
Supporting Security Protocols on CAN-Based
Networks

Gedare Bloom∗, Gianluca Cena†, Ivan Cibrario Bertolotti†, Tingting Hu‡, Adriano Valenzano†
∗Howard University, 2300 6th St NW, Washington, DC 20059, USA

Email: gedare@scs.howard.edu
†CNR–IEIIT, c.so Duca degli Abruzzi 24, I-10129 Torino, Italy

Email: {gianluca.cena, ivan.cibrario, adriano.valenzano}@ieiit.cnr.it
‡University of Luxembourg–FSTC, 6 rue Richard Coudenhove-Kalergi, L-1359 Luxembourg

Email: tingting.hu@uni.lu

Abstract—The ever-increasing variety of services built on top
of the Controller Area Network (CAN), along with the recent
discovery of vulnerabilities in CAN-based automotive systems
(some of them demonstrated in practice), stimulated a renewed
attention to security-oriented enhancements of the CAN protocol.
The issue is further compounded nowadays because, unlike in
the past, security can no longer be enforced by physical bus
segregation.

This paper describes how CAN XR, a recently proposed
extension of the CAN data-link layer, can effectively support
the distributed calculation of arbitrary binary Boolean functions,
which are the foundation of most security protocols, without
necessarily disclosing their operands on the bus. The feasibility
of the approach is then shown through experimental evaluation
and by confirming its applicability to a shared key generation
protocol proposed in literature.

Index Terms—Network security, Cryptographic protocols,
Controller area network (CAN).

I. MOTIVATION AND RELATED WORK

Although the Controller Area Network (CAN) [1] was con-
ceived primarily as a real-time bus for engine-related control
functions at its inception [2], it is nowadays used for an ever-
increasing variety of applications and services. For instance,
it gained popularity in on-board vehicle diagnostics [3] and
industrial automation [4].

Starting in 2010 [5] researchers also gathered compelling
evidence that CAN security features were fairly weak, even-
tually leading to practically demonstrated attacks [6]. The
issue is made even more complex by the fact that it is no
longer possible to enforce “security by obscurity” or resort
to physical bus segregation, like it was done in the past [7].
In fact, infotainment equipment connected to critical on-board
CAN buses was shown to be a viable attack target [8], even
through a wireless channel.

As a result, there is a strong need to enhance the CAN proto-
col data-link layer to better support security-oriented protocols.
Those enhancements ought to satisfy two key features, namely
low overhead (given the very limited maximum CAN payload
size) and compatibility with standard CAN controllers.

CAN with eXtensible in-frame Reply (CAN XR) [9] is
a recent proposal that brings a number of enhancements to
the CAN data-link layer. The basic idea behind CAN XR is
to let more than one node transmit concurrently on the bus

during the payload transmission phase (hence not only in the
arbitration phase), while maintaining backward compatibility
with legacy CAN controllers. By means of this feature, as
it will be demonstrated in the following, it is possible to
efficiently calculate any binary Boolean function directly on
the bus without necessarily disclosing its operands to bus
observers.

To confirm applicability to protocols of practical interest,
we focus on previous work [10], in which the authors propose
a key establishment protocol between two CAN nodes. In
particular, as it will be shown in this paper, the proposed
protocol is based on performing an Exclusive Nor (XNOR)
operation, which is just a special case of binary Boolean
function and can be conveniently carried out on the bus by
means of CAN XR. Using CAN XR as a framework also
addresses most open issues pointed out in [10], for instance,
proper handling of bit stuffing and of the Cyclic Redundancy
Check (CRC) field.

Moreover, this approach also ensures correct synchroniza-
tion between nodes that send overlapping data on the bus.
An additional shortcoming mentioned in [10]—namely, insuf-
ficient payload length—can easily be addressed by means of
fragmentation and reassembly mechanisms that have already
been applied to other CAN-based protocols [11], [12] and can
coexist with CAN XR.

The paper is organized as follows. Section II summarizes
CAN XR and extends [9] by providing a rigorous definition
of its behavior upon multiple, overlapping bus transmissions.
Then, Section III shows how to leverage CAN XR primitives
to calculate arbitrary binary Boolean functions and Section IV
redefines the protocol proposed in [10] in terms of a distributed
XNOR operation. Section V presents experimental results
obtained from a prototype implementation and Section VI
concludes the paper.

