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Abstract—This paper presents a new parallel multi-objective
cooperative coevolutionary variant of the Speed-constrained
Multi-objective Particle Swarm Optimization (SMPSO) algo-
rithm. SMPSO adopts a strategy for limiting the velocity of
the particles that prevents them from having erratic movements.
This characteristic provides the algorithm with a high degree of
reliability. The proposed approach, called CCSMPSO, is based
on a new design and implementation of SMPSO in a cooperative
coevolutionary (CC) framework. In such an architecture, the
population is split into several subpopulations, which are in
turn in charge of optimizing a subset of the global solution
by using the original multi-objective algorithm. We compare
our work with two different state-of-the-art multi-objective CC
metaheuristics, namely CCNSGA-II and CCSPEA2, as well as the
original SMPSO in order to demonstrate its effectiveness. Our ex-
periments indicate that our proposed solution, CCSMPSO, offers
significant computational speedups, a higher convergence speed
and better and comparable results in terms of solution quality,
when compared to the other two CC algorithms and SMPSO,
respectively. Three different criteria are used for making the
comparisons, namely the quality of the resulting approximation
sets, average computational time and the convergence speed to
the Pareto front.

I. INTRODUCTION

Multi-objective optimization involves the optimization of
several different functions at the same time. These functions
must be in conflict, meaning that, given an optimal solution,
improving the quality of one of the objectives leads to wors-
ening at least one of the others. Therefore, the result of a
multi-objective problem is not one single solution, but a set
of non-dominated ones, so that none is better than the other
for all the objectives. Evolutionary algorithms (EA) are highly
suitable tools for tackling such difficult problems when exact
approaches are not applicable. EAs have the advantage of
providing highly accurate trade-off solutions in a reasonable
time [3], [4].

In order to deal with large problems for which classical EAs
fail, another nature inspired process was suggested to extend
EAs, referred to as cooperative coevolutionary (CC) EAs [20].
In this approach, instead of having the algorithm evolve one
homogeneous population of individuals representing a global
solution, the population is broken down into several subpopu-
lations that evolve specific parts of the global solution by coop-
erating during the evolution. Each subpopulation is in charge
of evolving a subset of the decision variables using a standard
EA and all subpopulations evaluate complete solutions through
a cooperative exchange of individuals. A new and efficient CC

framework for multi-objective optimization was presented in
[6], [8]. In those works, three new cooperative coevolutionary
EAs for multi-objective optimization were implemented using
the designed CC framework, and their effectiveness with
respect to their original counterparts was also demonstrated.

In this paper, we present a variant of a bio-inspired meta-
heuristic, called Particle Swarm Optimization (PSO), which
mimics the social behavior of bird flocking or fish schooling
[13]. We have redesigned an existing PSO-based algorithm
using a cooperative coevolutionary (CC) paradigm within the
aforementioned CC framework [6], [8], which is built on top of
the jMetal framework [10]. The variant of the PSO used in our
approach relies on an already enhanced version of another pre-
existing multi-objective optimization PSO (MOPSO) [9]. This
enhanced version, referred to as SMPSO [17], which stands
for Speed-constrained Multi-objective PSO, solves a problem
related to the velocity of the particles becoming too high and
as a consequence resulting in erratic movements towards the
upper and lower limits of the positions of the particles. This
phenomenon is called “swarm explosion” [2]. SMPSO tackles
this problem and offers a solution that prevents the velocity
of the particles from becoming too high by using a velocity
constriction mechanism. Since the first attempt at extending
PSOs to multi-objective optimization by Moore and Chapman
[16], there have been many other proposals. For a detailed
survey of Multi-Objective Optimization PSOs (MOPSOs), we
refer the reader to [21].

The contributions of this work are as follows. We propose
a new multi-objective optimization CC algorithm, called CC-
SMPSO, and we will show that the inherent properties of the
CC version, along with the speed constraining mechanism,
lead to significant computational speedups, better and more
accurate results, a high degree of reliability, and a faster
convergence speed. We provide an analysis of the proposed
solution to evaluate its performance and effectiveness using
three criteria. First, CCSMPSO is compared with two CC
variants of two well-known multi-objective genetic algorithms,
namely NSGA-II [5] and SPEA2 [24], as well as the original
non-CC version of SMPSO in order to evaluate and compare
these techniques in terms of the quality of their solutions
by making use of three quality indicators, namely additive
epsilon, spread and hypervolume. The second and third parts
of our analysis are concerned with the average computational
time as well as the convergence speed of CCSMPSO with
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respect to the other two CC EAs and the original SMPSO.
The remainder of this paper is structured as follows. Section

II provides a brief survey of related work, followed by a
description of the original SMPSO in Section III. Section
IV gives a thorough presentation of our proposed approach,
i.e., CCSMPSO, by describing the used methodology and the
details of the CC version. In Section V, a brief description of
the other two algorithms considered in this study is provided.
Section VI presents the experimental settings, the obtained
results and their analysis. Finally, Section VII summarizes our
results and presents our conclusions.

