
PhD-FSTC-2016-33
The Faculty of Sciences, Technology and Communication

DISSERTATION

Defense held on 29/08/2016 in Luxembourg
to obtain the degree of

DOCTEUR DE L´UNIVERSITÉ DU LUXEMBOURG EN
INFORMATIQUE

by

NICO NACHTIGALL

Born on 1st April 1982 in Berlin (Germany)

DOMAIN COMPLETENESS OF MODEL

TRANSFORMATIONS AND SYNCHRONISATIONS

Dissertation defense committee:

Prof. Dr. Thomas Engel, Dissertation Supervisor
Professor, Université du Luxembourg, Luxembourg

Prof. Dr. Barbara König
Professor, Universität Duisburg-Essen, Germany

Prof. Dr. Ulrich Sorger, Chairman
Professor, Université du Luxembourg, Luxembourg

Dr. Frank Hermann, Deputy Chairman
Carmeq GmbH, Berlin, Germany

Dr. Raimondas Sasnauskas
SES Engineering, Luxembourg

Dr. Benjamin Braatz
Graph-IT GmbH, Cologne, Germany

ii

To my sons Emil & Max, my wife Susann and my
grandfather †Axel

iii

iv

Foreword & Acknowledgements

The intrinsic question of most activities in information science, in practice or science, is “Does
a given system satisfy the requirements regarding its application?” Commonly, requirements
are expressed and accessible by means of models, mostly in a diagrammatic representation by
visual models. The requirements may change over time and are often defined from different
perspectives and within different domains. This implies that models may be transformed either
within the same domain-specific visual modelling language or into models in another language.
Furthermore, model updates may be synchronised between different models. Most types of vi-
sual models can be represented by graphs where model transformations and synchronisations
are performed by graph transformations. The theory of graph transformations emerged from its
origins in the late 1960s and early 1970s as a generalisation of term and tree rewriting systems
to an important field in (theoretical) computer science with applications particularly in visual
modelling techniques, model transformations, synchronisations and behavioural specifications
of models. Its formal foundations but likewise visual notation enable both precise definitions
and proofs of important properties of model transformations and synchronisations from a theo-
retical point of view and an intuitive approach for specifying transformations and model updates
from an engineer’s point of view. The recent results were presented in the EATCS monographs
“Fundamentals of Algebraic Graph Transformation” (FAGT) in 2006 and its sequel “Graph and
Model Transformation: General Framework and Applications” (GraMoT) in 2015. This the-
sis concentrates on one important property of model transformations and synchronisations, i.e.,
syntactical completeness. Syntactical completeness of model transformations means that given a
specification for transforming models from a source modelling language into models in a target
language, then all source models can be completely transformed into corresponding target mod-
els. In the same given context, syntactical completeness of model synchronisations means that all
source model updates can be completely synchronised, resulting in corresponding target model
updates. This work is essentially based on the GraMoT book and mainly extends its results
for model transformations and synchronisations based on triple graph grammars by a new more
general notion of syntactical completeness, namely domain completeness, together with corre-
sponding verification techniques. Furthermore, the results are instantiated to the verification of
the syntactical completeness of software transformations and synchronisations. The well-known
transformation of UML class diagrams into relational database models and the transformation of
programs of a small object-oriented programming language into class diagrams serve as running
examples. The existing AGG tool is used to support the verification of the given examples in
practice.

v

Acknowledgements

First of all, I would like to thank Frank Hermann for his great support and patience. He did
a great job in guiding me and answering the big amount of questions that occured during my
PhD studies. Without the help of Frank, this work would not have been possible. Furthermore, I
would like to thank Benjamin Braatz, Barbara König and Claudia Ermel for their continous help,
for proofreading my work and for answering many questions. Also many thanks to Thomas
Engel and Raimondas Sasnauskas for supervising my thesis and for giving me the opportunity
to finish this thesis.
Supported by the Fonds National de la Recherche, Luxembourg
4895603.

vi

Contents

Foreword & Acknowledgements v

1 General Introduction 1
1.1 Models in Information Science . 1
1.2 Models, Transformations & Synchronisations 4
1.3 Graph Transformations for Model Trans. & Synchronisations 5
1.4 Organisation of this Thesis & Main Results . 7

1.4.1 Chapter 2: Model Transformations, Model Synchronisations & Formal
Framework . 8

1.4.2 Chapter 3: Domain Completeness . 9
1.4.3 Chapter 4: Domain Completeness of Model Transformations & Model

Synchronisations . 10
1.4.4 Chapter 5: Further Applications . 10
1.4.5 Chapter 6: Conclusion, Related & Future Work 10

2 Model Transformations, Synchronisations & Framework 11
2.1 General Introduction to Model Transformations & Synchronisations 11

2.1.1 Model Transformation . 11
2.1.2 Model Synchronisation . 15

2.2 Graph Transformation . 15
2.2.1 Graphs, Typed & Attributed Graphs . 16
2.2.2 M -adhesive Categories . 19
2.2.3 Graph Conditions & Constraints . 24
2.2.4 Graph Grammars, Transformations & M -adhesive Transformation Sys-

tems . 31
2.3 Model Transformation & Synchronisation based on TGGs 35

2.3.1 Triple Graphs & Triple Graph Grammars (TGGs) 35
2.3.2 Model Transformations based on TGGs 38
2.3.3 Model Synchronisations based on TGGs 40

2.4 Properties of Model Transformations & Synchronisations 43

3 Domain Completeness 45
3.1 Domain Completeness Problem & Undecidability 45
3.2 Verification of Domain Completeness . 48

vii

CONTENTS

3.3 Limitations . 70
3.3.1 Conditions are Sufficient but not Necessary 70
3.3.2 Graph Grammars with Non-Empty Start Graph 71
3.3.3 Graph Grammars with Deleting Productions 71
3.3.4 Initial & General Satisfaction . 71
3.3.5 Constraints & Application Conditions in M -normal Form 72
3.3.6 Termination Requires Upper Bound . 72

3.4 Recursive Graph Constraints . 73
3.5 Domain Restrictions . 92

4 Domain Completeness of Model Transformations & Model Synchronisations 105
4.1 Domain Completeness of Model Transformations 105
4.2 Domain Completeness of Model Synchronisations 113

5 Further Applications 115
5.1 Completeness of Software Transformations . 115

5.1.1 Introduction to Software Transformations 115
5.1.2 Software Transformations based on Triple Graph Grammars 116
5.1.3 Completeness Problem of Software Transformations 123
5.1.4 From EBNF Grammars to Attributed Type Graphs & Graph Constraints . 125
5.1.5 Completeness of Software Transformations 135

5.2 Completeness of Software Synchronisations . 135
5.3 Completeness of Static Semantics . 136
5.4 Completeness of Operational Semantics . 137

6 Conclusion, Related & Future Work 139

A Detailed Proofs 143
A.1 Proof of Sec. 2.2.3 and Prop. 2.1 . 143
A.2 Proof of Sec. 2.2.3 and Prop. 2.2 . 144
A.3 Proof of Sec. 3.1 and Thm. 3.1 . 146
A.4 Proof of Sec. 3.2 and Thm. 3.4 . 147
A.5 Proof of Sec. 3.2 and Lem. 3.2 . 149
A.6 Proof of Sec. 3.2 and Lem. 3.3 . 149
A.7 Proof of Sec. 3.2 and Lem. 3.6 . 150
A.8 Proof of Sec. 3.2 and Lem. 3.7 . 151
A.9 Proof of Sec. 3.2 and Lem. 3.12 . 152
A.10 Proof of Sec. 3.2 and Lem. 3.14 . 156
A.11 Proof of Sec. 3.2 and Thm. 3.3 . 160
A.12 Proof of Sec. 3.4 and Prop. 3.4 . 162
A.13 Proof of Sec. 3.4 and Prop. 3.7 . 166
A.14 Proof of Sec. 3.5 and Lem. 3.16 . 173
A.15 Proof of Sec. 3.5 and Thm. 3.10 . 174

References 176

Index 183

viii

Chapter1
General Introduction

While this chapter gives a short and general introduction to model transformations and synchro-
nisations, its completeness and correctness properties and the main results of this thesis, Chap. 2
gives a more in-depth introduction to model transformations, synchronisations, their properties
(in particular the completeness property) and their link to the theory of graph transformations as
the underlying formal framework.

1.1 Models in Information Science

Commonly, visual models are considered as being simplified versions of complex systems
[Béz05] that are obtained by a process of abstraction either from mental concepts or from the
properties and features of the sytem itself if it already exists during model creation. The pro-
cess of abstraction requires the identification of important properties of the intended system’s
application and use while omitting properties and features that are considered as being irrelevant
for the intended model usage. In this context, the properties that are captured by the model are
requirements on the intended system’s application and use. In most cases, system models are
used in contexts where the system itself is still in the process of being developed, i.e., the system
is (requirements are) only accessible by means of models during most stages of development.
Therefore, models have an important role in information science [Fet99, Tha11] with an image
characteristic in the sense that models are (simplified) images of the originals they represent
with the purpose to take models as substitutes for their originals within a given temporal and
situational context. The importance of models in information science is addressed by several
communities with the object management group (OMG) being one of the largest global initia-
tives. Models are the cornerstones of their work where each complex system is rather being
designed by means of visual models before being implemented [Put01]. This enables a view on
problems and their potential solutions before starting with an (extensive) full implementation and
therefore, reduces risks. At its extreme, the system is developed strictly by modelling and the
implementation is (completely) generated from models, i.e., “the model is the code.” [Tha11].

Furthermore it is generally stated that complex systems cannot be comprehended in their en-
tirety, as, the human capacity is limited and therefore, abstractions are necessary that allow us to
manage complexity [Qua98] by focusing on the relevant details only. In model-driven software
and systems development (MDD), models usually exhibit the following characteristics [Sel03].
The model must be (1) easy to understand for the intended group of model users, (2) accurate,
i.e., the model only reflects real properties of the system, (3) predictive, i.e., the model must be a
reflection of important, non-obvious properties of a system under development, (4) inexpensive,

1

1.1. MODELS IN INFORMATION SCIENCE

Supplier

Shopping

Delivered

Consumer

1:order

2:acknowledge

3:[Supplier.Checking]

/cancel

4:

Idle

Checking

Delivered

5:[Consumer.Wait4Delivery]

6:deliver/acknowledge

8:cancel
7:

1

Wait4Delivery

Shopping

order

acknowledge

Delivered

2

4

3

Idle

5

Checking

8

Consumer/Supplier Net

6

7

deliver

Delivered

Wait4Delivery

cancel

Figure 1.1: Models in Information Science - Place/Transition System (left) & Statechart (right)

NamedEntity

+name:String

+address:String

Order

+id:Number

1
0..*

Consumer

+order(o:Order)

+acknowledge(o:Order)

+cancel(o:Order):Boolean

Supplier

+check(o:Order):Boolean

+cancel(o:Order)

+deliver(o:Order):Boolean

1

processedplaced

placedOn processedOn

1 n n 1

Consumer SupplierOrder

address addressname nameid

Figure 1.2: Models in Information Science - UML Class Diagram (left) & Entity-Relationship
Diagram (right)

i.e., the creation and analysis of a model must be cheaper than the implementation of the system
and its analysis itself.

Although most models share a common set of properties which make them identifiable as such,
Herbert Stachowiak [Sta73] and Bernd Mahr [Mah09, Mah10] each developed a comprehensive
theory of model-being. Instead of identifying an object as a model based on a definition with
a fixed set of properties, the model-being of an object is rather the result of a context-specific
judgement. An object O is interpreted as a model M of something A with the purpose for some-
thing B and therefore, O carries a cargo (some type of information) from A to B. The model
object O is produced based on (a subset of) the properties of original object A. Therefore, these
properties must be identifiable in an observation on O. Analogously, purpose B is realised based
on (a subset of) the properties of model object O. Therefore, these properties must be identifiable
in an observation on the resulting object B. Similarly, [MFBC12] advocates that model-being de-
pends on the existence of a representation relation between model object and its original where
a model is considered as the representation of its original.

Figs. 1.1 and 1.2 depict different types of system models from different perspectives and within
different problem domains that are used in MDD [WHR14, BBG05a, BBG05b] for communica-
tion between experts of the same domain and across different domains. Fig. 1.1 depicts models
of the dynamic behaviour of a given (concurrent) purchase order system that may be used to

2

CHAPTER 1. GENERAL INTRODUCTION

implement the behaviour in the form of operations in computer programs. In contrast to Fig. 1.1,
Fig. 1.2 depicts models that represent the static organisation of concepts (data) and their inter-
relationships in the system, i.e., the ontology for the domain of discourse (the purchase order
scenario). These models may be used to implement static aspects of the system, e.g., class def-
initions in an object-oriented programming language or relational database structures that both
may serve as the data basis for the operations in computer programs.

Fig. 1.1 (right) illustrates a UML statechart [UML15, RJB04]. UML statecharts are origi-
nated from classical hierarchical Harel statecharts [Har87, HKP05] which extend the formalism
of finite-state machines [DR15] mostly by hierarchically nested states and orthogonal regions
to enhance the readability and scalability of the models. The statechart consists of (system)
states (boxes) and transitions between states (arrows). Each transition describes some system
behaviour by the change from one system state to another state. Furthermore, the statechart is
separated into two orthogonal (concurrently operating) regions as marked by a dashed line. In
each region, the initial state is marked by a black node. Each transition has an inscription of the
form: [event][′[′condition′]′][′/′action] where [] is meant to be optional. A transition is enabled
if the source state of the transition is the current state, the event occured and the condition can
be evaluated to true. If a transition fires, then the current state changes to the target state of the
transition and the action is performed. The following behaviour of a consumer-supplier system
is modelled in Fig. 1.1 (right): The consumer and supplier start with Shopping and Idle, respec-
tively. After Shopping, the consumer may decide to order and consequently, waits for delivery
afterwards (state Wait4Delivery). If the consumer is waiting for delivery, the supplier immedi-
ately pass over to Checking the order. As long as the supplier is Checking and the consumer is
waiting, the consumer may cancel the order at any time which directly causes a cancellation on
the supplier side. After cancellation both sides return to their initial states. After Checking, the
supplier may decide to deliver the ordered items while asking the consumer to acknowledge the
receipt at the same time. Subsequently, the consumer acknowledges, both transition into state
Delivered and may return to their initial states at any time.

Fig. 1.1 (left) depicts a Petri net, more precisely a place/transition net with initial marking
[NMN+92, Rei85], which captures the same dynamic behaviour from Fig. 1.1 (right). The
marking is given by a (black) token distribution which defines the system state. By firing an
enabled transition (boxes) the state can be changed. A transition is enabled, if each input place
(circles with outgoing edges to the corresponding transition) contains a token. When a transition
is fired, all tokens from the input places are removed and for each output place (circles with in-
coming edges from the corresponding transition) a token is added. Therefore, for each transition
in Fig. 1.1 (right) there is a transition defined in Fig. 1.1 (left) and the initial states (each state
and event) in the statechart are (is) modelled by an initial marking (a place) in the net.

While the statechart delivers a readable model of the behaviour, the Petri net may be used for
formal analysis of the behaviour as supported by a variety of existing tools.

Fig. 1.2 (left) presents a UML class diagram [UML15, RJB04]. The diagram designates
classes Consumer, Supplier and Order as central concepts of the system. Consumers and
Suppliers are named entities (cf. inheritance relationship with class NamedEntity) and therefore,
they have a name and address both of type String. Furthermore, a Consumer has the following
operations (possible behaviour): A Consumer may: 1. place an Order o, 2. acknowledge the
receipt of an Order o, or 3. cancel an Order o with Boolean return value. By Fig. 1.1, a cancella-
tion is only possible if the Supplier is checking the order as indicated by a Boolean return value
which returns true in case of success and otherwise false. Similarly, a Supplier may: 1. check an
Order o, 2. cancel an Order o, or 3. deliver an Order o. Furthermore by the interrelationships as
given in the diagram: 1. Each Consumer may have placed an arbitrary number of Orders, each

3

1.2. MODELS, TRANSFORMATIONS & SYNCHRONISATIONS

Order identified by an id, 2. each Supplier may have processed an arbitrary number of Orders,
and 3. each Order was placed (processed) by exactly one Consumer (Supplier).

Fig. 1.2 (right) presents an entity-relationship diagram containing the same concepts and inter-
relationships from the class diagram. However, note that the operations (suggestions of possible
behaviour) of the entities are missing, the interrelationships placed and processed become ex-
plicit figures with additional attributes placedOn and processedOn instead of simple arrows and
attributes name and id are particularly marked as unique instance identifiers (primary keys).

Therefore, the class diagram is rather used to generate the base frame of a program in an
object-oriented programming language while the entity-relationship diagram is used to create
the structure of a relational database that may be used by the program.

1.2 Models, Transformations & Synchronisations

Sec. 1.1 already highlighted the importance of models in information science especially in the
model-driven development of software and systems in general. It was stated and supported by
different concrete examples that models are created and intended to be used in the context of
different problem domains where they capture requirements on the intended system’s application
and use from different perspectives. The requirements may change over time, need to be refined
or may be inferred from requirements that are formulated in other domains. This implies that
models may be transformed either within the same domain-specific modelling language (DSL)
or into models in another language. Furthermore, model updates may be synchronised between
interrelated models and different domains.

For example, the net in Fig. 1.1 (left) can be completely inferred from the statechart (right). A
corresponding model transformation from models that are formulated in the DSL of UML state-
charts into models that are formulated in the DSL of place/transition nets is given in [EEPT06].
Vice versa, UML statecharts cannot be completely inferred from place/transition nets in any
cases, since, the statecharts may contain information (e.g., the explicit separation into concur-
rently operating sub-systems (orthogonal regions)) that are not available in (flat) nets. However,
a transformation from place/transition nets into statecharts can be used in order to obtain initial
statechart models from existing nets and where the statecharts are refined at a later step, e.g., by
adding orthogonal regions. While a transformation from UML statecharts into place/transition
nets may be used for simulating the behaviour of the model based on the net [HS04], the reverse
transformation may be used in order to obtain a more readable model in the form of a statechart
from the net.

The same is true for the examples in Fig. 1.2. UML class diagrams and entity-relationship
diagrams share a common set of knowledge while containing exclusive information at the same
time. While both share the knowledge of domain entitites (Consumer, Supplier and Order)
and their interrelationships, class diagrams may additionally capture operations for each entity
and entity-relationship diagrams may make the interrelationships more explicit as well as may
mark specific attributes as unique instance identifiers (primary keys). However, analogously to
the place/transition net-statechart scenario, it is common practice to derive entity-relationship
diagrams from class diagrams and vice versa in order to obtain initial models in the one do-
main from existing models in the other domain. This transformation is also referred to as the
object-relational mapping between the concepts in object-oriented programming languages and
concepts in relational database systems.

By this means, each class diagram may be in relation with a corresponding entity-relationship
diagram. Therefore, a model update on a class diagram need to be synchronised with its entity-
relationship diagram and vice versa. For example, by changing the attribute of entity Order in

4

CHAPTER 1. GENERAL INTRODUCTION

G G

p=(LHS,RHS)LHS RHS

Corr1

p1

(1)

LHS2

(2)
(1)

(3)

(1)
(2)

Corr2

Corr3

p2

p3

Domain D1 Domain D2Correspondence

G0,1:

G3,1:

G1,1:

G2,1:

:G1,2

:G2,2

:G3,2

LHS2

LHS1

LHS3

LHS1

LHS1

LHS1

LHS2

LHS2

LHS3

:G0,2∅ ∅

Figure 1.3: Rule-Based Graph Transformation Step (left) & Model Transformation Sequence
(right)

Fig. 1.2 (left) from id to uid, in order to emphasize the uniqueness of the identifier, this change
must lead to a corresponding update in Fig. 1.2 (right).

Note that especially if we think of model-being as a result of a judgement (cf. Sec. 1.1),
“Everything is a Model” [Béz05] or more precisely, everything can be construed as a model, be
it a mental concept or a physical entity. In this thesis, we focus on visual models in the form given
in Figs. 1.1 and 1.2, their transformation and synchronisation. The typical example of model-
to-model transformations, the transformation from UML class diagrams to relational database
models (CD2RDBM) [EEGH15], serves as the running example throughout all chapters. In
Sec. 2.1, we review general basic notions of model transformations and synchronisations in more
detail.

1.3 Graph Transformation for Model Transformations & Model
Synchronisations

In this thesis, the theory of graph transformations is used as the consistent formal framework
for defining models, model updates and model transformations as well as for performing model
transformations and synchronisations [EEPT06, EEGH15]. Therefore, models are represented
by graphs. We assume that most types of visual models as given in Sec. 1.1 can be represented by
graphs. Essentially, a graph consists of a set of nodes and a set of edges between nodes. A model
update defines which part of a graph is deleted and which part is added by the update. A model
transformation is defined in terms of a set of graph transformation rules. A transformation rule
(or production) p = (LHS,RHS) contains a left-hand side (LHS) and a right-hand side (RHS).
When applying a rule p to a graph G, then G is transformed in the sense that LHS is replaced by
RHS in G leading to a new graph G′, denoted by G =

p⇒ G′ (cf. Fig. 1.3 (left)). Therefore, if LHS
is a subgraph of RHS (i.e., p only creates elements and therefore is non-deleting) then RHS\LHS
is mainly added to G while LHS is preserved by the rule application. Otherwise, if intersection

5

1.3. GRAPH TRANSFORMATIONS FOR MODEL TRANS. & SYNCHRONISATIONS

LHS∩RHS 6= LHS, then LHS \RHS is deleted in G, LHS∩RHS is preserved and RHS \ LHS
is added to G. Note that this is an intuitive approach to graph transformations via set-theoretic
operations \ and ∩ on nodes and edges of graphs while technically, transformations are defined
based on the category-theoretic concept of pushouts (cf. Sec. 2.2.4).

Commonly, model transformations from models in source domain D1 (e.g., UML class dia-
grams) into models in target domain D2 (e.g., entity-relationship diagrams) are defined based on
a set of non-deleting graph transformation rules and performed by graph transformations, i.e.,
by applying transformation rules successively (so called model transformation sequences) as il-
lustrated in Fig. 1.3 (right). The source (input) model (graph) G0,1 of a transformation sequence
in source domain D1 is traversed step-wise in n steps and target (output) model (graph) Gn,2 in
target domain D2 is constructed in parallel as follows:

1. At each step i (i ∈ {1 . . .n}), a rule pi = (LHSi,RHSi) is applied to graph (Gi−1,1 ←
Corri−1 → Gi−1,2) leading to a new graph (Gi,1 ← Corri → Gi,2) where Gi,1 represents
the graph part in domain D1, Gi,2 the graph part in domain D2 and Corri is the correspon-
dence that relates elements from Gi,1 with elements from Gi,2. - The model transformation
sequence in Fig. 1.3 (right) consists of three steps (n = 3).

2. At the first step, only source graph G0,1 is given as input to the transformation while Corr0
and G0,2 are empty (- nothing is transformed yet). Therefore, by applying rule p1, LHS1 in
G0,1 is marked as transformed in G1,1 (by dark grey colouring) and Corr1 with dark grey
area (1) are added (i.e., LHS1 in G0,1 is transformed into G1,2 = (1)).

3. Analogously, in the following steps i, LHSi in (Gi−1,1←Corri−1→Gi−1,2) is transformed
into (i) in Gi,2. Note that LHSi may overlap with already transformed elements. For ex-
ample in Step 2 in Fig. 1.3 (right), LHS2 overlaps with LHS1 in domain D1 and with (1) in
domain D2 and the result of Step 2 is that LHS1+LHS2 in D1 together are transformed into
(1)+(2) in D2. Step 3 in Fig. 1.3 (right) shows the case where LHSi in D1 is transformed
one-to-one without changing its structure into (i) in D2. This is especially true for model
refactorings where domains D1 = D2, most steps are identical transformations and only a
small part of the input graph is changed and therefore transformed into different structures.

4. The transformation sequence terminates and is complete, if the input graph G0,1 is com-
pletely transformed, i.e., if G0,1 is completely coloured (or marked) with dark grey such as
is the case after Step 3 in Fig. 1.3 (right).

Thus, the rules for the model transformation are non-deleting, since, the source model is not
transformed in-place but is only traversed step-wise and is rather preserved by the transformation
while the target model is constructed in parallel.

Model synchronisations are performed based on model transformations w.r.t. a given model
update.

In the literature, a variety of different graph transformation approaches is discussed with each
having its own replacement mechanism for LHS by RHS in rule applications [Roz97, EEKR99,
EKMR99]. In this thesis, we use the algebraic approach to graph transformations [EEPT06]
which was extended to model transformations and synchronisations in [EEGH15]. In Sec. 2.2,
we review basic notions of algebraic graph transformation. In Sec. 2.3, we review basic technical
notions and concepts of model transformations and synchronisations based on graph transforma-
tions.

6

CHAPTER 1. GENERAL INTRODUCTION

Domain Completeness

Problem

Problem Solution:

Under-Approximation Verification

Approach

Undecidability

Domain Completeness of Model

Transformations & Synchronisations

Further Applications:

Completeness of Software

Transformations, Synchronisations

& Static Semantics

L (C)⊆L (GG)? L (C)⊆L (TGG)S

L (EBNF)≡L (C)

Figure 1.4: Main Results of this Thesis

1.4 Organisation of this Thesis & Main Results

Fig. 1.4 presents the main results of this thesis. The domain completeness problem is introduced
as the core problem statement. Generally, we assume that the set of allowed models (graphs)
in a given domain of discourse D, i.e., the visual domain-specific modelling language (DSL) of
D, is defined by a set of (domain) graph constraints. A graph constraint formulates structural
restrictions on graphs. Given a set of constraints C, then L (C) is the set of all graphs that satisfy
the restrictions which are formulated by the domain constraints in C. Therefore, L (C) is the
set of allowed models (graphs) in the given domain D, i.e., L (C) is the DSL of D. On the
other hand, a set of graph transformation rules together with a start graph form a graph grammar
GG. With L (GG) we denote the language of graphs that can be created by rule applications
starting at the start graph. The domain completeness problem is defined as follows: Does it hold
that L (C) ⊆ L (GG)? Therefore, can all graphs that satisfy the domain constraints in C be
created from the start graph in GG by successively applying the rules of graph grammar GG? -
OR - Is the set of domain constraints C as restrictive as or more restrictive than grammar GG,
respectively? - OR - Is DSL L (C) completely covered by the graph grammar GG?

It turns out that the domain completeness problem is undecidable in general, i.e., we can-
not find a complete computable solution to this problem. Therefore, we propose an under-
approximation solution to the domain completeness problem in order to verify the language
inclusion L (C)⊆L (GG) of domain completeness approximately. Basically, the solution con-
sists of a set of conditions that are sufficient but not necessary and need to be verified. Therefore,
the solution may lead to false negatives but not to false positives, i.e., if the conditions are ful-
filled, then it is ensured that the language inclusion holds. If the conditions are not fulfilled, then
the language inclusion may hold or not hold and additional checks may be necessary in order to
obtain (partial) truth.

Furthermore, we developed three main applications of the solution (cf. Fig. 1.4). The domain
completeness problem of model transformations is stated as follows: Can all allowed models in

7

1.4. ORGANISATION OF THIS THESIS & MAIN RESULTS

the given domain D (all graphs in L (C)) be transformed based on a given triple graph gram-
mar TGG? - OR - Does it hold that L (C) ⊆ L (TGG)S for forward model transformations
or L (C) ⊆ L (TGG)T for backward model transformations? Therefore, we have instantiated
our solution to the approximate verification of the language inclusion L (C) ⊆ L (TGG)S or
L (C) ⊆ L (TGG)T , respectively. Thus, the language inclusion problem is stated in the con-
text of a triple graph grammar TGG [ALS15, SK08, Sch94] instead of a flat graph grammar
GG where the TGG specifies the model transformation. The domain completeness problem of
model synchronisations is stated analogously: Can all allowed model updates in the given do-
main be synchronised? We show that this problem can be verified based on the results of model
transformations. The third application of the solution is to verify the completeness of software
transformations and synchronisations:

1. Can all programs (their abstract syntax trees (ASTs)) written in a given programming
language be transformed?

2. Can all program updates (updates of their abstract syntax trees (ASTs)) be synchronised?

Programs written in a given programming language are represented by their abstract syntax mod-
els (ASTs) and transformed by performing model transformations of ASTs based on a given
TGG. Commonly, programming languages are defined by a context-free word grammar. There-
fore the third application of the solution mainly focuses on solving the problem to close the gap
between the word grammar world and graph world by presenting a mapping from a context-free
grammar in Extended-Backus-Naur Form (EBNF) notation into a set of graph constaints C such
that the language of ASTs over the EBNF L (EBNF) is equivalent (isomorphic) to L (C), i.e.,
L (EBNF)≡L (C).

Fig. 1.5 presents the peer-reviewed publications for the period of this thesis and their assign-
ment to the corresponding chapters. Publications that are not assigned to a chapter contain no
direct contribution to this thesis.

After we have introduced the main results, we refer briefly to their chapters.

1.4.1 Chapter 2: Model Transformations, Model Synchronisations & Formal
Framework

While Chap. 1 gives a general introduction to the topic, in Chap. 2, we give a more in-depth
introduction to model transformations and synchronisations. We recall different classes of trans-
formations and synchronisations, i.e.:

1. In-place transformations vs. “external” transformations that preserve the source models,

2. horizontal vs. vertical transformations,

3. endogeneous vs. exogeneous transformations, and

4. model (text)-to-model (text) transformations.

Moreover, we clarify how meta-modelling is linked to model transformations and synchronisa-
tions.

We recall basic definitions and results of the theory of algebraic graph transformation. In
particular this includes the category AGraphsATGI of typed attributed graphs with node type in-
heritance, their rule-based transformation, graph grammars, (nested) graph conditions and con-
straints and M -adhesive transformation systems that generalise the concepts from attributed

8

CHAPTER 1. GENERAL INTRODUCTION

Title Authors Chapter
Towards the Propagation of Model Up-
dates along different Views in Multi-View
Models [GNE+16]

Susann Gottmann, Nico Nachtigall,
Claudia Ermel, Frank Hermann,
Thomas Engel

-

Triple Graph Grammars in the Large
for Translating Satellite Procedures
[HGN+14]

Frank Hermann, Susann Gottmann,
Nico Nachtigall, Hartmut Ehrig,
Benjamin Braatz, Gianluigi
Morelli, Alain Pierre, Thomas
Engel, Claudia Ermel

Sec. 5.1

Solving the FIXML2Code-case Study
with HenshinTGG [HNB+14]

Frank Hermann, Nico Nachtigall,
Benjamin Braatz, Thomas Engel,
Susann Gottmann

-

Towards Domain Completeness for Model
Transformations Based on Triple Graph
Grammars [NHBE14]

Nico Nachtigall, Frank Hermann,
Benjamin Braatz, Thomas Engel

Chap. 3

On an Automated Translation of Satellite
Procedures Using Triple Graph Grammars
[HGN+13]

Frank Hermann, Susann Gottmann,
Nico Nachtigall, Benjamin Braatz,
Gianluigi Morelli, Alain Pierre,
Thomas Engel

Sec. 5.1

Correctness and Completeness of Gen-
eralised Concurrent Model Synchronisa-
tion Based on Triple Graph Grammars
[GHN+13]

Susann Gottmann, Frank Hermann,
Nico Nachtigall, Benjamin Braatz,
Claudia Ermel, Hartmut Ehrig,
Thomas Engel

Sec. 4.2

Symbolic Execution of Satellite Con-
trol Procedures in Graph-Transformation-
Based EMF Ecosystems [NBE13]

Nico Nachtigall, Benjamin Braatz,
Thomas Engel

Sec. 5.4

Transformation Systems with Incre-
mental Negative Application Conditions
[CHH+12]

Andrea Corradini, Reiko Heckel,
Frank Hermann, Susann Gottmann,
Nico Nachtigall

-

Figure 1.5: List of Publications

graphs to a variety of different types of graphs (and other structures). Note that the main re-
sults have been developed with a focus to be applied in AGraphsATGI . Furthermore, we review
the notions of triple graphs, triple graph grammars (TGGs) and model transformations / syn-
chronisations based on TGGs. Finally, we give an overview of important properties of model
transformations and synchronisations with a focus to the completeness property.

1.4.2 Chapter 3: Domain Completeness

Chap. 3 introduces the domain completenes problem, shows its undecidability and presents an
approximative solution to this problem. It is shown how to verify the domain completeness
problem. Moreover, limitations of the verification approach are discussed and the concept of
recursive graph constraints is introduced in order to allow an application of the approach in the
context of infinite domain constraints. For example, infinite graph constraints are used when de-
scribing regular paths in graphs. Two methods are presented for deriving finite graph constraints
from infinite graph constraints such that the verification process can terminate. Finally, we con-
sider the verification of domain completeness under restrictions of the domain type graph. This

9

1.4. ORGANISATION OF THIS THESIS & MAIN RESULTS

reflects the situation where only a subset of all constituents of the given domain is subjected to
the verification.

1.4.3 Chapter 4: Domain Completeness of Model Transformations & Model Syn-
chronisations

In Chap. 4, we instantiate the results from Chap. 3 to the verification of domain completeness
of model transformations and model synchronisations. We reformulate the completeness prob-
lem in the context of transformations and distinguish between forward and backward domain
completeness of transformations and synchronisations.

1.4.4 Chapter 5: Further Applications

Chap. 5 presents further applications of the previous verification results for domain complete-
ness. In particular, this includes the instantiation of the results to the verification of the com-
pleteness of software transformations and synchronisations. Furthermore, it is shown to which
extend the concept of recursive graph constraints from Chap. 3 can be used for the verification
of completeness in the context of expressing static semantics in models.

1.4.5 Chapter 6: Conclusion, Related & Future Work

In Chap. 6 we conclude and discuss related work and aspects of future work.

10

Chapter2
Model Transformations, Model

Synchronisations & Formal Framework

2.1 General Introduction to Model Transformations & Synchroni-
sations

The initial introduction to model transformations and synchronisations from Sec. 1.2 is extended
to a more detailed view in the following Sects. 2.1.1 and 2.1.2.

2.1.1 Model Transformation

Fig. 2.1 illustrates different types of model transformations. In general, a model transformation
MT : L (D1)VL (D2) is a relation that maps (transforms) models M ∈L (D1) in a domain-
specific modelling language (DSL) L (D1) in source domain D1 (in)to models M′ ∈ L (D2)
in DSL L (D2) in target domain D2 [MG06]. Therefore, (M,M′) ∈ MT means that model M
expressed in modelling language L (D1) is transformed into model M′ expressed in modelling
language L (D2) via model transformation MT . The model transformation is exogeneous if lan-
uage L (D1) differs from langauge L (D2) (L (D1) 6= L (D2)) and is endogeneous otherwise
(L (D1) = L (D2)). Moreover, the model transformation is horizontal if the models in L (D1)
and the models in L (D2) are representations of their originals at the same layer of abstraction.
Otherwise, if the layer of abstraction of L (D1) differs from the layer of abstraction of L (D2),
then the model transformation is vertical. According to [MG06], the following examples high-
light the different types of transformations:

1. Endogenous & horizontal: Model refactoring or simplification, i.e., changing or simpli-
fying the internal structure of a model in order to obtain a better readability, reusability,
modularity or adaptability but without changing the meaning or behaviour of the model
itself,

2. Endogenous & vertical: Model refinement (abstraction), e.g., by addding (removing)
more concrete (platform-specific) details to (from) a model while staying in the same mod-
elling language,

3. Exogenous & horizontal: Language migration, i.e., migration of models from one DSL
to another modelling language but by staying at the same layer of abstraction, and

11

2.1. GENERAL INTRODUCTION TO MODEL TRANSFORMATIONS & SYNCHRONISATIONS

DSL in D2DSL in D1

Meta-

model

in D1

Model M/M

induces

Meta-

model

in D2

induces

Model M/M horizontal &

exogenous

horizontal &

endogenous

vertical &

endogenous

conforms to

conforms to

conforms to

conforms to

 Domain D1 Domain D2

Abstract /

Platform-

independent

Concrete /

Platform-

specific

vertical &

exogenous

Model M/M

Model M/M

Figure 2.1: Classification of Model Transformations (Adaption from [EEGH15])

4. Exogenous & vertical: Code (model) generation, i.e., transforming visual models ex-
pressed in a more abstract (platform-independent) DSL into abstract syntax trees over a
platform-specific programming language that are serialised to source code at a later step
(or vice versa), e.g., the transformation from UML class diagrams into Java source code
[CH06].

For example, the model transformations from UML statecharts into place/transition nets and
from UML class diagrams into entity-relationship diagrams or vice versa in Sec. 1.2 are exoge-
nous transformations. If we neglect details that are only prevailing in one domain, e.g., orthog-
onal regions in statecharts or operations in class diagrams, then these transformations may be
considered as horizontal. Otherwise, they are rather vertical transformations, e.g., the additional
knowledge of operations of classes in class diagrams together with their visibilities to system de-
velopers (+ for public, - for private etc., cf. Fig. 1.2) gives a more concrete and platform-specific
view on the system compared to entity-relationship diagrams in this aspect. Transforming class
diagrams by adding operations to classes in the diagrams is rather a model refinement, i.e., an
endogenous and vertical model transformation. In contrast, a simple renaming of class or at-
tribute names is an endogenous and horizontal transformation. In the literature, endogenous
model transformations are associated with model rephrasing and exogenous transformations are
associated with model translations.

Furthermore, DSLs L (D1) and L (D2) are each defined by a meta-model in the correspond-
ing domain, i.e., L (D1) (L (D2)) is induced by a meta-model in domain D1 (D2) (cf. Fig. 2.1).
The meta-model defines the concepts of the domain and their interrelationships that can be used
in models. In turn, L (D1) (L (D2)) is the set of all models that conform to the meta-model in
D1 (D2), i.e., the models only contain the concepts and interrelationships of the meta-model as
model elements. For example, we consider the DSL of entity-relationship diagrams in the do-
main where we want to reflect over the different entities of a system and their interrelationships.
The modelling language is defined by the meta-model in Fig. 2.2. Entity-relationship diagrams
may contain several Entities and directed Relationships between them, i.e., each relationship
is directed from an entity to an entity. Moreover, entities and relationships may have several
Attributes that may be primary keys (isPrimary). By inheritance, each entity, relationship and
attribute is a NamedModelElement and therefore, has a name of type String. Note that the class

12

CHAPTER 2. MODEL TRANSFORMATIONS, SYNCHRONISATIONS & FRAMEWORK

Meta-meta-model

<<abstract>>

NamedModelElement

+name:String

Entity Relationship
Attribute

isPrimary:Boolean

has has

from,to

placedConsumer Order

Meta-model

Model

Class

+name:String

Attribute

+name:String

Association

+name:String

DataType

+name:String

from,

to

of

conforms to

conforms to

conforms to

has

 id name

*1 * 1

Figure 2.2: Different Layers of Meta-Modelling

NamedModelElement is declared as << abstract >>, i.e., entity-relationship diagrams are not
allowed to directly contain nodes of type NamedModelElement but only in the form of entities,
relationships and attributes. Therefore, the language of entity-relationship diagrams is given by
all diagrams (models) that conform to the meta-model. For example, the model in Fig. 2.2 con-
forms to the meta-model. Consumer and Order are Entities whereas placed is a Relationship
from Consumer to Order. Entity Consumer (Order) has a name (id) as Attribute which is
marked as primary key (isPrimary=true).

This view can also be applied to the meta-model where the language of meta-models is de-
fined by a meta-meta-model. Most meta-models can be expressed by means of the concepts of
class diagrams that are given in excerpts by the meta-meta-model in Fig. 2.2. Each meta-model
may contain several Classes and Associations from classes to classes. Furthermore, each class
may have several Attributes of some DataType and with some name of type String. Between
two classes there may be an inheritance relationship. For example, the meta-model in Fig. 2.2
conforms to the meta-meta-model. Entity, Attribute and Relationship are Classes that inherit
from class NamedModelElement. From class Entity to class Attribute there is an Association
with name has. The same is true for class Relationship and Attribute. The class Attribute has an
Attribute with name isPrimary of DataType Boolean. Analogously, class NamedModelElement
has an attribute of name name and of type String. In turn, the language of meta-meta-models
can be defined by a meta3-model such that the meta-meta-models conform to the meta3-model
etc.. However, in order to have a closure over the “conforms to” relation, OMG proposes a three-
layer hierarchy of meta-modelling, i.e., models, meta-models and meta-meta model, where the
meta-meta-model is defined by (conforms to) itself (cf. Fig. 6 in [HSGP13]). Note that for the

13

2.1. GENERAL INTRODUCTION TO MODEL TRANSFORMATIONS & SYNCHRONISATIONS

(a)

Meta-

model

in D1

Meta-

model

in D2

conforms to conforms to

Model M Model M

Corr

(b)

Meta-

model

in D1

conforms to

Model M2

Model M1

conforms to

Corr

Corr

Meta-

model

in D2

conforms to

Model M

Model M

conforms to
Update

Update

(c)

Meta-

model

in D1

Meta-

model

in D2

Transformation

Specification

from to
relates elements

Transformation

Language

Meta-meta-

model

conforms to

conforms to

<Input> <Output>
MT,

MSynch

conforms to conforms toexecutes

<Input>

<Output>

<Output>

<Output>

<Input>

<Input>

<Output>

conforms to conforms to

δ

δ ′

Figure 2.3: Setting of Model Transformations (a), Model Synchronisations (b) & their Execution
(c) (Adaption from [EEGH15, LAD+14])

language of class diagrams, the meta-meta-model may directly serve as the meta-model which
leads to only two layers of meta-modelling.

Fig. 2.3 (c) illustrates the execution of a model transformation that takes a source model M ∈
L (D1) over the meta-model in source domain D1 as input and outputs a target model M′ ∈
L (D2) over the meta-model in target domain D2 together with a correspondence (Corr) which
relates elements from M to M′ as depicted in Fig. 2.3 (a). The model transformation (MT) is
performed by executing the model transformation specification. The specification is defined
based on the two meta-models in domains D1 and D2 and defines which model elements in D1
should be transformed to which model elements in D2 by relating (mapping) model elements
from D1 to D2. The transformation specification is expressed in (conforms to) a transformation
language. The transformation language contains (allows to express) the set of all conceivable
mappings of model elements from D1 to D2. Therefore, the transformation language conforms
to the meta-models in domains D1 and D2 which in turn conform to a common meta-meta-
model (cf. Fig. 2.2), i.e., the transformation language indirectly conforms to this meta-meta-
model. Although, both meta-models may conform to different meta-meta-models in general, the
assumption of a common meta-meta-model of class diagrams is valid as already discussed.

Different model transformation approaches and tools [HLH+13, RHM+14] do exist. Beside
model transformation by-example [KLR+12] where the transformation specification is gener-
ated from a given source model, target model and their correspondence, different types of trans-
formation languages exist for explicitly specifying the transformation [GdLK+13], e.g., QVT
[QVT15], ATL [JABK08], triple graph grammars (TGGs) [ALS15] and ETL [KPP08]. Dif-
ferent types of transformation languages may allow transformation specifications in textual or
visual form and in declarative or operational manner [Men13]. While declarative transformation
specifications focus on the specific mapping of model elements between domains, operational
specifications additionally provide the concrete steps how the target model is derived from a
source model, e.g., by providing the concrete order of traversing the model elements of the
source model. Furthermore, we distinguish between in-place model transformations and “exter-
nal” transformations where the source model is preserved by the transformation while the target
model is constructed in parallel. Moreover, model-to-model transformations are distinguished

14

CHAPTER 2. MODEL TRANSFORMATIONS, SYNCHRONISATIONS & FRAMEWORK

from model-to-text, text-to-model and text-to-text transformations. However, note that any of
these types of transformations can be simulated by “external” model-to-model transformations
where the parallel target model is taken as output of an in-place transformation and text is parsed
to (serialised from) a model before (after) executing the model-to-model transformation. There-
fore, we focus on “external” model-to-model transformations based on TGGs that allow visual,
declarative transformation specifications. We review basic concepts and notions in Sects. 2.3.1
and 2.3.2. Beside the model-to-model transformation CD2RDBM from UML class diagrams to
relational database models in 2.3.2, we present software transformations, i.e., text-to-(text)model
transformations, from source code to visual models (or source code again) in Sec. 5.1.

2.1.2 Model Synchronisation

Basically, model synchronisations MSynch : ∆D1 → ∆D2 are performed based on model transfor-
mations where model updates δ ∈ ∆D1 in domain D1 are propagated (mapped) to (model updates
δ ′ ∈ ∆D2 in) domain D2 by performing model transformations. Therefore, the classification
of model transformations from Sec. 2.1.1 can also be applied to model synchronisations, i.e.,
model synchronisations may be 1. endogenous or exogenous, 2. horizontal or vertical, 3. based
on textual or visual transformation specifications, 4. based on declarative or operational trans-
formation specifications, and 5. propagations of updates from model-to-model, model-to-text,
text-to-model or text-to-text.

According to Fig. 2.3 (b), a model update in some domain D relates model M1 ∈L (D) from
before the update with model M2 ∈L (D) from after performing the update and therefore, the
update documents the changes to M1 which have led to M2. Thus, a model update relates models
that are expressed in the same DSL L (D), i.e., models M1 and M2 conform to the same meta-
model in domain D. Fig. 2.3 (c) illustrates the execution of a model synchronisation that takes
a model update δ in source domain D1 from model M1 to model M2 as input together with a
correspondence (Corr) which interrelates model M1 with model M′1 in target domain D2 to which
the update should be propagated. The execution outputs an update δ ′ in target domain D2 from
model M′1 to model M′2 together with a correspondence (Corr′) which relates model M2 with
model M′2. The model synchronisation (MSynch) is performed based on executing the model
transformation specification.