II. CAN XR AND OVERLAPPING TRANSMISSIONS

A. Protocol Definition

As outlined previously, CAN XR allows multiple nodes to
transmit concurrently within the data field of the same bus
transaction, rather than only during arbitration, as standard
CAN does. Although CAN XR requires a new breed of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/78372148?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Arbitration
and Control

I

S1

SR1 R2 R3

S
O
F

CRC
A
C
K

EOFS2

Exclusive slot
assigned to R1

Shared slot assigned to R2
and R3, G2 = V2,2 ⋅ V3,2

Data field

Fig. 1. Example of relationship between I , S, Ri, and Sj .

controllers to be properly implemented, the resulting bit stream
on the bus is indistinguishable from a standard CAN frame
exchange. In this way, CAN XR nodes can coexist with
existing protocols and devices.

In any given XR transaction, which is uniquely identified
by means of the CAN message identifier, nodes can assume
zero or more roles, described in the following.

1) The initiator I initiates the transaction by sending the
SOF, as well as the arbitration and control fields, up to
and including the DLC, which sets the data field length.

2) A number of responders Ri inject on the bus their replies
at appropriate places (called slots in the following)
within the data field, while also receiving the frame.

3) Consumers Ci, which can be ordinary CAN nodes,
just receive the frame. Responders and consumers are
collectively called followers and denoted by Fi.

4) The supervisor S (typically coinciding with I) inserts
stuff bits where needed, computes and sends the CRC,
manages the ACK slot, and deals with EOF and inter-
mission.

All nodes except S acknowledge the frame upon success-
fully receiving it, as ordinary CAN nodes do. Each Ri is
responsible for inserting stuff bits while it is transmitting on
the bus. S does the same for the whole frame, thus ensuring
that bus traffic complies with the CAN standard even though
one or more Ri may go missing.

B. Data Slots

As depicted in Fig. 1, the data field of any given bus
transaction is divided into a number of slots Sj . Each Fi is
configured to either write into or read from a subset of those
slots, all the others being implicitly ignored. An Fi for which
no write slots have been set becomes a Ci for the transaction,
the others are Ri.

Generally speaking, slots can be either static and located
in predefined, configured positions of the data field depending
on the transaction’s CAN identifier, or dynamic, in which case
they are managed according to a minislotting approach (linear
arbitration) [9], [13]. Regardless of how slot Sj is located, two
cases are possible depending on how many Ri are configured
to write into it.

1) If there is exactly one Ri, the slot is reserved to its own,
exclusive use.

TABLE I
NOTATION (MESSAGE IDENTIFIER LEFT IMPLICIT)

Symbol Meaning
I Initiator
S Supervisor
Ri Responders
Ci Consumers
Fi Followers (either responders or consumers)
Sj Slot within the data field
Vi,j Value sent by Ri in Sj

Gj Bus value in Sj

2) If there is more than one Ri, the slot is shared among
them, and their replies will overlap.

In the following, we focus only on static, shared slots. At
the CAN physical layer there are two complementary bus
states called recessive (1) and dominant (0). Regardless of
the physical layer implementation, in the case of simultaneous
transmission of recessive and dominant bits by multiple nodes,
the latter prevails on the former and the resulting bus state is
dominant [1, Clause 4.6].

It is therefore straightforward to prove that, if a number
of responders Ri send simultaneously a bit value Vi on the
bus, the resulting bus level is their Boolean product (AND)
G =

∏
i Vi. By extension, the same is true also for (multi-bit)

shared slots, as illustrated in Fig. 1. If Ri is a responder in
Sj , denoting by Vi,j the value sent by Ri in Sj , and by Gj

the resulting bus value, then Gj =
∏

i Vi,j .
It is also worthwhile to notice that this property of the CAN

bus is in no way a borderline case. In fact, the standard CAN
protocol relies on it to implement content-based arbitration [1,
Clause 4.10], a key protocol mechanism. Table I summarizes
the notation introduced so far.

III. BINARY BOOLEAN FUNCTIONS IN CAN XR

It is well known that there are 22
n

possible Boolean
functions f : Dn → D, where D is a Boolean domain defined
as D = {0, 1} in the following, and n ≥ 1 is the arity of the
function.

