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ABSTRACT 

The Kriging-based FEM (K-FEM) is an enhancement of the FEM through the use of Kriging 

interpolation in place of the conventional polynomial interpolation.  The key advantage of the K-FEM is 

that the polynomial refinement can be performed without adding nodes or changing the element 

connectivity.  In the development of the K-FEM for analyses of shear deformable beams, plates and 

shells, the well-known difficulty of shear locking also presents. This paper presents the K-FEM with the 

discrete shear gap (DSG) technique to eliminate the shear locking in the Timoshenko beam. The 

numerical tests show that the DSG technique can completely eliminate the shear locking for the Kriging-

based beam element with cubic basis and three element-layer domain of influencing nodes. However, the 

DSG technique does not work well for the K-beam with linear (except with one element layer) and 

quadratic bases.  
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1. Introduction 

An enhancement of the finite element method was proposed [1], in which the Kriging 

interpolation (KI) was utilized as the trial function in place of the conventional polynomial 

function.  The KI in this proposed method was constructed for each element from a set of 

nodal values within a domain of influencing nodes (DOI) comprising the element itself and 

several layers of the surrounding elements.  The DOI is thus a polygon in the 2D domain and 

a polyhedral in the 3D domain.  The advantages of this novel proposed method are: (1) a high 

degree of polynomial function can be easily included in the trial function without adding any 

side or internal nodes in the element.  (2) Highly accurate and smooth results for the state 

variables and their derivatives can be obtained even using the simplest form of elements.  (3) 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Repository

https://core.ac.uk/display/78372212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

2 

 

Furthermore, the computer implementation of the proposed method is very similar to that of 

the conventional FEM so that an existing general FEM code can be extended to include the 

method without a major change.  

 

The proposed method [1] (hereafter referred to as Kriging-based finite element method, 

abbreviated to K-FEM) was subsequently improved through the use of adaptive correlation 

parameters and developed for analysis of Reissner-Mindlin plates and [2], [3].  A shortcoming 

of the K-FEM is that the trial function is discontinuous across the element boundaries, or in 

other words, it is nonconforming between interconnected elements.  The issue of the 

nonconformity has been studied in [4] and it was found that the K-FEM with appropriate 

Kriging parameters always yields converging results.   

 

In the development of the K-FEM for analyses of shear deformable beams, plates and shells, 

as in the FEM, the difficulty of shear locking also presents.  In attempts to overcome this 

difficulty, the field-matching technique of Kanok-Nukulchai et al. [5], which works well in 

the element-free Galerkin method [6], has been tried on [7].  Using this technique, the shape 

functions for the rotational fileds were taken to be the derivatives of the shape functions for 

the defelction.  It was found that the K-FEM with the field-macthing strategy yielded 

erroneous results.  Accordingly, the field-matching technique is not applicable in the context 

of K-FEM.  Another attempt was the introduction of assumed natural transverse shear strains 

in the K-FEM [8].  It was found that the assumed shear strain method can relieve the locking 

but it cannot eliminate the locking completely because the locations of shear-strain sampling 

points in the K-FEM cannot be determined exactly.  Henceforth a sufficiently high degree 

basis function (cubic or higher) in the K-FEM for analyses of plates and shell structures was 

employed as a provisional solution to relieve the shear locking [2], [4], [7], [9]–[11].  The use 

of a high degree polynomial basis, however, cannot eliminate the locking completely and 

makes the computational cost high.  Thus, an effective method to eliminate the shear locking 

in the K-FEM is indeed desirable.   

 

In attempts to develop a locking free formulation for the K-FEM for analyses of plates and 

shells, it is instructive to study the K-FEM in the simpler problem of the Timoshenko beam in 

order to gain the understanding and insight about a locking-free device.  In this spirit, Wong 

and Syamsoeyadi [12] recently developed the K-FEM for static and free vibration analyses of 

Timoshenko beams. In this development the shear locking was eliminated using the well-
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known selective-reduced integration (SRI) technique.  While the SRI technique can 

effectively eliminate the shear locking, the shear force resulting from this technique, however, 

is only accurate at the location of integration sampling point for shear force term, i.e. at the 

middle of the element.  Moreover the SRI technique has been proved not applicable for the 

Kriging-based triangular plate bending element [7].  Therefore, a new shear locking 

elimination technique extendable to the Kriging-based Reissner-Mindlin plate element needs 

to be explored.   