II. RELATED WORK

Although models for Cooperative Coevolutionary Evo-
lutionary Algorithms (CCEA) were initially developed for
single-objective optimization, more recently, several multi-
objective versions have also been shown to be efficient.

A CCMOEA, as proposed in [19], evolves one population
per objective function simultaneously. In [1], Barbosa et al.
proposed a genetic algorithm with coevolving weighting fac-
tors (IGACW) based on two populations, one for the solutions
and another for the weights. However, it suffered from a high
degree of dependency on the user’s solution ranking inputs.

More recently, a new competitive-cooperative coevolution
model (COEA) was presented in [12], in which each species
subpopulation competes at regular intervals, while the eventual
winners cooperate to solve the problem and evolve towards
better solutions. Three CCEAs for NSGA-II, SPEA2 and
MOCell were also developed by Dorronsoro et al. and their
effectiveness was demonstrated in [6], [8]. This model was
later extended by Garcı́a et al. [11] to improve its parallel
scalability, reaching up to 128 subpopulations. The new design
considers that the search spaces of the different islands overlap
with one another, instead of the disjoint model that has been
used classically.

Coevolution has also been considered for PSO algorithms.
A team-based competitive coevolutionary PSO has been pro-
posed by Scheepers and Engelbrecht in [22] for soccer agents
training. The only existing versions of cooperative coevolu-
tionary PSO algorithms were developed for single-objective
optimization by van den Bergh et al. [23], and Li et al. [14],
[15], as an attempt to cope with large scale optimization
problems. The most recent one, CCPSO2 [15], provides highly
competitive results for up to 2000-variable problems by using
a mechanism that dynamically sets the groups of variables to
optimize in every island, as well as a new update rule that
relies on Gaussian and Cauchy distributions.

The proposed CCSMPSO uses the CCMOEA framework
presented in [8], [6], which in turn, extends Potter and
DeJong’s [20] CCGA approach for multi-objective optimiza-
tion and parallelism. The next section describes the original
SMPSO and Section IV will be solely dedicated to dissecting
the proposed solution’s architecture and the adopted approach
for its implementation.

III. ORIGINAL SMPSO

This section describes the original SMPSO and the char-
acteristic that sets it apart from its predecessor and that also
makes it particularly suitable for the CCMOEA framework in
which our solution is implemented.

A. Description of the Original SMPSO

Here we present the main property of the standard SMPSO,
namely its velocity constriction mechanism, along with the
pseudo-code of its algorithm.

Generally speaking, in a PSO algorithm, each potential
solution to the problem at hand is called a particle and the
population of individuals or solutions is referred to as the
swarm. At its very core, a basic PSO updates the particle
vector ~xi in generation t according to the following formula:

~xi(t) = ~xi(t− 1) + ~vi(t) , (1)

where the factor ~vi(t) is known as velocity and is given by

~vi(t) = w·~vi(t−1)+C1·r1·(~xpi−~xi)+C2·r2·(~xgi−~xi) , (2)

where ~xpi is the best known solution that ~xi has viewed; ~xgi
represents the best particle, or the leader, that the entire swarm
has viewed; w is the inertia weight of the particle that controls
the trade-off between global and local experience; r1 and r2
represent two uniformly distributed random numbers in the
range [0, 1]; and C1 and C2 are specific parameters that control
the effect of the personal and global best particles.

B. Constrained Speed

In order to control the velocity of particles and prevent the
kind of erratic movements mentioned previously, the SMPSO
algorithm adopts a constriction coefficient instead of using
upper and lower parameter values which limit the step size
of the velocity. The constriction coefficient is obtained from
the constriction factor χ, which was originally developed by
Clerc and Kennedy in [2].