In particular, there are 16 possible Boolean functions
fc(A,B) of two operands (A,B) ∈ D2, that is, binary
Boolean functions for which n = 2. The index 0 ≤ c < 16
uniquely identifies one of them. It is possible to express
fc(A,B) as a weighted sum of minterms

fc(A,B) = c0AB + c1AB + c2AB + c3AB, (1)

where A denotes the complement of A (NOT), arithmetic
operators denote Boolean product and sum (AND and OR),
and ci are the digits of the binary representation of c.

In the following, we show that it is possible to calculate
fc(A,B) for any c in a distributed way, when A and B
reside on two different CAN XR responders RA and RB ,
without necessarily disclosing A and B to bus observers. The
calculation is carried out by means of a single frame exchange
and a cluster of k ≤ 4 bits of a static, shared slot. The only
underlying assumption is that c is known to both nodes. The

AA̅ AA̅

B̅ B̅ B B

A̅ B̅ A B̅ A̅ B A B

RA

Calculate fc(A, B)
given c

Transmit A and
A̅ as indicated

Receive slot
contents

Transmit B and
B̅ as indicated

Calculate fc(A, B)
given c

Receive slot
contents

RB

Bus op.

Bit cluster within a static,
shared CAN XR slot

VA VB

G G

Fig. 2. Binary Boolean function calculation (not optimized).

method can be extended to handle the case in which A and
B are multi-digit binary values and f is a bit-by-bit binary
Boolean function, by simply using a k-bit cluster for each bit.

The idea is to split Equation (1) into three parts. Two of
them can be calculated by each node in isolation, without
knowing the value held by the other node, and the third one is
calculated by the bus itself during data transfer. In particular:

1) both RA and RB calculate the complement of their
value, A and B respectively; then, they build the 4-bit
strings VA = A,A,A,A and VB = B,B,B,B to be
sent on the bus;

2) during the frame exchange, the bus calculates the
Boolean product G = VAVB as described in Section II;
denoting by G(k) the k-th bit of G, this corresponds to
the 4 minterms G(0) = AB, . . . , G(3) = AB;

3) given the G(k) received from the bus, both A and B
calculate fc(A,B) =

∑3
k=0 ckG

(k).

Fig. 2 illustrates the algorithm and the frame exchange in
more detail. As shown in the figure, RA and RB transmit their
value and its complement twice within a 4-bit cluster of a fully
overlapping CAN XR slot, as indicated. Then, they gather the
result of the wired-AND bus operation and calculate fc(A,B).

Although the worst-case cluster length is k = 4, if c is
fixed and known in advance then one can ensure a cluster
length of k ≤ 2 by leveraging two observations. First is that
any fc having more than two bits in c set (namely ci = 1)
can be substituted by fc = fc where fc is the Boolean
dual of fc and, in our formulation, is exactly the function
obtained by using c in place of c. This first observation is a
direct application of Boolean duality under de Morgan’s laws.
The second observation is that clusters may be shortened for
efficiency by omitting terms in which ci = 0 (respectively, ci
in case the dual is in use).

As an example, we note that the XOR function, denoted by
⊕, and its complement XNOR are defined as

A⊕B = AB +AB, and A⊕B = AB +AB. (2)

TABLE II
XNOR OPERATION ON THE CAN BUS

Operands Bus bits Result Key bit
A B A B AB AB X = A⊕B K

0 0 1 1 0 1 1 —
0 1 1 0 0 0 0 0
1 0 0 1 0 0 0 1
1 1 0 0 1 0 1 —

Hence, as already proved in general terms, k = 2 suffices
to calculate XOR (respectively, XNOR), which is of particular
interest for the discussion in Section IV.

For what concerns operand disclosure, it is worth mention-
ing that neither A nor B can be observed directly on the
bus. Then, the amount of information a (possibly malevolent)
bus observer can gather depends on which minterms are
transmitted and their value. For instance, if the minterm AB
is transmitted on the bus and its value is 1, the bus observer
can infer that A = B = 1 for certain. On the other hand,
if it is 0, the observer gains more limited information and
cannot distinguish between the three remaining combinations
of values of A and B.

IV. XNOR-BASED KEY ESTABLISHMENT

The goal of the protocol defined in [10] is to establish a
shared secret between two nodes RA and RB . In the following
we initially consider, for simplicity, a 1-bit secret.