According to Sec. 2.1.1, we focus on model-to-model synchronisations based on TGGs that
allow visual, declarative transformation specifications. We review basic concepts and notions
in Sects. 2.3.1 and 2.3.3. Beside the model-to-model propagation of model updates from UML
class diagrams to relational database models in Sec. 2.3.3, we present software synchronisations,
i.e., text-to-model(text) propagations of updates from source code to visual models (or source
code again) in Sec. 5.2.

2.2 Graph Transformation

We recall basic definitions and results of the theory of algebraic graph transformation from
[EEPT06, EEGH15]. In particular this includes the category AGraphsATGI of typed attributed
graphs with node type inheritance from [GLEO12, EEGH15] in Sec. 2.2.1, their transforma-
tion and the generalisation to M -adhesive transformation systems from [EEGH15] in Sec. 2.2.4.
Furthermore, we review the notions of (nested) graph conditions and constraints as well as their
interpretation via AC-schemata from [HP09, EEGH15] in Sec. 2.2.3. Moreover, in Prop. 2.1 we
show that the direct interpretation of type strict conditions coincides with their interpretation via
AC-schemata when restricting to M -matches. For the general case, in Prop. 2.2 we show that

15

2.2. GRAPH TRANSFORMATION

TGCD TGC TGRDBM

Attr

a

type

Table

name:String

ColumnType

name:String

Column

name:String

type

cols

Classifier

{abstract}

Class

DataType

NamedElement

{abstract}

name:String

1

1 *
*

Mod

{abstract}

Const

mod
1

0..1

AC

CT

TT

CD

7:a

3:Const
5:mod

1:DataType

name= INT

6:type

typeCD

RDBM

2:Column

name= DOB

:cols

:Column

:cols,pkey

4:Table

name= Person

1:ColumnType

name= INT

:type :type

typeRDBM

2:AC

4:CT

1:TT

C

typeC

s t

pkey

4:Class

name= Person

2:Attr

name= DOB

fkey

Figure 2.4: Attributed Triple Type Graph (TGCD← TGC→ TGRDBM) (top) & Typed Attributed
Triple Graph (CD←s− C −t→ RDBM) (bottom)

the standard satisfiability of an AC-schema coincides with the O-satisfiability of the underlying
condition. This allows an interpretation of conditions via O-matches and O-satisfiability from
a user point of view while an interpretation via the standard satisfiability of AC-schemata with
M -matches is used to prove technical results.

2.2.1 Graphs, Typed & Attributed Graphs

We assume that (visual) models are represented by graphs (cf. Sec. 1.3). A plain graph consists
of nodes (vertices) and edges between nodes. An edge links a source node with a target node.
The presented notion of graphs allows parallel edges between two nodes and edge loops. A
morphism f : G1→G2 from a graph G1 to a graph G2 is a mapping from nodes and edges in G1
to nodes and edges in G2 such that the structure of G1 is preserved, i.e, the source (target) node
of each edge e in G1 is mapped to the source (target) node of edge f (e) in G2.

16

CHAPTER 2. MODEL TRANSFORMATIONS, SYNCHRONISATIONS & FRAMEWORK

Definition 2.1 (Graph and Graph Morphism (Def. 2.1 in [EEGH15])) A graph G =
(VG,EG,sG : EG → VG, tG : EG → VG) consists of a set of nodes VG, a set of edges EG and
two functions sG, tG that map the source node (via sG) and target node (via tG) to each edge.
A graph morphism f : G1 → G2 from G1 to G2 with f = (fV , fE) consists of two functions
fV : VG1 →VG2 , fE : EG1 → EG2 such that sG2 ◦ fE = fV ◦ sG1 and tG2 ◦ fE = fV ◦ tG1 . 4

A typed graph is a plain graph G together with a graph morphism from G to a distinguished
type graph TG that defines the typing of each node and edge in G - We say that G is typed
over TG. Therefore, a type graph is part of the meta-model for a given domain and defines the
concepts (node types) for the domain and their interrelationships (edge types) that can be used in
graphs as models in the domain (cf. Sec. 2.1.1 and Fig. 2.2). A typed graph morphism between
two typed graphs is a graph morphism that additionally preserves the typing.

G1
f

//

typeG1
��

(=)

G2

typeG2
��

TG

Definition 2.2 (Typed Graph and Typed Graph Morphism (Def. 2.2 in
[EEGH15])) Given a distinguished graph TG as the type graph. A
typed graph GT = (G, typeG : G → TG) over TG is given by a graph
G and a graph morphism typeG from G to TG. A typed graph morphism
f : GT

1 → GT
2 is a graph morphism f : G1 → G2 such that typeG2

◦ f =
typeG1

. 4

Attributed graphs are defined based on the notion of E-graphs that allow the attribution of
edges and nodes. The set of possible attribute values is defined by an algebra. For an introduction
to algebraic signatures and algebras we refer to [EEPT06].

EG
G

sG
G

++

tG
G

33 V G
G

EG
EA

sG
EA

DD

tG
EA // V G

D EG
NA

sG
NA

ZZ

tG
NAoo

Definition 2.3 (Attributed Graph and Attributed Graph
Morphism (Def. 2.4 in [EEGH15])) An E-graph
GE = (V G

G ,V G
D ,EG

G ,E
G
NA,E

G
EA,(s

G
i , t

G
i)i∈{G,NA,EA}) with

graph nodes V G
G , data nodes V G

D , graph edges EG
G ,

node attribute edges EG
NA, edge attribute edges EG

EA
and source and target functions sG

i , t
G
i with signatures

as defined on the right. An E-graph morphism f : GE
1 → GE

2 with f = ((fVi : V G1
i →

V G2
i)i∈{G,D},(fE j : EG1

j → EG2
j) j∈{G,NA,EA}) is a pair of tuples of functions fVi for mapping nodes

and functions fE j for mapping edges from GE
1 to GE

2 such that f commutes with all source and
target functions. Given a data signature DSIG = (S,OP), then an attributed graph over DSIG
is given by G = (GE,DG) with GE being an E-graph and DG being a DSIG-algebra such that
∪̇s∈S(DG,s) = V G

D . Given attributed graphs G1 and G2 over common DSIG, then an attributed
graph morphism f : G1→G2 from G1 to G2 with f = (fG, fD) is a pair of an E-graph morphism
fG : GE

1 →GE
2 and an algebra homomorphism fD : DG1→DG2 such that fG,VD(x) = fD,s(x) for all

x ∈ DG1,s,s ∈ S. With (V G
G ,(EG

X)X∈{G,NA,EA}) we refer to the (structural) graph part of attributed
graph G and distinguish it from its data part (V G

D ,DG). With fS = (fG,VG , fG,EG , fG,ENA , fG,EEA) we
refer to the (structural) graph part of attributed graph morphism f and distinguish it from its data
part fD. 4

Typed and attributed graphs (morphisms) are combined to typed attributed graphs (mor-
phisms).

Definition 2.4 (Typed Attributed Graph and Morphism (Def. 2.5 in [EEGH15])) Given a dis-
tinguished attributed graph ATG = (TG,Z) as attributed type graph with Z being the final DSIG-
algebra. The final DSIG-algebra contains exactly one element in each carrier set. A typed at-
tributed graph GT = (G, typeG : G→ ATG) over ATG is given by an attributed graph G over

17

2.2. GRAPH TRANSFORMATION

DSIG and an attributed graph morphism typeG from G to ATG. Given typed attributed graphs GT
1

and GT
2 over common ATG, then a typed attributed graph morphism f : GT

1 →GT
2 is an attributed

graph morphism f : G1→ G2 such that typeG2
◦ f = typeG1

. 4

Remark 2.1 (Typed Attributed Graphs with Node Type Inheritance) Typed attributed graphs
and morphisms are extended to typed attributed graphs and morphisms with node type inher-
itance. Therefore, the type graph is extended with an additional inheritance relation between
nodes that defines which nodes in the type graph inherit from which other nodes. Furthermore,
nodes in the type graph can be explicitly marked as abstract, i.e., abstract nodes cannot be di-
rectly used as concrete types for nodes in graphs that are typed over this type graph. A node A
that inherits from a node B shares all node attributes as well as incoming and outgoing edges
of B with B. If node A inherits from node B, then A is called the sub-node (sub-type) of B
whereas B is called the super-node (super-type) of A. A morphism between two typed attributed
graphs G1 and G2 with node type inheritance may refine the types of nodes from G1 to G2 by
mapping nodes in G1 of super-type B to nodes in G2 of sub-type A. Basically beside abstract
nodes, typed graphs with node type inheritance do not lead to additional expressiveness in com-
parison to graphs without node type inheritance, since, the type graph with inheritance can most
widely be flattened to a type graph without inheritance information by duplicating edges and
attributes from super-nodes to sub-nodes (cf. Def. 6 in [GLEO12]). However, type graphs with
inheritance allow a more compact notation in comparison to their flattened versions (cf. Figs. 1
and 4 in [GLEO12]). We allow inheritance in type graphs and refer to [GLEO12] for technical
details. 4

Example 2.1 (Attributed Type Graph & Typed Attributed Graph) Fig. 2.4 depicts attributed
type graphs TGCD and TGRDBM for class diagrams (CD) and relational database models (RDBM).
Both type graphs are part of the meta-models for the domains of CDs and RDBMs. Class di-
agrams may contain several Classes, each with a set of class Attributes that are assigned via a
edges to the class. Furthermore, each attribute is typed by a Classifier. By node type inheritance,
classifiers are classes or other DataTypes. Furthermore by node type inheritance, each class,
attribute and data type is a NamedElement and therefore has a specific name of type String.
Moreover, attributes may have a Modifier Constant which declares that the attribute value does
not change. Note that nodes NamedElements, Classifiers and Modifiers are marked as abstract
and therefore, they cannot be directly used as concrete types in class diagrams but their sub-nodes
(sub-types).

Relational database models may contain several Tables. A table has a name of type String and
may have several Columns assigned via cols edges where one column may contain the primary
keys of the rows of the table (edge pkey) or columns may refer to other tables by foreign keys
(fkey). Furthermore, each column has a specific name of type String and is of a specific type.
Analogously, each column type has a name of type String.

The multiplicity constraints on the edges in type graph TGCD are expressed by graph con-
straints in Sec. 2.2.3 and Ex. 2.3 and complete the meta-model for the domain of UML class
diagrams.

Typed attributed graph CD (RDBM) is a class diagram (relational database model) typed over
type graph TGCD (TGRDBM) via morphism typeCD (typeRDBM). The class diagram CD contains
a class of name “Person′′ together with a class attributes “DOB′′ (date of birth) of type “INT′′.
Furthermore, attribute “DOB′′ is equipped with modifier Const (constant). For typing, node 2 in
CD is mapped to node Attr in TGCD along morphism typeCD. All other nodes, edges and node
attributes in CD are mapped analogously. The formal notation of graph CD is given below:

18

CHAPTER 2. MODEL TRANSFORMATIONS, SYNCHRONISATIONS & FRAMEWORK

CD = (CD, typeCD : CD → TGCD) where CD = (CDE = (V CD
G ,V CD

D ,ECD
G ,ECD

NA ,E
CD
EA ,

(sCD
i , tCD

i)i∈{G,NA,EA}),DCD) with
V CD

G = {1,2,3,4},
V CD

D = DCD,String,

ECD
G = {5,6,7},

ECD
NA = {a,b,c},

ECD
EA = {},

sCD
G = (5 7→ 2,6 7→ 2,7 7→ 4),

tCD
G = (5 7→ 3,6 7→ 1,7 7→ 2),

sCD
NA = (a 7→ 1,b 7→ 2,c 7→ 4),

tCD
NA = (a 7→ “INT ′′,b 7→ “DOB′′,c 7→ “Person′′),

sCD
EA = tCD

EA =∅,
DCD = (DCD,String = {w∗ | w ∈ {a..z,A..Z}},OPDCD = ∅) being a DSIG-algebra for algebraic
data signature DSIG = (S = {String},OP =∅), and
typeCD = (typeCD,G = (typeCD,VG

, typeCD,VD
, typeCD,EG

, typeCD,ENA
, typeCD,EEA

), typeCD,D : DCD→
DTGCD) being the type morphism with
typeCD,VG

= (1 7→ DataType,2 7→ Attr,3 7→Const,4 7→Class),
typeCD,VD

(x) = typeCD,D,String(x),∀x ∈ DCD,String,
typeCD,EG

= (5 7→ mod,6 7→ type,7 7→ a),
typeCD,ENA

= (a,b,c 7→ name),
typeCD,EEA

=∅, and
typeCD,D,String(x) = String,∀x ∈ DCD,String for final DSIG-algebra DTGCD = (DTGCD,String =
{String},OPDTGCD

=∅) of attributed type graph TGCD.
The relational database model RDBM contains a corresponding Table, Column and

ColumnType for each Class, Attribute and DataType of class diagram CD. The formal nota-
tion of typed attributed graph RDBM is analogously to CD. 4

Visual Notation As depicted in Fig. 2.4, nodes (edges) in typed graphs are visualised by x : y
with x being the name of the node (edge) and y being the type of the node (edge). The mapping
of nodes and edges along morphisms correspond to their naming in visual notation, e.g., in
visualisations of graph conditions, graph transformation rules, triple graphs and model updates
(cf. Sects. 2.2.3, 2.2.4, 2.3.1 and 2.3.3). We omit node and edge names in visualisations if they
are irrelevant and write : y instead of x : y. Note that in formal notation of attributed graphs, node
(and edge) attributes are edges and attribute values are nodes. However, in visual notation we
write attr = x for attribute attr with value x directly in the corresponding node (or edge) shape.
For an explicit visualisation of attributed graphs in E-graph notation we refer to Ex. 8.5 in
[EEPT06]. Although technically, a node or edge may have the same attribute several times (with
possibly different attribute values), usually in practice, each node and edge has each attribute at
most once such that the mapping of attributes and their values along morphisms is clear and is
not explicitly visualised.

2.2.2 M -adhesive Categories

In the following, we review the notion of M -adhesive categories as a generalisation of the cate-
gory of typed attributed graphs. For a short introduction to category theory we refer to [EEPT06]
and for a more detailed view we refer to [EM90, AHS90].

19

2.2. GRAPH TRANSFORMATION

Remark 2.2 (Basic Notions of Category Theory & Category AGraphsATGI) A category C =
(ObC,MorC,◦, id) is defined by a class ObC of objects, a set MorC of morphisms f : A→ B
between objects A,B ∈ ObC, for all objects A,B,C ∈ ObC and morphisms f : A→ B,g : B→
C ∈ MorC a composition g ◦ f ∈ Mor, and for each object A ∈ ObC an identity morphism
idA : A→ A ∈MorC such that “Associativity:” For all objects A,B,C,D ∈ ObC and morphisms
f : A→ B,g : B→C,h : C→ D ∈MorC it holds that (h◦g)◦ f = h◦ (g◦ f), and “Identity:” For
all objects A,B∈ObC and morphisms f : A→ B∈MorC it holds that f ◦ idA = f and idB ◦ f = f
(cf. Def. A.1 in [EEPT06]). A functor F : C→ D is a mapping from objects and morphisms of
category C to objects and morphisms of category D which is compatible with composition and
the identities (cf. A.6 in [EEPT06]). Inclusions i : A→ B are morphisms with i(A) = A. With
mono- epi- and iso-morphisms we denote special types of morphisms in categories C. Intuitively,
an isomorphism is a morphism between two objects of the same structure that additionally pre-
serves this structure. According to Def. A.9 in [EEPT06], morphism f : A→ B ∈ MorC is an
isomorphism, if there exists an inverse morphism f−1 : B→ A ∈MorC such that f−1 ◦ f = idA

and f ◦ f−1 = idB. In this context, the inverse morphism f−1 is unique and also an isomor-
phism (cf. Rem. A.10 in [EEPT06]) and the composition i2 ◦ i1 of two isomorphisms i1, i2 is
again an isomorphism. We write G ∼= G′ and say that G is isomorphic to G′, if there exists
an isomorphism i : G→ G′. According to Def. A.12 in [EEPT06], mono- and epi-morphisms
are defined as follows. A morphism h : B→ C ∈ MorC is a monomorphism, if for all mor-
phisms f ,g : A→ B ∈MorC it holds that h ◦ f = h ◦ g implies f = g. Conversely, a morphism
f : A→ B ∈ MorC is an epimorphism, if for all morphisms g,h : B→ C ∈ MorC it holds that
g ◦ f = h ◦ f implies g = h. Note that an isomorphism is both an epi- and monomorphism but
a morphism that is an epi- and monomorphism must not be an isomorphism in general, since,
the inverse morphism may not exist. According to Def. A.16 in [EEGH15], a morphism pair
(f1 : A1 → B, f2 : A2 → B) is jointly epimorphic, if for all morphisms g,h : B→ C it holds that
g ◦ fi = h ◦ fi for i = 1,2 implies g = h. Given the category AGraphsATGI with all typed at-
tributed graphs over attributed type graph ATGI with node type inheritance as objects and all
typed attributed graph morphisms between them as morphisms where furthermore, the identities
are given by the componentwise identities on nodes, edges, attributes and algebras and the com-
position g◦ f is given by g(f (x)) componentwise for all nodes, edges, attributes and elements x
of carrier sets in the corresponding algebra (cf. Sec. 2.2.1 and Def. 2.4). Then, the monomor-
phisms are exactly those morphisms that are componentwise injective, the epimorphisms are
exactly those morphisms that are componentwise surjective and isomorphisms are exactly those
morphisms that are componentwise bijective (i.e., both injective and surjective) (cf. Fact 2.15 in
[EEPT06]). The jointly epimorphic pairs of morphisms are exactly those pairs that are together
surjective. Basic constructions in categories are pushouts and pullbacks. A pushout B+A C is the
gluing of objects B,C via common sub-object A. In AGraphsATGI , if A = ∅ is the empty graph
∅, then B+A C is the componentwise disjoint union of graphs B and C. In contrast, a pullback is
the intersection of objects B and C via common object D.

20

CHAPTER 2. MODEL TRANSFORMATIONS, SYNCHRONISATIONS & FRAMEWORK

X
x
��

hX
**

kX

��

A f //

g

��

B

g′

��
hY

��

(1)

C f ′ //

kY
**

D
y
��

Y

A pushout (PO) (1) or (f ′,g′) over morphisms (f ,g), written
B+A C, is defined by 1. a pushout object D, and 2. morphisms
f ′,g′ with f ′◦g= g′◦ f , such that the following universal prop-
erty is fulfilled: for all objects Y and morphisms hY ,kY with
kY ◦ g = hY ◦ f , there is a unique morphism y : D→ Y such
that y ◦ g′ = hY and y ◦ f ′ = kY (cf. Def. A.17 in [EEPT06]).
Note that the pushout object is unique up to isomorphism (cf.
Rem. A.18 in [EEPT06]) and furthermore, (f ′,g′) is jointly
epimorphic. According to Def. A.20 in [EEPT06], for pushout
(1), (f ′,g) is called the pushout complement over (f ,g′). The
“smallest” pushout (1) with f , f ′ ∈M for a given morphism g′ is called initial pushout for g′. In
categories of graphs, the initial pushout (1) is the smallest pushout for g′ in the sense that bound-
ary graph A only contains those graph elements of B that are necessary to glue B and context
graph C via common A to D. For technical details we refer to Def. 4.23, item 4 in [EEGH15].
The pushout complement over (hX ,g′) exists if and only if for the initial pushout (1) for g′, there
is a morphism b∗ : A→ X such that hX ◦ b∗ = f (cf. Thm. 6.4 in [EEPT06]). A pullback (PB)
(1) or (f ,g) over morphisms (f ′,g′) is defined by 1. a pullback object A, and 2. morphisms
f ,g with g′ ◦ f = f ′ ◦ g, such that the following universal property is fulfilled: for all objects X
and morphisms hX ,kX with f ′ ◦ kX = g′ ◦ hX , there is a unique morphism x : X → A such that
f ◦ x = hX and g ◦ x = kX (cf. Def. A.22 in [EEPT06]). With diagram (1) commutes we mean
that g′ ◦ f = f ′ ◦g. With (1)+(2) we denote the composition of two adjacent diagrams. 4

M -adhesive categories are defined based on the following properties. For M -morphisms
m, we write m ∈M and say that m is in M . For several M -morphisms m1, . . . ,mn we write
m1, . . . ,mn ∈M .

Definition 2.5 (PO-PB compatibility (Def. 4.2 & Rem. 4.3 in [EEGH15])) A morphism class
M in a category C is called PO-PB compatible if

1. M is a class of monomorphisms, contains all identities (and isomorphisms), is closed
under composition (M -composition), i.e., (f : A → B ∈M ,g : B → C ∈M =⇒ g ◦
f ∈M), and is closed under decomposition (M -decomposition), i.e., g◦ f ∈M ,g ∈M
implies f ∈M .

2. C has pushouts and pullbacks along M -morphisms (i.e., if f ∈M or g ∈M (f ′ ∈M
or g′ ∈M), then there is a pushout (pullback) (1)), and M -morphisms are closed under
pushouts and pullbacks (i.e., M -morphisms are preserved by pushouts and pullbacks - for
pushout (pullback) (1), if f ∈M (f ′ ∈M), then f ′ ∈M (f ∈M)).

4

For M -van Kampen squares, we refer to Def. 4.1 in [EEGH15].

Definition 2.6 (M -adhesive Category (Def. 4.4 in [EEGH15])) A category C with a PO-PB
compatible morphism class M is called an M -adhesive category (C,M) if pushouts in C along
M -morphisms are M -van Kampen squares. 4

In addition to the properties in Defs. 2.5 and 2.6, the following basic HLR properties hold for
M -adhesive categories (we only list those basic HLR properties that are used in proofs of results
of this thesis - For a complete list we refer to Def. 4.21 in [EEGH15]).

21

2.2. GRAPH TRANSFORMATION

Definition 2.7 (Basic HLR properties (Thm. 4.22 in [EEGH15])) Given an M -adhesive cate-
gory (C,M), then the following properties are valid:

A

l

��

k // B r //

s

��

E

v

��

(1) (2)

C u
// D w

// F

• Pushouts along M -morphisms are pullbacks, i.e.,
given pushout (1) with k ∈M , then (1) is also a pull-
back.

• M -pushout-pullback decomposition, i.e., given com-
muting (1) and (2) where (1)+ (2) is a pushout, (2)
is a pullback, w ∈M , and (l ∈M or k ∈M), then (1) and (2) are pushouts and also
pullbacks.

• Uniqueness of pushout complements, i.e., given morphisms k ∈M and s, then there is, up
to isomorphism, at most one C with morphisms l,u such that (1) is a pushout. 4

Remark 2.3 (M - and O-Morphisms in the M -adhesive Category (AGraphsATGI,M)) Ac-
cording to Thm. 6 in [GLEO12], category (AGraphsATGI,M) is M -adhesive with M being
the class that consists of all typed attributed graph morphisms f : GT → HT that are componen-
twise injective, type strict (i.e., typeH ◦ f = typeG) and where fD is an isomorphism. Since M -
morphisms are type strict, they cannot refine the types of nodes from super- to sub-types along a
node type inheritance relation (cf. Sec. 2.2.1 and Rem. 2.1). For a morphism f : G→ H ∈M ,
we say that G occurs in H or G is a sub-graph of H or H covers G. According to Def. 12 in
[GLEO12, HEGO10] and Def. 7.3 in [EEGH15], O-morphisms in AGraphsATGI are all typed
attributed graph morphisms f that are almost injective, i.e., that are componentwise injective ex-
cept perhaps for the mapping fD of the data nodes as possible attribute values. In the context of
graph transformations in Sec. 2.2.4, rules should be applied along O-match morphisms that do
not identify structures of graphs, but which may identify attribute expressions to identical values.
The same situation arises for matches and the satisfaction of graph conditions and constraints in
Sec. 2.2.3 and Def. 2.12. Therefore, O is a distinguished class of match morphisms. According
to [EEGH15], the underlying categories (Graphs,M) and (GraphsTG,M) of plain and typed
graphs over type graph TG with(out) node type inheritance with M being the class of all (type
strict) monomorphisms (i.e., componentwise injective morphisms) are also M -adhesive. 4

Remark 2.4 ((Strict) M -decomposition) Note that M -adhesive category (AGraphsATGI,M)
has M -decompositions by definition Def. 2.6. However, (AGraphsATGI,M) does not have
strict M -decompositions (g ◦ f ∈M implies f ∈M), since, f may not be an isomorphism
on the data part fD (cf. Rem. 2.3). Categories (Graphs,M) and (GraphsTG,M) have strict
M -decompositions. 4

Usually, formal results are applied in the context of finitary M -adhesive categories (Cfin,Mfin)
where the objects ObC and morphisms MorC of an M -adhesive category (C,M) are restricted
to finite objects ObCfin ⊆ObC with finitely many M -subobjects and morphisms MorCfin ⊆MorC
between them. For example, the finitary M -adhesive category (AGraphsATGI,fin,Mfin) contains
all typed attributed graphs G over type graph ATGI that are finite in the sense that the graph part
of G is finite (i.e., the sets of graph nodes, edges and attributes are finite) while type graph ATGI
and the data part of G may be infinite (i.e., the algebra of G and the sets of data nodes may be
infinite) (cf. Thm. 4.47 in [EEGH15]). Moreover, class Mfin is the finitary restriction of class
M according to the finitary restriction of morphisms from AGraphsATGI to AGraphsATGI,fin.
Finitary M -adhesive categories have the additional HLR property of unique (extremal) E -M
factorisations for all morphisms (cf Prop. 3 in [BEGG10] for uniqueness & Prop. 4 in [BEGG10]

22

CHAPTER 2. MODEL TRANSFORMATIONS, SYNCHRONISATIONS & FRAMEWORK

or Thm. 4.42 in [EEGH15] for the existence of E -M factorisations). E -M factorisations are
used for the definition of AC-schemata of graph conditions in Sec. 2.2.3 and Def. 2.18. For a
class E of morphisms, an E -M factorisation m ◦ e of a morphism f is a decomposition of f
into morphisms e ∈ E ,m ∈M such that m◦ e = f . Note that category (AGraphsATGI,M) does
not have E -M -factorisations in general for class E of all epimorphisms, since, for factorisa-
tions m◦e, M -morphisms in AGraphsATGI are isomorphisms on the data part mD and therefore,
eD is not necessarily an epimorphism on the data part implying further that e is not necessarily
in E . Therefore, we review E -M factorisations based on class E of all extremal morphisms
w.r.t. M . In (AGraphsATGI,M), extremal E -morphisms e w.r.t M are epimorphisms on the
graph part eS but not necessarily epimorphisms on the data part eD. If m ◦ e is the E -M fac-
torisation of a morphism f in (AGraphsATGI,M) which refines types along the type inheritance
relation of type graph ATGI, then all refinements are shifted to morphism e, since, M -morphism
m is type strict according to Rem. 2.3. In the underlying M -adhesive categories (Graphs,M)
and (GraphsTG,M) of plain and typed graphs over type graph TG, class E contains all epi-
morphisms and class M all monomorphisms and therefore, the (extremal) E -M factorisation
corresponds to the well-known epi-mono factorisation of morphisms. In finitary M -adhesive
categories, the extremal E -M factorisation of a morphism f : A→ B can be performed by con-
structing decompositions m ◦ e,e ∈ E ,m ∈M ,m ◦ e = f for all M -subobjects [m] of B and
stepwise pullbacks of them as shown by Prop. 4 in [BEGG10].

Definition 2.8 (Finitary M -adhesive Category & M -subobject (Defs. 4.29 & 4.30 in
[EEGH15])) An M -subobject of an object G in an M -adhesive category (C,M) is an equiva-
lence class [a : A→ G ∈M] of M -morphisms with codomain G over equivalence relation ∼:=
{(a1 : A1 → G,a2 : A2 → G) | a1,a2 ∈ MorC,∃ isomorphism i : A1 → A2 ∈ MorC such that a2 ◦
i = a1}. Object G is finite if it has finitely many M -subobjects. An M -adhesive category
(C,M) is called finitary if each object G ∈ ObC is finite. 4

Definition 2.9 ((Extremal) E -M Factorisation (Def. 4.34 in [EEGH15])) Given an M -
adhesive category (C,M), the class E of all extremal morphisms w.r.t. M is defined by
E := {e ∈ MorC | ∀m,g ∈ MorC,m ◦ g = e.m ∈M ⇒ m is an isomorphism}. For a morphism
f ∈MorC, an (extremal) E -M factorisation of f is given by morphisms e ∈ E and m ∈M such
that m◦ e = f . 4

Remark 2.5 (Uniqueness of Extremal E -M Factorisation) According to Fact 4.38 in
[EEGH15], in M -adhesive categories (C,M), extremal E -M factorisations are unique up to
isomorphism. 4

Remark 2.6 (Finitary M -adhesive Categories, Existence of E -M Factorisations & Ini-
tial Pushouts) According to Rem. 2.3 and Thms. 4.42 & 4.47 in [EEGH15], category
(AGraphsATGI,fin,Mfin) is finitary M -adhesive and has a unique extremal E -M factorisation
with E being the class of all extremal morphisms w.r.t. M and furthermore, the category has ini-
tial pushouts. Consequently, the underlying categories (Graphs,M) and (GraphsTG,M) (their
finitary restrictions (Graphsfin,Mfin) and (GraphsTG,fin,Mfin)) as well as (AGraphsATGI,M)
have a unique extremal E -M factorisation (and are finitary M -adhesive). 4

The definition of the satisfaction of graph constraints in Sec. 2.2.3 and Def. 2.15 relies on the
notions of initial objects and initial morphisms.

Definition 2.10 ((M)-Initial Object (Defs. A.28 & 4.25 in [EEGH15])) In a category C, an

23

2.2. GRAPH TRANSFORMATION

object I is called initial if for each object G∈ObC there exists a unique initial morphism iG : I→
G. An initial object I in M -adhesive category (C,M) is called M -initial if for each object
G ∈ ObC the unique initial morphism iG : I→ G is in M . 4

Remark 2.7 ((M)-Initial Objects in Categories of Graphs) In (Graphs,M) and
(GraphsTG,M), the initial and M -initial object is the empty graph ∅ with the empty morphism
iG : ∅→ G ∈M as unique initial morphism for each graph G. In category (AGraphsATGI,M),
object ((∅,TDSIG), type) is initial with ∅ being the empty graph, type being the empty type mor-
phism and TDSIG being the DSIG-term algebra. In the following, we simply write ∅ for initial
object ((∅,TDSIG), type). For a graph G, the unique initial morphism iG : ((∅,TDSIG), type)→ G
is given by the empty morphism iG,S on the graph part and the unique eval morphism iG,D on
the data part that evaluates the terms of TDSIG to data values in DSIG-algebra DG. However,
(AGraphsATGI,M) does not have an M -initial object, since, according to Rem. 2.3 the initial
M -morphisms iG are isomorphisms on the data part iG,D which does not hold for all graphs G in
AGraphsATGI . 4

For the results of Sects. 3.4 and 3.5 we assume M -adhesive categories with effective pushouts.

A f //

g

��

B

g′

��
hY

��

(1)

C f ′ //

kY
**

D
y
��

Y

Definition 2.11 (Effective Pushout (Def. 4.23 in [EEGH15]))
Given a pullback (f ,g) over (hY ,kY) and a pushout (1) with all
morphisms being M -morphisms, then also the induced morphism
y : D→ Y is in M . We say that (1) is the effective pushout over
(hY ,kY). 4

Remark 2.8 (Effective Pushouts in Category (AGraphsATGI,M))
According to Rem. 4.24 in [EEGH15], M -adhesive categories may
not have effective pushouts in general, but (AGraphsATGI,M) has
effective pushouts (cf. Rem 5.57 in [EEGH15]). 4

General Assumption In the following, we assume the context of M -adhesive categories for
definitions and results if not made explicit, especially when speaking of M -morphisms.

2.2.3 Graph Conditions & Constraints

Formally, we define graph constraints via the notion of (nested) graph conditions according to
[HP09]. Nested graph conditions provide the concepts for both, graph constraints and application
conditions for graph transformation rules. Conditions are called constraints in the context of
graphs where conditions may globally restrict the structure of graphs and are called application
conditions in the context of rule definitions where conditions may restrict the application of rules.

Definition 2.12 ((Nested) Condition and Satisfaction (Def. 2.7 & 2.8 in [EEGH15])) A (nested)
condition acP over a premise object P is inductively defined by:

• true is a condition over P.

• For every morphism (a : P→C) and condition acC over C, ∃(a,acC) is a condition over
P. Object C is called the conclusion w.r.t. premise object P.

• Boolean formulae over conditions, i.e., ¬acP, ∨i∈I(acP,i), ∧i∈I(acP,i), are conditions over
P for conditions acP and acP,i,(i ∈ I) over P for some index set I.

24

CHAPTER 2. MODEL TRANSFORMATIONS, SYNCHRONISATIONS & FRAMEWORK

A morphism p : P→ G satisfies a condition acP over P (written p |= acP), if p ∈ O and:

• acP = true, or

• acP = ∃(a : P→C,acC), ∃ q : C→ G ∈M with q◦a = p and q |= acC, or

• acP = ¬ac′P and ¬(p |= ac′P), or

• acP = ∧i∈I(acP,i) and for all i ∈ I it holds that p |= acP,i, or

• acP = ∨i∈I(acP,i) and there is an i ∈ I with p |= acP,i.

Two conditions acP and ac′P over P are equivalent, written acP ≡ ac′P, if for all morphisms
p : P→ G it is true that p |= acP if and only if p |= ac′P. In contrast to the standard satisfiability
of conditions via |=, |=O defines the satisfiability of conditions with q ∈ O instead of q ∈M
(O-satisfiability). For a nested condition acP, the number of nestings is given by the largest
number of sequenced morphisms in acP. If the number of nestings of acP is zero or one, then
acP is called a plain condition . According to Sec. 2.2.1 and Def. 2.2, for a given type graph
TG, we say that a condition acP is typed over TG, if all objects (graphs) in acP are typed over
TG. Consequently, a set of conditions C is typed over TG, if all ac ∈ C are typed over TG. A
condition acP is finite, if the index set I of every conjunction ∧i∈I and disjunction ∨i∈I in acP is
finite [HP09]. 4

Remark 2.9 (Conditions – Abbreviations) Although not being explicitly defined in Def. 2.12,
we use the following abbreviations for conditions: false := ¬true, acP ⇒ ac′P := ac′P ∨¬acP,
and acP⇔ ac′P := (acP⇒ ac′P)∧ (ac′P⇒ acP). 4

Definition 2.13 (Positive Condition (Def 2.4 in [SEM+12])) A condition acP over P is posi-
tive if it does not contain negations ¬, i.e., acP is built up only by: 1. true, 2. ∃(a,acC), and
3. ∨i∈I(∧i∈I)(acP,i) with I 6=∅. 4

Definition 2.14 (M -normal form (Def. 5 in [HP09])) A condition acP is in M -normal form,
if for all sub-conditions ∃(a,ac) of acP, morphism a is in M . 4

Graph constraints are conditions that are extended to conditions over the initial object I when
evaluating their satisfaction by graphs (cf. Def. 5.10 in [EEGH15]). In accordance with
[SEM+12], we distinguish between initial and general satisfaction of graph constraints. While
initial satisfaction refers to the existential satisfaction, general satisfaction refers to the universal
satisfaction of constraints. Thus, a graph G initially satisfies a constraint acP if premise P occurs
in G such that acP holds. In contrast, a graph G generally satisfies a constraint acP if for all
occurrences of premise P in G condition acP holds.

Definition 2.15 (Constraint and Satisfaction) Let acP be a condition over P. An object G ini-

tially satisfies a constraint acP, written G
I
|= acP, if the initial morphism iG : I → G satisfies

condition acI = ∃(iP : I → P,acP) over initial object I and initial morphism iP. An object G
generally satisfies a constraint acP, written G |= acP, if the initial morphism iG : I→ G satisfies
condition acI = ¬∃(iP : I→ P,¬acP) over initial object I and initial morphism iP. An object G

initially (generally) satisfies a set of constraints C, written G
I
|= C (G |= C) if G

I
|= ac (G |= ac)

for all ac ∈C. 4

25

2.2. GRAPH TRANSFORMATION

P C1

1:Class

:Constr

1:Class

:c

:Protected

:is1

C2

:Constr

1:Class

:c

:Public

:is2

:Constr

:Class

:c

:is1

:Protected

:Attr

name= instance

:a

:Constr

:Class

:c

:is2

:Protected

:Attr

name= instance

:a

a

Constr

Class

c

Attr

name:String

is1 is2

Protected Public

∨i=(1,2)(∃(ai : P→Ci, true))

TG

G

tP, tC1 , tC2 p q1 q2

tG

Figure 2.5: Graph Constraints and their Satisfaction by Graphs

Remark 2.10 (Initial & General Satisfaction of Constraints) Note that for general satisfaction,
condition ∀(iP : I→ P,acP) is equivalently expressed by ¬∃(iP : I→ P,¬acP). This allows us to
speak of positive conditions acP in the sense of Def. 2.13 in view of their general satisfaction
by graphs in Sec. 3.5 while the conditions that are actually used for evaluating their satisfaction
are not positive. Note that by the uniqueness of initial morphisms, for conditions acP over P we
have that:

1. G
I
|= acP⇔∃p : P→ G ∈M such that p |= acP, and

2. G |= acP⇔∀p : P→ G ∈M it holds that p |= acP. 4

Example 2.2 (Graph Constraint and Satisfaction) In reference to the type graph TGCD of UML
class diagrams in Sec. 2.2.1 and Fig. 2.4, Fig. 2.5 depicts a modified type graph TG, condi-
tion acP = ∨i=(1,2)(∃(a : P→Ci, true)) over P and graph G both typed over TG via morphisms
(tx : x → TG)x∈{P,C1,C2,G}. According to type graph TG, class diagrams may contain several
Classes, each class may have several Attributes each with a specific name of type String and each
class has a Constructor with visibility Protected or Public. Constraint acP claims that each class
has a constructor with visibility protected or public. Graph G both initially and generally satisfies
constraint acP, since, morphism p : P→G∈M can be mapped to the left or right class in G such
that there exists q1 : C1→ G ∈M with q1 ◦a = p and q1 |= true. However, there does not exist
q2 : C2→ G ∈M such that q2 ◦a = p. Thus, for constraint ac′P = ∧i=(1,2)(∃(a : P→Ci, true)),

26

CHAPTER 2. MODEL TRANSFORMATIONS, SYNCHRONISATIONS & FRAMEWORK

:Attr

:a

:Class :Class

:a

:Attr

:type :type

:Attr

:a

:Class

:a

1:Attr 1:Attr

:Class

:a

1:Attr

:Classifier

1:Attr

:type

1:NamedElement
1:NamedElement

name = n

:Attr

name = n

:Attr

name = n
:Class

:a :a

1:Attr 2:Const

:mod

1:Attr 2:Const

:mod

:DataType

:type

:Attr

:mod :mod

:Mod

:mod

:Attr

:mod

1:Mod

1:Mod

:Attr

:mod

:Mod

:mod

:Attr :Attr

:mod

P1 C1

:Mod :Mod

C5

:Classifier :Classifier

C9

C2

C6

:Classifier

:type

:Attr

:type

C10

:NamedElement

name = n1

name = n2

C13

C3 P4

C7

C4

P8 C8

P11 C11

C14

P15 C15

C12

:Classifier

name = n

:Classifier

name = n

:DataType

C16

1|∃(P1→C1, true) 2|¬∃(∅→C2, true) 3|¬∃(∅→C3, true) 4|∃(P4→C4, true)

5|¬∃(∅→C5, true) 6|¬∃(∅→C6, true) 7|¬∃(∅→C7, true) 8|∃(P8→C8, true)

9|¬∃(∅→C9, true) 10|¬∃(∅→C10, true) 11|∃(P11→C11, true)

12|¬∃(∅→C12, true) 13|¬∃(∅→C13, true) 14|¬∃(∅→C14, true)

15|∃(P15→C15, true) 16|∃(∅→C16, true)

Figure 2.6: Graph Constraints for UML Class Diagrams

G satisfies ac′P neither initially nor generally. 4

Visual Notation According to Sec. 2.2.1, the mapping of nodes, edges and attributes along
morphisms correspond to their naming in visual notation. For example in Fig. 2.5, node : Class
in P is mapped to node : Class in C1 (C2) along a1 (a2) as indicated by its name 1.

Example 2.3 (Graph Constraints for UML Class Diagrams) Fig. 2.6 depicts the graph con-
straints for UML class diagrams over type graph TGCD from Sec. 2.2.1 and Fig. 2.4 which are
used for verifying domain completeness in Sec. 3.2. All constraints in Fig. 2.6 are designated
for general satisfaction. According to Sec. 2.2.1 and Ex. 2.1, this includes the multiplicity con-
straints in TGCD which complete the meta-model of UML class diagrams: 1. Constraint 1 claims
that each Attribute is assigned to a Class - in more detail - each attribute is assigned to exactly
one class as refined by constraint 2, 2. Constraint 4 claims that each Modifier is the modifier
of some attribute - in more detail - each modifier is the modifier of exactly one attribute as re-
fined by constraint 7, 3. Analogously, constraint 8 claims that each attribute has some type - in
more detail - each attribute has exactly one type as refined by constraint 9, and 4. Constraint
5 claims that each attribute has zero or one modifier. Beside the multiplicity constraints, the
structure of class diagrams is additionally restricted by the following constraints: 1. Constraints
3, 6 and 10 forbid duplicate edges between two nodes, 2. Constraints 11 and 13 claim that each
NamedElement has exactly one name, 3. Constraint 12 claims that different Classifiers must have
different names, 4. Constraint 14 claims that different attributes of the same class must have dif-

27

2.2. GRAPH TRANSFORMATION

C TG

T1

T0

attr1:Int

attr2:Int

G

1:T1

attr1=5

attr2=5

P

1:T0

attr1=x

attr2=y

1:T0

attr1=x

attr2=y

P

1:T1

attr1=5

attr2=5

C

1:T1

attr1=5

attr2=5

2:T0

attr1=z

C

2:T0

attr1=5

G

a

p ∈ O 6 ∃q ∈M

a′

e ∈ E

m ∈M

e′

∃q′ ∈M

a

Figure 2.7: Non-Satisfiability and Instance of Condition acP = ∃(a : P→ C ∈M , true) along
O-matches (left) & Type Graph TG (right)

ferent names, 5. Constraint 15 claims that each Constant attribute is of type DataType and not
of type Class, and 6. Constraint 16 claims that there exists at least one DataType. Note that ac-
cording to Sec. 2.2.1 and Rem. 2.1, abstract node types Mod, Classifier and NamedElement are
forbidden to be directly used in graphs like P4. However, instead of covering abstract types via
the formal definition of graphs with node type inheritance, we assume dedicated constraints of
the form ∨s∈S∃(1 : t→ 1 : s, true) for each abstract type t ∈ {Mod,Classifier,NamedElement}
and all non-abstract sub-types S of t but that are not explicitly depicted in Fig. 2.6. 4

According to Def. 2.12, match morphisms p are in O but morphisms q are in M for
standard satisfiability of conditions. Therefore according to Sec. 2.2.2 and Rem. 2.3 in
(AGraphsATGI,M), match morphisms p may be non-injective on the data part pD and may
refine node types along a node type inheritance relation whereas morphisms q are isomorphisms
on the data part qD and are type strict. More specifically, in category (AGraphsATGI,M), con-
ditions acP are often attributed via the DSIG-term algebra TDSIG(X) over variables X whereas
graphs G are attributed via a concrete DSIG-algebra DG. In most cases TDSIG(X) is not isomor-
phic to DG, since, different terms in TDSIG(X) may be evaluated to the same concrete value in
DG, and therefore, q ∈M does not exist. Thus, a condition acP in M -normal form may be
non-satisfiable by p although the condition seems to be a tautology as shown in Fig. 2.7 where
p identifies variables x and y with value 5 as well as refines type T0 to T1 along the inheritance
relation in type graph TG and there does not exist q ∈M with q ◦ a = p. Therefore, accord-
ing to Def. 2.18, we use the concept of an AC-schema, which interprets a constraint acP as the
disjunction of its possible instances Inst(acP) which may occur in a graph. Based on the merge
construction over extremal E -morphisms w.r.t. M in Def. 2.16, the instances Inst(acP) sub-
sume all possible type refinements and identifications of data values along match morphisms (cf.
Def. 2.17). Since, according to Rem. 2.13, the satisfaction of an AC-schema by match p ∈ O
coincides with the satisfaction of the corresponding instance in the schema by m ∈M that is

28

CHAPTER 2. MODEL TRANSFORMATIONS, SYNCHRONISATIONS & FRAMEWORK

derived by the E -M factorisation of p, this allows us to use AC-schemata as a compact notation
and to focus on M -matches while leaving the possible type refinements and identifications of
data values implicit. For example, (e,∃(a′ : P′→C′, true)) is an instance of acP in Fig. 2.7 (the
identification of variables x and y as well as the type refinement from T0 to T1 is transferred to
the instance), m◦ e = p is an E -M factorisation of p and furthermore, there exists q′ ∈M with
q′ ◦ a′ = m (i.e., m satisfies the instance) and therefore, p satisfies the AC-schema of acP. Fur-
thermore, in Prop. 2.2 we show that the standard satisfiability of an AC-schema coincides with
the O-satisfiability of the underlying condition. This allows an interpretation of conditions via
O-matches and O-satisfiability from a user point of view while an interpretation via the standard
satisfiability of AC-schemata with M -matches is used to prove technical results.