χ =
2

2− ϕ−
√
ϕ2 − 4ϕ

, (3)

where

ϕ =

{
C1 + C2 if C1 + C2 > 4
1 if C1 + C2 ≤ 4

. (4)

Moreover, another mechanism is used such that the accumu-
lated velocity of each variable j (for each particle) is further
bounded through the following velocity constriction equation:

vi,j(t) =

 δj if vi,j(t) > δj
−δj if vi,j(t) ≤ −δj
vi,j(t) otherwise

, (5)

where

δj =
(upper limitj − lower limitj)

2
. (6)



Algorithm 1 Pseudocode of the original SMPSO
1: initializeSwarm()
2: evaluation()
3: initializeLeadersArchive()
4: generation = 0
5: while generation < maxGenerations do
6: computeSpeed() // Eqs. 2-6
7: updatePosition() // Eq. 1
8: mutation() // Turbulence
9: evaluation()

10: updateLeadersArchive()
11: updateParticlesMemory()
12: generation++
13: end while
14: returnLeadersArchive()

The velocity of the particles is calculated using Eq. (2). It
is then multiplied by the constriction factor defined in Eq. (3)
and the resulting value is constrained by Eq. (5).

This velocity constraining mechanism, its effectiveness
when compared to its predecessor, i.e., OMOPSO, and the
fact that particles effectively move through the search space
without taking limit values, have been demonstrated in [17].

C. Pseudocode of the Original SMPSO Algorithm

Algorithm 1 shows the pseudocode of the original SMPSO.
The algorithm starts by initializing the swarm, which includes
the position, velocity, and p (individual best) of the particles
(line 1). Then, all solutions are evaluated (line 2) and the
leaders archive is initialized with the non-dominated solutions
in the swarm (line 3). Afterwards, the main loop of the
algorithm is executed for a maximum number of iterations
(starting in line 5). The velocities and positions of the particles
are computed first (lines 6 and 7) and a mutation operator
(turbulence factor) is applied with a given probability (line
8). The resulting particles are evaluated (line 9) and both the
particle’s memory as well as the leaders archive are updated
(lines 10 and 11). Finally, the algorithm returns the leaders
archive as the approximation set (line 14).

Since it is possible for the leaders archive to become full,
the crowding distance of NSGA-II is used to decide which
particles must remain. The turbulence factor is implemented
using the polynomial mutation operator [4]. In order to choose
the pbest particle for applying Eq. (2), two solutions are taken
from the leaders archive at random and the one that has the
largest crowding distance to its nearest neighbors in the archive
gets selected.

IV. COOPERATIVE COEVOLUTIONARY SMPSO

The SMPSO algorithm, presented in the previous section,
is redesigned to fit in the CCMOEA framework. The latter
provides a quite generic interface for building different CC-
MOEAs. This allows us to leverage the highly parallelizable
nature of the framework, which comes from the decomposition
of the population into several subpopulations. These subpop-
ulations are then evolved by independent MOEAs, which in
the case of CCSMPSO, are the standard SMPSO. The parallel
implementation of the framework is designed for multi-core
architectures. Each subpopulation is evolved using a separate
core and a few synchronization points are implemented to

Algorithm 2 Parallel CCMOEA Framework
1: t← 1
2: `i ∈ [1, NP ] :: setup(P 0, i) // Initialize every subpopulation
3: ∀i ∈ [1, NP ] :: broadcast(P 0, i) // Share random local partial solutions in every

subpopulation
4: `i ∈ [1, NP ] :: evaluate(P 0, i) // Evaluate solutions in every subpopulation
5: while not stoppingCondition() do
6: `i ∈ [1, NP ] :: generation(P t, i) // Perform one generation to evolve the

population
7: ∀i ∈ [1, NP ] :: broadcast(P t, i) // Share best local partial solutions in every

subpopulation
8: t← t+ 1
9: end while

10: mergeParetoFronts() //Merge the Pareto fronts found in the subpopulation into a
single one

allow a safe information exchange between the islands. Please
note that CCSMPSO does not reproduce the exact same
behavior as the sequential SMPSO algorithm as CCSMPSO
involves an SMPSO that evolves in a highly reduced search
space, because it only works on a few variables of the problem.

How CCSMPSO works and how it is incorporated in
the CCMOEA are best explained using a pseudocode that
describes the design and architecture of the parallel CCMOEA
framework. SMPSO is redesigned in such a way that it
conforms exactly to the CCMOEA algorithm described in
Algorithm 2. In the notation used for describing the parallel
and sequential parts of the algorithm, the symbol ∀ is used for
indicating a sequential run and ` for indicating a parallel run.