A. Protocol Reformulation

After being reformulated according to the concepts pre-
sented in Sections II and III, the protocol works as follows.

1) Both RA and RB generate a 1-bit random value, A and
B, respectively. All possible combinations are listed in
the four leftmost columns of Table II.

2) They calculate the XNOR between A and B, that is,
X = A⊕B, according to (2) and using an optimized
version of the procedure depicted in Figure 2, based
upon a 2-bit cluster consisting of the first and last
element of the 4-bit cluster shown in the figure. Cluster
contents are shown in the fifth and sixth column of the
table. The seventh column lists the corresponding value
of X .

Depending on the value of X , two cases are possible:
3) If X = 1, then A = B and no shared secret can be

established because any bus eavesdropper can determine
their value, by observing cluster contents. This case
corresponds to the gray rows of Table II.

4) If X = 0, then it is known that A = B, but their value
cannot be determined by the eavesdropper since the two
possible cases generate exactly the same bus traffic, as
shown in the two middle rows of the table. Hence, the
two nodes can establish a 1-bit secret K = A = B.

It should be noted that, after a successful protocol run,
RA and RB possess K and K, respectively. Therefore, the
protocol is not symmetric and it is important to tell their roles

apart. This is not an issue because the CAN XR protocol
already supports nodes with multiple roles in a transaction.
For instance, RA can be defined to also take the role of I
(and S), while RB is a plain responder.

The extension to multi-bit secrets is very simple and consists
of n protocol runs, each one attempting to establish a 1-bit
secret as described above. For what concerns bus traffic related
to the distributed XNOR operation, the n runs are performed
as outlined in Section III, by sharing a single frame up to
its capacity. If needed, it is then possible to use multiple
frames according to suitable fragmentation and reassembly
mechanisms like [11], [12].

B. Probability of Success

Under the assumption that bit values 0 and 1 are equiprob-
able, and A and B are statistically independent, all rows of
Table II have the same probability of occurrence. Hence, a
single protocol run succeeds in establishing a 1-bit shared
secret with probability p = 1

2 .
We can define the protocol efficiency as the average ratio

between the number of secret bits established in n runs,
expressed by the random variable Q(n), and the number of
bits exchanged, namely 2n. As also stated in [10], it is

E

[
Q(n)

2n

]
=
E[Q(n)]

2n
=
pn

2n
=

1

4
. (3)

However, a more interesting formulation of the problem
from the practical point of view is to determine what is
the minimum number of protocol runs n0(k, ρ) of n ≥ k
that ensures the establishment of Q(n) ≥ k secret bits with
confidence probability ρ. In formula, we want to determine

n0(k, ρ) = min
n

(P [Q(n) ≥ k] ≥ ρ), n ≥ k. (4)

This can easily be done by observing that Q(n) is a binomial
random variable corresponding to n Bernoulli experiments
with probability of success p = 1

2 . Denoting with F (k;n, 12)
the well-known cumulative distribution function (CDF) of
Q(n), it is

P [Q(n) ≥ k] = 1− P [Q(n) < k] = 1− P [Q(n) ≤ k − 1]

= 1− F (k − 1;n,
1

2
). (5)

Substituting (5) into (4) we eventually obtain

n0(k, ρ) = min
n

(F (k − 1;n,
1

2
) ≤ 1− ρ), n ≥ k. (6)

Table III lists the values of n0 for several commonly used
values of k and two different values of ρ. The same table also
lists the overall number of frames needed for key establishment

M(n0) =

⌈⌈
2n0

8

⌉
63

⌉
, (7)

under the hypothesis that frames of length up to 64 bytes (the
maximum frame size currently supported in CAN [1]) are

TABLE III
VALUES OF n0 , M(no), AND L(n0) FOR COMMON k AND ρ

ρ = 0.99 ρ = 0.999
k n0 M L [B] n0 M L [B]

128 295 2 12 (12) 310 2 16 (16)
256 567 3 17 (20) 586 3 22 (24)
512 1101 5 25 (32) 1127 5 31 (32)

used, in which one byte is reserved for control information
related to fragmentation and reassembly. All frames are of
maximal size, with the possible exception of the last one,
whose length in bytes is

L(n0) =

⌈
2n0
8

⌉
− 63(M(n0)− 1) + 1. (8)

The values of L(n0) calculated in (8) neglect that not all
frame lengths above 8 are allowed in CAN [1]. Hence, it may
be necessary to use a larger length than strictly needed. The
corrected value is shown between parentheses in Table III. As
we can see, just 5 frame exchanges are needed to establish
a 512-bit shared key with at least 99.9% of success. Hence,
protocol overhead is considered to be acceptable.