 

Bletzinger et al. (2000) [13] presented a unified approach to eliminate shear locking in shear 

deformable plates and shells, which is called the discrete shear gap (DSG) technique.  In this 

approach, the shear gap is defined as the difference between the total deflection and the 

bending deflection, or in other words, it is the deflection corresponding to the shear strain. 

The shear gap is calculated at the element nodes (called the discrete shear gaps) and 

interpolated across the element domain. The substitute shear strain is then obtained from the 

derivatives of the interpolated discrete shear gaps. With this technique, a locking-free 

formulation of plate elements, either triangular or rectangular of any polynomial degree, can 

be carried out in a simple way.  The technique was subsequently generalized to a more 

general concept applicable to other locking problems such as the membrane locking [14], 

[15].  

 

The DSG technique has been applied not only in the conventional FEM, but also in recent 

alternative computational methods such as the edge-based smoothed FEM [16] and the node-

based smoothed FEM [17].  The most recent application of the DSG approach is to combine 

the DSG three-node triangular element with the cell-based smoothed FEM to produce a three-

node triangular plate element claimed to have some superior properties compared to many 

existing plate elements of the same class [18], [19].  These recent and somehow successful 

applications of the DSG technique suggest that it may also be effective to eliminate the shear 

locking in the Kriging-based shear deformable beams, plates and shells.   

 

The aim of this paper is to present the development and testing of the K-FEM with the DSG 

technique to eliminate the shear locking in the context of Timoshenko beam model.  The 

discretized equations were formulated using the standard displacement-based FE procedure 

on the variational form.  The same Kriging shape functions ewre used for the deflection and 

rotation fields.  The original displacement-based transverse shear strain was then replaced 
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with the DSG shear strain. A series of numerical tests were carried out to evaluate the 

effectiveness of the DGS technique to eliminate the shear locking.  The results revealed that 

the Kriging-based Timoshenko beam (K-Beam-DSG) element with cubic basis and three 

element-layer DOI are free from shear locking, while the K-Beam-DSG with the other 

options, except with linear basis and one element layer, still suffers from shear locking.   

 

2. Kriging Interpolation in the K-FEM 

Named after Danie G. Krige, a South African mining engineer, Kriging is a well-known 

geostatistical technique for spatial data interpolation in geology and mining (see e.g. 

geostatistics literatures [20], [21]).  The review on the KI in the framework of the K-FEM has 

been addressed in several previous published papers [3], [4], [12].  In this paper only the key 

points of the KI necessary for the subsequent development is addressed.   

 

2.1.  Kriging shape function 

We consider a one-dimensional problem domain Ω where a continuous field variable (a scalar 

function) u(x) is defined. The domain is represented by a set of properly scattered nodes xI, 

I=1, 2, …, N, where N is the total number of nodes in the whole domain.  Given N field values 

u(x1), …, u(xN), the problem of interest is to obtain an estimated value of uh at a point x .   

 

In the Kriging method, the unknown value uh(x) is estimated from a linear combination of the 

field values at the neighboring nodes, i.e. 

 h

1
( ) ( )

n

i ii
u x u x


  (1) 

where λj’s are the unknown Kriging weights and n is the number of nodes surrounding point x, 

inside and on the boundary of a subdomain  
x

, n N .  Here small letters i and n are 

used instead of I and N to signify that the numbering is referred to the local (subdomain) 

numbering system.   

 

In the context of the K-FEM [3], [4], [12], the nodes are identical to the finite element nodes, 

and the weights is identical to the shape functions.  Furthermore, the subdomain x in the K-

FEM is composed of the element of interest and several layers of surrounding elements and 

referred to as the DOI.  The number of element layers of the DOI can be one, two, or more. In 

the case of one layer, the DOI is the finite element itself and the K-FEM becomes identical to 
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the conventional FEM. Fig.1 illustrates a two-layer DOI encompassing local nodes 1, 2, 3 and 

4.   

