
Automatic Search for the Best Trails in ARX:

Application to Block Cipher Speck

Alex Biryukov, Vesselin Velichkov, and Yann Le Corre

Laboratory of Algorithmics, Cryptology and Security (LACS)
University of Luxembourg

{Alex.Biryukov,Vesselin.Velichkov,Yann.LeCorre}@uni.lu

Abstract. We propose the first adaptation of Matsui’s algorithm for
finding the best differential and linear trails to the class of ARX ci-
phers. It is based on a branch-and-bound search strategy, does not use
any heuristics and returns optimal results. The practical application of
the new algorithm is demonstrated on reduced round variants of block
ciphers from the Speck family. More specifically, we report the proba-
bilities of the best differential trails for up to 10, 9, 8, 7, and 7 rounds
of Speck32, Speck48, Speck64, Speck96 and Speck128 respectively,
together with the exact number of differential trails that have the best
probability. The new results are used to compute bounds, under the
Markov assumption, on the security of Speck against single-trail differ-
ential cryptanalysis. Finally, we propose two new ARX primitives with
provable bounds against single-trail differential and linear cryptanalysis
– a long standing open problem in the area of ARX design.

Keywords: Symmetric-key, Cryptanalysis, ARX, Speck

1 Introduction

ARX stands for Addition/Rotation/XOR and denotes a class of cryptographic
algorithms based on the simple arithmetic operations: modular addition, bitwise
rotation (and bitwise shift) and exclusive-OR. Although the acronym has gained
popularity only recently, algorithms using these operations have been designed
ever since the 80s.

Some notable historical examples of ARX designs are the block ciphers FEAL
(1987), RC5 (1994), and TEA (1994) (with its modified versions XTEA (1997)
and XXTEA (1998)). More recent proposals include the stream cipher Salsa20
(2008) and its variant ChaCha (2008); the hash functions BLAKE (2008) (us-
ing a modified version of ChaCha) and Skein [12] (2008) (with its underlying
block cipher Threefish); the hash function for short messages SipHash (2012)
and the block cipher Speck [2] (2013) (both using a variant of Threefish’s MIX
operation); the lightweight block cipher LEA (2013) and the MAC algorithm for
32-bit microcontrollers Chaskey (2014) (based on a reduced word-size variant of
SipHash’s round function).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/78372144?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Alex Biryukov, Vesselin Velichkov, and Yann Le Corre

All mentioned ARX designs are also called pure, since they are exclusively
composed of the three basic ARX operations. In addition, there is also the sub-
class of augmented ARX designs that consists of a combination of the ARX
operations with other bitwise operations such as Boolean operators, Boolean
functions, etc. The most eminent representatives of this group are the hash
functions from the MD and SHA families.

As evidenced by the long list of proposals, there is a steady interest in the
ARX design philosophy. The reason is the simplicity and efficiency in both soft-
ware and hardware of these designs. In recent years ARX algorithms have become
especially attractive in the area of lightweight cryptography for environments
with highly constrained resources. According to new results from the Frame-
work for Fair Evaluation of Lightweight Cryptographic Systems (FELICS) [6],
presented at the NIST Lightweight Cryptography Workshop 2015 [25], the most
efficient lightweight designs have ARX structure.

The ARX class of primitives is often seen as an alternative to the well-
established class of S-box based algorithms, among whose most notable repre-
sentatives are the block cipher AES [8] and the historically significant block
cipher DES [24]. While primitives from this class make use of substitution tables
(S-boxes) as a source of non-linearity, the only non-linear component in ARX is
the modular addition operation. Due to the latter, these primitives are also less
vulnerable to cache-timing and side-channel attacks.

While ARX algorithms provide level of security comparable to S-box based
ones, they suffer from a major drawback – the methods for their analysis and
design are far less rigorous and mature. For S-box based ciphers it is possible to
compute provable bounds on the security against the two most powerful crypt-
analytic attacks – differential cryptanalysis [3] and linear cryptanalysis [19] (see
e.g. [7]). In contrast, the state of the art in the design of ARX can be sum-
marized in the following heuristic common-sense rule: mix the basic arithmetic
operations in a reasonable way and iterate them over sufficient number of rounds.
While this strategy seems to be largely successful in practice, it is based more
on experience and intuition, rather than on sound scientific arguments.

In this paper we address the mentioned problem by proposing for the first
time an algorithm that finds the best differential and linear trails of an ARX
cipher for a given number of rounds. It is based on a branch-and-bound search
strategy similar to Matsui’s search algorithm that was applied to DES [18] and
is inspired by the threshold search technique proposed in [5]. While the latter
uses heuristics in order to find high-probability trails that are not necessarily
optimal, our algorithm does not use any heuristics and finds optimal results.

The trails found with the described method are optimal under
the Markov assumption [14, Sect. 3, Theorem 2] (see also [8, § 6.2, pp. 84]).
The Markov assumption ensures that (a) the analyzed primitive is a Markov
cipher in the sense of the definition in [14, Sect. 3] and (b) it can be assumed
that its round keys are chosen at random independently (i.e. the Hypothesis of
independent round keys [8, § 8.7.2] holds). The Markov assumption allows to
treat the rounds of an iterated cipher independently and thus to compute the



Automatic Search for the Best Trails in ARX 3

differential probability (resp. absolute linear correlation) of an r-round trail as
the product of the probabilities (resp. absolute correlations) of its corresponding
1-round trails. For ciphers that do not satisfy the Markov assumption,
fixed keys may exist for which the probability (resp. correlation) of
the best differential (resp. linear) trail may significantly deviate from
the optimal one as computed with our algorithm.

As a demonstration of the effectiveness of the technique we apply it to block
cipher Speck and we report for the first time all provably best (under the
Markov assumption) differential trails for reduced number of rounds. We also
demonstrate that in some cases the threshold search algorithm returns sub-
optimal results. These new results are summarized in Table 1.

Table 1. Probabilities of the best (under the Markov assumption) differential trails
for Speck found with Best Search (BS) (Sect. 5) versus best probabilities found with
Threshold Search (TS) [4]. The column # lists the number of trails having the best
probability. The column R contains the number of rounds.

Speck32 Speck48 Speck64 Speck96 Speck128

R TS BS # TS BS # TS BS # BS # BS #

1 −0 −0 3 −0 −0 3 −0 −0 3 −0 3 −0 3
2 −1 −1 3 −1 −1 3 −1 −1 3 −1 3 −1 3
3 −3 −3 3 −4 −3 2 −3 −3 2 −3 2 −3 2
4 −5 −5 1 −7 −6 2 −7 −6 2 −6 2 −6 2
5 −9 −9 2 −10 −10 4 −13 −10 2 −10 2 −10 2
6 −15 −13 1 −14 −14 2 −21 −15 2 −15 2 −15 2
7 −22 −18 2 −20 −19 2 −27 −21 3 −21 2 −21 ≥ 1
8 −26 −24 7 −27 −26 12 −32 −29 ≥ 1 < −27 < −26
9 −30 −30 15 −33 −33 ≥ 1 −36 < −31
10 −34 1 −40 < −34 −40
11 −47 −44
12 −47
13 −52
14 −60

As noted, the results shown in Table 1 are to be interpreted under the Markov
assumption. In Appendix 8 we show for the first time that Speck is not, in fact, a
Markov cipher. We stress, however, that making the Markov assumption even for
non-Markov ciphers is the best that a cryptanalyst can do in order to be able to
analyze such constructions. Furthermore, we have experimentally checked that
the reported differentials hold for most of the keys and therefore the results
shown in Table 4 are meaningful from a practitioner’s perspective.

