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To my father, my compass and my helm,
and to my mother, my anchor and my sail,

because only with them I browse sharp and fearless
in this treacherous and stormy world.

Amio padre, mia bussola e mio timone,
e a mia madre, mia ancora e mia vela,

perché solo grazie a loro navigo agile e senza paura
in questo infido e tempestoso mondo.





Sommario esteso

Il traguardo più importante per la connettività wireless del
futuro sarà sfruttare appieno le potenzialità offerte da tutte
le interfacce di rete dei dispositivi mobili. Per questo motivo
con ogni probabilità il multihoming sarà un requisito obbliga-
torio per quelle applicazioni che puntano a fornire la migliore
esperienza utente nel loro utilizzo. Sinteticamente è possibile
definire il multihoming come quel processo complesso per cui
un end-host o un end-site ha molteplici punti di aggancio
alla rete. Nella pratica, tuttavia, il multihoming si è rivelato
difficile da implementare e ancor di più da ottimizzare.

Ad oggi infatti, il multihoming è lontano dall’essere conside-
rato una feature standard nel network deployment nonostante
anni di ricerche e di sviluppo nel settore, poiché il relativo
supporto da parte dei protocolli è quasi sempre del tutto in-
adeguato. Ad esempio, gli attuali protocolli per il mobility
management non sono in grado di gestire il multihoming in
modo nativo e perciò devono essere combinati con altri proto-
colli per fornire tale supporto. Altri protocolli di rete invece,
introducono dei nuovi layer nello stack IP classico per svol-
gere specifiche funzioni e al contempo ridurre la complessità
derivante dai meccanismi implementativi del multihoming.

Naturalmente anche per Android in quanto piattaforma mo-
bile più usata al mondo, è di fondamentale importanza sup-
portare il multihoming per ampliare lo spettro delle funzion-
alità offerte ai propri utenti. Dunque alla luce di ciò, in questa
tesi espongo lo stato dell’arte del supporto al multihoming
in Android mettendo a confronto diversi protocolli di rete
e testando la soluzione che sembra essere in assoluto la più
promettente: LISP.
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Il Locator/Identifier Separation Protocol definisce un’infra-
struttura per il disaccoppiamento dell’identità dell’host e del-
la sua ubicazione nel namespace degli indirizzi. Tale sepa-
razione si ottiene sostituendo gli indirizzi IP correntemente
usati con due namespace separati: EID e RLOC. Separare
l’identità dell’host (EID) dal suo localizzatore (RLOC) significa
consentire la mobilità seamless dal momento che le appli-
cazioni possono agganciarsi ad un indirizzo permanente, os-
sia l’EID dell’host. In tal modo l’ubicazione dell’host (e il suo
punto d’accesso alla rete) può variare diverse volte durante
la medesima connessione; ogni volta, il router LISP incapsula
e instrada il traffico su un tunnell verso il nuovo RLOC, pre-
servando la connessione dall’interruzione.

Esaminato lo stato dell’arte dei protocolli con supporto al
multihoming e l’architettura software di LISPmob per An-
droid, l’obiettivo operativo principale di questa ricerca è du-
plice: a) testare il roaming seamless tra le varie interfacce
di rete di un dispositivo Android, il che è appunto uno degli
obiettivi del multihoming, attraverso LISPmob; e b) effettuare
un ampio numero di test al fine di ottenere attraverso dati
sperimentali alcuni importanti parametri relativi alle perfor-
mance di LISP per capire quanto è realistica la possibilità da
parte dell’utente finale di usarlo come efficace soluzione mul-
tihoming. La versione di riferimento di LISPmob utilizzata in
questa ricerca è quella per dispositivi non-rooted.

Pertanto, una prima parte più descrittiva sui protocolli che
supportano il multihoming rappresenta il background teorico
sul quale è costruita la seconda parte della tesi, più applica-
tiva, su LISPmob nella sua implementazione Android.
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Introduction

Future’s wireless connectivity shall take advantage from all network inter-
faces on-board mobile devices. For this reason, multihoming will be compul-
sory in order to have the best user experience for all the modern Internet
applications. As a concise definition, multihoming is the property of an end-
host or an end-site of having multiple first-hop connections to the network.
In practice, however, multihoming has proved difficult to implement and
optimize.

Multiaccess and multihoming are yet to become prevalent in network de-
ployments despite years of research and development in the area. Indeed, the
corresponding support is often missing from state-of-the-art protocols. For
example, modern mobility management protocols are not capable of handling
multihoming natively and must be combined with other protocols to enable
enhanced multihoming support. Furthermore, in some proposals new layers
are introduced to perform specific functionalities and aim at reducing the
ensuing complexity due to multihoming mechanisms in the original protocol
stack [50].

Thus, since Android is the world most used mobile platform, multihoming
support is of crucial importance in order to broaden the spectrum of features
available to its users. Hence, in this thesis I highlight the state-of-the-art
multihoming support on Android comparing different networking protocols
and testing the solution that seems to be the most promising one: LISP.

The Locator/Identifier Separation Protocol specifies an architecture for
decoupling host identity from its location information in the current address
scheme. This separation is achieved by replacing the addresses currently used
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in the Internet with two separate name spaces: EID, and RLOC. Separating
the host identity (EID) from its locator (RLOC) enables seamless endpoint
mobility by allowing the applications to bind to a permanent address, the
host’s EID. The location of the host can change many times during an ongoing
connection. Each time, the LISP tunnel routers will encapsulate the packets
to the new RLOC, preserving the connection session from breaking [47].

Once examined the state-of-the-art multihoming protocols and the LISP-
mob’s Android software architecture, the main operative goal of this research
is dual: a) to test the seamless roaming from an Android device’s network
interface to another which may be considered as a multihoming’s goal, using
indeed the LISPmob implementation; and b) to make a wide number of tests in
order to estimate from experimental results some valuable LISP performance
parameters, and then to draw forth how real is the chance of using it as
an effective multihoming solution for the final user. The LISPmob reference
version for this research is the one for non-rooted devices.

So, the initial more descriptional part on multihoming protocols repre-
sents the theoretical background on which is built the last, more applicational
part of the thesis, about LISPmob Android implementation. This is the the-
sis’ outline:

Chapter 1 In this chapter the concept of multihoming is introduced and ex-
plained. Support strategies, other related concepts and issues relative to
mobility like dynamic network topology and security, are synthetically
covered as well.

Chapter 2 The latest proposed protocols with support for multihoming are
here presented with references to their RFC documents and their possible
realistic future usage. A systematic comparison points out pros and cons
of all of them.

Chapter 3 In this chapter the Android platform is presented from the mo-
tivation underlying its choice to its networking module throughout by
its architecture. Here the real state-of-the-art of multihoming support
is disclosed as well as two of the most important multihoming protocol
Android implementations: HIP for Linux and LISPmob.
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Chapter 4 Firstly the LISPmob implementation is analyzed in detail from
a high-level software engineering point of view, and then the thesis’
research project is fully defined.

Chapter 5 Here the experimental results are presented. All the collected
data about LISP IPv4-in-IPv4 and IPv4 are compared and put under the
magnifying glass of the statistical analysis.





Chapter 1

Multihoming and Mobility

The current Internet architecture was not designed to easily accommodate
mobility because Internet Protocol (IP) addresses are used both to identify
and locate the hosts. Separating identity from routing location is an impor-
tant design principle of inter-domain networks that was known even before
the Internet was created, but unfortunately the current architecture does
not implement it. Such separation would seamlessly provide mobility and
multihoming, among other desirable features, to the Internet. As a result,
this is still an important research topic, and many solutions centered around
this idea have been proposed [47].

Multihoming and multiaccess in IP networks have been lately fostered by
the exponential growth in availability of devices with multiple built-in com-
munication technologies. Paradigms where hosts have access to various net-
works are not new, of course. Multihoming has long been adopted to increase
resilience, dependability, and performance in high-end servers. At the other
end of the network node spectrum, mobile phone manufacturers have been
integrating different cellular radio access technologies into “multi-band” cell
phones to realize global reachability and ease migration. Nonetheless, mul-
tiaccess network selection is currently rudimentary and automation is not
implemented yet. Today, efficient multihoming and multiaccess support in
heterogeneous networks is still inhibited by mechanisms that rely mainly on
presets and static policies, and require user input as well.
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Nodes with multiple network interfaces have the potential of connecting
to different networks and capitalizing on heterogeneous network resources
and, in the process, enable their users to enjoy high-performing ubiquitous
communication. On the other hand, multiaccess and multihoming lead to
more complex application and protocol configurations in order to meet the
challenging goals of reliability, ubiquity, load sharing, and flow distribution.
These communication system properties are tightly coupled with the multi-
homing concept [50].

1.1 Multihoming Base Concepts and Goals

1.1.1 Design concepts

End-host multihoming is defined when a host has multiple addresses con-
figured on the links it connects to, thus having the possibility to explore
several paths to reach a peer, as each address is normally advertised by dif-
ferent access routers.

Address 1
Address 2

Multihomed Host

Address 3

Interface 1

Interface 2

Interface n

...

...
Address n

Figure 1.1: Multihomed Host

A multihomed host, on which different interfaces (logical or physical)
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exist, is depicted in Figure 1.1. In addition, each interface can have different
network addresses configured. For instance, Interface 1 has been assigned
two addresses, namely Address 1 and Address 2. Moreover, the host can
have multiple physical interfaces which have been associated with a single
address, as is the case of Interface 2 and Interface n with Address 3 and
Address n, respectively.

End-site multihoming, instead, where a site uses multiple connections
to the Internet to meet objectives such as increasing network reliability or
improving performance, is a common network configuration.

MR 1

MR 2

Service 
Provider 

1 Service 
Provider 

2

Multihomed 
Network

Figure 1.2: Multihomed Network

Figure 1.2 illustrates a multihomed site, which has connections to two
service providers. A multihomed network can have multiple Mobile Router
(MR), such as, for example, MR 1 connecting to Internet Service Provider 1
and MR 2 connecting to Internet Service Provider 2. Moreover, a single router
can have several external interfaces that connect to the same or different
service providers, as the example of MR 1.
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Multihoming has gained attention over the last few years, mainly due to
the potential benefits. In particular, multihoming solutions aim to achieve
the following goals: resilience, ubiquity, load balancing/sharing and flow dis-
tribution.

The diversity of multiple interfaces/paths can improve resilience since
in case of failure of one interface/path, another can be employed to provide
connectivity. For instance, a “primary-backup” model is adopted by Stream
Control Transport Protocol (SCTP): if the primary path fails, the backup
path can be used seamlessly without causing any application-layer service
interruption. So, multiple network interfaces, in particular when used in a
mobile and wireless network environment, enable ubiquitous access to the
Internet over different media.

Load sharing goes one step further than the primary-backup model, as
multiple interfaces/paths can be used simultaneously to improve throughput.
For example, Iyengar et al. describe how one can perform concurrent multiple
transfers using base SCTP [26].

Flow distribution, or flow stripping, offers an even finer granularity
than load sharing. For many, flow distribution is the ultimate goal to achieve,
as it implicitly means that all previous goals are also attained. Flows are
stripped, perhaps even dynamically, according to policies and preferences
aiming to reduce cost, optimize bandwidth use, and minimize the effect of
bottlenecks to delay-sensitive applications, among others. Such policies can
be defined by users or service providers.

1.1.2 Support strategies

Multihoming support could potentially be added at any layer of the protocol
stack. The designer’s choice, of course, comes with certain advantages and
disadvantages, and one needs to consider thoroughly the tradeoffs as well
as the complexity of each solution. Deployment considerations need also
to be addressed early on. In general, there are two possible approaches
for introducing multihoming. On the one hand, a multihoming proposal
may be completely transparent to upper layers, in such a way that there
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isno disruption to ongoing sessions. On the other hand, the solution may
not be transparent, but allows upper layers to participate in multihoming
management and operation.

The first guideline that should be considered relates to the locator/iden-
tifier split. Recently, the impossibility of the current Internet’s architecture
to scale with the routing table size (see Figure 1.3) was deemed in an Internet
Architecture Board (IAB) workshop as one of its most important problems
[34], and after a detailed analysis, the overloading of IP address semantics
with both location and identity, has been determined as the main source of
this limitation [16]. Conventional IP architectures assume that the transport
layer endpoints are the same entities as those used by the network layer.
Thus, multihoming support based on a locator/identifier split requires the
transport layer identity to be decoupled from the network layer locator in
order to allow multiple forwarding paths to be used by a single transport ses-
sion. Different approaches can be considered, either by modifying an existing
protocol layer or by introducing a new layer. With the new layer approach,
upper layer protocols (e.g. applications) use endpoint identifiers to uniquely
identify a session while the lower layer protocols (e.g. network) employ loca-
tors. If this approach is used, a mapping between an identifier and a locator
is necessary. In a multihoming context, the identifier/locator mapping must
be assured by a dynamic process so that a session can include different fea-
tures, such as constant endpoint identifiers throughout the session lifetime,
and modification of locators to maintain end-to-end reachability [50].

Another recommendation for end-site multihoming includes the modi-
fication of a site exit-router. In fact, end-site multihoming can be also
assured by a network element like, for instance, an exit-router which performs
packet rewriting for a given locator of a correspondent node. Nevertheless,
this type of approach raises security concerns, which might be difficult to
overcome. Redirection attacks are such an example, which may compromise
routing, since packets for a destination can be redirected to any location.
Thus, the host should always be able to perform the endpoint-to-locator
mapping on its own [50].
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Figure 1.3: Active BGP entries (FIB)

1.1.3 Other related concepts

Multihoming is lately associated with other concepts, including multiaddress-
ing, overlapping networks, multiple interfaces, overlay routing, scalability,
security and policy.

Multiaddressing corresponds to a configuration where multiple addresses
are assigned to a given host based on prefixes advertised in different
connections.

Overlapping networks correspond to networks that are configured in a
way that there is a common area of coverage. Typically, mobile and
wireless end-nodes connecting to these (overlapping) networks must
have multiple interfaces, each one specific to the technology sustain-
ing the respective network.

Overlay routing is associated with inter-domain routing techniques that
improve fault-tolerance and is only applied in an end-site context.

Scalability is of essence in any network architecture and multihoming is
not an exception: multihoming architectures should be scalable and
need to strive to minimize the impact on routers and end hosts. Basic
connectivity must be always provided and if any modification is required
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it should be in the form of logically separating added functions from
existing ones.

Security is also paramount for future architectures. Multihoming propos-
als should not introduce new security threats. For instance, multihom-
ing solutions should be resilient to redirection attacks that compromise
routing, new packet injection attacks (malicious senders can inject bo-
gus packets into the packet stream between two communicating peers)
and flooding attacks, which are normally associated with DoS attacks
[50].

Policy is the set of rules which define in some circumstances how it is pos-
sible to route traffic of a particular type (e.g. protocol) via particular
transit providers. This can be done if the devices in the site—which
source or sink that traffic—can be isolated to a set of addresses to which
a special export policy can be applied [3].

1.2 Consequences of Mobility

1.2.1 Networks topology

As said, driven by the growing ubiquity of the Internet and a plethora of mo-
bile devices with communication capabilities, distributed systems and com-
plex applications are now the normality. The networks in which these appli-
cations must operate are inherently dynamic; typically large and completely
decentralized, so that each node can have an accurate view of only its local
vicinity. Such networks change over time, as nodes join, leave, and move
around, and as communication links appear and disappear.

In some networks (e.g. peer-to-peer), nodes participate only for a short
period of time and the topology can change at a high rate. In wireless ad
hoc networks, nodes are mobile and move around unpredictably [30]. Much
work has gone into developing algorithms to work in networks that eventually
stabilize and stop changing, but there is not a suitable ground for reasoning
about truly dynamic networks yet.
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1.2.2 Security issues

The general lesson on network protocol security is that plaintext secrets
(verification tags, secret sequence numbers, nonces, etc.) that can be used
in more than one message are more vulnerable with multihomed or mobile
endpoints than in a static setting. They may still be acceptable as security
mechanisms if the rate of change is slow and connection lifetimes limited,
but actually this is not always so.

An assumption made in the standard transport-layer protocol (e.g. in
SCTP) is that the transport addresses belong to the association endpoints
until the end of the association lifetime. The danger of this assumption is
that if the endpoint loses control of an address and the address is subsequently
allocated to another node, the peer will continue to send packets to the lost
address. The new owner of the address will receive the packets and learn all
plaintext secrets in them. If the new owner of the address is malicious, it
may use this information for spoofing attacks, but the risk of attacks caused
by this vulnerability is small. Multihomed endpoints usually do their best to
ensure that they retain all their addresses throughout the association lifetime,
for example, by using only statically configured IP addresses.

Nevertheless, in the mobility-protocol design it should be considered what
happens to the old addresses of the mobile node, and the possibility that an
attacker gains control of one.

In a general-purpose multihoming protocol, furthermore, there is also the
possibility that the endpoints sometimes make mistakes about their address
sets and even purposely misrepresent them. Also it is implicit that it is not
possible to expect there to be any application-level verification or recovery
mechanism that would mitigate the consequences of such false information.
Thus, protocol engineers need to worry about attacks where the endpoints
lie about their addresses, or more in general, in any multihoming or mobility
protocol, must be considered the possibility of an endpoint making false
claims about its addresses.

But not only. An address conflict in a telephony signaling protocol is
probably an operator error and it is best to report the error and let the
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operator resolve it. The situation changes when a general-purpose multi-
homing protocol is considered. There may not be any operator that could
help, and thus it is essential to either avoid the conflicts or to resolve them
automatically at the layer in which the conflict happens [7].

1.3 Multihoming solutions

An ideal multihoming solution which provides seamless mobility should meet
the following requirements:
End-user transparency: the roaming should be completed as quickly as

possible; the user should not notice any communication or service inter-
ruption, or if that is not possible, the interruptions should be reduced
in duration as well as in frequency.

Network transparency: applications should use only FQDNs for commu-
nications; protocols should handle multihoming without affecting the
upper layers.

Legacy compatibility: the solution should be fully compatible with the
legacy infrastructure in terms of entities and protocols.

Quality of Service (QoS): node mobility should be managed in accord
with the defined QoS.

Full mobility: nodes should not be aware of their mobility.
NAT-friendly: the solution should be compatible with possible Network

Address Translation (NAT) policies.
As a consequence of its implementation complexity, multihoming is not

supported by any widespread user application yet, nor by standard network
devices. However, some working multihoming protocol implementations al-
ready are in use on enterprise network routers.

An example is Cisco IOS1 [14] since SCTP is supported in order to specifi-
cally enhance reliability through support of multihoming at either end or both
ends of the network association. It is not explicitly configured on routers by
default, but it underlies several Cisco applications. Also LISP is supported

1Cisco IOS Release 12.2(2)MB, 12.2(4)T, or later releases.
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by Cisco IOS with outstanding performances [13] but the implementation is
not opensource.

Praveen et al. have developed a Linux-based multihoming solution that
consists of an outgoing load balancer and an incoming load balancer, par-
ticularly suitable for small and medium enterprises [44]. The outgoing load
balancer does policy-based routing to choose the best link for each type of
traffic. It calculates the characteristics of the paths via each of the ISPs to
the most frequently accessed destinations. The best link is chosen based
on the path characteristic that is relevant to the application protocol of the
packet, as determined by the user-defined policy. For infrequently visited
destinations, a global policy that considers the first hop connectivity to the
ISPs is used. The incoming load balancer distributes the load on the servers
within the network among the links to the ISPs in the ratio of available band-
widths on these links by modifying the DNS entries appropriately. Finally,
both the incoming and outgoing load balancers do dead gateway detection
to minimize downtime.

Other solutions have been developed and analyzed but with controversial
outcomes. For example, Borsari presented a work about VoIP multihoming
support on Symbian [10] where the reusability-oriented code modifications
were in unavoidable conflict with the performance and the energy efficiency
aspects, which are gravely predominant on mobile devices.