 

 

Fig 1. One-dimensional domain and a two element-layer subdomain 

 

The Kriging weights λi, i=1,…,n, are obtained by solving the Kriging equation system:  

 ( )x Rλ Pμ r  (2a) 

 T ( )xP λ p  (2b) 

in which  

 

11 1

1

( ) ... ( )

... ... ...

( ) ... ( )

n

n nn

C h C h

C h C h

 
 
 
  

R  ;  

1 1 1

1

( ) ... ( )

... ... ...

( ) ... ( )

m

n m n

p x p x

p x p x

 
 
 
  

P  (2c) 

  
T

1 ... n λ  ;       
T

1 ... m μ  (2d) 

  
T

1 2( ) ( ) ( ) ... ( )x x nxx C h C h C hr  ;       
T

1( ) ( ) ... ( )mx p x p xp  (2e) 

 

The entries in matrix R, C(hij), is the covariance between U(xi) and U(xj), which is a function 

of ij j ih x x  ; i=1, … , n; j=1, … , n. Thus, R is the n n  matrix of covariance of U(x) at 

nodes in the DOI, x1, … , xn. The capital ‘U(x)’ here signifies the corresponding random 

process of the deterministic function u(x).  Matrix P is the n m  matrix of monomial values 

at the nodes, where m is the number of monomial terms.  Vector λ is the unknown 1n  vector 

of Kriging weights and vector μ is the unknown 1m  vector of Lagrange multipliers.  On the 

right hand side of eqns. (2a) and (2b), vector r(x) is the 1n  vector of covariance between the 

nodes and the point of interest, x; and p(x) is the 1m  vector of monomial values at x.  The 

entries in r(x), C(hix), is the covariance between U(xi) and U(x), which is a function of 

ix ih x x  .  A necessary condition to make the Kriging equation system solvable 
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(nonsingular) is that the number of nodes in the DOI, n, should be equal or greater than the 

number monomial terms, m, i.e. n m .   

 

Solving the Kriging equation system, the vector of Kriging weights is given as 

 T T T( ) ( )x x λ p A r B  (3a) 

where 

 T 1 1 T 1( )  A P R P P R  ,  1( ) B R I PA  (3b) 

Here A is an m n matrix, B is an n n matrix, I is the n n  identity matrix.   

 

The expression for the estimated value uh, eqn. (1), can be restated in matrix form as 

 h T( ) ( )u x x λ d N d  (4) 

where  
T

1( ) ... ( )nu x u xd  is 1n  vector of nodal values and N(x)= λT is the matrix of 

Kriging shape functions.  It is obvious that the Kriging weights are nothing but the shape 

functions.   

 

2.2.  Polynomial basis and correlation function 

In order to construct Kriging shape functions, a polynomial basis function and a covariance 

function should be chosen.  In the present research, as in the previous research on the K-FEM 

for analysis of Timoshenko beams [12], the polynomial bases of the degree one up to three are 

employed.  The higher the polynomial degree, the more the element layers needed in the DOI 

because of the requirement n m .  The minimum number of DOI layers for different 

polynomial bases is listed in Table 1.   

 

Table 1. Minimum number of layers for different polynomial basis 

Polynomial basis Monomial terms m Minimum number 

of layers 

Linear 1  x 2 1 

Quadratic 1  x  x2 3 2 

Cubic 1  x   x2  x3 4 3 

 

A covariance C(h) is more conveniently expressed in terms of correlation function, which is 

given as 

  
 

2

C h
h


  (5) 
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where h is the distance between points x and x+h and σ2 is the variance of the random function 

U(x).  The factor 2  has no effect on the resulting Kriging shape functions and it is taken 

equal to 1 in this study.  There are many possibilities for the correlation function model in the  

area of geostatistics [20], [21], such as the Nugget-effect model, exponential model and 

spherical model.  In the present study, as in the previous research [12], the Gaussian 

correlation function, i.e. 