The new technique can also be used to design new ARX primitives with
provable security bounds against linear and differential cryptanalysis – a long



4 Alex Biryukov, Vesselin Velichkov, and Yann Le Corre

standing problem in the area of ARX design. Our main contributions can be
summarized as follow:

1. An algorithm for finding the best differential and linear trails in ARX ciphers
that satisfy the Markov Assumption.

2. The probabilities of the best differential trails for up to 10, 9, 8, 7, and 7
rounds of Speck32, Speck48, Speck64, Speck96 and Speck128 respec-
tively, together with the exact number of differential trails that have the best
probability.

3. A better choice of rotation constants for Speck w.r.t. single-trail differential
cryptanalysis.

4. Bounds on the security of Speck, under the Markov assumption, against
differential cryptanalysis, based on the reported best trails.

5. Two atomic ARX constructions with provable bounds against single-trail
differential and linear cryptanalysis.

The paper is organized as follows. We begin in Sect. 2 with a review of
previous work on techniques for searching for differential and linear trails in
ARX. Sect. 3 provides basic definitions and propositions, necessary to follow
the exposition in subsequent sections. A general strategy for searching for the
best trails in ARX is described in Sect. 4 and the results from its application
to Speck are given in Sect. 5. Two new primitives – MARX and Speckey –
with provable bounds against single trail differential and linear cryptanalysis are
proposed in Sect. 6 and Section 7 concludes the paper. The notation used in the
paper is summarized in Table 2.

Table 2. Notation.

Symbol Meaning

w Word size in bits
n Total number of rounds
r Iterator over the number of rounds: 1 ≤ r ≤ n
N Cipher block size (in bits)

LSB, MSB Least Significant Bit, Most Significant Bit
x[i] The i-th bit of w-bit word x: 0 ≤ i < w: x[0] = LSB, x[w − 1] = MSB

x[i : j] The sequence of bits
x[i], x[i+ 1], . . . , x[j] (if i < j) or x[i], x[i− 1], . . . , x[j] (if i > j)

⊞ Addition modulo 2w

αr, βr Input XOR differences (resp. linear masks) to ⊞ at round r
γr Output XOR difference (resp. linear mask) of ⊞ at round r

(αr, βr → γr) A differential or a linear approximation of ⊞
|c| Absolute value of c



Automatic Search for the Best Trails in ARX 5

2 Previous Work

Finding high probability (resp. high absolute correlation) trails for ARX has
traditionally been a difficult task. The lack of S-boxes in this class of primitives
does not allow to efficiently compute the probabilities (resp. correlations) of all
possible differential transitions (resp. linear approximations) by the means of the
difference distribution table – DDT (resp. linear approximation table – LAT) of
the non-linear elements. This makes the construction of trails in ARX a tedious
and especially error-prone process as shown in [15]. Furthermore, while most
S-box designs are word-based with relatively small word sizes of 4 and 8 bits,
all ARX designs are bit-based with typical size of the words 32 and 64 bits. As
a consequence it is not possible to apply elegant design strategies such as the
wide-trail [7] to design primitives with provable bounds against differential and
linear cryptanalysis. Indeed the design of such an ARX construction is still an
open problem.

The described difficulties in the analysis and design of ARX have been ad-
dressed by several researchers in the past. Depending on the angle from which
they approach the problem, their work can broadly be divided into three cat-
egories: bottom-up, top-down and approximation-based techniques. We briefly
describe these categories below.

Bottom-up Techniques. This category is by far the largest and encompasses
methods for the (automatic) construction of differential and linear trails in ARX.
Arguably the first such techniques date back to the collisions on the MD and
SHA families of hash functions by Wang et al. [34–36]. While these results were
reportedly developed by hand, subsequent methods were proposed for the fully
automatic construction of differential paths in ARX all of which were applied
to augmented ARX designs such as SHA1, SHA2, MD4 and MD5. In [16] was
proposed a method for the automatic construction of differential trails in pure
ARX designs and applied to the hash function Skein. While many of the men-
tioned techniques are general and potentially applicable to any ARX primitive,
all of them were applied exclusively to hash functions. To fill the gap, in [5]
was proposed the threshold search method for searching for differential trails in
ARX ciphers such as TEA, XTEA and Speck. This method was subsequently
extended to the case of differentials in [4]. Most recently, in 2015, two new tech-
niques for automatic search for linear trails have been proposed. One has been
applied to Speck [37], while the other is dedicated to authenticated encryption
schemes [11].

Top-down Techniques. Rather than constructing a trail one round at a time as
in the bottom-up approach, top-down techniques consider the cipher as a whole.
More precisely, the cipher is represented either as a system of Boolean equations
or as a system of mixed-integer inequalities. Each solution to the system corre-
sponds to a valid trail. In the first case, the Boolean equations are transformed
into a conjunctive normal form (CNF) formula, whose satisfying assignment/s
are found with a SAT solver. In the second case, the problem of searching for



6 Alex Biryukov, Vesselin Velichkov, and Yann Le Corre

trails is effectively transformed into a mixed-integer linear problem (MILP) that
is usually solved by dedicated MILP solvers using linear-programming based
branch-and-bound algorithms. The SAT solver approach has been used to find
the best differential trails for several rounds of stream cipher Salsa20 and for
proving security bounds for the authenticated encryption cipher NORX. As to
the MILP-based methods, up to now they have been successful mainly in the
analysis of S-box designs [23, 28]. The only applications of MILP to ARX that
we are aware of are the results on the augmented ARX cipher Simon [28] and a
very recent paper [13] on Speck appearing in this volume of FSE’16.

Approximation-based Techniques. In both top-down and bottom-up approaches,
complex techniques for analysis of existing algorithms are developed. In contrast,
in what we call approximation-based techniques, the problem is turned around:
new primitives are developed so that they are easy to be analyzed by design.
The main idea is to replace the non-linear component of ARX – the modular
addition – by a simpler non-linear approximation that can efficiently and ac-
curately be analyzed with existing methods. A design based on this strategy
is the authenticated encryption scheme NORX [1]. In it the addition operation
is replaced by the first-order approximation a⊕ b⊕ (a ∧ b)≪ 1 ≈ a⊞ b, which
effectively limits the carry propagation to a sliding window of 2 bits. The latter
significantly facilitates the analysis of the scheme and also makes it hardware
efficient.

From the above overview of existing results it is clear that the question of
finding optimal trails in pure ARX ciphers has remained largely unexplored
so far. The only results in this direction that we are aware of are [21], which
applies a SAT solver approach and the MILP-based technique in [13]. While
the latter is potentially capable of finding optimal trails, its running time is not
well understood. To speed up the search, the authors apply a splicing heuristic
and their objective is finding better trails than existing ones rather than finding
optimal trails. We address this limitation with the method described in the
following sections.

3 Preliminaries

In this section we state basic definitions and propositions, that will be used in
later sections. We begin with the definitions of the differential probability xdp+

and the linear correlation xlc+.