Chapter 2

Network Protocols for
Multihoming

When a mobile Internet host changes its location and its point of access to
the Internet changes, its IP address typically changes. The aim of mobility
protocols is to solve the following two problems: to enable continuous com-
munication over address changes, and to provide a reachability mechanism
whenever the mobile is connected to the Internet. Mobility solutions exist
for all major protocol layers. Link-layer mobility protocols avoid IP address
changes. Network-layer protocols (e.g. Mobile IP (MIP)) hide them from
the layers above. Transport-layer mobility protocols maintain a continuous
connection between two endpoints over address changes. Higher, session and
application-layer solutions re-establish transport-layer connections after an
address change.

A multihomed Internet host usually has multiple IP addresses. While
the goal of mobility protocols is to enable communication for moving hosts,
the aim of multihoming is typically to increase reliability in a static setting:
when one address fails, communication is switched to another one. However,
despite their different goals, mobility and multihoming can be seen as two
flavors of the same phenomenon, dynamic multi-addressing, that is the prop-
erty of a multihomed or mobile endpoint of having a set of IP addresses that
changes dynamically [7].
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In the following sections, the most important multihoming protocols are
synthetically introduced.

2.1 Site Multihoming by IPv6 Intermediation

2.1.1 Overview and Goals

The Site Multihoming by IPv6 Intermediation (SHIM6) protocol is a site-
multihoming solution in the sense that it allows existing communication to
continue when a site that has multiple connections to the Internet experiences
an outage on a subset of these connections or further upstream. However,
SHIM6 processing is performed in individual hosts rather than through site-
wide mechanisms.

The goals of SHIM6 are:
• to preserve established communications in the presence of certain classes

of failures, for example, Transmission Control Protocol (TCP) connec-
tions and User Datagram Protocol (UDP) streams;

• to have minimal impact on upper-layer protocols in general and on
transport protocols and applications in particular;

• to address the security threats in IP version 6 (IPv6) through a com-
bination of the Hash-Based Address (HBA)/Cryptographic Generated
Address (CGA) approach;

• to not require an extra roundtrip up front to set up shim-specific state.
Instead, allow the upper-layer traffic (e.g. TCP) to flow as normal and
defer the set up of the shim state until some number of packets have
been exchanged;

• to take advantage of multiple locators/addresses for load spreading so
that different sets of communication to a host (e.g. different connec-
tions) might use different locators of the host.1

The problem to solve is the end-site multihoming, with the ability to
have the set of site addresses change over time due to site renumbering.

1Notice that this might cause load to be spread unevenly; thus, the term “load spread-
ing” is preferred instead of “load balancing”.
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Further, it is assumed that such changes to the set of locator addresses can
be relatively slow and managed: slow enough to allow updates to the Domain
Name System (DNS) to propagate.

The SHIM6 proposal does not fully separate the identifier and locator
functions that have traditionally been overloaded in the IP address. However,
the term “identifier” or, more specifically, Upper-Layer IDentifier (ULID),
refers to the identifying function of an IPv6 address. “Locator” refers to the
network-layer routing and forwarding properties of an IPv6 address.

2.1.2 Protocol insights

Transport Protocol

SHIM6 shim layer

Frag/reass Dest opts

IP

IP endpoint 
sub-layer

IP routing 
sub-layer

Figure 2.1: SHIM6 Protocol Stack

The proposal uses a multihoming shim layer within the IP layer, as shown
in Figure 2.1, in order to provide Upper-Layer Protocol (ULP) independence.
The multihoming shim layer behaves as if it is associated with an extension
header, which would be placed after any routing-related headers in the packet
(such as any hop-by-hop ptions). However, when the locator pair is the ULID

pair, there is no data that needs to be carried in an extension header; thus,
none is needed in that case.

Layering the fragmentation header above the multihoming shim makes
reassembly robust in the case that there is broken multi-path routing that
results in using different paths, hence potentially different source locators,
for different fragments. Thus, the multihoming shim layer is placed between
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the IP endpoint sub-layer, which handles fragmentation and reassembly, and
the IP routing sub-layer, which selects the next hop and interface to use for
sending out packets.

Applications and upper-layer protocols use ULIDs that the SHIM6 layer
maps to/from different locators. The SHIM6 layer maintains state, called
“ULID-pair context”, per ULID pair in order to perform this mapping. The
mapping is performed consistently at the sender and the receiver so that
ULPs see packets that appear to be sent using ULIDs from end to end. This
property is maintained even though the packets travel through the network
containing locators in the IP address fields, and even though those locators
may be changed by the transmitting SHIM6 layer.

The context state is maintained per remote ULID (approximately per
peer host) and not at any finer granularity. In particular, the context state
is independent of the ULPs and any ULP connections. However, the forking
capability enables SHIM6-aware ULPs to use more than one locator pair at a
time for a single ULID pair.

The result of this consistent mapping is that there is no impact on the
ULPs, and in particular, there is no impact on pseudo-header checksums and
connection identification.

Conceptually, one could view this approach as if both ULIDs and locators
are present in every packet, and as if a header-compression mechanism is ap-
plied that removes the need for the ULIDs to be carried in the packets once the
compression state has been established. In order for the receiver to re-create
a packet with the correct ULIDs, there is a need to include some “compres-
sion tag” in the data packets. This serves to indicate the correct context to
use for decompression when the locator pair in the packet is insufficient to
uniquely identify the context.

There are different types of interactions between the SHIM6 layer and other
protocols. Those interactions are influenced by the usage of the addresses in
these other protocols and the impact of the SHIM6 mapping on these usages.
A detailed analysis of the interactions of different protocols, including SCTP,
MIP, and Host Identity Protocol (HIP), can be found in [2]. Moreover, some
applications may need to have a richer interaction with the SHIM6 sublayer.
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Sender A

src ULID(A)=L1(A) dst ULID(B)=L1(B)

ULP

src L2(A) dst L3(B)

Multihoming shim

IP

Receiver B

src ULID(A)=L1(A) dst ULID(B)=L1(B)

ULP

src L2(A) dst L3(B)

Multihoming shim

IP

Figure 2.2: SHIM6 Mapping with Changed Locators

In order to enable that, an Application Programming Interface (API) has
been defined to enable greater control and information exchange for those
applications that need it [40].

2.2 Host Identity Protocol
The Host Identity Protocol (HIP) allows consenting hosts to securely estab-
lish and maintain shared IP-layer state, allowing separation of the identifier
and locator roles of IP addresses, thereby enabling continuity of communica-
tions across IP address changes. HIP is based on a Sigma-compliant Diffie-
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Hellman key exchange, using public key identifiers from a new Host Identity
namespace for mutual peer authentication. The protocol is designed to be
resistant to Denial-of-Service (DoS) and Man-in-the-Middle (MitM) attacks.
When used together with another suitable security protocol, such as the
Encapsulated Security Payload (ESP), it provides integrity protection and
optional encryption for upper-layer protocols, such as TCP and UDP [37].

2.2.1 HIP Architecture

The Internet has two important global namespaces: IP addresses and DNS

names. These two namespaces have a set of features and abstractions that
have powered the Internet to what it is today. They also have a number
of weaknesses. Moreover, semantic overloading and functionality extensions
have greatly complicated these namespaces.

The Host Identity namespace fills an important gap between the IP and
DNS namespaces: it consists of Host Identifiers. A Host Identifier (HI) is
cryptographic in its nature—it is the public key of an asymmetric key-pair.
Each host will have at least one Host Identity, but it will typically have
more than one. Each Host Identity uniquely identifies a single host (e.g.
two hosts cannot have the same Host Identity). The Host Identity, and
the corresponding Host Identifier, can be either public (e.g. published in
the DNS) or unpublished. Client systems will tend to have both public and
unpublished Identities.

There is a subtle but important difference between Host Identities and
Host Identifiers. An Identity refers to the abstract entity that is identified.
An Identifier, on the other hand, refers to the concrete bit pattern that is
used in the identification process.

When HIP is used, the actual payload traffic between two HIP hosts is
typically, but not necessarily, protected with IP Security (IPSec). The Host
Identities are used to create the needed IPSec Security Associations and to
authenticate the hosts. When IPSec is used, the actual payload IP packets do
not differ in any way from standard IPSec-protected IP packets [36].

There are two main representations of the Host Identity, the full HI and
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Figure 2.3: HIP Architecture

the Host Identity Tag (HIT). As said, the HI is a public key and directly
represents the Identity. Since there are different public key algorithms that
can be used with different key lengths, the HI is not good for use as a packet
identifier, or as an index into the various operational tables needed to sup-
port HIP. Consequently, a hash of the HI, the HIT, becomes the operational
representation. It is 128b long and is used in the HIP payloads and to index
the corresponding state in the end hosts. The HIT has an important security
property in that it is self-certifying [37].

2.2.2 HIP Base Exchange

The HIP base exchange is a two-party cryptographic protocol used to estab-
lish communications context between hosts. The base exchange is a Sigma-
compliant four-packet exchange. The first party is called the Initiator and
the second party the Responder. The four-packet design helps to make HIP

DoS resilient. The protocol exchanges Diffie-Hellman keys in the 2nd and
3rd packets, and authenticates the parties in the 3rd and 4th packets. Ad-
ditionally, the Responder starts a puzzle exchange in the 2nd packet, with
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the Initiator completing it in the 3rd packet before the Responder stores any
state from the exchange.

Initatior Responder

I1
< HIT(I), HIT(R) or NULL >

R1
< HIT(I), HIT(R), challenge >

I2
< HIT(I), HIT(R), response, authentication >

< HIT(I), HIT(R), authentication >
R2

Security Context established

ESP protected message

Figure 2.4: HIP four-way handshaking

The exchange can use the Diffie-Hellman output to encrypt the Host
Identity of the Initiator in the 3rd packet or the Host Identity may instead be
sent unencrypted. The Responder’s Host Identity is not protected. It should
be noted, however, that both the Initiator’s and the Responder’s HITs are
transported as such (in cleartext) in the packets, allowing an eavesdropper
with a priori knowledge about the parties to verify their identities. Data
packets start to flow after the 4th packet. The 3rd and 4th HIP packets may
carry a data payload in the future. However, the details of this are to be
defined later as more implementation experience is gained.

Finally, HIP is designed as an end-to-end authentication and key establish-
ment protocol, to be used with ESP and other end-to-end security protocols,
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but the base protocol does not cover all the fine-grained policy control found
in Internet Key Exchange (IKE) (that, for example, allows IKE to support
complex gateway policies). Thus, HIP is not a replacement for IKE [37].

2.2.3 End-host Mobility and Multihoming

Architecturally, HIP provides for a different binding of transport-layer pro-
tocols. That is, the transport-layer associations (e.g. TCP connections and
UDP associations) are no longer bound to IP addresses but to Host Identities.

It is possible that a single physical computer hosts several logical end-
points. With HIP, each of these end-points would have a distinct Host Iden-
tity. Furthermore, since the transport associations are bound to Host Iden-
tities, HIP provides for process migration and clustered servers. That is, if
a Host Identity is moved from one physical computer to another, it is also
possible to simultaneously move all the transport associations without break-
ing them. Similarly, if it is possible to distribute the processing of a single
Host Identity over several physical computers, HIP provides for cluster-based
services without any changes at the client end-point.

As said, HIP decouples the transport from the internetworking layer, and
binds the transport associations to the Host Identities. Consequently, HIP

can provide for a degree of internetworking mobility and multihoming at a
low infrastructure cost. HIP mobility includes IP address changes (via any
method) to either party. Thus, a system is considered mobile if its IP address
can change dynamically for any reason like Point-to-Point Protocol (PPP),
Dynamic Host Configuration Protocol (DHCP), IPv6 prefix reassignments, or
a NAT device remapping its translation. Likewise, a system is considered
multihomed if it has more than one globally routable IP address at the same
time. HIP links IP addresses together, when multiple IP addresses correspond
to the same Host Identity, and if one address becomes unusable, or a more
preferred address becomes available, existing transport associations can easily
be moved to another address.

When a node moves while communication is already ongoing, address
changes are rather straightforward. The peer of the mobile node can just
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accept a HIP or an integrity protected IPSec packet from any address and
ignore the source address. However, a mobile node must send a HIP readdress
packet to inform the peer of the new address(es), and the peer must verify
that the mobile node is reachable through these addresses [36].

More lately, Pierrel et al. introduced a policy system for simultaneous
multiaccess based on HIP called HIP SImultaneous Multi-Access (SIMA) [43].
The proposal extends HIP by allowing flows to use different paths indepen-
dently of each other, since HIP does not support load sharing. To enable
flow distribution, flows are identified by source and destination ports and by
the HIT. The RendezVous Server is also extended to be able to store flow
policies. Whilst these policies define the usage rules of the available inter-
faces, the proposal does not detail the policy specification (e.g. rules actions,
interface priority, and cost) [50].

2.3 Identifier/Locator Network Protocol
Since Identifier/Locator Network Protocol (ILNP) has been recommended by
Internet Engineering Task Force (IETF) in [31] for future routing architec-
ture, the protocol is presented here. Basically, IETF has found ILNP to be a
clean solution since it separates location from identity in a clear, straightfor-
ward way that is consistent with the remainder of the Internet architecture:
unlike the many map-and-encap proposals, there are no complications due to
tunneling, indirection, or semantics that shift over the lifetime of a packet’s
delivery.

2.3.1 Architectural Overview

ILNP takes a different approach to naming of communication objects within
the network stack. Two new data types are introduced which subsume the
role of the IP Address at the network and transport layers in the current
IP architecture. ILNP explicitly replaces the use of IP Addresses with two
distinct name spaces, each having distinct and different semantics:
Identifier: a non-topological name for uniquely identifying a node.
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Locator: a topologically bound name for an IP subnetwork.
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Figure 2.5: ILNP Architecture

The use of these two new namespaces in comparison to IP is shown in
Figure 2.5. If an application uses a Fully Qualified Domain Name (FQDN) at
the application-layer, rather than an IP Address or other lower-layer identi-
fier, then the application perceives no architectural difference between IP and
ILNP. In fact, ILNP does not require applications to be rewritten to use a new
Networking API. So existing “well-behaved” IP-based applications should be
able to work over ILNP as is.

In ILNP, transport-layer protocols use only an end-to-end, non-topological
node Identifier in any transport-layer session state. It is important to note
that the node Identifier names the node, not a specific interface of the node.
In this way, it has different semantics and properties than either the IP Ad-
dress or the IP interface identifier. Anyway, the use of the ILNP Identifier
value within application-layer protocols is not recommended. Instead, the
use of either a FQDN or some different topology-independent namespace is
recommended.

At the network-layer, Locator values, which have topological significance,
are used for routing and forwarding of ILNP packets, but Locators are not
used in upper-layer protocols.
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As well as the new namespaces, another significant difference in ILNP is
that there is no binding of a routable name to an interface, or Sub-Network
Point of Attachment (SNPA), as there is in IP. The existence of such a binding
in IP effectively binds transport protocol flows to a specific, single interface on
a node. Also, applications that include IP Addresses in their application-layer
session state effectively bind to a specific, single interface on a node. Dynamic
bindings exist between Identifier values and associated Locator values, as well
as between {Identifier, Locator} pairs and (physical or logical) interfaces
on the node.

This change enhances the Internet Architecture by adding crisp and clear
semantics for the Identifier and for the Locator, removing the overloaded
semantics of the IP Address, by updating end-system protocols, but without
requiring any router or backbone changes, excepted DNS. In ILNP, the closest
approximation to an IP Address is an Identifier-Locator Vector (I-LV),2 which
is a given binding between an Identifier and Locator pair.

Where, today, IP packets have:
• Source IP Address, Destination IP Address

Instead, ILNP packets have:
• Source I-LV, Destination I-LV

Hence, with these naming enhancements, the Internet Architecture is
improved by adding explicit harmonised support for many functions, such as
multihoming, mobility, and IPSec.

Network-layer

Today, network-layer IP sessions have 2 components:
• Source IP Address (A_S)
• Destination IP Address (A_D)

Instead, network-layer ILNP sessions have 4 components:
• Source Locator(s) (L_S)
• Source Identifier(s) (I_S)
• Destination Locator(s) (L_D)
2However, it must be emphasised that the I-LV and the IP Address are not equivalent.
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• Destination Identifier(s) (L_S)
Incidentally the phrase “ILNP session” refers to an ILNP-based network-

layer session, having the 4 components in the definition above. For engi-
neering efficiency, multiple transport-layer sessions between a pair of ILNP

correspondents normally share a single ILNP session.

Transport-layer

Today, transport-layer sessions using IP include these 5 components:
• Source IP Address (A_S)
• Destination IP Address (A_D)
• Transport-layer protocol (e.g. UDP, TCP, SCTP)
• Source transport-layer port number (P_S)
• Destination transport-layer port number (P_D)

Instead, transport-layer sessions using ILNP include these 5 components:
• Source Identifier (I_S)
• Destination Identifier (I_D)
• Transport-layer protocol (e.g. UDP, TCP, SCTP)
• Source transport-layer port number (P_S)
• Destination transport-layer port number (P_D)

IP Address and I-LV

Historically, an IP Address has been considered to be an atomic datum, even
though it is recognised that an IP Address has an internal structure: the
network prefix plus either the host ID (IP version 4 (IPv4)) or the interface
identifier (IPv6). However, this internal structure has not been used in end-
system protocols; instead, all the bits of the IP Address are used.3

While it is possible to say that an I-LV is an approximation to an IP

Address of today, it should be understood that an I-LV is not an atomic

3Additionally, in IPv4, the IPv4 subnet mask uses bits from the host IDentity (ID),
a further confusion of the structure, even thought it is an extremely useful engineering
mechanism.



28 Network Protocols for Multihoming

datum, being a pairing of two data types, an Identifier and a Locator; and
that it has different semantics and properties to an IP Address.

2.3.2 Node Identifier

Identifiers, also called Node IDentifier (NID), are non-topological values that
identify an ILNP node. A node might be a physical node or a virtual node.
For example, a single physical device might contain multiple independent
virtual nodes. Alternately, a single virtual device might be composed from
multiple physical devices.

A node may have multiple Identifier values associated with it, which may
be used concurrently. In normal operation, when a node is responding to a
received ILNP packet that creates a new network-layer session, the correct
NID value to use for that network-layer session with that correspondent node
will be learned from the received ILNP packet. In normal operation, when
a node is initiating communication with a correspondent node, the correct
I value to use for that session with that correspondent node will be learned
either through the application-layer naming, through DNS name resolution,
or through some alternative name resolution system.

Once a NID value has been used to establish a transport-layer session, that
Node Identifier value forms part of the end-to-end (invariant) transport-layer
session state and so must remain fixed for the duration of that session. And
this means, for example, that throughout the duration of a given TCP session,
the Source NID and Destination NID values will not change.

In normal operation, a node will not change its set of valid Identifier values
frequently. However, a node may change this set over time, for example, in
an effort to provide identity obfuscation. When a node has more than one
NIDvalue concurrently, the node might have multiple concurrent ILNP sessions
with some correspondent node, in which case NID values may differ between
the different concurrent ILNP sessions.
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2.3.3 Multihoming and Multi-Path Transport

For multihoming, there are two main cases and one sub-case to consider:

Host-Multihoming (H-MH): a single host is, individually, connected to
multiple upstream links, via separate routing paths, and those multiple
paths are used by that host as it wishes. That is, use of multiple up-
stream links is managed by the single host itself. For example, the host
might have multiple valid Locator values on a single interface, with each
Locator value being associated with a different upstream link (provider).

Multi-Path Transport (MPT): multiple paths are used to transfer
data for an end-to-end session [33]. This can be considered a special
case of H-MH.

Site-Multihoming (S-MH): a site network is connected to multiple up-
stream links via separate routing paths, and hosts on the site are not
necessarily aware of the multiple upstream paths. That is, the multiple
upstream paths are managed, typically, through a site border router, or
via the providers.