The different NP populations/swarms are initialized in line
2 of Algorithm 2, which corresponds to lines 1-3 of the
SMPSO in Algorithm 1. The initialization phase creates new
subpopulations made of random partial solutions. Each sub-
population then shares Ns randomly selected partial solutions
(line 3 of Algorithm 2). Next, every subpopulation evaluates
its initial swarm members in parallel, as indicated in line 4 of
Algorithm 2. After that, the algorithm enters its main loop (the
cooperative loop) and iterates until its termination condition
is met. In the case of CCSMPSO, this corresponds to the
predicate: evaluations >= maxEvaluations/islands. In
every iteration, the subpopulations perform one generation of
SMPSO in parallel (line 6 in Algorithm 2 and lines 5-11 in
Algorithm 1), and then they synchronize to publish their best
local partial solutions (line 7 in Algorithm 2). Finally, a single
Pareto front is built from the solutions in the local Pareto fronts
in every subpopulation (line 10 in Algorithm 2). This final
Pareto front, which would be collectively made from the final
leaders archive of each island’s SMPSO, will be the output of
the CCSMPSO algorithm.

Fig. 1 further illustrates the block diagram in the parallel
CCMOEA framework. White circles represent synchronization
points and black circles are bifurcation states (i.e., several
parallel threads are created and run). Arrows indicate the
execution sequence order, and the black square denotes the
end state. Finally, NP refers to the number of subpopulations.

The following section describes the algorithms that have
been used for comparison and benchmarking purposes in our
work.
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Fig. 1. Design of the parallel cooperative coevolutionary multi-objective
CCMOEA framework.

V. EVALUATED ALGORITHMS

This section briefly describes the CC versions of the two
algorithms that have been used for evaluating the behavior of
the proposed CCSMPSO.

The NSGA-II algorithm, proposed in [5], is a genetic algo-
rithm in which a new population is obtained from the original
one by applying the typical genetic operators, i.e., selection,
crossover and mutation. Then the individuals of the two
populations (i.e., the new and old ones) get sorted according
to their rank and the best solutions are selected to create a
new population. A density estimation based on measuring the
crowding distance to the surrounding individuals that belong
to the same rank is used to get the most promising solutions in
case some individuals with the same rank have to be selected.

In the SPEA2 algorithm, proposed in [24], each individual
has a fitness value that is the sum of its strength raw fitness and
a density estimation. The selection, crossover and mutation
operators are applied to fill an archive of individuals. Then
the non-dominated individuals belonging to both the original
population and the archive are copied into a new population. In
case the number of non-dominated individuals is greater than
the population size, a truncation operator based on calculating

the distance to the k-th nearest neighbor is used. This leads
to the individuals having the minimum distance to any other
individual getting chosen.

The performance of the CC versions of both NSGA-II and
SPEA2 was shown to be highly competitive with respect to
the original algorithms in a number of combinatorial and
continuous problems, both on theoretical benchmarks and real-
world problems [6], [7], [8], [18].

TABLE I
PARAMETERIZATION & EXPERIMENTAL SETUP

CCSMPSO SMPSO CCNSGA-II CCSPEA2
Max. evaluations 100,000
Population initialization Random
Number of independent runs 100
Mutation Polynomial, pm = 1

#variables

Distribution index 20
Number of subpopulations 4 - 4
Number of cores 4 1 4
Number of threads 1 per subpopulation 1 1 per subpopulation
Number of shared solutions 20 - 20
Population size - 100
Swarm size 100 per subpopulation 100 -
Archive size 100 per subpopulation 100 - 100 per subpopulation
Selection - Binary Tournament
Recombination - SBX, pc = 0.9

Perturbation index 0.5 -
Hardware used in experiments Intel(R) Core(TM) i5-4690 CPU @ 3.50Ghz, 4 cores, 8 GB RAM

VI. EXPERIMENTS & RESULTS

This section first describes the experimentation settings
and algorithm parameterizations that have been used in our
experiments for assessing the searching capabilities of the
evaluated algorithms. We then present and analyze the results
obtained from our experiments.