Definition 1 (xdp+). The XOR differential probability (DP) of addition modulo
2w (xdp+) is the probability with which input XOR differences α and β prop-
agate to output XOR difference γ through the modular addition operation. The
probability xdp+ is computed over all pairs of w-bit inputs (x, y):

xdp+(α, β → γ) = 2−2w ·#{(x, y) : ((x⊕ α) + (y ⊕ β))⊕ (x+ y) = γ} . (1)

The linear correlation xlc+ is defined in a similar way:



Automatic Search for the Best Trails in ARX 7

Definition 2 (xlc+). The XOR linear correlation (LC) of addition modulo 2w

(xlc+) is the correlation of the linear approximation (αTx) ⊕ (βT y) = (γT z),
where x, y, z : x + y = z mod 2w are w-bit values and α, β and γ are w-bit
linear masks, all represented as binary vectors of dimension w×1. The operation
ΓTa denotes the dot product between the transposed vector Γ (the mask) and the
vector a. The correlation xlc+ is computed over all pairs of w-bit inputs (x, y):

xlc+(α, β → γ) = 2−2w+1 ·#{(x, y) : (αTx)⊕ (βT y) = (γT z)} − 1 . (2)

The absolute value of the linear correlation is denoted by |xlc+|.

The probability xdp+ has the following property noted in [5, Sect. 2, Proposition
1]:

Proposition 1 (Monotonicity of xdp+). Let α, β and γ be w-bit XOR differ-
ences. Denote with p̃i (w ≥ i ≥ 1) the probability xdp+(α[i − 1 : 0], β[i − 1 :
0]→ γ[i− 1 : 0]) of the partial differential composed of the i LS bits of α, β, γ.
Then the probability xdp+ is monotonously decreasing with the word size of the
differences in the direction LSB to MSB:

p̃1 ≥ p̃2 . . . ≥ p̃w−1 ≥ p̃w = xdp+(α, β → γ) . (3)

Similar property holds also for |xlc+|, but in this case the correlation decreases
from MSB to LSB of the masks:

Proposition 2 (Monotonicity of xlc+). Let α, β and γ be w-bit linear masks.
Denote with c̃i (w−1 ≥ i ≥ 0) the absolute value of the correlation xlc+(α[w−1 :
i], β[w− 1 : i]→ γ[w− 1 : i]) of the partial linear approximation composed of the
w − i MS bits of α, β, γ. Then the absolute correlation |xlc+| is monotonously
decreasing with the word size of the masks in the direction MSB to LSB:

c̃w−1 ≥ c̃w−2 . . . ≥ c̃1 ≥ c̃0 = |xlc+(α, β → γ)| . (4)

The DP and LC of modular addition have been thoroughly studied in the
literature and optimal methods for their computation have been proposed by
several authors: [17, 33, 22] (for xdp+) and [32, 26, 20, 27, 10, 33] (for xlc+). All
cited methods are linear in the size of the differences (resp. masks).

In the following sections, for computing xdp+ we use the method proposed
in [17] and for xlc+ we use the algorithm described in [10].

4 Best Trail Search for ARX

In this section we describe for the first time a Matsui-like algorithm for finding
the best differential and linear trails in ARX ciphers for which the Markov as-
sumption holds. Our technique belongs to the class of bottom-up approaches.
It is based on Matsui’s branch-and-bound algorithm [18], originally designed for
the class of S-box ciphers, and is inspired by the threshold search algorithm
proposed in [5].



8 Alex Biryukov, Vesselin Velichkov, and Yann Le Corre

To search for the best trail on n rounds of a cipher, Matsui’s algorithm is
initialized with the best probabilities B1, B2, . . . , Bn−1 for the first n− 1 rounds
and an over-estimation Bn ≤ Bn of the best probability Bn for n rounds (the
bound). The search proceeds recursively over the rounds starting from the first
(r = 1) and gradually builds a trail until the n-th round is reached. At every
round 1 ≤ r ≤ n the probability

∏r

i=1 pi of the partially constructed trail up
to round r is multiplied by the best probability Bn−r for the remaining n − r
rounds to obtain an estimate for the full trail. If Bn−r

∏r

i=1 pi < Bn (i.e. the
estimate is lower than the bound), the algorithm backtracks to the previous
round. In this way branches of the recursion tree, that are not prospective, are
cut. At the last round the probability of the full trail is compared to the bound
and if it is bigger, the bound is set to the new probability: Bn ←

∏n

i=1 pi. The
procedure terminates when the bound Bn can not be updated any more. As long
as the condition Bn ≤ Bn is preserved, the returned result is guaranteed to be
optimal. The probabilities (resp. correlations) pi are computed by means of the
DDT (resp. LAT) of the cipher’s S-box.

In [5] was proposed a variant of Matsui’s algorithm applicable to the class
of ARX ciphers, called threshold search. The main idea is to consider addition
modulo 2w as a large S-box of size 22w×2w. Since computation of the full DDT of
this S-box is infeasible for typical word sizes of w ≥ 16 bits, the authors propose
to use a DDT with reduced size, called partial DDT (or pDDT). The pDDT is
composed of (a subset of) all differential transitions that have probability larger
than- or equal to a predefined probability threshold. The value of the threshold
and the maximum allowed size of the pDDT are chosen heuristically depending
on the analyzed primitive. Another proposed heuristic is a limit on the Hamming
weight of the differences.

If an input difference with no matching output difference in the pDDT is
encountered during the search, a second pDDT is computed on-the-fly. The
latter is composed of transitions that (a) have probabilities that are likely to
improve the probability of the best trail found so far and (b) are guaranteed to
result in input differences to the next round, that have at least one matching
output difference in the initial pDDT (as illustrated by the The Highways and
Country Roads Analogy [5]). Due to the use of the mentioned heuristics, the
trails found by the threshold search algorithm are not necessarily optimal.

Inspired by the threshold search approach, we propose a new variant of Mat-
sui’s algorithm for the class of ARX. In contrast to [5] our technique does not use
any heuristics and finds optimal results. The main new idea is to add a second
recursion at bit-level over the bits of the differences (resp. linear masks) in ad-
dition to the original recursion over the rounds. This modification preserves the
optimality of the search due to the monotonicity properties of modular addition
stated as Proposition 1 and Proposition 2 in Sect. 3. These properties allow us,
at every round r, to compute the probability of the partially constructed trail at
the bit-level using the partially constructed differences (resp. masks) at round
r. Unprospective branches of the search tree are thus effectively cut not only at
round-level, but also at bit-level.



Automatic Search for the Best Trails in ARX 9

In more detail, let αr[0 : i], βr[0 : i] and γr[0 : i] be resp. input and output
differences to the modular addition at round r, that are partially constructed
up to bit i (i.e. only the i + 1 LS bits of the words are assigned). Let p̃r be
the probability of the corresponding partially constructed differential: (αr[0 :
i], βr[0 : i])→ γr[0 : i]. Then at round r and bit i, the algorithm checks whether

the following condition holds: Bn−rp̃r
∏r−1

i=1 pi ≥ Bn i.e. if the product of the

probability
∏r−1

i=1 pi of the partially constructed trail up to round r − 1 and the
probability p̃r of the partially constructed differential up to bit i at round r and
the best probability Bn−r for the remaining n− r rounds is still at least as good
as the bound Bn. If yes, then the search proceeds recursively to the next bit
position i + 1 or, if i = w, to the next round r + 1. Otherwise, it backtracks to
the previous bit or, if i = 0, to the previous round.