Essentially, for ILNP, multihoming is implemented by enabling multiple
Locator values to be used simultaneously by a node, and dynamic, simulta-
neous binding between one (or more) Identifier value(s) and multiple Locator
values. Other details can be found in [6].

2.4 Locator/Identifier Separation Protocol

2.4.1 Overview

The Locator/Identifier Separation Protocol specifies an architecture for de-
coupling host identity from its location information in the current address
scheme. This separation is achieved by replacing the addresses currently used
in the Internet with two separate name spaces: Endpoint IDentifier (EID),
and Routing LOCator (RLOC). Host applications bind to host’s EID, which
is used as the address for transport connections; while RLOCs are IPv4 or
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IPv6 addresses used for routing through transit networks. In order to reach
a host, identified by its EID, one must first find the current location of the
host. Separating the host identity (EID) from its locator (RLOC) enables
seamless endpoint mobility by allowing the applications to bind to a perma-
nent address, the host’s EID. The location of the host can change many times
during an ongoing connection. Each time, the Locator/Identifier Separation
Protocol (LISP) tunnel routers will encapsulate the packets to the new RLOC,
preserving the connection session from breaking [47].

2.4.2 LISP Mapping System
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Figure 2.6: LISP Architecture

As shown in Figure 2.6, the LISP Mapping System is a central aspect
of the LISP architecture. It is a publicly accessible service that publishes
location information associated with EIDs (EID-to-RLOC mappings). Main
elements of LISP Mapping System are Map Servers and Map Resolvers. EID-
to-RLOC mappings are stored in Map Servers. Each Map Server is associated
with a partition of the EID name space, and stores the location information
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for those EID prefixes. Therefore, each LISP mobile node is associated with a
specific Map Server where it registers its EID-to-RLOC mapping, and updates
it according to its movement. In this context, Map Servers have assigned a
set of EIDs and delegate them to either LISP tunnel routers or mobile nodes.

Map Resolvers are used as an interface to the mapping system for look-
ing up EID location information; they have a similar functionality as DNS

resolvers have in today’s Internet: LISP mobile nodes send EID lookup re-
quests (Map Request) to the mapping system through Map Resolvers [47].

2.4.3 LISP-MN

The lightweight tunnel router is the implementation of LISP Mobile Node
(LISP-MN) on the endpoint or mobile node. Mobile node tunnel routers are
used to encapsulate outgoing packets in a LISP header based on RLOCs be-
fore leaving the mobile node, and to remove the LISP header from incoming
packets before sending them to upper layers ultimately reaching the desti-
nation application. The LISP-MN protocol is then best understood as the
concatenation of three different phases [47]:

• Registering EID and obtaining an RLOC;
• Signaling EID-to-RLOC bindings and transmitting data-packets;
• Handover.

These phases are now explained in detail.

Registering EID and obtaining an RLOC

Each LISP-MN is configured with at least one EID. As said before, an EID

is either a standard (/32) IPv4 or (/128) IPv6 address, identifies the node
uniquely and remains static independently of its location. If the node has
also a DNS entry, this entry returns the EID which is typically assigned by
the Map Server provider.4

In order to connect to the Internet, the LISP-MN also needs at least an
RLOC. RLOCs are obtained by traditional mechanisms such as DHCP or con-

4In LISPmob, analyzed in section 3.4.2, it is configured in a static file.
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figured manually and are location dependent. This means that as the mobile
node roams across providers, it will obtain a different RLOC in each loca-
tion. For each new RLOC obtained by the LISP-MN, the node has to inform
about the new EID-to-RLOC binding to its Map Server. In order to do so
LISP defines the Map Register signaling message that includes the EID and
the RLOC. The node may include multiple RLOCs if the node is multihomed
and LISP supports any combination of IPv4 and IPv6 for EIDs and RLOCs.
The LISP-MN and the Map Server share a pre-configured key5 which is used
to sign the Map Register to ensure authentication. Once the Map Server
receives a valid Map Register containing an EID-to-RLOC mapping it will it
make it accessible throughout the Mapping System [47].
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Figure 2.7: Registering an EID-to-RLOC binding

A LISP-MN is configured with the EID 3.0.0.3/32 and two RLOCs from two different providers X 12.0.0.2
and Y 13.0.0.2. The MN registers these two bindings 3.0.0.3/32→ 12.0.0.2 and 3.0.0.3/32→ 13.0.0.2
into its Map Server (identified with the address 66.2.2.2). The MN and a MS have a pre-configured key
and this Map Register message is signed and hence, authenticated.

5Again, in LISPmob it is configured in a static file.
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Signaling EID-to-RLOC bindings and transmitting data-packets

The static node first retrieves the EID of the mobile node by querying the DNS

and then transmits a packet addressed to this EID just as in the plain Internet.
The packet is routed until it reaches the LISP tunnel router. Upon reception,
the tunnel router checks whether it knows the EID-to-RLOC binding or not.
For this purpose each LISP node includes a data-structure called Map-cache
which stores such information.

If the tunnel router’s Map-cache does not contain the binding for the
destination EID, it will trigger a Map-request message. This message is used
to query the Mapping System for a particular binding: it is sent to the Map
Resolver, which is typically co-located with the Map Server, and in turn,
the Map Resolver forwards the Map-request message through the Mapping
System that routes it, according to the destination EID, until it reaches the
Map Server that provides mapping services to the Mobile Node (MN).

The Map Server then constructs a reply for the Map-request using an-
other LISP defined message, the Map-reply. This message mainly contains
the EID of the MN, the set of RLOCs that provide connectivity to the MN,
and the priorities and weights of each locator which are used for ingress load-
balancing. Finally the Map-reply also contains a Time-To-Live (TTL) that
defines the amount of time for which this particular mapping is valid, and
a nonce to avoid unsolicited replies. The Map-reply is sent directly to the
tunnel router that will install this binding in its Map-cache and will use it
to encapsulate packets towards the MN until the TTL expires. At this point
it will request a fresh binding.

Typically, as in TCP, the node will reply with another data-packet ad-
dressed to the EID of the static node. Since the Map-cache of the MN does
not have the binding for such EID, it will trigger a Map-request querying for
the RLOCs of the LISP site. This Map-request, as in the previous case, will
be routed through the Mapping System towards the Map Server servicing the
site that in turn replies with a Map-reply. The mobile node, upon reception
of this message, will install this binding in its Map-cache and will start to
encapsulate data packets directly to the locators of the LISP site according
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to whatever policies have been defined (weight and priorities). Such data-
packets are decapsulated at the tunnel router and forwarded, as in the plain
Internet, to the final destination [47].

Handover

When the MN changes its point of attachment, it will regain connectivity in a
new subnetwork, possibly serviced by a new provider. In this case it will first
obtain a new RLOC and, as described before, will send the new EID-to-RLOC

binding on its Map Server.

In order to resume existing connections, the MN has to update all the
EID-to-RLOC bindings stored in the Map-cache of the routers with which it
is communicating. To do so the MN will send a special signaling message
called Solicit-Map-Request (SMR) to all these routers/mobile nodes. Upon
reception of such message, the peering router/mobile node will trigger a
Map-request addressed towards the EID of the soliciting MN. This message
will be in turn forwarded by the Mapping System until it reaches the Map
Server servicing the MN that will reply with a Map-reply containing the
updated RLOCs.

2.4.4 LISP and legacy internetworking

Communications between LISP nodes and legacy non-LISP enabled nodes
are fasten by ad hoc LISP internetworking components called Proxy Tun-
nel Router (PxTR). A PxTR attracts traffic by announcing, by means of
Border Gateway Protocol (BGP), EID addresses. Then it queries the Map-
ping System to obtain the corresponding RLOC bindings and encapsulate the
data-packets towards them. Additionally, PxTRs also decapsulate packets
sent by LISP-enabled sites and nodes towards the non-LISP Internet. This is
done to avoid ingress filtering issues [47].
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Figure 2.8: Internetworking with non-LISP sites

The PxTR is announcing at the BGP DFZ an aggregated EID prefix that covers the one configured at
the MN. By means of this BGP announcement, PxTR attracts traffic addressed to the EID of the MN

(3.0.0.3/32) and, upon reception of a data-packet, it queries the Mapping System to obtain the locator
set (12.0.0.2 and 13.0.0.2) and proceeds to encapsulate packets. In turn, the PxTR is also used to
decapsulate data-packets addressed to non-LISP sites.

2.5 Stream Control Transport Protocol

The Stream Control Transport Protocol (SCTP) is a reliable message-based
transport protocol developed by the IETF that could replace TCP in some
applications. SCTP allows endpoints to have multiple IP addresses for the
purposes of fault tolerance and there is on-going work to extend the SCTP

multihoming functions to support dynamic addressing and endpoint mobility
[7].

2.5.1 SCTP Overview

The SCTP is a standard transport-layer protocol for the IPv4 and IPv6 In-
ternet. SCTP was originally intended for the transport of Public Switched
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Telephone Network (PSTN) telephony signaling messages over IP but it is
now specified as a general-purpose alternative to TCP and UDP.

An SCTP association is a relationship between two SCTP endpoints. An
endpoint is a set of transport addresses and a transport address consists of a
network-layer address and a port number. In SCTP, all transport addresses
of an endpoint must share the same port number. Thus, in practice, an SCTP

endpoint is identified with a non-empty set of IP addresses and a single port
number. A pair of transport addresses is called path. Each transport address
can belong to only one endpoint at a time, so, this means that no special
endpoint identifiers are needed. The receiver of an SCTP packet identifies the
source and destination endpoints and the association to which the packet
belongs based on the source and destination IP addresses and port numbers.

An SCTP packet comprises a common header and zero or more chunks.
The chunks may carry either SCTP signaling information or user data (DATA
chunk). Multiple chunks, such as user data and acknowledgements, may be
bundled into one packet. Also, SCTP provides ordered and reliable multi-
stream transport [7].

2.5.2 Protocol insights

SCTP Handshake

First, endpoints exchange random 32b nonces.6 The header of all but the
first packet from Endpoint A to B must include B’s nonce. Correspondingly,
B must include A’s nonce in the header of all packet that it sends to A. The
SCTP specification calls the nonces “verification tags” (denoted by Tag_A and
Tag_B in Figure 2.9). These verification tags serve the same security purpose
as the randomly initialized sequence numbers in TCP, that is, they provide
a level of security against packet spoofing.

During the SCTP handshake, each of the two endpoints may send to the
other a list of IP addresses (in the INIT and INIT ACK chunks). Each endpoint

6Here and after I use the Internet Engineering Task Force (IEEE) 1541-2002 standard
to denote bit as b and bytes as B.
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Figure 2.9: SCTP four-way handshaking

selects one of the peer’s addresses as the primary destination address, and
one of it owns addresses as the best source address for routing packets to the
destination. If the choice is not mandated by the upper-layer protocol, the
algorithm for choosing the destination address is implementation dependent.
The typical choice is either the source address of the first received packet or
the first address in the peer’s list.

An important feature of the SCTP handshake is that the respondent (End-
point B) remains stateless between sending the 2nd and receiving the 3rd mes-
sage. The respondent encodes the protocol state, including the contents of
the INIT, into a state cookie, which it sends to the initiator (Endpoint A)
in the INIT ACK. The initiator returns the cookie to the respondent in the
COOKIE ECHO. This prevents state-exhaustion attacks similar to the TCP SYN
flooding [7].
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Acknowledgements and Abort messages

The acknowledgements contain a cumulative sequence number for the re-
ceived data in which no gaps remain. Like TCP, an SCTP endpoint maintains
congestion windows that limit the amount of unacknowledged data that may
be in flight at a time. There is a separate window for each transport ad-
dress of the peer endpoint. The window size is calculated with a TCP-like
algorithm that includes slow-start and congestion-avoidance phases, and is
limited by the receiver’s advertised buffer space.

The SCTP specification defines the ABORT chunk for closing an association
in an error situation. For example, an endpoint sends an ABORT when it
receives an out-of-the-blue packet (e.g. one that does not match any existing
association). This causes the receiver of the ABORT to delete its association
state. The abort mechanism is, of course, used only by nodes that support
the SCTP protocol. When a non-SCTP node receives an out-of-the-blue SCTP

packet, it either sends an Internet Control Message Protocol (ICMP) error
message or it silently discards the packet. The possible ICMP messages are
“Destination unreachable” and “Unknown next header type” (the latter
in IPv6) [7].

2.5.3 Multihoming and Dynamic Address Reconfigu-
ration

Standard SCTP supports multihoming with a static set of addresses. Each
endpoint sends all packets from the chosen source address to the primary des-
tination address. The other addresses are used only if the primary path fails
(e.g. if the primary destination address becomes unreachable). The policy
for selecting the new address pair in failover is implementation dependent.

Each endpoint monitors the reachability of the secondary addresses of its
peer so that it always knows which addresses are available for the failover.
The monitoring is done by sending a heartbeat request (a HEARTBEAT chunk)
to an idle destination address, which the peer acknowledges. The default
frequency for the heartbeats is every 30 s. The implementation may start
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sending heartbeat requests immediately after the association has been estab-
lished but it is not required to do so.

Moreover, a proposed SCTP extension, Dynamic Address Reconfigu-
ration, enables dynamic multi-addressing. This proposal defines a new SCTP

chunk type ASCONF. An endpoint uses the ASCONF chunk to notify its peer
about changes to its address set. The chunk contains one or more instruc-
tions for adding and deleting addresses and for setting the primary address.
The recipient executes these instructions in the order in which they appear
in the chunk [7]. Further details can by found in [51].

2.6 Considerations about multihoming proto-
cols

Multiaccess and multihoming are yet to become prevalent in network deploy-
ments despite years of research and development in the area. Indeed, the cor-
responding support is often missing from state-of-the-art protocols. For ex-
ample, modern mobility management protocols, such as Mobile IPv6 (MIPv6)
are not capable of handling multihoming natively and must be combined
with other protocols, such as SHIM6, to enable enhanced multihoming sup-
port. Furthermore, in some proposals new layers are introduced to perform
specific functionalities and aim at reducing the ensuing complexity due to
multihoming mechanisms in the original protocol stack [50].

Moreover, multihoming and mobility affect the security of protocols in
several ways. First, existing security mechanisms are often based on implicit
assumptions of a static network topology and unchanging addresses. When
the assumptions are invalidated, the existing security mechanisms may be-
come ineffective. Second, it is possible to misuse mobility signaling. Potential
attacks include DoS by preventing legitimate communication, connection hi-
jacking, spoofing and intercepting data, and redirecting packet flows to the
target of a flooding attack [7].

Even if the multihoming literature is relatively rich of solutions and pro-
posals [3, 37, 40, 6], also due to the large set of different possibilities and the
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Protocol MH R U L F S P Sec
NEMO End-host 7 3 7 7 7 7 3

SHIM6 End-host 3 7 7 7 3 7 7

HIP End-host 3 3 7 7 3 7 3

ILNP End-site 3 3 3 3 7 7 7

LISP End-site 3 3 3 7 3 3 7

SCTP End-host 3 3 3 3 7 3 3

Table 2.1: Primary Features of most Widespread Multihoming Protocols.

R: Resilience, U: Ubiquity, L: Load balancing/sharing, F: Flow distribution,
S: Scalability, P: Policy, Sec: Security, T: Transport layer, N: Network layer

Protocol Pros Cons
NEMO Mobility, Handover latency Requires changes to hosts
SHIM6 Deployment Mobility, Security
HIP Compatibility, Security Deployment, Policy
ILNP Semantics, H-MH support Requires changes to DNS

LISP Scalability, Flexibility Encapsulation overhead
SCTP Security, Flow control Requires changes to hosts

Table 2.2: Multihoming Protocols Pros and Cons

complexity of efficient implementation of the above features, multihoming
is supported neither by any widespread user application yet, nor by stan-
dard network devices. Table 2.1 concisely reports some main features of the
considered protocols, while Table 2.2 their pros and cons.

It is well recognized that protocols like SHIM6 or HIP may provide articu-
lated multihoming features along with relative easy implementation, failure
detection and recovery, or ubiquity and security support. However, none of
them can be considered as the ideal solution [38]. In fact, while SHIM6 may
break the functionality of other protocols [50], HIP implementation complex-
ity is the reason of its recent de facto cooldown of the researcher community
in the field.
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Another relevant solution in the literature is the ILNP. Even if it has
shown some significant pros, ILNP has demonstrated non negligible disad-
vantages in terms of a) required changes to standard DNS and the associated
deployed equipment; and, even more relevant, b) the “philosophy” of disrup-
tive approach behind the protocol itself, calling for significant re-deployment
and non-back-compatible evolution of the existing installation base. Never-
theless, as the history of IPv6 teaches, Internet infrastructure does not evolve
as quickly as it should. So, ILNP risks to rest a wonderful concept but with
no practical usage.

The practical experience of experimentation of the SCTP shows that it
would represent a feasible multihoming solution by itself [15, 28], but with
some non-negligible restrictions. Its pros are many and valuable, and its
independence to the network layer is crucially important. But it has to be
supported and enabled with ad hoc modules running at hosts’ OS kernel layer.
So far, for Linux users it is possible since kernel version 2.4 as well as in Mac
OSX 10.7 and in Solaris 10, but Microsoft seems to have not plans to add
native SCTP support because of the lack of customer demand, and Android
supports it only in rooted mode (activating the lksctp library in the Linux
kernel) and it seems not to be in Google developers’ plans too [4].

Nowadays LISP appears as the best and most promising tradeoff solution
available. Sponsored by Cisco Systems, LISP is born to solve a number of
problems risen up after more than a decade of relatively unchanged Internet
infrastructure and very slow wearying transition to IPv6, which in fact is
still ongoing. LISP has demonstrated to be the most efficient solution in
terms of scalability [54]—a reason that alone could justify its future usage.
Moreover, LISP does not require any substantial change to the existing legacy
infrastructure, except for the entities which specifically support it, even if for
both outgoing and incoming packets a processing latency is added at the
edge of the network [19]. Hence, considering that the most significant LISP

performance limitations relate to network devices’ hardware technology, I
claim that LISP can play the role of the most widespread multihoming solution
in next generation networks, possibly (but not necessarily) in association with
SCTP.





Chapter 3

Android and Networking

3.1 Android Market Share and Evolution

Google acquired Android Inc. on August 17, 2005. Not much was known
about Android Inc. at the time, but many assumed that Google was planning
to enter the mobile phone market with that move.

When in 2007 Symbian OS obtained 60.1% of the world-wide market share
while its best competitor—Blackberry—only 10.5%, it didn’t know that it
was already eclipsing. When Apple released the first iPhone, both Symbian
and Windows Mobile started losing attractiveness to the public eye as well as
to developers’.1 In Q4 2008, the market still was in Symbian’s hands (47.1%,
−7.5% YOY avg.) but Blackberry (19.5%, 6.0%), Windows Mobile (12.4%,
−1.2%), Apple (10.8%, 4.1%) and others (8.7%, −2.8%) divided up all the
rest. In this setting Android 1.0 took the first steps.

Q3 2009 registered a peak for Blackberry and iOS (thanks to the release
of the iPhone 3GS) while Android, in Q4 2009, almost reached the level of
Windows Mobile, which in effect was steadily decreasing (7.4%, 2.0% vs
7.8%, −3.1%).

Then 2010 was the year of the boom. Android overtook Windows Mobile,
iOS and Blackberry in a little more than two quarters, and then Android 2.2

1The first generation of iPhone was announced on January 9, 2007 after years of rumors
and speculation, and introduced in the United States on June 29, 2007.