A. Parameterization & Settings

A series of benchmark problems were chosen to evaluate the
following four algorithms: CCSMPSO, SMPSO, CCNSGA-II
and CCSPEA2. These problems include the ZDT (Zitzler-Dev-
Thiele) and DTLZ (Deb-Thiele-Laumanns-Zitzler) test suites.
The DTLZ problems have been used with their bi-objective
formulation. In order to assess the performance of the algo-
rithms, three quality indicators have been considered: Additive
unary epsilon indicator (I1ε+), spread (∆) and hypervolume
(HV). The first two indicators measure the convergence and
the diversity of the resulting Pareto fronts, respectively, and
the last one measures both convergence and diversity. The
next subsections describe the parameter settings used for the
algorithms and the adopted experimentation methodology.

1) Parameterization: A set of parameter settings has been
chosen to guarantee a fair comparison among the evaluated
algorithms. Both CCNSGA-II as well as CCSPEA2 use a
population of 100 individuals. The size of the archive in
CCSPEA2, SMPSO and CCSMPSO is also 100. SMPSO and
CCSMPSO have been configured with 100 particles. SBX
and polynomial mutation have been used as crossover and
mutation operators, respectively. The distribution indices for
both operators are ηc = 20 and ηm = 20, respectively. The
crossover probability is pc = 0.9 and the mutation probability
is pm = 1/L, where L represents the number of decision



variables. Selection is done by binary tournament. SMPSO and
CCSMPSO use polynomial mutation. The adopted parameter
settings are the same as the ones proposed for the original
algorithms, and they are summarized in Table I.

2) Methodology: In order to assess the search capabilities
of the algorithms, 100 independent runs of each experiment
have been performed. The median, x̃, and interquartile range,
IQR, have been computed as measures of location (or central
tendency) and statistical dispersion, respectively. In addition,
we performed the Wilcoxon test in order to assess statistical
confidence in the comparison of CCSMPSO with respect to
the other algorithms, with 95% confidence level. For the sake
of a better understanding and an easier interpretation, the best
result for each problem has been highlighted in bold font,
while the results in dark gray and light gray background
indicate statistically better and worse performance according
to the Wilcoxon test (with respect to CCSMPSO), respectively.
Those results without any background color indicate that there
is no statistical difference with respect to the performance of
CCSMPSO.

B. Results & Evaluation

Here we analyze the quality of the results obtained from
our experiments, after 100,000 function evaluations. The eval-
uation of the obtained results is based on three criteria,
namely (i) the quality of the approximated Fronts, (ii) the
computational time and (iii) the convergence speed. Tables II
to IV present the results of all the studied algorithms in terms
of the previously mentioned statistical measurements, applied
to the selected set of quality indicators.

TABLE II
MEDIAN AND INTERQUARTILE RANGE OF THE I1ε+ INDICATOR

CCSMPSO SMPSO CCNSGA-II CCSPEA2
ZDT1 5.35e− 031.8e−04 5.22e− 031.7e−04 7.30e− 039.9e−04 6.84e− 036.3e−04

ZDT2 5.35e− 031.9e−04 5.19e− 031.6e−04 7.16e− 038.0e−04 6.79e− 036.8e−04

ZDT3 4.90e− 032.9e−04 4.82e− 032.4e−04 5.50e− 039.0e−04 7.19e− 031.3e−03

ZDT4 5.56e− 031.9e−04 5.31e− 032.3e−04 1.32e− 011.3e−01 1.32e− 012.7e−01

ZDT6 4.52e− 035.5e−04 4.36e− 032.5e−04 5.48e− 034.2e−04 5.77e− 035.6e−04

DTLZ1 2.90e− 031.6e−04 2.81e− 031.4e−04 3.78e− 032.8e−04 3.91e− 034.7e−04

DTLZ2 5.27e− 032.2e−04 5.08e− 032.2e−04 7.13e− 037.3e−04 6.87e− 036.9e−04

DTLZ3 5.34e− 032.5e−04 5.13e− 032.6e−04 9.29e− 032.2e−03 1.36e− 026.1e−03

DTLZ4 5.39e− 032.4e−04 5.16e− 031.9e−04 7.08e− 031.1e−03 6.87e− 039.9e−01

DTLZ5 5.00e− 032.4e−04 4.90e− 032.5e−04 6.61e− 038.9e−04 6.33e− 037.1e−04

DTLZ6 5.03e− 032.3e−04 5.00e− 032.7e−04 6.10e− 035.3e−04 5.96e− 035.6e−04

DTLZ7 2.31e+ 004.9e−07 2.31e+ 001.0e−05 2.31e+ 001.9e−06 2.31e+ 001.4e−05

TABLE III
MEDIAN AND INTERQUARTILE RANGE OF THE HYPERVOLUME INDICATOR

CCSMPSO SMPSO CCNSGA-II CCSPEA2
ZDT1 6.62e− 013.8e−05 6.62e− 012.8e−05 6.62e− 011.4e−04 6.62e− 017.8e−05