Intuitively, the merge construction transfers the identifications of data values and type refine-
ments along the given morphism b : P→ P′ to b′ : C→C′ by respecting the identifications and
type refinements along a : P→C. Additionally, it allows for type refinements of elements and
identifications of data elements that are in C but not in P.

Definition 2.16 (Merge over Morphism (Def. 5.5 in [EEGH15])) Given a condition ac over P
and a morphism b : P→ P′, then Merge(b,ac) is a condition over P′ defined by

• Merge(b,ac) = true if ac = true,

P C

P′ C′

(1)

ac

Merge(b,ac)

ac′

Merge(b′,ac′)

a

b

a′∈M

b′∈O

• Merge(b,ac) = ∨(a′,b′)∈F∃(a′,Merge(b′,ac′)) if ac =
∃(a,ac′) and F = {(a′,b′) | a′ ∈ M ∧ b′ ∈ O ∧
(1) commutes ∧ (a′,b′) are jointly epimorphic},

• Merge(b,ac) = ¬Merge(b,ac′) if ac = ¬ac′,

• Merge(b,ac) = ∧i∈IMerge(b,aci) if ac = ∧i∈Iaci, or

• Merge(b,ac) = ∨i∈IMerge(b,aci) if ac = ∨i∈Iaci. 4

Remark 2.11 In (AGraphsATGI,M), note that if morphism a identifies elements of P or refines
types in P that are not identified or not refined to equal or finer types by morphism b, respec-
tively, then (1) cannot be constructed, since, it is required that a′ ∈M while (1) commutes, and
the merge construction returns false (an empty disjunction over (a′,b′) ∈F). Analogously, if
morphism b identifies graph elements of P that are not identified by morphism a, then (1) can-
not be constructed and false is returned, since, it is required that b′ ∈ O while (1) commutes.
For a characterisation of M - and O-morphisms in (AGraphsATGI,M) we refer to Sec. 2.2.2
and Rem. 2.3. 4

Definition 2.17 (Instances of Conditions) Given a condition acP over P with EP = {e ∈
E | dom(e) = P} being the set of all extremal E -morphisms w.r.t. M with domain P. The
instances of acP are given by Inst(acP) =

⋃
f∈EP
{(f ,Merge(f ,acP))}. Given a set of conditions

C, then the instances of C are given by Inst(C) =
⋃

ac∈C(Inst(ac)). 4

Remark 2.12 (Instances in M -normal Form) Note that the conditions in instances are in M -
normal form by merge construction. 4

Definition 2.18 (AC-schema (Def. 5.6 in [EEGH15])) Given a condition acP over P, then
the AC-schema acP of acP is a condition over P given by acP =

∨
(f ,ac)∈Inst(acP)∃(f ,ac). For

acP = true, acP = true. 4

29

2.2. GRAPH TRANSFORMATION

P

P′

GacP

Merge(e,acP)

p

e m

Remark 2.13 (AC-schema satisfaction (Fact 5.8 in [EEGH15]))
Given an AC-schema acP of condition acP over P and a mor-
phism p : P → G ∈ O with an extremal E -M -factorisation
m ◦ e = p, then p |= acP if and only if m |= Merge(e,acP) with (e,Merge(e,acP)) ∈ Inst(acP).
Note that the satisfaction of conditions by morphisms in Sec. 2.2.3 and Def. 2.12 is defined
based on O-morphisms. However, m ∈ O by m ∈M in (AGraphsATGI,M) (cf. Sec. 2.2.2
and Rem. 2.3). 4

Note that by Def. 2.18, the AC-schema acP of a constraint acP over P is again a constraint
over P. However, the satisfaction of AC-schemata by objects cannot be directly defined by
Rem. 2.10. For example, constraint ¬acP in Fig. 2.7 seems to be a contradiction with G 6|= ¬acP

but G |= ¬acP if both algebras of G and ¬acP are not isomorphic, i.e., p : P→ G ∈M does
not exist (cf. Sec. 2.2.2 and Rem. 2.3). Therefore, based on Rem. 2.10 the satisfaction of AC-
schemata is defined as follows.

Definition 2.19 (Initial & General Satisfaction of AC-schemata) An object G initially satisfies
AC-schema acP of constraint acP over P, if ∃p : P→ G ∈ O such that p |= acP. An object G
generally satisfies acP, if ∀p : P→ G ∈ O it holds that p |= acP. By Rem. 2.13, in M -adhesive
categories with extremal E -M factorisations, G initially satisfies acP if and only if ∃ instance

(e : P→ P′,Merge(e,acP)) ∈ Inst(acP) of acP such that G
I
|= Merge(e,acP). Analogously, G

generally satisfies acP if and only if ∀ instances (e : P→ P′,Merge(e,acP)) ∈ Inst(acP) it holds
that G |= Merge(e,acP). For initial and general satisfaction of constraints Merge(e,acP), we
refer to Def. 2.15 and Rem. 2.10. 4

Remark 2.14 (Data in Constraints and Application Conditions) Consider condition ac′P =
∃(a : P→ C, true) in Fig. 2.7 with P,C being attributed graphs and which claims that there is
an additional : T0 node with attribute attr1 of value z. Assume that P contains a variable z′ in its
algebra that is mapped to variable z in C along morphism a, then the interpretation of ac′P accord-
ing to Def. 2.19 may be misleading, e.g., in contrast to the intended result, G does not generally
satisfy the AC-schema ac′P of constraint ac′P. This is due to the fact that the mapping of z along
q : C→ G ∈ O is prescribed by the mapping of z′ along match p : P→ G ∈ O in order to obtain
q ◦ a = p (cf. Prop. 2.2). By Def. 2.19, for general satisfaction all matches p : P→ G ∈ O are
considered, i.e., z′ and therefore also z may be mapped to the same value than x or y (i.e., value
5 for the example) but also to any other value along p and q, respectively. Thus, more precisely,
for general satisfaction and graphs G that allow different values for variables x, y and z, ac′P
claims that there are additional : T0 nodes, one with attribute attr1 of value z that equals to x,
one with attribute attr1 of value z that equals to y and one with attribute attr1 of value z that
differs from x and y. The same situation arises for variables that are not used as attribute values
in attributed premise and conclusion graphs of conditions but that are non-injectively mapped
along the internal morphisms of conditions, since, for matches p that are injective on these vari-
ables, the corresponding q-morphism with q◦a = p does not exist. Therefore, for conditions ac
over attributed graphs we generally assume that for all internal morphisms a : P→C in ac it is
true that all variables that are used as attribute values in C but not in P are not in the image of a.
Furthermore, all variables in P that are not used as attribute values are injectively mapped along
a. Under this general assumption for constraint ac′P, graph G both initially and generally satisfies
ac′P. 4

According to Prop. 2.1, for M -matches and the case of category (AGraphsATGI,M) (and
underlying categories (Graphs,M) and (GraphsTG,M)), the interpretation of a condition acP

30

CHAPTER 2. MODEL TRANSFORMATIONS, SYNCHRONISATIONS & FRAMEWORK

that is type strict via the standard satisfiability of its AC-schema coincides with the standard
satisfiability of acP itself. According to Def. 2.20, a condition acP over P is type strict, if it is in
M -normal form and furthermore, the types of all nodes in conclusions that are not in premise
P cannot be refined along morphisms. Therefore, for M -matches and type strict conditions, the
direct interpretation of conditions is equivalent to their interpretation via AC-schemata. This may
not hold for general O-matches and for conditions that are not type strict. However, Prop. 2.2
shows for (AGraphsATGI,M) and underlying categories that the standard satisfiability of an
AC-schema coincides with the O-satisfiability of the underlying condition.

Definition 2.20 (Type Strict Condition) In (AGraphsATGI,M), a condition acP over P is type
strict, if acP is in M -normal form and for all morphisms a : P→C in acP with domain P it holds
that for all nodes n ∈VC

G \aG,VG(V
P
G) that are in C but not in P, node type typeC(n) does not have

sub-types in the inheritance relation of type graph ATGI and therefore, cannot be refined along
morphisms. 4

Proposition 2.1 (Relationship between Satisfiability of Conditions and AC-Schemata) In
(AGraphsATGI,M), given a type strict condition acP over P, its AC-schema acP and a match
p : P→ G ∈M . Then, p |= acP if and only if p |= acP. 4

Proof. The proof is presented in appendix A.1.

Proposition 2.2 (Relationship between Standard- and O-Satisfiability of Conditions) In
(AGraphsATGI,M), given a condition acP over P, its AC-schema acP and a match p : P→
G ∈ O . Then, p |=O acP if and only if p |= acP. 4

Proof. The proof is presented in appendix A.2.

General Assumption Note that we interpret conditions by AC-schemata that are formed over
(extremal) E -morphisms and their satisfaction can be defined based on (extremal) E -M fac-
torisations by Rem. 2.13. Therefore, in addition to the general assumption from Sec. 2.2.2, we
assume M -adhesive categories with unique (extremal) E -M factorisation. Furthermore, we as-
sume that all application conditions and graph constraints are interpreted via their AC-schemata
according to Def. 2.18, if not made explicit. Moreover, we generally assume the assumption
from Rem. 2.14 for constraints.

2.2.4 Graph Grammars, Transformations & M -adhesive Transformation Sys-
tems

As discussed in Sec. 1.3, models are represented by graphs and model transformations and syn-
chronisations are performed based on graph transformations. Furthermore, graph transforma-
tions are performed by applying graph transformation rules to graphs. According to Def. 2.21, a
rule p is a span p = (L←L− K −r→ R) of M -morphisms l and r with left-hand side L, gluing K and
right-hand side R. A rule is applied to a graph G via a match-morphism m : L→G as defined by
direct transformations in Def. 2.22.

Definition 2.21 ((Transformation) Rule (Def. 5.12 in [EEGH15])) A plain (transformation)
rule p = (L←l− K −r→ R) consists of objects L,K and R, called left-hand side, gluing and right-hand
side, respectively and two morphisms l,r ∈M . A (transformation) rule p = (L←l− K −r→ R,acL)
consists of a plain rule and a condition acL over L, called application condition. 4

31

2.2. GRAPH TRANSFORMATION

1: C2T = Class2Table(n:String)

++ ++
++

2: DT2CT = DataType2ColumnType(n:String)

1:DataType

name = n

++ ++

5: TD2T = TypeOfDataType2Type()

:type

2:DataType 2:ColumnType

1:Attr 1:Column

++:type ++

3: A2C = Attribute2Column(n:String)

:cols ++:a++

1:Class 1:Table

6: TC2T = TypeOfClass2Type()

1:Attr 1:Column

2:Class

:Column

:pkey :type

:type:fkey ++++:type

1:Class

name = n

++

:Column

:pkey ++

++

:type++

++ ++

:ColumnType

:type

NAC

++

:ColumnType

:type

NAC

:cols++

4: MC = ModifierConstant()

:Attr

:Const

:mod++

++

:Mod

:mod

NAC

1:CT
1:Table

name = n

++

1:TT

1:CT

2:AC
2:Column

name = n

2:Attr

name = n

NAC

:Class

name = n

1:ColumnType

name = n

1:AC

2:TT

1:AC

2:CT 2:Table :ColumnType

2:DataType 2:ColumnType2:TT

:Const

:mod

NAC

Figure 2.8: Triple Graph Grammar (CD2RDBM)

L

m

��

Kloo r //

k

��

R

n

��

(1) (2)

G Dfoo g // H

Definition 2.22 (Transformation (Def. 5.13 in [EEGH15]))
Given a rule p = (L←l− K −r→ R,acL), an object G, and a mor-
phism m : L→ G, called match, such that m |= acL, a direct

transformation (step) G =
(p,m)
===⇒ H from G to an object H via

p and match m is given by the pushouts (1) and (2) with co-
match n. Given a set of rules P, a sequence of direct transformations from G to H via p ∈ P is
called a transformation (sequence) via P, written t : G =

∗⇒ H. 4

Intuitively, the application leads to a graph H where m(L) \m(l(K)) is deleted from G and
R \ r(K) is added while m(l(K)) is preserved. Furthermore, a rule may be equipped with an
application condition acL which may restrict the application of the rule to specific matches, i.e,
for rule applications, match m must additionally satisfy application condition acL. According to
Def. 2.13, we distinguish between positive application conditions (PACs) and negative applica-
tion conditions (NACs). NACs declare forbidden patterns and PACs declare patterns that must
exist for rule applications. We say that a rule is non-deleting, if l = idL and K = L. In case
of non-deleting rules p = (L←id−− L

r
↪−→ R,acL), we write p = (L

r
↪−→ R,acL) and pushout (1) in

Def. 2.22 is omitted with D = G and k = m. According to Sec. 2.2.1 and Def. 2.2 and Sec. 2.2.3
and Def. 2.12, we say that a rule p = (L← K→ R,acL) is typed over type graph TG, if L,K,R
and acL are typed over common TG. We take production as synonym for rule.

A transformation system is a set of rules. A transformation system together with a start object
constitutes a grammar. Usually, we take graphs as objects and speak of graph grammars (cf.
Sec. 2.2.2 and Rem. 2.2). The language over a grammar is given by all objects that are reachable
from the start object by transformations via the rules of the grammar (cf. Sec. 3.1 and Def. 3.1).

32

CHAPTER 2. MODEL TRANSFORMATIONS, SYNCHRONISATIONS & FRAMEWORK

We say that a grammar is non-deleting, if all its rules are non-deleting. We say that a grammar
is typed over TG, if the start object and all its rules are typed over TG. We say that a grammar
is without application conditions, if all its rules are plain rules. A grammar is finite, if the set of
rules is finite.

Definition 2.23 (M -adhesive Transformation System & Grammar) Given an M -adhesive cat-
egoriy (C,M), an M -adhesive transformation system AS = (P) is given by a set of rules P. A
grammar GG = (S,AS) is given by a transformation system AS and a start object S. 4

Visual Notation In addition to the notational conventions from Sec. 2.2.1, transformation rules
are visualised as depicted in Fig. 2.8. All graph elements that are marked with ++ are added by
the rule and therefore, are only contained in the right-hand side of the rule. All graph elements
that are marked with−− are deleted by the rule and therefore, are only contained in the left-hand
side of the rule. All graph elements that are unmarked are preserved by the rule and therefore, are
contained in the left-hand side and the gluing of the rule. Additionally, a rule may be equipped
with an application condition which consists of the left-hand side of the rule together with those
graph elements that are enclosed by PAC or NAC boxes.

Example 2.4 (Rules & Transformations) The rules in Fig. 2.8 simultaneously create class di-
agrams and relational database models. For each rule p, we focus on the projection pS to the
source domain of class diagrams (left parts). Rule 1S creates a Class of name n in addition to an
existing DataType but only of there does not already exist a class of the same name (cf. NAC).
Rule 2S creates a DataType of name n. Rule 3S creates an Attribute of name n and assigns it
to an existing Class via edge : a. Rule 4S creates a Constant Modifier to an existing attribute
but only of the attribute does not already have a modifier (cf. NAC). Rule 5S assigns an exist-
ing data type to an existing attribute as type. Rule 6S assigns an existing class to an existing
attribute as type but only if the attribute is not Constant (cf. NAC). There is a transformation

∅=
(2S,)
===⇒ G1 =

(1S,)
===⇒ G2 =

(3S,)
===⇒ G3 =

(4S,)
===⇒ G4 =

(5S,)
===⇒ CD from the empty graph ∅ to graph CD in

Sec. 2.2.1 and Fig. 2.4. Analogously, we derive six rules by a projection to the right parts that
create the elements of relational database models. 4

In view of Sec. 3.4, we recall the notion of the derived span of transformations.

Definition 2.24 (Derived Span [EEGH15]) Let t : G0 =
∗⇒ Gn be a transformation, then the de-

rived span der(t) of t is inductively defined by

der(t) =



G←idG−− G−idG−→ G , for identical (empty) transformation t : G =
id⇒ G

Gi−1←fi− Di −gi→ Gi , for t : Gi−1 =
(pi,mi)
===⇒ Gi being a direct transformation

with pushouts(1) and (2)

G0←d
′
0◦d−−− D−gn◦dn−−−→ Gn , for t : G0 =

∗⇒ Gn−1 =
(pn,mm)
====⇒ Gn with

der(G0 =
∗⇒ Gn−1) = (G0←d

′
0−− D′ −d

′
n−1−−→ Gn−1)

and pullback (PB)

4

33

2.2. GRAPH TRANSFORMATION

G0 D′ Gn−1 Dn Gn

D

(PB)

Li Ki Ri

Gi−1 Di Gi

pi = ()

(1) (2)

d′0 d′n−1 fn gn

d dn

li ri

fi gi

mi

Remark 2.15 (Derived Span for Non-Deleting Rules) For transformations t : G0 =
∗⇒ Gn via non-

deleting rules only and with direct transformations (Gi−1 =
(pi,mi)
===⇒ Gi)i∈{1,...,n}, the derived span

der(t) : G0 → Gn of t is given by der(t) := gn ◦ . . . ◦ g1. Note that in M -adhesive categories,
the derived span for transformations via non-deleting productions is in M by productions being
spans of M -morphisms (ri ∈M), M -morphisms are closed under pushouts, i.e., gi ∈M , and
M -composition, i.e., gn ◦ . . .◦g1 ∈M . 4

A

��

// B //

��

E

��

(1) (2)

C // D // F

We review the following general existing results, as, they
are used in definitions or proofs: Restriction Theorem
(Thm. 6.18 in [EEPT06]) : Direct transformations can be re-
stricted along specific decompositions of match-morphisms,
PO-(De)-Composition (Lem. A.21 in [EEPT06]) : For
pushouts (1) and (2), also (1)+ (2) is a pushout, and if (1) and (1)+ (2) are pushouts, then
also (2), and PB-(De)-Composition (Lem. A.25 in [EEPT06]) : For pullbacks (1) and (2), also
(1)+(2) is a pullback, and if (2) and (1)+(2) are pullbacks, then also (1). Critical Pair : Given

a transformation system P, a critical pair (K1⇐
(p1,m1)
===== O =

(p2,m2)
====⇒ K2) for rules P is a pair of direct

transformations t1 : O =
(p1,m1)
====⇒ K1 and t2 : O =

(p2,m2)
====⇒ K2 with common object O and p1, p2 ∈ P

where both transformations are in conflict to each other, intuitively, in the sense that (1) trans-
formation t1 deletes elements from O to K1 that are “used” by match m2 for transformation t2 or
vice versa, or (2) K1 does not satisfy the application condition of p2 anymore or vice versa and
furthermore, where object O is minimal. Object O is minimal means that matches m1 and m2 are
jointly epimorphic (surjective) on O, i.e., O only contains elements that are covered by transfor-
mations t1 and t2. In the context of graphs, O is called the conflict graph of the critical pair. For
technical details we refer to Def. 2.39 in [EEGH15]. Note that we concentrate on critical pairs
for rules over graphs with translation (marking) attributes (cf. Sec. 2.3.2 and Rem. 2.17). This
involves forward translation rules (cf. Sec. 2.3.2 and Def. 2.26), consistency creating rules (cf.
Sec. 2.3.3 and Def. 2.29) and marking rules (cf. Sec. 3.2 and Def. 3.9) that only update transla-
tion (marking) attributes from F to T while preserving the remaining graph structure in terms of
deletions. Note that technically, the update of an attribute is a deletion of the old attribute value
followed by a creation of the new attribute value (cf. Sec. 2.2.1 and Def. 2.3). Fig. 2.9 depicts

a critical pair (K1 ⇐
(m(4S),m1)
======= O =

(m(4S),m2)
======⇒ K2) for marking rule m(4S) of rule 4S in Ex. 2.4.

Both transformations simultaneously update the marking attribute of node 1 : Const from F to

T. Strict Confluence : A critical pair (K1⇐
(p1,m1)
===== O =

(p2,m2)
====⇒ K2) is strictly confluent, if there

are transformations t1 : K1 =
∗⇒ O′ and t2 : K2 =

∗⇒ O′ to common O′ such that all elements that are
preserved by both transformations of the critical pair are also preserved by transformations t1
and t2 such that they can be embedded into bigger contexts. For technical details we refer to Def.
2.42 in [EEGH15]. Local Confluence Theorem (Thm. 2.43 in [EEGH15]) : A transformation
system P is locally confluent if, for all direct transformations G =

(p1,m1)
====⇒ H1 and G =

(p2,m2)
====⇒ H2

via p1, p2 ∈ P, there is an object X and transformations H1 =
∗⇒ X and H” =

∗⇒ X via P. A transfor-
mation system is locally confluent if all its critical pairs are strictly confluent. Confluence (Lem.
3.32 in [EEPT06]) : A transformation system P is confluent if, for all transformations G =

∗⇒ H1

34

CHAPTER 2. MODEL TRANSFORMATIONS, SYNCHRONISATIONS & FRAMEWORK

2:mod
tr=[F=>T]

1:Const
tr=[F=>T]

NAC

:mod
tr=T

:Mod
tr=T

3:Attr
tr=T

m(4S)

4:mod
tr=[F=>T]

1:Const
tr=[F=>T]

NAC

:mod
tr=T

:Mod
tr=T

5:Attr
tr=T

m(4S)

2:mod
tr=F

4:mod
tr=F

3:Attr
tr=T

1:Const
tr=F

5:Attr
tr=T

O

2:mod
tr=F

4:mod
tr=T

3:Attr
tr=T

1:Const
tr=T

5:Attr
tr=T

K2

2:mod
tr=T

4:mod
tr=F

3:Attr
tr=T

1:Const
tr=T

5:Attr
tr=T

K1

m1 m2

(m(4S),m1) (m(4S),m2)

Figure 2.9: Critical Pair (K1⇐
(m(4S),m1)
======= O =

(m(4S),m2)
======⇒ K2)

and G =
∗⇒ H2 via P, there is an object X and transformations H1 =

∗⇒ X and H2 =
∗⇒ X via P. Ev-

ery terminating and locally confluent transformation system is also confluent. A transformation
system P is terminating if there is no infinite transformation sequence via P.

General Assumption For (AGraphsATGI,M) and underlying categories, we restrict the ap-
plication of rules to almost injective matches m ∈ O (cf. Sec. 2.2.2 and Rem. 2.3). Further-
more, we assume that all application conditions are interpreted via their AC-schemata according
to Sec. 2.2.3 and Def. 2.18. Moreover, we generally assume the assumption from Sec. 2.2.3
and Rem. 2.14 for application conditions.

2.3 Model Transformation & Synchronisation based on TGGs

This section reviews the concept of triple graph grammars (TGGs) as well as model transforma-
tions and synchronisations based on TGGs.

2.3.1 Triple Graphs & Triple Graph Grammars (TGGs)

According to Sec. 2.1.1, triple graph grammars (TGGs) allow the definition of visual, declarative
transformation specifications for model transformations and synchronisations. Therefore, we
review basic notions of TGGs from [EEGH15].

A triple graph G = (GS←sG−− GC −tG−→ GT) is an integrated model consisting of a source graph GS,
a target graph GT and explicit correspondences between them (cf. Def. 3.3 in [EEGH15]). The
correspondences are given by correspondence graph GC together with morphisms sG : GC→GS

and tG : GC → GT specifying a correspondence relation between elements of GS and elements
of GT. Triple graphs G and H are related by triple graph morphisms m = (mS,mC,mT) :
G→ H [Sch94, EEE+07] consisting of three morphisms mS : GS → HS,mC : GC → HC and
mT : GT → HT that preserve the associated correspondences, i.e., mS ◦ sG = sH ◦ mC and
mT ◦ tG = tH ◦mC. Therefore, analogously to attributed graphs and morphisms in Sec. 2.2.1
and Def. 2.3, an attributed triple graph G = (GS ←sG−− GC −tG−→ GT) is defined by attributed
graphs GS,GC,GT and attributed graph morphisms sG, tG. An attributed triple graph morphism

35

2.3. MODEL TRANSFORMATION & SYNCHRONISATION BASED ON TGGS

f = (f S, f C, f T) : G→ H between two attributed triple graphs G and H is defined by three at-
tributed graph morphisms f S, f C, f T. Furthermore, analogously to typed attributed graphs and
morphisms (with node type inheritance) in Sec. 2.2.1, Def. 2.4, and Rem. 2.1, a typed attributed
triple graph over attributed triple graph TG as attributed triple type graph is defined by an at-
tributed triple graph G together with an attributed triple graph morphism typeG : G→ TG. A
typed attributed triple graph morphism f : G→ H between typed attributed triple graphs G and
H is an attributed triple graph morphism f such that (typeX

H ◦ f X = typeX
G)X∈{S,C,T}. The cat-

egory (ATrGraphsATGI,M) of all typed attributed triple graphs over triple type graph ATGI
and all typed attributed triple graph morphisms with node type inheritance is M -adhesive where
according to Sec. 2.2.2 and Rem. 2.3, triple graph M -(O-)morphisms are componentwise M -
(O-) morphisms in (AGraphsATGI,M) (cf. Def. 3.4 & Thm. 7.2 in [EEGH15]). Analogously
to the definition of rules in Sec. 2.2.4 and Def. 2.21 and according to [GEH11] and Def. 3.8 in
[EEGH15], a triple rule tr = (tr : L ↪−→ R,acL) is given by a triple graph M -morphism tr and an
application condition acL over L. Thus, triple rules are non-deleting and specify how a given con-
sistently integrated model (triple graph) can be extended simultaneously on all three components
source, correspondence and target yielding again a consistently integrated model. Analogously
to (direct) transformations in Sec. 2.2.4 and Def. 2.22, for a given triple graph G, triple rule
tr = (tr : L ↪−→ R,acL) and triple graph match-morphism m : L→ G with m |= acL, (direct) triple

graph transformations G =
(tr,m)
===⇒ H via tr and m are defined (cf. Def. 3.8 in [EEGH15]). Analo-

gously to grammars in Sec. 2.2.4 and Def. 2.23, a triple graph grammar TGG = (S,TR) consists
of a triple start graph S and a set TR of triple rules, and generates the triple graph language
of consistently integrated models L (TGG) = {G | ∃ triple graph transformation S =

∗⇒ G via TR}
with consistent source and target languages L (TGG)S = {GS | (GS← GC→ GT) ∈L (TGG)}
and L (TGG)T = {GT | (GS← GC→ GT) ∈L (TGG)} (cf. Def. 3.12 in [EEGH15]).

Visual Notation As depicted in Sec. 2.2.4 and Fig. 2.8, the three components of triple graphs
are visualised in three separate boxes. According to the conventions for the visual notation of
graphs in Sec. 2.2.1, the mapping of graph elements along correspondence morphisms sG and tG
of triple graphs G correspond to their naming in visual notation. Additionally, the conventions
for the visual notation of rules in Sec. 2.2.4 are also used for triple rules. For example, each
triple rule in Sec. 2.2.4 and Fig. 2.8 visualises the different domains of UML class diagrams
(left boxes), correspondences (boxes inbetween) and relational database models (right boxes)
in separate boxes. Furthermore, each rule adds those graph elements that are marked with ++
while all unmarked elements are preserved when being applied. Moreover, for example in rule
3 node 1 : CT is mapped to nodes 1 : Class and 1 : Table along the correspondence morphisms,
respectively.

Example 2.5 (Triple Graph, Triple Type Graph & Triple Graph Grammar (CD2RDBM)) At-
tributed triple graph G = (CD←s− C −t→ RDBM) in Sec. 2.2.1 and Fig. 2.4 is typed over attributed
triple type graph TG = (TGCD ← TGC → TGRDBM) via attributed triple graph type morphism
(typeCD, typeC, typeRDBM) : G→ TG. According to the type graph, each Attribute in CDs corre-
spond to a Column in RDBMs via a node of type AC, each Class in CDs correspond to a Table
in RDBMs via a node of type CT, and each DataType in CDs correspond to a ColumnType in
RDBMs via a node of type TT. Therefore, node 1 : DataType in source graph CD corresponds
to node 1 : ColumnType in target graph RDBM via node 1 : TT in correspondence graph C, node
2 : Attr in CD corresponds to node 1 : Column in RDBM via node 2 : AC in C, and node 4 : Class
in CD corresponds to node 4 : Table in RDBM via node 4 : CT in C. Sec. 2.2.4 and Fig. 2.8
depicts the triple rules for creating consistently integrated models of UML class diagrams (CDs)

36

CHAPTER 2. MODEL TRANSFORMATIONS, SYNCHRONISATIONS & FRAMEWORK

together with corresponding relational database models (RDBMs). The rules are all typed over
TG. Given a triple graph with class diagram CD′ in the source and database model RDBM′ in
the target such that CD′ contains a DataType with corresponding ColumnType in RDBM′, then
the application of triple rule 1 extends the triple graph simultaneously on all three components
in the sense that it simultaneously adds a Class to CD′ together with a corresponding Table to
RDBM′ both of name n but only if CD′ does not already contain a class of the same name (cf.
NAC). Furthermore, the table is equipped with a dedicated Column as primary key (pkey) of
type ColumnType. Rule 2 simultaneously adds a DataType to CDs together with a correspond-
ing ColumnType to RDBMs, both of name n. Rule 3 simultaneously adds an Attribute to CDs
together with a corresponding Column to RDBMs, both of name n, and assigns both to an ex-
isting class in CDs and the corresponding table in RDBMs. Rule 4 adds a Constant modifier to
an existing attribute in CDs but only if the attribute does not already have a modifier (cf. NAC).
Rule 5 simultaneously assigns an existing data type to an existing attribute as type in CDs and
the corresponding column type to the corresponding column as type in RDBMs but only if the
column does not already have a type (cf. NAC). Rule 6 simultaneously assigns an existing class
to an existing attribute as type in CDs and the corresponding table to the corresponding column
as foreign key (fkey) in RDBMs but only if the column does not already have a type (cf. NAC),
i.e., the type of the primary key column (pkey) of the table is additionally assigned to the column
as type. The TGG CD2RDBM = (∅,{1,2,3,4,5,6}) for transforming CDs into RDBMs is given
by the empty triple start graph ∅ together with triple rules 1 to 6, i.e., the TGG is typed over TG.
Triple graph G = (CD←s− C −t→ RDBM) in Sec. 2.2.1 and Fig. 2.4 can be obtained via direct triple

graph transformations ∅ =
(2,)
==⇒ G1 =

(1,)
==⇒ G2 =

(3,)
==⇒ G3 =

(4,)
==⇒ G4 =

(5,)
==⇒ G via triple rules 1 to 5,

i.e., G ∈L (CD2RDBM),CD ∈L (CD2RDBM)S and RDBM ∈L (CD2RDBM)T. 4

Remark 2.16 (Meta-Modelling & Model Transformation) As discussed in Sec. 2.1.1, a model
transformation between DSLs L (D1) and L (D2) transforms models from language L (D1) in
source domain D1 to language L (D2) in target domain D2 where each DSL is defined by a
meta-model in the corresponding domain. In the given context of graph transformations, a meta-
model is defined by a type graph together with a set of graph constraints. Therefore, a DSL
L (D) in domain D is given by all graphs that are typed over the domain type graph and that
satisfy the domain constraints (cf. Sec. 3.1 and Def. 3.1). The attributed triple type graph TG =
(TGCD← TGC→ TGRDBM) in Sec. 2.2.1 and Fig. 2.4 contains both the type graph TGCD for the
domain of class diagrams (CDs) and type graph TGRDBM for the domain of relational database
models (RDBMs) together with type graph TGC for correspondences between both. Additionally,
Sec. 2.2.3 and Fig. 2.6 represents the graph constraints for the domain of CDs (constraints for
RDBMs can be defined analogously). Thus, for the model transformation CD2RDBM from
CDs to RDBMs and in view of Sec. 2.1.1 and Fig. 2.3 (a) and (c), a graph M (M′) conforms to
the meta-model in domain CD (RDBM), if M (M′) is typed over TGCD (TGRDBM) and satisfies
the CD (RDBM) constraints. Graph CD in Fig. 2.4 conforms to the CD meta-model and graph
RDBM conforms to the RDBM meta-model. The transformation language of CD2RDBM is
given by the formalism of TGGs and contains all TGGs that conform to the meta-models in
domains CD and RDBM, i.e., all TGGs that are typed over triple type graph TG and that satisfy
the domain constraints. According to Ex. 2.5, the TGG CD2RDBM in Sec. 2.2.4 and Fig. 2.8 is in
(conforms to) the transformation language of CD2RDBM and therefore, is a valid transformation
specification. Transformation CD2RDBM may take graph CD in Fig. 2.4 as input and outputs
triple graph (CD←s−C−t→ RDBM) with correspondences C if being executed based on the TGG in
Fig. 2.8. In Sec. 2.3.2 and Def. 2.28, we review the execution of transformations based on model
transformation sequences and a given TGG in more detail. 4

37

2.3. MODEL TRANSFORMATION & SYNCHRONISATION BASED ON TGGS

2.3.2 Model Transformations based on TGGs

A model transformation MT : L (D1)VL (D2) is specified by a TGG (cf. Sec. 2.1.1). In the
following we review the existing concept of executing model transformations from [EEGH15]
based on model transformation sequences via operational rules of a given TGG, called forward
translation triple rules. According to Def. 2.26, the operational forward translation rules of a
given TGG are derived from the set of triple rules of the TGG by an automatic construction
[SK08, HEGO10]. For each triple rule tr, the construction yields a corresponding forward trans-
lation triple rule trFT which is identical to tr on the correspondence and target components, i.e.,
trFT creates the same graph elements as tr in the correspondence and target parts. For the source
part, trFT does not create elements but already contains the created source elements of tr in the
left-hand side. Each source graph element in trFT is equipped with a translation attribute with at-
tribute value false (F - not yet transformed) for those elements that are created by tr and attribute
value true (T - has been already transformed) for all other elements (cf. Rem. 2.17). Therefore,
the application of a forward translation rule trFT is the transformation of all source elements that
are marked with F to corresponding target elements. Furthermore, rule trFT updates all trans-
lation attribute values from F to T in order to mark that the corresponding elements has been
transformed. According to Def. 2.28, a forward model transformation is executed by applying
operational forward translation rules successively in so called model transformation sequences.
Thus, the execution of a model transformation corresponds to the abstract description in Sec. 1.3
where the update of the translation attribute values from F to T corresponds to the marking of
graph elements to keep track of the elements that already have been transformed during the exe-
cution. The backward case of transforming models from L (D1) in source domain D1 to L (D2)
in target domain D2 via backward translation rules is defined analogously and omitted in the
following. For technical details we refer to Chapter 7 in [EEGH15].

The extension of rules with translation attributes from Rem. 2.17 is used for the definition of
forward translation rules in Def. 2.26 and for the definition of marking rules in Sec. 3.2 that are
part of verifying domain completeness.

Remark 2.17 (Graphs with Translation Attributes) Given an attributed graph AG = (G,D) and
a subset M ⊆ G of its elements (nodes, edges or attributes), we call AG′ a graph with translation
attributes over AG if it extends AG by one Boolean-valued translation attribute for each element
in M. The translation attribute for a node or edge is specified by an attribute tr. The translation
attribute for an attribute a of a node or edge is specified by an attribute tr a. With AG⊕AttT

M
we denote the graph with translation attributes over AG which extends AG by a translation at-
tribute for each element in M ⊆ G, and all these translation attributes are set to T. Similarly,
AG⊕AttF

M denotes adding to AG all these translation attributes, but this time they are set to F.
With Attx(AG),x ∈ {F,T} we denote AG⊕Attx

G. For technical details we refer to Sec. 7.4.1 in
[EEGH15]. 4

According to Def. 2.25, for forward translation rules with application conditions ac, each
element in ac that is not in the premise of ac also need to be extended by a translation attribute
of value T. For triple rules, X restricts the extension to elements of specific triple components
(source, correspondence and target).

Definition 2.25 (T-Extension of Application Conditions (Def. 7.28 in [EEGH15])) Given an
application condition acP over premise graph P, a graph P′ with translation attributes over P
and a subset of triple components X ⊆ {S,C,T}, then the T-extension tExt(acP,P′,X) of acP is
inductively defined by:

38

CHAPTER 2. MODEL TRANSFORMATIONS, SYNCHRONISATIONS & FRAMEWORK

• tExt(true,P′,X) = true

• tExt(∃(a = (incP,aD) : P→C,acC),P′,X) = ∃(aE : P′→C′, tExt(acC,C′,X)) with

1. C′ = P′+P C⊕∪x∈X(AttT
Cx\Px), and

2. aE = (inc′P,aD) with algebra homomorphism aD on the data part and inclusion inc′P
on the graph part as derived from incP.

• tExt(¬(ac′P),P
′,X) = ¬(tExt(ac′P,P

′,X))

• tExt(acP,1∧acP,2,P′,X) = tExt(acP,1,P′,X)∧ tExt(acP,2,P′,X)

• tExt(acP,1∨acP,2,P′,X) = tExt(acP,1,P′,X)∨ tExt(acP,2,P′,X) 4

According to [EEGH15], for model transformations and synchronisations, we restrict the ap-
plication conditions of triple rules to S-consistent application conditions.

Remark 2.18 (S-consistent Application Conditions) According to Def. 7.8 in [EEGH15], an
application condition acP is source consistent (S-consistent), if it can be decomposed into a
semantically equivalent conjunction acP ≡ acS∧acF such that acS does restrict the source com-
ponent only and acF does restrict the correspondence and target components only, i.e., relations
of restricting elements between the correspondence and source parts in acP may be problematic.
All application conditions in running examples of this thesis are S-consistent. 4

Forward translation rules are used in Def. 2.28 for executing model transformations and in
Sec. 4.1 and Thm. 4.2 for verifying the domain completeness of model transformations.

Definition 2.26 (Forward Translation Rule (Def. 7.29 in [EEGH15])) Given a triple rule
tr = ((trS, trC, trT) : L = (LS ←sL−− LC −tL→ LT)→ R = (RS ←sR−− RC −tR→ RT),acL) with S-consistent
application condition
acL over L, then the forward translation rule trFT of tr is given by trFT = (LFT ←lFT−− KFT −rFT−→
RFT ,acFT) with: 1. LFT =(RS←tr

S◦sL−−−− LC−tL→ LT)⊕AttT
(trS(LS)←∅→∅)⊕AttF

(RS←∅→∅)\(trS(LS)←∅→∅),

2. KFT = (RS←tr
S◦sL−−−− LC −tL→ LT)⊕AttT

(trS(LS)←∅→∅), 3. RFT = (RS←sR−− RC −tR→ RT)⊕AttT
(RS←∅→∅),

4. lFT and rFT are the induced inclusions, and 5. acFT = tExt(acL,LFT ,{S}). With TRFT we de-
note the set of forward translation rules trFT of all triple rules tr ∈ TR for a given set of triple
rules TR. 4

Definition 2.27 (Complete Forward Translation Sequence (Def. 7.33 in [EEGH15])) A for-

ward translation sequence G0 =
tr∗FT==⇒ Gn via TRFT with almost injective matches is complete, if no

further forward translation rule is applicable and all translation attributes in Gn are set to T. 4

Definition 2.28 (Model Transformation based on Forward Translation Rules (Def. 7.34 in
[EEGH15])) Given a triple type graph TG = (TGS ← TGC → TGT) and a set TR of triple

rules typed over TG, then a model transformation sequence (GS,G′0 =
tr∗FT==⇒ G′n,G

T) based on for-
ward translation rules TRFT from a source graph GS in the source domain to a target graph GT

in the target domain consists of a complete forward translation sequence G′0 =
tr∗FT==⇒ G′n typed over

TG′ = TG⊕AttF
(TGS←∅→∅)

⊕AttT
(TGS←∅→∅)

based on TRFT with G′0 = (AttF(GS)← ∅→ ∅)

and G′n = (AttT(GS)← GC → GT). A model transformation MT : L (TGS)VL (TGT) based
on TRFT is defined by all model transformation sequences as above with GS ∈ L (TGS) and
GT ∈L (TGT) (cf. Sec. 3.1 and Def. 3.1 for L (TGS) and L (TGT)). 4

39

2.3. MODEL TRANSFORMATION & SYNCHRONISATION BASED ON TGGS

1: C2TFT

++
++

:Column

:pkey ++

++

:type++

:cols++

1:CT
1:Table

name = nNAC

:Class

name = n

tr=T

tr_name=T

2:ColumnType2:TT

1:Class

name = n

tr=[F=>T]

tr_name=[F=>T]

2:DataType

tr=T

Figure 2.10: Forward Translation Rule

Example 2.6 (Forward Translation Rule & Model Transformation) Rule C2TFT in Fig. 2.10
is the forward translation rule of triple rule C2T in Sec. 2.2.4 and Fig. 2.8. Node 1 : Class and
attribute name are created by rule C2T in the source and therefore, are initially marked with
translation attribute F and updated to T in rule C2TFT , denoted by [F => T]. All other source
and NAC elements of C2T are initially marked with T in C2TFT and remain unchanged. Fur-
thermore, the correspondence and target components of C2TFT are identical to those of rule
C2T. Note that a forward translation rule does also contain the application condition of the tar-
get component but without any markings if existent in the underlying triple rule as it is the case
for triple rules TD2T and TC2T. Graph CD in Sec. 2.2.1 and Fig. 2.4 can be transformed to

graph RDBM via model transformation sequence (CD,G′0 =
DT2CTFT (“INT ′′)
==========⇒ G′1 =

C2TFT (“Person′′)
=========⇒

G′2 =
A2CFT (“DOB′′)
========⇒ G′3 =

MCFT===⇒ G′4 =
TD2TFT====⇒ G′5,RDBM) based on the forward translation rules

of the triple rules in Sec. 2.2.4 and Fig. 2.8 with integrated model G′5 = (AttT(CD)← GC →
RDBM). The model transformation CD2RDBM is given by all corresponding model trans-
formation sequences based on the forward translation rules of the triple rules in Sec. 2.2.4
and Fig. 2.8. 4

General Assumption Note that the definition of forward translation rules is based on attri-
butions in attributed graphs (cf. Rem. 2.17 and Def. 2.26). Therefore, we assume category
(ATrGraphsATGI,M) for model transformations and synchronisations. According to the gen-
eral assumption for model transformations based on TGGs in Sec. 7.1 in [EEGH15] and analo-
gously to the general assumption for rule applications in Sec. 2.2.4, we assume that triple rules
are applied based on transformations via almost injective matches m ∈ O and where all internal
morphisms of application conditions are almost injective (cf. Sec. 2.3.1 for O-morphisms in
(ATrGraphsATGI,M)). In the context of model transformations and synchronisations, we gen-
erally assume the empty triple graph ∅ as start graph for TGGs and that all application conditions
of triple rules are S-consistent.

2.3.3 Model Synchronisations based on TGGs

Given a triple type graph TG = (TGS← TGC→ TGT) with source domain L (TGS) and target
domain L (TGT) (cf. Sec. 3.1 and Def. 3.1 for L (TGS) and L (TGT)). A source (target) model
update δ on source graph G ∈ L (TGS) (target graph G ∈ L (TGT)) is a span of inclusions
δ = (G←u1−− H −u2−→ G′),u1,u2 ∈M with G,H,G′ ∈ L (TGS) (G,H,G′ ∈ L (TGT)). Elements
G \ u1(H) are deleted in G whereas elements G′ \ u2(H) are added to G. With ∆S (∆T) we

40

CHAPTER 2. MODEL TRANSFORMATIONS, SYNCHRONISATIONS & FRAMEWORK

1: C2TCC

:Column
tr=[F=>T]

:pkey
tr=[F=>T]

:type
tr=[F=>T]

:cols
tr=[F=>T]

1:CT

tr=
[F=>T]

NAC

:Class

name = n

tr=T

tr_name=T

2:ColumnType

tr=T

2:TT

tr=T

1:Class

name = n

tr=[F=>T]

tr_name=[F=>T]

1:Table

name = n
tr=[F=>T]
tr_name=[F=>T]

2:DataType

tr=T

Figure 2.11: Consistency Creating Rule

denote the set of all source (target) model updates. A model synchronisation is a propagation
of model updates from the source to the target domain via forward propagation operation fPpg.
Operation fPpg takes a triple graph (GS ← GC → GT) typed over TG together with a source
model update δ S = (GS ← HS → G′S) ∈ ∆S on GS as input and outputs a target model update
δ T = (GT ← HT → G′T) ∈ ∆T on GT together with a triple graph (G′S ← G′C → G′T) typed
over TG that interrelates the results G′S and G′T of both updates via correspondence G′C. This
corresponds to the informal description of model synchronisations in Sec. 2.1.2. The backward
case of propagating updates from the target to the source domain via backward propagation
operation bPpg is defined analogously and omitted in the following. According to Def. 9.18
in [EEGH15], the synchronisation operation fPpg is a composition of three auxiliary operations
fAln,Del and fAdd. For technical details we refer to Chapter 9 in [EEGH15]. Operation Del relies
on operational consistency creating (CC) rules [HEO+15]. Similarly to forward translation rules
in Sec. 2.3.2 and Def. 2.26, the CC rule trCC of a given triple rule tr does not create elements
in the sense that it already contains all elements of tr including the created elements in the left-
hand side and furthermore, each element that is created by tr is initially marked with translation
attribute F und updated to T, written [F => T], while all other elements are initially marked
with T and remain unchanged. Rule C2TCC in Fig. 2.11 is the CC rule of triple rule C2T in
Sec. 2.2.4 and Fig. 2.8. For CC rules we review the existing result in Fact 2.1 which is used to
prove Sec. 3.2 and Lem. 3.2.