 2( ) exp( ( ) )r

h
h

d
    (6) 

and the quartic spline (QS), i.e. 

 

2 3 41 6( ) 8( ) 3( )      for 0 1  

( )

0                                            for 1

r r r r

r

h h h h

d d d d
h

h

d

   






    

 
 


  (7) 

are chosen.  In these equations, θr>0 is the correlation parameter and d is a scale factor to 

normalize the distance h.  Factor d is taken to be the largest distance between any pair of 

nodes in the DOI.   

 

The parameter θr is an important parameter affecting the validity of Kriging shape functions.  

Too small a value of θr deteriorates the partition of unity property of the shape functions [1], 

i.e.  

 
1

1 1
n

ii
N


   (8) 

Conversely, too large a value of θr may make the Kriging equation system singular. Based on 

this facts, Plengkhom and Kanok-Nukulchai [1] proposed a rule of thumb for the lower and 

upper bounds of θr. Following this rule, the value of θr should be selected so that it satisfies 

the lower bound criterion, 

 10

1
1 1 10

n a

ii
N  


    (9) 

where a is the degree of basis function, and the upper bound criterion, 

 det( ) 1 10 b R  (10) 

where b is the dimension of the problem. For the 1D problem and quadratic basis function, for 

example, a=2 and b=1.   

 

The range of appropriate values of θr varies with the number of monomial terms m, the 

number of the nodes in the DOI, n, and the correlation model used [1], [2]. In other words, it 
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depends on the polynomial basis, the number of element layers, and type of the correlation 

function employed in an analysis. The range of θr for 1D problems satisfying the lower and 

upper bound criteria, eqns. (9) and (10), have been numerically examined [12] and the results 

are presented in Table 2.  It is recommended to take the mid-value between the upper and 

lower bounds to ensure the good quality of KI. 

 

Table 2. The lower and upper bounds of θr for 1D problems 

Polynomial 

basis 

Number 

of layers 

Gaussian ρ(h) Quartic spline ρ(h) 

Lower 

bound 

Upper 

bound 

Lower 

bound 

Upper 

bound 

Linear 

1 0 0.2295 0 0.098 

2 10-4 1.0 10-5 0.44 

3 10-4 1.9 10-5 0.86 

Quadratic 
2 10-4 1.0 10-5 0.44 

3 10-4 1.9 10-6 0.86 

Cubic 3 10-4 1.9 10-8 0.86 

 

 

3. Formulation of Kriging-based Timoshenko Beam Element 

We consider a beam of length L with the cross sectional area and moment of inertia A and I, 

respectively.  The beam is made from a homogeneous and isotropic material with the modulus 

of elasticity E, shear modulus G, and mass density ρ (per unit volume).  A Cartesian 

coordinate system (x,y,z) is established where the x-axis coincides with the neutral axis and y- 

and z-axes coincide with the principal axes of the cross section (Fig. 2).  The beam is 

subjected to dynamic distributed transversal load q=q(x, t), distributed moment m=m(x, t), 

and axial tensile force P=P(t), 0 x L  , 0t  .  In the Timoshenko beam theory, the motion 

of the beam due to the external loads is described using two independent field variables, 

namely the transverse displacement (deflection) of the neutral axis w=w(x,t) and the rotation 

of the cross-section θ= θ(x,t).  The sign convention for these variables is shown in Fig. 2.   

 

Fig 2. Coordinate system and positive directions for the deflection and rotation 
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The governing equation for the motion of the beam at time t, including the axial load effect, 

can be expressed in a variational form as  

 

0 0

s
0 0 0

0 0

 

, ,    , ,

L L

L L L

x x x x

L L

w Aw dx I dx

EI dx GA dx w P w dx

wq dx m dx

    

    

 



  

 

 

  

 

 (11) 

In this equation,  

 ,xw    (12) 

is the transverse shear strain, and As=kA is the effective shear area, where k is a shear 

correction factor that is dependent upon the cross-section geometry.  The double dots signify 

the second partial derivative of the corresponding variable with respect to the time variable t, 

whereas the comma signifies the first partial derivative of with respect to the variable next to 

it (i.e. x).  The operator δ signifies the variational operation on the corresponding variable.  A 

detail derivation of the variational equation, eqn. (11), using the Hamilton’s principle is given 

in references [22], [23].   