ZDT2 3.29e− 013.6e−05 3.29e− 013.6e−05 3.28e− 011.1e−04 3.29e− 019.9e−05

ZDT3 5.16e− 012.9e−05 5.16e− 012.2e−05 5.16e− 014.9e−05 5.16e− 014.7e−05

ZDT4 6.62e− 015.8e−05 6.62e− 015.6e−05 4.95e− 011.7e−01 4.94e− 013.2e−01

ZDT6 4.01e− 015.6e−05 4.01e− 016.1e−05 4.01e− 012.3e−04 4.00e− 013.7e−04

DTLZ1 4.95e− 013.8e−05 4.95e− 014.5e−05 4.94e− 018.8e−04 4.93e− 011.2e−03

DTLZ2 2.11e− 015.1e−05 2.11e− 015.8e−05 2.10e− 011.5e−04 2.10e− 018.7e−05

DTLZ3 2.11e− 015.1e−05 2.11e− 019.7e−05 2.06e− 013.0e−03 2.00e− 017.8e−03

DTLZ4 2.11e− 015.9e−05 2.11e− 014.4e−05 2.10e− 011.2e−04 2.10e− 012.1e−01

DTLZ5 2.12e− 015.2e−05 2.12e− 015.4e−05 2.12e− 011.0e−04 2.12e− 019.0e−05

DTLZ6 2.12e− 015.3e−05 2.12e− 013.9e−05 2.12e− 015.1e−05 2.12e− 015.4e−05

DTLZ7 3.09e− 014.7e−06 3.09e− 014.1e−06 3.09e− 019.3e−06 3.09e− 011.1e−05

1) Quality of the Approximated Fronts: In the case of the
I1ε+ values of the resulting approximated fronts, as shown

TABLE IV
MEDIAN AND INTERQUARTILE RANGE OF THE SPREAD INDICATOR

CCSMPSO SMPSO CCNSGA-II CCSPEA2
ZDT1 7.31e− 021.3e−02 6.19e− 021.7e−02 1.57e− 011.6e−02 1.14e− 011.9e−02

ZDT2 6.96e− 022.0e−02 5.98e− 021.8e−02 1.57e− 011.6e−02 1.12e− 011.9e−02

ZDT3 7.01e− 017.3e−04 7.01e− 019.8e−04 7.01e− 011.5e−03 7.02e− 012.2e−03

ZDT4 7.94e− 021.5e−02 7.15e− 021.5e−02 3.07e− 011.7e−01 2.79e− 012.7e−01

ZDT6 6.76e− 021.9e−01 5.88e− 027.2e−02 1.47e− 011.7e−02 1.31e− 015.7e−02

DTLZ1 5.44e− 021.5e−02 4.39e− 021.3e−02 1.37e− 011.1e−02 1.15e− 011.4e−02

DTLZ2 1.13e− 011.9e−02 1.14e− 012.0e−02 1.66e− 011.7e−02 1.25e− 011.6e−02

DTLZ3 1.07e− 012.0e−02 1.10e− 013.1e−02 1.82e− 013.0e−02 2.60e− 011.4e−01

DTLZ4 1.02e− 011.9e−02 1.02e− 011.8e−02 1.69e− 012.2e−02 1.22e− 018.9e−01

DTLZ5 1.17e− 012.2e−02 1.17e− 011.9e−02 1.73e− 012.1e−02 1.27e− 012.2e−02

DTLZ6 9.99e− 022.5e−02 1.00e− 012.5e−02 1.70e− 011.9e−02 1.22e− 011.6e−02

DTLZ7 7.77e− 019.5e−05 7.77e− 012.9e−04 7.79e− 012.5e−03 7.80e− 013.6e−03

in Table II, the best solutions are obtained by SMPSO, that
performs statistically better than its proposed CC version in 9
out of 12 problems, while it is outperformed by CCSMPSO
for problems DTLZ3 and DTLZ7. However, the differences
reported by the two algorithms in the table are less than 3.6%
in all cases. Compared to the other CC algorithms included
in the study, CCSMPSO outperforms them in all cases, with
statistical confidence.