Definition 2.29 (Consistency Creating (CC) Rule (Def. 7.44 in [EEGH15])) Given
a triple rule tr = (L → R,acL), then the consistency creating rule trCC of tr is
given by trCC = (LCC ←lCC−− KCC −rCC−→ RCC,acCC) with: 1. LCC = (R ⊕ AttT

L ⊕ AttF
R\L),

2. KCC = (R⊕AttT
L), 3. RCC = (R⊕AttT

L ⊕AttT
R\L), 4. lCC and rCC are the induced inclusions, and

5. acCC = tExt(acL,LCC,{S,C,T}). With TRCC we denote the set of consistency creating rules
trCC of all triple rules tr ∈ TR for a given set of triple rules TR. 4

Remark 2.19 (Meta-Modelling & Model Synchronisation) Given the triple type graph TG =
(TGCD← TGC→ TGRDBM) from Fig. 2.4 with triple graph G = (CD←C→ RDBM) ∈L (TG)
and source model update δ = (CD ←u1−− H −u2−→ CD′) in Fig. 2.12, then fPpg(G,δ) = (G′,δ ′)

41

2.3. MODEL TRANSFORMATION & SYNCHRONISATION BASED ON TGGS

CD

:a

:Const
:mod

1:DataType

name= INT

:type

u1

RDBM

2:Column

name= DOB

:cols

:Column

:cols,pkey

3:Table

name= Person

1:ColumnType

name= INT

:type :type

2:AC

3:CT

1:TT

C

s t

3:Class

name= Person

2:Attr

name= DOB

CDCC

1:DataType

name= INT
1:TT

CCC RDBMCC

1:ColumnType

name= INT

H

:a

:Const
:mod

1:DataType

name= INT

:type

2:AC

3:CT

1:TT

CfAln

sfAln2:Attr

name= DOB

3:Class

tfAln(1)

CD

:a

:Const
:mod

1:DataType

name= INT

:type

RDBM

2:Column

name= DOB

:cols

:Column

:cols,pkey

1:ColumnType

name= INT

:type :type

2:AC

3:CT

1:TT

C

s t 2:Attr

name= DOB

3:Class

name= Employee

3:Table

name= Employee

u2

DelS DelC

DelT

fAddC fAddT

sCC tCC

Figure 2.12: Model Synchronisation via Forward Propagation Operation fPpg

with G′ = (CD′ ←s
′
− C′ −t

′
→ RDBM′) ∈ L (TG) and target model update δ ′ = (RDBM ←DelT−−−

RDBMCC −fAddT
−−−→ RDBM′). Target update δ ′ on RDBM reflects the change of source update δ

on CD (the name of the Class is changed from Person to Employee) in the target domain. The
output (G′,δ ′) is obtained by three sequential operations fAln,Del and fAdd: Alignment oper-
ation fAln creates pullback (1) in order to align deletions of update δ to the correspondence
component and yields triple graph G1 = (H ←sfAln−−− CfAln −

t◦tfAln−−−→ RDBM). Operation Del creates
the maximal consistently integrated triple sub-graph of G1 by creating the graph AttF(G1) with
translation attributes over G1 and applying CC rules TRCC as long as possible afterwards. The
maximal consistently integrated sub-graph is given by all T-marked elements, i.e., by triple
graph G2 = (CDCC ←sCC−− CCC −tCC−→ RDBMCC) with inclusion (DelS,DelC,DelT) : G2 → G1 (the
translation attributes are omitted in Fig. 2.12). Operation fAdd adds those elements to G2 that

42

CHAPTER 2. MODEL TRANSFORMATIONS, SYNCHRONISATIONS & FRAMEWORK

are created by update δ leading to triple graph G3 = (CD′←u2◦DelS◦sCC−−−−−−−CCC −tCC−→ RDBMCC) where
additionally all elements that are creatd by δ are marked with translation attributes F. Finally, a

complete forward translation sequence G3 =
tr∗FT==⇒ G′ leads to output (G′,δ ′). 4

Fact 2.1 (Equivalence of Triple and Extended Consistency Creating Sequences (Fact 10 in
[HEO+11])) Let TGG = (∅,TR) be a triple graph grammar typed over triple type graph ATGI
with empty start graph ∅ and derived consistency creating rules TRCC of triple rules TR. Let
G ∈L (ATGI) be a graph according to Sec. 3.1 and Def. 3.1, then the following are equivalent
for almost injective matches m ∈ O .

• There exists a consistency creating sequence AttF(G) =
tr∗CC==⇒ G⊕AttT

Gk
⊕AttF

G\Gk
via con-

sistency creating rules TRCC.

• There exists a triple graph transformation ∅ =
tr∗
=⇒ Gk via TR with injective embedding

f : Gk→ G. 4

General Assumption Note that the definition of CC rules is based on attributions in attributed
graphs. Therefore, we assume all general assumptions from Sec. 2.3.2.

2.4 Properties of Model Transformations & Synchronisations
(“Classical” Completeness & Correctness)

Model transformations and synchronisations based on TGGs share the following important prop-
erties: 1. efficiency, 2. TGGs allow intuitive and maintainable tranformation specifications with
sufficient expressiveness, 3. bidirectionality, 4. type consistency, 5. termination, 6. functional be-
haviour (termination + confluence), and 7. information preservation (cf. Sec. 3.1 in [EEGH15]).
Two further essential properties for the results in Sec. 4.1 and Chap. 4 are syntactical correctness
and completeness referred to as “classical” correctness and completeness to not confuse with
domain completeness. Syntactical correctness means that for each input in the source domain, if
the model transformation (synchronisation) leads to an outpout, then the output conforms to the
meta-model of the target domain. Syntactical completeness means that the model transformation
(synchronisation) can be applied on each model (model update) in the source domain.

Definition 2.30 (“Classical” Syntactical Correctness and Completeness of Model Transforma-
tions (Def. 8.3 in [EEGH15])) A model transformation MT : L (TGS)VL (TGT) based on
forward rules is

1. syntactically correct if for each model transformation sequence (GS,G0 =
tr∗F=⇒ Gn,GT) there

is G ∈L (TGG) with G = (GS ← GC → GT) implying further that GS ∈L (TGG)S and
GT ∈L (TGG)T , and it is

2. syntactically complete if for each GS ∈ L (TGG)S there is G = (GS ← GC → GT) ∈
L (TGG) with a model transformation sequence (GS,G0 =

tr∗F=⇒ Gn,GT) and Gn = G. The
backward direction is defined analogously. 4

Definition 2.31 (“Classical” Syntactical Correctness and Completeness of Model Synchronisa-
tions (Fig. 9.5 in [EEGH15])) A forward model synchronisation via fPpg is

1. syntactically correct if for all consistently integrated models M = (MS ← MC → MT) ∈
L (TGG) and source model updates u : MS←HS→M′S,u′ ∈∆S,M′S ∈L (TGG)S it holds

43

2.4. PROPERTIES OF MODEL TRANSFORMATIONS & SYNCHRONISATIONS

that fPpg(M, idS) = (M, idT) and fPpg(M,u) = (M′,u′) such that M′ = (M′S ← M′C →
M′T) and M′ ∈L (TGG), if fPpg yields a result, and it is

2. syntactically complete if fPpg can be applied on each input integrated models M ∈
L (TGG) and source model updates u ∈ ∆S and it always yields a result for any valid
input. 4

Remark 2.20 (“Classical” Syntactical Correctness and Completeness) According to Thm. 8.4
and Cor. 8.5 in [EEGH15], each model transformation MT based on forward (translation) rules is
“classically” syntactically correct and complete. For forward translation rules, each model trans-

formation sequence (GS,G0 =
tr∗F=⇒ Gn,GT) based on forward rules in Def. 2.30 is substituted by a

corresponding model transformation sequence (GS,G′0 =
tr∗FT==⇒ G′n,G

T) based on forward transla-
tion rules. According to Thm. 9.25 in [EEGH15], fPpg is syntactically correct and complete for
kernel-grounded and deterministic sets of operational rules TRCC and TRFT . 4

44

Chapter3
Domain Completeness

In Sec. 3.1, we introduce the domain completeness problem and show its undecidability in
(GraphsTG,M) and derivative categories of graphs with finite restrictions to the graphs, un-
derlying type graph TG, grammar, constraints and application conditions. Intuitively, the fact
that the domain completeness problem is undecidable means that it is impossible to construct a
single algorithm which completely solves the problem in the sense that the algorithm terminates
and returns the correct yes-or-no answer concerning L (C)⊆L (GG) for each input L (C) and
L (GG). This led to the development of sufficient conditions that can be checked by a pro-
cedure for verifying domain completeness in (AGraphsATGI,M) and underlying categories. It
is guaranteed that the procedure terminates under certain assumptions. Note that the condi-
tions are sufficient only without being necessary, i.e., the proposed verification technique is an
under-approximation approach for solving the domain completeness problem in the sense that
the approach does not yield false positives but may yield false negatives. Thus, if the conditions
are fulfilled, then domain completeness holds but if the conditions are not fulfilled, then domain
completeness does not necessarily not hold but may also hold. Therefore, we can give a concrete
answer only to a subset of all constraint-grammar pairs for which domain completeness holds.

Sec. 3.2 presents the verification technique. Sec. 3.3 presents the limitations of the approach.
Sects. 3.4 and 3.5 presents various extensions of the approach. Sec. 3.4 introduces the notion of
recursive constraints for enabling the verification of domain completeness in view of infinite con-
straints which describe recursive graph patterns. Finally, in Sec. 3.5 we consider the verification
of domain completeness under restrictions of the domain type graph. This reflects the situation
where only a subset of all constituents of the given domain is subjected to the verification.

3.1 Domain Completeness Problem & Undecidability

We assume that the constituents of a domain are given by a type graph whereas valid sentences
in that domain are additionally restricted by a set of graph constraints. Thus, valid sentences
in a domain are expressed by typed graphs as domain models that satisfy the given domain
constraints. The domain-specific language (DSL) is given by all valid sentences in that domain,
i.e., by all graphs typed over the domain type graph and that satisfy the domain constraints.

Definition 3.1 ((Domain-Specific) Languages over Graph Constraints, Grammars & Type
Graphs) Let TG be a type graph, C = CI ∪CG be a set of nested graph constraints CI that are
designated for initial satisfaction and CG that are designated for general satisfaction (all typed
over TG). Moreover, let GG = (S,P) be a graph grammar with start graph S and productions P

45

3.1. DOMAIN COMPLETENESS PROBLEM & UNDECIDABILITY

(all typed over TG). With L (TG) we denote the language over type graph TG which is given
by the set of all graphs that are typed over TG. With L (GG) := {G | ∃S =

∗⇒ G via P} we denote
the language over (TG) and grammar GG which is given by all graphs (typed over TG) that are

reachable from S by transformation sequences via productions P. With LI(CI) := {G | G
I
|=CI}

we denote the domain-specific language over (TG) and constraints CI which is given by all
graphs (typed over TG) that initially satisfy constraints CI . With L (CG) := {G | G |= CG} we
denote the domain-specific language over (TG) and constraints CG which is given by all graphs
(typed over TG) that generally satisfy constraints CG. We write L (C) short for LI(CI)∩L (CG)
and denote the domain-specific language over (TG) and constraints C. 4

Example 3.1 ((Domain-Specific) Languages) Sec. 2.2.3 and Fig. 2.5 depicts the type graph TG
of UML class diagrams as well as the constraint acP = ∨i = (1,2)(∃(a : P→ C, true)) which
claims that:

1. For initial satisfaction of acP - There exists a Class in the diagram such that the class has a
Constructor with visibility Protected or Public.

2. For general satisfaction of acP - For each class in the diagram it holds that the class has a
Constructor with visibility Protected or Public.

Graph G in Fig. 2.5 is typed over TG, therefore G ∈L (TG). Moreover, graph G both initially
and generally satisfies acP, i.e., G ∈ LI({acP}) and G ∈ L ({acP}). Furthermore, given type
graph TGCD, graph CD in Sec. 2.2.1 and Fig. 2.4 typed over TGCD and the rules P in Sec. 2.2.4
and Ex. 2.4 typed over TGCD with grammar GG=(∅,P) and empty start graph ∅, then according
to Ex. 2.4, CD can be created by a transformation from ∅ via rules P, i.e., CD ∈L (GG). 4

We introduce the notion of domain completeness in view of model transformations and syn-
chronisations based on TGGs. Thus, domain completeness means that all valid sentences in a
domain are completely covered by the TGG. More precisely, given a domain type graph TG,
domain constraints C and a graph grammar GG = (S,P) both typed over TG, then domain com-
pleteness holds if L (C)⊆L (GG), i.e., the constraints C are more restrictive than (or as restric-
tive as) grammar GG. Thus, the domain completeness problem is defined in terms of a language
inclusion problem. The underlying question to be answered is: “Can all graphs that satisfy C be
created from S by successively applying rules P?”.

Definition 3.2 (Domain Completeness (Problem)) Given the languages L (C) and L (GG)
over domain graph constraints C and grammar GG, respectively, and common domain type graph
TG. Domain completeness holds if L (C) ⊆L (GG). Thus, the domain completeness problem
is defined as follows: Does it hold that L (C)⊆L (GG)? 4

The domain completeness problem for (non-deleting) graph grammars with nested application
conditions turns out to be undecidable in general (and in particular, for (finite) typed graphs with
injective matches only for rule applications) due to the expressiveness of nested conditions as
application conditions for the productions in the grammars. This implies that the problem is
also undecidable for derivative categories of graphs such as the (finitary) M -adhesive category
(AGraphsATGI,M) of (finite) typed attributed graphs (with node type inheritance) and with
almost injective matches only. Based on the existing result for transforming constraints into
right application conditions [HP09], we first show that sets of constraints C can be transformed
into left application conditions acL for productions p = (L← K→ R) such that the satisfaction
of acL by matches m : L→ G coincides with the satisfaction of C by G. This result is used for

46

CHAPTER 3. DOMAIN COMPLETENESS

proving the undecidability in Thm. 3.1 afterwards.

Lemma 3.1 (Transformation of Constraints into Left Application Conditions) Let (C,M) be
an M -adhesive category with E -M -factorisation and M -initial object I. Then, there is a trans-
formation LA from sets of conditions over I into left application conditions for productions,
such that for all sets C of conditions over I, all productions p = (L← K→ R) and all matches
m : L→ G for some G it holds that m |= LA(p,C) if and only if G |=C. 4

Construction Given a production p = (L← K → R) and a set C = (c j) j∈J of conditions c j

over I, then the transformation LA(p,C) := ∧ j∈JA(p,c j) is defined by the transformation A
from conditions into right application conditions for p as given in Thm. 5 in [HP09] together
with a conjunction over all constraints c j ∈C where p = (L←idL−− L−idL−→ L).

Proof. By Thm. 5 in [HP09], for all conditions c over I, all productions p = (L← K → R)
and all morphisms m∗ : R→ G it holds that m∗ |= A(p,c)⇔ G |= c (∗1). This result can be
directly transferred from weak adhesive HLR categories to M -adhesive categories, since, only
basic HLR properties and general categorical properties are used in the proofs. Let C = (c j) j∈J

be a set of conditions over I, p = (L← K → R) and p = (L←idL−− L −idL−→ L) be productions and

m : L→ G be a match. m |= LA(p,C)
De f . LA(p,C)⇐======⇒ m |= ∧ j∈JA(p,c j)

Sat.⇐⇒ m |= A(p,c j), for all

j ∈ J
(∗1)⇐⇒ G |= c j, for all j ∈ J Sat.⇐⇒ G |=C.

The properties that are enclosed by parentheses “(property)” are optional.

Theorem 3.1 (Undecidability of the Domain Completeness Problem) Let C be a (finite) set
of (finite) nested graph constraints (in M -normal form) and GG = (S,P) be a (non-deleting)
graph grammar with a (finite) set of productions P (with start graph S being the initial graph ∅)
and (finite left) nested application conditions (in M -normal form). Furthermore, let L (C) and
L (GG) be the languages over C and GG, respectively, and common type graph TG. Then, the
language inclusion problem L (C)⊆L (GG) is undecidable in general and in particular in the
(finitary) M -adhesive category (GraphsTG,M) ((GraphsTG,fin,Mfin)) of (finite) graphs typed
over (finite) type graph TG with M -matching. 4

Proof. The proof is presented in appendix A.3.

In addition to Thm. 3.1, it turns out that the domain completeness problem is also undecidable
for (non-deleting) graph grammars without application conditions due to the undecidability of
the satisfiability problem of constraints.

Theorem 3.2 (Undecidability of the Domain Completeness Problem) Given the setting from
Thm. 3.1 but GG be a graph grammar without application conditions. Then, L (C) ⊆L (GG)
is undecidable in the same context.

Proof. The undecidability is shown by a reduction from the undecidable satisfiability problem of
finite graph constraints (cf. Cor. 9 in [HP09]). Thus, based on the proof of Thm. 3.1, for a given
(finite) set of (finite) constraints C in C in M -normal form it is undecidable, whether there is a
graph in C that satisfies C (∗1). The reduction is given by a computable mapping from C and TG
to TG′ and constraints C′ together with grammar GG = (S,P) with start graph S and an empty
set of productions P = ∅. Similarly to the proof of Thm. 3.1, type graph TG′ extends TG by
node T with inclusion it : TG→ TG′, the obvious functor F : C→ C′, mapping F(C) and result

47

3.2. VERIFICATION OF DOMAIN COMPLETENESS

(∗3). The set of constraints C′ is given by C′ = F(C)∪{c} with constraint c = ∃(∅→ :T , true).
Thus, language L (C′) contains all graphs in C′ that have at least on node of type T and that
satisfy all constraints in F(C). Language L (GG) with S = ∅ contains the empty graph S only.
It remains to show that C is satisfiable in C if and only if L (C′) 6⊆L (GG) holds in C′. Then,
assuming the decidability of the language inclusion problem would imply the decidability of the
satisfiability problem leading to a contradiction by (∗1).

“⇒” There exists G ∈C with G |=C. Thus, there exists graph G′ in C′ which is F(G) extended
by a single node : T with G′ |= F(C) by (∗3) and furthermore, G′ |= c therefore, G′ |= C′

and G′ ∈L (C′). However, G′ 6∈L (GG).

“⇐” By contradiction assume that C is not satisfiable in C, i.e., for all G ∈ C, G 6|=C. By (∗3)
it follows that for all G′ ∈ C′, G′ 6|= F(C). Thus, L (C′) = ∅ and therefore, L (C′) ⊆
L (GG).

The set C′ is finite by construction of F(C) with C being a finite set by assumption. Analogously,
for all c′ ∈ F(C), c′ is finite and in M -normal form and furthermore, c is finite and in M -normal
form. Thus, for all c′ ∈C′, c′ is finite and in M -normal form. By P =∅, grammar GG is trivially
non-deleting, P is finite, all application conditions are finite and in M -normal form and we can
restrict to M -matching.

3.2 Verification of Domain Completeness

This section presents the technique for verifying domain completeness approximately accord-
ing to Sec. 3.1 and Def. 3.2. Effectively, this means to provide a method for showing that all
graphs which satisfy the domain constraints can be created from the empty start graph ∅ via
rule applications of the given graph grammar. In Def. 3.8, for a given type graph TG, graph
grammar GG and set C of domain constraints both typed over TG, we introduce the general no-
tion of C-extension completeness of graph languages L (GG) over TG and graph grammar GG.
C-extension completeness of language L (GG) ensures that for each graph G ∈ L (C) which
satisfies constraints C it is true that its sub-graphs are in L (GG) and therefore can be created
via rule applications of grammar GG, i.e., the language restrictions that are induced by grammar
GG are reflected by constraints C. In more detail, we iterate over all minimal graphs (atoms)
of type graph TG, when needed extend them via constraints C, and show that they can be cre-
ated via rule applications of grammar GG. Def. 3.5 defines the step-wise extension of a graph
via constraints C. Only atoms and sub-graphs that occur in graphs G ∈L (C), called effective
atoms (cf. Def. 3.7) and significant graphs (cf. Def. 3.4), are considered in C-extensions and
C-extension completeness. Note that C-extension completeness only ensures that the sub-graphs
of G are in L (GG) but not G as a whole, as, sub-graphs may overlap. Therefore, in addition
to C-extensions completeness a second condition - the C-conflict-freeness of markings rules - is
necessary in order to ensure that each G ∈L (C) is in L (GG) (cf. Def. 3.12 and Thm. 3.3).

General Assumption Additionally to the general assumptions of the sections from before,
the following general assumptions are made. As marking rules rely on attributions with
translation attributes (cf. Sec. 2.3.2 and Rem. 2.17), we assume finitary M -adhesive cate-
gory (AGraphsATGI,fin,Mfin) with a distinct type graph ATGI for all results (in particular, the
category is M -adhesive, has extremal E -M -factorisations, initial pushouts (cf. Sec. 2.2.2
and Rem. 2.6) and effective pushouts (cf. Sec. 2.2.2 and Rem. 2.8)). For domain completeness
L (C) ⊆L (GG = (S,P)) we assume that L (C) is additionally restricted to attributed graphs

48

CHAPTER 3. DOMAIN COMPLETENESS

with algebras that are isomorphic to the algebra of start graph S, since, otherwise the language in-
clusion may never hold, as, rules P are spans of M -morphisms that are preserved along pushouts
in transformations, i.e., by Sec. 2.2.2 and Rem. 2.3, L (GG) only contains attributed graphs with
algebras that are isomorphic to the algebra of S. However in general, L (C) is not restricted to
specific algebras, e.g., for the definition of significant graphs and effective atoms in Defs. 3.4
and 3.7. Moreover, all constraints c ∈ C are interpreted via their AC-schemata, i.e., we write

G |= c,G |= C,G
I
|= c,G

I
|= C, or L (C) but mean those graphs that initially (generally) satisfy

the AC-schemata of constraint c or constraints C (cf. Sec. 2.2.3 and Def. 2.19). Furthermore, we
assume that the constraints C and rules P are defined over the same DSIG-term algebra TDSIG(X)
and common set of variables X where only variables X are used as values for attributes in graphs
of constraints and rules.

Note that for C-extension completeness we are only interested in significant sub-graphs that
occur in graphs of L (C). However, the non-significance of sub-graphs G may not be directly
inferable from a single constraint in C but indirectly via a chain of reasoning over several con-
straints of C, e.g., some constraint c ∈C claims for G the existence of some additional node but
which is forbidden by some other constraint c′ ∈C leading to the non-significance of G. There-
fore, we introduce the notion of C-inconsistent graphs that are only a subset of not significant
graphs but that can be identified more efficiently, directly based on single constraints. A graph G
is C-inconsistent if G does not satisfy a constraint c ∈C which is violation stable under embed-
ding. A constraint c is violation stable under embedding if for each graph G that does not satisfy
c also any bigger context H around G does not satisfy c. Therefore, a C-inconsistent sub-graph
does not occur in graphs G ∈L (C) and therefore is not significant (cf. Rem. 3.2).

Definition 3.3 (Violation Stability of Constraints) A constraint c is violation stable under em-
bedding, if for any graph G with G 6|= c it holds that for any inclusion i : G ↪→ H, i ∈M also
H 6|= c. 4

Example 3.2 (Violation Stability of Constraints) All constraints that inevitably forbid graph
patterns via negations ¬ and all constraints that inevitably restrict types along an inheritance rela-
tion are violation stable under embedding. This conforms to constraints 2,3,5−7,9,10,12−14
in Fig. 2.6 for forbidden patterns and to the constraints for abstract types in Sec. 2.2.3 and Ex. 2.3
for type restrictions. 4

Remark 3.1 (Violation Stability of Constraints & Initial Satisfaction) Note that violation sta-
bility is only defined in terms of general satisfaction of constraints in Def. 3.3 (cf. Sec. 2.2.3
and Def. 2.15). This is due to the fact that the existential character of initial satisfaction of con-

straints acP usually allows to extend graphs G with G
I
6|= acP by premise P to graphs H with

inclusion G→ H ∈M such that H
I
|= acP, i.e., constraints that are designated for initial satis-

faction usually are not violation stable under embedding. This is not the case for constraints that
are contradictory and constraints of the form ¬∃(∅→ C,acC) over initial object ∅. However,
constraints of that form can be semantically equivalently interpreted via general satisfaction by
the uniqueness of the initial morphism from ∅ (cf. Sec. 2.2.3 and Rem. 2.10). 4

Definition 3.4 (C-Inconsistent & Significant Graph) Let C be a set of constraints and let C′ ⊆C
be the contained constraints that are designated for general satisfaction and violation stable under
embedding. A graph G is significant w.r.t. L (C) if there is an inclusion G ↪→ H ∈M with

49

3.2. VERIFICATION OF DOMAIN COMPLETENESS

H ∈L (C). A graph G is C-inconsistent, if G 6|=C′. 4

Remark 3.2 (Relationship between C-inconsistent & Significant Graphs) By definition, each
C-inconsistent graph is not significant w.r.t. L (C). Furthermore, each graph that is significant
w.r.t. L (C) is not C-inconsistent. The other directions do not hold in general. 4

Example 3.3 (C-Inconsistent & Significant Graph) Given the constraints C for UML class di-
agrams from Sec. 2.2.3 and Ex. 2.3. Graph G1 in Fig. 3.1 is C-inconsistent by violating the
constraint for abstract type Classifier (cf. Ex. 3.2). The graph in Fig. 3.4 is not C-inconsistent,
since, it does not violate a constraint c ∈C which is violation stable under embedding. However,
the graph is not significant w.r.t. L (C), since, it cannot be embedded into a graph that satisfies
constraints C. Node 2 : Attr has a Const modifier and therefore, 2 : Attr must also be of type
DataType by following constraint 15 but simultaneously constraint 9 forbids that 2 : Attr has
more than one type. 4

For a given set of constraints C, let G be a graph that is significant w.r.t. L (C) but that
does not generally satisfy C, then the idea of extending G via C is to obtain significant graphs
that generally satisfy C in order to increase the accuracy of verifying domain completeness in
Thm. 3.3 via C-extension completeness in Def. 3.8. Therefore, the extension of G via C may lead
to graphs, called C-extensions of G, that may increasingly generally satisfy constraints C. As the
constraints are interpreted via their AC-schemata, instances of constraints C and M -matches are
used to form the extensions (cf. Sec. 2.2.3, Rem. 2.10, and Def. 2.19). The extension of G via
C is defined recursively starting with the initial extension that contains graph G only. A new
extension is derived from an existing extension E as follows: a) Let GE be a graph of E, let
c be an instance of a constraint in C without negations that may have one or more conclusions
connected by disjunctions and let m : P→ GE ∈M be a match from the premise P of c to
GE . b) Compute all overlappings of the conclusions of c with GE with respect to m. c) For
each overlapping, a new graph G′E is potentially added to E while removing GE from E leading

to extension E ′ via extension step E =
extend(GE ,c,m)
========⇒ E ′. Graph G′E is obtained by adding the

non-overlapping part of the conclusion to GE , respectively.

P p //

m
..

f
))P′ f ′ //

m′ �� (1)
C

e′ ��
GE e // G′E

Definition 3.5 (C-Extensions) Let G be a graph. The extensions
of G via morphism f and match m form the set of graphs given by
extend(G, f ,m) below. The extensions of G via a constraint acP and a
match m form the set of graphs given by extend(G,acP,m) below. The
extensions of G via a set of constraints C form the set of sets of graphs
given by the least fixed point of Extensions(G,C) below with induced morphisms e.

• extend(GE , f ,m) = {(e′,G′E) | (1) above is a pushout with all morphisms
being in M , m′ ◦ p = m, f ′ ◦ p = f , and
G′E is significant w.r.t. L (C) (or not C-inconsistent)}

• extend(GE ,acP,m) =

{⋃
i∈I(

⋃
(e′,G′E)∈E(extend(G′E ,acCi ,e

′))) , if Cond
{GE} , otherwise

with Cond is E = extend(GE ,ai,m),acP≡∨i∈I∃(ai : P→Ci,acCi), and m : P→GE ∈M .

50

CHAPTER 3. DOMAIN COMPLETENESS

:Classifier

:Attr

:type

:Class

:Attr

:type

:DataType

:Attr

:type

:Class

:Attr

:type

:DataType

:Attr

:type

:Class :Class

:a :a

:DataType

name = n3,i

:Attr

name = n2,i

:type

:Class

name = n1,i

:a

:Attr

name = n2,i

:type

:Class

name = n1,i

:a

:Class

name = n3,i

:Attr

G G1 G2 G3 G4 G5 G6,i G7,i

:DataType

name = n4,i

Extensions(G,C) = {{G},{G2,G3},{G4,G3},{G4,G5},{G6,1, . . . ,G6,8,G7,1, . . . ,G7,5}, . . .}

Figure 3.1: C-extensions of Effective Atom : Attr

• Extensions(G,C) = {{G}}∪{E ′ | E ′ = E \{GE}∪ extend(GE ,acP,m),
E ∈ Extensions(G,C),GE ∈ E,(∈ O,acP) ∈ Inst(C),
m : P→ GE ∈M }

4

In practice, C-extensions are considered only up to isomorphism.

Remark 3.3 (C-Extensions) Note that C-extensions are only de-
fined for constraints of the form ∨i∈I∃(ai : P→ Ci,acCi) for all sub-
conditions. Furthermore, in extend(GE , f ,m) graph G′E need to be
significant or not C-inconsistent. Claiming that G′E is significant is more accurate for verify-
ing domain completeness based on C-extension completeness in Def. 3.8 and Thm. 3.3, since,
graphs may be not C-inconsistent and not significant at the same time (cf. Ex. 3.3). While not
C-inconsistent graphs are considered in C-extensions, not significant graphs are not considered.
However, claiming that G′E is not C-inconsistent can be checked more efficiently. 4

Example 3.4 (C-Extensions) Fig. 3.1 depicts some extensions Extensions(G,C) of graph G via
domain constraints C for UML class diagrams of Sec. 2.2.3 and Fig. 2.6. The extensions are
obtained by the following extension steps where we write the actual constraints but mean their
instances according to Def. 3.5:

• {G} =extend(G,8,)
=======⇒ {G2,G3}: Note that G1 is also considered in C-extensions but is not

contained in the actual extension, since, G1 is C-inconsistent (cf. Ex. 3.3).

• {G2,G3} =
extend(G2,1,)
=======⇒ {G4,G3} =

extend(G3,1,)
=======⇒ {G4,G5} =

extend(G5,11,)
∗

=========⇒
{G4,G7,1, . . . ,G7,5}=

extend(G4,16,)
========⇒ ◦=extend(,11,)∗

========⇒ {G6,1, . . . ,G6,8,G7,1, . . . ,G7,5}: Graphs
G6,1 to G6,8 and G7,1 to G7,5 contain all combinations of equal and unequal attribute val-
ues n1,i to n4,i except equal values for n1,i and n3,i in graphs G6,i. This is due to the fact
that several Classes of the same name are forbidden by constraint 12 and therefore, graphs
containing several Classes of the same name are C-inconsistent, i.e., also not significant
w.r.t. L (C) by Rem. 3.2, and thus, they are neglected by the construction of C-extensions
in Def. 3.5. 4

Prop. 3.1 states that any extension of a C-inconsistent graph G again leads to C-inconsistent

51

3.2. VERIFICATION OF DOMAIN COMPLETENESS

graphs only yielding an empty extension and therefore, C-inconsistent graphs can be neglected
in extensions.

Proposition 3.1 (C-Inconsistency in C-Extensions) Let G be a graph, C be a set of constraints,
E ∈ Extensions(G,C) be an extension of G and GE ∈ E be an extended graph. If GE is C-
inconsistent, then extend(GE ,acP,m) = ∅ for each constraint acP ≡ ∨i∈I∃(ai : P→ Ci,acCi)
and match m : P→ GE ∈M . 4

Proof. Let GE be a C-inconsistent graph, i.e., by Def. 3.4 there exists a violation stable constraint
c∈C with GE 6|= c. M -morphisms are closed under pushouts, i.e., e : GE→G′E ∈M in Def. 3.5,
since, f ′ ∈M and (1) is a pushout. By Def. 3.3, it follows that also G′E 6|= c, i.e., also G′E is
C-inconsistent. By Def. 3.5 it follows that extend(GE ,acP,m) = ∅ for each constraint acP ≡
∨i∈I∃(ai : P→Ci,acCi) and match m : P→ GE ∈M .

Remark 3.4 By Def. 3.5, all graphs in Extensions(G,C) are not C-inconsistent, except graph
G itself may be C-inconsistent as element of its initial extension {G}. By following Prop. 3.1,
extending the initial extension for C-inconsistent graph G via extend(G, ,) yields an empty
extension ∅ ∈ Extensions(G,C). Furthermore, contradictions in C may also lead empty exten-
sions ∅ ∈ Extensions(G,C), e.g., G is extended via a constraint of C leading to C-inconsistent
graphs only that do not satisfy violation stable constraints of C. In both cases, the existing empty
extension ∅ of G indicates that G is not significant w.r.t. L (C). 4

For C-extension completeness it is sufficient to consider only the smallest graphs that occur
in graphs G ∈ L (C), namely effective atoms, and from which more complex graphs can be
constructed. Atoms are the smallest graphs in the sense that they cannot be splitted into smaller
sub-graphs. With Atoms(ATG) we denote the set of atoms that are typed over an attributed type
graph ATG. For (typed) attributed graphs the structure of each atom is given by either a) an
empty graph, or b) a single node, or c) a single edge together with source and target nodes,
or d) a single node attribute together with the corresponding node, or e) a single edge attribute
together with the corresponding edge and its source and target nodes. The idea of an atom a is
similar to the idea of an incremental monomorphism f : I� a that must exist with I being the
initial object (cf. [CHH+12]). Note that all atoms in Atoms(ATG) share the same DSIG-term
algebra TDSIG(X) such that the verification of domain completeness via Thm. 3.3 is performed
on the topmost level of TDSIG(X) and therefore, can be instantiated to any concrete DSIG-algebra
for attributed graphs in L (C) and L (GG) (Note that according to the general assumption, for
domain completeness we assume that graphs in L (C) and L (GG) share the same concrete
DSIG-algebra up to isomorphism).

B b′

I
b ??

c ��
(1) a

C c′
??

Definition 3.6 (Atom) A graph a is an atom, if for each pushout (1) on
the right with morphisms b,c ∈ M it is true that b′ : B → a is an iso-
morphism or c′ : C → a is an isomorphism. Let ATG = (TG,Z) be an at-
tributed type graph with type graph TG and the final DSIG-algebra Z of
data signature DSIG = (S,OP) with sorts S and operations OP. With Atoms(ATG) =
{(a = (G,TDSIG(X)), typeG : a→ ATG) | a is an atom,(for all e ∈ EG

j : tG
j (e) ∈ X) j∈{NA,EA},X =

(Xs)s∈S being a family of infinite sets Xs of variables for each sort s ∈ S} we define the set of
atoms by attributed graphs that are typed over ATG and that share the same DSIG-term alge-
bra TDSIG(X) with an infinite set of variables Xs for each sort s∈ S where each node attribute EG

NA
and each edge attribute EG

EA has a variable as attribute value. 4

52

CHAPTER 3. DOMAIN COMPLETENESS

Given a set of constraints C that are typed over attributed type graph ATG, then with
EAtoms(C) we denote the set of effective atoms w.r.t. language L (C). Effective atoms are
those atoms in Atoms(ATG) that occur in graphs G ∈L (C).

Definition 3.7 (Effective Atom) Given language L (C) over attributed type graph ATG
and constraints C, an atom a ∈ Atoms(AT G) is effective w.r.t. L (C), if there exists
an inclusion i : a → G ∈ M for some graph G ∈ L (C). With EAtoms(C) = {a | a ∈
Atoms(ATG),a is effective w.r.t. L (C)} we denote the set of effective atoms w.r.t. L (C). 4

Example 3.5 (Effective Atom) Given the constraints C for UML class diagrams in Sec. 2.2.3
and Ex. 2.3, then the effective atoms w.r.t. L (C) are those atoms in Atoms(TGCD) that fulfill the
domain constraints for abstract types from Ex. 2.3. Graphs G,G2 and G3 in Fig. 3.1 are effective
atoms w.r.t. L (C). Graph G1 is an atom but not effective, since, Classifier is an abstract type and
therefore, G1 violates the constraints for abstract types. Graphs G4 to G7,5 are not atoms. 4

For C-extension completeness, in practice we consider atoms up to isomorphism only. Given
a set of constraints C that are typed over type graph ATG, then C-extension completeness of a
given language L over ATG states that for all effective atoms w.r.t. L (C) that are typed over
ATG, an extension via constraints C can be found that is in L .

Definition 3.8 (C-Extension Completeness) Let C be a set of constraints typed over ATG and
C′ ⊆C be the contained constraints that are designated for general satisfaction. Then, a language
L over ATG is called C-extension complete, if ∀a ∈ EAtoms(C).∃S ∈ Extensions(a,C′) such
that S⊆L . 4

Example 3.6 (C-Extension Completeness) Given the rules P for creating UML class diagrams
from Sec. 2.2.4 and Ex. 2.4 together with grammar GG = (∅,P) that is typed over TGCD in
Sec. 2.2.1 and Fig. 2.4 and the constraints C for class diagrams typed over TGCD from Sec. 2.2.3
and Ex. 2.3. We show C-extension completeness of language L (GG) over TGCD. For each ef-
fective atom in EAtoms(C) an extension via constraints C must be constructed that is a subset of
language L (GG). Similarly to Ex. 3.4, we write the actual constraints but mean their instances
according to Def. 3.5 and furthermore, each graph with attribute values n1,i to n4,i in Fig. 3.2 rep-
resents a set of graphs that contains all combinations of equal and unequal values n1,i to n4,i ex-
cept equal values for n1,i and n3,i if both represent the names of distinct Classes. An extension is a
subset of L (GG), if all graphs of the extension can be constructed via rules P from start graph ∅
of GG. The effective atoms EAtoms(C) are given by graph G in Fig. 3.1 together with the effec-
tive atoms in Fig. 3.2. For atom G, extension {G6,1, . . . ,G6,8,G7,1, . . . ,G7,5} ∈ Extensions(G,C)
can be constructed by extending G via constraints (8;1;1;11;11;11;16;11;11;11;11) of C suc-
cessively (cf. Ex. 3.4). Each graph of the extension can be constructed by applying rules
(DT2CTS;C2TS;A2CS;C2TS;TC2TS) or (DT2CTS;C2TS;A2CS;TD2TS) successively with
starting at the empty start graph ∅ of GG. All other effective atoms are also successfully checked
as depicted in Fig. 3.2. Therefore, language L (GG) is C-extension complete. 4

In addition to C-extension completeness another property called C-conflict-freeness of mark-
ing rules is neccessary in order to verify full language inclusions L (C) ⊆L (GG) of domain
completeness. Based on the notions of translation attributes in Sec. 2.3.2 and Rem. 2.17 and con-
sistency creating (CC) rules in Sec. 2.3.3 and Def. 2.29, we define marking rules for non-deleting
flat grammars with application conditions in Def. 3.9. In the context of marking rules, we take
marking attribute as synonym for translation attribute. For a non-deleting grammar GG, the set

53

3.2. VERIFICATION OF DOMAIN COMPLETENESS

:Class

:Attr

name = n2,i



C1

P1

 Effective Atom via C Extension via GG

ØC2

:DataType
:DataType

name = n


11

DT2CTS

Ø
id:DataType

name = n



C3

P2

Ø

:Class

name = n1,i

:Attr

name = n2,i

:a











 Effective Atom via C Extension via GG


C4 P3

Ø

:Attr

:Class

:type

:Attr

name = n2,i

:Class

name = n3,i

:Class

name = n1,i

:a

:type

:Attr

:DataType

:type

Analogously to the atom right top,
a similar extension is found via the
same C4 such that the extension
can be built from Ø via P=(DT2CTS;
C2TS;A2CS;DT2CTS;TD2TS).

C5 :Class

:Attr

:a

C1=(16;11;11), C2=(16;11), C3=(1;16;11;11), C4=(1;16;11;11;11;11), C5=(16;11;11;11), C6=(16;1;11;11;11), C7=(4;16;1;11;11;11)
P1=(DT2CTS;C2TS), P2=(DT2CTS;C2TS;A2CS), P3=(DT2CTS;C2TS;A2CS;C2TS;TC2TS), P4=(DT2CTS;C2TS;A2CS;MCS)

:DataType

name = n2,i

:Class

name = n1,i

:Class

name = n1,i

:DataType

name = n3,i

:DataType

name = n4,i


C6

P4

Ø

:Attr

:Const

:mod

:Attr

name = n2,i

:Class

name = n1,i

:a

:DataType

name = n3,i

:Const

:mod

C7 

:Const

Figure 3.2: Verifying C-Extension Completeness of Language L (GG) for UML Class Diagrams

of marking rules m(GG) contains for each rule r ∈ GG, a marking rule m(r). Analogously to
CC rules, marking rules are derived from rules by adding marking attributes with value F (false)
or T (true) to all elements (nodes, edges or attributes) of the rule. Whenever rule r creates an
element, then marking rule m(r) preserves this element and updates its marking attribute from
F to T, denoted by [F => T]. Whenever rule r preserves an element, then marking rule m(r)
also preserves this element and leaves its marking attribute set to T. Thus, marking rules are
deleting on the marking attributes and allow a conflict analysis of (common) created elements
which cannot be performed directly on the non-deleting rules themselves. Furthermore, all el-
ements of the application condition of rule r that are not contained in the left-hand side of the
rule need to be extended by a marking attribute with value T. Therefore, we use the concept of
T-extended application conditions from Sec. 2.3.2 and Def. 2.25 and restrict it from triple graphs
to flat graphs by omitting the triple components X .

Definition 3.9 (Marking Rule) Given a non-deleting rule p = (p : L ↪−→ R,acL), the marking

rule m(p) = (LM
lM←−↩ KM

rM
↪−→ RM,acLM) of p is constructed component-wise for LM,KM,RM and

acLM with induced inclusions lM,rM and LM := R⊕AttT
p(L)⊕AttF

R\p(L),KM := R⊕AttT
p(L),RM :=

R⊕AttT
R and acLM = tExt(acL,LM). Let GG = (S,P) be a non-deleting graph grammar. With

m(GG) = {m(p) | p ∈ P} we define the set of marking rules for all rules in GG. 4

Remark 3.5 (Termination of Transformation System m(GG)) Although marking rules are not
directly applied for verifying domain completeness, we state the following interesting property:

54

CHAPTER 3. DOMAIN COMPLETENESS

:mod
tr=[F=>T]

:Const
tr=[F=>T]

NAC

:mod
tr=T:Mod

tr=T
:Attr
tr=T

Figure 3.3: Marking Rule m(4S) of Rule 4S for UML Class Diagrams

If all rules p = (L ↪−→ R,acL) of a non-deleting grammar GG are non-trivial in the sense that
L and R are not isomorphic (L 6∼= R) and therefore, each rule creates at least one element, then
the transformation system m(GG) of marking rules is terminating for finite graphs, since, each
application of marking rules updates the marking attributes of at least one graph element from F
to T as long as all graph elements are marked with T or no marking rule is applicable anymore.

4

Example 3.7 (Marking Rule) The marking rule m(4S) of source rule 4S from Sec. 2.2.4
and Ex. 2.4 is given by the rule in Fig. 3.3. Marking attributes tr are added to all elements
and they are updated from F to T ([F => T]) for those elements that are created by rule 4S while
the marking attributes of all other elements are initially set to T and remain unchanged. 4

The C-conflict-freeness of marking rules is checked based on critical pair analysis. Accord-
ing to Def. 3.10 and similarly to C-inconsistent graphs, a critical pair (K1 ⇐= O =⇒ K2) is C-
inconsistent if graph O does not satisfy a constraint in C that is violation stable under em-
bedding. C-inconsistent critical pairs do not need to be analysed for verifying domain com-
pleteness, since, such critical pairs and any of their embeddings into larger contexts do not
occur in graphs G ∈ L (C). The marking rules are C-conflict-free, if for each critical pair

(K1 ⇐
(p1,o1)
==== O =

(p2,o2)
===⇒ K2) that is not C-inconsistent with marking rules p1 and p2, the rules

and matches are the same (p1 = p2,o1 = o2) (cf. Def. 3.12).

Definition 3.10 (C-Inconsistent Critical Pair) Let C be a set of constraints. A critical pair
(K1⇐= O =⇒ K2) is C-inconsistent, if conflict graph O is C-inconsistent. 4

2:mod
tr=F

3:mod
tr=F

1:Const
tr=F:Attr

tr=T

:Attr
tr=T

Example 3.8 (C-Inconsistent Critical Pair) The figure on the right

presents the conflict graph O of the critical pair (K1 ⇐
(m(4S),m1)
=======

O =
(m(4S),m2)
======⇒ K2) with marking rule m(4S) from Ex. 3.7. Transforma-

tion O =
(m(4S),m1)
======⇒ K1 updates the marking attributes of node 1 : Const

and edge 2 : mod and O =
(m(4S),m2)
======⇒ K2 updates the marking attributes

of 1 : Const and edge 3 : mod from F to T. This corresponds to a delete-use conflict at node
1 : Const in O, since, both transformations change its marking attribute where the attribute is
deleted at first and added with the new value T afterwards. However, by assuming the constraints
C for UML class diagrams from Sec. 2.2.3 and Ex. 2.3, the critical pair is C-inconsistent, since,
O 6|= 7 and constraint 7 ∈C is violation stable under embedding, i.e., graph O is C-inconsistent
(cf. Ex. 3.2). 4

Analogously, to significant graphs, we introduce significant critical pairs. A critical pair is
significant, if it occurs in graphs G ∈L (C). Also analogously to significant and C-inconsistent
graphs, C-inconsistent critical pairs are only a subset of not significant critical pairs but can be
identified more efficiently.