With the described strategy, we effectively deal with the problem of having
to store huge number of possible transitions through the addition operation.
Consequently it is not necessary to maintain a (partial) DDT or to use addi-
tional heuristics such as probability and Hamming weight thresholds to limit the
search and storage space. Moreover, our algorithm is conceptually closer to Mat-
sui’s original proposal than the threshold search. In his paper [18], Matsui also
describes a second level of recursion over the 8 S-boxes of DES (cf. procedure
Round-2-j in [18, Sect. 4, pp. 371]). With it the probability of a partial trail is
computed up to round r − 1 and up to S-box i at round r, where 1 ≤ i ≤ 8.
This S-box level recursion is analogous to the proposed bit-level recursion for
modular addition.

In the following sections we use the block cipher Speck to illustrate the
application of the new technique in practice.

5 Application to Speck

5.1 Description of Speck

Speck is a family of lightweight block ciphers proposed in [2]. It is composed
of the five instances Speck32, Speck48, Speck64, Speck96 and Speck128,
corresponding resp. to the block sizes 32, 48, 64, 96 and 128 bits. Note that the
instance SpeckN has N/2-bit word size. In the following, with Speck we denote
any of the five variants if not otherwise specified.

Speck is a pure ARX cipher with a Feistel-like structure in which both
branches are modified at every round. Let Xr−1,L and Xr−1,R be respectively
the right and left N/2-bit input words to the r-th round of SpeckN (r ≥ 1)
and let kr be the N/2-bit round key applied at round r (see Fig. 1 (Left)). Then
the output words Xr,L, Xr,R from round r (input words to round r + 1) are
computed as follow:

Xr,L = ((Xr−1,L ≫ r1)⊞Xr−1,R)⊕ kr , (5)

Xr,R = (Xr−1,R ≪ r2)⊕Xr,L . (6)



10 Alex Biryukov, Vesselin Velichkov, and Yann Le Corre

The rotation constants r1, r2 are specified as: r1 = 7, r2 = 2 for Speck32 and
r1 = 8, r2 = 3 for all other versions. The round function of Speck is depicted in
Fig. 1 (Left).

Xr−1,L Xr−1,R

≫ r1

kr

≪ r2

Xr,L Xr,R

≫ r1

αr
βr

γr

kr

≪ r2

γr γr ⊕ (βr ≪ r2)

≫ r1

αr
βr

γr

•

kr

≪ r2

•

Γr,L Γr,R

Fig. 1. Left: The round function of Speck. Middle: Propagation of differences: αr =
γr−1 ≫ r1, βr = γr−1 ⊕ (βr−1 ≪ r2). Right: Propagation of linear masks: αr =
Γr−1,L ≫ r1, βr = Γr−1,R ⊕ (Γi,R ≫ r2), γr = Γi,L ⊕ Γi,R. The • sign denotes a
“three-forked branch” and acts as a XOR on the linear masks [18]. Differences γr (resp.
masks βr, γr) in bold can be freely chosen.

Every instance of the Speck family supports several key sizes and the total
number of rounds depends on the key size. A summary of the parameters (block
size, key size, number of rounds) of all instances of the family is presented in
Table 3.

Table 3. Speck parameters: block size (bits), key size (bits), number of rounds.

Instance Block Word Key Rounds Key Rounds Key Rounds
SpeckN Size (N) Size (N/2) Size Size Size

Speck32 32 16 64 22

Speck48 48 24 72 22 96 23

Speck64 64 32 96 26 144 29

Speck96 96 48 96 28 144 29

Speck128 128 64 128 32 192 33 256 34

The key schedule of Speck is based on a simple ARX function that is iterated
a fixed number of times. We omit its description herein, as it is not relevant to



Automatic Search for the Best Trails in ARX 11

the presented results. For the detailed description of the Speck family we refer
the reader to the original proposal [2].

5.2 Best Trail Search for Speck

In this section we apply the technique described in Sect. 4 in order to find the best
(under the Markov assumption) linear and differential trails of reduced-round
variants of Speck.

Differential Trail Search. The pseudo-code of the algorithm for the best differ-
ential trail search applied to Speck is shown in Alg. 1. It has three parts: first
round (lines (4)-(14)), middle rounds (lines (16)-(25)) and last round (lines (27)-
(37)). Every part is composed of two blocks corresponding to the two levels of
recursion. In the first round the procedure starts by recursing over the bits of the
differences (lines (10)-(14)) beginning with the LSB. When the MSB is reached
(line (5)) (i.e. the differences αr, βr, γr are fully constructed), the procedure
switches back to the first block (lines (5)-(8)), where it recurses into the next
round (line (8)). The logic for the middle and last rounds is the same with the
exception that the bit level recursion is over the bits of the output difference γr
only (lines (22)-(25) and (34)-(37) resp.) and not over the bits of all differences
as in the first round. The reason is that the input differences αr and βr to the
addition in the middle and last rounds are fixed from the previous round by the
following relation: αr = γr−1 ≫ r1, βr = γr−1 ⊕ (βr−1 ≪ r2) (see line (7) and
Fig. 1 (middle)). In addition, at the last round there is no further round level
recursion, but instead the bound Bn is updated (line (32)).

We estimate the complexity of the differential search algorithm as follows. Let
m1 ≤ 23w be the number of differences α1, β1 and γ1 in the first round, for which
the probability of the differential (α1, β1 → γ1) is higher than Bn/Bn−1: m1 =
#{(α1, β1, γ1) : xdp

+(α1, β1 → γ1) ≥ Bn/Bn−1}. Analogously, let mr ≤ 2w be
the number of differences γr in any middle or last round r ≥ 2 for which, for
fixed αr and βr, the probability of the differential (αr, βr → γr) is higher than
Bn/(Bn−r

∏r

i=1 pi): mr = #{γr : xdp+(αr, βr → γr) ≥ Bn/(Bn−r

∏r

i=1 pi)},
and let m be the maximum among these values: m = maxn≥r≥2 (mr). Then the
complexity of Alg. 1 has the form O(

∏n

r=1 mr) ≤ O(m1m
r−1), which is signifi-

cantly lower than the complexity of full search 23w2w(r−1) = 2w(r+2) as indicated
by our experiments. However, the precise quantification of the values mr, r ≥ 1
is difficult, since they change dynamically during the search. The latter is a
separate problem in itself, that can be investigated in future research.

Linear Trail Search. The algorithm for linear search for Speck is analogous
to the differential case with one significant difference, arising from the way in
which linear masks propagate through the round function (see Fig. 1 (right)).
Recall that in the differential search, the differences αr and βr in the middle
and last rounds are fixed from the previous round. In contrast, in the linear
case only the mask αr is fixed (with the relation αr = γr−1 ≪ r1), while βr

depends on the right output masks Γr−1,R and Γr,R resp. from the previous and



12 Alex Biryukov, Vesselin Velichkov, and Yann Le Corre

Algorithm 1 Search for the Best Differential Trails in ARX (Application to
Speck).