As for the results of the HV value indicator, presented in
Table III, we can see that the median values reported for both
CCSMPSO and SMPSO are identical for all the compared
problems. However, SMSPO offers in general a more reliable
performance than CCSMPSO (its interquartile range values
are lower). That is the reason behind the statistical differences
between the algorithms: SMPSO is statistically better than
CCSMPSO in 8 problems, and worse in DTLZ1 and DTLZ3
(no statistical difference was found for DTLZ2 and DTLZ5).
Again, as in the case of the I1ε+ metric, CCSMPSO is statis-
tically better than the other CC algorithms for all problems.

Finally, when it comes to the ∆ indicator, shown in Ta-
ble IV, SMPSO outperformed CCSMPSO in the five ZDT
problems and DTLZ1, with statistical confidence, while it was
worse for DTLZ3 and no statistical difference was found for
the rest of the DTLZ benchmark problems. It is worth noting
that CCSMPSO remains the dominant solver with respect to
the other two CC algorithms, i.e., CCNSGA-II and CCSPEA2.

This degree of reliability and accuracy achieved by CC-
SMPSO can be traced back to the underlying SMPSO and
its velocity constriction mechanism. This feature, which is re-
sponsible for maintaining and moving the particles through the
search space without allowing them to have erratic movements,
had already been proven to be effective in the original SMPSO
algorithm and it is further leveraged by the decomposition of
the population in the cooperative coevolutionary variant. As
a consequence, although CCSMPSO, compared to SMPSO
alone, does obtain the second best values in some instances, it
emerges as the dominant solver with respect to its competing
CC algorithms, i.e., CCNSGA-II and CCSPEA2 in all cases
for I1ε+ and HV and in most cases for ∆, according to the
Wilcoxon test used.

The box plots given in Figures 2 to 4 based on the I1ε+
and HV values, respectively, further illustrate the high degree
of reliability of the CCSMPSO algorithm. The figures clearly
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Fig. 2. I1ε+ box plot for ZDT benchmark problems (lower values are better)

show the superiority of the two SMPSO versions over the
other compared algorithms. We can see the low degree of
dispersion in the distribution of the CCSMPSO and SMPSO
results (represented as smaller boxes with shorter whiskers),
with respect to the other two algorithms. This is a reflection
of their accuracy and high reliability.

Figure 4 shows how CCSMPSO offers statistically better
performance than SMPSO (in terms of both hypervolume and
I1ε+ indicators) despite its worse median value (shown in
tables II and III). This is due to the outlier values reported
by SMPSO in some of its runs, reducing its reliability.

2) Computational Speedup: We now analyze the perfor-
mance of the parallel algorithms, i.e., the CC ones, with
respect to the sequential SMPSO algorithm. Table V provides
a comparison of the computational time of the proposed
CCSMPSO with respect to the original sequential SMPSO as
well as the other two CC algorithms, i.e., CCNSGA-II and
CCSPEA2. Note that the computational times are averaged
over the 100 independent runs, and four threads are evolved
in parallel in the CC algorithms (one per subpopulation). The
speedups achieved by CCSMPSO, as shown in Fig. 5, are
computed as the time of the sequential SMPSO over the time
of the parallel CCSMPSO, which range from 3.5 to 4.6 (i.e.,
super-linear speedup). Note that the obtained results indicate
consistent improvements in performance, with the speedup
factor having a lower bound of 3.5, in addition to three
instances in which we have obtained super-linear speedups
ranging from 4.11 to 4.67, i.e., ZDT2, ZDT4 and DTLZ6.

These speedups are achieved thanks to the fact that the total
number of evaluations performed by the CCMOEAs is the
same as for the sequential MOEAs: 100,000. In other words,
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Fig. 3. HV box plot for ZDT benchmark problems (higher values are better)
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Fig. 4. HV (left) and I1ε+ (right) box plot for DTLZ benchmark problems

in the CCMOEAs, with the 4 subpopulations used in our
parameterizations, every subpopulation performs only 25,000
evaluations and they evolve in parallel. The speedup can be
further improved by:

1) Adopting our asynchronous implementation of the
framework [18], which reports speedup improvements
of up to 90% with respect to the equivalent synchronous
algorithm.

2) Increasing the number of islands [6], [8], which implies
a reduction in the number of evaluations performed in
every island (proportional to the number of islands).
However, the scalability of this solution is limited by
the number of variables of the problem that is to be
solved.