 

The bending moment and shear force along the beam can be calculated from the deflection w 

and rotation θ as follows: 

  ,xM EI   (13) 

  s  , ,x xQ GA w P w    (14) 

 

To obtain an approximate solution using the concept of KI with layered-element DOI, let the 

beam is subdivided into Nel elements and N nodes.  We then consider an element with its DOI 

that contains n nodes, as illustrated in Fig. 3.  The field variables w and θ over the element are 

approximated using KI as follows 

 ( ) ( )ww x t N d  (15a) 

 ( ) ( )x t  N d  (15b) 

where  

 1 2( ) [ ( ) 0 ( ) 0 ( ) 0]w nx N x N x N xN  (15c) 

 1 2( ) [0 ( ) 0 ( ) 0 ( )]nx N x N x N x N  (15d) 

are the matrix of Kriging shape functions for the deflection and rotation, respectively, and  
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  
T

1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )n nt w t t w t t w t t  d  (15e) 

is the vector of nodal displacement.  Variable x here refer to the local (element) coordinate 

system. The number of nodes, n, depends on the number of elements used in the DOI and is 

different for the interior and exterior elements.  For example, for the element with two-layer 

DOI, n=4 for the exterior element and n=3 for the interior element.   

 

 

Fig 3. A typical beam element and its domain of influencing nodes (DOI) 

 

Substituting eqns. (15a) and (15b) into eqn. (11) and carrying out the standard finite element 

formulation yield the discretized system of equations  

 g( ) ( ) ( ) ( )t P t t  md k k d f  (16) 

In this equation, 

 
e eT T

0 0

L L

w wA dx I dx    m N N N N  (17) 

is the element consistent mass matrix,  

 
e eT T

s
0 0

L L

EI dx GA dx     k B B B B  (18) 

is the element stiffness matrix,  

 
e T

g
0

L

w w dx k B B  (19) 

is the element geometrical stiffness matrix, and 

 
e eT T

0 0
( )

L L

wt qdx mdx  f N N  (20) 

is the element equivalent nodal force vector.  The order of all square matrices and vectors are 

2n.  In eqns. (18) and (19), matrices Bθ, Bw and Bγ are defined as follows:  
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d

dx
 B N ,   w w

d

dx
B N  (21a) 

 w  B B N  (21b) 

The unknowns of eqn. (16) are the element nodal acceleration vector ( )td  and the nodal 

displacement vector d(t).   

 

The discretized equations for static, free vibration, and buckling problems can be obtained 

from eqn. (16) by simply reducing it to 

 kd f  (22) 

 ( ) ( )t t md kd 0  (23) 

 g( )P k k d 0  (24) 

respectively.   

 

The corresponding global discretized equations of these equations can be obtained using the 

finite element assembly procedure.  It should be mentioned here that the assembly process 

involves all nodes in the DOI, not only the element nodes as in the conventional FEM.   

 

4. Application of the Discrete Shear Gap Concept 

It is well known in the FEM that the pure displacement-based formulation of Timoshenko 

beam (with exact integration of all integral) leads to the shear locking phenomenon [24]–[29].  

The same is true for the Kriging-based Timoshenko beam element [12], even for the element 

with cubic polynomial basis function.  The primary cause of this locking is the inability of the 

approximate shear strain to vanish as the beam length-to-thickness ratio becomes large.  The 

basic idea of the discrete shear gap (DSG) concept [13], [14] is to replace the troublesome 

kinematic shear strain with a substitute shear strain field determined from the derivative of 

interpolated discrete shear gaps.  This section presents a review of the DSC concept and its 

application to Timoshenko beam elements with the KI.   

 

To apply the DSG concept, we begin with the definition of shear gap, i.e. 

 
0

( )
x

x
w x dx     (25) 

where Δwγ(x) is the shear gap at point x, and x0 is the position of a chosen reference point.  