Input: |
n : num. rounds; w: word size in bits; r1, r2: right and left rot. const.;
r : current round (n ≥ r ≥ 1);
i : current bit position (w > i ≥ 0);
B = (B1, B2, . . . , Bn−1) : probs. of the best trails for rounds 1, 2, . . . , (n− 1);
Bn : underestimate of the best prob. for n rounds: Bn ≤ Bn;
T = (T1, T2, . . . , Tr−1): Ti = (αi, βi, γi, pi) : pi = xdp+(αi, βi → γi), 1 ≤ i < r;
(αr, βr, γr): input and output differences to the mod. addition at round r;
p̃r: probability of the partial differential (αr[0 : i], βr[0 : i]→ γr[0 : i]);

Output: |
Bn, T : the best prob. for n rounds and corresponding trail;

1: // Initialization: r ← 1, i← 0, αr ← ∅, βr ← ∅, γr ← ∅
2: procedure best_diff_search(r, i, αr, βr, γr) do
3: // First round
4: if (r = 1) ∧ (r 6= n) then
5: if i = w then
6: pr ← xdp+(αr, βr → γr); Tr ← (αr, βr, γr, pr); add Tr to T ;
7: i← 0; αr+1 ← (γr ≫ r1); βr+1 ← γr ⊕ (βr ≪ r2); γr+1 ← ∅;
8: call best_diff_search(r + 1, i, αr+1, βr+1, γr+1)
9: else

10: for jα, jβ , jγ ∈ {0, 1} do
11: αr[i]← jα; βr[i]← jβ ; γr[i]← jγ ;
12: p̃r ← xdp+(αr[0 : i], βr[0 : i]→ γr[0 : i]);
13: if (p̃r Bn−1) ≥ Bn then
14: call best_diff_search(r, i+ 1, αr, βr, γr)
15: // Intermediate rounds
16: if (r > 1) ∧ (r 6= n) then
17: if i = w then
18: pr ← xdp+(αr, βr → γr); Tr ← (αr, βr, γr, pr); add Tr to T ;
19: i← 0; αr+1 ← (γr ≫ r1); βr+1 ← γr ⊕ (βr ≪ r2); γr+1 ← ∅;
20: call best_diff_search(r + 1, i, αr+1, βr+1, γr+1)
21: else
22: for jγ ∈ {0, 1} do
23: γr[i]← jγ ; p̃r ← xdp+(αr[0 : i], βr[0 : i]→ γr[0 : i])
24: if (p1 p2 . . . pr−1 p̃r Bn−r) ≥ Bn then
25: call best_diff_search(r, i+ 1, αr, βr, γr)
26: // Last round
27: if (r = n) then
28: if i = w then
29: pn ← xdp+(αn, βn → γn); Tn ← (αn, βn, γn, pn); add Tn to T ;
30: if (p1 p2 . . . pn−1 pn) ≥ Bn then
31: // Update bound and return to upper round
32: Bn ← (p1 p2 . . . pn−1 pn)
33: else
34: for jγ ∈ {0, 1} do
35: γn[i]← jγ ; p̃n ← xdp+(αn[0 : i], βn[0 : i]→ γn[0 : i])
36: if (p1 p2 . . . pn−1 p̃n) ≥ Bn then
37: call best_diff_search(r, i+ 1, αr, βr, γr)
38: return



Automatic Search for the Best Trails in ARX 13

current round: βr = Γr−1,R ⊕ (Γr,R ≫ r2). Due to this fact, in the middle and
last rounds the linear search algorithm performs a recursion over the bits of one
more variable (βr) in addition to γr. Furthermore, since the mask Γr−1,R can
be freely chosen in the first round, an additional iteration over all such masks is
performed. The latter is independent of the bound Bn and therefore represents a
fixed cost of 2w additional iterations. All this added complexity makes the linear
search algorithm feasible only for the version Speck32.

Due to the mentioned differences, the complexity of the linear search is
significantly higher than the differential search. Let m1 ≤ 23w be the num-
ber of masks α1, β1 and γ1 in the first round, for which the absolute cor-
relation of the linear approximation (α1, β1 → γ1) is higher than Bn/Bn−1:
m1 = #{(α1, β1, γ1) : |xlc+(α1, β1 → γ1)| ≥ Bn/Bn−1}. Let mr ≤ 22w be
the number of masks βr and γr in any middle or last round r ≥ 2 for which,
for fixed αr, the absolute correlation of the linear approximation (αr, βr → γr)
is higher than Bn/(Bn−r

∏r

i=1 ci): mr = #{(βr, γr) : |xlc+(αr, βr → γr)| ≥
Bn/(Bn−r

∏r

i=1 ci)}, and let m = maxn≥r≥2 (mr). Then the complexity of the
linear search algorithm has the form: O(2w

∏n

r=1 mr) ≤ O(2
wm1m

r−1), which
is much less than the complexity of full search 24w22w(r−1) = 22w(r+1). In the
former, notice the factor 2w due to the additional iteration over all w-bit masks
Γr−1,R in the first round. Again, similarly to the differential case, the precise
quantification of the values mr, r ≥ 1 in the linear case is difficult.

While the higher complexity of the linear search algorithm makes it infeasible
for versions of Speck other than Speck32, Alg. 1 is quite practical as shown
by the results reported in the following section.

5.3 Results

With Alg. 1 we find the best differential trails for reduced round variants of all
versions of Speck under the Markov assumption. Table 1 compares our results
to the ones obtained with the threshold search algorithm with the parameters
given in [4, Sect. 6, Table 6]: probability threshold pthres = 2−5, Hamming
weight threshold hwthres = 7 and maximum pDDT size 230. From the table it
can be seen that for certain number of rounds Alg. 1 significantly improves the
probabilities found with threshold search.

The execution times of Alg. 1 for different number of rounds are shown in
Table 4. Most of the measurements were done on a PC with Intel R© CoreTM E5-
2637 CPU 3.50GHz. Exceptions are the results for more than 7 rounds and block
sizes larger than 48 bits, which were obtained using a parallel version of Alg. 1
executed on the HPC cluster of the University of Luxembourg [29]. The memory
requirements in all cases are negligible.

A final note on the search strategy used for obtaining the times in Table 4:
when searching for the best probability for n rounds, we initialize the bound
Bn to the best probability for (n− 1) rounds: Bn ← Bn−1. If no trail with this
probability is found, the bound is decreased by a factor of 2: Bn ← Bn/2. This
process continues until a trail with probability equal to the bound is found. Thus



14 Alex Biryukov, Vesselin Velichkov, and Yann Le Corre

Table 4. Probabilities and running times for the best (under the Markov assump-
tion) differential trails for Speck obtained with Algorithm 1 (log2 scale). Platforms:
Intel R© CoreTM E5-2637 CPU 3.50GHz or HPC cluster for ≥ 7 rounds. The
column t provides the time needed to find a single best trail in s/m/h/d = sec-
onds/minutes/hours/day, where 1 day = 24 hours. Note: times are rounded up.

# R Speck32 t Speck48 t Speck64 t Speck96 t Speck128 t

1 0 0s 0 0s 0 0s 0 0s 0 0s
2 −1 0s −1 0s −1 0s −1 0s −1 0s
3 −3 0s −3 0s −3 0s −3 0s −3 0s
4 −5 0s −6 0s −6 0s −6 6s −6 22s
5 −9 0s −10 1s −10 1m −10 5m −10 26m
6 −13 1s −14 3s −15 26m −15 5h −15 2d
7 −18 1m −19 1m −21 4h −21 5d −21 3h
8 −24 34m −26 9m −27 22h < −27 3d < −26 2d
9 −30 12m −33 7d < −31 1d
10 −34 6m < −34 3h

the times shown in Table 4 are measured from the start of the program to the
moment when the first trail is found.

