tv) =
d

dt

∣∣∣∣
t=0

cos(θ + tv)(θ + tv)x + sin(θ + tv)(θ + tv)y

= −v sin(θ)θx + cos(θ)vx + v cos(θ)θy + sin(θ)vy

= −v T (θ) +X(v),

and the divergence theorem∫
Ω

wX(v) =

∫
Ω

w 〈(cos(θ), sin(θ)),∇v〉

= −
∫

Ω

v
(
(w cos(θ))x + (w sin(θ))y

)
= −

∫
Ω

(
vX(w)− vwT (θ)

)
,
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so that ∫
Ω

w
(
X(v)− v T (θ)

)
= −

∫
Ω

vX(w).

This implies
d

dt

∣∣∣∣
t=0

A(Gθ+tv) = −
∫

Ω

v X

(
X(θ)√

1 +X(θ)2

)
.

Hence the Euler-Lagrange equation for a minimal surface is

(65) X

(
X(θ)√

1 +X(θ)2

)
= 0.

As the unit normal to the characteristic curves in the surface is given by

Z =
X +X(θ)Y√

1 +X(θ)2
,

and the function θ only depends on (x, y), the minimal surface equation is equiv-
alent to θ′′ = 0, where ′ is the arc-length parameter of the characteristic curves.

2. First variation of the area with fixed degree in E

In (E,H, h1) the sub-Riemannian area element for (θ, κ)-graphs of degree four,
satisfying κ = X1(θ), is given by

A(Gθ,κ) =

∫
Ω

√
1 +X1(κ)2 dxdy.

The characteristic direction is given by

Z =
X1 +X1(κ)X2√

1 +X1(κ)2
,

where X2 = ∂k. Therefore, when we consider a function f(x, y) defined on an open
set Ω ⊂ R2 we have

Z(f) =
X1(f)√

1 +X1(κ)2

.

Now we want to induce variations that preserve the degree of the surface, which
is four. A general variation of a (θ, κ)-graph by a function (v, w) would be (θ +
tv, κ+ sw). We seek a condition assuring that the (θ + tv, κ+ sw)-graph still has
degree four. Thus, we set

f(t,s)(x, y) = (x, y, θ + tv, κ+ sw)

and, by condition (47), the degree of the surface Gf(t,s)
is four if and only if

G(t, s, x, y) = cos(θ + tv)(θ + tv)x + sin(θ + tv)(θ + tv)y − (κ+ sw) = 0.
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We wish to find a function s : (−ε, ε)→ R such that G(t, s(t), x, y) = 0, therefore
we have to apply the implicit function theorem. We have

∂G

∂t

∣∣∣∣
t=0

= vX4(θ),+X1(v)

∂G

∂s

∣∣∣∣
s=0

= −w.

Hence, if the function w(x, y) 6= 0 for each (x, y) in Ω, then there exists s(t) such
that

G(t, s(t), x, y) = 0

and

(66) s′(0) = −

∂G

∂t
∂G

∂s

=
vX4(θ) +X1(v)

w
.

Therefore,

(67)
d

dt

∣∣∣∣
t=0

(θ + tv, κ+ s(t)w) = (v, s′(0)w) = (v, vX4(θ) +X1(v)).

Since we search for critical points of the area functional, we derive with respect to
t a variation
d

dt

∣∣∣∣
t=0

A(θ + tv, κ+ s(t)w) =

∫
Ω

X1(κ)√
1 +X1(κ)2

d

dt

∣∣∣∣
t=0

(X1)(θ+tv,κ+s(t)w)(κ+ s(t)w).

We have
d

dt

∣∣∣∣
t=0

(X1)(θ+tv,κ+s(t)w)(κ+ s(t)w) =

=
d

dt

∣∣∣∣
t=0

cos(θ + tv)(κ+ s(t)w)x + sin(θ + tv)(κ+ s(t)w)y

= v X4(κ+ s(0)w) +X1(s′(0)w) = v X4(κ) +X1(vX4(θ) +X1(v))

= v X4(κ) +X1(v)X4(θ) + v X1(X4(θ)) +X2
1 (v).

Now we have to use integration by parts for the second and the fourth terms

(68) II =

∫
Ω

X1(κ)√
1 +X1(κ)2

X1(v)X4(θ) dx dy

(69) IV =

∫
Ω

X1(κ)√
1 +X1(κ)2

X2
1 (v) dx dy

Now it would be useful to enunciate a integration by parts theorem for this
setting
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Lemma 3.1. Let Ω be a open set in R2. Let f, g : Ω→ R be functions in C1
0(Ω).

Let
X1 = cos(θ)∂x + sin(θ)∂y + k∂θ, X4 = − sin(θ)∂x + cos(θ)∂y

be the vector fields defined in (21) and (24). Then, there holds∫
Ω

g X1f dxdy = −
∫

Ω

f (g X4θ +X1g)dxdy.

Proof. Thanks to the formula of integration by parts in Ω ⊂ R2, where ν =
(νx, νy) is the outward unit surface normal to ∂Ω, it follows∫

Ω

g cos(θ)∂xf + g sin(θ)∂yf dxdy =

∫
∂Ω

g f(cos(θ)νx + sin(θ)νy) dσ

−
∫

Ω

f ∂x(g cos(θ)) + f ∂y(g sin(θ)) dxdy

=

∫
∂Ω

g f (cos(θ), sin(θ)) · ν dσ −
∫

Ω

f (g X4θ +X1g)dxdy.

�

First of all, we define

(70) g :=
X1(κ)

(1 + (X1(κ))2)
1
2

.

Thus, if we use this Lemma 3.1 in (68) it follows∫
Ω

g X4(θ)X1(v) dx dy = −
∫

Ω

v
(
g (X4θ)

2 +X1(g)X4(θ) + g X1(X4(θ))
)
dxdy.