44 Android and Networking

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

2007
Q1

2007
Q2

2007
Q3

2007
Q4

2008
Q1

2008
Q2

2008
Q3

2008
Q4

2009
Q1

2009
Q2

2009
Q3

2009
Q4

2010
Q1

2010
Q2

2010
Q3

2010
Q4

2011
Q1

2011
Q2

2011
Q3

2011
Q4

2012
Q1

2012
Q2

2012
Q3

2012
Q4

2013
Q1

2013
Q2

2013
Q3

2013
Q4

2014
Q1

2014
Q2

2014
Q3

2014
Q4

2015
Q1

2015
Q2

Android iOS BlackBerry Windows Phone Symbian Bada/Linux Others

Figure 3.1: History of Mobile OS Market Share (% on all devices)

Source: 2007 Q1 → 2010 Q4, Gartner World-Wide Smartphone Sales.
Source: 2011 Q1 → 2015 Q2, IDC World-Wide Smartphone Shipments.

“Froyo” (API level 8) was released. For the Q4 2010 Android had acquired
30.2% (17.0%) of the market share while Symbian had 32.4% (−8.8%).

So, as shown in Figure 3.1, since Q1 2010, while the trend for Android was
positive, all the others gradually lost market share, with the sole exception
of Apple, which still now has a swinging periodic trend. It is important
to notice that with every new Apple iPhone, Android lost market share
only in the release quarters, but regained it shortly afterwards. Windows
Mobile, eventually, after Blackberry’s vanishing, has placed itself as the third
competitor on the market, swinging around 2.9% since Q1 2012.

In Q3 2011 Android reached the important quota of 57.4% (26.2%) of
the world-wide market share on the wave of Android 3.0 “Honeycomb” (API

level 11), released in February and then, already in October 2011, Android
4.0 “Ice Cream Sandwich” (API level 14) which was the last version that
officially supported Adobe Flash.

Furthermore, looking at the Figure 3.2 another important fact emerges:
every new Apple iPhone release has not affected Android devices’ sales.
Moreover, while the trend of iOS device sales is slowly growing, in truth
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Figure 3.2: History of Mobile OS Market Share (Millions of units)

Source: 2007 Q1 → 2010 Q4, Gartner World-Wide Smartphone Sales.
Source: 2011 Q1 → 2015 Q2, IDC World-Wide Smartphone Shipments.

Apple is losing market share as a result of the outstanding amount of world-
wide Android device sales. October 21, 2013 Google released Android 4.4
“KitKat” and shortly after, in Q2 2014, Android reached an unprecedented
level with 84.7% (4.6%) of the market share.

At this point it is hard to get more market share without the disappear-
ance of one of the major competitors. Microsoft Mobile and its perfectly sta-
ble average of 2.9% is far from disappearing because Microsoft and Nokia’s
brands still have a great appeal despite years of failing marketing choices.
Even Apple, which indeed has a swinging but decreasing trend, seems to
be increasing rates in the recent past and the successful release of iPhone6
and iPhone6+ is the proof. On the other hand, Android is always gaining
popularity in the Eastern market where new companies are producing mobile
devices for all kind of customers, but overall, the base share now is so wide
that in the worst case it will require years, or even more than a decade, for
Android to disappear.

This scenario is very promising for Android developers and in fact this is
the main reason why I have chosen Android as the reference Operating Sys-



46 Android and Networking

tem (OS). But not only: just looking at the connectivity features introduced
with every new Android release (see Appendix A) their prominent role in
the Android developing ecosystem is evident, so my choice may be defined
as just pragmatic.

3.2 Android Architecture
The Android OS is based on a modified Linux 2.6 kernel. Compared to a
Linux 2.6 environment though, several drivers and libraries have been either
modified or newly developed to allow Android to run as efficiently and as
effectively as possible on mobile devices (such as smartphones or tablets).
Some of these libraries have their roots in open source projects. Due to some
licensing issues, the Android community decided to implement their own
C library (called Bionic), and to develop an Android specific Java runtime
engine, the Dalvik Virtual Machine (VM).

With Android, the focus has always been on optimizing the infrastructure
based on the limited resources available on mobile devices. To complement
the operating environment, an Android specific Application Framework was
designed and implemented. Therefore, Android can best be described as a
complete solution stack, incorporating the OS, middleware components, and
applications. In Android, the modified Linux 2.6 kernel acts as the Hardware
Abstraction Layer (HAL). Finally, the Android Software Development Kit
(SDK) provides the tools and APIs necessary to begin developing applications
on the platform using the Java programming language.

3.2.1 Linux Kernel

As shown in Figure 3.3, Android relies on a Linux kernel which operates
as the HAL for core system services such as security, memory management,
process management, network stack, and device drivers. Some of the Android
specific kernel enhancements include:

• Alarm Driver, which provides timers to wakeup devices;
• Shared Memory Driver (ashmem);
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Figure 3.3: Android Architecture

• Binder, for Inter-Process Communication (IPC);
• Power Management, which takes a more aggressive approach than the

Linux one;
• Low-memory killer;
• Kernel debugger and logger;
• etc.

During the Android boot process, the Android Linux kernel component first
calls the init process. The init process accesses the files init.rc and
init.device.rc.2 Out of the init.rc, a process labeled zygote is started.

The zygote process loads the core Java classes and performs the initial
processing steps. These Java classes can be reused by Android applications
and hence, this step expedites the overall startup process. After the initial
load process, zygote idles on a socket and waits for further requests.

Every Android application runs in its own process environment. A special
driver labeled the binder allows for efficient IPCs. Actual objects are stored
in Shared Memory which means that IPC is being optimized, as less data has

2The init.device.rc is device-specific.
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to be transferred. Compared to most Linux environments, Android does not
provide any swap space. Hence, the amount of virtual memory is governed
by the amount of physical memory available on the device.

3.2.2 Libraries

Android includes a set of C/C++ libraries used by various components of
the system. These capabilities are exposed to developers through the An-
droid Application Framework as the Libraries layer is interfaced through Java
(which deviates from the traditional Linux design). It is in this layer that the
Android specific libc Bionic is located. This library is not compatible with
the Linux glibc but compared to it, the Bionic library has a smaller memory
footprint. More in detail, the Bionic library contains a special thread im-
plementation that firstly optimizes the memory consumption of each thread
and then reduces the startup time of a new thread.

Also, Android provides runtime access to kernel primitives and hence,
user-space components can dynamically alter the kernel behavior. Only pro-
cesses/threads though that do have the appropriate permissions are allowed
to modify these settings. Security is maintained by assigning a unique User
ID (UID) and Group ID (GID) pair to each application. As mobile devices
are normally intended to be used by a single user only (compared to most
Linux systems), the Linux /etc/passwd and /etc/group settings have been
removed. In addition, to boost security, /etc/services was replaced by a
list of services maintained inside the executables.

To summarize, the Android C library is especially suited to operate under
the limited CPU and memory conditions common to the target Android plat-
forms. Further, special security provisions were designed and implemented
to ensure the integrity of the system.

3.2.3 Android Runtime

Android includes a set of Core Libraries which provide most of the function-
ality available in the Java programming language. Every Android application
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runs in its own process, with its own instance of the Dalvik VM. Dalvik has
been written so that a device can run multiple VMs efficiently. The Dalvik
VM executes files in the Dalvik Executable (.dex) format which is optimised
for minimal memory footprint. The VM is register-based, and runs classes
compiled by a Java language compiler that have been transformed into the
.dex format by the included “dx” tool. The Dalvik VM relies on the Linux
kernel for underlying functionality such as threading and low-level memory
management.

3.2.4 Application Framework

By providing an open development platform, Android offers developers the
ability to build applications. Developers have full access to the same frame-
work APIs used by the core applications. The application architecture is
designed to simplify the reuse of components; any application can publish its
capabilities and any other application may then make use of those capabili-
ties (subject to security constraints enforced by the framework). This same
mechanism allows components to be replaced by the user.

In this layer, the Activity Manager governs the application life cycle;
the Content Providers enable applications to either access data from other
applications or to share their own data, the Resource Manager provides access
to non-code resources (such as graphics), while the Notification Manager
enables applications to display custom alerts.

3.2.5 Applications

Android applications are bundled into an Android package (.apk) via the
Android Asset Packaging Tool (AAPT). To streamline the development pro-
cess, Google provides the Android Development Tools (ADT) which stream-
lines the conversion from .class to .dex files, and creates the .apk during
deployment. In a very simplified manner, Android applications are in general
composed b the entities explained as following.
Activities provide visible screens that mobile users can interact with. An
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Activity is also responsible for monitoring and reacting to the operations
that a user have performed on the screen.

Activity
launched

onCreate()

onStart()

onResume()

Activity
running

onPause()

onStop()

onDestroy()

Activity
shut down

App process
killed

onRestart()
User navigates to the 

activity

Apps with higher priority 
need memory

Another activity comes 
into the foreground

The activity is no longer 
visible

The activity is finishing or being 
destroyed by the system

User returns to the 
activity

User navigates to 
the activity

Figure 3.4: The Activity life-cycle

The life-cycle of an activity includes several states. It begins from
onCreate() and ends at the time when onDestroy() is called. After an
Activity has been created, onStart() is the point that the Activity be-
comes visible to users. The method onResume() also shows a state the
Activity is visible, however different from onStart(), it restores a pre-



3.2 Android Architecture 51

vious state. The onPause() represents a state that the current Activity
is placed in the background, it is active and ready to be brought back
into focus at any time. Though the activity at the state of onStop()
is still alive, it is unattached from the Window Manager and can no
longer be restored.
The Activity which is started at the application launch time is called
the Main Activity. An application can have a series of Activities and
one Activity is capable of creating another one. When a new Activity
is started, the old one is not killed; instead, its state is pushed into
the stack. The old Activity will be restored by retrieving its state and
regain the focus if the user navigates back.

Services work quite similar to Activities, the only difference is that the
Service usually runs in the background and performs a long term task;
As a result, it does not provide any graphic interfaces.
Services can be started in two different ways. Calling the method
startService() allows us to run an independent task, the Service quits
automatically when the task is finished. The other way is through ap-
plication bindings: a bound service is subjected to an application, thus
the application has to decide when to active it and when to kill it.

Content Providers work as the database for the application. The data in
Content Providers can be shared across applications but only when the
access is allowed. The application is also able to use the public Content
Providers managed by Google.
When storing data into the Content Provider, the user needs to specify
the name of the data by following the Uniform Resource Identifier (URI)
scheme so that the data can be identified and retrieved by name.

Broadcast Receivers let the application listen to a particular state of ei-
ther the system or other applications. They are especially useful in
order to activate some service at a specific point. Let us suppose that
the application has to get started as soon as the phone is finished with
the initialization. If one fully registers for receiving the broadcast of the
phone boots, one will be notified at that specific point and then it is
possible to ask the system to launch the application.
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The notification message sent is called Intent and it is serialized when
it is sent. The message consists of the data together with the operation
that will be performed. Intent filters are used to filter out unwanted
intents so that users are informed by relevant ones only.

Android Manifest

The AndroidManifest.xml file is the configuration file of the Android ap-
plication. It specifies the components that the application owns and the
external libraries it uses. As to the Android permissions, it declares permis-
sions it requests as well as permissions that are defined to protect its own
components [25]. The structure of AndroidManifest.xml is as following:

1 <?xml version="1.0" encoding="utf -8"?>
2

3 <manifest>
4

5 <uses-permission />
6 <permission />
7 <permission -tree />
8 <permission -group />
9 <instrumentation />

10 <uses-sdk />
11 <uses-configuration />
12 <uses-feature />
13 <supports -screens />
14 <compatible -screens />
15 <supports -gl-texture />
16

17 <application>
18

19 <activity>
20 <intent -filter>
21 <action />
22 <category />
23 <data />
24 </intent -filter>
25 <meta-data />
26 </activity>
27

28 <activity -alias>
29 <intent -filter> . . . </intent -filter>
30 <meta-data />
31 </activity -alias>
32
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33 <service>
34 <intent -filter> . . . </intent -filter>
35 <meta-data/>
36 </service>
37

38 <receiver>
39 <intent -filter> . . . </intent -filter>
40 <meta-data />
41 </receiver>
42

43 <provider>
44 <grant -uri-permission />
45 <meta-data />
46 <path-permission />
47 </provider>
48

49 <uses-library />
50

51 </application>
52

53 </manifest>

3.3 Support to Connectivity
Android uses a wide set of packages for handling connectivity. In addition
to the java.net and javax.net packages, Android has its own packages to
provide connectivity APIs to developers. The main package is android.net,
but in it there is a specialized hierarchy which includes .http, .nsd, .rtp,
.sip and .wifi, where the latter has also his own hierarchy for peer-to-peer
functionalities. Not included in .net—but considerably important for new
Android devices’ connectivity—is the android.nfc package, obviously for
Near Field Communication (NFC). Finally, other very important connectiv-
ity features are provided by classes in android.app and android.content
packages. The complete hierarchy is shown in Figure 3.5.

The android.net package is a set of classes that help with network access,
beyond the normal java.net.* APIs. It is structured as shown in Figure B.1.
In addition, Android has a number of classes to achieve end-to-end service-
oriented communications. The most important classes are Connectivity-
Manager, Service, VpnService, Activity and Intent.



54 Android and Networking

android.app
android.content
android.net

.http

.nsd

.rtp

.sip

.wifi
.p2p

.nsd
android.nfc

.cardemulation

.tech
java.net
javax.net

.ssl

Figure 3.5: Android Connectivity Packages

3.3.1 The ConnectivityManager class

This class answers queries about the state of network connectivity. It also
notifies applications when network connectivity changes. It is possible to
get an instance of this class by calling the method Context.getSystem-
Service(Context.CONNECTIVITY_SERVICE) provided by Context class.3

The primary responsibilities of this class are to:
• Monitor network connections (WiFi, GPRS, UMTS, etc.);
• Send broadcast intents when network connectivity changes;
• Attempt to “fail over” to another network when connectivity to a net-

work is lost;

3The Context is an interface to global information about an application environment.
It formally is an abstract class whose implementation is provided by the Android sys-
tem. It allows access to application-specific resources and classes, as well as up-calls for
application-level operations such as launching activities, broadcasting and receiving in-
tents, etc.
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ConnectivityManager

-ACTION_BACKGROUND_DATA_SETTING_CHANGED: String
-CONNECTIVITY_ACTION: String
-DEFAULT_NETWORK_PREFERENCE: int
-EXTRA_EXTRA_INFO: String
-EXTRA_IS_FAILOVER: String
-EXTRA_NETWORK_INFO: String
-EXTRA_NETWORK_TYPE: String
-EXTRA_NO_CONNECTIVITY: String
-EXTRA_OTHER_NETWORK_INFO: String
-EXTRA_REASON: String
-TYPE_BLUETOOTH: int
-TYPE_DUMMY: int
-TYPE_ETHERNET: int
-TYPE_MOBILE: int
-TYPE_MOBILE_DUN: int
-TYPE_MOBILE_HIPRI: int
-TYPE_MOBILE_MMS: int
-TYPE_MOBILE_SUPL: int
-TYPE_WIFI: int
-TYPE_WIMAX: int

+getActiveNetworkInfo(): NetworkInfo
+getAllNetworkInfo(): NetworkInfo[]
+getBackgroundDataSetting(): boolean
+getNetworkInfo(int): NetworkInfo
+getNetworkPreference(): int
+isActiveNetworkMetered(): boolean
+isNetworkTypeValid(int): static boolean
+requestRouteToHost(int, int): boolean
+setNetworkPreference(int): void
+startUsingNetworkFeature(int, String): int
+stopUsingNetworkFeature(int, String): int

Figure 3.6: The ConnectivityManager class

Stricken out constants and methods are deprecated.

• Provide an API that allows applications to query the coarse-grained or
fine-grained state of the available networks [5].

3.3.2 The Service class

A Service is an application component representing either an application’s
desire to perform a longer-running operation while not interacting with the
user, or to supply functionality for other applications to use. Each ser-
vice class must have a corresponding <service> declaration in its pack-
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age’s AndroidManifest.xml. Services can be started with Context.start-
Service() and Context.bindService().

It is important to note that services, like other application objects, run
in the main thread of their hosting process. This means that, if a service is
going to do any CPU intensive (such as music playback) or blocking (such as
networking) operations, it should spawn its own thread in which to do that
work. The IntentService class is available as a standard implementation
of Service that has its own thread where it schedules its work to be done.

Service

-START_CONTINUATION_MASK: int
-START_FLAG_REDELIVERY: int
-START_FLAG_RETRY: int
-START_NOT_STICKY: int
-START_REDELIVER_INTENT: int
-START_STICKY: int
-START_STICKY_COMPATIBILITY: int

#dump(FileDescriptor, PrintWriter, String[]): void
+getApplication(): final Application
+onBind(Intent): abstract IBinder
+onConfigurationChanged(Configuration): void
+onCreate(): void
+onDestroy(): void
+onLowMemory(): void
+onRebind(Intent): void
+onStart(Intent, int): void
+onStartCommand(Intent, int, int): int
+onTaskRemoved(Intent): void
+onTrimMemory(int): void
+onUnbind(Intent): boolean
+startForeground(int, Notification): final void
+stopForeground(boolean): final void
+stopSelf(): final void
+stopSelf(int): final void
+stopSelfResult(int): final boolean

Figure 3.7: The Service class

Most confusion about the Service class actually revolves around what it
is not. A Service is not a separate process. The Service object itself does
not imply it is running in its own process; unless otherwise specified, it runs
in the same process as the application it is part of. Also, a Service is not a
thread: it is not a means to do work off of the main thread.
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Thus a Service itself is actually very simple, providing two main features:
• A facility for the application to tell the system about something it

wants to be doing in the background (even when the user is not di-
rectly interacting with the application). This corresponds calling to
Context.startService(), which asks the system to schedule work for
the service, to be run until the service or someone else explicitly stop
it.

• A facility for the application to expose some of its functionality to other
applications. It corresponds calling to Context.bindService(), which
allows a long-standing connection to be made to the service in order to
interact with it.

When a Service component is actually created, for either of these rea-
sons, all that the system actually does is instantiate the component and call
its onCreate() and any other appropriate callbacks on the main thread. It
is up to the Service to implement these with the appropriate behavior, such
as creating a secondary thread in which it does its work.

There are two reasons for a service to be run by the system. If some-
one calls Context.startService() then the system will retrieve the ser-
vice (creating it and calling its onCreate() method if needed) and then
call its onStartCommand(Intent, int, int) method with the arguments
supplied by the client. The service will at this point continue running
until Context.stopService() or stopSelf() is called. Multiple calls to
Context.startService() do not nest (though they do result in multiple
corresponding calls to onStartCommand()), so no matter how many times it
is started: a service will be stopped once Context.stopService() or stop-
Self() is called; however, services can use their stopSelf(int) method to
ensure the service is not stopped until started intents have been processed.

Clients can also use Context.bindService() to obtain a persistent con-
nection to a service. This likewise creates the service if it is not already
running (calling onCreate() while doing so), but does not call onStart-
Command(). The client will receive the IBinder object that the service re-
turns from its onBind(Intent) method, allowing the client to then make
calls back to the service. The service will remain running as long as the
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connection is established (whether or not the client retains a reference on the
service’s IBinder). Usually the IBinder returned is for a complex interface
that has been written in Android Interface Definition Language (AIDL).

A service can be both started and have connections bound to it. In such a
case, the system will keep the service running as long as either it is started or
there are one or more connections to it with the Context.BIND_AUTO_CREATE
flag. Once neither of these situations hold, the service’s onDestroy() method
is called and the service is effectively terminated. All cleanup (stopping
threads, unregistering receivers) should be complete upon returning from
onDestroy().

Global access to a service can be enforced when it is declared in its man-
ifest’s <service> tag. By doing so, other applications will need to declare a
corresponding <uses-permission> element in their own manifest to be able
to start, stop, or bind to the service.