5.4 Towards Security Bounds for Speck

The results from Table 4 can be used to trivially obtain upper bounds (under
the Markov assumption) on the security of Speck against single-trail differential
cryptanalysis. For example, given the probability pr of the best trail on r rounds
and the probability ps of the best trail on s rounds, the product prps gives
an upper bound on the probability of any trail on r + s rounds. The latter is
equivalent to the statement that any trail on r + s rounds has probability at
least prps or lower. We use this approach to compute upper bounds (under the
Markov assumption) on the probabilities of the best trails on all versions of
Speck. The results are shown in Table 5.

In view of the probabilities of the best found trails on Speck reported in [4,
Sect. 6, Table 6], the bounds in Table 5 are not tight.

5.5 On the Choice of Rotation Constants

We investigated the way in which the choice of the rotation constants r1 and r2
(see Fig. 1 (Left)) of Speck32, Speck48 and Speck64 influences the DP of the
best trails. For that purpose we assume that the exact values of the constants
are not as important as their relative difference. Under this assumption, we
fixed r2 to its original value and varied r1 over the first 16 possibilities. For each
choice, we determined the probability of the best differential trail for 9 rounds



Automatic Search for the Best Trails in ARX 15

Table 5. Upper bounds on the best (under the Markov assumption) probabilities of
differential trails on Speck computed using the best probabilities from Table 4 (log2
scale).

Instance Upper Rounds Upper Rounds Upper Rounds
Bound Bound Bound

Speck32 −69 22

Speck48 −72 22 −76 23

Speck64 −91 26 −96 29

Speck96 −90 28 −94 29

Speck128 −104 32 −104 33 −105 34

Table 6. Best differential probabilities (DP) for 9 rounds of Speck32, 7 rounds of
Speck48 and 6 rounds of Speck64 for 16 choices of the rotation constant r1 with r2
fixed to its original value (Fig. 1 (Left)) (log2 scale).

r1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Speck32 −21 −25 −24 −30 −27 −30 −25 −30 −24 −31 −26 −29 −27 −27 −22 −24
Speck48 −11 −15 −20 −16 −21 −21 −19 −21 −19 −17 −19 −20 −13 −21 −20 −19
Speck64 −8 −13 −15 −13 −15 −15 −14 −15 −15 −15 −15 −15 −15 −13 −13 −15

of Speck32, 7 rounds of Speck48 and 6 rounds of Speck64 using Alg. 1. The
results are presented in Table 6.

From Table 6 it can be seen that the original choice of rotation constants:
r1 = 7 and r2 = 2 for Speck32 and r1 = 8 and r2 = 3 for Speck48 is not
optimal w.r.t. the probability of the best differential trail. In the former case, it
results in DP of 2−30 over 9 rounds, while the optimal choice: r1 = 9 and r2 = 2
results in probability 2−31. In the latter case, the original rotation constants
(8, 3) result in DP of 2−19 over 7 rounds, while the choices (4, 3), (5, 3), (7, 3)
and (13, 3) result in lower probability 2−21. This may hint that we have found
better rotation constants for Speck. To be certain however, similar experiments
for the linear case must also be conducted. In addition, the implementation cost
of each pair of constants must be taken into account. Therefore the optimal
choice of r1 and r2 requires further investigation.

6 MARX and Speckey: ARX Primitives with Provable

Bounds

A limitation of Algorithm 1 is that its complexity significantly increases with
the number of rounds and word sizes as indicated by Table 4. To address this
problem, in this section we propose two new primitives – MARX and Speckey



16 Alex Biryukov, Vesselin Velichkov, and Yann Le Corre

for which it is feasible to compute the probabilities and linear correlations of the
best trails for any number of rounds and which satisfy the Markov assumption.
Both primitives have 32-bit state and 32-bit round key.

MARX (from MIX + ARX) is based on the round function of Threefish-256 [12]
(with its basic component – the MIX operation) with 8-bit words. This round
function is wrapped within a key addition on the input and on the output and
is iterated over a fixed number of rounds. Speckey, as the name suggests, is
based on block cipher Speck. More precisely, it is Speck32 with modified key
addition. The round functions of MARX and Speckey are shown on Fig. 2.

⊕ki−1

≪2 ≪5

⊕ki

⊕ki−1

≫ 7

≪ 2

⊕ki

Fig. 2. Left: MARX (from MIX + ARX), based on the round function of
Threefish-256 [12] with 32-bit state, 32-bit round key and 8-bit words; Right:
Speckey – a variant of Speck32 with modified key addition.

To choose the rotation constants of MARX, we exhaustively searched all
possible pairs of constants and applied Alg. 1 and its linear search version to
the resulting variants. Based on the results we selected the constants r1 = 2 and
r2 = 5, as they provided differential probability (DP) ≤ 2−32 and absolute linear
correlation (LC) ≤ 2−17 over a minimal number of rounds, namely 12. As to the
word permutation, before settling for the one used in Threefish-256, we also
considered a Feistel-like variant in which the words are circularly rotated right
by one. However this variant required more rounds to reach full diffusion (best
DP 2−32 and best absolute LC 2−17) compared to Threefish-256 – on average
two more rounds were necessary.

The best DP and LC of MARX and Speckey are shown in Table 7.
The main advantage of MARX and Speckey over Speck32 is that due to

the full state key addition at the beginning of every round, these two primitives
belong to the class of key-alternating ciphers [9, § 5.1, Definition 2], which is a
sub-class of Markov ciphers and therefore satisfies the Markov assumption. In ad-
dition, due to the 8 bit modular addition, MARX may be a more suitable choice



Automatic Search for the Best Trails in ARX 17

Table 7. Best differential probabilities (DP) and absolute linear correlations (LC) of
MARX and Speckey (log2 scale).

# R 1 2 3 4 5 6 7 8 9 10 11 12

DPMARX −0 −0 −1 −2 −5 −9 −14 −20 −25 −29 −32 −34
LCMARX −0 −0 −0 −1 −2 −4 −7 −10 −13 −15 −16 −17

DPSpeckey −0 −1 −3 −5 −9 −13 −18 −24 −30 −34
LCSpeckey −0 −0 −1 −3 −5 −7 −9 −12 −14 −17

for devices with 8-bit microprocessors. A disadvantage is that MARX needs two
more rounds to achieve full diffusion compared to Speck32 (see Table 7) and
that both MARX and Speckey use more operations per round compared to
Speck32. In Appendix 9 is described a variant of MARX, called MARX2, that
achieves full diffusion in the same number of rounds as Speck32 at the expense
of two additional rotation operations.

Finally, we stress that the proposed new primitives are intended to serve
mainly as an example of how the best trail search algorithms can be used to
design new ARX constructions with provable properties. At present, MARX

and Speckey have not undergone sufficient analysis against other cryptanalytic
techniques for us to have enough confidence in their cryptographic properties.