Furthermore, we can also see that CCSMPSO outperforms
the other CCMOEAs, i.e., CCNSGA-II and CCSPEA2. For
a more thorough analysis of the superiority of CCMOEAs
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and their super-linear speedup with respect to their sequential
counterparts in continuous and combinatorial problems, the
reader is encouraged to refer to [6], [7], [8], [18].

The timing results, shown in Table V, clearly indicate
that CCSMPSO outperforms all the other three algorithms in
terms of computational time. Apart from three instances where
SMPSO yields the second best timing, CCNSGA-II emerges as
the second best solver. The immediate conclusion that can be
drawn here is that CCSMPSO is evidently the fastest algorithm
among the four compared techniques. The time CCSMPSO
takes is, in the best case, 26.11% the time of the second fastest
compared algorithm, and 35% on average for all the studied
problems.

TABLE V
COMPUTATIONAL TIME AVERAGED OVER 100 INDEPENDENT RUNS

CCSMPSO SMPSO CCNSGA-II CCSPEA2
ZDT1 188.0ms 751.0ms 465.0ms 1166.0ms
ZDT2 189.0ms 778.0ms 468.0ms 1126.0ms
ZDT3 81.0ms 295.0ms 456.0ms 1107.0ms
ZDT4 106.0ms 437.0ms 406.0ms 935.0ms
ZDT6 164.0ms 643.0ms 392.0ms 951.0ms
DTLZ1 121.0ms 424.0ms 393.0ms 875.0ms
DTLZ2 154.0ms 548.0ms 374.0ms 1260.0ms
DTLZ3 106.0ms 398.0ms 425.0ms 742.0ms
DTLZ4 129.0ms 474.0ms 387.0ms 1045.0ms
DTLZ5 155.0ms 545.0ms 364.0ms 1256.0ms
DTLZ6 159.0ms 743.0ms 381.0ms 1328.0ms
DTLZ7 117.0ms 467.0ms 441.0ms 1117.0ms

3) Convergence Speed: It is worth comparing the four
algorithms in terms of the evolution of the HV value during
their execution. Fig. 6 compares the evolution of the HV values
when solving ZDT1 and ZDT2 with a granularity of 100
evaluations per data point.

We can observe that CCSMPSO is the first algorithm
to reach the highest HV value of the Pareto front. It also
converges to the true Pareto front faster than its sequential
counterpart as well as the other two CC algorithms. Focusing
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Fig. 6. Evolution of the HV through different generations for the problems
ZDT1 and DTLZ7

solely on SMPSO and CCSMPSO, it is worth noting that
in the case of ZDT1, there is a region in which SMPSO
remains close to a fixed value, between 6,000 and 10,000
evaluations, but then it continues converging after a few
thousand evaluations of stagnation. However, CCSMPSO does
not exhibit this behavior and instead it rises steadily and
converges towards the Pareto front in a faster and more reliable
fashion. We would like to remark that CCSMPSO converges
to the solution in about 5,000 evaluations in the plots shown,
while SMPSO requires around 15,000 evaluations, and the
other CC algorithms continue converging after 25,000.

VII. CONCLUSION

This paper presented a new cooperative coevolutionary
(CC) optimization algorithm called CCSMPSO, which is a
novel variant of the Speed-constrained Multi-Objective Parti-
cle Swarm Optimization (SMPSO) algorithm. This new co-
operative coevolutionary design offers improvements in terms
of performance due to the high degree of parallelization that
is made possible by the CCMOEA framework, which has
been used to implement CCSMPSO. The velocity constric-
tion mechanism of the original SMPSO limits the maximum
velocity of particles in order to enhance the search capability
of the algorithm. CCSMPSO further leverages this property
and yields a quick convergence speed and highly accurate



and reliable results on two well-known benchmark families,
ZDT and DTLZ. CCSMPSO has been compared with the
CC versions of two state-of-the-art genetic algorithms, which
were reported to be highly competitive with the original
algorithms, namely NSGA-II and SPEA2, along with the
standard SMPSO.

In addition to yielding linear, and sometimes even super-
linear computational speedups, CCSMPSO also provides com-
parable results in terms of solution quality when compared
to the original SMPSO. Moreover, compared to the CC al-
gorithms, experiments indicate that CCSMPSO is superior in
terms of both the quality of the approximations to the Pareto
front as well as the convergence speed.

As future work, we plan to study new designs whose
scalability will not depend on the number of variables of the
problem. Additionally, we intend to analyze the performance
of our CCMOEAs for solving more complex benchmark
problems.
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