When using Context.startService(Intent), it is also possible to set
Intent.FLAG_GRANT_READ_URI_PERMISSION and Intent.FLAG_GRANT_WRI-
TE_URI_PERMISSION on the Intent. This will grant the Service tempo-
rary access to the specific URIs in the Intent. Access will remain until the
Service has called stopSelf(int) for that start command or a later one,
or until the Service has been completely stopped. This works for granting
access to the other apps that have not requested the permission protecting
the Service, or even when the Service is not exported at all.

The Android system will attempt to keep the process hosting a service
around as long as the service has been started or has clients bound to it.
When running low on memory and needing to kill existing processes, the
priority of a process hosting the service will be the higher of the following
possibilities:

• If the service is currently executing code in its onCreate(), onStart-
Command(), or onDestroy() methods, then the hosting process will be a
foreground process to ensure this code can execute without being killed.

• If the service has been started, then its hosting process is considered
to be less important than any processes that are currently visible to
the user on-screen, but more important than any process not visible.
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Because only a few processes are generally visible to the user, this means
that the service should not be killed except in extreme low memory
conditions.

• If there are clients bound to the service, then the service’s hosting pro-
cess is never less important than the most important client. That is, if
one of its clients is visible to the user, then the service itself is considered
to be visible.

• A started service can use the startForeground(int, Notification)
API to put the service in a foreground state, where the system considers
it to be something the user is actively aware of and thus not a candidate
for killing when low on memory.

Of course this means that most of the time that a service is running, it
may be killed by the system if it is under heavy memory pressure. If this
happens, the system will later try to restart the service. An important con-
sequence is that if you want to implement onStartCommand() in order to
schedule work. it must be done asynchronously. Other application compo-
nents running in the same process as the Service can increase the importance
of the overall process beyond just the importance of the service itself [5].

3.3.3 The VpnService and VpnService.Builder classes

VpnService is a base class for applications to extend and build their own
Virtual Private Network (VPN) solutions, which specializes the Service class.
In general, it creates a virtual network interface, configures addresses and
routing rules, and returns a file descriptor to the application. Each read
from the descriptor retrieves an outgoing packet which was routed to the
interface. Each write to the descriptor injects an incoming packet just like
it was received from the interface. The interface is running on IP, so packets
are always started with IP headers. The application then completes a VPN

connection by processing and exchanging packets with the remote server over
a tunnel.

Letting applications intercept packets raises huge security concerns. A
VPN application can easily break the network. Besides, two of them may
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VpnService

-SERVICE_INTERFACE: String

+onBind(Intent): IBinder
+onRevoke(): void
+prepare(Context context): static Intent
+protect(int): boolean
+protect(DatagramSocket): boolean
+protect(Socket): boolean

VpnService.Builder

+addAddress(String, int): VpnService.Builder
+addAddress(InetAddress, int): VpnService.Builder
+addDnsServer(InetAddress): VpnService.Builder
+addDnsServer(String): VpnService.Builder
+addRoute(InetAddress, int): VpnService.Builder
+addRoute(String, int): VpnService.Builder
+addSearchDomain(String): VpnService.Builder
+estabilish(): ParcelFileDescriptor
+setConfigureIntent(PendingIntent): VpnService.Builder
+setMtu(int): VpnService.Builder
+setSession(String): VpnService.Builder

Figure 3.8: The VpnService and VpnService.Builder classes

conflict with each other. The system takes several actions to address these
issues. Here are some key points:

• User action is required to create a VPN connection.
• There can be only one VPN connection running at the same time. The

existing interface is deactivated when a new one is created.4

• A system-managed notification is shown during the lifetime of a VPN

connection.
• A system-managed dialog gives the information of the current VPN con-

nection. It also provides a button to disconnect.
• The network is restored automatically when the file descriptor is closed.

It also covers the cases when a VPN application is crashed or killed by
the system.

4This, as it will be explained in section 3.4, is however an insurmountable obstacle for
multihoming implementation for Android.
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There are two primary methods in this class: prepare(Context) and
establish(). The former deals with user action and stops the VPN con-
nection created by another application. The latter creates a VPN interface
using the parameters supplied to the VpnService.Builder. An application
must call prepare(Context) to grant the right to use other methods in this
class, and the right can be revoked at any time. Here are the general steps
to create a VPN connection:

1. When the user presses the button to connect, the system calls prepa-
re(Context) and launches the returned intent. When the application
becomes prepared, it starts the service.

2. It creates a tunnel to the remote server and negotiate the network pa-
rameters for the VPN connection.

3. It supplies those parameters to a VpnService.Builder and creates a
VPN interface by calling establish().

4. It processes and exchanges packets between the tunnel and the returned
file descriptor.

5. When onRevoke() is invoked, it closes the file descriptor and shuts down
the tunnel gracefully.

Services extended by this class need to be declared with appropriate per-
mission and intent filter. Their access must be secured by BIND_VPN_SERVICE
permission, and their intent filter must match SERVICE_INTERFACE action [5].

3.4 State-of-the-Art Multihoming Support

The core of Android networks handling is the ConnectivityManager. Added
in API level 1—as already said—the class is responsible for all the opera-
tions between the system and the networks. Until API level 185, Android
platform officially was able to simultaneously manage only two networks: a
default network and another network. This was actually the result of having
two main network interfaces (generally a WiFi and a 3G/4G) and so the
ConnectivityManager had to manage the data communications over two

5Android 4.3 Jelly Bean, release July 24, 2013.
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possible networks but with the limitation of using only one of these inter-
faces at once. This scenario justified also the existence of an int flag like
a DEFAULT_NETWORK_PREFERENCE that effectively pointed out which network
is the default one and which one is not. Naturally the default network is the
one with the best signal, and in order to know that, a NetworkInfo object
that knows the network(s) state is required. This is important also because
the ConnectivityManager takes care of the fail over (also known as han-
dover) procedure, that is when a connection with a network is lost for some
reason and a new one is consequently set up with another network. If so,
calling the NetworkInfo’s isFailover() will return true.

But since Android supports many more networks now, the single “default
network preference” cannot really express the hierarchy. At this point, the
default network is defined by the networkAttributes in config.xml6, giving
in this way more flexibility to developers, but the ConnectivityManager’s
method getNetworkPreference() is definitely going to be deprecated. It
retrieves the current preferred network type but—as specified in [5]—«this
made sense when we only had two network types, but with more and more
default networks we need an array to list their ordering. This will be depre-
cated soon.»

Hence the direction for the next API levels is to dismiss the “default
network preference” principle for having, instead, a sorted array of networks.
This actually has a good impact on ubiquity and on efficiency of system
interfaces’ management, but it eventually does not provide multihoming.

A possibility is represented by enabling all the network interfaces on the
device but this is not allowed by default Android policies [24, 55]. In general,
the WiFi interface has priority, which is good as it has better performances
and the data consumption on 3G is not free. When the user turns on the
WiFi, the 3G goes off; when the user turns on the 3G, it will be shut down
if the WiFi is already on; if the user shuts down the WiFi, the 3G can be
automatically turned on (if the user allows it in the settings). With these

6At the time of writing, the developer can determine the current value by calling
getNetworkPreference().
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rules, it is impossible to get the two interfaces running at the same time and
since there is no user interface to change this, it has to be changed directly
in the source. The simplest way to get over the policies is to comment in the
network Connectivity Service of the Android application framework the
code lines which shut down the interface which does not have priority. The
expected resulting behaviour is that turning on an interface will not shut
down the other [24].

Of course, advanced IP routing, multiple routing tables and network fil-
tering must be enabled too. In Android goldfish kernel:

1 CONFIG_IPV6=y
2 CONFIG_IPV6_MULTIPLE_TABLES=y
3 CONFIG_IP_ADVANCED_ROUTER=y
4 CONFIG_IP_MULTIPLE_TABLES=y
5 CONFIG_NETFILTER=y
6 CONFIG_NETFILTER_ADVANCED=y
7 CONFIG_NETFILTER_XTABLES=y
8 CONFIG_NETFILTER_XT_MARK=y
9 CONFIG_NETFILTER_XT_TARGET_MARK=y

10 CONFIG_IP_NF_IPTABLES=y
11 CONFIG_IP_NF_MANGLE=y
12 CONFIG_IP6_NF_IPTABLES=y
13 CONFIG_IP6_NF_MANGLE=y

And so, after a VPN set-up, an App could use multiple interfaces to route IP

streams. Obviously it will be responsibility of the app’s developer to manage
the interfaces, the networks and the data through them, so this may represent
a Pandora’s crate in terms of potentialities as well as security issues.

Another option is to implement an ad hoc multihoming solution. As I
have explained at the end of chapter 2, this may be achieved in different ways
but generally a multihoming protocol has to be supported somehow.

So at this point a choice must be made: either to use a non-rooted system
or a rooted one? If the choice is to root the device, it is possible to enable
SCTP7 in Android’s goldfish kernel and hence provide a good multihoming
support for the host:

14 CONFIG_IP_SCTP=y

7See Section 2.6 for protocols’ pros and cons.
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In this case all multihoming features will be provided directly by SCTP with
almost no effort for the developer.8

As an alternative, so far HIP is available on Android platforms thanks to
an experimental porting of HIP for Linux (HIPL). See section 3.4.1 for
further details.

Otherwise, if the choice is a non-rooted Android because it is wanted to
use it as a “black box”9, consequently it is necessary to implement a more
complex solution like LISPmob.

3.4.1 HIP for Linux

HIPL is an open source software project initially developed at Helsinki In-
stitute for Information Technology, Helsinki University of Technology and
lately at Aalto University, Aachen University and Tampere University of
Technology.

Basically HIPL is used for encrypting and protecting all TCP and UDP

connections similarly to Transport Layer Security (TLS), but without requir-
ing changes in applications. The access control is based on public key as
demanded by HIP specifications in order to protect the end-to-end traffic.
Furthermore HIPL lets to set-up a server behind NAT, to store and lookup
hostnames and hosts’ address information (like DNS, but based on free and
distributed technology), and guarantees that Internet connections survive to
short-time address changes (e.g. when DHCP address lease expires).

HIPL uses a HIP daemon (hipd) whose main task is to handle the HIP

base exchange. More in detail, the hipd manages all the core activities of
the protocol: HIP packet generation and handling, HIT-to-IP mappings, HIP

packets communication between the user level and the kernel, as well as all
cryptographic-related features like cookies, Diffe-Hellman, signatures, etc. In

8Java supports SCTP in JDK 7 as of milestone 3, but it does not mean that Dalvik VM

supports it. Though Android does have SCTP support by goldfish kernel version 2.5.67,
it is not in Dalvik 4.2 or previous versions. Anyway developers may create a Java class
that would wrap a native library with SCTP calls.

9Basically I want to come to a more “user-friendly” solution because no-one should
expect that the average user would root his Android device.
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addition, it provides a simple command-line administrative Graphical User
Interface (GUI) [52].

HIPL does not require high-performance hardware to work or any other
third-parties software tool. It runs on a Linux OS with a kernel 2.6.27 or
patched previous versions but recently HIPL has a partial experimental sup-
port for the Android platform too.

The components that currently work on Android are hipd (the HIP dae-
mon), and hipconf (the configuration tool). The hipd does require root
privileges, and the running kernel must support the IPSec BEET mode, the
dummy network driver and the null crypto algorithm. Often one or more of
these are not compiled into the stock kernel, and it is likely that it is needed
to compile and install a custom kernel. It must be said that currently HIPL

only supports compiling under Linux but to help the user there is a script that
downloads and extracts the toolchain needed to compile hipd and hipconf
which has been confirmed to work at least on Ubuntu 12.04. After the HIPL

source code is downloaded and the toolchain is installed, the steps to compile
it for Android are almost similar to any standard Linux builds.

On Android, hipd needs to be run with the '-a' parameter. Additionally,
it supports the same parameters as the normal Linux version does (e.g. '-k'
kills an already running instance and '-b' starts hipd in the background).
By example, running 'hipd -ab' and configuring hosts in /etc/hosts one
should be able to use HIP on any app that supports IPv6 [1].

3.4.2 LISPmob

LISPmob is an open-source LISP and LISP-MN implementation for Linux, An-
droid and OpenWRT. With LISPmob, hosts can change their network at-
tachment point without losing connectivity, while maintaining the same IP

address.
Since its inception, LISP has gained significant traction because of its

inherent architectural advantages: fully featured traffic engineering capabil-
ities, minimal configuration needs, very low deployment cost and benefits
to early adopters. Institutions (both commercial and academic) across the
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globe have demonstrated their interest in LISP. At the time of writing LISP

has been deployed in a beta-network that includes more than twenty coun-
tries and hundreds of institutions. In fact, the LISPmob audience, composed
of both individuals and companies, has an estimated user-base of almost two
hundreds. Mainly, individuals are interested in LISPmob to obtain IPv6 con-
nectivity over IPv4-only providers (and sometimes the other way around) and
to set up simple multihoming deployments. Instead, companies use LISPmob
in different ways, mostly as a tool for proof-of-concept LISP deployments
and to provide LISP connectivity on client-side devices. There is also an
increasing interest for LISPmob in academic projects and other open-source
communities.

The LISPmob project aims to bring a full-featured LISP open-source imple-
mentation to Linux-flavoured systems. Currently it is available for standard
Linux, Android and OpenWRT. More in detail, since version 0.4.0, LISPmob
includes support for Android devices operating as LISP-MN. There are two
different editions of the LISPmob Android application: for rooted devices and
for non-rooted devices. It is expected that in the future the root version will
provide features beyond those available on the non-root version, however on
LISPmob 0.4.1 there is just one root-only feature, the support for IPv6 RLOCs.
In both editions, there is a limit of one IPv4 EID and one IPv6 EID mapped
to one or more RLOC interfaces.

Even though several interfaces can be managed by LISPmob at the same
time, on Android platform they can only be used in an “active-backup”
fashion (that is, no more than one interface used at once), as consequence of
the reasons previously explained.
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State-of-the-Art Android
LISPmob and Research Project

4.1 LISPmob Versions and Functionalities

At the time of writing two versions of LISPmob for Android exist: the non-
root and the root versions. These two different versions of LISPmob for An-
droid have different requirements. LISPmob for non-rooted devices requires
Android 4.0 or higher, while LISPmob for rooted devices requires root access
and Android version 2.3.6 or higher. However, the main difference between
the two versions is that the non-root version allows to select several interfaces
but it only will use the one that Android has set as default1; the root version
also allows to select several interfaces by modifying the configuration file and
it will generate the appropriate routing tables, but due Android networking
limitations, only one interface is effectively active.

LISPmob for Linux implements the following features:
• Full IPv6 and IPv4 support;
• Router-mode and Mobile Node-mode, as well as other LISP devices;
• Handling multihoming scenarios with traffic balancing among links;
• Interface management, including handover events;
• NAT traversal capabilities.
1See section 3.4.2 for further details on “active-backup”.
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Instead, the LISPmob Android application basically allows to start and
stop lispd daemon and edit the most important parameters of the configu-
ration file. To access to the full list of features it is necessary to edit manually
the configuration file located in /sdcard/lispd.conf. Manually edited pa-
rameters not present in the configuration form are overwritten when using
the application configuration editor. In LISPmob 0.4.1 there is just one root-
only feature, that is the support for IPv6 RLOCs. Very important to notice
is that in both editions there is a limit of one IPv4 EID and one IPv6 EID

mapped to one or more RLOC interfaces.
Moreover, due to a bug in VPN APIs on Android 4.4.0 and onwards, the

non-rooted version of LISPmob will not work on Android 4.4.0, 4.4.1, 4.4.2
or 4.4.3. The bug was fixed on Android 4.4.4.

4.1.1 Reference Version

The LISPmob reference version for this research is the one for non-rooted
devices. The motivations that lead to this choice are the following:
From the user point-of-view: People who root their devices are few be-

cause the rooting process requires skills uncommon to the average An-
droid user. One of the LISP features in comparison with other protocols
like HIP or SCTP is that it does not require changes to the user’s devices,
so this advantage must be absolutely preserved.

From the developer point-of-view: It is a fact that Google APIs not al-
ways offer complete control over the Android OS, specially when Native
Development Kit (NDK) is used as much as in LISPmob. Nevertheless,
since developers gain new powers with every new API level, the general
rule for Android developers is to use the APIs in order to produce more
reusable and robust code.

This research started using LISPmob 0.4.1.4 by forking the lispmob-
master repository from GitHub.com in October 2014. Version 0.4.1.6 of
the source files including the bug-fixing patch described in section 5.1.2 was
released in late December 2014.

GitHub.com
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4.2 High-Level Software Architecture

Since our reference version of LISPmob is the one for non-rooted devices,2 in
this section its software architecture is presented from the software engineer-
ing perspective.

4.2.1 Package Organization

The org.noroot.lispmob package consists of several Java classes and, like
any Android project, it extensively uses external resources as layout files,
string libraries and drawables, all properly organized. But, since LISPmob
uses the NDK because the lispd code is written in C/C++, it has also a Java
Native Interface (JNI) responsible of making the link between the Java code
and the native code.

So the whole project may be seen as organized in activities, services, util-
ity libraries, a native interface (all in Java), the lispd native code (C/C++),
external resources (XML and images), and build files—which includes config-
uration files (XML) and makefiles.

4.2.2 Activities

LISPmob

This is the Main Activity. The User Interface (UI) is very simple—it is
composed of four objects: a checkbox and three buttons. The lispCheckBox
starts/stops the VPN and basically shows if LISP protocol is used (or, more
correctly, if the lisp is currently running). Each button creates an Intent
and starts the related Activity: the confActivity, the logActivity and
the updateConfActivity.3

2See section 4.1.1 for details on motivations.
3See the classes’ description in this section for further details.
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LISPmob

+lispd_path: String
-system_dns: String[]
-lispdWasRunning: boolean
-lispdRunning: boolean
-err_msg_detected: boolean
-startVPN: boolean
-vpn_intent: Intent
-CONF_ACT: final int
-VPN_SER: final int
-handler: Handler
-doUpdateView: Runnable

+onCreate(Bundle): void
#onPause(): void
#onStop(): void
#onResume(): void
+runTask(String, String, boolean): String
+updateStatus(): void
+showMessage(String, boolean, Runnable): void
#restartLispd(): void
+startVPN(): void
+stopVPN(): void
+onActivityResult(int, int, Intent): void
+onClick(View): void

statusTask

+run(): void

Figure 4.1: The LISPmob Activity

confActivity

-confFile: final String

+onCreate(Bundle): void
-refresh(): void

Figure 4.2: The confActivity Activity
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confActivity

The confActivity is the Input/Output (I/O) Activity responsible of reading
the configuration file lispd.conf, if it does exists. This Activity is created
by the Main Activity, that is LISPmob.

logActivity

The logActivity’s unique responsibility is to provide a real-time updated
UI for the lispd.log file. The user can set four levels of logging details (from
0 to 3) in the lispd.conf file.

logActivity

-myDialog: ProgressDialog
-mHandler: Handler
-log_file: File
+maxReadBytes: final int

+onConfigurationChanged(Configuration): void
+onCreate(Bundle): void
+refresh(): void
+refreshClicked(View): void

Figure 4.3: The logActivity Activity

updateConfActivity

This is the Activity responsible of the automatic building of the lispd.conf
file. The user fills the empty fields with the parameters provided by the
beta network and the updateConfActivity writes the lispd.conf file. The
Activity also retrieve the parameters from the lispd.conf file in order to
allow the editing by the user. Any manual edit of the lispd.conf file is
lost when the user uses this Activity because the lispd.conf file is just
overwritten.
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updateConfActivity

+confFile: final String
+eidIPv4: String
+eidIPv6: String
+ifaces: List<String>
+MR: String
+MS: String
+MSKey: String
+proxyETR: String
+DNS1: String
+DNS2: String
+overrideDNS: boolean
+nat_aware: boolean
+rloc_prob_interval: int
+rloc_prob_retries: int
+rloc_prob_retries_interval: int
+logLevel: String
+CONFIG_UPDATED: final int
+conf_file: File
+iface_list: List<String>

+getNewDNS(): String[]
+isOverrideDNS(): boolean
+createConfFile(): void
+displayMessage(String, boolean, Runnable): void
+get_and_validate_parameters(): boolean
+onCreate(Bundle): void
+readConfFileAndFillParameters(): void
+updateConfClicked(View): void
+updateConfDNSClicked(View): void
+updateConfFile(): void
+updateConfNATAwareClicked(View): void

Figure 4.4: The updateConfActivity Activity
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LISPmobVPNService

-TAG: final String
-mConfigureIntent: PendingIntent
-mThread: Thread
-mInterface: ParcelFileDescriptor
+vpn_runngin: boolean
+err_msg_code: int
-ipc_channel: IPC

+onStartCommand(Intent, int, int): int
+onDestroy(): void
+handleMessage(Message): boolean
+run(): synchronized void
-configure(): void
+notify_msg(String): void

Figure 4.5: The LISPmobVPNService Service
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4.2.3 Services

LISPmobVPNService

This class is the VPN Service manager. LISPmobVPNService actually is a
VPNService and in fact handles the IPC’s channel and put the lispd over it.
It also uses the ConfigTools class and handles log messages and notifications.