V. PROTOTYPE IMPLEMENTATION AND EVALUATION

The protocol proposed in Section III has been evaluated
experimentally by means of a prototype implementation, in
terms of correctness, memory footprint and execution time.

A. Experimental Setup

The setup used for the evaluation consists of 3 CAN nodes,
namely, one initiator/responder I/RA (which also acts as S),
one responder RB , and one consumer C. Both I/RA and
RB are implemented by means of a software-defined CAN
controller (SDCC), extended to support CAN XR, as explained
in Section II and [9]. SDCC consists of several layered
modules, whose structure closely reproduces the one specified
by the CAN standard [1].

Unlike a regular CAN controller, which does not leave
room for extension at/below the data-link layer, because it
implements those layers in hardware, SDCC can be easily
modified at will. In addition to the functions implemented
in a normal CAN controller, it also includes extra support
for role-dependent transmission/reception and takes particular
care of bit synchronization and stuffing as they become much
tricky when multiple nodes are involved in the same data
field. The only hardware components needed by SDCC are
a timer, a General-Purpose Input-Output (GPIO) port, and
a transceiver. The timer drives SDCC real-time operations,
while the GPIO port enables SDCC to communicate with the
off-chip transceiver. In turn, the transceiver takes care of the
physical-layer electrical interface to the CAN bus.

On the other hand, C plays a passive role in CAN XR
transactions. It makes use of a standard, hardware CAN
controller (HCC) to verify that bus traffic still conforms to
the ISO 11898 standard [1], and hence, CAN XR is backward

I / RA RB

C

CAN XR
transaction

Pseudo-random
A

Pseudo-random
B

X = fc(A, B)

Pseudo-random
B’ = B

X = fc(A, B)X’ = fc(A, B’)

Check X and X’

Check
backward

compatibility

S
D
C
C

S
D
C
C

H
C
CNormal processing

Oracle and backward compatibility check

Fig. 3. Experimental setup.

compatible. All nodes are based on a LPC1768 microcon-
troller [14], whose Cortex-M3 CPU runs at 100 MHz. In order
to cope with current SDCC processing time limitations on
the aforementioned CPU, the CAN bit rate has been set to
50 kb/s, one of the standard rates specified by the CANopen
standard [4].

As shown in Fig. 3 (white blocks), I/RA and RB imple-
ment the protocol for calculating arbitrary Boolean functions
proposed in Section III. More specifically, they start from two
pseudo-random values, namely A and B. Each bit of them
is extended to a 4-bit sequence as indicated in Fig. 2 and
then concatenated to serve as the data field of a CAN XR
frame to be exchanged on the CAN bus. As aforementioned,
SDCC is in charge of frame formatting as well as simultaneous
transmission and synchronization when more than one node
takes part in sending the data field.

Besides, I/RA checks that protocol results (achieved via the
white blocks) are correct by means of an oracle (gray blocks).
The oracle is able to predict the pseudo-random material that
RB shall generate at each protocol round and use it to calculate
the expected outcome X ′. It then compares X ′ with the actual
outcome X established by the protocol.

The same setup can also be used to realize the key establish-
ment protocol proposed in [10], by specializing the structure
shown in Fig. 2 according to the reformulation discussed in
Section IV. However, this possibility has not been further
explored in this paper for conciseness and is planned as an
upcoming work.

B. Results

The experimental evaluation aimed, first of all, at confirming
the correctness of the proposed protocol and its implementa-
tion, beyond the theoretical reasoning presented in Section III.
To this purpose the experimental setup outlined in Fig. 3 was
configured to perform a total of 768000 protocol rounds in
several hours of runtime. Upon each round I/RA and RB

randomly select one point within the operand space, consisting

TABLE IV
MEMORY FOOTPRINT BY MODULE (BYTES)

Text and RW init. BSS
Module RO data data data
I/RA MAC extension and PCBs 877 0 264
RB MAC extension and PCBs 460 0 244
General protocol implementation 1316 0 0
CAN medium access control (MAC) 1728 0 0
Physical coding sub-layer (PCS) 376 0 0
Platform-independent PMA 16 0 0
Timer and GPIO PMA 324 0 0
Total (excl. runtime library modules)

I/RA 4637 0 264
RB 4220 0 244

Total (incl. runtime library modules)
I/RA 44692 1292 10000
RB 44180 1292 9980

of 236 elements (two 16-bit operands A and B, plus the 4-bit
function selector c).