On the other hand, Lemma 3.1 applies twice to (69), it gives∫
Ω

g X2
1 (v) dx dy = −

∫
Ω

X1(v) (gX4(θ) +X1(g)) dxdy

=

∫
Ω

v ((g X4(θ) +X1(g)) X4(θ) +X1(g X4(θ) +X1(g)) dxdy.

Hence, we have

(71)
∫

Ω

v
(
X4(κ)g +X1(X4(θ))g +X1(g)X4(θ) +X2

1 (g)
)
dxdy = 0.

Therefore, the minimal surface equation is

(72) X4(X1(θ))g +X1(X4(θ))g +X1(g)X4(θ) +X2
1 (g) = 0.

Let γ(s) be a characteristic curve in E such that

γ′(s) = Zγ(s).
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The characteristic curve lives in (θ, κ)-graph, therefore we have

γ(s) = (x(s), y(s), θ(x(s), y(s)), κ(x(s), y(s)).

Hence,

κ′ =
X1(κ) +X1(κ)X2(κ)√

1 +X1(κ)2
=

X1(κ)√
1 +X1(κ)2

= g

κ′′ =

X1

(
X1(κ)√

1+X1(κ)2

)
√

1 +X1(κ)2
=

X1(X1(k))

(1 +X1(k)2)2

κ′′′ =

X1

(
X1 (g)√

1 +X1(κ)2

)
√

1 +X1(κ)2
.

We can express X2
1 (g) in terms of the the derivatives of κ,

X2
1 (g)√

1 +X1(κ)2
=

X1

(
X1 (g)√

1 +X1(κ)2

)
√

1 +X1(κ)2
− 1√

1 +X1(κ)2
X1

(
1√

1 +X1(κ)2

)
X1(g).

In this case the equation (72) along the characteristic curves is

(73)
(X4(X1(θ)) +X1(X4(θ)))√

1 +X1(κ)2
κ′ + κ′′X4(θ) + κ′′′ −X1

(
1√

1 +X1(κ)2

)
κ′′ = 0.

Now,

X1

(
1√

1 +X1(κ)2

)
= −X1(κ) X1(X1(κ))

(1 +X1(κ)2)
3
2

= −κ′ X1(X1(κ))

(1 +X1(κ)2)
= −κ′ κ′′ (1 +X1(κ)2)

Consequently, the equation (73) is equivalent to

(74)
(X4(X1(θ)) +X1(X4(θ)))√

1 +X1(κ)2
κ′ + κ′′X4(θ) + κ′′′ + κ′ κ′′(1 +X1(κ)2) = 0.

Remark 3.2. The Lie bracket of the vector fields X1, X4 is the vector field

[X1, X4] = a ∂x + b ∂y + c ∂θ + d ∂k.
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If we want to know the effect of this vector field on a function f(x, y), we only
need to compute

a = [X1, X4](x) = X1(− sin(θ)) = −κ cos(θ)

b = [X1, X4](y) = X1(cos(θ)) = −κ sin(θ)

and it follows
[X1, X4](f(x, y)) = −κX1(f(x, y)).

Now, we consider a (θ, k)-graph and we will show that

X4(X1(f(x, y)))−X1(X4(f(x, y)))

is different from [X1, X4](f(x, y)).
At first, we have

(75)

X4(X1f) =X4(cos(θ) fx + sin(θ)fy)

=− sin(θ)(cos(θ) fx + sin(θ)fy)x + cos(θ)(cos(θ) fx + sin(θ)fy)y

=− sin(θ)(− sin(θ)θx fx + cos(θ) fxx + cos(θ)θxfy + sin(θ)fxy)

+ cos(θ)(− sin(θ)θy fx + cos(θ) fxy + cos(θ)θy fy + sin(θ)fyy).

On the other hand,
(76)

X1(X4f) =X1(− sin(θ) fx + cos(θ)fy)

= cos(θ)(− sin(θ) fx + cos(θ)fy)x + sin(θ)(− sin(θ) fx + cos(θ)fy)y

= cos(θ)(− cos(θ)θx fx − sin(θ) fxx − sin(θ)θxfy + cos(θ)fxy)

+ sin(θ)(− cos(θ)θy fx − sin(θ) fxy − sin(θ)θy fy + cos(θ)fyy).

Hence, subtracting (75) and (76), we have

X4(X1f)−X1(X4f) = θx fx + θy fy.

When the function f is θ(x, y), it follows

X4(X1θ)−X1(X4θ) = θ2
x + θ2

y.

Now, we consider the sub-Riemannian manifold (E,H, h2) where h2 is the
horizontal metric induced by Euclidean metric. We computed the area functional
for a (θ,κ)-graph with this metric in (57) and we obtained

A(G(θ,k)) =

∫
Ω

(1 + κ2 +X1(κ)2)
1
2 dxdy.

Here, the characteristic vector is

Z =
X1 +X1(κ)X2√
1 + κ2 +X1(κ)2

.
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Since the degree of a (θ,κ)-graph is independent of the horizontal metric, a variation
preserving the degree has to satisfy (66) and conditions deduced at the beginning
of this section. Now, we compute the first variation

d

dt

∣∣∣∣
t=0

A(θ + tv, κ+ s(t)w) =∫
Ω

κ√
1 + κ2 +X1(κ)2

d

dt

∣∣∣∣
t=0

(κ+ s(t)w)︸ ︷︷ ︸
I

+

∫
Ω

X1(κ)√
1 + κ2 +X1(κ)2

d

dt

∣∣∣∣
t=0

X1(θ+tv,κ+s(t)w)(κ+ s(t)w)︸ ︷︷ ︸
II

.