IPC

The IPC class is the engine of the LISPmob networking services. It setup
a LISPmobVPNService and opens a DatagramChannel on which a socket is
binded. While running, IPC understands if the packets over the Datagram-
Channel are VPN log messages or if the socket is effectively protected (that
means that the VPN is on) or not.

IPC

-vpn_service: LISPmobVPNService
-notifications: Notifications
-isRunning: boolean
-ipc_thread: Thread
-ipc_channel: DatagramChannel
-ipc_addr: final String
-ipc_dst_port: final int
-ipc_src_port: final int
-IPC_LOG_MSG: final int
-IPC_PROTECT_SOCKS: final int

+IPC(LISPmobVPNService)
+start(): void
+stop(): void
+run(): void
+is_IPC_running(): boolean

Figure 4.6: The IPC class

Obviously, the IPC constitutes a thread itself called “IPC” which can be
started, run or stopped by appropriate methods.
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4.2.4 Utility Libraries

ConfigTools

This is an utility library. It contains the parser methods to get the EIDs
and the DNS from the configuration file, and the two very important meth-
ods get_ifaces_list() and validate_IP_Address(String) which respec-
tively get the interface list from /proc/net/xt_qtaguid/iface_stat_all
and verify the syntax correctness of IPv4 and IPv6 addresses.

ConfigTools

+confFile: final String

+getEIDs(): List<String>
+getDNS(): List<String>
+validate_IP_Address(String): boolean
+get_ifaces_list(): List<String>

Figure 4.7: The ConfigTools class

MultiSelectionSpinner

This MultiSelectionSpinner is a custom specialization of the android.-
widget.Spinner class, which basically is a multichoice UI panel. It shows
the list of the device’s network interfaces and allows the user to select one
or more of them. This component is used by the updateConfActivity in
order to create the “database-mapping” between the EID(s) and the network
interface(s).

Notifications

A simple class that builds a log message as a notification and forwards it to
the Android NotificationManager.
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MultiSelectionSpinner

-_items: String[]
-mSelection: boolean[]
#simple_adapter: ArrayAdapter<String>

+MultiSelectionSpinner(Context)
+MultiSelectionSpinner(Context, AttributeSet)
-buildSelectedItemString(): String
+getSelectedIndicies(): List<Integer>
+getSelectedItemsAsString(): String
+getSelectedStrings(): List<String>
+onClick(DialogInterface, int, boolean): void
+performClick(): boolean
+setAdapter(SpinnerAdapter): void
+setItems(List<String>): void
+setItems(String[]): void
+setSelection(int): void
+setSelection(int[]): void
+setSelection(List<String>): void
+setSelection(String[]): void

Figure 4.8: The MultiSelectionSpinner class

Notifications

-context: Context

+Notifications(Context)
+notify_msg(String): void

Figure 4.9: The Notifications class

4.2.5 Java Native Interface

LISPmob_JNI

JNI defines a way for managed code (written in the Java programming lan-
guage) to interact with native code (written in C/C++). Native code accesses
Java VM features by calling JNI functions. JNI functions are available through
an interface pointer that is a pointer to a pointer. This pointer points to an
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array of pointers, each of which points to an interface function. Every in-
terface function is at a predefined offset inside the array. [41] In this way

LISPmob_JNI

+startLispd(int, String): native int[]
+lispd_loop(): native void
+lispd_exit(): native void

Figure 4.10: The LISPmob_JNI class

the LISPmob_JNI is the link between the Android LISPmob Java code and
the lispd which is written in C++. This developing paradigm is smart and
efficient—the lispd’s code is the same of the Linux one: modularity, exten-
sibility and performances are so guaranteed.

4.3 Implementation Guidelines

4.3.1 The Beta Network

As explained in LISPmob documentation [47], running LISPmob host on the
public Internet requires the following:

• an EID from a Mapping Service Provider (MSP);
• the RLOC of the Map Server that will register of this EID;
• an authentication token to register the EID with the Map Server;
• the RLOC of a Map Resolver;
• the RLOC of a PxTR;4

• a publicly routable RLOC for the host, which is neither firewalled, nor
behind NAT.

Other than the last item, the above information is used for the lispd
configuration file. The parameters I got from Lori Jackab of LISPmob.org
are:

4Which is, more specifically, an Egress Tunnel Router.
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EIDs: 153.16.51.48/32, 153.16.51.49/32
Map Server: 217.8.98.42
Map Resolver: 217.8.98.46
Password: nattrav-test
PxTRs: 217.8.98.33, 217.8.98.35

4.3.2 LISP-MN and NAT traversal

When used in a MN, the EID will be used by the applications on the host
for establishing communications while the RLOC will differ, depending on the
network point of attachment (e.g. it will be the IP address assigned to the
host in the visited network).

Since version 0.3.3, LISPmob includes experimental NAT traversal capabil-
ities. In order to use NAT traversal with LISPmob it is necessary a Map Server
and a Re-encapsulating Tunnel Router (RTR) that are NAT traversal capable.
Unfortunately, at time of writing, not all devices on the beta network have
been updated to support NAT traversal yet. However, if NAT traversal feature
is enabled, LISPmob is configured to send all data traffic through RTRs even
if the interface has been provisioned with a public address. This behavior is a
consequence of the lack mechanisms to update the cache of peers when there
is an RTR involved in the data exchange. On its current form, NAT traversal
support on LISPmob ignores IPv6 addresses of RLOC interfaces, besides, the
current NAT traversal implementation in the beta network only supports the
registration of a single EID per interface [29].

4.3.3 LISPmob build and install from source code

Linux

To build LISPmob for a standard Linux is necessary:
• a Linux hosts with kernel 3.2.0+;
• a C compiler (tested with gcc);
• GNU make;
• git (strongly recommended);
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• libConfuse.
On Debian-derived Linux distributions (including Ubuntu), installing the
following packages will provide almost all necessary dependencies5:

• build-essential;
• git-core;
• libconfuse-dev.

The latest version of the LISPmob source code can be obtained from
GitHub:
git clone git://github.com/LISPmob/lispmob.git

To build and install the code, just run the following in the top-level
directory:
make
sudo make install

This will build the executable files, installing them into /usr/local/sbin.

Android

Building the source code for Android is supported on Linux and Mac OSX
only. Moreover, some extra packages are required:

• Android SDK;6

• Android NDK;7

• Apache Ant.
Since the Android code uses git submodules, it is important to build

from a git repository checkout. To get the latest version of the LISPmob
source from GitHub:
git clone git://github.com/LISPmob/lispmob.git
cd lispmob
git submodule init
git submodule update

5Any package that is required for LISPmob building is pointed out by the shell, if
missing. So, an apt-get install, obviously followed by the list of missing packages, is
enough to solve all the package dependencies.

6From http://developer.android.com/sdk/.
7From http://developer.android.com/tools/sdk/ndk/.

http://developer.android.com/sdk/
http://developer.android.com/tools/sdk/ndk/
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But also, it is necessary to install androgenizer in order to compile the
json-c:
cd android/jni/androgenizer
autoreconf -i
./configure
make
make install

and then:
cd android/jni/json-c
./autogen.sh os=-linux-android
make Android.mk

To build the code, go to android/ (located in the top-level directory) and
modify the local.properties file with the correct path of our Android SDK

and Android NDK. In the Android SDK Manager it should either have been in-
stalled the API level 17 (Android 4.2.2), or update the project.properties
file to specify the currently installed API.8

Then, to compile the code:
cd android
./select_appl.bash
ant debug

This command generates an Android Package (APK) file called lispmob-
debug.apk in the android/bin/ directory. To install it: copy the file to the
Android device and install it using the Application Manager.

4.4 Research Project

4.4.1 Project Definition and Phases

Due the Android limitations explained in section 3.4, the main operative
goal of this research is to test the seamless roaming from an Android device’s
network interface to another, which may be considered as a multihoming’s

8Regardless of the target API, LISPmob for rooted devices should still work on all
Android releases from API level 9 (Android 2.3) and above, and the non-rooted version
should work on releases from API level 14 (Android 4.0) and above.
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goal,9 using LISPmob. Subsequently, a wide number of tests is made in
order to estimate from experimental results some valuable LISP performance
parameters, and then to draw forth how real is the chance of using it as
an effective multihoming solution for the final user. The reference version
is the noroot package, in accordance with what said in section 4.1.1. More
specifically, the project consists in:

Development phase: Implementing, if possible, a solution in order to sup-
port multiple EIDs over the same network interface. It consists in the
following sub-tasks:

1. Download LISPmob noroot from the Play Store;
2. Use LISPmob noroot and start the lispd;
3. Select a random active EID;
4. Check that the IP traffic is LISP-tunnelled z→ Goal #1.
5. Fork the LISPmob master repository from GitHub.com;
6. Study and analyze the noroot package code;
7. Edit the Java classes in order to support multiple EIDs;
8. Build the whole project;
9. Test the new features z→ Goal #2.

Goal #1: Check the IPv4-to-IPv4 LISP tunnelling (success 3or fail 7).
Goal #2: Support multiple EIDs (success 3or fail 7).

Test phase: The test phase consists of two distinct parts:

Seamless roaming: Testing seamless roaming from WiFi to 3G net-
works, and vice versa. It consists in:
1. Use LISPmob noroot with both WiFi and 3G enabled;
2. Select and start the download of a remote file of adequate size;
3. Increase the distance between the device and the WiFi Access

Point (AP) until the connection is lost or manually switch off
the WiFi interface;

4. Check if the download fails or slows down;
5. Re-enable the WiFi interface and reconnect to the WiFi AP.

9See “end-site multihoming”, in section 1.1.1 for details.

GitHub.com
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6. Check if the download fails or slows down.
Goal: Seamless roaming (success 3or fail 7).

LISP performances: Testing LISP performances in comparison with
standard IPv4. It consists in:
1. Choose a valuable set of n active EIDs;
2. Select a new EID;
3. Ping the selected EID m times;
4. Save the data;
5. Start the lispd on the device;
6. Ping the selected EID m times;
7. Stop the lispd on the device;
8. Save the data, and again ↻2.

Goal: Obtain all the ping times (success 3or fail 7).

Analisys phase: Analisys of the collected data and synthesis of the results.
It consists in:

1. Import all collected data in Microsoft Excel;
2. Calculate the most important statistical parameters;
3. Draw valuable charts spotting out LISP performances;
4. Make evaluations and considerations about data.

Goal: Estimate the LISP delay and relative speed difference.

4.4.2 Project Testbed

The testbed for the project is the following:
Development platform: AMD Athlon II X2 240 2.81GHz, RAM 4GB,

Samsung HD105SI SATA-II 1TB, Ubuntu 14.10.
Android testing device: Sony Xperia go (ST27i), Cortex-A9 1GHz, RAM

512MB, HD Device 2GB + Internal 4GB, WiFi 802.11 b/g/n, 3G
(HSDPA 14.4Mb/s, HSUPA 5.76Mb/s), Android 4.1.2, LISPmob 4.0.1.

ISP: WiFi Fastweb, 3G Wind Telecommunications.
Development IDE: Eclipse Kepler SR2, SDK 20 (Android 4.4W).
Networking tools: Ping & DNS 2.3/86 (Android), Wireshark 1.12.2.
Analysis software: Microsoft Excel 2013.
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Implementation Insights on
LISPmob and Experimental
Results

5.1 Development phase

The main goal of the development phase is implementing, if possible, a solu-
tion in order to support multiple EIDs over the same network interface. This
may be considered a feasible implementation of the end-host multihoming,
as explained in section 1.1.1. The alternative option—that is enabling two
or more network interfaces at once with the same EID, which may be con-
sidered an implementation of the end-site multihoming—also has taken in
consideration, but it has been set aside due the Android’s kernel limitations
explained in section 3.4.

5.1.1 Configuration and first run

The first step was the download and install of LISPmob noroot from the Play
Store. This was accomplished very easily, without any problem.

The second step, quite obviously, was to start using LISPmob. In order
to do that, was necessary to first accomplish two sub-tasks: a) setup of the
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lispd configuration file; and b) run the lispd.
The lispd.conf setup can be easily done using the proper activity, the

updateConfActivity (button Edit LISP Configuration of the Main Activ-
ity): at this point all the parameters given for the beta network1 were prop-
erly set up. The resulting lisp.conf is included in Appendix C.

The run of the lispd rised the following exception:
java.lang.ExceptionInInitializerError
at org.lispmob.noroot.LISPmobVPNService.run(LISPmobVPNervice.java:123)
at java.lang.Thread.run(Thread.java:856)
Caused by: java.lang.UnsatisfiedLinkError: Cannot load library:
link_image[1891]: 1416 could not load needed library 'libjson -c.so' for
'liblispd.so' (load_library[1093]: Library 'libjson -c.so' not found)
at java.lang.Runtime.loadLibrary(Runtime.java:370)
at java.lang.System.loadLibrary(System.java: 535)
at org.lispmob.noroot.LISPmob_JNI.<clinit >(LISPmob_JNI.java:12)

and then LISPmob fatally crashed.
At this point any significant use of LISPmob was denied, so the priority

was to fix the error.

5.1.2 Error fixing

The application error was an ExceptionInInitializerError, raised by the
LISPmobVPNService while running (starting) the lispd thread. As reported
by the stack trace2, the problem was the loading of the libjson-c.so library
which is needed to start the lispd. More in detail, the UnsatisfiedLink-
Error in Android is distinctive of problems occurred throughout the Java
and native code interactions. Indeed, in this case, the libjson-c.so was
not found because not loaded by the proper entity, that is the LISPmob_JNI
interface, as explained in section 4.2.5.

Hence, once that the problem was localized, I edited the LISPmob_JNI as
following:

1 package org.lispmob.noroot;
2

3 public class LISPmob_JNI {

1See section 4.3.1 for the complete list.
2See section 5.1.1
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4

5 public static native int[] startLispd(int tunFD, String storage_path);
6

7 public static native void lispd_loop();
8

9 public static native void lispd_exit();
10

11 static {
12 System.loadLibrary("json-c");
13 System.loadLibrary("lispd");
14 }
15 }

Moreover, as a direct consequence, the Android.mk’s code section related
to local and shared libraries changed as following:

55 LOCAL_STATIC_LIBRARIES := libconfuse libjson -c
56 LOCAL_SHARED_LIBRARIES := libcutils
57 LOCAL_STATIC_LIBRARIES := libconfuse
58 LOCAL_SHARED_LIBRARIES := libcutils libjson -c
59 LOCAL_MODULE = lispd
60 #include $(BUILD_EXECUTABLE)
61 include $(BUILD_SHARED_LIBRARY)

These edits constitute the main changes introduced with LISPmob (ver-
sion 0.4.1.6) released in December, 20 2014 on GitHub.com by the software
maintainers.

5.1.3 Building and second run

The build of the fixed code followed the procedure described in section 4.3.3.
The resulted APK was then copied into the device and installed with the
Android Application Manager. The configuration file was not changed.

The run of the lispd made Android asking the user about the trusting
of the VPN set up by LISPmob. Then the LISP tunnel was up and debug
information was available in real time through the Main Activity. After the
successful registration of the EID to the Map Server,3 all the IP traffic was
effectively routed over the tun0 LISP tunnel interface.

In order to confirm that, a ping from the device to a random host showed
the following (ping details omitted):

3See section 2.4 for the related theory.

GitHub.com
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--- IP (wlan0) fe80::b652:7dff:fe28:9f51%wlan0
--- IP (wlan0) 10.202.197.150
--- IP (tun0) 153.16.51.48
--- Connection: WIFI

Hence, after the error fixing, the goal of checking LISP’s IPv4-to-IPv4 tun-
nelling was accomplished and successful 3.

5.1.4 Fork, code analisys and solution implementation

The fork of the lispmob-master repository from GitHub.com was done in
few seconds. Then, the analysis of the noroot package required several days.
The whole package is fully described in section 4.2.

The most significant Java methods are the ones which are responsible
for getting and setting the EIDs from/to the lispd.conf file. As said, the
Activity under the magnifying glass is the updateConfActivity. So, more
in detail, the readConfFileAndFillParameters():

125 BufferedReader br = new BufferedReader(new FileReader(conf_file));
126 String line = br.readLine();
127 String sub_line = null;
128 String sub_line_1 = null;
129 ifaces = new ArrayList <String >();
130

131 while ( line != null ) {
132 if (line.startsWith("#")){
133 line = br.readLine();
134 continue;
135 }
136 line = line.toLowerCase();
137 line = line.replaceAll("\\s", "");
138

139 if (line.contains("database -mapping")){
140 do{
141 sub_line = br.readLine();
142 if (sub_line.startsWith("#")){
143 sub_line = br.readLine();
144 continue;
145 }
146 sub_line = sub_line.toLowerCase();
147 sub_line = sub_line.replaceAll("\\s", "");
148

149 if (sub_line.contains("eid-prefix")){
150 String[] tmp = sub_line.split("=");

GitHub.com
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151 if (tmp.length < 2)
152 continue;
153 String[] tmp_1 = tmp[1].split("/");
154 if (tmp_1.length < 2)
155 continue;
156 if (tmp_1[0].contains(":")){
157 eidIPv6 = tmp_1[0];
158 EditText e = (EditText) findViewById(R.id.updateConfeid6Text);
159 e.setText(eidIPv6);
160 }else if (tmp_1[0].contains(".")){
161 eidIPv4 = tmp_1[0];
162 EditText e = (EditText) findViewById(R.id.updateConfeid4Text);
163 e.setText(eidIPv4);
164 }
165 }
166 if (sub_line.contains("interface")){
167 String[] tmp = sub_line.split("=");
168 if (tmp.length < 2)
169 continue;
170 String iface_name = tmp[1];
171

172 Iterator <String>iface_it = iface_list.iterator();
173 while (iface_it.hasNext())
174 {
175 if (iface_it.next().equals(iface_name)){
176 if (!ifaces.contains(iface_name)){
177 ifaces.add(iface_name);
178 }
179 break;
180 }
181 }
182 }
183 } // ...

And later on, the createConfFile():
472 if (ifaces != null){
473 Iterator <String> it = ifaces.iterator();
474 while (it.hasNext()){
475 String iface_name = it.next();
476

477 if (!eidIPv4.equals("")){
478 defText= defText.concat("database -mapping {\n")
479 .concat(" eid-prefix = "+eidIPv4+"/32\n")
480 .concat(" interface = "+iface_name+"\n")
481 .concat(" priority_v4 = 1\n")
482 .concat(" weight_v4 = 100\n")
483 .concat(" priority_v6 = 1\n")
484 .concat(" weight_v6 = 100\n")
485 .concat("}\n\n");
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486 }
487 if (!eidIPv6.equals("")){
488 defText= defText.concat("database -mapping {\n")
489 .concat(" eid-prefix = "+eidIPv6+"/128\n")
490 .concat(" interface = "+iface_name+"\n")
491 .concat(" priority_v4 = 1\n")
492 .concat(" weight_v4 = 100\n")
493 .concat(" priority_v6 = 1\n")
494 .concat(" weight_v6 = 100\n")
495 .concat("}\n\n\n");
496 }
497 }
498 } // ...