55

3.2. VERIFICATION OF DOMAIN COMPLETENESS

2:Attr

tr=T

3:Class

tr=T

1:Const

tr=F

4:mod
tr=F

5:type
tr=F

Figure 3.4: Significant Critical Pair

:Class

name=n

tr=F

tr_name=F

:DataType

tr=T

:DataType

tr=T

:Attr

name=n

tr=F

tr_name=F

:Class

tr=T

:Class

tr=T

:a
tr=F

:a
tr=F

:Attr

tr=T

:Class

tr=T

:Const

tr=F

:mod
tr=F

:type
tr=F

(a) (c) (e)

(b) (d) (f)

Figure 3.5: Result of Conflict Analysis for Marking Rules of UML Class Diagrams in AGG

Definition 3.11 (Significant Critical Pair) Let C be a set of constraints, GG be a non-deleting

grammar and m(GG) be the corresponding set of marking rules. A critical pair (K1 ⇐
(p1,m1)
=====

O =
(p2,m2)
====⇒ K2) for marking rules p1, p2 ∈ m(GG) is significant w.r.t. L (C), if conflict graph O

is significant w.r.t. L (C). 4

Remark 3.6 (Relationship between C-Inconsistent & Significant Critical Pairs) Similarly to the
relationship between C-inconsistent and significant graphs in Rem. 3.2, by definition, each C-
inconsistent critical pair is not significant w.r.t. L (C). Furthermore, each critical pair that is
significant w.r.t. L (C) is not C-inconsistent. The other directions do not hold in general. 4

Example 3.9 (Significant Critical Pair) The graph in Fig. 3.4 presents the conflict graph O of

the critical pair (K1 ⇐
(m(4S),m1)
======= O =

(m(6S),m2)
======⇒ K2) with marking rules m(4S) and m(6S) of the

rules in Sec. 2.2.4 and Ex. 2.4. Transformation O =
(m(4S),m1)
======⇒ K1 updates the marking attributes

of edge 4 : mod and node 1 : Const from F to T leading to a graph pattern which is forbidden by
the NAC of rule m(6S) with match m2 (change-forbid attribute conflict). Given the constraints C
for UML class diagrams from Sec. 2.2.3 and Ex. 2.3, then the critical pair is not C-inconsistent,
since, O does not violate a constraint c∈C which is violation stable under embedding. However,
the critical pair is not significant, since, graph O is not significant w.r.t. L (C) (cf. Ex. 3.3). 4

Definition 3.12 (C-Conflict-Freeness of Marking Rules) Let C be a set of constraints and let
m(GG) be the marking rules of a non-deleting grammar GG. Then, m(GG) is C-conflict-free,

56

CHAPTER 3. DOMAIN COMPLETENESS

if for each critical pair (K1 ⇐
(p1,o1)
==== O =

(p2,o2)
===⇒ K2) that is significant w.r.t. L (C) (or not C-

inconsistent) with p1, p2 ∈m(GG) it is true that the rules and matches are the same (p1 = p2,o1 =
o2) (or it is true that the critical pair is strictly confluent). 4

Remark 3.7 (C-Conflict-Freeness of Marking Rules) The critical pairs in Def. 3.12 need to be
significant or not C-inconsistent. Analogously to Rem. 3.3, claiming that the critical pairs are
significant is more accurate for verifying domain completeness based on C-conflict-freeness of
marking rules in Def. 3.12 and Thm. 3.3, since, critical pairs may be not C-inconsistent and not
significant at the same time (cf. Ex. 3.9). While not C-inconsistent critical pairs are considered in
C-conflict-freeness of marking rules, not significant critical pairs are not considered. However,
claiming that the critical pairs are not C-inconsistent can be checked more efficiently. Further-
more, claiming that each critical pair is strictly confluent is a stronger condition and harder to
check than claiming that each critical pair is of same rules and same matches. Each critical pair
of same rules and same matches is directly strict confluent by definition. 4

Example 3.10 (C-Conflict-Freeness of Marking Rules) The AGG-tool [AGG16] is used to help
verifying C-conflict-freeness of marking rules m(GG) for grammar GG = (S,P) with rules P for
UML class diagrams from Sec. 2.2.4 and Ex. 2.4 and constraints C for UML class diagrams from
Sec. 2.2.3 and Ex. 2.3. AGG enables to analise conflicts of rules, outputs all existing critical pairs
and allows to ignore 1. critical pairs of same rules and same matches, 2. critical pairs that violate
multiplicity constraints, and 3. critical pairs that are directly strict confluent. Fig. 3.5 depicts the
result of the analysis for the marking rules m(GG) of UML class diagrams. Fig. 3.5 (a) depicts all
13 critical pairs of marking rules m(GG) (red boxes) while ignoring all critical pairs of same rules
and same matches. Fig. 3.5 (b) depicts the conflict graph of the critical pair of rule 3S that updates
the marking attributes of node : Attr and edges : a in parallel while matching differently to both
: Class nodes. The conflict graph violates multiplicity constraint 2 which is violation stable under
embedding (cf. Ex. 3.2). Therefore the conflict graph is C-inconsistent implying further that the
critical pair is C-inconsistent. Fig. 3.5 (c) depicts all four critical pairs of marking rules m(GG)
while additionally ignoring all critical pairs that violate the multiplicity constraints in C. Fig. 3.5
(d) depicts the conflict graph of the critical pair of rule 1S that updates the marking attributes
of node : Class in parallel while matching differently to both : DataType nodes. The conflict
graph is not C-inconsistent, particularly it respects the multiplicity constraints. However, the
conflict graph is directly strict confluent, i.e., the critical pair is directly strict confluent. Fig. 3.5
(e) depicts the only critical pair of marking rules m(GG) while additionally ignoring all critical
pairs that are directly strict confluent. Fig. 3.5 (f) depicts the conflict graph of the critical pair
of rules 4S and 6S that updates the marking attributes of node : Const and edges : mod, : type in
parallel while matching node : Attr in common. The critical pair is not strictly confluent due to
the NAC of rule 6S. Furthermore, the critical pair is not C-inconsistent, particularly it does not
violate the multiplicity constraints in C. However, the critical pair is not significant (cf. Ex. 3.9).
Therefore, the marking rules m(GG) of UML class diagrams are C-conflict-free. 4

The main result for verifying domain completeness is stated by Thm. 3.3. Intuitively, the
language inclusion L (C)⊆L (GG) holds if each graph G ∈L (C) can be decomposed into its
atoms a⊆ G such that for each atom a an extension E can be constructed via constraints C that
is contained in L (GG) and the composition of the extensions leads to graph G in L (GG) again
by applying the rules of grammar GG. The verification approach requires that all productions of
grammar GG are non-trivial. For non-trivial productions we refer to Rem. 3.5.

Theorem 3.3 (Domain Completeness) Let L (C) be a language over type graph ATG and

57

3.2. VERIFICATION OF DOMAIN COMPLETENESS

constraints C in M -normal form and let L (GG) be a language over ATG and non-deleting
grammar GG = (∅,P) with empty start graph ∅, all productions p ∈ P being non-trivial and
where all application conditions in productions P are in M -normal form. If the marking rules
m(GG′) are C-conflict-free and L (GG′) is C-extension complete where GG′ = (∅′,P) with ∅′
being the empty start graph with DSIG-term algebra TDSIG(X), then domain completeness holds
for almost injective matches m ∈ O , i.e., it holds that L (C)⊆L (GG). 4

Idea. Let G ∈ L (C). Graph G is abstracted to a graph GA with DSIG-term algebra. GA can
be decomposed into its atoms Atoms(GA) by Lem. 3.5. C-extension completeness of L (GG′)
ensures that each atom can be extended via C such that the extension can be created via grammar
GG′. Furthermore, there is a gluing of all extensions leading to graph GA again by Lem. 3.7.
By the equivalence of marking and transformation sequences in Lem. 3.2, each extension can
be fully marked with T. The C-conflict freeness of the marking rules m(GG′) allows to apply
confluence results and we derive a marking sequence that fully marks GA. Thus by Lem. 3.2,
there is a transformation sequence ∅′ =∗⇒ GA via P. By Lem. 3.15, there is a transformation
∅=
∗⇒ G via P, i.e., G ∈L (GG). The full proof is presented in appendix A.11.

We successfully verified domain completeness L (C) ⊆ L (GG) for constraints C of UML
class diagrams from Sec. 2.2.3 and Ex. 2.3 and grammar GG = (∅,P) with rules P for UML
class diagrams from Sec. 2.2.4 and Ex. 2.4. C-extension completeness of language L (GG) is
successfully verified in Ex. 3.6. C-conflict-freeness of the marking rules m(GG) is successfully
verified in Ex. 3.10 by claiming that the critical pairs are significant and strictly confluent (cf.
Rem. 3.7). Therefore, all graphs G ∈L (C) can be constructed via grammar GG. This means
that the domain constraints C are strict enough to cover all language restrictions that are induced
by grammar GG. Note that if C-extension completeness of L (GG) or C-conflict-freeness of
marking rules m(GG) does not hold, then their verification may lead to minimal examples of
graphs G ∈ L (C) that cannot be constructed via grammar GG. Such examples may serve as
helpful hints for refactoring the grammar or determining which constraints need to be added to
or removed from C in order to obtain domain completeness (L (C)⊆L (GG)).

In order to ensure termination for the verification of domain completeness via Thm. 3.3, one
can define a finite upper bound Gu for the size of graphs G ∈L (C), i.e., only graphs G ∈L (C)
with inclusions G→ Gu ∈M are considered (cf. Def. 3.13). In most cases, the verification
terminates without restricting to an upper bound as shown in Examples 3.6 and 3.10. Note that
by restricting to an upper bound we could also check for all graphs up to the upper bound which
satisfy the constraints in C if they can be created via the rules in grammar GG for ensuring the
validity of language inclusion L (C)⊆L (GG) up to the upper bound. However, the verification
via C-extension completeness in Thm. 3.3 is more efficient in most cases, since, not all graphs
need to be checked but rather a small subset.

Definition 3.13 (Domain Completeness up to Upper Bound) Given the context of domain com-
pleteness in Sec. 3.1 and Def. 3.2 and an object Gu as upper bound. Domain completenesss up
to upper bound Gu holds if L (C)Gu ⊆ L (GG) with L (C)Gu = {G | G ∈ L (C),∃G→ Gu ∈
M }. 4

Analogously to the verification of domain completeness in Thm. 3.3, domain completeness up
to an upper bound can be verified as follows.

Corollary 3.1 (Domain Completeness up to Upper Bound) Given the context of verifying do-
main completeness in Thm. 3.3 and an object Gu as upper bound. Then, domain completeness

58

CHAPTER 3. DOMAIN COMPLETENESS

up to upper bound Gu holds if both conditions from Thm. 3.3 hold but where L (C) is replaced
by L (C)Gu from Def. 3.13 in Defs. 3.4, 3.5, 3.7, 3.11 and 3.12. 4

Theorem 3.4 (Termination of Verification of Domain Completeness) In the finitary category
(AGraphsATGI,fin,Mfin), let GG be a finite non-deleting grammar with empty start graph over
a finite type graph ATGI, C be a finite set of finite graph constraints over ATGI with a finite
number of nestings and graph Gu ∈L (ATGI) be a finite upper bound for the size of the graphs
in L (C). The rules of GG are non-trivial in the sense that each rule creates at least one element
(node, edge or attribute). Furthermore, all application conditions of rules in GG are finite with
a finite number of nestings. Then, the verification of domain completeness up to an upper bound
Gu via the conditions in Cor. 3.1 terminates. 4

Proof. The proof is presented in appendix A.4.

For the rest of this section, we formalise the concepts of the proof idea of Thm. 3.3 in order to
finally prove Thm. 3.3. We first show the equivalence of marking and transformation sequences
with grammars for the case that the start graph is the empty graph in Lem. 3.2 and that the start
graph is an arbitrary graph in Lem. 3.3. Therefore, each graph that can be created via the rules
of a given grammar GG can also be completely marked to T via the marking rules m(GG) of GG
and vice versa.

Lemma 3.2 (Equivalence of Marking and Transformation Sequence for empty Start Graph) Let
GG = (∅,P) be a graph grammar with empty start graph ∅, a set P of non-deleting rules and
m(GG) be the set of derived marking rules of GG. Let G be a graph, then the following are
equivalent for almost injective matches m ∈ O .

• There exists a transformation G⊕AttF
G =
∗⇒ G⊕AttT

Gk
⊕AttF

G\Gk
via marking rules m(GG).

• There exists a transformation ∅=
∗⇒ Gk via P with injective embedding f : Gk→ G. 4

Proof. The proof is presented in appendix A.5.

Lemma 3.3 (Equivalence of Marking and Transformation Sequence) Let GG = (S,P) be a
graph grammar with start graph S, a set P of non-deleting rules and m(GG) be the set of derived
marking rules of GG. Let G be a graph with inclusion S→ G ∈M , then the following are
equivalent for almost injective matches m ∈ O .

• There exists a transformation G⊕AttT
S ⊕AttF

G\S =
∗⇒ G⊕AttT

G via marking rules m(GG).

• There exists a transformation S =
∗⇒ G via P. 4

Proof. The proof is presented in appendix A.6.

Def. 3.14 defines the binary split of a given graph G into two sub-graphs which is extended to
the general split of G into its atoms Atoms(G) in Def. 3.15 such that the gluing of the sub-graphs
(atoms) yields G again by Cor. 3.2 and Lem. 3.5. For proving Lem. 3.5, we show in Lem. 3.4
that each non-atomic graph can be splitted.

AG
AG1
*

f ′ 77

(1) AG2
4 T

g′gg

AG0
4 T

g
gg *

f
77

Definition 3.14 (Binary Split) Let AG be a graph. The set of binary
splits BSplits(AG) of AG into sub-graphs is given by co-spans of inclu-

sions in M : BSplits(AG) := {(AG1
f ′
↪−→ AG

g′
←−↩ AG2) | (1) is a pushout over

59

3.2. VERIFICATION OF DOMAIN COMPLETENESS

inclusions (f : AG0 ↪−→ AG2,g : AG0 ↪−→ AG1) with f , f ′,g,g′ ∈M ,AG 6∼=
AG1,AG 6∼= AG2} 4

Corollary 3.2 (Gluing of Binary Split) Let (AG1
f ′
↪−→ AG

g′
←−↩ AG2) ∈ BSplits(AG) be a binary

split of AG into sub-graphs AG1 and AG2. Then, there exist AG0 and a span of M -morphisms

(AG1
g
←−↩ AG0

f
↪−→ AG2) such that (1) is a pushout. 4

Lemma 3.4 (Binary Split of Non-Atomic Graphs) Let AG be a graph that is not an atom, then
AG can be splitted into sub-graphs AG1 and AG2 with (AG1→ AG← AG2) ∈ BSplits(AG). 4

Proof. We construct initial pushout (1) for idAG with g′ ∈M . Analogously, we construct initial
pushout (2) for g′ with f , f ′ ∈M . By Sec. 2.2.2 and Def. 2.7, (2) is also a pullback, i.e., g ∈M
by M -morphisms g′ are closed under pullbacks.

AG
AG

idAG 55

(1) AG′′
ii

AG1

f ′ 66

(2) AG2

g′hh 66

AG0
g
ii

f
55

Assumption AG is not an atom, Def. 3.6 and M -morphisms f ,g ∈M are closed under pushouts
imply that there exists pushout (2) with f , f ′,g,g′ ∈M such that AG 6∼= AG1 and AG 6∼= AG2.

Thus according to Def. 3.14, there is (AG1
f ′
↪−→ AG

g′
←−↩ AG2) ∈ BSplits(AG).

Note that a graph G may be splitted binary in different ways, possibly leading to several sets
of atoms of G in Atoms(G). However, for category (AGraphsATGI,M) all sets are isomorphic,
i.e., only one set of atoms (decision path of binary splits) in Atoms(G) need to be considered.

Definition 3.15 (Atomic Split) The set of atoms of a given graph AG is defined by Atoms(AG)
as given below:

Atoms(AG) :=


{{AG}} ,AG is an atom
{A1tA2 | (AG1 ↪−→ AG←−↩ AG2) ∈ BSplits(AG), ,AG is not an atom
A1 ∈ Atoms(AG1),A2 ∈ Atoms(AG2)} 4

POk+1

POk

. �

f ′k ==

(1) ak+1
0 P

g′kaa

Gk

0 Pgk

aa

. � fk

==

Lemma 3.5 (Gluing of Atomic Split) Let G be a graph in
(AGraphsATGI,M). Then, there are atoms (ai)i∈{1,...,n} ∈ Atoms(G)
and for all (ai)i∈{1,...,n} ∈ Atoms(G) there exist graphs (G j)1≤ j≤n−1 and
pushouts (POk +Gk ak+1)k∈{1,...,n−1} with pushout objects POk+1 as de-
picted by pushout (1) on the right with all morphisms in M and with

PO1 = a1 and induced morphisms a1 −f
′
1∈M−−−→ PO2 −

f ′n−1◦...◦ f ′2∈M−−−−−−−−→ POn ∈
M and ak+1 −

g′k∈M−−−→ POk+1 −
f ′n−1◦...◦ f ′k+1∈M−−−−−−−−−→ POn ∈M such that pushout object POn is G. 4

Proof. Let G be a graph.

Case (G is an atom) By construction Def. 3.15, there is {G} ∈ Atoms(G) = {{G}} with n = 1,
i.e., for all (ai)i∈{1,...,n} ∈ Atoms(G) the assumption holds with induced morphism idG.

Case (G is not an atom) By Lem. 3.4, there exists a binary split (G1 −f
′
−→ G ←g

′
− G2) ∈

BSplits(G). By construction of binary splits in Def. 3.14 with G 6∼= G1, G 6∼= G2 and injec-
tive M -morphisms f ′ and g′ it follows that G1 and G2 are smaller than G on the graph part.

60

CHAPTER 3. DOMAIN COMPLETENESS

Therefore, analogously we can proceed with splitting G1 and G2 binary in Atoms(G1) and
Atoms(G2) recursively and terminate in each decision path of binary splits when obtaining
atoms. Thus, there is (ai)i∈{1,...,n} ∈ Atoms(G). Let (ai)i∈{1,...,n} ∈ Atoms(G) be the atoms
of graph G. By induction over the number n of atoms: Basis. For n = 2, by construction
there exists (a1 −f

′
1−→ G←g

′
1−− a2) ∈ BSplits(G) with a1,a2 being atoms, i.e., by Cor. 3.2 there

exist G1 and a span of M -morphisms (a1 ←g1−− G1 −f1−→ a2) such that (f ′1 ∈M ,g′1 ∈M)
is a pushout over (g1, f1) with induced morphisms f ′1,g

′
1 ∈M and with pushout object

PO2 = G. Hypothesis. There is n such that the assumption holds. Step. For n+ 1,
note that in (AGraphsATGI,M), all decision paths of binary splits in BSplits(G) lead
to the same set of atoms (ai)i∈{1,...,n+1} up to isomorphism, i.e., we focus on that path
where atoms are splitted from G step-wise. Let G be binary splitted into (G1 → G←
an+1) ∈ BSplits(G) with atom an+1 and furthermore, let (ai)i∈{1,...,n} ∈ Atoms(G1) and
(an+1) ∈ Atoms(an+1). By induction hypothesis, for Atoms(G1) there is pushout object
POn = G1 with induced morphisms in M . Analogously to the base case by Cor. 3.2,
for (G1 −f

′
n−→ G←g

′
n−− an+1) ∈ BSplits(G) there is Gn and pushout object POn+1 obtained by

pushout (f ′n ∈M ,g′n ∈M) = POn+Gn an+1 over (gn ∈M , fn ∈M) with POn+1 = G and
with induced morphisms in M by M -composition with f ′n ∈M .

Given a set of constraints C that are designated for general satisfaction. Then, Lem. 3.6 states
that for each atom a of a graph G which generally satisfies C, the extension of a via C is in G
again. The result does not generally hold for constraints that are designated for initial satisfaction,
since, atom a may be extended at parts that are not covered by the satisfaction of the constraint
potentially leading to extensions of a that are not in G.

Lemma 3.6 (Closure under C-Extensions of Atoms) In (AGraphsATGI,M), let C be a set of
constraints that are designated for general satisfaction, G ∈ L (C) be a graph that generally
satisfies C and a ∈ A ∈ Atoms(G) be an atom of G with induced morphism e : a→ G ∈M by
Lem. 3.5. Then, G is closed under C-Extensions of a, i.e., for all extensions E ∈ Extensions(a,C)
there is aE ∈ E with morphisms e1 : a→ aE ∈M ,e2 : aE → G ∈M and e = e2 ◦ e1. 4

Proof. The proof is presented in appendix A.7.

Def. 3.16 extends the construction of C-extensions in Def. 3.5 by defining the simultaneous
extension of a set of graphs via a given set of constraints C. This leads to the result in Lem. 3.7
as an extension of Lem. 3.5. Based on Lem. 3.6, Lem. 3.7 states that given a graph G which
generally satisfies a given set of constraints C, then all simoultaneous extensions of the atoms of
G via C contains a variant such that the gluing of the extended atoms yields graph G again.

Definition 3.16 (C-Extensions of Sets of Graphs) Let A be a set of graphs and C be a set of con-
straints. The set SELECTE(A,C) = { f : A→ B | B =

⋃
a∈A(Extensions(a,C)),∀a ∈ A : f (a) ∈

Extensions(a,C)} contains all functions f that select for a given graph a ∈ A an extension
E ∈ Extensions(a,C). Let fE ∈ SELECTE(A,C), then the set SELECTaE (A,C, fE) = { f : A→⋃

E∈B(E) | B =
⋃

a∈A(Extensions(a,C)),∀a ∈ A : f (a) ∈ fE(a)} contains all functions f that se-
lect for a given graph a ∈ A an extended graph aE ∈ fE(a). 4

Remark 3.8 Note that for a graph G, the set of C-extensions Extensions(G,C) may be in-
finite. Therefore, for a given set of graphs A, there may exists an infinite set of functions
SELECTE(A,C). Furthermore, a C-extension of a graph may be an infinite set of extended

61

3.2. VERIFICATION OF DOMAIN COMPLETENESS

graphs. Therefore, for each selection fE ∈ SELECTE(A,C), there may exists an infinite set of
functions SELECTaE (A,C, fE). 4

Lemma 3.7 (Gluing of C-Extended Atoms) In (AGraphsATGI,M), let C be a set of constraints
that are designated for general satisfaction, G ∈L (C) be a graph that generally satisfies C and
A = (ai)i∈{1,...,n} ∈ Atoms(G) be the atoms of G. Then, for all functions fE ∈ SELECTE(A,C)
that select a C-extension for each atom ai ∈ A, there exists a function faE ∈ SELECTaE (A,C, fE)
that selects an extended atom for each atom ai ∈ A such that there exist graphs (GE

j)1≤ j≤n−1 and
pushouts (POE

k +GE
k

faE (ak+1) = POE
k+1)k∈{1,...,n−1} with pushout objects POE

k+1, all morphisms
being in M and POE

1 = faE (a1) where (pushout object) POE
n is G. 4

Proof. The proof is presented in appendix A.8.

Note that in (AGraphsATGI,M), verifying domain completeness in Thm. 3.3 via C-extension
completeness in Def. 3.8 is performed on the level of attributed graphs sharing the DSIG-term
algebra TDSIG(X), since, effective atoms and their extensions share algebra TDSIG(X) up to iso-
morphism by construction Def. 3.5 with e ∈M and Sec. 2.2.2 and Rem. 2.3. In contrast to that,
graphs of languages L (C) and L (GG) may have concrete algebras with concrete values, in gen-
eral (cf. general assumption of this section). In order to close the algebra gap, in Def. 3.17 we
define instance morphisms i : A→ B from attributed graphs A with DSIG-term algebra TDSIG(X)
to instance graphs B with concrete algebras where concrete attribute values in B are substituted
by variables x ∈ X in A such that i is an isomorphism on the graph part and injective for the
data part of assigned attribute values. Furthermore, we show that the verification of domain
completeness on the term level does also hold for all (possibly infinitely many) instantiations to
concrete values. Therefore, given a set of productions P, in Lem. 3.15 we show that for each
transformation G =

∗⇒ H via P on the term level with instance morphism iH : H → H ′ there is a
corresponding transformation G′ =∗⇒ H ′ via P with instance morphism iG : G→ G′. For proving
Lem. 3.15, based on the results in Lemmas 3.12 and 3.13 we first show in Lem. 3.14 that a match
satisfies an AC-schema if and only if the match extended by a given instance morphism satisfies
the AC-schema. Lem. 3.12 states that the successive merge over two morphisms is equivalent
to the merge over the composition of both morphisms, i.e., in proofs for the satisfaction of AC-
schemata, the merge over a composition of morphisms can be constructed step-wise (morphism
by morphism successively). For proving Lem. 3.12, we additionally show the general results in
Lemmas 3.8 to 3.11.

Definition 3.17 (Instance Morphism) Let DSIG = (S,OP) be a data signature. In category
(AGraphsATGI,M), a morphism i : A→ B ∈ E ,O is an instance morphism, if:

1. Attributed graph A shares DSIG-term algebra TDSIG(X) with X = (Xs)s∈S being a family
of infinite sets Xs of variables for each sort s ∈ S,

2. attributed graph B shares DSIG-algebra DB,

3. morphism i is type strict,

4. all attribute values in A are variables x ∈ X :(∀e ∈ EA
j .t

A
j (e) ∈ X) j∈{NA,EA}}, and

5. the data part of assigned attribute values is injective: ∀d1,d2 ∈ DA.(iD(d1) = iD(d2))∧
iD(d1) ∈ (tB

NA(E
B
NA)∪ tB

EA(E
B
EA)) =⇒ d1 = d2. 4

Lemma 3.8 (O-Morphisms are Closed Under De-Composition and Pushouts) Let f : AG1→
AG2, g : AG2→ AG3 and f ′ : AG′2→ AG3 be morphisms in AGraphsATGI .

62

CHAPTER 3. DOMAIN COMPLETENESS

AG1

��

f
// AG2

g
��

(1)
AG′2

f ′
// AG3

1. If f ,g ∈ O , then g◦ f ∈ O .

2. Let g◦ f = h.

(a) If h ∈ O , then f ∈ O .

(b) If h ∈ O and graph part fS of f is an isomorphism, then g ∈ O .

3. For a given pushout (1), f ∈ O implies f ′ ∈ O . 4

Proof. We proof the three facts as follows.

1. The proof is given in [GLEO12], Thm. 7, item 7.

2. (a) The proof is given in [GLEO12], Thm. 7, item 7.

(b) Let f−1
S : AG2→ AG1 be the inverse isomorphism of isomorphism fS with fS ◦ f−1

S =
idAG2 . From gS ◦ fS = hS we obtain gS ◦ fS ◦ f−1

S = hS ◦ f−1
S ⇔ gS ◦ idAG2 = hS ◦ f−1

S ⇔
gS = hS ◦ f−1

S . Since, hS, f−1
S are componentwise injective in Sets, it follows that gS

is componentwise injective in Sets, i.e., g ∈ O .

3. Since (1) is a pushout, fS being componentwise injective in Sets implies that f ′S is compo-
nentwise injective in Sets (cf. Fact 2.17, item 1 in [EEPT06]) and thus, f ′ ∈ O .

Lemma 3.9 (De-Composition of Pairs of Jointly Epimorphic Morphisms)

G0

e
��

e2 // G1

e3
��

H
e1oo

(1)
G2

e4 // G

1. Let (e1,e2) and (e3,e4) be pairs of jointly epimorphic morphisms and furthermore, (1)
commutes. Then, (e3 ◦ e1,e4) is a pair of jointly epimorphic morphisms.

2. Let (e3◦e1,e4) be a pair of jointly epimorphic morphisms. Then, (e3,e4) is a pair of jointly
epimorphic morphisms.

3. In the category (AGraphsATGI,M), let (e3,e4) be a pair of jointly epimorphic morphisms,
e4 ∈M and e1 ∈ E be an extremal morphism w.r.t. M . Then, (e3 ◦ e1,e4) is a pair of
jointly epimorphic morphisms.

4. Let (e1,e2) be jointly epimorphic and e3 be an epimorphism. Then, (e3 ◦ e1,e3 ◦ e2) is a
pair of jointly epimorphic morphisms. 4

Proof. 1. We assume that (1) commutes and pairs (e1,e2) and (e3,e4) are jointly epimorphic.
By the definition of jointly epimorphic morphisms, we have to show that for all graphs
G′ and morphisms f ,g : G→ G′ it holds that if f ◦ e3 ◦ e1 = g ◦ e3 ◦ e1

(∗1) and f ◦ e4 =
g ◦ e4

(∗2), then f = g. Let f ,g : G→ G′ be two morphisms with assumptions (∗1) and
(∗2). Assumption (∗2) implies f ◦ e4 ◦ e = g ◦ e4 ◦ e. Since, (1) commutes it follows that
f ◦e3 ◦e2 = g◦e3 ◦e2. By assumption (∗1) and (e1,e2) being jointly epimorphic it follows
that f ◦ e3 = g ◦ e3. By assumption (∗2) and (e3,e4) being jointly epimorphic it follows
that f = g.

63

3.2. VERIFICATION OF DOMAIN COMPLETENESS

2. We have to show for all morphisms f ,g that f ◦e3 = g◦e3 and f ◦e4 = g◦e4 implies f = g.
Thus, f ◦e3 = g◦e3 =⇒ f ◦e3 ◦e1 = g◦e3 ◦e1. With f ◦e4 = g◦e4 it follows that f = g,
since, (e3 ◦ e1,e4) are jointly epimorphic.

3. By assumption e4 ∈M and Sec. 2.2.2 and Rem. 2.3, e4 is an isomorphism, i.e., an epi-
morphism, on the data part e4,D. It remains to show that (e3 ◦e1,e4) are jointly epimorphic
on the graph part. We assume the opposite. Then, there exists g ∈ G with g 6∈ e4(G2) and
g 6∈ e3(e1(H)). The assumption that (e3,e4) are jointly epimorphic implies that there exists
g′ ∈G1 with e3(g′) = g but g′ 6∈ e1(H). Let m◦e′ = e1 be the extremal E -M factorisation
of e1 with m : G1→G1 ∈M . By the construction of the factorisation via the standard epi-
mono factorisation on the graph structure part (cf. [BEGG10]), it follows that g′ 6∈ m(G1)
and therefore, m is not an epi-(iso-)morphism. This contradicts with assumption e1 ∈ E is
extremal where m ∈M implies that m is an isomorphism (cf. Def. 2.9).

4. Given morphisms g : G→ A and h : G→ B with g ◦ e3 ◦ e1 = h ◦ e3 ◦ e1 and g ◦ e3 ◦ e2 =
h◦ e3 ◦ e2. By (e1,e2) being jointly epimorphic, it follows that g◦ e3 = h◦ e3 and e3 being
an epimorphism implies that g = h.

In general, it is not true that a monomorphism that is also an epimorphism is an isomorphism,
since, the inverse morphism may not exist. However, in M -adhesive categories this assumption
holds for a subclass M of monomorphisms as shown by Lem. 3.10.

Lemma 3.10 (Relationship between M -, Epi- and Iso-Morphisms in M -adhesive Categories)
Given an M -adhesive category (C,M), then any M -morphism that is also an epimorphism is
an isomorphism. 4

Proof. The proof is based on the proof of Lemma 4.9 in [LS99] for adhesive categories. Let (1)
be a commuting diagram with epimorphism m : A→ B ∈M . From m being an epimorphism,
it follows that (1) is a pushout, since, diagram (1) already commutes. It remains to show the
universal pushout property. For all morphisms b1,b2 : B→ B with b1 ◦m = b2 ◦m it follows that
b1 = b2 by the definition of epimorphisms. Furthermore, there exists a morphism b = b1 = b2
with b ◦ idB = b1 ◦ idB = b2 ◦ idB = b1 = b2. Moreover, b is unique. Assume that there exists a
morphism b′ : B→ B with b′ 6= b and b′ ◦ idB = b′ = b1 = b2 = b leading to a contradiction.

Since, (1) is a pushout along M -morphism m, (1) is also a pullback (cf. Theorem 4.26,
item 1 in [EEPT06]). By the universal pullback property, there exists the inverse morphism
m−1 : B→ A with m ◦m−1 = idB. Furthermore, m ◦ idA = idB ◦m = m ◦m−1 ◦m and m ∈M
being a monomorphism by the definition of class M (cf. Def. 4.13 in [EEPT06]) implies
m−1 ◦m = idA.

B

A B

BB

B

(1) idB

idB

m−1

idB

idB

b

b1

b2

m

m

64

CHAPTER 3. DOMAIN COMPLETENESS

Lemma 3.11 (Preservation of Extremal Morphisms)
Let (C,M) be an M -adhesive category and e∈ E be an extremal
morphism with respect to M in C. Given diagram (1), if (1) com-
mutes and morphisms (a′,e′) are jointly epimorphic, then mor-
phism e′ is an extremal morphism with respect to M in C, i.e.,
e′ ∈ E . 4

P

P′

C

C′
(1)

a

a′

e′ e∈E

Proof. Let (C,M) be an M -adhesive category, e∈ E , e′◦a= a′◦e and (a′,e′) be jointly epimor-
phic. By the definition of extremal morphisms (cf. Def. 2.9), morphism e′ is extremal (e′ ∈ E) if
for all morphisms c,c′ with c′ ◦c = e′ it is true that c′ ∈M implies c′ is an isomorphism. Given a
decomposition of e′ : C→C′ with morphisms c : C→C, c′ : C→C′, c′◦c= e′ and c′ ∈M . Since
pullbacks exist along M-morphisms in C and M -morphisms are closed under pullbacks (cf. Def.
4.9 in [EEPT06]), we can construct pullback (PB) along c′ ∈M with p′ ∈M . By the universal
pullback property and assumption e′ ◦a = c′ ◦c◦a = a′ ◦e, there exists morphism p : P→ P with
a ◦ p = c ◦ a and p′ ◦ p = e. Thus, e ∈ E , p′ ◦ p = e and p′ ∈M implies p′ is an isomorphism
(cf. Sec. 2.2.2 and Def. 2.9). It remains to show that c′ is an epimorphism. By c′ ∈M and
Lem. 3.10 it would follow that c′ is an isomorphisms and thus, e′ is extremal. Morphism c′ is an
epimorphism means that for all morphisms f ,g : C′→G it holds that f ◦c′ = g◦c′ implies f = g
(cf. Def. 2.13 in [EEPT06]). Let f ◦ c′ = g◦ c′. Therefore, f ◦ e′ = f ◦ c′ ◦ c = g◦ c′ ◦ c = g◦ e′
(∗1). Furthermore, f ◦ a′ = f ◦ a′ ◦ idP′ = f ◦ a′ ◦ p′ ◦ p′−1 = f ◦ c′ ◦ a ◦ p′−1 = g ◦ c′ ◦ a ◦ p′−1 =
g ◦ a′ ◦ p′ ◦ p′−1 = g ◦ a′ (∗

2) with p′−1 being the inverse morphism of isomorphism p′. Since,
(a′,e′) are jointly epimorphic, (∗1) and (∗2) implies f = g. Therefore, c′ is an epimorphism and
by Lem. 3.10 c′ is an isomorphism and thus, e′ ∈ E .

P

P′

C

C′

C P

(PB)

G

a

a′

c p

a
e′

f

g

e∈E

c′ p′

In general, the merge of a condition over two morphisms successively is not equivalent to
the merge of the condition over the composition of both morphisms as illustrated by Ex. 3.11.
Lem. 3.12 defines sufficient conditions under which the equivalence holds.

Example 3.11 (General Equivalence of Successive Merge and Merge over Composition)
Fig. 3.6 illustrates the merge Merge(b2 ◦b1,acP) of condition acP = ∃(a : P→C, true) over the
composition of morphisms b1 and b2 as well as the merge Merge(b2,Merge(b1,acP)) of acP over
morphisms b1 and b2 successively. The example serves as a counterexample for showing that
the merge over a composition of two morphisms is not equivalent to the merge over both mor-
phisms successively, in general. For simplicity, the graphs in the example share no algebras and
all nodes are of type T 0. The nodes are mapped to nodes of the same name along morphisms.
The merge over composition is constructed by the commuting outer diagram with morphisms
b′ ∈ O and a′′ ∈M and results in condition ∃(a′′ : P′′→C′′, true) = Merge(b2 ◦ b1,acP). The
successive merge results in condition false = Merge(b2,Merge(b1,acP)). Diagram (1) can be
constructed for the first merge Merge(b1,acP) of acP over morphism b1 but diagram (2) does not

65

3.2. VERIFICATION OF DOMAIN COMPLETENESS

exist for the subsequent merge over b2, since, the merge construction requires that the morphism
between graphs C′ and C′′ must be an O-morphism where the nodes are mapped injectively (cf.
Def. 2.16) but no O-morphism can be found. This results in condition false for the sucessive
merge (cf. Rem. 2.11). Thus, Merge(b2,Merge(b1,acP)) 6≡Merge(b2 ◦ b1,acP), i.e., the merge
of a condition over two morphisms successively is not equivalent to the merge of the condi-
tion over the composition of both morphisms, in general. The same situation arises if acP is
not in M -normal form (a 6∈M) and therefore, a identifies elements that are not identified by
b1 but by b2 and therefore, (1) cannot be constructed resulting into Merge(b1,acP) = false⇒
Merge(b2,Merge(b1,acP)) = false 6≡Merge(b2 ◦b1,acP) (cf. Rem. 2.11). 4

P
1:T0

C
1:T0

P′

1:T0 2:T0
C′

1:T0 2:T0

P′′

1,2:T0
C′′

1,2:T0

(1)

(2)

b1

b2

b′1 ∈ O

b′ ∈ O

@ ∈ O

a ∈M

a′ ∈M

a′′ ∈M

Figure 3.6: Counterexample for General Equivalence

Lemma 3.12 (Equivalence of Successive Merge and Merge over Composition) In
(AGraphsATGI,M), let acP be a condition over P in M -normal form. Furthermore, let
b1 : P→ P′ and b2 : P′→ P′′ be morphisms from P or P′ to some P′ or P′′, respectively. Further-
more, let b1 ∈ E . It holds that Merge(b2,Merge(b1,acP))≡Merge(b2 ◦b1,acP). 4

P

P′

P′′

acP

Merge(b1,acP)

Merge(b2 ◦b1,acP)≡Merge(b2,Merge(b1,acP))

b2

b1∈E

Proof. The proof is presented in appendix A.9.

Lemma 3.13 (Composition of Extremal Morphisms) Let (C,M) be an M -adhesive category
and e1 : A→ B,e2 : B→C ∈ E be extremal morphisms with respect to M in C. The composition
e2 ◦ e1 is also an extremal morphism with respect to M in C (e2 ◦ e1 ∈ E). 4

Proof. Let e1,e2 ∈ E and m◦ f be a factorisation of e2 ◦ e1 with m◦ f = e2 ◦ e1 and m ∈M . It
remains to show that m is an isomorphism (cf. Def. 2.9). We can construct pullback (1) along
m ∈M with m1 ∈M , since, pullbacks exist along M -morphisms in C and M -morphisms are
closed under pullbacks by definition (cf. Def. 4.13, item 2 in [EEPT06]). By the universal
pullback property we obtain morphism f1 with m1 ◦ f1 = e1. Thus, the assumption e1 ∈ E with
m1 ∈M imply that m1 is an isomorphism (cf. Def. 2.9). (1) being a pullback implies e2 ◦m1 =

m ◦ f2
m1 iso
=⇒ e2 ◦m1 ◦m−1

1 = m ◦ f2 ◦m−1
1 ⇔ e2 ◦ idB = m ◦ f2 ◦m−1

1 ⇔ e2 = m ◦ f2 ◦m−1
1 . Thus,

the assumptions e2 ∈ E and m ∈M imply that m is an isomorphism (cf. Def. 2.9).

66

CHAPTER 3. DOMAIN COMPLETENESS

A B C

B

D
(1)

(=)

f
f2

f1

e1∈E e2∈E

m∈M
m1

Lem. 3.14 states that for a given match m : P→ G and instance morphism i : G→ G′, m
satisfies the AC-schema acP of a given condition acP in M -normal form (m |= acP) if and only if
m extended by i satisfies acP (i◦m |= acP). For direction i◦m |= acP⇒ m |= acP, the restriction
to conditions in M -normal form becomes essential as illustrated by Ex. 3.12 leading to the
restriction to application conditions in M -normal form in Lem. 3.15.

Example 3.12 (AC-schema Satisfaction by Instance Morphisms for General Conditions) For
category (AGraphsATGI,M), Fig. 3.7 illustrates that given a condition acP = ∃(a : P→C, true)
that is not in M -normal form, then it may be true that i ◦m |= acP but ¬(m |= acP). Condi-

P∅

C
1:T0

value = x

G
1:T0

value = x

P2∅

C2

1:T0

value = a

GI

1:T1

value = 1

P3∅

C3

1:T1

value = 1

(1)

(2)

∃q′ ∈M

@q ∈M

a :
x 7→ x
y 7→ z
z 7→ z

m ∈ O :
x 7→ a
y 7→ y
z 7→ z

i ∈ O :

a 7→ 1
x 7→ 1
y 7→ 1
z 7→ 1

@e′1 ∈ O

e′2 ∈ O

e1 ∈ E

e2 ∈ E

m1 ∈M

m2 ∈M

a2 ∈M

a3 ∈M

Figure 3.7: AC-Schema Satisfaction by Instance Morphisms for General Conditions

tion acP is not in M -normal form, since, variables y and z are identified by z along morphism
a : P→ C, i.e., a 6∈M (cf. Sec. 2.2.2 and Rem. 2.3). By Sec. 2.2.3 and Rem. 2.13, m |= acP

means that m1 |= Merge(e1,acP) and i ◦m |= acP means that m2 |= Merge(e2 ◦ e1,acP) for the
extremal E -M factorisations m1 ◦ e1 = m and m2 ◦ e2 ◦ e1 = i◦m. Note that extremal E -M fac-
torisation m2 ◦ e2 ◦ e1 of i◦m is obtained as follows: Given extremal E -M factorisation m2 ◦ e2
of i◦m1, then by Lem. 3.13 it follows that e2 ◦ e1 ∈ E with m2 ◦ e2 ◦ e1 = i◦m and furthermore,
by the uniqueness of factorisations (cf. Sec. 2.2.2 and Rem. 2.5), it follows that m2 ◦e2 ◦e1 is the

67

3.2. VERIFICATION OF DOMAIN COMPLETENESS

extremal E -M factorisation of i◦m. Furthermore, Merge(e1,acP) = false, since, there does not
exist e′1 : C→C2 such that (1) commutes, as, variables y and z in P are identified by z in C along
a : P→C but not by morphism m and therefore, also not by e1 (cf. Sec. 2.2.3 and Rem. 2.11).
Contrarily, Merge(e2 ◦ e1,acP) = ∃(a3 : P3 → C3, true). Thus, m2 |= ∃(a3 : P3 → C3, true) for
morphism q′ : C3→GI ∈M with commuting (2) but ¬(m1 |= false). Consequently, i◦m |= acP

but ¬(m |= acP). For negative conditions ¬acP this means that m |=¬acP but ¬(i◦m |= acP). For
Lem. 3.15 this means that without the restriction to application conditions in M -normal form,
we obtain the undesired result that transformations on the term level via productions with neg-
ative application conditions not necessarily induce corresponding transformations on the level
of concrete values, as, the application condition may be fulfilled by match m but not by match
i ◦m. Independently from conditions not in M -normal form, a similar situation may arise if
we disregard Def. 3.17 and Item 5 for instance morphisms and focus on variable x only in the
example from above while neglecting variables y and z, i.e., this time condition acP is in M -
normal form. Therefore, the following example demonstrates the importance of Item 5 for the
definition of instance morphisms. Variable x in P is mapped to variable a in G along m. Further-
more, variables x and a in G are both mapped to 1 in GI along i. Note that this is only possible
when explicitly disregarding Def. 3.17 and Item 5 for instance morphism i. We can construct (1)
with Merge(e1,acP) = ∃(a2 : P2→C2, true). However, there does not exist q : C2→G such that
q◦a2 = m1, since, this requires that variable a in C2 is simultaneously mapped to variable a and
x in G along q. Thus, ¬(m1 |= Merge(e1,acP)) implying further that ¬(m |= acP). In contrast to
that, we can construct Merge(e2 ◦e1,acP) = ∃(a3 : P3→C3, true) such that there is q′ : C3→GI

with q′ ◦ a3 = m2, i.e., m2 |= Merge(e2 ◦ e1,acP) implying further that i ◦m |= acP. Therefore,
again i◦m |= acP but ¬(m |= acP). 4

Lemma 3.14 (AC-schema Satisfaction by Instance Morphisms) Given a condition acP over
P in M -normal form and its AC-schema acP. Furthermore, given a match m : P→ G ∈ O to
some graph G and an instance morphism i : G→ GI . Then, in (AGraphsATGI,M) it holds that
m |= acP if and only if i◦m |= acP. 4

Proof. The proof is presented in appendix A.10.