Since the random number generator produces uniformly
distributed values, the operand space is explored according to
the classic Monte Carlo method [15]. The number of collected
samples corresponds to 1.12 · 10−5 of the space, which is
deemed to be sufficient to double-check correctness. Further
experiments involving an even larger number of samples are
in progress and no failures were detected so far.

Afterwards, the firmware was statically inspected to assess
its memory footprint, yielding the figures listed in Table IV.
Footprint has been broken down by module and divided into
three categories: code (traditionally called text) and read-only
data, read-write initialized data, and read-write uninitialized
data (traditionally called BSS data). This is because in an
embedded system they may correspond to different kinds of
memory (typically, Flash memory versus static RAM).

As shown in the third row of the table, the general protocol
implementation accounts for about 28% and 31% of the total
I/RA and RB text sizes, respectively, while it does not contain
either read-write or BSS data. At the same time, the total
firmware text sizes compare very favorably to the amount of
Flash memory available on the microcontroller in use (less
than 5 KB used on each node versus 512 KB available, that is,
about 1%). The total data sizes are also negligible with respect
to the available static RAM (less than 300 B used versus 64 KB
available, about 0.5%). It should also be noted that the size
of the I/RA and RB MAC extension modules, given in the
first two rows of Table IV, includes all protocol control blocks
(PCBs) needed by SDCC as BSS data.

Those results confirm that the proposed approach can eas-
ily be integrated with existing, low-cost firmware designs
without concerns about overflowing memory capacity. The
overall firmware image sizes (last two rows of Table IV) are
significantly larger because they include C library modules
linked in by the printf function, used to log test results and
debugging information. However, these modules will likely not
be included in production firmware.

Last, but not least, the firmware was instrumented to evalu-

0

0.02

0.04

0.06

0.08

0.1

0 2 4 6 8 10 12 14

R
e
la

ti
v
e
 F

re
q
u
e
n
c
y

Execution time (µs)

Setup

Payload prep. (I)

Payload prep. (R)

Calculation (off-margin)

Fig. 4. Execution time of main protocol functions.

ate the execution time of the general protocol implementation,
by means of a 32-bit timer running at 100 MHz. The execution
time of the main protocol functions was evaluated by calculat-
ing the differences between timer readings taken immediately
after/before calling the function and collecting them into a
histogram for 10000 protocol rounds. Code inspection shows
that data collection requires about 10 assembly language
instructions, leading to an estimated overhead under 0.5µs.
The bus transmission time has not been evaluated because it
depends on the CAN bit rate rather than software performance.

Results are depicted in Fig. 4. The majority of the time is
spent in payload preparation (about 12µs) and setting up data
that are needed by other protocol functions and depend on
c (about 4.5µs). It is however worth noting that data setup
overheads can be reduced when running multiple protocol
rounds with the same c, because the setup must be carried
out only once. Moreover, overheads can be avoided altogether
if c is constant and known in advance, since the setup can be
performed at compile time in this case.

The calculation of fc after the frame exchange is the fastest
operation and it takes less than 2µs. Overall, this leads to
a total protocol execution time of 12 + 4.5 + 2 = 18.5µs,
which is a small fraction of the bus transmission time even
considering the highest bit rate supported by classic CAN, that
is, 1 Mb/s. All protocol functions, except fc calculation, are
affected by an amount of data-dependent jitter between 1 and
2µs. No attempt to reduce the jitter has been made because
it was deemed irrelevant for this kind of application.

VI. CONCLUSION

This paper illustrates how CAN XR—a backward-
compatible extension of the CAN data-link layer—can be
leveraged to calculate arbitrary binary Boolean functions, in
a distributed way and without necessarily disclosing their
operands. As a special case, it was shown that CAN XR can
effectively implement a key establishment protocol formerly
appeared in literature [10], which also paves the way to support
other security protocols.