Setting

g :=
X1(κ)√

1 + κ2 +X1(κ)2

by (71) we deduce that

(77) II =

∫
Ω

v
(
X4(κ)g +X1(X4(θ))g +X1(g)X4(θ) +X2

1 (g)
)
dx dy.

Therefore, we have only to develop

I =

∫
Ω

κ√
1 + κ2 +X1(κ)2

d

dt

∣∣∣∣
t=0

(κ+ s(t)w).

Now, we have
d

dt

∣∣∣∣
t=0

(κ+ s(t)w) = vX4(θ) +X1(v)

and by lemma 3.1 it follows∫
Ω

κ√
1 + κ2 +X1(κ)2

(X1(v) + vX4(θ)) = −
∫

Ω

vX1

(
κ√

1 + κ2 +X1(κ)2

)
.

Hence, thanks to the arbitrary of v the minimal equation with h2 as horizontal
metric is

X4(κ)g +X1(X4(θ))g +X1(g)X4(θ) +X2
1 (g)−X1

(
κ√

1 + κ2 +X1(κ)2

)
= 0.

(78)
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Here, the following derivative rules hold

κ′ =
X1(κ)√

1 + κ2 +X1(κ)2
= g

κ′′ =

X1

(
X1(κ)√

1+κ2+X1(κ)2

)
√

1 + κ2 +X1(κ)2
=
X2

1 (κ)(1 + κ2)− κ X1(κ)2

(1 + κ2 +X1(κ)2)
3
2

κ′′′ =

X1

(
X1 (g)√

1 + κ2 +X1(κ)2

)
√

1 + κ2 +X1(κ)2
.

We can express X2
1 (g) in terms of the the derivatives of κ,

X2
1 (g) = X1

(
X1 (g)√

1 + κ2 +X1(κ)2

)
−X1

(
1√

1 + κ2 +X1(κ)2

)
X1(g).

Putting these equations in (78), we have

X4(κ)g +X1(X4(θ))g +X1(g)X4(θ)

+X1

(
X1 (g)√

1 + κ2 +X1(κ)2

)
−X1

(
1√

1 + κ2 +X1(κ)2

)
X1(g)

−

(
X1(κ)√

1 + κ2 +X1(κ)2

)
+ κX1

(
1√

1 + κ2 +X1(κ)2

)
= 0.

Hence, it follows

(X4(κ) +X1(X4(θ))− 1)√
1 + κ2 +X1(κ)2

κ′ + κ′′

(
X4(θ)−X1

(
1√

1 + κ2 +X1(κ)2

))

+ κ′′′ + κ

(
1√

1 + κ2 +X1(κ)2

)′
= 0.

3. First variation of the area in a different manifold

In Ẽ the area functional for a (θ, ϕ)-graph satisfying the foliation condition is
given by

(79) A(Σ) =

∫
Ω

(
1 + Z1(ϕ)2

cos(ϕ)2

) 1
2

dxdy.

Furthermore, the foliation condition implies that intersection between the distri-
bution and the tangent plane has dimension one. The characteristic vector is an
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unitary vector that gives the direction of foliation curves and it is equal to

Z =
Z1 + Z1(ϕ)Z2√

1 + Z1(ϕ)2
.

Here, a variation which preserves the degree has to satisfy the following condition

G(t, s, x, y) = cos(θ + tv)(θ + tv)x + sin(θ + tv)(θ + tv)y − tan(ϕ+ sw) = 0.

Therefore, we have

∂G

∂t

∣∣∣∣
t=0

= v Z4(θ) +X(v),

∂G

∂s

∣∣∣∣
s=0

= −
(
1 + tan(ϕ)2

)
w.

If we consider w(x, y) 6= 0 we can apply the implicit function theorem to express
s respect to t such that

G(t, s(t), x, y) = 0.

Furthermore, we have

s′(0) = −

∂G

∂t
∂G

∂s

=
v Z4(θ) +X(v)

(1 + tan(ϕ)2) w
=

cos(ϕ)

w
(v cos(ϕ) Z4(θ) + Z1(v)) .

Hence, it follows

(80)
d

dt

∣∣∣∣
t=0

(θ+tv, ϕ+s(t)w) = (v, s′(0)w) = (v, cos(ϕ)(v cos(ϕ) Z4(θ) + Z1(v))) .

Then, we can compute the first variation

(81)

d

dt

∣∣∣∣
t=0

A(θ + tv, ϕ+ s(t)w) =∫
Ω

sin(ϕ)

cos(ϕ)2

√
1 + Z1(ϕ)2 s′(0)w

+

∫
Ω

1

cos(ϕ)

Z1(ϕ)√
1 + Z1(ϕ)2

d

dt

∣∣∣∣
t=0

Z1(θ+tv,ϕ+s(t)w)(ϕ+ s(t)w).
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Now, it is useful to develop
(82)

d

dt

∣∣∣∣
t=0

Z1(θ+tv,ϕ+s(t)w)(ϕ+ s(t)w) =

=
d

dt

∣∣∣∣
t=0

cos(ϕ+ s(t)w) (cos(θ + tv)(ϕ+ s(t)w)x + sin(θ + tv)(ϕ+ s(t)w)y)

= − sin(ϕ) s′(0)w X(ϕ) + cos(ϕ) v Z4(ϕ+ s(0)w) + Z1(s′(0)w)

= − sin(ϕ)(v cos(ϕ) Z4(θ) + Z1(v)) Z1(ϕ) + v cos(ϕ)Z4(ϕ)

+ Z1 (cos(ϕ)(v cos(ϕ) Z4(θ) + Z1(v)))

= −2 sin(ϕ)(v cos(ϕ) Z4(θ) + Z1(v)) Z1(ϕ) + v cos(ϕ)Z4(ϕ)

+ cos(ϕ)Z1 (v cos(ϕ) Z4(θ) + Z1(v)) .