Remark 3.9 In Lem. 3.14, i ◦m |= acP is well defined w.r.t. Def. 2.12, since, each instance
morphism i is in O by definition. Lem. 3.8, item 1 with m ∈ O imply that i◦m ∈ O . 4

Lemma 3.15 (Abstract transformations induce transformations of instances) Let G0 =
∗⇒ Gn

be a transformation via productions P and almost injective matches m ∈ O only, and with all
application conditions in M -normal form. Let in : Gn → GI

n be an instance morphism. Then,
in (AGraphsATGI,M) there exists a transformation GI

0 =
∗⇒ GI

n via productions P with instance
morphism i0 : G0→ GI

0. 4

Proof. Let Gn−1 =
(pn−1,mn−1)
======⇒ Gn with pushout (1) be the last direct transformation step of trans-

formation G0 =
∗⇒ Gn via production pn−1 = (pn−1 ∈M ,acn−1) with application condition acn−1

in M -normal form and via match mn−1 ∈O by assumption. Note that g ∈M by M -morphisms
pn−1 are closed under pushouts. Therefore, mn−1 |= acn−1 by Sec. 2.2.4 and Def. 2.22, with
acn−1 being the AC-schema of acn−1.

68

CHAPTER 3. DOMAIN COMPLETENESS

G0 . . . Gn−1 Gn

GI
nGI

n−1
. . .GI

0

Ln−1acn−1 Rn−1

(1)

(2)

B

C

(3)

(p0,m0) (pn−2,mn−2)

in

mn−1 m′n−1

in−1i0

(p0,i0◦m0) (pn−2,in−2◦mn−2)

f

b∗

pn−1∈M

g∈M

g′∈M

b∈M

c∈M

By Def. 3.17, instance morphism in is in E and O and therefore, graph part in,S is an isomor-
phism in (AGraphsATGI,M). Therefore, initial pushout (3) for in can be constructed with empty
boundary graph B on the graph part with data part DGn and empty context graph C on the graph
part with data part DGI

n
where bS is the empty morphism on the graph part and bD is the identity

on the data part (cf. Fact 10.7, Item 2, and Def. 10.5, Item 2, in [EEPT06]). Note that g∈M im-
plies that gD is an isomorphism with inverse isomorphism g−1

D by Sec. 2.2.2 and Rem. 2.3. Thus,
there is morphism b∗ : B→ Gn−1 with b∗S being the empty morphism and b∗D = g−1

D such that
g ◦ b∗ = b. Therefore, pushout complement (g′, in−1) over (g, in) exists leading to pushout (2)
(cf. Sec. 2.2.2 and Rem. 2.2). By pushout composition, (1)+(2) is a pushout. It remains to show
that in−1 : Gn−1→ GI

n−1 is an instance morphism which would imply that in−1 ◦mn−1 |= acn−1

by Lem. 3.14 and therefore, (1)+(2) is a direct transformation step GI
n−1 =

(pn−1,in−1◦mn−1)
=========⇒ GI

n via
production pn−1 and match in−1 ◦mn−1. According to Def. 3.17:

1. Morphism in−1 ∈O , since, g ∈M
Sec. 2.2.2and Rem. 2.3⇒ g ∈O and instance morphism in ∈O

by Def. 3.17 Lem. 3.8and Item 1⇒ in ◦g ∈ O
(2)⇒ g′ ◦ in−1 ∈ O

Lem. 3.8and Item 2a⇒ in−1 ∈ O ,

2. Morphism in−1 ∈ E , i.e., graph part in−1,S is an epimorphism (surjective) in
(AGraphsATGI,M): Assume that in−1,S is not surjective, i.e., there is graph element
e ∈ GI

n−1 with e 6∈ in−1,S(Gn−1). Furthermore, graph element g′(e) 6∈ in(Gn) by construc-
tion of pushouts in (AGraphsATGI,M) (cf. Fact 2.17 in [EEPT06]). This contradicts
with assumption in being an instance morphism, i.e., in ∈ E implying further that in,S is
an epimorphism (surjective) by Def. 3.17. Thus, in−1,S is surjective implying further that
in−1 ∈ E in (AGraphsATGI,M),

3. Graph Gn−1 shares DSIG-term algebra by g : Gn−1 → Gn ∈M being an isomorphism
on the data part and Gn shares DSIG-term algebra by Def. 3.17 and Item 1 for instance
morphism in : Gn→ GI

n,

4. Morphism in−1 is type strict: Morphism g ∈M and instance morphism in are type strict
by Def. 3.17 and Item 3 (so in ◦ g is type strict). Assume that in−1 is not type strict, so

g′ ◦ in−1
(2)
= in ◦g is not type strict contradicting with in ◦g is type strict. Thus, in−1 is type

strict,

5. All attribute values in Gn−1 are variables x ∈ X : Assume that ∃e ∈ EGn−1
j .tGn−1

j (e) 6∈ X , j ∈

{NA,EA}. Note that gD(t
Gn−1
j (e))

g∈Mor
= tGn

j (gG,E j(e)) ∈ X by Def. 3.17 and Item 4 for
instance morphism in, i.e., homomorphism gD maps a term t 6∈ X to a variable x ∈ X
which contradicts Fact B.16, Item 1, in [EEPT06] where asg is the unique homomorphism
between two algebras for a given variable assignment that explicitly maps terms t 6∈ X to

69

3.3. LIMITATIONS

terms t ′ 6∈X by Def. B.14 in [EEPT06]. Therefore, ∀e∈EGn−1
j .tGn−1

j (e)∈X , j ∈ {NA,EA},
and

6. The data part of assigned attribute values is injective: Assume that ∃d1,d2 ∈
DGn−1 .(in−1,D(d1) = in−1,D(d2)) ∧ in−1,D(d1) ∈ (t

GI
n−1

NA (E
GI

n−1
NA) ∪ t

GI
n−1

EA (E
GI

n−1
EA)) and where

d1 6= d2 implying further that g′D(in−1,D(d1)) = g′D(in−1,D(d2))
(2)⇒ in,D(gD(d1)) =

in,D(gD(d2)) where gD(d1) ∈ DGn 6= gD(d2) ∈ DGn by g ∈ M and therefore, gD

being an isomorphism. Furthermore, in−1,D(d1) ∈ (t
GI

n−1
NA (E

GI
n−1

NA) ∪ t
GI

n−1
EA (E

GI
n−1

EA)) ⇒
for j ∈ {NA,EA}, ∃e ∈ E

GI
n−1

j .t
GI

n−1
j (e) = in−1,D(d1)⇒ tGI

n
j (g′G,E j

(e))
g′∈Mor
= g′D(t

GI
n−1

j (e)) =

g′D(in−1,D(d1))
(2)
= in,D(gD(d1))⇒ in,D(gD(d1)) ∈ (tGI

n
NA(E

GI
n

NA)∪ tGI
n

EA(E
GI

n
EA)). This contradicts

Def. 3.17 and Item 5 for instance morphism in. Therefore, ∀d1,d2 ∈ DGn−1 .(in−1,D(d1) =

in−1,D(d2))∧ in−1,D(d1) ∈ (t
GI

n−1
NA (E

GI
n−1

NA)∪ t
GI

n−1
EA (E

GI
n−1

EA)) =⇒ d1 = d2.

Analogously, we can iterate over all direct transformation steps back to G0 and yield a transfor-
mation GI

0 =
∗⇒ GI

n via the same productions with instance morphism i0 : G0→ GI
0.

Effectively, Lemmas 3.2, 3.5, 3.7 and 3.15 are used to prove the main result for verifying
domain completeness in Thm. 3.3.

3.3 Limitations

The verification approach to solve the domain completeness problem in Sec. 3.2 and Thm. 3.3
is defined under the following assumptions which are likewise the limitations of the presented
approach:

1. The conditions for verifying domain completeness are only sufficient but not necessary.

2. The approach is only applicable to graph grammars with empty start graphs.

3. The approach is only applicable to graph grammars with non-deleting productions.

4. The approach only involves constraints that are designated for general satisfaction while
neglecting constraints that are designated for initial satisfaction.

5. Constraints and application conditions need to be in M -normal form.

6. Termination of the approach requires an upper bound.

3.3.1 Conditions are Sufficient but not Necessary

The conditions for verifying domain completeness in Thm. 3.3 are only sufficient but not nec-
essary. Consider a grammar GG with duplicates of creating productions but for which the do-
main completeness holds. The duplicates lead to a non-C-conflict-freeness of the marking rules
m(GG) when claiming critical pairs of same rules and same matches. Thus, the condition does
not hold. However, it is simple to exclude duplicates from the grammar. For the confluence of
marking rules we can find a similar example.

70

CHAPTER 3. DOMAIN COMPLETENESS

TG

A

a

:A

S p1

:A

:a++

p2

:A :A
:a

++

++

G

:A :A

:A
:a :a

:a

Figure 3.8: Limitation: Graph Grammar with Non-Empty Start Graph S

A

B

C

b

c

TG

:A

++

p1

:A

:B

:b

++

++

p2

:B

:C

:c

++

++

:A--

b--

p3

1:B

P1 C1

1:B

:A

:b

c1

1:C

P2 C2

1:C

:B

:c

c2

:A

:B

:C

:b

:c

G

Figure 3.9: Limitation: Graph Grammar with Deleting Production p3

3.3.2 Graph Grammars with Non-Empty Start Graph

We assume graph grammar GG = (S,P) typed over type graph TG, with start graph S and pro-
ductions P = {p1, p2} as depicted in Fig. 3.8. Furthermore, we assume that the set of domain
constraints C = ∅ is empty. By Def. 3.8, L (GG) is C-extension complete and furthermore, by
Def. 3.12 m(GG) is C-conflict free, i.e., the conditions in Sec. 3.2 and Thm. 3.3 hold. However,
for graph G in Fig. 3.8 we obtain that G ∈ L (C) but G 6∈ L (GG). Therefore the language
inclusion does not hold although the conditions for domain completeness hold. This is due to
the gap between the declarative nature of graph constraints and the constructive nature of graph
grammars. Thus, the approach is only applicable to graph grammars with empty start graphs.

3.3.3 Graph Grammars with Deleting Productions

We assume graph grammar GG = (S = ∅,P) typed over type graph TG with the empty start
graph and productions P = {p1, p2, p3} as depicted in Fig. 3.9. Furthermore, we assume the
set of domain constraints C = {c1 : P1 → C1,c2 : P2 → C2} as depicted in Fig. 3.9. Note that
L (GG) is C-extension complete by Def. 3.8 and m(GG) seems to be C-conflict free by Def. 3.12
when neglecting the deleting elements in production p3. Therefore, the conditions for domain
completeness in Sec. 3.2 and Thm. 3.3 seem to hold. However, for graph G in Fig. 3.9 we
obtain that G ∈L (C) but G 6∈L (GG). Therefore the language inclusion does not hold. This
is due to the definition of marking rules which are only defined for non-deleting productions.
The example shows that elements that are deleted via productions cannot simply be neglected in
marking rules. Thus, the approach cannot be trivially extended to graph grammars with deleting
productions and is only applicable to graph grammars with non-deleting productions.

3.3.4 Initial & General Satisfaction

Given type graph TG, constraints CG = {c3,c4} designated for general satisfaction and CI =
{c1,c2} designated for initial satisfaction, and grammar GG = (∅,{p}) where c1 = ∃(P1 →

71

3.3. LIMITATIONS

A

B

b

TG

:A

:B

:b

++

++

p

1:B

P2 C2

1:B

:A

:b

c2

:A

:B

:b

G

++

1:A

P1 C1

:B

1:A

:b

c1

C3

:A

:A

c3

C4

:B

:B

c4

C5

:B

:A

c5

:b:b

Figure 3.10: Limitation: Initial & General Satisfaction

C1, true),c2 = ∃(P2 → C2, true),c3 = ¬∃(∅ → C3, true),c4 = ¬∃(∅ → C4, true) and c5 =
¬∃(∅→C5, true). Note that L (C) = {G} ⊆L (GG), i.e., domain completeness holds. How-
ever, constraints c1 and c2 are not used for C-extensions in Sec. 3.2 and Def. 3.5, since, both
are designated for initial satisfaction. Therefore, C-extension completeness of L (GG) does not
hold, since, effective atoms P1,P2 and G are not extended and cannot be created via grammar
GG. The approach may be extended to also involve constraints that are designated for initial
satisfaction in future work in order to handle situations from above appropriately.

3.3.5 Constraints & Application Conditions in M -normal Form

Note that for domain completeness, the graphs in L (C) and L (GG) share the same “concrete”
algebra up to isomorphism by general assumption of Sec. 3.2. For verifying domain complete-
ness L (C) ⊆ L (GG) in Sec. 3.2 and Thm. 3.3, we assume that all constraints C and all ap-
plication conditions in productions of graph grammar GG need to be in M -normal form. This
is due to the fact that domain completeness is verified only once on the level of the DSIG-term
algebra for the data part and domain completeness for all concrete algebras can then be implied
by Sec. 3.2 and Lemmas 3.14 and 3.15 but only when assuming the restriction to conditions in
M -normal form. Therefore, a verification for each case of concrete algebras is not necessary.
Sec. 3.2 and Ex. 3.12 depicts the necessity for conditions in M -normal form and the full proof
of Sec. 3.2 and Thm. 3.3 reveals all details. In contrast to the presented approach, when perform-
ing the domain completeness verification directly on the concrete algebra for each case instead
of a verification on the more abstract level of the term-algebra, then the restriction to condi-
tions in M -normal form may be loosened in future work. Note that the restriction to conditions
in M -normal form forbids the definition of conditions that identify elements on the data part.
Therefore, constraints and application conditions of the following form cannot be expressed:
“For two or more nodes that have a node attribute x each, it holds that all attributes x share
the same attribute value”. However, we are confident that conditions in M -normal form have
enough expressive power for real-world scenarios.

3.3.6 Termination Requires Upper Bound

According to Thm. 3.4, we have to define an upper bound for the size of graphs in order to ensure
termination of the approach. In most cases, the verification terminates without restricting to an
upper bound. However, when restricting to an upper bound we could also check for all graphs
up to the upper bound which satisfy the constraints in C if they can be created via the rules in
grammar GG for ensuring the validity of language inclusion L (C) ⊆ L (GG). On the other
hand, the verification via C-extension completeness in Thm. 3.3 may be more efficient, since,
not all graphs need to be checked but rather a small subset.

72

CHAPTER 3. DOMAIN COMPLETENESS

i+1:CLASS
:n1

...
:attr1 i:CLASS

name1=T

:n1
m:CLASS0:ATTRj-1:ATTR

:n4
...

j:ATTR

type=T

:n4
* *

Figure 3.11: Language of Recursive Graph Schemata

3.4 Recursive Graph Constraints

We introduce recursive conditions as a special class of infinite conditions and show that it is
sufficient to check the components of the recursions only to verify domain completeness of the
whole system. Recursive conditions are infinite conditions that are given by the disjunction over
the infinite set of graphs that are obtained from a start (premise) graph by repeating specific
graph structures recursively. In particular, this allows the definition of conditions over regular
paths in abstract syntax graphs of source code. Fig. 3.11 illustrates such a regular path expression
defining that there is some path between an ATTRibute j of type T and the CLASS i with name
T . Concretely, a) either j is directly connected to i via edge : attr1, i.e., j is the first attribute
of class i, or b) j is the jth attribute of class i and there are j− 1 other attributes between both
via : n4 edges, or c) j is the first attribute of some other class m and there are m− i other classes
between i and m via : n1 edges, or d) j is the jth attribute of class m and m is the m− ith
class defined behind class i. Therefore, we want to describe an infinite set of graphs (paths)
where the graph (path) structures that are enclosed by brackets with the Kleene star ∗ may be
repeated recursively. This allows the definition of the constraint “Each attribute j of type T is
the attribute of some class m and moreover, for each such j there is a class i with name T and
either i = m or i is defined somewhere before m.” - condensed “For each attribute type that is
used there is a corresponding class definition.”. Such a constraint is rather an infinite constraint,
i.e., the disjunction over all possible paths between j and i. Thus, the motivation behind the
notion of recursive conditions (constraints) is a) to have a notation for defining infinite graph
conditions with recursively repeating graph structures, b) and whose satisfiability is decidable,
c) the ability to involve infinite graph constraints in verifying domain completeness while in
general, the verification of domain completeness for infinite constraints does not terminate, and
d) in particular, to use recursive graph constraints for specifying constraints over regular paths
for the definition of abstract syntax graphs. We introduce the notion of recursive graph schemata
for the definition of infinite sets of graphs that are obtained from a start graph by the (recursively
repeated) restricted application of productions via pre-defined matches between the productions.

Definition 3.18 (Recursive Graph Schema) A recursive graph schema GS = (GG,M,sGS, tGS)
is given by

1. a graph grammar GG = (S,P) with start graph S and a set P of productions p = (Lp ←lp−
Kp −rp−→ Rp) with LHS Lp, gluing object Kp, RHS Rp and lp,rp ∈M ,

2. a set M of matches m ∈M where

(a) m : Lp→ S from the LHS Lp of some p ∈ P to start graph S, or

(b) m : Lp→ Rp′ from the LHS Lp of some p ∈ P to the RHS Rp′ of some p′ ∈ P, and

3. source function sGS : M→ P and target function tGS : M→ (S∪P) such that for all m ∈M,
sGS(m : Lp → A) = p and furthermore, tGS(m : A→ S) = S or tGS(m : A→ Rp) = p for
some p = (Lp← Kp→ Rp) ∈ P. 4

73

3.4. RECURSIVE GRAPH CONSTRAINTS

m6

2:CLASS

name1=T

1:ATTR

type=T

1: addClassT

++

++

3: addNextClass

2:CLASS

++ :n1
3:CLASS1:ATTR

++

4: addAttrRelationship

2:CLASS
:attr1

1:ATTR
++

2: addPrevAttr

2:CLASS
++:n4

3:ATTR
++

1:ATTR

type=T

S
m1

m5

m4

m3

m2 m7

m8

m9

1:ATTR

m1 = (1 7→ 1);m2 = (1 7→ 1,2 7→ 2);m3 = (1 7→ 1,2 7→ 3);m4 = (1 7→ 3,2 7→ 2);m5 = (1 7→
1,2 7→ 2);m6 = (1 7→ 3,2 7→ 2);m7 = (1 7→ 1,2 7→ 3);m8 = (1 7→ 3,2 7→ 2);m9 = (1 7→ 1,2 7→ 2)

sGS(m1) = 1 : addClassT;sGS(m2) = sGS(m3) = sGS(m4) = 3 : addNextClass;sGS(m5) =
sGS(m6) = 2 : addPrevAttr;sGS(m7) = sGS(m8) = sGS(m9) = 4 : addAttrRelationship;

tGS(m1) = S; tGS(m2) = tGS(m5) = tGS(m9) = 1 : addClassT; tGS(m3) = tGS(m7) =
3 : addNextClass; tGS(m4) = tGS(m6) = tGS(m8) = 2 : addPrevAttr;

Figure 3.12: Recursive Graph Schema

Remark 3.10 (Recursive Graph Schema) Note that by function sGS, each match is mapped to
exactly one rule as source (analogously, with tGS for the target). However, this does not restrict
the expressiveness of recursive graph schemata. Two rules p1 : L← K1→ R1, p2 : L← K2→ R2
with the same LHS L and the same outgoing match m : L→ A can be redefined by two rules
p1, p′2 : L′←K2→ R2 with distinct LHSs L 6= L′ and distinct matches m,m′ : L′→ A by renaming
the elements (nodes and edges) of L resulting in L′ and without changing the semantics up to
isomorphism. This allows to define separate sources for m,m′ with sGS(m) = p1 and sGS(m′) =
p′2. 4

Example 3.13 (Recursive Graph Schema) Fig. 3.12 illustrates a recursive graph schema with
start graph S, productions {1 . . .4}, matches {m1 . . .m9} and source (target) function sGS (tGS)
which defines the infinite set of graphs that are presented in Fig. 3.11. From start graph S we
obtain the graph with the corresponding CLASS of name T and edge : attr1 by applying rules
1 and 4 via matches m1 and m9 successively. Analogously, we may obtain bigger graphs begin-
ning with S by (repeatedly) applying rules 2 and 3 via corresponding matches m2 . . .m6 before
applying rule 4. Note that cycles of match morphisms define graph structures that may be re-
peated recursively. The repeated application of rule 3 via match m3 allows the repeated addition
of classes whereas rule 2 together with match m6 allows the repeated addition of attributes. 4

We define the precise semantics of a recursive graph schema GS by its graph language which
is induced by terminating recursive transformation sequences over the schema starting at start
graph S. A recursive transformation sequence is given by a path of matches M in GS and a cor-
responding sequence of recursive transformation steps where the match of each step is restricted
by the co-match of the previous step. The sequence is terminating in the sense that there are

74

CHAPTER 3. DOMAIN COMPLETENESS

no matches defined in M for extending the sequence. A path of matches M in GS is given by a
sequence of matches (mi ∈M)i∈I with sGS(mi) = tGS(mi+1), for all i ∈ I.

Definition 3.19 (Cyclic & Terminating Match-Path) Let GS = ((S,P),M,sGS, tGS) be a recur-
sive graph schema. A match-path in GS is a sequence of n > 0 matches (mi ∈M)i∈I, I = {1 . . .n}
with sGS(mi) = tGS(mi+1), for all i∈ I. A match-path with n matches is terminating, if there does
not exist a match m ∈M with tGS(m) = sGS(mn). A match-path is acyclic, if for all i, j ∈ I it is
true that i 6= j implies sGS(mi) 6= sGS(m j). Otherwise, the match-path is cyclic. A match-path of
n matches starts (ends) in A, if tGS(m1) = A (sGS(mn) = A). With PathsA(GS) we denote the set
of all match-paths in GS that start in A and with PathsA,B(GS) we denote the set of all match-
paths in GS that start in A and end B. A match-cycle is some match-path path ∈ PathsA,A(GS).
A match-cycle path ∈ PathsA,A(GS) is reachable from match-path (mi)i∈{1...n}, if there is some i
with sGS(mi) = A or tGS(mi) = A. 4

Example 3.14 (Match-Path) Given the recursive graph schema GS in Fig. 3.12. For example,
m= (m1,m5,m6,m8) is a match path with four matches - the source of each match coincides with
the target of its successive match. Furthermore, m is terminating (there is no match with rule 4 :
as target), m is cyclic (sGS(m5) = sGS(m6)) and m ∈ PathsS,4:(GS). The same path without match
m6 is acyclic. Match-path (m6) ∈ Paths2:,2:(GS) is a match-cycle that is reachable from m. 4

Proposition 3.2 ((De)-Composition of Acyclic Match-Paths) Given two match-paths path1 =
(m1,i)i∈{1...n} and path2 = (m2,i)i∈{1...m} together with their merged match-path path3 =
(m1,1 . . .m1,n,m2,1 . . .m2,m). If path3 is acyclic, then path1 and path2 are acyclic (Decomposi-
tion). However conversely, if path1 and path2 are acyclic, then path3 is not necessarily acyclic
but may be cyclic (Composition). 4

Proof. “Decomposition”: Assume that pathi is cyclic for i∈ {1,2}. Then, the composition path3
is cyclic by definition contradicting with the assumption that path3 is acyclic. “Composition”:
The counterexample is as follows: Let n = m = 1 and m1,1 = m2,1 be a reflexive match, i.e.,
sGS(m1,1) = tGS(m1,1) = sGS(m2,1) = tGS(m2,1). Match-paths path1 and path2 are acyclic, respec-
tively, but the composition path3 = (m1,1,m2,1) is cyclic.

Definition 3.20 (Recursive Transformation) Let GS = ((S,P),M,sGS, tGS) be a recursive graph

schema. A recursive transformation step G =
(p,m,n)
====⇒GS,n′ G′ from G to G′ via production

p = (Lp ←lp− Kp −rp−→ Rp), p ∈ P, match m : Lp → A,m ∈ M and morphism n : A→ G,n ∈M is

defined by a direct transformation G =
(p,n◦m)
====⇒ G′ via p and n ◦m with pushouts (1),(2) and

co-match n′ : Rp → G′ ∈M . A recursive transformation sequence w.r.t. a given match-path
path = (mi : Ai← Lpi)i∈{1...n} in GS, in short recursive transformation, is given by a sequence of

n recursive transformation steps (A′i−1 =
(sGS(mi),mi,n′i−1)
=========⇒GS,n′i

A′i)i∈{1...n} from A1 to A′n with A′0 = A1

and n′0 = idA1 , denoted by A1 =
path
==⇒GS,n′n

A′n, in short A1 =
path
==⇒GS A′n, A1 =

∗⇒GS,n′n
A′n or A1 =

∗⇒GS A′n
if n′n or path is not relevant, as shown below right. A recursive transformation is terminating,
(a)cyclic or starts (ends) in A, if the underlying match-path is terminating, (a)cyclic or starts
(ends) in A.

75

3.4. RECURSIVE GRAPH CONSTRAINTS

m1

S

1:A

2:A

3:A

1

1:A
--

2:A

3:A

--

2

2:A

4:A

3:A

++
++

5

1:A

2:A

++

3

4:A

5:A

3:A

++
++

4

5:A

6:A

3:A

++
++

m2

m3

m8

m5

m6

m4m7
m9

m10

m11

m1 = (1 7→ 1,2 7→ 2,3 7→ 3);m2 = (2 7→ 2,3 7→ 3);m3 = (3 7→ 3,4 7→ 4);m4 = (3 7→ 3,5 7→
5);m5 = (3 7→ 3,2 7→ 6);m6 = (3 7→ 3,5 7→ 4);m7 = (3 7→ 3,4 7→ 6);m8 = (2 7→ 5,3 7→

3);m9 = (1 7→ 4,2 7→ 3);m10 = (1 7→ 5,2 7→ 3);m11 = (1 7→ 6,2 7→ 3)
tGS(m1) = S;sGS(m1) = tGS(m2) = 1;sGS(m2) = sGS(m5) = sGS(m8) = tGS(m3) = tGS(m6) =
tGS(m9) = 2;sGS(m3) = sGS(m7) = tGS(m4) = tGS(m8) = tGS(m10) = 3;sGS(m4) = sGS(m6) =

tGS(m5) = tGS(m7) = tGS(m11) = 4;sGS(m9) = sGS(m10) = sGS(m11) = 5

Figure 3.13: Recursive Graph Schema with Interweaving Cyclic Match-Paths

Lp Kp Rp

A

G O G′

(1) (2)

Lpi Kpi Rpi

Ai

A′i−1 Oi A′i

Lpi+1 Kpi+1 Rpi+1

Oi+1 A′i+1

rp

r′p

rpi

r′pi

rpi+1

r′pi+1

lp

l′p

lpi

l′pi

lpi+1

l′pi+1

m

n

n′′ n′

mi

n′i−1

n′i

mi+1

n′i+1

The derived span der(t) of a recursive transformation t : A1 =
path
==⇒GS A′n is given by the derived

span der(t ′) of the underlying transformation t ′ : (A′i−1 =
(sGS(mi),n′i−1◦mi)
=========⇒ A′i)i∈{1...n}. 4

Remark 3.11 (Recursive Transformation) Note that identical (empty) recursive transformations
are not defined, since, their definition is based on match-paths which consists of n > 0 matches
leading to a sequence of n > 0 recursive transformation steps for transformations. Furthermore,
in M -adhesive categories, the derived co-matches n′ : Rp→G′ in recursive transformation steps
are guaranteed to be in M - thus, claiming n′ ∈M is not a restriction. For Def. 3.20, (1) is also
a pullback by lp ∈M and pushouts along M -morphisms are pullbacks with n′,n′′ ∈M , since,
n◦m ∈M by M -composition and furthermore, M -morphsisms are closed under pushouts and
pullbacks for pullback (1) and pushout (2). 4

Finally, the semantics of a recursive graph schema is given by its graph language over the set
of terminating recursive transformation sequences starting at start graph S. Note that for some
recursive graph schemata there may not exist a terminating recursive transformation sequence

76

CHAPTER 3. DOMAIN COMPLETENESS

or a recursive transformation sequence at all and therefore, its language may be empty. For
example, the recursive graph schema in Fig. 3.13 without rule 5 and adjacent matches m9 to m11
has no terminating match-path and therefore, no terminating recursive transformation sequence.
Moreover, for the complete schema in Fig. 3.13 there exists an infinite set of terminating match-
paths but all existing match-paths do not lead to a recursive transformation sequence due to
violations of the gluing condition at the first match m1 in each match-path. The deletion of node
1 : A by applying rule 1 via match m1 would result in a dangling reflexive edge on 1 : A. Thus, in
general, for a match-path there may not exists a corresponding recursive transformation sequence
due to a violation of the gluing condition.

Definition 3.21 (Graph Language of Recursive Graph Schemata) Let GS = ((S,P),M,sGS, tGS)
be a recursive graph schema. The language L (GS) of GS is given by L (GS) :=
R(GS)|∼ with R(GS)|∼ being the quotient set of R(GS) by ∼, R(GS) := {der(t) | t : S =

∗⇒GS
G, t is terminating, t starts in S} being the set of all derived spans that are derivable by terminat-
ing recursive transformation sequences starting at start graph S and∼ being the equivalence rela-
tion on R(GS) where g : S→G∼ g′ : S→G′ if and only if G∼= G′ with isomorphism i : G→G′

and i◦g = g′. 4

Remark 3.12 (Graph Language of Recursive Graph Schemata) Note that ∼ is indeed
an equivalence relation, i.e., 1. reflexivity: g ∼ g by isomorphism i = idG : G → G
with idG ◦ g = g, 2. symmetry: g ∼ g′ if and only if g′ ∼ g by inverse isomorphism

i−1 : G′ → G with g = idG ◦ g = i−1 ◦ i ◦ g
De f . 3.21

= i−1 ◦ g′, and 3. transitivity: g ∼ g′ and
g′ ∼ g′′ : S→ G′′ implies g∼ g′′ by isomorphism i′ ◦ i : G→ G′′ with isomorphism i′ : G′→ G′′

and i′ ◦ i ◦ g
De f . 3.21

= i′ ◦ g′
De f . 3.21

= g′′. Moreover in M -adhesive categories, path = path′ for

g = der(t),g′ = der(t ′) ∈ R(GS) with t : S =
path
==⇒GS G, t ′ : S =

path′
==⇒GS G′ implies G∼= G′ with iso-

morphism i : G→G′ and i◦g = g′ (thus, g∼ g′) by the uniqueness of pushout complements and
pushout objects. Furthermore, language L (GS) may contain the same graph G several times but
each with different derived spans der(ti) : S→ G.

m1 1

1:A

:A

S

1:A

2:A

3:A

2

:A

3:A

m2

:A

:A

:A

:A

Recursive Graph Schema GS Derived
Graph G

Recursive Graph Condition

S

1:A

2:A

3:A

c_1

c_2

G

1:A 2:A 3:A:A

G

1:A 2:A 3:A :A

++

++

++

++

∨

This is important in order to obtain recursive graph constraints over that language with the desired
semantics. For example, from the recursive graph schema GS from above, graph G can be

derived by two terminating recursive transformation sequences t1 : S=
(m1)
==⇒GS G and t2 : S=

(m2)
==⇒GS

G starting at S, i.e., via the two match-paths (m1) and (m2), respectively. The mappings along
morphisms m1,m2,c1 = der(t1) and c2 = der(t2) are expressed by identifications of the numbers
for each node. Thus, L (GS) = {[c1], [c2]} is given by two equivalence classes which contain
one of the two derived spans to graph G, respectively, resulting in a recursive graph constraint
(∃(S −c1−→ G, true))∨ (∃(S −c2−→ G, true)) which disjoints both path-options. Therefore, a graph G′

generally satisfies the constraint, if for all occurrences of pattern S in G′ a) either node : A is
attached to the top node 1 : A, or b) to the bottom node 3 : A. 4

77

3.4. RECURSIVE GRAPH CONSTRAINTS

Remark 3.13 (Graph Language of Recursive Graph Schemata) Note that the language of a
recursive graph schema may be empty if no terminating recursive transformations do exist: 1. ei-
ther due to a violation of the gluing condition (cf. Fig. 3.13), or 2. no terminating match-paths
do exist, or 3. the set of productions P is empty. This is true since an empty set P implies that
the set of matches M is also empty and furthermore, the language is defined over recursive trans-
formation sequences w.r.t. match paths and empty match paths (empty recursive transformation
sequences) are not defined explicitly (cf. Rem. 3.11). 4

Example 3.15 (Graph Language of Recursive Graph Schemata) For the recursive graph schema
in Ex. 3.13, Fig. 3.11 illustrates all graphs that can be derived by terminating recursive transfor-
mation sequences with starting at start graph S. This includes graph G0 from below via recursive

transformation t0 : S =
(m1)
==⇒GS G0 and all graphs G1,G2,G3 etc. that can be obtained from G0

by arbitrarily adding a list of attribute (and class) nodes before j (and after i) recursively via
corresponding recursive transformations.

:attr1 i:CLASS

name1=T

j:ATTR

type=T

G0

:attr1 i:CLASS

name1=T

j:ATTR

type=T
:ATTR

:n4

G1

:n1 i:CLASS

name1=T

j:ATTR

type=T
:CLASS

:attr1

G2

:n1 i:CLASS

name1=T

j:ATTR

type=T
:CLASS

:n4

G3

:attr1
:ATTR

As the schema contains cyclic match-paths, its language is infinite containing equivalence class
[der(t0) : S→G0] and the infinite set of equivalence classes [der(ti) : S→Gi] of all other derived
spans that can be obtained via terminating recursive transformations ti : S =

∗⇒GS Gi starting at
S. 4

Based on the language of recursive graph schemata with start graph S and productions P,
we define recursive (infinite) graph conditions. A recursive graph condition is defined by a
disjunction over all derived spans of the language as mappings to the conclusion graphs with S
being the premise graph. We assume a restriction of P to productions that are non-deleting only
in order to obtain an induced morphism as derived span for each pair of (premise,conclusion)
graphs instead of spans of morphisms (cf. Rem. 2.15).

Definition 3.22 (Recursive Graph Condition) Let GS = ((S,P),M,sGS, tGS) be a recursive
graph schema with non-deleting productions P and L (GS) be the graph language of GS. The
recursive graph condition cGS w.r.t. GS is defined by cGS = ∨[ac]∈L (GS)∃(ac : S→ , true). 4

Recursive graph conditions are in M -normal form which is necessary to be used in the verifi-
cation of domain completeness in Sec. 3.2 and Thm. 3.3.

Proposition 3.3 (Recursive Graph Conditions in M -normal form) In M -adhesive categories,
each recursive graph condition is in M -normal form. 4

Proof. Technically, non-deleting productions p = (Lp←lp− Kp −rp−→ Rp) are defined with lp = idLp

resulting in recursive transformation steps in Def. 3.20 with l′p ∈M , l′p being an isomorphism,
l′−1
p ∈M and l′−1

p being its inverse morphism for M -adhesive categories. This holds, since,
the class M is closed under isomorphisms (therefore, lp ∈M), iso- and M -morphisms are
closed under pushouts (therefore, l′p ∈M and l′p is isomorphism) and the inverse morphism
l′−1
p is in M by M -decomposition of l′p ◦ l′−1

p = idO ∈M . Furthermore, r′p ∈M , since, rp ∈

78

CHAPTER 3. DOMAIN COMPLETENESS

M by the definition of productions and M -morphisms are closed under pushouts. Thus, the
induced morphisms ac in Def. 3.22 are in M by M -composition of r′p ◦ l′−1

p , i.e., recursive
graph conditions are in M -normal form.

Note that recursive graph conditions are standard nested conditions and therefore, the standard
logical operations for forming bigger conditions can be applied, e.g., negation, con- and dis-
junction with other conditions. Especially the possibility to negate recursive conditions not only
allows the definition of graph constraints of the form “For all S there exists some regular path”
and “there exists S with some regular path” but also “For all S there does not exist some regular
path” and “there exists S without some regular path”.

Remark 3.14 (Conjunctive Recursive Graph Conditions) Note that recursive graph conditions
are explicitly defined by a disjunction over the conclusions that is infinite for infinite sets of
conclusions. A corresponding notion where the disjunction is replaced by a conjunction would
disagree with the intrinsic idea of having an option of (infinite) conclusions. Moreover, a con-
junction over an infinite set of recursively growing conclusions as constraint can only be satisfied
by infinite graphs. 4

Example 3.16 (Recursive Graph Constraint) For the recursive graph schema in Ex. 3.13, the
corresponding infinite recursive graph constraint is generally satisfied by a graph G, if in G for
all attributes A of type T there is a class C1 with name T defined, and A is the attribute of some
class C2 and either C1 =C2 or C1 is defined before C2. The membership of an attribute to a class
is expressed by paths of : attr1 and : n4 edges between both. The fact that a class is defined
before some other class is expressed by paths of : n1 edges between both. 4

In [BDK+12], the decidability of reachability and coverability in various types of graph trans-
formation systems with different restrictions were investigated. In the following, we investigate
the decidability of partial reachability in graph grammars and recursive graph schemata in order
to conclude over the decidability of the satisfaction of recursive graph conditions in Thm. 3.5.
In contrast to reachability, given a graph G, partial reachability of G requires that there is at
least one transformation sequence to some G′ such that there is an M -morphism from G′ to G
instead of an isomorphism between both. Conversely, coverability requires that there is at least
one transformation sequence to some G′ such that there is an M -morphism from G to G′. Thus,
partial reachability is the inverse of coverability w.r.t. reachability.

While for finite-state graph transformation systems, the partial reachability problem is obvi-
ously decidable by iterating over all states and check partial reachability for each, it is different
for infinite-state graph transformation systems (states are graphs and transitions between states
are transformation steps). We use infinite-state graph transformation systems for specifying in-
finite graph languages of recursive graph patterns. While graph grammars with deleting rules
can be used for specifying such languages where the start graph is the base case of the recursion
and further graph patterns are obtained by recursively deleting and adding elements, the partial
reachability problem is undecidable for general graph grammars by a reduction from the halting
problem over turing machines (cf. Prop. 3.4 and Item 2). However, for recursive graph schemata
(with deleting rules), it turns out to be decidable by their monotone nature which is given by the
restrictions for matches, since, 1. matches are pre-defined, and 2. each recursive transformation
step in a recursive transformation uses the co-match of the previous step to further restrict the
match (cf. Prop. 3.4 and Item 3). This leads to the decidability of the satisfaction of recursive
graph conditions in Thm. 3.5.

79

3.4. RECURSIVE GRAPH CONSTRAINTS

Definition 3.23 (Partial Reachability Problem) Let G be a graph, GG = (S,P) be a graph gram-
mar with start graph S and a set of productions P and GS = (GG,M,sGS, tGS) be a recursive graph
schema. The partial reachability problem for graph grammars (recursive graph schemata) is de-
fined as follow: Is there a (terminating recursive) transformation sequence S =

∗⇒ G′ (S =
∗⇒GS G′)

that starts in S to some graph G′ via productions P (in GS) such that there exists an M -morphism
m : G′→ G,m ∈M ? 4

Proposition 3.4 (Decidability of Partial Reachability) Let G be a graph, GG = (S,P) be a
graph grammar with start graph S and a set of productions P and GS = (GG,M,sGS, tGS) be a
recursive graph schema.

1. For grammars GG with non-deleting productions P only and finite graphs G, the (partial)
reachability problem is decidable in M -adhesive categories.

2. In general and in particular for grammars GG with finite sets of productions P and finite
graphs G in the M -adhesive category (GraphsTG,M) of typed graphs with(out) applica-
tion conditions (and M -matches), the (partial) reachability problem is undecidable.

3. In (AGraphsATGI,M), for recursive graph schemata GS with a finite set of matches M
and finite graphs G, the (partial) reachability problem is decidable. 4

Proof. The proof is presented in appendix A.12.

Theorem 3.5 (Decidability of Satisfaction of Recursive Graph Conditions) Let GS =
((S,P),M,sGS, tGS) be a recursive graph schema with a finite set of matches M, p : S→ G be
a morphism (G be a finite graph) and cGS be the recursive graph condition w.r.t. GS. Then, the
problem whether p (G) satisfies cGS is decidable in (AGraphsATGI,M). 4

Proof. By Defs. 2.12 and 3.22, p |= cGS = ∨[der(t)]∈L (GS)∃(der(t) : S→ , true) if and only if
∃[der(t) : S → G′] ∈ L (GS).p |= ∃(der(t), true) ⇔ ∃ terminating recursive transformation t
in GS that starts in S with der(t) : S→ G′ and p |= ∃(der(t), true)⇔ ∃ terminating recursive
transformation t : S =

∗⇒GS G′ in GS that starts in S such that there exists q : G′ → G ∈M with
q◦der(t) = p which is decidable by Prop. 3.4 and Item 3 by checking the commuting property
for all existing q ∈M which also terminates with the procedure from the proof of Prop. 3.4
and Item 3 for finite G. For recursive graph constraints cGS over S, listing all occurrences of S in
G (all p : S→G ∈M) also terminates and results in a finite set for finite G. For each occurrence
of S in G we can proceed with cGS as given above.

Recursive structures in recursive conditions are expressed by cycles of matches M in the un-
derlying recursive graph schema. Thus, a recursive graph schema with cycles in M may lead to
an infinite recursive graph constraint which is constructed step-wise by pumping the underlying
condition via the repeated iteration of cycles. The verification procedure of domain completeness
terminates for finite graph constraints only. Therefore, we present two techniques for deriving
finite constraints from infinite recursive graph constraints by making them tighter or weaker. The
idea behind tightened recursive graph conditions is to omit all conclusion graphs from an infinite
recursive condition cGS that exceed a specific upper bound. The upper bound is defined by a ded-
icated graph Gu and the tightened condition of cGS is formed over all conclusion graphs of cGS

with inclusions to Gu only. Therefore, the set of graphs satisfying a set of tightened constraints is
a subset of the set of graphs satisfying the set of the corresponding originial infinite constraints
but not necessarily vice versa. However, it holds that a successful verification of domain com-
pleteness w.r.t. the tightened constraints and a given TGG implies that all graphs up to the upper

80

CHAPTER 3. DOMAIN COMPLETENESS

bound satisfying the original infinite constraints can be completely transformed via the TGG. In
contrast to that, the idea behind weakened recursive graph conditions is to list for each acyclic,
terminating recursive transformation sequence S =

path
==⇒GS G over GS and for all match-cycles in

GS that are reachable from match-path path all relevant overlappings of a single iteration of each
cycle and G as conclusion graphs. Therefore, the derived conditions cover those graph structures
only that may occur when iterating each cycle the last time by omitting those structures that are
created by the iterations in between. For positive recursive constraints cGS, the set of graphs sat-
isfying the corresponding weakened constraint is a superset of the set of graphs satisfying cGS.
Thus, a successful verification of domain completeness w.r.t. weakened constraints and a given
TGG implies domain completeness w.r.t. the original (infinite) constraints cGS and TGG which
implies furthermore that all graphs satisfying constraints cGS can be completely transformed via
the TGG.

Definition 3.24 (Tightened Graph Language of Recursive Graph Schemata) Let GS =
((S,P),M,sGS, tGS) be a recursive graph schema. Let L (GS) be the graph language of GS and
graph Gu be an upper bound. The tightened language Lt(GS,Gu)⊆L (GS) of GS and w.r.t. Gu

is given by Lt(GS,Gu) := {[ac] | [ac : S→ G] ∈L (GS),∃i : G→ Gu ∈M }. 4

Before defining weakened conditions, we define the notions of M -decomposition, initial M -
subobject and weakened language of recursive graph schemata at first. An M -decomposition
of a morphism tr : A→ B is a decomposition of tr into two morphisms tr1 : A→ C, tr2 : C→
B where both tr1 and tr2 are in M . For example in (Graphs,M), M -decompositions are a
restriction of general decompositions of morphisms in the sense that graph A is guaranteed to be
a sub-graph of C and C is a sub-graph of B whereas in general decompositions C may be “bigger”
than B with an non-injective morphism tr2. Similar to the concept of an M -initial object which is
considered as the “smallest” M -subobject of all objects of a category, we introduce the weaker
notion of an initial M -subobject which is only the “smallest” M -subobject concerning one
object of a category, respectively. While a category may not have an M -initial object, it may
have an initial M -subobject for each object.

Definition 3.25 (M -decomposition of Morphisms) An M -decomposition d of an M -
morphism tr : L→ R, in short tr-M -decomposition, consists of two M -morphisms d = (L −tr1−→
L′ −tr2−→ R) with tr2 ◦ tr1 = tr and tr1, tr2 ∈M . 4

Definition 3.26 (Initial M -subobject) Given an M -adhesive category (C,M) and an object
G ∈ C. Then, M -subobject [iG : IG→ G ∈M] of G is initial, if for each M -subobject [a : A→
G ∈M] of G there exists an (unique) M -morphism iA : IG → A ∈M with a ◦ iA = iG. An
M -adhesive category (C,M) has initial M -subobjects, if for each object G ∈ C there exists an
initial M -subobject. 4

Remark 3.15 (Initial M -subobject) Note that the uniqueness of morphism iA is optional as it
follows directly from a ∈M with M being a class of monomorphisms, since, iA,1, iA,2 ∈M
with a◦ iA,1 = iG = a◦ iA,2 implies that iA,1 = iA,2. 4

Initial M -subobjects can be constructed by the extremal E -M -factorisation of initial mor-
phisms. Furthermore, initial M -subobjects are unique up to isomorphism.

Proposition 3.5 (Construction & Uniqueness of Initial M -subobjects) Given an M -adhesive
category (C,M) with an extremal E -M -factorisation and initial object I. Then, the initial

81

3.4. RECURSIVE GRAPH CONSTRAINTS

M -subobject [iG,2 : IG→G∈M] for an object G∈C can be constructed by the extremal E -M -
factorisation iG,2 ◦ iG,1 = iG of the initial morphism iG : I→ G with iG,1 : I→ IG ∈ E , iG,2 : IG→
G∈M . Furthermore, in M -adhesive categories, initial M -subobjects are unique up to isomor-
phism. 4

Proof. We have to show that M -subobject [iG,2 : IG→ G ∈M] of G is initial.