Inserting eqn. (12) into this equation results in  
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0 0

( )
xx

x x
w x w dx      (26a) 

 
0

0 b( ) ( ( ) ( )) ( ) ( )
x

x
w x w x w x dx w x w x         (26b) 

In these equations, w is the increase of the actual deflection between the positions x and x0, 

and wb is the increase of the deflection due to bending action.  The shear gap wγ (x) thus 

represents the increase of the deflection due to shearing action.   

 

The discrete shear gap at a finite element node with position xi, wγi, is defined as 

 
0 0

( )
ii

xx

i i x x
w w x w dx         (27) 

A modified shear gap field is defined as the interpolation of the nodal shear gaps, i.e. 

 
1

( ) ( )
n

i i

i

w x N x w 



    (28) 

In the framework of the standard FEM, n is the number of number of nodes in the element and 

Ni(x), i=1, ..., n are the shape functions.  In the present research, however, n is the number of 

nodes in the DOI and Ni(x) are Kriging shape functions.  Differentiating eqn. (28) gives the 

substitute shear strain, i.e. 

 1

1

( ) ,
n

i x i

i

x N w  


   B w  (29a) 

where 

  1 1 2, , ,x x n xN N N B  (29b) 

 
T

1 2 nw w w        w  (29c) 

 

To avoid the shear locking problem, the kinematic shear strain γ, eqn. (12), is replaced with 

 , eqn. (29a).  In order to implement this technique to the Kriging-based beam elements, we 

first need to express the nodal shear gaps in the DOI, wγ, in terms of the degrees of freedom of 

the Timoshenko beam. Choosing node 1 to be the reference point (see Fig. 3) and inserting 

eqn. (15b) into eqn. (27), the discrete shear gaps is given as 

 
1

1 ( ( ) )
ix

i i
x

w w w x dx      N d  (30) 

Evaluating the discrete shear gaps for nodes 1 to n and writing them in a matrix form, the 

discrete shear gaps for all nodes in the DOI can be expressed as 
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 2 w B d  (31a) 

where 

 

2 2 2 2

1 1 1 1

3 3 3 3

1 1 1 1

1 1 1 1

1 2 3

2 1 2 3

1 2 3

0 0 0 0 0 0 0 0

1 1 0 0

1 0 1 0

1 0 0 1
n n n n

x x x x

n
x x x x

x x x x

n
x x x x

x x x x

n
x x x x

N dx N dx N dx N dx

N dx N dx N dx N dx

N dx N dx N dx N dx


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B  (31b) 

Substituting eqn. (31a) into eqn. (29a) yields 

 1 2( )x     B B d B d  (32) 

The implementation of the DSG concept is accomplished by replacing matrix Bγ in the 

expression for the element stiffness matrix, eqn. (18), with matrix B  as defined in eqn. (32).   

 

5. Numerical Results  

The performance of the K-Beam-DSG elements were evaluated using the pure bending and 

clamped-clamped beam.  The shear correction factor used was given as ([30], cited in [22], 

[23]) 

 
10(1 )

12 11
k









 (33) 

Special attention given to evaluate the effectiveness of the DSG technique in eliminating the 

shear locking.  The K-FEM options used comprised linear up to cubic basis functions, one to 

three element layers, and the Gaussian or QS correlation functions with the mid-value 

correlation parameters between the lower and upper bound values (Table 2).  Abbreviations of 

the form P*-*-G or P*-*-QS were used to denote different K-FEM options. The first asterisk 

represents the polynomial basis, while the second represents the number of DOI element 

layers. The last letter(s) represent the Gaussian (G) or quartic spline (QS) correlation function. 

For example, abbreviation P2-3-QS means the K-FEM options of quadratic basis function, 

three element layers, and quartic spline correlation function (with mid-value correlation 

parameter).   

 

In all calculations, three Gaussian sampling points were used to evaluate the integrations in 

the element stiffness matrix equations, eqn. (18), while two sampling points were used to 
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evaluate the integration in the element consistent nodal load vector, eqn. (20) and 2B  (31b).  

The abovementioned number of sampling points were chosen because we found by trial-and-

error that they can provide accurate results with minimum effort.   