Then if we set

h :=
Z1(ϕ)√

1 + Z1(ϕ)2

and we put (82) in (81) we have

(83)

(81) =

∫
Ω

sin(ϕ)

cos(ϕ)

√
1 + Z1(ϕ)2 (v cos(ϕ) Z4(θ) + Z1(v))

−
∫

Ω

2
h

cos(ϕ)
sin(ϕ)(v cos(ϕ) Z4(θ) + Z1(v)) Z1(ϕ) +

∫
Ω

v h Z4(ϕ)

+

∫
Ω

h Z1 (v cos(ϕ) Z4(θ) + Z1(v))︸ ︷︷ ︸
I

.

In this setting there exists an integration by parts similar to Lemma 3.1

Lemma 3.2. Let Ω be an open set of R2 and let f, g : Ω→ R be real functions
in C1

0 . Let

Z1 = cos(ϕ)X, Z3 = sin(ϕ)X Z4 = − sin(θ)∂x + cos(θ)∂y

be vector field on Ω. Then, there holds∫
Ω

g Z1(f) = −
∫

Ω

f (g cos(ϕ) Z4(θ)− Z3(ϕ)g + Z1(g)).

Now, we apply this Lemma to I in (83)

I = −
∫

Ω

(v cos(ϕ) Z4(θ) + Z1(v)) (h cos(ϕ) Z4(θ)− Z3(ϕ) h+ Z1(h)).
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Therefore, (83) becomes

(81) =

∫
Ω

sin(ϕ)

cos(ϕ)

√
1 + Z1(ϕ)2 (v cos(ϕ) Z4(θ) + Z1(v))

−
∫

Ω

h

cos(ϕ)
sin(ϕ)(v cos(ϕ) Z4(θ) + Z1(v)) Z1(ϕ) +

∫
Ω

v h Z4(ϕ)

−
∫

Ω

(v cos(ϕ) Z4(θ) + Z1(v)) (h cos(ϕ) Z4(θ) + Z1(h)).

If we add the first and the second term we obtain

(81) =

∫
Ω

sin(ϕ)

cos(ϕ)

(v cos(ϕ) Z4(θ) + Z1(v))√
1 + Z1(ϕ)2︸ ︷︷ ︸

III

+

∫
Ω

v h Z4(ϕ)

−
∫

Ω

(v cos(ϕ) Z4(θ) + Z1(v)) (h cos(ϕ) Z4(θ) + Z1(h))︸ ︷︷ ︸
II

.

Applying once more Lemma 3.2 to II and III, it follows

II = −
∫

Ω

v Z3(ϕ)(h cos(ϕ) Z4(θ) + Z1(h)) +

∫
Ω

v Z1(h cos(ϕ) Z4(θ) + Z1(h)),

III = +

∫
Ω

v Z3(ϕ)
tan(ϕ)√

1 + Z1(ϕ)2
−
∫

Ω

v Z1

(
tan(ϕ)√

1 + Z1(ϕ)2

)
.

Therefore, it follows

(81) = +

∫
Ω

v Z3(ϕ)
tan(ϕ)√

1 + Z1(ϕ)2
−
∫

Ω

v Z1

(
tan(ϕ)√

1 + Z1(ϕ)2

)
+

∫
Ω

v h Z4(ϕ)

−
∫

Ω

v Z3(ϕ)(h cos(ϕ) Z4(θ) + Z1(h)) +

∫
Ω

v Z1(h cos(ϕ) Z4(θ) + Z1(h)).

By the arbitrariness of v we have that the minimal equation is

(84)
Z3(ϕ)

tan(ϕ)√
1 + Z1(ϕ)2

− Z1

(
tan(ϕ)√

1 + Z1(ϕ)2

)
+ h Z4(ϕ)

−Z3(ϕ)(h cos(ϕ) Z4(θ) + Z1(h)) + Z1(h cos(ϕ) Z4(θ) + Z1(h)) = 0.
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There holds

ϕ′ =
Z1(ϕ)√

1 + Z1(ϕ)2
= h,

ϕ′′ =

Z1

(
Z1(ϕ)√

1+Z1(ϕ)2

)
√

1 + Z1(ϕ)2
=

Z2
1(ϕ)

(1 + Z1(ϕ)2)2
,

ϕ′′′ =

Z1

(
Z1 (g)√

1 + Z1(ϕ)2

)
√

1 + Z1(ϕ)2
.

Cleaning equation (84) up, we obtain
(85)

− h+ Z1(ϕ) tan(ϕ)
Z2

1(ϕ)

(1 + Z1(ϕ)2)
3
2

+ h Z4(ϕ)− Z3(ϕ)(h cos(ϕ) Z4(θ) + Z1(h))

+ Z1(h) cos(ϕ) Z4(θ)− h sin(ϕ)Z1(ϕ)Z4(θ) + h cos(ϕ)Z1(Z4(θ))

+ Z1

(
Z1(h)2√
1 + Z1(ϕ)

)
− Z1

(
1√

1 + Z1(ϕ)2

)
Z1(h) = 0.

Developing the equation we have

(86)

h(−2 sin(ϕ)Z1(ϕ)Z4(θ)− 1 + Z4(ϕ) + cos(ϕ)Z1(Z4(θ)))

+ Z1(h) cos(ϕ) Z4(θ)+

+ Z1

(
Z1(h)√

1 + Z1(ϕ)2

)
− Z1(ϕ)Z1(h)2 = 0.

Cleaning up, it follows

(87)

ϕ′√
1 + Z1(ϕ)2

(−2 sin(ϕ)Z1(ϕ)Z4(θ)− 1 + Z4(ϕ) + cos(ϕ)Z1(Z4(θ)))

+ ϕ′′ cos(ϕ) Z4(θ) + ϕ′′′ − ϕ′ Z1(h)2 = 0.