I

IG

G

A
O

(=)

(=)(=)

(1)

G

IG,1 IG,2

O

(2)

a

o2

iG,1

o2

o′1o1

iG,2
o−1

2
iG,2

o1

o′2
iG

iA
iO iG,1

Let [a : A→ G ∈M] be an M -subobject of G and iA : I → A be the initial morphism to A.
We construct pullback (1) (o1,o2) over morphisms (a, iG,2). By M -morphisms are closed un-
der pullbacks, o1,o2 ∈M . By the uniqueness of the initial morphism, iG = iG,2 ◦ iG,1 = a ◦ iA.
Thus, by the universal property of pullbacks, there exists a unique morphism iO : I → O with
o1 ◦ iO = iA and o2 ◦ iO = iG,1. By the definition of class E with iG,1 ∈ E and o2 ∈M , o2

is an isomorphism with inverse isomorphism o−1
2 ∈M and o2 ◦ o−1

2 = idIG
(∗1), since, class

M is closed under isomorphisms. By M -composition, o1 ◦ o−1
2 ∈M , o1 ◦ o−1

2 is unique by

Rem. 3.15 and furthermore, a◦o1 ◦o−1
2

(1)
= iG,2 ◦o2 ◦o−1

2
(∗1)
= iG,2 ◦ idIG = iG,2. The resulting ini-

tial M -subobjects of the presented construction are unique, since, extremal E -M -factorisations
are unique up to isomorphism in the given M -adhesive category. In general, apart from the
construction, the uniqueness of initial M -subobjects in M -adhesive categories is shown as
follows. Given two initial M -subobjects [iG,1 : IG,1 → G ∈M] and [iG,2 : IG,2 → G ∈M] of
G. We construct pullback (2) (o1,o2) over (iG,1, iG,2) with o1,o2 ∈M , since, M -morphisms
are closed under pullbacks and furthermore, iG,1 ◦ o1, iG,2 ◦ o2 ∈M by M -composition. By
Def. 3.26, there exists o′2 : IG,2 → O ∈M with iG,1 ◦ o1 ◦ o′2 = iG,2

(∗1). Analogously, there

exists o′1 : IG,1 → O ∈M with iG,1 ◦ idIG,1
= iG,1 = iG,2 ◦ o2 ◦ o′1

(∗1)
= iG,1 ◦ o1 ◦ o′2 ◦ o2 ◦ o′1. By

iG,1 ∈ M and M being a class of monomorphisms, o1 ◦ o′2 ◦ o2 ◦ o′1 = idIG,1
. Conversely,

iG,2 ◦ idIG,2
= iG,2

(∗1)
= iG,1 ◦o1 ◦o′2 = iG,2 ◦o2 ◦o′1 ◦o1 ◦o′2. By iG,2 ∈M being a monomorphism,

o2 ◦o′1 ◦o1 ◦o′2 = idIG,2
. Thus, o2 ◦o′1 is an isomorphism with commuting (2).

Example 3.17 (Initial M -subobject) The category (AGraphsATGI,M) has (∅,TDSIG) as ini-
tial object with ∅ being the empty graph except for the data nodes and TDSIG being the term
algebra of data signature DSIG. The initial M -subobject of an object (G,D) ∈ AGraphsATGI is
constructed by the extremal E -M -factorisation of the initial morphism iG : (∅,TDSIG)→ (G,D).
Thus, the initial M -subobject of (G,D) with DSIG-algebra D is [i′G : (∅,D)→ (G,D) ∈M]
with ∅ being the empty graph except for the data nodes and i′G = (i′G,G, i

′
G,D) being the

empty morphism i′G,G : ∅→ G on the graph part and identity i′G,D = idD : D→ D on the data
part. Note that, (AGraphsATGI,M) has an initial object but no M -initial object, since, M -
morphisms are isomorphisms on the data part and this does not hold for all initial morphisms in
(AGraphsATGI,M). 4

The result in Prop. 3.6 we use to prove the well-definedness of the construction of weakened

82

CHAPTER 3. DOMAIN COMPLETENESS

languages of recursive graph schemata in Prop. 3.7.

Proposition 3.6 (Initial M -subobjects along M -Morphisms) In an M -adhesive category with
initial M -subobjects, let a : A→B∈M be an M -morphism and [iA : IA→A∈M] be the initial
M -subobject of A. Then, [a◦ iA : IA→ B] is the initial M -subobject of B. 4

Proof. By M -composition a◦ iA ∈M , i.e., [a◦ iA ∈M] is an M -subobject of B. Let [iB : IB→
B ∈M] be the initial M -subobject of B. Then, there exists an unique morphism iIA : IB →
IA ∈M with a ◦ iA ◦ iIA = iB (∗1). By M -composition, [iA ◦ iIA ∈M] is an M -subobject of A.
Thus from iA being the initial M -subobject of A by assumption, there is iIB : IA→ IB ∈M with

iA ◦ iIA ◦ iIB = iA = iA ◦ idIA

iA is Mono⇒ iIA ◦ iIB = idIA
(∗2). Moreover, iB ◦ iIB

(∗1)
= a◦ iA ◦ iIA ◦ iIB

(∗2)
= a◦ iA

⇒ iB ◦ iIB ◦ iIA = a◦ iA ◦ iIA

(∗1)
= iB = iB ◦ idIB

iB is Mono⇒ iIB ◦ iIA = idIB
(∗3).

IB

IA A B
(1)

iB

iA a

iIAiIB

By (∗1),(∗2) and (∗3), iIA is an isomorphism with (1) commutes and therefore, [iB] = [a◦ iA].

For the construction of weakened graph languages, we restrict productions to be non-deleting
in order to avoid conflicts with violations of the gluing condition and introduce the equivalence
of match-cycles (cf. Rem. 3.16). We are confident that the construction can be extended to
general productions by integrating gluing condition checks.

Definition 3.27 (Equivalence of Match-Cycles) Let � ((mi)i∈{1...n}) := {(mi,mi+1) | 1 ≤ i <
n}∪{(mn,m1)} be an order over the matches of a given match-cycle (mi)i∈{1...n}. Two match-
cycles path1 and path2 are equal up to shifting of matches if and only if� (path1) =� (path2).
Let GS be a recursive graph schema and path be a match-cycle in GS. With �GS (path) :=
{path′ | path′ is match-cycle in GS,� (path) =� (path′)} we denote the set of all match-cycles
in GS that are equal to path up to shifting of matches. For match-paths path in GS that are
no match-cycles, we define�GS (path) := ∅. Let Paths , (GS) be the set of all acyclic match-
cycles in GS and ∼ be the equivalence relation on Paths , (GS) where path1 ∼ path2 if and only
if �GS (path1) =�GS (path2). With Paths , (GS)|∼ we denote the equivalence classes of all
acyclic match-cycles in GS that are equal up to shifting of matches. 4

Example 3.18 (Equivalence of Match-Cycles) For the match-cycle path = (m7,m8,m6) in
Fig. 3.13,�GS (path) = {(m7,m8,m6),(m6,m7,m8),(m8,m6,m7)}. 4

Definition 3.28 (Weakened Graph Language of Recursive Graph Schemata) Let GS =
((S,P),M,sGS, tGS) be a recursive graph schema with non-deleting productions P. The weak-
ened language Lw(GS) := L w(GS)|∼ of GS is given by the quotient set of L w(GS) by ∼
with ∼ being the equivalence relation from Def. 3.21 and projection L w(GS) := {ac | (ac,n) ∈
∪m∈PathsS(GS)(L w(m,1, idS, idS,1))} with PathsS(GS) ⊆ PathsS(GS) being the set of all acyclic
and terminating match-paths in GS that start in S with construction L w as given inductively
below. 4

Construction

83

3.4. RECURSIVE GRAPH CONSTRAINTS

L w((mi)i∈{1... j}, i,ac,n,k) =



∪(t,n′)∈B(L w((mi)i∈{1... j}, i+1, , for ac : → A and
der(t)◦ac,n′,1)) with B = if i≤ j and

{(t,n′) | t : A =
(sGS(mi),mi,n)
=======⇒GS,n′ B} (P =∅ or k = 2)

∪(ac′,n′)∈C (L w((mi)i∈{1... j}, i, , for ac : → A and
ac′,n′,2)) with C = {(ac,n)}∪ if i≤ j and
∪path∈P(A⊕Bpath) where P 6=∅
Bpath = L w(path,1, idR, idR,2) for
path = (m′k)k∈{1...l} and m′1 : L→ R
{(ac,n)} , otherwise

with switch k ∈ {1,2}, P = PathstGS(mi),tGS(mi)(GS)\ �GS ((mi)i∈{1... j}) being the set of all
match-cycles in GS that start and end in tGS(mi) except all paths that are equal up to shifting
to the path that is currently being handled, P ⊆P being all paths in P that are acyclic and ⊕
defined as follows: A⊕Bpath :=∪d∈D({(a′2 ◦ac,a′1 ◦n′) | cond}) where in contrast to (ac,n)∈C
which represents the case with no iterations of cycles via match-path path ∈P , A⊕Bpath rep-
resents arbitrary iterations by forming all relevant overlappings of the result of a single iteration
it ∈ Bpath and A where:

IL I′L L L′

R

R

A

O

R′′

A′

(2)

(3)

(4)

(5)

R

L L′

R R′

(PO)

(=)

iL,1 iL,2

ac′

m

o

o′

der(t)

a′2

ac

ac′

m′1

idR

n

a′′

n′
a′1m′1 m′1

n

n′

1. D = {d = (IL −iL,1−→ I′L −
iL,2−→ L) | d is iL-M -decomposition for initial M -subobject [iL : IL→

L ∈M] of L}, and

2. cond:

(a) it = (ac : R→ R′,n : R→ R′) ∈ Bpath,

(b) (a′1 : L′→ A′,a′2 : A→ A′) is pushout over (ac′ ◦ iL,2,n◦m),

(c) (ac′ ∈M ,m′1 ∈M) is pushout complement over (m′1,ac) resulting in pushout (PO)
with induced morphism n′ ∈M and m′1 ◦n′ = n,

(d) m : I′L→ R ∈M such that ∃t : R =
p′
=⇒GS,n′ R′′ with p′ ∈P or der(t) = n′ = idR such

that i. ∃a′′ : O→ R′′ ∈M for pushout (o,o′) over (iL,2,m) with ii. (2)+ (3) com-
mutes, and iii. (3)+(4) commutes. 4

Remark 3.16 (Construction of Weakened Graph Languages) The construction is based on the
idea that cyclic, terminating match-paths are obtained from acyclic, terminating paths by possibly
pumping the path after each match by adding arbitrary match-cycles. Therefore, the construction

84

CHAPTER 3. DOMAIN COMPLETENESS

starts with an acyclic, terminating match-path m in GS that starts in S, idS for ac as derived span,
idS for n as co-match and switch k = 1. The construction passes through m step-wise with
matches mi ∈ m:

1. If there is no match-cycle from and to the target tGS(mi) of mi which differs from all paths
that are equal to the path that is currently being handled up to shifting of matches (P =∅)
and that may lead to a cyclic match-path before mi or if switch k = 2, then a recursive
transformation step t with co-match n′ is performed via production sGS(mi), match mi and
co-match n. The construction recursively proceeds with the next match in m for mi, an
extended derived span der(t)◦ac for ac, co-match n′ for n and switch k = 1.

2. If there is a match-cycle from and to tGS(mi) which differs from all paths that are equal to
the path that is currently being handled up to shifting of matches (P 6= ∅), then before
performing the recursive transformation step via match mi in Item 1 with switch k = 2, all
cycles that may pump path m before mi are considered at first. Therefore, for each path
in P representing a single cycle iteration before mi, the construction is called recursively
and the result Bpath is overlapped with the current result A by A⊕Bpath. Beside the case
(ac,n) ∈ C where no cycles via path are iterated, set A⊕Bpath simulates arbitrary cycle
iterations by relevant overlappings. The overlappings are formed by M -decompositions
D (cf. Def. 3.28 and Item 1) and pushout constructions over common overlapping object
I′L (cf. Def. 3.28 and Item 2b). An overlapping is relevant, if the overlapping “occurs” in
recursive transformations in GS (cf. Prop. 3.7 and Item 3), i.e, the part which is added to
A by the overlapping is guaranteed to be added by some existing recursive transformation
(cf. Def. 3.28 and Item 2(d)ii) in the given context (cf. Def. 3.28 and Item 2(d)iii).

Thus, for acyclic, terminating recursive transformations t : S =
path
==⇒GS G, if there does not ex-

ist match-cycles in GS that are reachable from match-path path, then the construction behaves
equivalent to t. Otherwise, if match-cycles in GS exist that are reachable from path, then the
result of the single iteration of each cycle is overlapped with intermediate results of t, therefore,
simulating the last single iteration of each cycle in all contexts that occur in existing recursive
transformations based on t. In order to ensure that only a single iteration of each cycle c is
considered in recursive calls of the construction while an infinite number of iterations exists,
the construction neglects cycles that are equal to c up to shifting of matches while passing step-
wise through c. Otherwise, for match-cycle c = (m1 . . .mn) at match m2, the construction would
additionally consider cycle (m2 . . .mn,m1) resulting in a two-time iteration of c, etc.. 4

Example 3.19 (Weakened Graph Language of Recursive Graph Schemata) Fig. 3.14 illustrates
the weakened graph language of the recursive graph schema GS in Fig. 3.12. The language con-
sists of 16 equivalence classes of morphisms [aci : S→ Gi]i∈{0...15} where the mapping aci of
the : ATTR node in S to Gi is given by node name 1 in Fig. 3.14, respectively. While graphs
G0,G1,G4 and G7 are obtained by the four existing acyclic, terminating match-paths in GS that
start in S, the other graphs are obtained by additional relevant overlappings with results of single
match-cycle iterations that together represent all the “last” cycle iterations in all contexts that
occur in cyclic, terminating recursive transformations in GS that start in S. In detail, G0,G1,G4
and G7 are obtained by stepping through acyclic paths (m1,m9),(m1,m2,m7),(m1,m5,m8) and
(m1,m5,m4,m7), respectively. In contrast, G2 is obtained by path (m1,m2) followed by an over-
lapping with the result of iterating cycle (m3) once and the succeeding path (m7). The over-
lapping is given by match m3 itself with m = m′1 = m3 and iL,2 = idL in Def. 3.28 and Item 1
and der(t) = n′ = idR in Def. 3.28 and Item 2d. Thus, the overlapping is relevant in the sense
that it does occur in the recursive transformation w.r.t. path (m1,m2,m3,m7) leading to G2, i.e.,

85

3.4. RECURSIVE GRAPH CONSTRAINTS

:attr1 :n1

:ATTR

:attr1

G0

1:ATTR

type=T

:CLASS

name1=T

G3

:attr11:ATTR

type=T

:CLASS

name1=T

:CLASS

:n1

:CLASS:CLASS
:n1

G2

:attr11:ATTR

type=T

:CLASS

name1=T
:CLASS

:n1
:CLASS

:n1

G1

1:ATTR

type=T

:CLASS

name1=T
:CLASS

G5

:n41:ATTR

type=T

:CLASS

name1=T
:ATTR

:attr1
:ATTR

:n4

G4

:n41:ATTR

type=T

:CLASS

name1=T
:ATTR

:attr1

G6

:n41:ATTR

type=T

:CLASS

name1=T
:ATTR

:attr1
:ATTR

:ATTR

:n4

G8

:n41:ATTR

type=T

:CLASS

name1=T
:ATTR :CLASS

:n1:attr1
:CLASS

:n1

G7

:n41:ATTR

type=T

:CLASS

name1=T
:ATTR :CLASS

:n1:attr1

G9

:n41:ATTR

type=T

:CLASS

name1=T
:ATTR

:CLASS

:n1

:attr1
:CLASS

:n1
:CLASS

G10

:n41:ATTR

type=T

:CLASS

name1=T
:ATTR :CLASS

:n1:attr1:n4
:ATTR

G11

:n41:ATTR

type=T

:CLASS

name1=T
:ATTR :CLASS

:n1:attr1:n4
:ATTR :CLASS

:n1

G12

:n41:ATTR

type=T

:CLASS

name1=T
:ATTR

:CLASS

:n1

:attr1:n4
:ATTR :CLASS

:n1
:CLASS

G14

:n41:ATTR

type=T

:CLASS

name1=T
:ATTR :CLASS

:n1:attr1
:n4

:ATTR :CLASS
:n1

:ATTR

G13

:n41:ATTR

type=T

:CLASS

name1=T
:ATTR :CLASS

:n1:attr1:n4
:ATTR

G15

:n41:ATTR

type=T

:CLASS

name1=T
:ATTR

:CLASS

:n1

:attr1
:n4

:ATTR :CLASS
:n1

:CLASS

:ATTR

Figure 3.14: Weakened Graph Language

acyclic path (m1,m2,m7) is pumped to a cyclic path (m1,m2,m3,m7) via additional cycle (m3).
Analogously to G2, G3 is obtained by (m1,m2) followed by an overlapping via cycle (m3) and
succeeding (m7). However this time, the overlapping is not exactly given by match m3 itself
but by m′1 = m3 in Def. 3.28 and Item 1 and furthermore for rule 3 : addNextClass as source
and target of m3: Graph I′L consists of node 1 : ATTR only and morphisms m = iL,2 = (1 7→ 1).
Therefore, the overlapping is given by a gluing (pushout) of the graph parts of the graph after
(m1,m2) and the RHS of rule 3 : addNextClass via common node 1 : ATTR. Note that, there is
a recursive transformation t in Def. 3.28 and Item 2d via path p′ = (m3) such that a′′ exists and
(2)+(3) and (3)+(4) commute. Thus, the overlapping is relevant in the sense that it does occur
in recursive transformations w.r.t. paths of the form (m1,m2,m3, . . . ,m3,m7), i.e., acyclic path
(m1,m2,m7) is pumped to cyclic paths (m1,m2,m3, . . . ,m3,m7) by adding an arbitrary number
of additional cycles (m3). Four other overlappings via m′1 = m3 and iL-M -decompositions in
Def. 3.28 and Item 1 technically exist but all violate the conditions in Def. 3.28 and Item 2d
and therefore, they are not considered for language construction: 1. We assume that morphism
iL,2 = idL and m = (1 7→ 1,2 7→ 2). There are morphisms a′′ but without commuting (2)+ (3)
and (3)+ (4). 2. The three remaining overlappings each add a second : ATTR node and there-
fore, in all three cases there does not exists an injective morphism a′′ ∈M , since, production
3 : addNextClass does not create : ATTR nodes. 4

86

CHAPTER 3. DOMAIN COMPLETENESS

In the following, we show that the construction of weakened graph languages is well-defined
in the sense that it leads to the desired set Lw(GS) of equivalence classes of morphisms for a
given recursive graph schema GS with start graph S. In particular, 1. for each acyclic, terminat-
ing recursive transformation t : S =

∗⇒GS G which starts in S, there is a class [der(t)] ∈Lw(GS)
that coincides with the derived span der(t) of t, 2. for each cyclic, terminating recursive trans-
formation t : S =

∗⇒GS G which starts in S, there is a class [ac] ∈Lw(GS) that may not coincide
with but partially reflect der(t), and 3. each [ac] ∈ Lw(GS) partially reflects the derived span
der(t) of some terminating recursive transformation t : S =

∗⇒GS G which starts in S. We use
Items 1 to 3 for showing that the language over general recursive graph constraints is a subset
of the language over weakened recursive graph constraints in Prop. 3.8 such that domain com-
pleteness w.r.t. weakened constraints implies domain completeness w.r.t. general constraints
(cf. Thm. 3.7). Furthermore, Item 3 illustrates the fact that the weakened language contains
(weakened constraints cover) correct cases only which increases the accuracy of the domain
completeness verification w.r.t. weakened constraints by potentially omitting the verification of
faulty cases.

Proposition 3.7 (Well-Definedness of Construction of Weakened Graph Languages) Let GS =
((S,P),M,sGS, tGS) be a recursive graph schema with non-deleting productions P, L (GS) be the
language of GS and Lw(GS) be the weakened language of GS. For the construction of weakened
graph languages, the following holds in M -adhesive categories with effective pushouts and
initial M -subobjects:

1. For each terminating, acyclic t : S =
∗⇒GS G which starts in S there is [der(t)] ∈Lw(GS),

2. For each terminating, cyclic t : S =
∗⇒GS G which starts in S there is [ac : S→G′]∈Lw(GS)

such that there is an M -morphism i : G′→ G with i◦ac = der(t), and

3. For each [ac : S→ G′] ∈Lw(GS) there is terminating t : S =
∗⇒GS G which starts in S and

M -morphism i : G′→ G such that i◦ac = der(t). 4

Proof. The proof is presented in appendix A.13.

Based on the notions of tightened and weakened graph languages of recursive graph schemata,
we define tightened and weakened recursive graph conditions according to Def. 3.22.

Definition 3.29 (Tightened & Weakened Recursive Graph Condition) Let GS be a recursive
graph schema. The recursive graph condition cGS w.r.t. GS is (tightened w.r.t. a given upper
bound Gu) weakened, if it is formed over the (tightened) weakened graph language of GS (and
w.r.t. Gu). 4

Example 3.20 (Tightened & Weakened Recursive Graph Constraint) The weakened recursive
graph condition w.r.t. the recursive graph schema GS in Ex. 3.13 is given by the disjunction over
all morphisms of the corresponding weakened graph language of GS in Ex. 3.19. Note that the
weakened recursive graph constraint is only an approximation to the recursive graph constraint in
Ex. 3.16. More precisely, it is not required that for all attributes of type T there is a class of name
T such that there is a path between both but the path may also be interrupted as illustrated by
graphs G3,G6,G9,G12,G13,G14 and G15 in Fig. 3.14. In contrast to that, the tightened recursive
graph constraint w.r.t. GS is equivalent to the recursive graph constraint in Ex. 3.16 but only for
graphs up to the given upper bound. 4

Analogously to Prop. 3.3, in the following we show that tightened and weakened recursive

87

3.4. RECURSIVE GRAPH CONSTRAINTS

graph conditions are in M -normal form which is necessary to be used in the verification of
domain completeness in Sec. 3.2 and Thm. 3.3. Furthermore, we investigate the relationship be-
tween graph languages over recursive graph constraints in Prop. 3.8 in order to conclude over the
verification of domain completeness w.r.t. infinite graph constraints via Sec. 3.2 and Thm. 3.3 in
Thm. 3.7. More precisely, the verification of domain completeness can be performed w.r.t. tight-
ened & weakened recursive graph constraints. While for weakened recursive graph constraints
we obtain a general result for domain completeness in Thm. 3.7 and Item 2, for tightened re-
cursive graph constraints we obtain a result for domain completeness up to a given upper bound
only in Thm. 3.7 and Item 1.

Theorem 3.6 (Tightened & Weakened Recursive Graph Conditions in M -normal form) In M -
adhesive categories with effective pushouts and initial M -subobjects, each tightened & weak-
ened recursive graph condition is in M -normal form. 4

Proof. Let GS be a recursive graph schema, cGS be the recursive graph condition, ct,GS be the
tightened recursive graph condition and cw,GS be the weakened recursive graph condition w.r.t.
GS. By Defs. 3.24 and 3.29 it follows that ct,GS is built up by a subset of morphisms of cGS.
Therefore by Prop. 3.3 it follows that ct,GS is in M -normal form. By Prop. 3.7 and Item 3, for
each morphism ac : S→ G′ in cw,GS, there is a morphism der(t) : S→ G in cGS (cf. Defs. 3.21
and 3.22) and morphism i ∈M such that i ◦ ac = der(t). By Prop. 3.3, der(t) ∈M implying
further that ac ∈M by M -decomposition, i.e., cw,GS is in M -normal form.

Proposition 3.8 (Relationship between Languages over Recursive Graph Constraints) Let GS
be a recursive graph schema with non-deleting productions. Furthermore, let cGS be the recur-
sive graph constraint, and cw,GS be the weakened recursive graph constraint w.r.t. GS. Moreover,
let ct,GS be the tightened recursive graph constraint w.r.t. GS and upper bound Gu. Then, the
following holds in M -adhesive categories with effective pushouts and initial M -subobjects:

1. LI({cGS})Gu ⊆LI({ct,GS}) and LI({cGS})⊆LI({cw,GS}), and

2. L ({cGS})Gu ⊆L ({ct,GS}) and L ({cGS})⊆L ({cw,GS})

where languages LI({cGS})Gu and L ({cGS})Gu are defined accordingly to Sec. 3.2
and Def. 3.13. 4

Proof. Let cGS,ct,GS,cw,GS be the corresponding recursive graph constraints over S.
Case (cw,GS): Let G ∈ LI({cGS}) or G ∈ L ({cGS}), respectively, and p : S → G ∈M be
a corresponding morphism. By Sec. 2.2.3 and Rem. 2.10 and Sec. 3.1 and Def. 3.1, p |=
cGS

Sec. 2.2.3and De f . 2.12⇔ ∃q : A → G ∈ M for some ac : S → A in cGS such that q ◦ ac = p
De f s. 3.21and 3.22⇔ ∃q : A→ G ∈M for some der(t) = ac : S→ A with t : S =

∗⇒GS A being termi-

nating and starting in S such that q ◦ der(t) = p
Prop. 3.7and Items 1and 2 and De f . 3.29⇒ ∃q : A→ G ∈

M ,ac′ : S→ A′ in cw,GS, and i : A′ → A ∈M such that i ◦ ac′ = der(t) implying further that

∃q ◦ i : A′→ G ∈M for ac′ : S→ A′ in cw,GS by M -composition
Sec. 2.2.3and De f . 2.12⇔ p |= cw,GS.

Therefore by Sec. 2.2.3 and Rem. 2.10, G
I
|= cw,GS or G |= cw,GS, respectively, implying further

that G ∈LI({cw,GS}) or G ∈L ({cw,GS}), respectively, by Sec. 3.1 and Def. 3.1.
Case (ct,GS): Let G ∈LI({cGS})Gu or G ∈L ({cGS})Gu , respectively, and p : S→ G ∈M be
a corresponding morphism. By Sec. 3.2 and Def. 3.13, G ∈LI({cGS}) or G ∈L ({cGS}), re-
spectively, and furthermore, there is i : G→ Gu ∈M . By Sec. 2.2.3 and Rem. 2.10 and Sec. 3.1

and Def. 3.1, p |= cGS
Sec. 2.2.3and De f . 2.12⇔ ∃q : A→ G ∈M for some ac : S→ A in cGS such that

88

CHAPTER 3. DOMAIN COMPLETENESS

q ◦ ac = p. Thus, by M -composition there is i ◦ q : A→ Gu ∈M implying further that ac is a
morphism in ct,GS by Defs. 3.24 and 3.29, i.e., p |= ct,GS. Therefore by Sec. 2.2.3 and Rem. 2.10,

G
I
|= ct,GS or G |= ct,GS, respectively, implying further that G ∈LI({ct,GS}) or G ∈L ({ct,GS}),

respectively, by Sec. 3.1 and Def. 3.1.

Theorem 3.7 (Verification of Domain Completeness w.r.t. Recursive Graph Constraints) Let
GG be a grammar, GS be a set of recursive graph schemata with non-deleting productions, CGS
be the set of recursive graph constraints, and Cw,GS be the set of weakened recursive graph
constraints w.r.t. GS. Furthermore, let Ct,GS be the set of tightened recursive graph constraints
w.r.t. GS and a common upper bound Gu. Then, the following holds in M -adhesive categories
with effective pushouts and initial M -subobjects for a given set of constraints C:

1. L (C ∪Ct,GS) ⊆ L (GG) implies domain completeness up to upper bound Gu: L (C ∪
CGS)Gu ⊆L (GG), and

2. L (C∪Cw,GS)⊆L (GG) implies domain completeness: L (C∪CGS)⊆L (GG). 4

Proof. 1. We assume L (C ∪Ct,GS) ⊆ L (GG). Let G ∈ L (C ∪CGS)Gu with C = CI ∪
CG and CGS = CI,GS ∪CG,GS where constraints CI,CI,GS are designated for initial sat-

isfaction and CG,CG,GS are designated for general satisfaction
Sec. 3.2and De f . 3.13⇔ G ∈

L (C ∪ CGS) and ∃i : G → Gu ∈ M
Sec. 3.1and De f . 3.1⇔ G ∈ LI(CI ∪ CI,GS) and G ∈

L (CG ∪CG,GS), i.e., G
I
|= CI ∪CI,GS and G |= CG ∪CG,GS and ∃i : G → Gu ∈ M

Sec. 2.2.3and De f . 2.15 and Sec. 3.1and De f . 3.1⇒ G ∈ LI(CI), ∀cGS ∈ CI,GS.G ∈ LI({cGS}) ,G ∈

L (CG), and ∀cGS ∈ CG,GS.G ∈ L ({cGS}) and ∃i : G→ Gu ∈M
Sec. 3.2and De f . 3.13⇒ G ∈

LI(CI), ∀cGS ∈CI,GS.G ∈LI({cGS})Gu ,G ∈L (CG), and ∀cGS ∈CG,GS.G ∈L ({cGS})Gu

Prop. 3.8⇒ G ∈LI(CI), ∀cGS ∈ CI,GS.G ∈LI({ct,GS}) ,G ∈L (CG), and ∀cGS ∈ CG,GS.G ∈

L ({ct,GS}) with ct,GS ∈Ct,GS
Sec. 2.2.3and De f . 2.15 and Sec. 3.1and De f . 3.1⇒ G ∈L (C) and G ∈

L (Ct,GS)⇒ G ∈L (C∪Ct,GS)
Assumption⇒ G ∈L (GG).

2. We assume L (C ∪ Cw,GS) ⊆ L (GG). Let G ∈ L (C ∪ CGS) with C = CI ∪ CG

and CGS = CI,GS ∪ CG,GS where constraints CI,CI,GS are designated for initial sat-

isfaction and CG,CG,GS are designated for general satisfaction
Sec. 3.1and De f . 3.1⇔ G ∈

LI(CI ∪CI,GS) and G ∈ L (CG ∪CG,GS), i.e., G
I
|= CI ∪CI,GS and G |= CG ∪CG,GS

Sec. 2.2.3and De f . 2.15 and Sec. 3.1and De f . 3.1⇒ G ∈ LI(CI), ∀cGS ∈ CI,GS.G ∈ LI({cGS}) ,G ∈

L (CG), and ∀cGS ∈ CG,GS.G ∈ L ({cGS})
Prop. 3.8⇒ G ∈ LI(CI), ∀cGS ∈ CI,GS.G ∈

LI({cw,GS}) ,G ∈ L (CG), and ∀cGS ∈ CG,GS.G ∈ L ({cw,GS}) with cw,GS ∈ Cw,GS
Sec. 2.2.3and De f . 2.15 and Sec. 3.1and De f . 3.1⇒ G∈L (C) and G∈L (Cw,GS)⇒G∈L (C∪Cw,GS)
Assumption⇒ G ∈L (GG).

Finally, we show that tightened and weakened recursive graph constraints can effectively be
used for verifying domain completeness. This means that the constraints are actually finite under
certain conditions such that the verification terminates (cf. Thms. 3.4 and 3.8). Note that the

89

3.4. RECURSIVE GRAPH CONSTRAINTS

(a) (b) (c)

(1)

(2)

(3)
(4)(1)

(2)

Figure 3.15: Simple Recursive Graph Schema

number of nestings of recursive graph constraints is finite by constructions Defs. 3.22 and 3.29.
For ensuring the finiteness of weakened recursive graph constraints, we introduce the notion of
simple recursive graph schemata in Def. 3.30. A recursive graph schema is simple if all acyclic
match-cycles that are not equal up to shifting of matches are linked via at most one production
as depicted in Fig. 3.15 (a). The schemata in Fig. 3.15 (b) and (c) are not simple. Fig. 3.15
(b) contains two acyclic match-cycles (1) and (2) that are linked via two productions. Fig. 3.15
(c) contains a cycle of acyclic match-cycles (1), (2) and (3) that are linked to each other via
one production, respectively. However, this situation always leads to an acyclic match-cycle (4)
which is linked to other match-cycles via more than one production. Therefore, a cycle of acyclic
match-cycles is also forbidden for simple recursive graph schemata.

Definition 3.30 (Simple Recursive Graph Schema) Let GS be a recursive graph schema and
Paths , (GS)|∼ be the equivalence classes of all acyclic match-cycles in GS that are equal up
to shifting of matches as defined in Def. 3.27. Then GS is simple, if for all [path1], [path2] ∈
Paths , (GS)|∼ and for all mi,mi′ ∈ path1 and m j,m j′ ∈ path2 it holds that sGS(mi) = sGS(m j)
and sGS(mi′) = sGS(m j′) implies that mi = mi′ and m j = m j′ . 4

Example 3.21 (Simple Recursive Graph Schema) The recursive graph schema in Fig. 3.12 is
simple while the schema in Fig. 3.13 is not simple. 4

Theorem 3.8 (Finiteness of Recursive Graph Constraints) Let GS = ((S,P),M,sGS, tGS) be a
recursive graph schema.

1. The recursive graph constraint cGS w.r.t. GS is finite, if:

(a) The set PathsS(GS) of acyclic, terminating match-paths in GS that start in S is finite,
and

(b) For all match-paths path ∈ PathsS(GS) there is no match-cycles in GS that is reach-
able from path.

2. In (AGraphsATGI,M), the tightened recursive graph constraint ct,GS w.r.t. GS and upper
bound Gu is finite, if:

(a) Recursive graph schema GS contains non-deleting productions P only,

(b) Graph Gu is finite, and

(c) The set of matches M is finite.

3. In (AGraphsATGI,fin,Mfin), the weakened recursive graph constraint cw,GS w.r.t. GS is
finite, if:

(a) The set of matches M is finite, and

90

CHAPTER 3. DOMAIN COMPLETENESS

(b) Recursive graph schema GS is simple. 4

Proof. By Sec. 2.2.3 and Def. 2.12, for constraint c is finite we have to show that the index set I
of every disjunction ∨i∈I in c is finite.

1. By assumptions Thm. 3.8 and Items 1a and 1b and Def. 3.21, language L (GS) of GS
is the finite set of derived spans of the finite set of terminating recursive transformation
sequences starting at S. Thus, by construction Def. 3.22, cGS is finite.

2. W.l.o.g. and by assumption Thm. 3.8 and Item 2a we assume that each recursive transfor-
mation step via a production p ∈ P and match m ∈ M creates at least one graph element
while preserving the remaining elements. By M being finite by assumption Thm. 3.8
and Item 2c, we have finitely many possibilities at each step to continue with the next step
until we have exceeded finite upper bound Gu (cf. assumption Thm. 3.8 and Item 2b).
Therefore, there are finitely many recursive transformation sequences up to upper bound
Gu leading to finitely many derived spans in tightened language Lt(GS,Gu) of GS and
w.r.t. Gu (cf. Def. 3.24). Thus, by construction Def. 3.29, ct,GS is finite.

3. We focus on the construction of weakened languages in Def. 3.28. There are at most
|M|! acyclic match-paths in GS, each consisting of at most |M| matches, since, having a
match m ∈M two-times in a path yields a cyclic path. Therefore by assumption Thm. 3.8
and Item 3a of M being finite, the set of acyclic match-paths in GS is finite and furthermore,
each acyclic match-path consists of a finite set of matches. Thus, the set PathsS(GS) of
acyclic, terminating match-paths in GS that start in S is finite. Analogously, the set P of
acyclic match-cycles in GS that are equal up to shifting of matches is finite. Therefore,
we can iterate over all paths m ∈ PathsS(GS) and call L w, respectively. In each call for
L w(m,1, id, id,1) we can iterate over the finite set of matches mi ∈ m if P =∅ for each
mi ∈ m. If for some mi ∈ m, P 6= ∅, then we can iterate over finite P and the finite
set of overlappings (A⊕Bpath) in C with recursive calls of L w(path,1, id, id,2) for each
path∈P , since, we are in category (AGraphsATGI,fin,Mfin) of finite graphs and therefore,
the set of possible overlappings is finite. Analogously, we conclude for all recursive calls
and furthermore, the recursion is guaranteed to end at depth |M|! for each case, since, GS
is simple by assumption Thm. 3.8 and Item 3b. Thus, set C is finite in each case. In
conclusion, the weakened language Lw(GS) of GS is a finite set of morphisms implying
that the weakened recursive graph constraint cw,GS w.r.t. GS is finite by Def. 3.29.

Note that weakened constraints involve additional approximations – A graph up to an upper
bound satisfies the original constraint if and only if it satisfies the tightened constraint. However,
a graph satisfies the weakened constraint if it satisfies the original constraint but not necessarily
vice versa. Thus, verifying domain completeness against weakened constraints my involve more
graphs than verifying against the original constraints. Therefore, verifying domain completeness
w.r.t. tightened constraints may be more accurate and lead to less false negatives in comparison
to a verification w.r.t. weakened constraints when having an upper bound for the size of graphs.
On the other hand, verifying domain completeness w.r.t. weakened constraints yields a more
general result without an upper bound and may be more efficient, since, not all possibilities of
cyclic match-paths up to a certain upper bound are listed in weakened constraints and therefore,
must not be checked.

91

3.5. DOMAIN RESTRICTIONS

a

TGCD,R

Constr

Class

c

Attr

name:String

is1 is2

Protected Public

Corr1

Corr2 Table

Column

name:String

col

:Constr

:Class

:c

:is1

:Protected

:Attr

name= instance

:a

:Constr

:Class

:c

:is2

:Public

:Attr

name= oid

:a

GR

:a

:Class

:Attr

name= instance

++

++
++:a

:Class

:Attr

name= oid
:Corr1

:Corr2 :Table

:Column

name= oid

:col

++++
++

++++
++ ++

++

:a

:Class

:Attr

name=x
:Corr1

:Corr2 :Table

:Column

name=x

:col

++++
++

++ ++

(TGCD← Corr→ TGRDBM) G

InstantiableClass2Table Singleton2Empty

Attr2Column

Figure 3.16: Triple Type Graph (TGCD ← Corr→ TGRDBM) with Domain Restriction TGCD,R

(top,left), Graph G with Resitriction GR (top,right) and Triple Rules (bottom)

3.5 Domain Restrictions

According to Chap. 3, we assume that the graphs (models) in the domain of discourse are de-
fined by a domain type graph together with a set C of domain graph constraints. When verifying
domain completeness w.r.t. a given graph grammar GG, we may not be interested in a complete
coverage of language L (C) by language L (GG) but only in the coverage of certain elements
of each graph in L (C) by L (GG) which we call domain completeness under restrictions. In
Fig. 3.16 we adress the translation of UML class diagrams (CDs) into relational database mod-
els (RDBMs) based on a triple graph grammar (TGG) (cf. Sec. 1.2). Therefore, the translation
(TGG) only covers those elements TGCD,R in class diagrams that are related to RDBMs, i.e.,
classes and their attributes, while neglecting other details concerning class constructors and their

92

CHAPTER 3. DOMAIN COMPLETENESS

P3 C3

2:Constr

1:Class

:c

2:Constr

1:Class

:c

:a

:Attr

name= instance

3:Protected 3:Protected

:is1 :is1

P4 C4

1:Constr 1:Constr

Class

:c

:a

:Attr

name= instance

2:Protected 2:Protected

:is1 :is1

P5 C5

Constr

1:Class

:c

:a

1:Class

:Public

:Attr

name= instance

:is2

P3,R P4,R P5,R

C3,R C4,R C5,R

P1 C1,1

1:Class

:Constr

1:Class

:c

:Protected

:is1

P1,R C1,1,R

C1,2

:Constr

1:Class

:c

:Public

:is2

C1,2,R

P6 C6

1:Attr

name=x

P6,R

C6,R

1:Attr

P2 C2

2:Constr

1:Class

:c

2:Constr

1:Class

:c

:a

:Attr

name= oid

3:Public 3:Public

:is2 :is2

P2,R

C2,R
P7 C7

:Class

:a

1:AttrP7,R

C7,R

1:Attr

c1 = ∨i=(1,2)(∃(P1→C1,i, true)) c2 = ∃(P2→C2, true)

c3 = ∃(P3→C3, true) c4 = ∃(P4→C4, true) c5 = ¬∃(P5→C5, true)

c6 = ∃(P6→C6, true)

c7 = ∃(P7→C7, true)

Figure 3.17: Domain Graph Constraints with Restrictions

visibilities. However, the graph constraints restricting the structures of class diagrams may not
only cover RDBM related elements but also other irrelevant elements for the translation. This is
problematic when verifying domain completeness under restrictions based on the techniques for
verifying domain completeness in Sec. 3.2, since, the extension of graphs via the constraints may
lead to graphs with irrelevant elements that cannot be covered by the TGG causing the verifica-
tion of C-extension completeness in Def. 3.8 to fail. In Thm. 3.9, we give sufficient conditions
under which the constraints can be restricted to relevant elements such that domain complete-
ness under restrictions w.r.t. the original constraints can be verified based on the techniques for
verifying domain completeness w.r.t. the restricted constraints in the sense of Sec. 3.2.

General Assumption: Initial and general satisfaction of constraints are defined over an initial
object (cf. Def. 2.15). Therefore, we assume that the results of this Section are applied in the
context of M -adhesive categories with initial object. Moreover, for the extension of constraints
in Thm. 3.10, we assume M -adhesive categories with effective pushouts.

For example, the triple type graph (TGCD← Corr→ TGRDBM) in Fig. 3.16 (top,left) defines
the model elements of class diagrams and database models. Class diagrams (type graph TGCD)
may contain several Classes where each class may have an arbitrary number of Attributes, each
with a specific name of type String. Furthermore, each class may have a Constructor with
visibility Protected or Public. Classes with protected constructors are singleton classes, i.e.,

93

3.5. DOMAIN RESTRICTIONS

there exists exactly one instance of each class. In contrast, classes with public constructors are
instantiable classes, i.e., there may exist an arbitrary number of instances of each class. On the
other hand, RDBMs (type graph TGRDBM) may contain several Tables, each with an arbitrary
number of Columns with a specific name of type String. Moreover, classes (attributes) in CDs
correspond to tables (columns) in RDBMs via Corr2 (Corr1) (cf. type graph Corr).

Furthermore, the constraints in Fig. 3.17 state that 1. each Class has a Constructor of visi-
bility Protected or Public (c1 = ∨i=(1,2)(∃(P1 → C1,i, true))), 2. each instantiable class has an
Attribute “oid” (object id) which contains the unique id for each instantiated object of the class
(c2 = ∃(P2 → C2, true)), 3. each singleton class has an attribute “instance” which contains the
singleton instance object of the class (c3 = ∃(P3 → C3, true)), 4. each protected constructor is
the constructor of some class with attribute “instance” (c4 = ∃(P4 → C4, true) - Analogously,
for public constructors a similar constraint is defined with attribute “oid”), 5. each class is either
singleton or instantiable, i.e., for each class there does not exist a public constructor and an at-
tribute “instance” at the same time (c5 =¬∃(P5→C5, true) - Analogously, a similar constraint is
defined for the combination of protected constructor and attribute “oid”), 6. each attribute has a
name (c6 = ∃(P6→C6, true)), and 7. each attribute is assigned to a class (c7 = ∃(P7→C7, true)).
Moreover, a constraint may be defined that prohibits classes to have protected and public con-
structors at the same time.

The triple rule InstantiableClass2Table in Fig. 3.16 (bottom) defines the translation from CDs
into RDBMs by mapping instantiable Classes with Attribute oid in CDs to corresponding Tables
with Column oid in RDBMs. Triple rule Singleton2Empty maps singleton Classes with Attribute
instance in CDs to nothing in RDBMs, i.e., only instantiable classes are translated to correspond-
ing tables whereas singleton classes are omitted. Finally, triple rule Attr2Column translates
general Attributes with name “x” of Classes in CDs into Columns with the same name “x” of
corresponding Tables in RDBMs.

Therefore, the translation is restricted to (only covers) classes and attributes in CDs while ne-
glecting constructors and their visibilities. According to [SEM+12], the restriction is formalised
by an M -type morphism t : TGCD,R→ TGCD ∈M from the restricted type graph TGCD,R which
only contains classes and their attributes to the complete domain type graph TGCD of class di-
agrams (cf. Fig. 3.16 (top,left)). Therefore, each graph and graph constraint can be restricted
along the type morphism while both may also contain elements outside the restriction, in general.
For example, graph GR in Fig. 3.16 (top,right) is the restriction of graph G along type morphism
t and constraints ci[Pi 7→ Pi,R,Ci 7→Ci,R] in Fig. 3.17 where premise (conclusion) Pi (Ci) is sub-
stituted by Pi,R (Ci,R) in each constraint are the restrictions of constraints (ci)i=(1..6) along t. The
domain completeness problem under restrictions w.r.t. a given set of domain graph constraints C
and a graph grammar GG is as follows: Given a restriction of the domain type graph, does it hold
for each graph G in L (C) that the restriction of G which comprises relevant elements only (i.e.,
elements that are typed over the restricted type graph) is covered by (contained in) grammar GG
(language L (GG))?

In the following, we first recall the definitions for rectrictions of graphs and positive (nested)
graph constraints along type morphisms from [SEM+12] and then we define the domain com-
pleteness problem under restrictions in accordance with the general domain completeness prob-
lem from Def. 3.2.