 

5.1. Pure bending test 

A cantilever beam of rectangular cross-section b h  subjected to an end moment was 

modelled with meshes of regular and irregular node distributions as shown in Fig. 4.  The 

beam is in pure bending state with constant bending moment, M, and zero shear force along 

the beam.  This problem may be regarded as a constant curvature patch test for beam finite 

elements.  An element is said to pass the test if it can reproduce the exact deflection, rotation, 

bending moment, and shear forces for any mesh.   

 

 

Fig 4. Cantilever beam modelled with (a) regular and (b) irregular node distributions 

 

The beam was analyzed using the K-Beam-DSG with different polynomial bases, number of 

layers, and correlation functions.  Numerical values used in the analyses were L=10 m, b=2 

m, E=2000 kN/m2, ν=0.3 and M=1 kN-m.  Two different length-to-thickness ratios were 

considered.  One was moderately thick, i.e. L/h=5, and the other was extremely thin, i.e. 

L/h=10000.  The resulting deflections and rotations at the free end, wL and θL, were observed 

and then normalized to the corresponding exact solutions, i.e. 

 
2

exact
2

L

ML
w

EI
 ,   exactL

ML

EI
   (34) 

The resulting bending moments and shear forces at the clamped end, calculated using eqns. 

(13) and (14), were observed as well.  The bending moments were then normalized to the 

exact bending moment, M.  The shear forces, however, were not normalized because of the 

zero exact shear force.   
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The results showed that the K-Beam-DSG produced values of the deflection, rotation and 

bending moment with at least seven digit accuracy (nearly exact values) both for the thick and 

thin beams with the regular node distribution.  The maximum error for the shear force, 

however, was in the order of 10-5 (for the case of the thin beam analyzed using the P1-3-G 

option).  Very accurate results for the deflection, rotation, and bending moment of the thick 

and thin beams were also obtained for the case of the irregular node distribution, with the 

accuracy at least 5 digits (for the thin beam analyzed using the P1-3-G option).  Table 3 

presents the results for the thin beam modelled with the irregular node distribution (the most 

critical case).  It was seen that for this case the accuracy of the shear force (the maximum 

error is in the order of 10-2) was lower compare to the thin beam modelled with regular node 

distribution.  It is worthy to mention here that the standard finite element and Kriging-based 

Timoshenko beam elements with the selective reduce integration are unable to produce 

correct values for the shear force computed using eqn. (14) [12], [29]. 

 

Overall, the results indicate that the K-Beam-DSG with different analysis options practically 

pass the constant curvature patch test.  The K-Beam-DSG elements with the Gaussian 

correlation function in general produce less accurate results than those with the QS. In this 

simple problem there is no indication of shear locking.   

 

Table 3. Analysis results using various K-Beam-DSG options 

K-Beam-DSG 

options 
wL / wL exact θL / θL exact M0 / M0 exact V0 

P1-1-QS 1.0000000 1.0000000 0.9999999 -5.36E-09 

P1-2-QS 0.9999997 0.9999997 0.9999997 4.93E-05 

P1-3-QS 1.0000000 1.0000000 1.0000000 -2.02E-05 

P2-2-QS 1.0000000 1.0000001 1.0000000 -9.21E-07 

P2-3-QS 0.9999999 0.9999999 0.9999998 3.41E-06 

P3-3-QS 1.0000001 1.0000001 1.0000002 -1.12E-07 

P1-1-G 1.0000000 1.0000000 0.9999999 -8.61E-09 

P1-2-G 1.0000000 0.9999998 1.0000004 2.64E-03 

P1-3-G 1.0000056 1.0000006 1.0000367 -6.28E-02 

P2-2-G 0.9999999 0.9999999 0.9999999 2.71E-03 

P2-3-G 0.9999991 0.9999994 0.9999990 -9.55E-03 

P3-3-G 1.0000002 1.0000001 1.0000005 9.21E-03 

 

5.2. Investigation on shear locking 
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To investigate the effectiveness of the DSG technique in eliminating the shear locking, we 

considered the clamped-clamped beam with the finite element model as shown in Fig. 5.  The 

height of the beam was varied from moderately thick, L/h=5, up to extremely thin, L/h=104.   