4. First variation of the area of a submanifold

Let (N,H, h) be a sub-Riemannian manifold, where h is a metric on the hori-
zontal space H. As we did in 4 we extend the horizontal metric to a Riemannian
metric which makes the Hi(p) space orthogonal for each p in N . Now, we consider
M a m-dimensional submanifold of degree d in N and our aim is to find a con-
dition on the vector field X, that induces the first variation, in order to preserve
the degree d of the submanifold in the deformation. Let p be a point in M , we
consider e1, · · · , em a basis of TpM for the auxiliary Riemannian metric g. Let X
be a vector field with compact support, we can extend e1, · · · , em to E1, · · · , Em
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along the flow line of X passing through p. Let I = (−δ, δ) be an open set of R,
we will denote by {ϕt}t∈I the one parametric group of local diffeomorphism of a
neighborhood U of p in N associated to the vector field X, see [35]. The condition
deg(ϕt(M)) = d is equivalent to

(i) g(E1(t)∧ · · · ∧Em(t), v) = 0 for each p in M , t in I and v = v1 ∧ · · · ∧ vm
m-vector of degree greater than d at p,

(ii) there exists w m-vector of degree d at ϕt(p) such that

g(E1(t) ∧ · · · ∧ Em(t), w) 6= 0.

Now, we can take into account the derivative of condition (i) respect to vector Xp

(88) Xp g(E1 ∧ · · · ∧ Em, v) = 0.

Let us denote by ∇ the Levi-Civita connection, compatible with the metric g and
symmetric. Thus, we have

(89) g

(
m∑
i=1

e1 ∧ · · · ∧ ∇Xpei ∧ · · · ∧ em, v

)
+ g

(
e1 ∧ · · · ∧ em,∇Xpv

)
= 0.

Notice that ∇EiX = ∇XEi, since [Ei, X] = 0. Moreover, ∇eiX can be replaced
by (∇eiX)⊥, since ei ∧ ei = 0. Hence, we can write the previous equation as

(90) g

(
m∑
i=1

e1 ∧ · · · ∧ (∇eiX)⊥ ∧ · · · ∧ em, v

)
+ g

(
e1 ∧ · · · ∧ em,∇Xpv

)
= 0.

Now, we consider a coordinate neighborhood (U, x1, · · · , xn) of p in N such that

U ∩M = {xm+1 = · · · = xn = 0}.

In this chart the e1, · · · , em can be replaced by
∂

∂x1

∣∣∣∣
p

, · · · , ∂

∂xm

∣∣∣∣
p

and we can

express the vector field X as

X =
n∑
i=1

fi
∂

∂xi
.

In order to develop the equation (90) we have to compute the term

(91) ∇ejX = ∇ ∂

∂xj

(
n∑
i=1

fi
∂

∂xi

)
=

n∑
i=1

∂fi
∂xj

∂

∂xi
+ fi∇ ∂

∂xj

(
∂

∂xi

)
.
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Therefore, it follows

(92)

g

(
∂

∂x1

∧ · · · ∧ ∇ejX ∧ · · · ∧
∂

∂xm
, v

)
=

n∑
i=m+1

∂fi
∂xj

g

(
∂

∂x1

∧ · · · ∧ ∂

∂xi
∧ · · · ∧ ∂

∂xm
, v

)

+
n∑
i=1

fi g

(
∂

∂x1

∧ · · · ∧ ∇ ∂
∂xj

(
∂

∂xi

)
∧ · · · ∧ ∂

∂xm
, v

)
.

Thus, we put this term in equation (90)

(93)

m∑
j=1

n∑
i=m+1

∂fi
∂xj

g

(
∂

∂x1

∧ · · · ∧ ∂

∂xi
∧ · · · ∧ ∂

∂xm
, v

)

+
m∑
j=1

n∑
i=1

fi g

(
∂

∂x1

∧ · · · ∧ ∇ ∂
∂xj

(
∂

∂xi

)
∧ · · · ∧ ∂

∂xm
, v

)

+
m∑
j=1

n∑
i=1

fi g

(
∂

∂x1

∧ · · · ∧ ∂

∂xm
, v1 ∧ · · · ∧ ∇ ∂

∂xi

vj ∧ · · · ∧ vm
)

= 0.

Since v is an arbitrary m-vector with degree greater that d, we have a system
of partial differential equations of first order. If we want to know how many
restrictions are involved, we have to know the dim(Λr

m(U)p), where Λr
m(U)p is the

space of m-vectors which have degree r greater that d at p. In this case it is crucial
the assumption that the distribution H is equiregular, i.e. the dimension of the
layers Hi(p) is constant for each p in N , therefore the dimension dim(Λr

m(U)p) will
be constant as well. Thus, the number of equations l is constant at each point.
Let us remind that M has degree d and that the tangent space

TN = H1 ⊕ · · · ⊕Hs,

then the PDE system has l equations, where

l =
s∑

r=d+1

dim(Λr
m(U)p).

The set of vector fields on an open set, X(U), is an infinite-dimensional space.
Equations (93) give conditions that reduce the entirety of vector fields admissible
for the first variation. This set will be denoted as A(U) ⊂ X(U).

Then, we compute the dimension of Λr
m(U)p in order to know the number of

the equations of the PDE system. Let v = v1 ∧ · · · ∧ vm be an m-vector and let
r = d(v) be the fixed degree, we can choose k1 vectors of the wedge product in the
first layer H1, ki vectors in the i layer Hi and ks vectors in Hs such that

k1 + · · ·+ ks = m.
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Moreover, if the degree is r = d(v), the coefficients ki have to verify

1 · k1 + 2 · k2 + · · ·+ s · ks = r.

Now, for each layer we can choose ki vectors, disregarding their order, from a basis
of Hi, i.e from dim(Hi) elements. The number that correspond to those choices is
the binomial coefficient (

dim(Hi)

ki

)
.