7 Conclusion

In this paper we proposed for the first time an adaptation of Matsui’s algorithm
for finding the best differential and linear trails in ARX ciphers. We showed
the practical application of the new method on reduced round variants of block
ciphers from the Speck family and we reported the first provably best differential
trails on these variants. The new results were used to compute the first bounds
(under the Markov assumption) on the security of Speck against single-trail
differential cryptanalysis. In addition, we also reported better choices of the
rotation constants for Speck w.r.t. single-trail differential cryptanalysis. Finally,
we proposed two new ARX primitives – MARX and Speckey – which satisfy
the Markov assumption and have provable bounds against single-trail differential
and linear cryptanalysis – a long standing open problem in the area of ARX
design. The source code of the tools for best trail search for Speck, Speckey

and MARX is publicly available as part of the YAARX Toolkit [30] and a
snapshot of the source tree is uploaded on the CryptoLUX website [31].

Acknowledgments

We thank our colleagues from the Laboratory of Algorithmics, Cryptology and
Security (LACS) at the University of Luxembourg for the stimulating discus-



18 Alex Biryukov, Vesselin Velichkov, and Yann Le Corre

sions. Some of the experiments presented in this paper were carried out using the
HPC facilities of the University of Luxembourg [29] – see http://hpc.uni.lu.

References

1. J. Aumasson, P. Jovanovic, and S. Neves. NORX: Parallel and Scalable AEAD.
In M. Kutylowski and J. Vaidya, editors, ESORICS 2014, volume 8713 of Lecture
Notes in Computer Science, pages 19–36. Springer, 2014.

2. R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers.
The SIMON and SPECK Families of Lightweight Block Ciphers. Cryptology ePrint
Archive, Report 2013/404, 2013. http://eprint.iacr.org/.

3. E. Biham and A. Shamir. Differential Cryptanalysis of DES-like Cryptosystems.
J. Cryptology, 4(1):3–72, 1991.

4. A. Biryukov, A. Roy, and V. Velichkov. Differential Analysis of Block Ciphers
SIMON and SPECK. In C. Cid and C. Rechberger, editors, FSE 2014, volume
8540 of Lecture Notes in Computer Science, pages 546–570. Springer, 2014.

5. A. Biryukov and V. Velichkov. Automatic Search for Differential Trails in ARX
Ciphers. In J. Benaloh, editor, CT-RSA 2014, volume 8366 of Lecture Notes in
Computer Science, pages 227–250. Springer, 2014.

6. CryptoLUX. FELICS - Fair Evaluation of Lightweight Cryptographic Systems.
https://www.cryptolux.org/index.php/FELICS, 2015.

7. J. Daemen and V. Rijmen. AES and the Wide Trail Design Strategy. In L. R.
Knudsen, editor, EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer
Science, pages 108–109. Springer, 2002.

8. J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced Encryp-
tion Standard. Springer, 2002.

9. J. Daemen and V. Rijmen. Probability distributions of Correlation and Differen-
tials in Block Ciphers. IACR Cryptology ePrint Archive, 2005:212, 2005.

10. S. M. Dehnavi, A. M. Rishakani, and M. R. M. Shamsabad. A More Explicit
Formula for Linear Probabilities of Modular Addition Modulo a Power of Two.
Cryptology ePrint Archive, Report 2015/026, 2015. http://eprint.iacr.org/.

11. C. E. Dobraunig, M. Eichlseder, and F. Mendel. Heuristic tool for linear cryptanal-
ysis with applications to caesar candidates. In T. Iwata and J. H. Cheon, editors,
Advances in Cryptology - ASIACRYPT 2015, volume 9453 of LNCS, pages 490 –
509. Springer, 2015.

12. N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno, J. Callas,
and J. Walker. The Skein Hash Function Family. Submission to the NIST SHA-3
Competition (Round 2), 2009.

13. K. Fu, M. Wang, Y. Guo, S. Sun, and L. Hu. MILP-Based Automatic Search Algo-
rithms for Differential and Linear Trails for Speck. Fast Software Encryption, 23rd
International Workshop, FSE 2016, Bochum, Germany, March 20–23 (to appear),
2016.

14. X. Lai and J. L. Massey. Markov Ciphers and Differentail Cryptanalysis. In D. W.
Davies, editor, EUROCRYPT, volume 547 of Lecture Notes in Computer Science,
pages 17–38. Springer, 1991.

15. G. Leurent. Analysis of Differential Attacks in ARX Constructions. In X. Wang and
K. Sako, editors, ASIACRYPT 2012, volume 7658 of Lecture Notes in Computer
Science, pages 226–243. Springer, 2012.



Automatic Search for the Best Trails in ARX 19

16. G. Leurent. Construction of Differential Characteristics in ARX Designs Applica-
tion to Skein. In R. Canetti and J. A. Garay, editors, CRYPTO 2013, volume 8042
of Lecture Notes in Computer Science, pages 241–258. Springer, 2013.

17. H. Lipmaa and S. Moriai. Efficient Algorithms for Computing Differential Proper-
ties of Addition. In M. Matsui, editor, FSE, volume 2355 of LNCS, pages 336–350.
Springer, 2001.

18. M. Matsui. On Correlation Between the Order of S-boxes and the Strength of DES.
In A. D. Santis, editor, EUROCRYPT, volume 950 of Lecture Notes in Computer
Science, pages 366–375. Springer, 1994.

19. M. Matsui and A. Yamagishi. A New Method for Known Plaintext Attack of FEAL
Cipher. In EUROCRYPT, pages 81–91, 1992.

20. K. A. McKay and P. L. Vora. Analysis of ARX Functions: Pseudo-linear Meth-
ods for Approximation, Differentials, and Evaluating Diffusion. Cryptology ePrint
Archive, Report 2014/895, 2014. http://eprint.iacr.org/.

21. N. Mouha and B. Preneel. Towards Finding Optimal Differential Characteristics
for ARX: Application to Salsa20. Cryptology ePrint Archive, Report 2013/328,
2013. http://eprint.iacr.org/.

22. N. Mouha, V. Velichkov, C. De Cannière, and B. Preneel. The Differential Analysis
of S-Functions. In A. Biryukov, G. Gong, and D. R. Stinson, editors, Selected Areas
in Cryptography, volume 6544 of Lecture Notes in Computer Science, pages 36–56.
Springer, 2010.

23. N. Mouha, Q. Wang, D. Gu, and B. Preneel. Differential and Linear Cryptanalysis
Using Mixed-Integer Linear Programming. In C. Wu, M. Yung, and D. Lin, editors,
Inscrypt 2011, volume 7537 of Lecture Notes in Computer Science, pages 57–76.
Springer, 2011.

24. National Institute of Standards, U.S. Department of Commerce. FIPS 47: Data
Encryption Standard, 1977.

25. NIST. Lightweight Cryptography Workshop 2015. http://www.nist.gov/itl/

csd/ct/lwc_workshop2015.cfm, July 2015.
26. K. Nyberg and J. Wallén. Improved linear distinguishers for SNOW 2.0. In Fast

Software Encryption, pages 144–162. Springer, 2006.
27. E. Schulte-Geers. On CCZ-equivalence of Addition mod 2n. Des. Codes Cryptog-

raphy, 66(1-3):111–127, 2013.
28. S. Sun, L. Hu, P. Wang, K. Qiao, X. Ma, and L. Song. Automatic Security Evalua-

tion and (Related-key) Differential Characteristic Search: Application to SIMON,
PRESENT, LBlock, DES(L) and Other Bit-Oriented Block Ciphers. In P. Sarkar
and T. Iwata, editors, ASIACRYPT 2014, volume 8873 of Lecture Notes in Com-
puter Science, pages 158–178. Springer, 2014.