The code is written to support one EID IPv4 and one EID IPv6 only, even-
tually over one or more interfaces. That is not a developer’s project choice
but a mere consequence of the limits imposed by the beta-network infras-
tructure. Indeed, tests made by the LISPmob maintainers highlighted that
multi-EID is not well supported on the NAT traversal infrastructure of the
beta-network, and since a MN will be likely behind a NAT, that is a strong
drawback. However, this is not an architecture flaw and the infrastructure
could—and hopefully shortly will—be easily updated to support multiple
EIDs while doing NAT traversal operations, but at this moment that consti-
tutes an insurmountable limit.

For the reason explained so far, editing the updateConfActivity in order
to support multiple EIDs on the same interface is just pointless. Hence, this
goal of the developing phase failed 7.

5.2 Test phase
The test phase consisted of two main tests: a) the seamless roaming from
WiFi to 3G and from 3G to WiFi; and b) the ping of a wide set of EIDs from
the device. In the following sections both are described in detail.

5.2.1 Seamless roaming

As a reminder, performing a seamless roaming means that users can utilize
their mobile applications over two or more wireless networks without any no-
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ticeable interruption as they move throughout the respective signal coverage
areas.

WiFi

153.16.51.48

wlan0, tun0

150 m

3G

153.16.51.48

rmnet0, tun0

Figure 5.1: Seamless roaming

In other words, in a seamless roaming communication, a user should be
able to make a Voice over IP (VoIP) call while walking through a city without
experiencing drops or substantial hiccups in the conversation; or, an user that
is downloading a file while driving should be able to do so in a timely manner
without ever having to restart the download process. Nevertheless, roaming
delays do not have always the same impact on different applications: a five or
ten second roaming delay with a file download will likely go unnoticed, but
that level of delay during a VoIP call will lead to a dropped call and annoyed
users. Thus, the given application in use over the wireless networks impacts
on how the term “seamless” should be interpreted.

The test-plan expects to enable both the network interfaces on the device
(enabling the WiFi and waiting the successful connection to the AP first, then
also the 3G interface is enabled). Then start LISPmob and run the lispd
while browsing Internet, a remote file of about 100MB is selected for the
purpose.
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Hence the file download is started. Since the LISPmob VPN is up, all the
incoming and outgoing data traffic is tunneled over the tun0 interface. I
made the choice to overstep the AP’s range, so the device was brought at
a distance of about 150m,4 so when the WiFi connection was lost, the 3G
effectively replaced it without any stop or slowdown of the file downloading.

Later on, the device was brought again in the AP’s range so the WiFi
soon replaced the 3G and also in this case there was no impact on the file
downloading, which after some more seconds was correctly finalized indeed.5

This was the proof I was investigating on, so the seamless roaming test was
accomplished and successful 3.6

5.2.2 LISP performance

This test was made to compare LISP-MN performance using LISPmob on our
Android device with standard IP. More specifically, using LISPmob, I col-
lected the ping times towards a set of active EIDs via LISP IPv4-in-IPv4 tun-
neling; then, switching off LISPmob, I also collected the respective ping times
via standard IPv4. The list of selected active EIDs has been retrieved on the
beta-network’s website and is included in Appendix D. The selection process
reduced the initial number of 81 EIDs to the definitive 53 active EIDs. An
EID has been considered “active” if pingable with success at least one time
both using LISP IPv4-in-IPv4 and IPv4.

The collected results are summarized and reported in the table 5.1 by the
three most important statistical parameters—mean value, standard deviation
and percentage of packet loss.

4At a distance of 120m the WiFi’s signal was absent but the connection still up. At
this point Android did not switch to the 3G automatically: until the WiFi connection
is completely lost the WiFi interface is always preferred. As expected, a considerable
slowdown of the download due the WiFi’s signal reduction was registered at this stage.

5The test was also repeated switching off/on the WiFi interface manually. In this case
the overall download speed was almost costant during the whole downloading process.

6The exact values of the download speed were impossible to track due the lack of
specific testing equipment. Nevertheless, the scientific validity of the results is assured by
the reproducibility of the experiment.
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Thus, the whole test phase was successful 3.

5.3 Analysis phase
Here all the results collected in the testing phase are fully analyzed. From
the data recorded in the LISP performance test it is possible to extract some
valuable information as statistical parameters.

The starting point is represented by 2 sets of k = 53 active EIDs. For each
active EID we collected N = 100 ping times. So we eventually have k average
values related to the standard IPv4, and k related to the LISP IPv4-in-IPv4,
for a total amount of 10600 ping samples. For our purpose, each set may be
considered as a discrete random variable.

So I define the general sample mean vector h̄ as a column vector whose
j-th element h̄j is the average value of the N observations of the j-th variable:

h̄j =
1

N

N

∑
i=1

hi,j (5.1)

where j = {1,2, . . . , k}.
Thus, I define x̄ as the vector which contains the average of all the ob-

servations for each variable related to the standard IPv4, and ȳ as the one
related to the LISP IPv4-in-IPv4:

x̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

⋮
xj

⋮
xk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ȳ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

⋮
yj

⋮
yk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.2)

5.3.1 Delay

As I have x̄ and ȳ which are univariate discrete random variables, it is
possible to know their expected values µx̄ and µȳ (that are the arithmetic
means), by the general formula:

µh̄ =
1

N

k

∑
j=1

h̄j (5.3)
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Figure 5.2: Plot of x̄ and ȳ

and their standard deviations σx̄ and σȳ, by the general formula:

σh̄ =

¿
ÁÁÀ 1

N

k

∑
j=1
(h̄j − µh̄)2 (5.4)

obviously, again, where j = {1,2, . . . , k}.
The results are the ones summarized in table 5.1, but these parame-

ters alone give us poor information—I need also the difference of sample
means vector ∆̄ as a column vector whose j-th element ∆̄j is the difference

µ (ms) σ (ms) λ (%)
x̄ 342.7 130.1 1.2

ȳ 426.8 84.6 7.0

∆̄ 84.1 89.7

Table 5.1: Comparison of IPv4 and LISP IPv4-in-IPv4 performance

x̄: IPv4, ȳ: LISP IPv4-in-IPv4.
µ: mean value, σ: standard deviation, λ: percentage of packet loss
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Figure 5.3: Frequency Distribution of x̄ and ȳ

value between yj and xj:

∆̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1 − x1

⋮
yj − xj

⋮
yk − xk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.5)

For it I calculate the expected value µ∆̄ (that is again the arithmetic
mean), and the standard deviation σ∆̄. The results are summarized in table
5.1.

These parameters are very important indeed. In particular the mean value
µ∆̄ represents exactly the LISP delay as the average time difference between
using LISP or using it not, that is 84.1ms. It is now possible to plot the
frequency distribution chart of x̄ and ȳ (figure 5.3). It shows the comparison
between IPv4 and LISP IPv4-in-IPv4: the average LISP delay is indeed 84.1ms,
that is a result which is fully in accordance with what expected.
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Reasons behind the results

The reasons of the LISP delay are various. Figure 5.4 graphically shows the
composition of the ping packets used in the test phase.
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Figure 5.4: Composition of ping packets

In IPv4, the inner ICMP packet is 64B, while the IPv4 header is 20B, for
a total size of 84B. In LISP, instead, the tunneling requires a change into
the IPv4 header where the IP addresses are replaced with the source and
destination EIDs, and moreover there is an overhead which is composed of
8B of LISP header, 8B of UDP header, and other 20B of IPv4 header where the
IP addresses are the source and destination RLOCs, for a total size of 120B.

Obviously this overhead itself involves an increasing in the network la-
tency, but also the encapsulation and decapsulation of the traffic require a
time which may be short but cannot be null. On the other hand, the RLOCs’
improved handling of routing tables and the consequent optimized paths, plus
other fine-tuning techniques into the RLOC space, will considerably reduce
the network latency.
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5.3.2 Speed

Said that, it may be interesting to evaluate other parameters like the average
traffic speeds vx̄ and vȳ, defined by the general formula:

vα,h̄ =
qα,h̄
µh̄

(5.6)

where qh̄ is the size of the single ping packet in terms of α which expresses if
is considered the whole data “in-the-wire” (w) or only the payload (p). The
speeds are then expressed in B/s.

w (B) vw (B/s) p (B) vp (B/s)
x̄ 84 245.1 54 157.6

ȳ 120 281.2 54 126.5

Table 5.2: IPv4 versus LISP speeds

x̄: IPv4, ȳ: LISP IPv4-in-IPv4.
w: packet size “in-the-wire”, p: payload, v: average speed

The results summarized in table 5.2 are quite interesting: even if there is
a considerable delay between LISP and standard IP as said in section 5.3.1,
the speed of the whole data “in-the-wire” using LISP is greater. Instead, if the
speed is considered in terms of the payload which is what the users experience,
LISP’s speed performance suffer a relative difference of −19.71%.7

5.3.3 Precision

Another important consideration to make is about relative standard error
and deviation. LISP is a very new technology in computer networks, but
it has a very high potential. In fact, defined the standard error SEµh̄

, the

7The relative difference is defined as:

dr =
vp,ȳ − vp,x̄

max (∣vp,x̄∣, ∣vp,ȳ ∣)
.
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relative standard RSEµh̄
, and the relative standard deviation RSDh̄ by the

general formulas:

SEµh̄
= σh̄√

k
; RSEµh̄

=
SEµh̄

µh̄

; RSDh̄ =
σh̄

µh̄

; (5.7)

the obtained results are summarized in table 5.3.

SEµ (ms) RSEµ (%) RSD (%)
x̄ 17.9 5.2 38.0

ȳ 11.6 2.7 19.8

Table 5.3: IPv4 versus LISP statistics

SEµ: standard error, RSEµ: relative standard error,
RSD: relative standard deviation

Therefore from this I discovered that LISP has almost the half of the
relative standard deviation in comparison with IP, and this is a very valuable
result: it means that communications over LISP tunneling are definitely very
stable and this may have obvious good consequences in terms of channel
throughput.

Nevertheless, probably due also to the very recent release of the exploited
LISP implementation, LISP has shown to be affected by 7.0% of packet loss8,
which is undoubtedly non-negligible for almost all Internet applications. It
must be said, however, that in this experiments (and in the results reported
above) I have considered as lost the packets with ping times greater than
800.0ms, as reasonable in many delay-sensitive applications. Furthermore,
it must be taken into account that this value refers to ICMP ping packets
exchanged without supporting/implementing any additional error-recovery
strategy: hence the reported results can be considered the lowest upper
bound. Still, this LISP under-performance of 7.0% is too far from the most
usual IP 1.2% to take into consideration the adoption of LISP on a world-wide
scale very soon.

8See table 5.1.
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Despite years of research and development, multihoming is yet to become
widespread in network deployments. Indeed, the corresponding support is
often missing from state-of-the-art protocols. Where Linux may take advan-
tage of enabling the SCTP support in its kernel, Android due its limitations
must find more complex solutions in order to provide multihoming. In re-
cent history, many protocols have been proposed with the purpose of assert
themselves as acceptable solutions, but in truth, all with inadequate out-
comes because of their incomplete and unoptimized implementations.

Sponsored by Cisco Systems, LISP is born to solve a number of problems
risen up all together after decades of paralysis of the Internet infrastructure’s
update and a very slow and wearying transition to IPv6, which in fact is still
ongoing. HIP as well was proposed almost a decade ago but now seems
almost abandoned for its implementation difficulties, while IETF endorsed
ILNP as the recommended choice for the future routing architecture, and so
the resulting effect is that no significant steps have been done in order to
give multihoming to final users yet.

So my goal was to describe what is the state-of-the-art multihoming sup-
port for Android and to make some evaluations on what is effectively available
and usable now by the Android’s users, without requiring the device rooting.
This choice has been taken primarily because expecting the device rooting
from average users is quite unrealistic, and also because one of the estabil-
ished prerequisites is the non-needing of modifications of the host devices.

After the developing phase in which I fixed the error responsible of the
crash of the whole LISPmob application, the test phase has been a long as
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well as engaging turnover of emotions while the theory were matching with
the collecting data. And the final results are very interesting and promising
indeed. The analysis phase shows that the comparison of LISP in MN mode
with standard IP points out a noticeable difference in terms of time delay
and a too high rate of packet loss. LISP values are too far from the IP ones to
consider a world-wide use of LISPmob right now: their reasons are many and
various, but there are also some very good points in using LISP. Mobility and
multihoming are obviously the most important ones, but resilience, ubiquity,
load balancing/sharing, scalability and policy are coveted features as well.
In addition, I prove that LISP IPv4-in-IPv4 tunneled traffic is very stable in
comparison with standard IP.

This thesis seems to be the first attempt ever to compare what might be
the main technology of the future Internet with the actual one through real
data, and I feel proud for it. At the same time I recognize that it is only
a tiny piece of the puzzle and still there are many aspect to consider and
deepen: a) I tested the LISP IPv4-in-IPv4 but it would be very important to
test the IPv6-in-IPv6 case and the others hybrid combinations; b) My research
is focused on LISP-MN in order to test the performance in a mobility and
multihomed environment, but when they are unnecessary, the advantages
offered by PxTRs’ optimized paths should be tested too; c) Rooting or not
rooting? I chose to not root the device for the reasons explained in section
4.1.1, but also the rooted version should be tested in depth—in this case in
fact I would expect much better performance, so it would be very interesting
to know how wide is the gap with IP.

Finally, the future outlooks for a world-wide use of LISP depend by many
factors, including the true willing of the ISPs about investing in the Internet
infrastructure modernisation. But actually as it is known, this is determined
by the potential revenue which requires far-sightedness and remarkable in-
vestments, so it is just the well-known “dog chasing its own tail”. Otherwise
LISP will remain a wonderful research project with no practical use for no-one,
like many others before it. Thus, in my opinion, more than any quick and
significant improvement of its performance, LISP’s success will be determined
almost exclusively by market logic.



Appendix A

Android Connectivity Features
Evolution

Here are presented in chronological order all Android releases and their main
connectivity features.

Android 1.0 API level 1
September 23, 2008 Linux kernel 2.6.25

• Web browser to show, zoom and pan full HTML and XHTML web pages;
• Access to web email servers, supporting POP3, IMAP4, and SMTP;
• Google Sync, allowing management of over-the-air synchronization of

Gmail, People, and Calendar;
• Instant messaging, text messaging, and MMS;

• WiFi and Bluetooth support.

Android 1.1 API level 2
February 9, 2009 Linux kernel 2.6.25

• —
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Android 1.5 Cupcake API level 3
April 27, 2009 Linux kernel 2.6.27

• Auto-pairing and stereo support for Bluetooth;

• Copy and paste features in web browser;

Android 1.6 Donut API level 4
September 15, 2009 Linux kernel 2.6.29

• Updated technology support for CDMA/EVDO, 802.1x, VPNs, and a

text-to-speech engine;

Android 2.0 Eclair API level 5
October 26, 2009 Linux kernel 2.6.29

• Expanded Account sync, allowing users to add multiple accounts to a
device for synchronization of email and contacts;

• Microsoft Exchange email support, with combined inbox to browse
email from multiple accounts in one page;

• Bluetooth 2.1 support;
• Ability to tap a Contacts photo and select to call, SMS, or email the

person;

• Refreshed browser UI with bookmark thumbnails, double-tap zoom and

support for HTML5;

Android 2.0.1 Eclair API level 6
December 3, 2009 Linux kernel 2.6.29

• —

Android 2.1 Eclair API level 7
January 12, 2010 Linux kernel 2.6.29

• —
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Android 2.2 Froyo API level 8
May 20, 2010 Linux kernel 2.6.32

• Integration of Chrome’s V8 JavaScript engine into the browser appli-
cation;

• Support for the Android C2DM service, enabling push notifications;
• Improved Microsoft Exchange support, security policies;
• Auto-discovery, GAL look-up;
• Improved Calendar synchronization and remote wipe;
• USB tethering and WiFi hotspot functionality;
• Option to disable data access over mobile network;
• Support for Bluetooth-enabled car and desk docks;
• Support for file upload fields in the Browser application;

• Adobe Flash support;

Android 2.2.1 Froyo API level 8
January 18, 2011 Linux kernel 2.6.32

• —

Android 2.2.2 Froyo API level 8
January 22, 2011 Linux kernel 2.6.32

• Minor bug fixes, including SMS routing issues that affected the Nexus

One.

Android 2.2.3 Froyo API level 8
November 21, 2011 Linux kernel 2.6.32

• Two security patches.
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Android 2.3 Gingerbread API level 9
December 6, 2010 Linux kernel 2.6.35

• Native support for SIP VoIP internet telephony;
• Support for NFC;
• New Download Manager, giving users easy access to any file down-

loaded from the browser, email, or another application;
• Enhanced support for native code development;
• Switched from YAFFS to ext4 on newer devices;

• Native support for more sensors (such as gyroscopes and barometers).

Android 2.3.1 Gingerbread API level 9
December, 2010 Linux kernel 2.6.35

• —

Android 2.3.2 Gingerbread API level 9
January, 2011 Linux kernel 2.6.35

• —

Android 2.3.3 Gingerbread API level 10
February 9, 2011 Linux kernel 2.6.35

• —

Android 2.3.4 Gingerbread API level 10
April 28, 2011 Linux kernel 2.6.35

• Support for voice or video chat using Google Talk;
• OAL support;

• Switched the default encryption for SSL from AES256-SHA to RC4-MD5.
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Android 2.3.5 Gingerbread API level 10
July 25, 2011 Linux kernel 2.6.35

• Improved network performance for the Nexus S 4G, among other fixes
and improvements;

• Fixed Bluetooth bug on Samsung Galaxy S;

• Improved Gmail application;

Android 2.3.6 Gingerbread API level 10
September 2, 2011 Linux kernel 2.6.35

• —

Android 2.3.7 Gingerbread API level 10
September 21, 2011 Linux kernel 2.6.35

• Fixed the side-effect of impairing the WiFi hotspot functionality of

many Canadian Nexus S phones.

Android 3.0 Honeycomb API level 11
February 22, 2011 Linux kernel 2.6.36

• Multiple browser tabs replacing browser windows, plus form auto-fill
and a new “incognito” mode allowing anonymous browsing;

• New two-pane Email UI to make viewing and organizing messages more
efficient, allowing users to select one or more messages;

• Ability to encrypt all user data;
• HTTPS stack improved with SNI;

• FUSE kernel module;
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Android 3.1 Honeycomb API level 12
May 10, 2011 Linux kernel 2.6.36

• USB On-The-Go;
• High-performance WiFi lock, maintaining high-performance WiFi con-

nections when device screen is off;

• Support for HTTP proxy for each connected WiFi access point.

Android 3.2 Honeycomb API level 13
July 15, 2011 Linux kernel 2.6.36

• —

Android 3.2.1 Honeycomb API level 13
August 30, 2011 Linux kernel 2.6.36

• Bug fixes and minor security, stability and WiFi improvements;

• Improved Adobe Flash support in browser;

Android 3.2.2 Honeycomb API level 13
September 20, 2011 Linux kernel 2.6.36

• —

Android 3.2.3 Honeycomb API level 13
Linux kernel 2.6.36

• —

Android 3.2.4 Honeycomb API level 13
December, 2011 Linux kernel 2.6.36

• “Pay as You Go” support for 3G and 4G tablets.
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Android 3.2.5 Honeycomb API level 13
January, 2012 Linux kernel 2.6.36

• —

Android 3.2.6 Honeycomb API level 13
February, 2012 Linux kernel 2.6.36

• Fixed data connectivity issues when coming out of airplane mode on

the US 4G Motorola Xoom.