Hence, we can compute the dimension of the space of m-vector of degree r as

(94)
∑

k0+···+ks=m,
0·k0+1·k1+···+s·ks=r

(
s∏
i=0

(
dim(Hi)

ki

))
= dim(Λr

m(U)p).

Let (M,µ) be an embedded submanifold of degree d of N with a Riemannian
metric g.

Φ : M → N

Thanks to Definition 35 we have

A(M) =

∫
M

|(e1 ∧ · · · ∧ em)d| dµ

where e1, · · · , em is an basis of TpM .

Definition 3.2. Let X be a vector field with compact support in A(M), i.e
that verifies the PDE system given by (93), and let {ϕt} be the flow associated to
the vector field X. We have that the first variation for the sub-Riemannian area
of M is

(95)
d

dt

∣∣∣∣
t=0

A(ϕt(M)).

As we have done previously, we extend e1, · · · , em to E1, · · · , Em along the flow
line of X passing through p. Moreover, we have defined a metric g on them-vectors
of degree d, Λd

m(U), thus there exists a orthonormal basis D = (w1, · · · , wl), where
l is the dimension of Λd

m(U), which we calculated in (94), and wi are m-vector in
Λd
m(U) . Now, using the dominated convergence theorem, we put the derivative
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under the integral sign and it follows

d

dt

∣∣∣∣
t=0

A(ϕt(M)) =∫
M

d

dt

∣∣∣∣
t=0

| (E1(t) ∧ · · · ∧ Em(t))d | dµ

=

∫
M

Xp

(∑
w∈D

g(E1(t) ∧ · · · ∧ Em(t), w)2

) 1
2

dµ

=

∫
M

1

|(e1 ∧ · · · ∧ em)d|
∑
w∈D

Xp g(E1(t) ∧ · · · ∧ Em(t), w) dµ

=

∫
M

1

|(e1 ∧ · · · ∧ em)d|
∑
w∈D

g

(
m∑
i=1

e1 ∧ · · · ∧ (∇eiX)⊥ ∧ · · · ∧ em, w

)
dµ

+

∫
M

1

|(e1 ∧ · · · ∧ em)d|
∑
w∈D

g
(
e1 ∧ · · · ∧ em,∇Xpw

)
dµ.

5. PDE system restrictions for a graph

Let us recall the vector fields

X1 = cos(θ)∂x + sin(θ)∂y + k∂θ, X2 = ∂k,

which generate the distribution H, and their Lie bracket derivatives

X3 = [X1, X2] = −∂θ,
X4 = [X1, [X1, X2]] = − sin(θ)∂x + cos(θ)∂y.

As we did previously, we consider the metric g on the tangent bundle that makes
X1, X2, X3, X4 orthonormal. We want to re-write the PDE system (93) for a
(θ, k)-graph of degree four in E. The only 2-vector of degree greater than four is
X3∧X4, therefore the PDE system is essentially an equation. The tangent vectors
to the embedding Φ are

Φx = ∂x + θx∂θ + kx∂k,

Φy = ∂y + θy∂θ + ky∂k.

As we are working with the vector fieldsXi, we express the vector field that induces
the first variation respect to Xi

X =
4∑
i=1

fiXi, where fi ∈ C∞0 (E)
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We can consider as tangent vectors a linear combination of Φx and Φy, for example

e1 = cos(θ)Φx + sin(θ)Φy = X1 +X1(k)X2

e2 = − sin(θ)Φx + cos(θ)Φy = X4 −X4(θ)X3 +X4(k)X2.

Instead of developing local equation (93) it would be better to consider equation
(90). Therefore, we have

(96)

g(∇e1X ∧ e2, X3 ∧X4)︸ ︷︷ ︸
A

+ g(e1 ∧∇e2X, X3 ∧X4)︸ ︷︷ ︸
B

+ g(e1 ∧ e2, ∇X (X3 ∧X4))︸ ︷︷ ︸
C

= 0.

In order to develop this equation it would be useful to know

∇XiXj i, j = 1, · · · , 4,
which can be computed by the Koszul formula, see [10]. Let N be a Riemannian
manifold of dimension n and let X, Y, Z be vector fields in X(N), then there holds

(97)
2 g(Z,∇YX) =X g(Y, Z) + Y g(Z,X)− Z g(X, Y )

− g([X,Z], Y )− g([Y, Z], X)− g([X, Y ], Z).

Therefore, if we write the Koszul formula for our vector fields X1, · · · , X4, we have

(98)
2 g(Xk,∇XiXj) =Xj g(Xi, Xk) +Xi g(Xk, Xj)−Xk g(Xj, Xi)

− g([Xj, Xk], Xi)− g([Xi, Xk], Xj)− g([Xj, Xi], Xk),

where i, j, k = 1, · · · , 4. Later we should use all possible Lie brackets, thus here
we provide a list of them

[X3, X4] = X1 + k X3,

[X1, X4] = −k X1 − k2 X3

[X2, X4] = 0.

We start from ∇X1X2:

2 g(X1,∇X1X2) = −2 g([X2, X1], X1) = −2 g(X3, X1) = 0

2 g(X2,∇X1X2) = − g([X1, X2], X2)− g([X2, X1], X2) = 0

2 g(X3,∇X1X2) = −((((((((
g([X2, X3], X1)− ((((((((

g([X1, X3], X2)− g([X2, X1], X3) = 1

2 g(X4,∇X1X2) = − g([X2, X4], X1)− g([X1, X4], X2)− g([X2, X1], X4)

= g(k X1 + k2 X3, X2) = 0.