The experimental evaluation of a prototype implementation
(SDCC) further substantiates that the proposed method works
correctly and meets the typical memory footprint and exe-
cution time requirements of low-cost embedded systems. The

SDCC implementation has been carried out in analogy with the
well-established concept of software-defined radio [16]. With
respect to other software simulators proposed in literature [17],
SDCC’s advantage is that it operates completely in real time.
Hence, it can communicate with hardware-based controllers
directly for cogent correctness and compatibility checks.

As future work, it is foreseen to extend the method to sup-
port n-ary Boolean functions, assess its applicability to other
scenarios, and better investigate its operand non-disclosure
properties, also with the help of further improvements to
SDCC.

ACKNOWLEDGMENT

This research has been supported in part by the US National
Science Foundation (CNS Grant No 1646317).

REFERENCES

[1] ISO, ISO 11898-1:2015 – Road vehicles – Controller area network
(CAN) – Part 1: Data link layer and physical signalling, International
Organization for Standardization, Dec. 2015.

[2] SAE, SAE J1939/21 – Data Link Layer, SAE International, Dec. 2010.
[3] ISO, ISO 15031-5:2015 – Road vehicles – Communication between

vehicle and external equipment for emissions-related diagnostics – Part
5: Emissions-related diagnostic services, International Organization for
Standardization, Aug. 2015.

[4] CiA, CiA 301 V4.2.0 – CANopen application layer and communication
profile, CAN in Automation e. V., Feb. 2011.

[5] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage,
“Experimental security analysis of a modern automobile,” in Proc. IEEE
Symposium on Security and Privacy (SP), 2010, pp. 447–462.

[6] Y. Burakova, B. Hass, L. Millar, and A. Weimerskirch, “Truck hacking:
An experimental analysis of the SAE J1939 standard,” in Proc. 10th
USENIX Workshop on Offensive Technologies (WOOT), 2016, pp. 1–10.

[7] P. Marino, F. Poza, M. A. Dominguez, and S. Otero, “Electronics in au-
tomotive engineering: A top–down approach for implementing industrial
fieldbus technologies in city buses and coaches,” IEEE Transactions on
Industrial Electronics, vol. 56, no. 2, pp. 589–600, Feb. 2009.

[8] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Sav-
age, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno, “Comprehensive
experimental analyses of automotive attack surfaces,” in Proc. 20th
USENIX Conference on Security (SEC), 2011, pp. 1–16.

[9] G. Cena, I. Cibrario Bertolotti, T. Hu, and A. Valenzano, “CAN XR:
CAN with eXtensible in-frame Reply,” in Proc. of 14th IEEE Intl.
Conference on Industrial Informatics (INDIN), Jul. 2016, pp. 1198–
1201.

[10] A. Mueller and T. Lothspeich, “Plug-and-secure communication for
CAN,” in Proc. of the Intl. CAN Conference (iCC), Oct. 2015, pp. 06-
6–06-14.

[11] G. Cena, I. Cibrario Bertolotti, T. Hu, and A. Valenzano, “Design,
verification, and performance of a MODBUS-CAN adaptation layer,”
in Proc. 10th IEEE International Workshop on Factory Communication
Systems (WFCS), May 2014, pp. 1–10.

[12] ——, “Seamless integration of CAN in intranets,” Computer Standards
& Interfaces, vol. 46, pp. 1–14, May 2016.

[13] G. Cena and A. Valenzano, “On the properties of the flexible time
division multiple access technique,” IEEE Transactions on Industrial
Informatics, vol. 2, no. 2, pp. 86–94, May 2006.

[14] LPC17XX User manual, UM10360 rev. 2, NXP B.V., Aug. 2010.
[15] D. E. Knuth, The Art of Computer Programming, Volume 2: Seminumer-

ical Algorithms, 3rd ed. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1997.

[16] T. Ulversoy, “Software defined radio: Challenges and opportunities,”
IEEE Communications Surveys Tutorials, vol. 12, no. 4, pp. 531–550,
fourth quarter 2010.

[17] P. Mundhenk, A. Mrowca, S. Steinhorst, M. Lukasiewycz, S. A. Fahmy,
and S. Chakraborty, “Open source model and simulator for real-time
performance analysis of automotive network security,” SIGBED Rev.,
vol. 13, no. 3, pp. 8–13, Aug. 2016.