Android 4.0 Ice Cream Sandwich API level 14
October 18, 2011 Linux kernel 3.0.1

• Improved visual voicemail with the ability to speed up or slow down
voicemail messages;

• Better voice integration and continuous, real-time speech to text dic-
tation;

• Android Beam, a NFC feature allowing the rapid short-range exchange
of web bookmarks, contact info, directions, YouTube videos and other
data;

• WiFi Direct;

• AVF, and TUN (but not TAP) kernel module. Prior to 4.0, VPN software

required rooted Android.

Android 4.0.1 Ice Cream Sandwich API level 14
October 21, 2011 Linux kernel 3.0.1

• —

Android 4.0.2 Ice Cream Sandwich API level 14
November 28, 2011 Linux kernel 3.0.1

• —
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Android 4.0.3 Ice Cream Sandwich API level 15
December 16, 2011 Linux kernel 3.0.1

• Social stream API in the Contacts provider;

Android 4.0.4 Ice Cream Sandwich API level 15
March 29, 2012 Linux kernel 3.0.1

• Improved phone number recognition.

Android 4.1 Jelly Bean API level 16
July 9, 2012 Linux kernel 3.0.31

• Bluetooth data transfer for Android Beam;

• USB audio for external sound DACs.

Android 4.1.1 Jelly Bean API level 16
July 11, 2012 Linux kernel 3.0.31

• —

Android 4.1.2 Jelly Bean API level 16
October 9, 2012 Linux kernel 3.0.31

• —
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Android 4.2 Jelly Bean API level 17
November 13, 2012 Linux kernel 3.4.0

• Rewritten Bluetooth stack, switching from Bluez to Broadcom open
source BlueDroid, allowing improved support for multiple displays and
wireless display (Miracast);

• Native RtL, always-on VPN and application verification;
• New NFC stack;
• SELinux;
• Premium SMS confirmation;

• Group Messaging.

Android 4.2.1 Jelly Bean API level 17
November 27, 2012 Linux kernel 3.4.0

• Added Bluetooth gamepads and joysticks as supported HID.

Android 4.2.2 Jelly Bean API level 17
February 11, 2013 Linux kernel 3.4.0

• Fixed Bluetooth audio streaming bugs;
• Long-pressing the WiFi and Bluetooth icons in Quick Settings now

toggles the on/off state;

• New sounds for wireless charging and low battery;

Android 4.3 Jelly Bean API level 18
July 24, 2013 Linux kernel 3.4.39

• Bluetooth low energy support;
• Bluetooth AVRCP 1.3 support;
• Many security enhancements, performance enhancements, and bug

fixes;
• System-level support for geofencing and WiFi scanning APIs;

• Background WiFi location still runs even when WiFi is turned off;
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Android 4.3.1 Jelly Bean API level 18
October 3, 2013 Linux kernel 3.4.39

• —

Android 4.4 KitKat API level 19
October 21, 2013 Linux kernel 3.10

• Wireless printing capability;
• NFC host card emulation, enabling a device to replace smart cards;
• WebViews now based on Chromium engine;
• Public API for developing and managing text messaging clients;
• SAF, an API allowing apps to retrieve files in a consistent manner;
• Sensor batching, step detector and counter APIs;
• Native infrared blaster API

• Bluetooth MAP support;
• Settings application no longer uses a multi-pane layout on devices with

larger screens;

• WiFi and mobile data activity indicators are moved to quick settings;

Android 4.4.1 KitKat API level 19
December 5, 2013 Linux kernel 3.10

• —

Android 4.4.2 KitKat API level 19
December 9, 2013 Linux kernel 3.10

• Further security enhancements and bug fixes;

Android 4.4.3 KitKat API level 19
June 2, 2014 Linux kernel 3.10

• HTML5 Canvas hardware acceleration performance improvements;

• HTML5 form validation and datalist;
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Android 4.4.4 KitKat API level 19
June 19, 2014 Linux kernel 3.10

• Eliminated an OpenSSL MitM vulnerability.

• VPN APIs bug fixes.

Android 4.4W KitKat API level 20
June 25, 2014 Linux kernel 3.10

• Same as Android 4.4 KitKat, but with wearable extensions added.

Android 4.4W.1 KitKat API level 20
September 6, 2014 Linux kernel 3.10

• —

Android 4.4W.2 KitKat API level 20
October 21, 2014 Linux kernel 3.10

• GPS support.

Android 5.0 Lollipop API level 21
November 3, 2014 Linux kernel 3.16.1

• Audio input and output through USB devices;

Android 5.0.1 Lollipop API level 21
December 2, 2014 Linux kernel 3.16.1

• —

Android 5.0.2 Lollipop API level 21
December 19, 2014 Linux kernel 3.16.1

• —
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Android 5.1 Lollipop API level 22
March 9, 2015 Linux kernel 3.16.1

• Ability to join WiFi networks and control paired Bluetooth devices

from quick settings;

Android 5.1.1 Lollipop API level 22
April 21, 2015 Linux kernel 3.16.1

• Native WiFi calling support.

Android 6.0 Marshmallow API level 23
October 5, 2015 Linux kernel 3.18.10

• —

Android 6.0.1 Marshmallow API level 23
December 7, 2015 Linux kernel 3.18.10

• —
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Figure B.1: The android.net package and relationships between its classes
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LISPmob Configuration File
(lispd.conf)

1 # General configuration
2 # debug: Debug levels [0..3]
3 # map-request -retries: Additional Map-Requests to send per map cache miss
4

5 router-mode = off
6 debug = 3
7 map-request -retries = 2
8

9 # RLOC Probing configuration
10 # rloc-probe -interval: interval at which periodic RLOC probes are sent (seconds

). A value of 0 disables RLOC Probing
11 # rloc-probe -retries: RLOC Probe retries before setting the locator with status

down. [0..5]
12 # rloc-probe -retries -interval: interval at which RLOC probes retries are sent (

seconds) [1..#rloc-probe -interval]
13

14 rloc-probing {
15 rloc-probe-interval = 30
16 rloc-probe-retries = 2
17 rloc-probe-retries -interval = 5
18 }
19

20

21 # NAT Traversal configuration.
22 # nat_aware: check if the node is behind NAT
23 # Limitation of version 0.3.3 when nat_aware is enabled:
24 # - Only one interface is supported.
25 # - Only one Map Server and one Map Resolver
26
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27

28 nat-traversal {
29 nat_aware = true
30 }
31

32 # Encapsulated Map-Requests are sent to this map-resolver
33 # You can define several map-resolvers. Encapsulated Map-Request messages will be

sent to only one.
34 # address: IPv4 or IPv6 address of the map resolver
35

36 map-resolver = {
37 217.8.98.46,
38 }
39

40 # DDT Client section.
41 # DDT configuration has preference over map-resolver configuration
42 #
43 # ddt-client [on/off]: Obtain the mapping from EIDs to RLOCs through the DDT

tree
44 #ddt-client = on
45

46 # DDT Encapsulated Map-Requests are sent to these ddt root node. You can define
several ddt-root-node. DDT Encapsulated Map-Request messages will be sent to
the ddt-root-node with higher priority (lowest value).

47 #
48 # address: IPv4 or IPv6 address of the DDT root node
49 # priority [0..255]: DDT root nodes with lower values are more preferable.
50 # weight [0..255]: Not yet implemented
51

52 #ddt-root-node {
53 # address = <IPv4 or FQDN name>
54 # priority = 1
55 # weight = 100
56 #}
57

58 # Some LISP beta-network (lisp4.net/lisp6.net) DDT root nodes
59

60 ddt-root-node {
61 address = 84.88.16.10
62 priority = 1
63 weight = 100
64 }
65

66 ddt-root-node {
67 address = 2001:40B0:1::F0F2
68 priority = 1
69 weight = 100
70 }
71



115

72 # Current LISP beta-network (lisp4.net/lisp6.net) DDT root nodes:
73 # IPv4:
74 # - csuc-ddt.rloc.lisp4.net: 84.88.16.10
75 # - arin-ddt.rloc.lisp4.net: 192.149.252.136
76 # - ripe-ddt.rloc.lisp4.net: 193.0.0.170
77 # - vxnet -ddt.rloc.lisp4.net: 199.119.73.8
78 # IPv6:
79 # - csuc-ddt.rloc.lisp6.net: 2001:40B0:1::F0F2
80 # - arin-ddt.rloc.lisp6.net: 2001:500:4:12::5
81 # - ripe-ddt.rloc.lisp6.net: 2001:610:240:5:193::170
82

83 # Map-Registers are sent to this map-server
84 # You can define several map-servers. Map-Register messages will be sent to all

of them.
85 # address: IPv4 or IPv6 address of the map-server
86 # key-type: Only 1 supported (HMAC-SHA -1-96)
87 # key: password to authenticate with the map-server
88 # proxy -reply [on/off]: Configure map-server to Map-Reply on behalf of the xTR
89

90 map-server {
91 address = 217.8.98.42
92 key-type = 1
93 key = nattrav -test
94 proxy-reply = on
95 }
96

97 # Packets addressed to non-LISP sites will be encapsulated to this Proxy -ETR
98 # You can define several Proxy -ETR. Traffic will be balanced according to

priority and weight.
99 # address: IPv4 or IPv6 address of the Proxy -ETR

100 # priority [0-255]: Proxy -ETR with lower values are more preferable.
101 # weight [0-255]: When priorities are the same for multiple Proxy -ETRs, the

Weight indicates how to balance unicast traffic between them.
102

103 proxy-etr {
104 address = 217.8.98.33
105 priority = 1
106 weight = 100
107 }
108

109 # List of PITRs to SMR on handover
110 # address: IPv4 or IPv6 address of the Proxy -ITR
111 # Current LISP beta-network (lisp4.net/lisp6.net) PITR addresses
112

113 proxy-itrs = {
114 69.31.31.98,
115 149.20.48.60,
116 198.6.255.37,
117 173.36.193.25,
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118 129.250.1.63,
119 217.8.98.33,
120 217.8.98.35,
121 193.162.145.46,
122 193.34.30.222,
123 193.34.31.222,
124 147.83.131.33,
125 158.38.1.92,
126 203.181.249.172,
127 202.51.247.10
128 }
129

130 # IPv4 / IPv6 EID of the node.
131 # One database -mapping structure is defined for each interface with RLOCs

associated to this EID
132 # eid-prefix: EID prefspinner.setSelection(position);ix (IPvX/mask) of the

mapping
133 # interface: interface containing the RLOCs associated to this mapping
134 # priority_vX [0-255]: Priority for the IPvX RLOC of the interface. Locators

with lower values are more preferable. This is used for both incoming policy
announcements and outcoming traffic policy management. (A value of -1 means
that IPvX address of that interface is not used)

135 # weight [0-255]: When priorities are the same for multiple RLOCs , the Weight
indicates how to balance unicast traffic between them.

136

137 database -mapping {
138 eid-prefix = 153.16.51.48/32
139 interface = wlan0
140 priority_v4 = 1
141 weight_v4 = 100
142 priority_v6 = 1
143 weight_v6 = 100
144 }
145

146 database -mapping {
147 eid-prefix = 153.16.51.48/32
148 interface = rmnet0
149 priority_v4 = 1
150 weight_v4 = 100
151 priority_v6 = 1
152 weight_v6 = 100
153 }
154

155 override -dns = true
156 override -dns-primary = 8.8.8.8
157 override -dns-secondary = 8.8.4.4
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List of the selected active EIDs

37.77.56.65 gw.10ww.steffann.nl
37.77.57.65 gw.emile.sintact.nl
37.77.57.129 br.sitecom.lispnet.nl
84.14.161.20 20.161-14-84.ripe.coltfrance.com
97.93.68.239 97-93-68-239.static.rvsd.ca.charter.com
98.15.238.112 cpe-98-15-238-112.hvc.res.rr.com
132.227.62.242 xtr1.ipv6.lip6.fr
153.16.5.1 cisco-it-xtr-1.lisp4.net
153.16.5.29 lisp.cisco.com,lisp4.cisco.com
153.16.13.1 snoble-xtr.lisp4.net
153.16.13.33 dalvarez-xtr.lisp4.net
153.16.13.81 srin-xtr.lisp4.net
153.16.13.177 manishee-xtr.lisp4.net
153.16.16.1 isc-pxtr.eid.lisp4.net
153.16.17.17 gregg-xtr.lisp4.net
153.16.18.1 robert-cdw-xtr.lisp4.net
153.16.23.145 kleinart-xtr.lisp4.net
153.16.25.1 rymcdowe-xtr.lisp4.net
153.16.25.17 miles-xtr-1.lisp4.net
153.16.25.49 epulvino-xtr.lisp4.net
153.16.25.129 jemannin-xtr.lisp4.net
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153.16.25.161 bluethunder-xtr.lisp4.net
153.16.26.1 mwhitley-xtr.lisp4.net
153.16.26.113 scalan-xtr.lisp4.net
153.16.29.1 jpcaron-xtr.lisp4.net
153.16.30.113 bguldan-xtr.lisp4.net
153.16.30.161 coopergeneral-xtr.lisp4.net
153.16.30.225 perry-xtr.lisp4.net
153.16.31.49 apparatus-xtr.lisp4.net
153.16.31.97 gar-xtr.lisp4.net
153.16.32.177 mironto-xtr.lisp4.net
153.16.32.241 experteach-xtr.lisp4.net
153.16.38.1 lisp6-fr-xtr.lisp4.net
153.16.44.145 lukasm-xtr.lisp4.net
153.16.47.17 ataf-xtr.lisp4.net
153.16.47.161 smirnov-xtr.lisp4.net
153.16.49.81 turnerhouse-xtr.lisp4.net
153.16.49.177 leander-xtr.lisp4.net
153.16.50.241 haase-xtr.lisp4.net
153.16.51.97 rjm-xtr.lisp4.net
153.16.53.161 aflorio-cz-xtr.lisp4.net
153.16.54.1 hulsmann-xtr.lisp4.net
153.16.54.161 aflorio-it-xtr.lisp4.net
153.16.55.65 eison-xtr.lisp4.net
153.16.55.193 raiffeisen-hu-xtr.lisp4.net
153.16.56.1 lukasm2-xtr.lisp4.net
153.16.64.1 iij-mr-ms.lisp4.net
153.16.66.225 alphawest-xtr.lisp4.net
153.16.67.1 apan-xtr.lisp4.net
153.16.70.1 yuyarin-xtr.lisp4.net
153.16.71.1 farhadsh-xtr.lisp4.net
205.203.201.1 router.millerad.com
217.15.88.68 68-88-15-217.reverse.alphalink.fr



Acronyms

AAC Advanced Audio Coding

AAPT Android Asset Packaging Tool

ADT Android Development Tools

AEP Android Extension Pack

AES Advanced Encryption Standard

A-GPS Assisted GPS

AIDL Android Interface Definition Language

AJAX Asynchronous Javascript And XML

AOT Ahead-of-Time

AP Access Point

API Application Programming Interface

APK Android Package

ART Android RunTime

ATA Advanced Technology Attachment

AVF Android VPN Framework

AVRCP Audio/Video Remote Control Profile

BGP Border Gateway Protocol

BID Binding unique IDentification

C2DM Cloud to Device Messaging

CDMA Code Division Multiple Access

CGA Cryptographic Generated Address

CoA Care-of Address

CPU Central Processor Unit

DAC Digital-to-Analog Converter

DFZ Default-Free Zone

DHCP Dynamic Host Configuration Protocol

DLNA Digital Living Network Alliance

DNS Domain Name System

DoS Denial-of-Service

DDoS Distributed DoS

DRM Digital Rights Management

EID Endpoint IDentifier

ESP Encapsulated Security Payload

EVDO Enhanced Voice-Data Optimized

ext extended filesystem

FIB BGP Forwarding Table

FLAC Free Lossless Audio Codec

FQDN Fully Qualified Domain Name

FTP File Transfer Protocol

FUSE Filesystem in Userspace

GAL Global Address List

GC Garbage Collector

GID Group ID

GIF Graphics Interchange Format

GNU GNU’s Not Unix

GPL General Public License

GPRS General Packet Radio Service

GPS Global Positioning System

GPU Graphical Processor Unit

GUI Graphical User Interface

H-MH Host-Multihoming

HAL Hardware Abstraction Layer

HBA Hash-Based Address

HD Hard Drive

HDR High Dynamic Range

HI Host Identifier



HID Human Interface Device

HIP Host Identity Protocol

HIPL HIP for Linux

HIT Host Identity Tag

HSDPA High-Speed Downlink Packet Access

HSUPA High-Speed Uplink Packet Access

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HTTPS HTTP over SSL

I-LV Identifier-Locator Vector

IAB Internet Architecture Board

ICMP Internet Control Message Protocol

ID IDentity

IDC International Data Corporation

IDE Integrated Development Enviroment

IEEE Internet Engineering Task Force

IETF Internet Engineering Task Force

ILNP Identifier/Locator Network Protocol

IKE Internet Key Exchange

IMAP4 Internet Message Access Protocol 4

I/O Input/Output

IP Internet Protocol

IPC Inter-Process Communication

IPSec IP Security

IPv4 IP version 4

IPv6 IP version 6

ISO International Organization for Standard-
ization

ISP Internet Service Provider

JDK Java Development Kit

JIT Just-In-Time

JNI Java Native Interface

LED Light-Emitting Diode

LISP Locator/Identifier Separation Protocol

LISP-MN LISP Mobile Node

MAP Message Access Profile

MCoA Multiple Care-of Addresses

MD Message-Digest algorithm

MIP Mobile IP

MIPv6 Mobile IPv6

MitM Man-in-the-Middle

MMS Multimedia Messaging Service

MN Mobile Node

MPEG Moving Picture Experts Group

MPT Multi-Path Transport

MR Mobile Router

MS Mapping System

MSP Mapping Service Provider

NAT Network Address Translation

NEMO Network Mobility

NFC Near Field Communication

NDK Native Development Kit

NID Node IDentifier

OAL Open Accessory Library

OS Operating System

OSI Open Systems Interconnection

PC Personal Computer

POP3 Post Office Protocol 3

ppi Pixel per inch

PPP Point-to-Point Protocol

PSTN Public Switched Telephone Network

PxTR Proxy Tunnel Router

QoS Quality of Service

QVGA Quarter VGA

RAM Random Access Memory

RC Rivest Cipher

RFC Request for Comments

RLOC Routing LOCator

RtL Right-to-Left

RTR Re-encapsulating Tunnel Router

S-MH Site-Multihoming

SAF Storage Access Framework

SATA Serial ATA



SCTP Stream Control Transport Protocol

SDK Software Development Kit

SE Standard Edition

SELinux Security-Enhanced Linux

SHA Secure Hash Algorithm

SHIM6 Site Multihoming by IPv6 Intermedia-
tion

SIMA SImultaneous Multi-Access

SIP Session Initiation Protocol

SMR Solicit-Map-Request

SMS Simple Message System

SMTP Standard Mail Tranmission Protocol

SNI Server Name Indication

SNPA Sub-Network Point of Attachment

SSH Secure SHell

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TLS Transport Layer Security

TTL Time-To-Live

UDP User Datagram Protocol

UI User Interface

UID User ID

ULID Upper-Layer IDentifier

ULP Upper-Layer Protocol

UML Universal Model Language

UMTS Universal Mobile Telecommunications
System

URI Uniform Resource Identifier

USB Universal Serial Bus

VGA Video Graphics Array

VM Virtual Machine

VoIP Voice over IP

VPN Virtual Private Network

WRT Wireless Receiver/Transmitter

WVGA Wide VGA

WXGA Wide eXtended Graphics Array

XHTML eXtensible HyperText Markup Language

XML eXtensible Markup Language

YAFFS Yet Another Flash File System

YOY Year-Over-Year
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