Therefore, it follows

∇X1X2 =
1

2
X3 =

1

2
[X1, X2].
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Moreover, thanks to the symmetry of the Levi-Civita connection, we have

∇X1X2 −∇X2X1 = [X1, X2] ⇒ ∇X2X1 = −1

2
X3.

Now, we compute ∇X1X3:

2 g(X1,∇X1X3) = −2 g([X3, X1], X1) = 2 g(X4, X1) = 0

2 g(X2,∇X1X3) = −((((((((
g([X3, X2], X1)− g([X1, X2], X3)−((((((((

g([X3, X1], X2) = −1

2 g(X3,∇X1X3) = −g([X3, X3], X1)− g([X1, X3], X3)− g([X3, X1], X3) = 0

2 g(X4,∇X1X3) = −g([X3, X4], X1)− g([X1, X4], X3)− g([X3, X1], X4)

= −1 + k2 + 1 = k2.

Therefore, we have

∇X1X3 =
1

2
(−X2 + k2 X4).

In addition, by the symmetry of Levi-Civita connection, it follows

∇X1X3 −∇X3X1 = [X1, X3] = X4 ⇒ ∇X3X1 = −1

2
X2 +

(
k2

2
− 1

)
X4.

For the term ∇X1X4 we have:

2 g(X1,∇X1X4) = −2 g([X4, X1], X1) = −2 k

2 g(X2,∇X1X4) = −g([X4, X2], X1)− g([X1, X2], X4)− g([X4, X1], X2) = 0

2 g(X3,∇X1X4) = −g([X4, X3], X1)− g([X1, X3], X4)− g([X4, X1], X3)

= 1− 1− k2 = −k2

2 g(X4,∇X1X4) = −g([X4, X4], X1)− g([X1, X4], X4)− g([X4, X1], X4)) = 0.

Hence, it follows

∇X1X4 = −k X1 −
k2

2
X3.

Furthermore, the symmetry of Levi-Civita connection allow us to determine∇X4X1

using the Lie bracket

∇X1X4 −∇X4X1 = [X1, X4] = −k X1 − k2 X3 ⇒ ∇X4X1 =
k2

2
X3.

We miss to calculate ∇X1X1:

2 g(X1,∇X1X1) = 0

2 g(X2,∇X1X1) = −2 g([X1, X2], X1) = 0

2 g(X3,∇X1X1) = −2 g([X1, X3], X1) = 0

2 g(X4,∇X1X1) = −2 g([X1, X4], X1) = 2 k.
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Therefore, we have
∇X1X1 = k X4.

Now, we compute ∇X2X2:

2 g(X1,∇X2X2) = −2 g([X2, X1], X2) = 0

2 g(X2,∇X2X2) = 0

2 g(X3,∇X2X2) = −2 g([X2, X3], X2) = 0

2 g(X4,∇X2X2) = −2 g([X2, X4], X2) = 0.

Therefore, we have
∇X2X2 = 0.

Now, we compute ∇X3X3:

2 g(X1,∇X3X3) = −2 g([X3, X1], X3) = 0

2 g(X2,∇X3X3) = −2 g([X3, X2], X3) = 0

2 g(X3,∇X3X3) = 0

2 g(X4,∇X3X3) = −2 g([X3, X4], X3) = −2 k.

Therefore, we have
∇X3X3 = −k X4.

Now, we compute ∇X4X4:

2 g(X1,∇X4X4) = −2 g([X4, X1], X4) = 0

2 g(X2,∇X4X4) = −2 g([X4, X2], X4) = 0

2 g(X3,∇X4X4) = −2 g([X4, X3], X4) = 0

2 g(X4,∇X4X4) = −0.

Therefore, we have
∇X4X4 = 0.

Now, it is the time of ∇X2X3:

2 g(X1,∇X2X3) = −((((((((
g([X3, X1], X2)− g([X2, X1], X3)−((((((((

g([X3, X2], X1) = 1

2 g(X2,∇X2X3) = −g([X3, X2], X2)− g([X2, X2], X3)− g([X3, X2], X2) = 0

2 g(X3,∇X2X3) = −g([X3, X3], X2)− g([X2, X3], X3)− g([X3, X2], X3) = 0

2 g(X4,∇X2X3) = −g([X3, X4], X2)− g([X2, X4], X3)− g([X3, X2], X4) = 0.
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Thus, we have

∇X2X3 =
1

2
X1

and obviously, since [X3, X2] = 0, it follows

∇X3X2 =
1

2
X1.

Now, we compute ∇X2X4:

2 g(X1,∇X2X4) = −((((((((
g([X4, X1], X2)−((((((((

g([X2, X1], X4)−((((((((
g([X4, X2], X1) = 0

2 g(X2,∇X2X4) = −2 g([X4, X2], X2) = 0

2 g(X3,∇X2X4) = −((((((((
g([X4, X3], X2)−((((((((

g([X2, X3], X4)−((((((((
g([X4, X2], X3) = 0

2 g(X4,∇X2X4) = −g([X2, X4], X4)− g([X4, X2], X4) = 0.

Therefore, we have
∇X2X4 = 0.

Since [X2, X4] = 0, it follows
∇X4X2 = 0.

We miss the last term ∇X3X4:

2 g(X1,∇X3X4) = −g([X4, X1], X3)− g([X3, X1], X4)− g([X4, X3], X1)

= −k2 + 1 + 1 = −k2 + 2

2 g(X2,∇X3X4) = −g([X4, X2], X3)− g([X3, X2], X4)− g([X4, X3], X2) = 0

2 g(X3,∇X3X4) = −2 g([X4, X3], X3) = 2 k

2 g(X4,∇X3X4) = −g([X3, X4], X4)− g([X4, X3], X4) = 0.

At the end, we have

∇X3X4 =

(
−k

2

2
+ 1

)
X1 + kX3.