29. S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos. Management of an Aca-
demic HPC Cluster: The UL Experience. In Proc. of the 2014 Intl. Conf. on High
Performance Computing & Simulation (HPCS 2014), pages 959–967, Bologna,
Italy, July 2014. IEEE.

30. V. Velichkov. YAARX: Yet Another Toolkit for the Analysis of ARX Crypto-
graphic Algorithms. Laboratory of Algorithmics, Cryptology and Security (LACS),
University of Luxembourg, 2013–2016. https://github.com/vesselinux/yaarx .

31. V. Velichkov and Y. L. Corre. Tool for Searching for Optimal Trails in ARX.
Laboratory of Algorithmics, Cryptology and Security (LACS), University of Lux-
embourg, 2016. https://www.cryptolux.org .

32. J. Wallén. Linear Approximations of Addition Modulo 2n. In T. Johansson, editor,
FSE 2003, volume 2887 of Lecture Notes in Computer Science, pages 261–273.
Springer, 2003.



20 Alex Biryukov, Vesselin Velichkov, and Yann Le Corre

33. J. Wallén. On the Differential and Linear Properties of Addition. Master’s thesis,
Helsinki University of Technology, 2003.

34. X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In Advances in Cryptology–EUROCRYPT 2005, pages 1–18.
Springer, 2005.

35. X. Wang, Y. L. Yin, and H. Yu. Finding Collisions in the Full SHA-1. In V. Shoup,
editor, CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, pages
17–36. Springer, 2005.

36. X. Wang and H. Yu. How to break MD5 and other hash functions. In Advances
in Cryptology–EUROCRYPT 2005, pages 19–35. Springer, 2005.

37. Y. Yao, B. Zhang, and W. Wu. Automatic search for linear trails of the SPECK
family. In Information Security, pages 158–176. Springer, 2015.

Appendix

8 Showing that Speck is not a Markov Cipher

In this section we show, by the means of a counter example, that Speck is not
a Markov cipher. For the purpose, we use an equivalent representation of the
round function of Speck (Fig. 1 (left)), shown on Fig. 3 (left).

≫ r1

kr kr

≪ r2

xL = 0 xR = 0

∆xL = 0 ∆xR = 1

kr kr

∆yL = 3 ∆xR = 1

≫ r1

A

k1

B

≪ r2

≫ r1

B ≫ r1 (A ≪ r2)⊕B

k2 ≪ r2

Fig. 3. Left: Equivalent representation of one round of Speck. Middle: Main non-
linear component of Speck, illustrating two differentials that differ in probabil-
ity and hence contradict the Markov assumption: P ((3, 1)|(0, 1), (0, 0)) = 2−1 and
P ((3, 1)|(0, 1)) = 2−2. Right: Dependency between the inputs to the addition in one
round (B) and between the inputs to consecutive rounds (A).

According to the formal definition [14, Sect. 3], a Markov cipher is an it-
erative cipher, whose round function is such that its differential probability is



Automatic Search for the Best Trails in ARX 21

independent of the input values, under an appropriate definition of a difference.
More formally, let f be the round function of an iterative cipher and let x and
y be resp. an input and output state and k be the round key: y = f(x, k). Let
∆x denote an XOR difference between two input values x and x∗: ∆x = x⊕ x∗.
Finally, let P

k
and P

x,k
denote the differential probability of f resp. over all round

keys k and over all input values and round keys (x, k). Then, if a cipher is
Markov, the two probabilities should be equal:

P
k
(∆y|∆x, x) = P

x,k
(∆y|∆x) . (7)

In other words, for a Markov cipher the differential probability of f is indepen-
dent of the input values x for all x (when the subkey is uniformly random).

To show that Speck is not a Markov cipher, it is enough to provide values for
x, ∆x and ∆y for which equation (7) does not hold. To do this, we use the main
non-linear component of Speck shown on Fig. 3 (middle). For this component,
for the following values x = (xL, xR) = (0, 0), ∆x = (∆xL, ∆xR) = (0, 1) and
∆y = (∆yL, ∆yR) = (3, 1) the two probabilities in (7) are not equal:

P
k
(∆y = (3, 1)|∆x = (0, 1), x = (0, 0)) = 2−1

6=P
x,k

(∆y = (3, 1)|∆x = (0, 1)) = 2−2 . (8)

An illustrative example of the dependency between the inputs to the addition
operation in one round and between the inputs to consecutive rounds is shown
on Fig. 3 (right).

9 MARX2: A Variant of MARX with Improved Diffusion

In this section we describe MARX2 – a variant of MARX with improved diffu-
sion. MARX2 has two additional rotation operations and its round function is
depicted in Fig. 4.

As can be seen from Fig. 4, MARX2 is composed of two parallel appli-
cations of the round function of Speck with 8-bit words. Due to the addi-
tional rotation operations it achieves full diffusion in the same number of rounds
as Speck32, namely 10. The best DP and LC for the recommended rotation
amounts (r1, r2, r3, r4) = (2, 3, 1, 7) are shown in Table 8.

The rotation constants of MARX2 have been chosen by exhaustively search-
ing over all four rotation values (4095 values in total, excluding the all-zero
choice). For each set of amounts we applied Alg. 1 and its linear search vari-
ant and recorded the number of rounds necessary to reach full diffusion. The
results show that no set of rotation constants exists for which full diffusion can
be reached in less than 10 rounds. From the constants that ensure diffusion in 10
rounds we have selected (r1, r2, r3, r4) = (2, 3, 1, 7) as the recommended choice
since for this set we get slightly better DP than Speck32 (2−35 vs. 2−34). In
addition, all constants from the set are different and are not multiples of each



22 Alex Biryukov, Vesselin Velichkov, and Yann Le Corre

⊕ki−1

≪ r3

≪ r1

≪ r4

≪ r2

⊕ki

Fig. 4. MARX2: a variant of MARX with two additional rotations for improved diffu-
sion. The recommended rotation amounts are (r1, r2, r3, r4) = (2, 3, 1, 7)

Table 8. Best differential probabilities (DP) and absolute linear correlations (LC) of
MARX2 with rotation constants (r1, r2, r3, r4) = (2, 3, 1, 7) – see Fig. 4 (log2 scale).

# R 1 2 3 4 5 6 7 8 9 10

DPMARX2 −0 −1 −3 −5 −11 −16 −22 −25 −29 −35
LCMARX2 −0 −0 −1 −3 −5 −8 −10 −13 −15 −17

other, which may also be considered desirable properties. Other choices that
also result in full diffusion for 10 rounds are: (2, 3, 7, 2), (2, 3, 1, 2) and (5, 5, 2, 7).
Note that the constants (r1, r2, r3, r4) and (r2, r1, r4, r3) are equivalent.

Finally, we note that MARX2 is an illustration of another strategy for in-
creasing the block size of an ARX cipher. Rather than increasing the word size
from N to 2N , as is done in Speck, in order to increase the block size the
designer may alternatively double the number of N -bit block components as in
MARX2. This approach may result in improved efficiency on some platforms,
such as e.g. 32-bit ARM, where the cost of a bit rotation is constant.