The geometrical and material properties of the beam were the same as in the pure bending test 

(Sec. 2.1.1) with the distributed load q=1 kN/m.  The beam was analyzed using the K-Beam-

DSG elements with different K-FEM options.  The resulting deflections of the beam mid-span 

were observed and normalized to the exact solution, i.e. 

 
4 2

exact

s384 8

qL qL
w

EI GA
   (35) 

 

 

Fig 5. Clamped-clamped beam modelled with mesh of eight elements 

 

The results were presented in Table 4.  The results obtained from the use of K-Beam-DSG 

with the QS correlation function were reported here.  The corresponding results for the 

Gaussian correlation function had similar locking behavior.   

 

Table 4. Normalized deflections of the beam mid-span using various K-Beam-DSG options 

K-Beam-DSG 

options 
L/h=5 L/h=10 L/h=100 L/h=1000 L/h=10000 

P1-1-QS 0.958 0.944 0.938 0.938 0.938 

P1-2-QS 0.979 1.000 0.959 0.206 0.003 

P1-3-QS 0.983 0.996 0.983 0.517 0.012 

P2-2-QS 0.994 1.001 0.993 0.540 0.011 

P2-3-QS 0.991 1.003 0.994 0.505 0.010 

P3-3-QS 0.999 1.001 1.001 1.001 1.001 

 

It is seen from Table 4 that for moderately thick to thin beams (i.e. L/h=5 to 100), all K-

Beam-DSG options could produce accurate results.  However, when the beam becomes 

thinner, it is apparent that only the K-Beam–DSGs with P1-1-QS and P3-3-QS options show 

no locking.  Further testing of the P1-1-QS and P3-3-QS options with the values of L/h 
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greater than 104 reveals that there is no locking up to L/h=107.  For L/h over 107 the results 

become inaccurate because of the stiffness matrix ill condition.  It is worthy to note that the 

K-Beam-DSG P1-1-QS is actually identical to the locking-free linear Timoshenko beam 

element with the DSG presented in [13], [14].   

 

To investigate further why the shear locking phenomenon still occurs on the K-Beam-DSGs 

with linear (except with one layer) and quadratic basis functions, we considered the shear 

forces calculated using the ‘successful’ options, i.e. P1-1-QS and P3-3-QS, and ‘unsuccessful’ 

options, i.e. P1-3-QS and P2-3-QS, for the extremely thin beam (L/h=104).  The shear force 

diagrams were shown in Figs. 6a and 6b, respectively.  Fig. 6a shows that the shear force 

distributions obtained from the K-Beam-DSGs with P1-1-QS and P3-3-QS options oscillate 

about the exact shear force distribution.  These oscillations, however, are relatively very mild 

compared to the violent shear force oscillations obtained from the K-Beam-DSGs with P1-3-

QS and P2-3-QS (Fig. 6b).  Furthermore, the total area under the shear force curves of the P1-

1-QS and P3-3-QS seems equal to the total area under the exact curve.  That is the reason why 

the K-Beam-DSGs with P1-1-QS and P3-3-QS are locking free while the K-Beam-DSGs with 

the other options are not locking free.   

 

 

 

Fig 6a. Shear force diagram obtained using K-Beam-DSG with options P1-1-QS and P3-3-QS 

 



 

 

18 

 

 

Fig 6b. Shear force diagram obtained using K-Beam-DSG with options P1-3-QS and P2-3-QS 

 

6. Conclusions 

Kriging-based Timoshenko beam elements with DSG have been developed and tested. The 

results showed that the DSG method was effective to eliminate the shear locking for the 

element with cubic basis function and three element-layer DOI while for the other K-FEM 

options was not so effective. The resulting shear force distributions were not very accurate for 

thin beams with small number of elements. The application of the DSG technique in the 

Timoshenko beam model provides understanding and insight to extend the application to the 

Kriging-based Reissner-Mindlin plate model, which is now still ongoing research.   
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