Since [X3, X4] = X1 + k X3, it follows

∇X4X3 = −k
2

2
X1.

Let us compute separately each term (A,B,C) of the equation (96), using the
covariant derivatives we have just evaluated. First of all we take into account

(99) A = g(∇e1X ∧ e2, X3 ∧X4).
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It is necessary to develop the following term

(100)

∇e1X ∧ e2 =

(
∇X1+X1(k)X2

4∑
i=1

fi Xi

)
∧ e2

=

(
∇X1

(
4∑
i=1

fi Xi

)
+X(k)∇X2

(
4∑
i=1

fi Xi

))
∧ e2

=

(
4∑
i=1

(X1(fi) +X1(k) X2(fi))Xi

)
∧ e2

+

(
4∑
i=1

fi(∇X1Xi +X1(k)∇X2Xi)

)
∧ e2

=
4∑
i=1

(X1(fi) +X1(k) X2(fi)) Xi ∧ e2

+ f1

(
k X4 −

X1(k)

2
X3

)
∧ e2 +

1

2
f2 X3 ∧ e2

+ f3

(
1

2
(−X2 + k2X4) +

X1(k)

2
X1

)
∧ e2

+ f4

(
−k X1 −

k2

2
X3

)
∧ e2.

Notice that

(101)

g(Xi ∧ e2, X3 ∧X4) = g(Xi, X3)g(e2, X4)− g(Xi, X4)g(e2, X3)

=


0 i = 1, 2

1 i = 3

X4(θ) i = 4.

Putting (100) in (99) and taking into account (101), we have

(102)
A =X1(f3) +X1(k) X2(f3) +X4(θ) (X1(f4) +X1(k) X2(f4))

+

(
−X1(k)

2
+ k X4(θ)

)
f1 +

1

2
f2 +

(
k2

2
X4(θ)

)
f3 −

k2

2
f4

Now, we consider the second term of equation (96)

B = g(e1 ∧∇e2X, X3 ∧X4).

Before we start computing e1 ∧∇e2X, it is convenient to notice that

g(e1 ∧Xi, X3 ∧X4) = g(e1, X3)g(Xi, X4)− g(e1, X4)g(Xi, X3) = 0,
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since e1 = X1 + X1(k)X2 does not have components in the direction X3 and X4.
Therefore, it follows that

B = 0.

The last term of equation (96) is

C = g(e1 ∧ e2, ∇X (X3 ∧X4)) = g(e1 ∧ e2, ∇XX3 ∧X4)︸ ︷︷ ︸
I

+ g(e1 ∧ e2, X3 ∧∇XX4)︸ ︷︷ ︸
II

Now,

I = g(e1,∇XX3) g(e2, X4)−
((((((((((((
g(e1, X4) g(e2,∇XX3) = g(e1,∇XX3).

Furthermore, we have

4∑
i=1

fi ∇XiX3 =
1

2
f1

(
−X2 + k2X4

)
+

1

2
f2 X1−k f3 X4 − f4

k2

2
X1.

If we make the scalar product of this term and e1, we have

(103) I = −X1(k)

2
f1 +

1

2
f2 −

k2

2
f4.

Now, we consider

II =
((((((((((((
g(e1, X3)g(e2,∇XX4)− g(e1,∇XX4)g(e2, X3) = X4(θ) g(e1,∇XX4).

In addition, we have

4∑
i=1

fi ∇XiX4 =f1

(
−k X1 −

k2

2
X3

)
+

((
−k

2

2
+ 1

)
X1 + kX3

)
f3.

If we make the scalar product of this term and e1, we have

II =

(
−k f1 +

(
−k

2

2
+ 1

)
f3

)
X4(θ).

Then, if we add I and II it follows

C = I + II =

(
−X1(k)

2
− k X4(θ)

)
f1 +

1

2
f2 +

(
1− k2

2

)
X4(θ) f3 −

k2

2
f4
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Going back to equation (96), we have

(104)

0 =A + B + C
=X1(f3) +X1(k) X2(f3) +X4(θ) (X1(f4) +X1(k) X2(f4))

+

(
−X1(k)

2
+ k X4(θ)

)
f1 +

1

2
f2 +

(
k2

2
X4(θ)

)
f3 −

k2

2
f4

+

(
−X1(k)

2
− k X4(θ)

)
f1 +

1

2
f2 +

(
1− k2

2

)
X4(θ) f3 −

k2

2
f4

=X1(f3) +X1(k) X2(f3) +X4(θ) (X1(f4) +X1(k) X2(f4))

−X1(k)f1 + f2 +X4(θ) f3 − k2f4.

At the end, the PDE equation is

(105)
X1(f3) +X1(k) X2(f3) +X4(θ) (X1(f4) +X1(k) X2(f4))

−X1(k)f1 + f2 +X4(θ) f3 − k2f4 = 0.

Remark 3.3. There are two variations making the surface flow into itself. This
phenomenon happens when the vector fields X, inducing the variation, is equal to
tangent vectors e1 or e2. Indeed the coefficients f1 = 1, f2 = X1(k), f3 = 0 and
f4 = 0 of

e1 = X1 +X1(k)X2

satisfy equation (105). Moreover, if we put the coefficients f1 = 0, f2 = X4(k),
f3 = −X4(θ) and f4 = 1 of

e2 = X4 −X4(θ)X3 +X4(k)X2.

in equation (105) we obtain

−X1(X4(θ)) +X4(X1(θ))−X4(θ)2 −X1(θ)2

which thanks to Remark 3.2 is equal to
θ2
x + θ2

y −X4(θ)2 −X1(θ)2 = 0.

When we induce a variation (θ + tv, k + tw) of a (θ,k)-graph in direction θ and k
the vector field inducing the variation is

X = w(x, y)X2 − v(x, y)X3.

Therefore the PDE equation (105) corresponds to

−X1(v) + w −X4(θ)v = 0.

This is the condition deduced in section 2 by the implicit function theorem.
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