94

CHAPTER 3. DOMAIN COMPLETENESS

TG G
tGoo G′aoo

(1) (2)

TGR

t

OO

GR
tGRoo

t ′

OO

G′R
aRoo

t ′′

OO
Definition 3.31 (Restriction along Type Morphism [Def. 3.1
[SEM+12])] Given an object (G, tG) typed over TG via tG : G→
TG and type morphism t : TGR→ TG ∈M , then TGR is called a
restriction of TG and (GR, tGR) is a restriction of (G, tG) along t
with induced morphism t ′ : GR → G, written GR = Restrt(G), if
(1) is a pullback. Given morphism a : G′→G, then aR : G′R→GR

is a restriction of a along t, written aR = Restrt(a), if additionally
(2) is a pullback. 4

Remark 3.17 (Restriction of Objects) Note that by pullback composition with (1) + (2) be-
ing a pullback, (G′R, tGR ◦ aR) is also a restriction of (G′, tG ◦ a) along t with induced morphism
t ′′ : G′R→ G′, written G′R = Restrt(G′). 4

Definition 3.32 (Restriction of Nested Conditions [Def. 3.2 [SEM+12])] Given a nested con-
dition acP typed over TG and restriction TGR of TG with type morphism t : TGR → TG ∈M .
Then, the restriction Restrt(acP) of acP along t is defined as follows:

1. Restrt(acP) := true for acP = true,

2. Restrt(acP) := ∃(Restrt(a),Restrt(acC)) for acP = ∃(a : P→C,acC),

3. Restrt(acP) := ¬Restrt(ac′P) for acP = ¬ac′P, and

4. Restrt(acP) := (∨i∈I)∧i∈I (Restrt(acP,i)) for acP = (∨i∈I)∧i∈I (acP,i). 4

Definition 3.33 (Domain Completeness (Problem) under Restrictions) Given the language
LI(CI) ∩L (CG) over domain graph constraints C = CI ∪CG and domain type graph TG
with conditions CI (CG) that are designated for initial (general) satisfaction. Furthermore, let
t : TGR → TG ∈M be a type morphism such that TGR is a restriction of TG and let L (GG)
be the language over graph grammer GG and restricted type graph TGR. Domain completeness
under restrictions holds if for all G ∈LI(CI)∩L (CG) it is true that Restrt(G) ∈L (GG). Thus,
the domain completeness problem under restrictions is defined as follows: Does it hold that for
all G ∈LI(CI)∩L (CG) it is true that Restrt(G) ∈L (GG)? 4

As already discussed at the beginning of this Section, in order to apply the results from Sec. 3.2
to the restricted domain type graph for verifying domain completeness under restrictions, the
domain constraints need to be restricted at first. However, the restriction of constraints may lead
to constraints with a shifted meaning. For example, when assuming general (initial) satisfaction
for constraints, the restriction of constraints c2,c3,c4 and c5 in Fig. 3.17 lead to constraints with
a meaning that was not prevailing before the restriction: 1. The restriction of c2 claims that
each (there exists a) Class (that) has an Attribute oid, 2. the restriction of c3 claims that each
(there exists a) Class (that) additionally has an Attribute instance, 3. the restriction of c4 claims
that there exists a Class with Attribute instance, and 4. the restriction of c5 claims that each
(there exists a) Class (which) does not have an Attribute instance. For general satisfaction, the
restrictions of c2 and c3 lead to a contradiction in view of the unrestricted constraints, since,
each class should be either singleton or instantiable by constraints c1 and c5. Furthermore, the
restriction of c4 (c5) prohibits class diagrams that only contain instantiable classes (or that contain
singleton classes). Similarly for initial satisfaction, the restrictions prohibit class diagrams that
only contain instantiable or singleton classes. Analogously, we obtain inconsistent results for the
restrictions of negations ¬c2,¬c3 and ¬c4. Thus, negations and constraints acP with elements in
the premise graph P that are outside the restriction may lead to inconsistent results when being

95

3.5. DOMAIN RESTRICTIONS

restricted. This is due to the fact that the context of elements in the premise (or conclusion) that is
outside the restriction is lost after the restriction such that the restricted premise (or conclusion)
may match to a wider range of graph patterns.

In the following, we show for the (general) initial satisfaction of positive graph constraints
(which only contain restricted elements in their premises) that they can be restricted such that
the restriction leads to a consistent result in the sense that each graph which satisfies the origi-
nal constraint does also satisfy the restricted one as stated in Prop. 3.9. This extends the results
in [SEM+12] from initial to general satisfaction which is the usual interpretation of graph con-
straints, in particular in view of domain completeness (cf. Sec. 3.3). In Lem. 3.16, we first
prove that a graph G initially (generally) satisfies a restricted condition Restrt(acP) if and only
if its restriction Restrt(G) initially (generally) satisfies Restrt(acP) which is used in the proof of
Prop. 3.9.

Lemma 3.16 (Restriction of Objects and Satisfaction) Let t : TGR→ TG ∈M be a type mor-
phism and TGR be the restriction of type graph TG. Let acP be a nested condition typed over TG,
Restrt(acP) be its restriction along t, (G, tG : G→ TG) be an object typed over TG via tG and

Restrt(G) be its restriction along t. Then, G
I
|=Restrt(acP) if and only if Restrt(G)

I
|=Restrt(acP).

Furthermore, G |= Restrt(acP) if and only if Restrt(G) |= Restrt(acP). 4

Proof. The proof is presented in appendix A.14.

In Lem. 3.18, we show that if a graph G generally satisfies a positive constraint acP where
premise P only contains elements within the restriction, then restricted graph Restrt(G) also
generally satisfies the restricted constraint Restrt(acP) which is used in the proof of Prop. 3.9.
This extends the result for initial satisfaction from Cor. 5.2 in [SEM+12] to general satisfaction.
In contrast to the result for initial satisfaction, Lem. 3.18 does not hold for positive constraints
with elements in the premise that are outside the restriction, in general, as shown by the following
counter-example. Consider constraint c3 in Fig. 3.17. Given a class diagram with instantiable
classes only that generally satisfies c3, then the restriction of the class diagram according to
TGCD,R in Fig. 3.16 may not generally satisfy the restricted constraint Restrt(c3), since, there
may be classes without an attribute of name instance. Furthermore, similarly to the result for
initial satisfaction, Lem. 3.18 does not hold for non-positive constraints even if the premise only
contains elements within the restriction, in general (cf. constraint c5 in Fig. 3.17). Lem. 3.18
holds for constraints c1,c6 and c7 in Fig. 3.17, since, these constraints are positive and only
contain elements in their premises P1,P6 and P7 that are within the restriction. Before proving
Lem. 3.18, we prove Lem. 3.17 which is used in the proof of Lem. 3.18.

Lemma 3.17 (Compatibility of Restriction and General Satisfaction I) Let t : TGR→ TG ∈M
be a type morphism and TGR be the restriction of type graph TG. Let acP be a positive nested
condition over premise P and typed over TG and Restrt(acP) be its restriction over Restrt(P)
along t with induced morphism i : Restrt(P)→ P. Given an object (G, tG : G→ TG) typed over
TG via tG and its restriction Restrt(G) along t with induced morphism t ′ : Restrt(G)→G. Then,
it holds that if there is p : P→ G ∈M with p |= acP, then there is a unique pR : Restrt(P)→
Restrt(G) ∈M such that t ′ ◦ pR = p◦ i. Furthermore, it holds that pR |= Restrt(acP). 4

Proof. Let p ∈M with p |= acP. By construction of Restrt(G), (3) is a pullback (PB) with
t ′ ∈M (cf. Def. 3.31), since, M -morphisms t ∈M are closed under pullbacks. By induction
over the structure of nested conditions: Basis. Let acP = true = Restrt(acP). By construction
of Restrt(P), (1)+ (2) is a pullback. By p being a morphism and G,P both being typed over

96

CHAPTER 3. DOMAIN COMPLETENESS

TG via tG and tC ◦ a it follows that tG ◦ p = tC ◦ a (∗1). Thus, tG ◦ p ◦ i
(∗1)
= tC ◦ a ◦ i

PB(1)+(2)
=

t ◦ tCR ◦aR. By the universal property of pullback (3), there is a unique pR with t ′ ◦ pR = p◦ i and
pR |= true= Restrt(acP). By M -morphisms t ∈M are closed under pullbacks (1)+(2), i∈M .
By M -composition, p◦ i ∈M and therefore, by M -decomposition with t ′ ∈M , pR ∈M .

TG C P

TGR Restrt(C) Restrt(P)

G

Restrt(G)

(3) (1) (2)

acC

Restrt(acC)

tC

tCR

a

aR

tG

tGR

t ′ t ′′t i i−1

q

p

qR

pR

Hypothesis. The assumption holds for positive conditions acC,acP,i, i ∈ I and their re-
strictions Restrt(acC),Restrt(acP,i). Step. Let acP = ∃(a : P → C,acC) and Restrt(acP) =
∃(aR : Restrt(P)→ Restrt(C),Restrt(acC)) with pullbacks (1) and (2) by the construction of
restrictions of conditions (cf. Def. 3.32). Pullback composition implies that (1)+ (2) is a pull-
back. Analogously to the induction basis, there is a unique pR ∈M with t ′ ◦ pR = p◦ i (∗3). By
assumption p |= acP, there is q ∈M with q ◦ a = p and q |= acC

(∗4). By q being a morphism

and G,C being typed over TG via tG, tC, tG ◦q = tC (∗2). Thus, tg ◦q◦ t ′′
(∗2)
= tC ◦ t ′′

PB(1)
= t ◦ tCR . By

the universal property of pullback (3), there is a unique qR with t ′ ◦qR = q◦ t ′′ (∗
5). Furthermore,

qR ∈M , since, t ′′ ∈M by M -morphisms t ∈M are closed under pullbacks (1), q◦ t ′′ ∈M by

M -composition and qR ∈M by M -decomposition with t ′ ∈M and (∗5). Thus, t ′ ◦qR ◦aR
(∗5)
=

q ◦ t ′′ ◦ aR
PB(2)
= q ◦ a ◦ i

(∗4)
= p ◦ i

(∗3)
= t ′ ◦ pR. By t ′ ∈M being a monomorphism, qR ◦ aR = pR.

Furthermore, by induction hypothesis, qR |= Restrt(acC). Therefore, pR |= Restrt(acP).
For conditions acP = ∧i∈I(acP,i) we conclude as follows. Assumption p |= acP implies

that p |= acP,i for all i ∈ I. Therefore, there is a unique pR ∈M with t ′ ◦ pR = p ◦ i and
pR |= Restrt(acP,i) for all i ∈ I implying further that pR |= ∧i∈I(Restrt(acP,i)) = Restrt(acP).
Analogously, we prove the assumption for conditions acP = ∨i∈I(acP,i).

Lemma 3.18 (Compatibility of Restriction and General Satisfaction II) Let t : TGR→ TG∈M
be a type morphism and TGR be the restriction of type graph TG. Let acP be a positive nested
condition over premise P and typed over TG with P∼= Restrt(P) and Restrt(acP) be its restriction
over Restrt(P) along t. Given an object (G, tG : G→ TG) typed over TG via tG and its restriction
Restrt(G) along t with induced morphism t ′ : Restrt(G)→ G, then it holds that G |= acP =⇒
Restrt(G) |= Restrt(acP). 4

Proof. Based on the figure in the proof of Lem. 3.17, by induction over the structure of nested
conditions: Basis. For acP = true = Restrt(acP), for all pR : Restrt(P)→ Restrt(G) it holds that
pR |= Restrt(acP), i.e., Restrt(G) |= Restrt(acP).

We show for acP = ∃(a : P→ C,acC) and its restriction Restrt(acP) = ∃(aR : Restrt(P)→
Restrt(C),Restrt(acC)) that if G |= acP, then for all pR : Restrt(P)→ Restrt(G) ∈M there is

97

3.5. DOMAIN RESTRICTIONS

qR : Restrt(C)→ Restrt(G) ∈M with qR ◦aR = pR and qR |= Restrt(acC). This directly implies
that Restrt(G) |= Restrt(acP). Let P ∼= Restrt(P) with (inverse) isomorphism i : Restrt(P)→ P
(i−1 : P→ Restrt(P)) and i, i−1 ∈M , since, class M contains all isomorphisms. Let pR ∈M .
There is p = t ′ ◦ pR ◦ i−1 ∈M by M -composition and t ′, t ′′ ∈M , since, pullbacks (PBs) (3)

and (1) preserves M -morphisms t ∈M
G|=acP⇒ There is q : C → G ∈M with q |= acC and

q◦a= p= t ′◦ pR◦ i−1 (∗1). By q being a morphism, tG◦q= tC⇒ tG◦q◦t ′′= tC◦t ′′
PB(1)
= t ◦tCR . By

the universal property of pullback (3), there is a unique qR : Restrt(C)→ Restrt(G) with t ′ ◦qR =

q◦ t ′′ (∗
2). Furthermore, qR ∈M by first M -composition with t ′ ◦qR = q◦ t ′′ ∈M and then, M -

decomposition with additionally t ′ ∈M . Thus, t ′◦ pR
i is isomorphism

= p◦ i
(∗1)
= q◦a◦ i

PB(2)
= q◦t ′′◦aR

(∗2)
= t ′ ◦qR ◦aR

t ′∈M is a monomorphism⇒ qR ◦aR = pR. Furthermore, by Lem. 3.17, qR |= Restrt(acC).
Thus, pR |=Restrt(acP) and furthermore, Restrt(G) |=Restrt(acP). Hypothesis. The assumption
holds for conditions acP,i, i ∈ I and their restrictions Restrt(acP,i). Step. Let condition acP =
∧i∈I(acP,i). Assumption G |= acP implies that G |= acP,i for all i ∈ I. By induction hypothesis,
Restrt(G) |= Restrt(acP,i) for all i ∈ I. Therefore, Restrt(G) |= ∧i∈I(Restrt(acP,i)) = Restrt(acP).
For conditions acP = ∨i∈I(acP,i) we conclude analogously.

In Prop. 3.9, we give sufficient conditions under which constraints can be restricted such that
each graph which initially (generally) satisfies the original constraint does also initially (gen-
erally) satisfy the restricted one. Therefore, the domain constraints can be restricted such that
all graphs that satisfy the original domain constraints do also satisfy the restricted domain con-
straints. Thus, (a successful verification of) domain completeness under restrictions w.r.t. the
restricted constraints implies domain completeness under restrictions w.r.t. the original con-
straints which can be verified based on the techniques from Sec. 3.2 for verifying “standard”
domain completeness w.r.t. the restricted constraints as stated in Thm. 3.9.

Proposition 3.9 (Compatibility of Restriction and Satisfaction) Let t : TGR → TG ∈M be
a type morphism and TGR be the restriction of type graph TG. Let acP be a positive nested
condition over premise P and typed over TG and Restrt(acP) be its restriction along t. Given an

object (G, tG : G→ TG) typed over TG via tG, then it holds that G
I
|= acP =⇒ G

I
|= Restrt(acP).

Furthermore, if P ∼= Restrt(P), then G |= acP =⇒ G |= Restrt(acP). For a set C = CI ∪CG of
positive nested conditions typed over TG with conditions CI (CG) that are designated for initial
(general) satisfaction and furthermore, with P∼=Restrt(P) for all acP ∈CG it holds that LI(CI)∩
L (CG)⊆LI(Restrt(CI))∩L (Restrt(CG)) where Restrt(C) := {Restrt(c) | c ∈C}. 4

Proof. We first show the result for initial satisfaction and for general satisfaction afterwards.

“
I
|=” Let G

I
|= acP, i.e., there exists p : P→ G ∈M with p |= acP. By Fact 3.4 in [SEM+12],

there exists pR : Restrt(P)→ Restrt(G) ∈M with pR |= Restrt(acP). By the uniquness of
initial morphisms, for initial object I and initial morphisms i1 : I → Restrt(P), i2 : I →

Restrt(G) we obtain that pR ◦ i1 = i2 and therefore, Restrt(G)
I
|= Restrt(acP). By

Lem. 3.16, G
I
|= Restrt(acP).

“|=” G |= acP
Lem. 3.18⇒ Restrt(G) |= Restrt(acP)

Lem. 3.16⇒ G |= Restrt(acP).

Finally, G ∈ LI(CI)∩L (CG) implies that G
I
|= cI and G |= cG for all cI ∈ CI,cG ∈ CG im-

plying further that G
I
|= Restrt(cI) and G |= Restrt(cG) for all cI ∈CI,cG ∈CG. Therefore, G ∈

98

CHAPTER 3. DOMAIN COMPLETENESS

LI(Restrt(CI))∩L (Restrt(CG)), i.e., LI(CI)∩L (CG)⊆LI(Restrt(CI))∩L (Restrt(CG)).

Beside conditions with premises that only contain elements within the restrictions, we define
conditions that are already purely restricted not only for the premise but also for all conclusions,
called purely restricted conditions. Lem. 3.19 and Prop. 3.10 state that a purely restricted con-
dition and its restriction are semantically equivalent. While in Prop. 3.9 we restrict to positive
conditions only, in Prop. 3.10 we restrict to possibly non-positive conditions with negations that
are purely restricted and show that these conditions can be directly used for verifying domain
completeness under restrictions as stated in Thm. 3.9. For example, conditions c6 and c7 in
Fig. 3.17 is purely restricted while condition c1 is not. Although c1 only contains elements in its
premise that are within the restriction, it is not purely restricted, since, conclusions C1,1 and C1,2
also contain elements that are outside the restriction.

Definition 3.34 ((Purely) Restricted Condition) Let t : TGR → TG ∈M be a type morphism
and TGR be the restriction of type graph TG. Let acP be a nested condition over premise P and
typed over TG. Condition acP is purely restricted along t, if for all morphisms a : P′→C′ in acP

and their restrictions Restrt(a) : Restrt(P′)→ Restrt(C′) it holds that the induced morphisms in
Def. 3.31 are isomorphisms, i.e., P′ ∼= Restrt(P′) and C′ ∼= Restrt(C′). Condition acP is restricted
along t, if P∼= Restrt(P). 4

Lemma 3.19 (Compatibility of Pure Restrictions and General Satisfaction) Let t : TGR→ TG∈
M be a type morphism and TGR be the restriction of type graph TG. Let acP be a purely
restricted condition along t over premise P and typed over TG and Restrt(acP) be its restriction
over Restrt(P) along t with induced morphism i : Restrt(P)→ P. Given an object (G, tG : G→
TG) typed over TG via tG. Then, it holds that:

1. If there is p : P→G∈M with p |= acP, then there is a unique morphism pR : Restrt(P)→
G ∈M such that pR = p◦ i. Furthermore, pR |= Restrt(acP).

2. If there is pR : Restrt(P)→G∈M with pR |=Restrt(acP), then there is a unique morphism
p : P→ G ∈M such that pR = p◦ i. Furthermore, p |= acP.

4

Proof. By the construction of restrictions, (1) and (2) are pullbacks (cf. Def. 3.31). Further-
more, by assumption acP is purely restricted, induced morphisms t ′′ and i are isomorphisms
with inverse isomorphisms t ′′−1 and i−1. Moreover, t ′′, i ∈M , since, M -morphisms t ∈M are
closed under pullbacks (1),(2). We first show the result for positive conditions and for negations
afterwards.

1. Let pR = p◦ i. The uniqueness of pR directly follows by definition - Assume p′R such that
p′R = p ◦ i, then p′R = p ◦ i = pR. Furthermore, pR ∈M by M -composition of p, i ∈M .
By induction over the structure of nested conditions we prove that pR |= Restrt(acP).
Basis. For acP = true, pR |= Restrt(acP) = true. Hypothesis. The assumption holds
for conditions acC and acP,i, i ∈ I and their restrictions Restrt(acC) and Restrt(acP,i).
Step. For acP = ∃(a : P→ C,acC) and its restriction Restrt(acP) = ∃(aR : Restrt(P)→
Restrt(C),Restrt(acC)), p |= acP implies that there is q∈M with q◦a = p. Let qR = q◦t ′′

with qR ∈ M by M -composition of q, t ′′ ∈ M . Thus, pR = p ◦ i = q ◦ a ◦ i
PB(2)
=

q◦ t ′′ ◦aR = qR ◦aR. By induction hypothesis, qR |= Restrt(acC). Thus, pR |= Restrt(acP).
For acP = ∧i∈I(acP,i), p |= acP implies that p |= acP,i for all i ∈ I. Therefore, there is a

99

3.5. DOMAIN RESTRICTIONS

unique pR ∈M such that pR = p◦ i and pR |=Restrt(acP,i) for all i∈ I implying further that
pR |= Restrt(acP) = ∧i∈I(Restrt(acP,i)). For acP = ∨i∈I(acP,i) we conclude analogously.

2. Let p = pR ◦ i−1. By class M is closed under isomorphisms, i−1 ∈M and therefore, by
M -composition with assumption pR ∈M it follows that p∈M . Furthermore, p◦ i= pR◦
i−1 ◦ i i is iso

= pR ◦ idRestrt(P) = pR. The uniqueness of p concludes as follows. Assume p′ ∈
M with pR = p′◦ i. Then, p′= p′◦ idP

i is iso
= p′◦ i◦ i−1 = pR◦ i−1 = p◦ i◦ i−1 i is iso

= p◦ idP =
p. By induction over the structure of nested conditions we prove that p |= acP. Basis. For
acP = true, p |= acP. Hypothesis. The assumption holds for conditions acC and acP,i, i∈ I
and their restrictions Restrt(acC) and Restrt(acP,i). Step. For acP = ∃(a : P→C,acC) and
its restriction Restrt(acP) = ∃(aR : Restrt(P)→ Restrt(C),Restrt(acC)), pR |= Restrt(acP)
implies that there is qR ∈M with qR◦aR = pR and qR |=Restrt(acC). Let q= qR◦t ′′−1 with
q ∈M by M -composition of qR, t ′′−1 ∈M where t ′′−1 ∈M , since, class M is closed

under isomorphisms. Furthermore, t ′′−1 ◦ a = t ′′−1 ◦ a ◦ idP
i is iso
= t ′′−1 ◦ a ◦ i ◦ i−1 PB(2)

=

t ′′−1 ◦ t ′′ ◦aR ◦ i−1 t ′′ is iso
= idRestrt(C) ◦aR ◦ i−1 = aR ◦ i−1 (∗1). Thus, p = pR ◦ i−1 = qR ◦aR ◦

i−1 =
(∗1)
= qR ◦ t ′′−1 ◦a = q◦a. Moreover, q◦ t ′′ = qR ◦ t ′′−1 ◦ t ′′ t ′′ is iso

= qR ◦ idRestrt(C) = qR.
By induction hypothesis, q |= acC and p |= acP. For acP = ∧i∈I(acP,i) and its restriction
Restrt(acP) = ∧i∈I(Restrt(acP,i)), pR |= Restrt(acP) implies that pR |= Restrt(acP,i) for all
i ∈ I. For each i ∈ I, there is pi ∈M with pi |= acP,i and pR = pi ◦ i. By the uniqueness
of pi, it follows that p1 = . . .= pn and therefore, there is p = p1 ∈M with p |= acP. For
acP = ∨i∈I(acP,i) we conclude analogously.

TG C P

TGR Restrt(C) Restrt(P)

G (1) (2)

acC

Restrt(acC)

tC

tCR

a

aR

tG

t ′′ t ′′−1t i i−1

q

p

qR

pR

For acP = ¬ac′P we conclude as follows.

1. Assumption p |= acP implies that ¬(p |= ac′P). Assume that there is pR ∈ M with
pR |= Restrt(ac′P) and pR = p ◦ i. Then by the case for positive conditions, p |= ac′P
contradicting with the assumption. Thus, pR can be constructed as shown before and
¬(pR |= Restrt(ac′P)), i.e., pR |= Restrt(acP) = Restrt(¬ac′P) = ¬Restrt(ac′P).

2. Assumption pR |= Restrt(acP) implies that ¬(pR |= Restrt(ac′P)). Assume that there is
p ∈M with p |= ac′P and pR = p ◦ i. Then by the case for positive conditions, pR |=
Restrt(ac′P) contradicting with the assumption. Thus, p can be constructed as shown before
and ¬(p |= ac′P), i.e., p |= acP = ¬ac′P.

100

CHAPTER 3. DOMAIN COMPLETENESS

Proposition 3.10 (Compatibility of Pure Restrictions and Satisfaction) Let t : TGR→ TG∈M
be a type morphism and TGR be the restriction of type graph TG. Let acP be a purely restricted
condition over premise P and typed over TG and Restrt(acP) be its restriction along t. Given

an object (G, tG : G → TG) typed over TG via tG, then it holds that G
I
|= acP if and only if

G
I
|= Restrt(acP) and furthermore, G |= acP if and only if G |= Restrt(acP). For a set C =

CI ∪CG of purely restricted conditions along t and typed over TG with conditions CI (CG) that
are designated for initial (general) satisfaction it holds that LI(CI)∩L (CG) =LI(Restrt(CI))∩
L (Restrt(CG)) where Restrt(C) := {Restrt(c) | c ∈C}. 4

Proof. We first show the result for initial satisfaction and for general satisfaction afterwards. Let
condition Restrt(acP) over Restrt(P) be the restriction of acP.

“
I
|=” G

I
|= acP

Rem. 2.10⇔ ∃p : P→ G ∈M , p |= acP
Lem. 3.19⇔ ∃pR : Restrt(P)→ G ∈M , pR |=

Restrt(acP)
Rem. 2.10⇔ G

I
|= Restrt(acP).

“|=” G |= acP
Rem. 2.10⇔ ∀p : P → G ∈ M , p |= acP

(∗1)⇔ ∀pR : Restrt(P) → G ∈ M , pR |=
Restrt(acP)

Rem. 2.10⇔ G |= Restrt(acP). It remains to prove (∗1). “⇒” Assume that there
exists pR ∈M with ¬(pR |= Restrt(acP)), i.e., pR |= ¬(Restrt(acP)) = Restrt(¬acP). By
Lem. 3.19 and Item 2, there is p : P→ G ∈M with p |= ¬acP, i.e., ¬(p |= acP), which
contradicts with the assumption. “⇐” Conversely, assume that there exists p ∈M with
¬(p |= acP), i.e., p |= ¬acP. By Lem. 3.19 and Item 1, there is pR : Restrt(P)→ G ∈M
with pR |= Restrt(¬acP) = ¬Restrt(acP), i.e., ¬(pR |= Restrt(acP)), which contradicts
with the assumption.

It remains to prove that LI(CI)∩L (CG) ⊆ LI(Restrt(CI))∩L (Restrt(CG)) and conversely,

LI(Restrt(CI))∩L (Restrt(CG)) ⊆ LI(CI)∩L (CG). G ∈ LI(CI)∩L (CG) ⇔ G
I
|= cI,∀cI ∈

CI and G |= cG,∀cG ∈ CG ⇔ G
I
|= Restrt(cI),∀cI ∈ CI and G |= Restrt(cG),∀cG ∈ CG ⇔ G ∈

LI(Restrt(CI))∩L (Restrt(CG)).

Finally, Props. 3.9 and 3.10 lead to the main result in Thm. 3.9 concerning the verification
of domain completeness under restrictions. Given a set of domain constraints C, then all non-
positive constraints with negations that are not purely restricted and all positive constraints that
are designated for general satisfaction but are unrestricted are neglected for the verification. All
other domain constraints can be restricted such that (a successful verification of) domain com-
pleteness w.r.t. the restricted constraints implies domain completeness under restrictions w.r.t.
the original domain constraints C which enables the application of the verification techniques in
Sec. 3.2 for verifying domain completeness under restrictions. The main result is used in Sec. 5.1
for verifying the completeness of the translation of programs written in an object-oriented pro-
gramming language into UML class diagrams where the TGG is only defined on the class def-
initions in programs while all other syntactic aspects of programs are neglected and it must be
ensured that all class definitions an all possible programs over the programming language can be
translated into corresponding classes, attributes and inheritance relations in class diagrams. We
are confident that the approach can be extended in future work such that the neglected constraints
are also be used in the verification, e.g., in the definition of C-inconsistent graphs in Def. 3.4.

Theorem 3.9 (Domain Completeness under Restrictions) Let t : TGR → TG ∈ M be a
type morphism and TGR be the restriction of type graph TG. Let C = CI ∪ CG be

101

3.5. DOMAIN RESTRICTIONS

a set of nested conditions (domain constraints) typed over TG with conditions CI (CG)
that are designated for initial (general) satisfaction and let Restrt(CI) := {Restrt(c) |
c ∈ CI , c is purely restricted along t OR c is positive} and Restrt(CG) := {Restrt(c) | c ∈
CG, c is purely restricted along t OR c is positive and restricted along t} be the corresponding
sets of restricted conditions along t. Let GG be a graph grammar typed over TGR. Then, it
holds that:

1. Domain completeness under restrictions w.r.t. LI(Restrt(CI)) ∩L (Restrt(CG)) and
L (GG) implies domain completeness under restrictions w.r.t. LI(CI) ∩L (CG) and
L (GG) in the sense of Def. 3.33.

2. Domain completeness w.r.t. LI(Restrt(CI))∩L (Restrt(CG)), L (GG) and TGR in the
sense of Def. 3.2 implies domain completeness under restrictions w.r.t. LI(Restrt(CI))∩
L (Restrt(CG)) and L (GG). 4

Proof.

1. Let G ∈ LI(CI) ∩L (CG). Thus, G
I
|= cI for all cI ∈ CI and G |= cG for all cG ∈

CG. Let CP
I = {c | c ∈ CI,c is positive} be the set of positive conditions for ini-

tial satisfaction, CN
I = {c | c ∈ CI,c is non-positive AND purely restricted along t} be

the set of non-positive conditions for initial satisfaction and analogously for general
satisfaction CP

G = {c | c ∈ CG,c is positive and restricted along t} and CN
G = {c | c ∈

CG,c is non-positive AND purely restricted along t}. Thus, CP
I ∪ CN

I ⊆ CI and CP
G ∪

CN
G ⊆ CG. Therefore, G

I
|= cI for all cI ∈ CP

I ∪CN
I and G |= cG for all cG ∈ CP

G ∪
CN

G , i.e., G ∈ LI(CP
I) ∩L (CP

G) and G ∈ LI(CN
I) ∩L (CN

G). By Prop. 3.9, G ∈
LI(Restrt(CP

I)) ∩L (Restrt(CP
G)). Furthermore by Prop. 3.10, G ∈ LI(Restrt(CN

I)) ∩
L (Restrt(CN

G)). Therefore, G ∈ LI(Restrt(CP
I) ∪ Restrt(CN

I)) ∩ L (Restrt(CP
G) ∪

Restrt(CN
G)) = LI(Restrt(CI))∩L (Restrt(CG)). By the assumption that domain com-

pleteness under restrictions w.r.t. LI(Restrt(CI))∩L (Restrt(CG)) and L (GG) holds,
it follows that Restrt(G) ∈ L (GG), i.e., domain completeness under restrictions w.r.t.
LI(CI)∩L (CG) and L (GG) holds.

2. Let G ∈ LI(Restrt(CI)) ∩L (Restrt(CG)), i.e., G
I
|= Restrt(cI) for all Restrt(cI) ∈

Restrt(CI) and G |=Restrt(cG) for all Restrt(cG)∈Restrt(CG). By Lem. 3.16, Restrt(G)
I
|=

Restrt(cI) for all Restrt(cI) ∈ Restrt(CI) and Restrt(G) |= Restrt(cG) for all Restrt(cG) ∈
Restrt(CG). Thus, Restrt(G) ∈ LI(Restrt(CI)) ∩L (Restrt(CG)). By the assumption
that domain completeness w.r.t. LI(Restrt(CI)) ∩L (Restrt(CG)) and L (GG) holds,
it follows that Restrt(G) ∈ L (GG), i.e., domain completeness under restrictions w.r.t.
LI(Restrt(CI))∩L (Restrt(CG)) and L (GG) holds.

In Sec. 4.1 and Cor. 4.1, we instantiate the result from Thm. 3.9 to the domain completeness
of model transformations under restrictions and show in Sec. 4.1 and Ex. 4.1 that the transfor-
mation as defined by the TGG in Fig. 3.16 is domain complete under restrictions if constraint c8
from Fig. 3.18 is added to the domain constraints in Fig. 3.17. This is necessary in order to ob-
tain C-extension completeness for the example according to Sec. 3.2 and Def. 3.8, i.e., to obtain
extensions that can be created via the rules of the given TGG. Constraint c8 is not contained in

102

CHAPTER 3. DOMAIN COMPLETENESS

P1 CE1,1

1:Class

:Constr

1:Class

:c

:Protected

:is1

P1,R CE1,1,R

CE1,2

:Constr

1:Class

:c

:Public

:is2

CE1,2,R

:a

:Attr

name= instance

:a

:Attr

name= oid

c8 = ∨i=(1,2)(∃(P1→CE
1,i, true))

Figure 3.18: Extended Domain Graph Constraint with Restriction

the initial set of domain constraints in Fig. 3.17. However, the constraint can be inferred from
the initial set by performing C-extensions of the conclusion graphs of initial domain constraint
c1 via constraints c2 and c3 according to Sec. 3.2 and Def. 3.5. As in the example, the extension
of domain constraints is useful for the verification of domain completeness under restrictions
if the verification is based on the verification of domain completeness w.r.t. restricted domain
constraints according to Thm. 3.9 and C-extension completeness cannot be successfully verified
based on the initial set of restricted domain constraints but based on an extended set that ad-
ditionally contains constraints that are inferred from initial constraints via elements outside the
restriction, as it is the case for constraint c8 where class constructors and their visibilities are
taken into account for the inference but which are omitted in the restricted constraints. There-
fore, we propose to extend the initial set of domain constraints at first and then to use the refined
set for verifying domain completeness under restrictions. In Def. 3.35, we define the step-wise
extension of conditions and show in Thm. 3.10 that a graph satisfies the initial constraints if and
only if it does also satisfy the extended constraints implying further that the language over the
initial set of domain constraints equals to the language over the refined set. Therefore, the re-
fined set of constraints can be used instead of the initial set when verifying domain completeness.
Note that we restrict to extensions of plain conditions without multiple nestings. However, we
are confident that the approach can be extended to conditions with arbitrary nestings such that
Thm. 3.10 holds, in future work.

Definition 3.35 (C-Extensions of Conditions) Let acP be a plain condition and C be a set
of conditions. The extensions Extensions(acP,C) of acP via C is inductively defined as fol-
lows based on the C-extensions of conclusion graphs according to Sec. 3.2 and Def. 3.5:
Extensions(acP,C) = {true} , for acP = true,
Extensions(acP,C) = {∨i∈{1,...,n}(∃(P−ei◦a−−→ Ei, true)) | , for acP = ∃(a : P→C′, true),
E = {E1, . . . ,En} ∈ Extensions(C′,C)} where ei : C′→ Ei

is the induced morphism according to Sec. 3.2 and Def. 3.5
Extensions(acP,C) = {∨i∈I(eP,i) | eP,i ∈ Extensions(acP,i,C)} , for acP = ∨i∈I(acP,i),
Extensions(acP,C) = {∧i∈I(eP,i) | eP,i ∈ Extensions(acP,i,C)} , for acP = ∧i∈I(acP,i),and
Extensions(acP,C) = {¬eP | eP ∈ Extensions(ac′P,C)} , for acP = ¬ac′P.

103

3.5. DOMAIN RESTRICTIONS

4

Example 3.22 (C-Extensions of Conditions) The condition in Fig. 3.18 is an extension of con-
dition c1 in Fig. 3.17 via conditions c2 and c3. 4

Note that in Thm. 3.10, conditions are extended via conditions that are designated for general
satisfaction only. If we allow the extension of conditions via conditions that are designated for
initial satisfaction, then Thm. 3.10 may not hold. For example, consider two constraints “Each
node : A is connected to two : B nodes” and “There exists a : B node connected to a : C node”.
The extension of the first constraint via the second constraint may lead to a constraint “Each
node : A is connected to two : B nodes and furthermore, each of the two : B nodes is connected
to a : C node”. Therefore, the existential characteristic of the : B node in the second constraint
switches to a universal characteristic in the extended constraint. Thus, a graph which satisfies
the first initial constraint may not satisfy the extended constraint.

Theorem 3.10 (Equivalence of Languages over Constraints & Extended Constraints) In an M -
adhesive category with effective pushouts, let CI∪CG be a set of constraints where constraints CI

are designated for initial satisfaction and constraints CG are designated for general satisfaction.
Furthermore, let C′I (C′G) be a set of extensions of conditions CI (CG) via CG. Then, it holds
that G ∈LI(CI)∩L (CG) if and only if G ∈LI(CI ∪C′I)∩L (CG ∪C′G). Therefore, LI(CI)∩
L (CG) = LI(CI ∪C′I)∩L (CG∪C′G). 4

Proof. The proof is presented in appendix A.15.

104

Chapter4
Domain Completeness of Model

Transformations & Model
Synchronisations

4.1 Domain Completeness of Model Transformations

Given a model transformation MT : L (CS)VL (D2) from source DSL L (CS) that is restricted
by source domain graph constraints CS to target DSL L (D2) in target domain D2, then MT is
domain complete if each source model GS ∈L (CS) can be completely translated via a model
transformation sequence in the sense that all elements of the graph are translated exactly once by
changing their translation attributes from F to T.

General Assumption: As with the results for verifying domain completeness in Sec. 3.2, we
assume that the results of this Chapter are applied in the context (ATrGraphsATGI,M) of typed,
attributed triple graphs with node type inheritance and common triple type graph ATGI. This
is due to the fact that the node and edge attributes are used as markings (translation attributes)
for checking conflict-freeness of rules. Moreover, translation attributes are used for an intuitive
definition of domain completeness of model transformations in Def. 4.1. Note that according to
Sec. 3.1 and Def. 3.1, we write C short for a set of constraints C =CI ∪CG that is composed of
constraints CI that are designated for initial satisfaction and constraints CG that are designated
for general satisfaction. Analogously, we write L (C) short for LI(CI)∩L (CG).

Definition 4.1 (Domain Completeness of Model Transformations) Let CS be the set of source
domain graph constraints and L (CS) be the source domain-specific language of graphs. Further-
more, let TGG be a triple graph grammar that specifies the translation MT : L (CS)VL (D2)
of graphs in L (CS) into graphs in the target domain-specific language L (D2). The model
transformation MT is domain complete, if for each graph GS ∈L (CS) there is a model trans-

formation sequence (GS,G0 =
tr∗FT==⇒ Gn,GT) based on the forward translation rules of TGG with

G0 = (AttF(GS)←∅→∅) and Gn = (AttT(GS)← GC→ GT). 4

Based on the “classical” syntactical completeness and correctness of model transformations
by TGGs based on forward translation rules (cf. Sec. 2.4 and Rem. 2.20), the domain com-
pleteness of model transformations from Def. 4.1 can be redefined as follows. While Def. 4.1

105

4.1. DOMAIN COMPLETENESS OF MODEL TRANSFORMATIONS

reflects the intuitive meaning behind complete transformations, Thm. 4.1 expresses completeness
in terms of a language inclusion which can be verified by using the verification techniques for
domain completeness. Therefore, both formulations of completeness in Def. 4.1 and Thm. 4.1
are equivalent.

Theorem 4.1 (Domain Completeness of Model Transformations) Let MT : L (CS)VL (D2)
be a model transformation based on forward translation rules of a given TGG. Transformation
MT is domain complete according to Def. 4.1 if and only if domain completeness w.r.t. L (CS)
and L (TGG)S holds in the sense of Sec. 3.1 and Def. 3.2, i.e., L (CS)⊆L (TGG)S. 4

Proof. “⇒” For each GS ∈ L (CS) with corresponding model transformation sequence based
on forward translation rules the “classical” correctness implies that GS ∈L (TGG)S (cf.
Sec. 2.4 and Rem. 2.20).

“⇐” By “classical” completeness, for each GS ∈ L (CS)∩L (TGG)S there is a model trans-

formation sequence (GS,G0 =
tr∗FT==⇒ Gn,GT) based on forward translation rules with G0 =

(AttF(GS)←∅→∅) and Gn = (AttT(GS)← GC→ GT) (cf. Sec. 2.4 and Rem. 2.20).

Similarly to the verification of domain completeness for flat graphs in Sec. 3.2 and Thm. 3.3,
we verify the language inclusion L (CS) ⊆ L (TGG)S by verifying CS-conflict-freeness from
Thm. 3.3 w.r.t. forward translation rules TRFT , since, we only need to check for possible over-
lappings of extensions in the source domain. Therefore, similarly to Sec. 3.2 and Def. 3.12, we
define the CS-conflict-freeness of forward translation rules in Def. 4.2. Note that in CS-conflict-
freeness of forward translation rules, only critical pairs need to be considered where the source
component of the conflict triple graph O occurs in graphs of L (CS) (cf. Def. 4.2 and Item 1)
and conflict triple graph O can be embedded in a triple graph O′ that can be created by a forward
translation sequence (cf. Def. 4.2 and Item 2).

Definition 4.2 (CS-Conflict-Freeness of Forward Translation Rules) Let CS be the source do-
main constraints and TRFT be the forward translation rules of triple rules TR. Then, TRFT is

CS-conflict-free, if for each critical pair (K1 ⇐
(trFT,1,o1)
====== O = (OS ← OC → OT) =

(trFT,2,o2)
=====⇒ K2)

with trFT,1, trFT,2 ∈ TRFT where

1. OS is significant w.r.t. L (CS) (or not CS-inconsistent), and

2. there is O→ O′ ∈M and forward translation sequence (AttF(O)←∅→∅) =
tr∗FT==⇒ O′ via

TRFT ,

it is true that the rules and matches are the same (trFT,1 = trFT,2,o1 = o2) (or it is true that the
critical pair is strictly confluent). 4

Theorem 4.2 (Domain Completeness of Model Transformations) Let CS be the source do-
main constraints in M -normal form, L (CS) be the source domain-specific language over CS

and L (TGG) be the language over a non-deleting triple graph grammar TGG = (∅,TR) with
empty triple start graph ∅, all triple productions TR being non-trivial and where all applica-
tion conditions are in M -normal form. Let TRFT be the derived set of forward translation rules
from TGG. Furthermore, let MT be a model transformation based on forward translation rules
TRFT . If the rules TRFT are CS-conflict-free and L (TGG′)S is CS-extension complete where
TGG′ = (∅′,TR) with ∅′ being the empty triple start graph with DSIG-term algebra TDSIG(X),

106

CHAPTER 4. DOMAIN COMPLETENESS OF MODEL TRANSFORMATIONS & MODEL
SYNCHRONISATIONS

then domain completeness w.r.t. L (CS) and L (TGG)S holds for almost injective matches, i.e.,
it holds that L (CS)⊆L (TGG)S. 4

Proof. The proof is basically identical to the proof of Thm. 3.3. Let G ∈L (CS), i : GA→ G be
an instance morphism and A = (ai)i∈{1,...,n} ∈ Atoms(GA) be the atoms of GA. Analogously to
Thm. 3.3, by ∀a ∈ A.a ∈ EAtoms(CS) and L (TGG′)S is CS-extension complete it follows that
∀a ∈ A.∃Sa ∈ Extensions(a,CS

G) such that Sa ⊆ L (TGG′)S by Def. 3.8. Thus, ∀a ∈ A.∃Sa ∈
Extensions(a,CS

G) such that ∀s ∈ Sa.∃ triple graph (s← sC→ sT) ∈L (TGG′) and model trans-

formation sequence (s,(AttF(s)← ∅→ ∅) =
tr∗FT==⇒ (AttT(s)← sC → sT),sT) based on forward

translation rules TRFT by model transformation MT and Sec. 2.4 and Rem. 2.20. Note that for
each such model transformation sequence and a given injective embedding f : s→ s′ ∈M there

is a forward translation sequence (AttF(s′)← ∅→ ∅) =
tr∗FT==⇒ (s′⊕AttT

s ⊕AttF
s′\s← sC → sT) via

forward translation rules TRFT analogously to Sec. 3.2 and Lem. 3.2 (∗A), since, all relevant el-
ements of application conditions in rules TRFT are marked with T whereas the marking of all
elements in s′ \ s remain F for the translation sequence and therefore, cannot be matched by
the application conditions. Analogously to the proof of Thm. 3.3, there is a function faE with
faE (a) = s ∈ Sa,∀a ∈ A = (ai)i∈{1,...,n} such that there exist graphs (GE

j)1≤ j≤n−1 and pushouts
(POE

k +GE
k

faE (ak+1) = POE
k+1)k∈{1,...,n−1} with pushout objects POE

k+1, POE
1 = faE (a1) and in-

jective embeddings ik,1 : POE
k → POE

k+1 and ik,2 : faE (ak+1)→ POE
k+1 ∈M where POE

n = GA

by Sec. 3.2 and Lem. 3.7. For pushout k = 1 we conclude as follows. By (∗A), there exists for-

ward translation sequences t1 : (AttF(POE
2)←∅→∅) =

tr∗FT==⇒ (POE
2 ⊕AttT

faE (a1)
⊕AttF

POE
2 \ faE (a1)

←

faE (a1)
C→ faE (a1)

T) and t2 : (AttF(POE
2)←∅→∅) =

tr∗FT==⇒ (POE
2 ⊕AttT

faE (a2)
⊕AttF

POE
2 \ faE (a2)

←
faE (a2)

C→ faE (a2)
T) via forward translation rules TRFT . Analogously to the proof of Thm. 3.3,

assumption TRFT is CS-conflict-free implies that transformation system TRFT is confluent and

therefore, there is a complete forward translation sequence (AttF(POE
2) ← ∅ → ∅) =

tr∗FT==⇒
(AttT(POE

2) ← C2 → T2), i.e., a model transformation sequence (POE
2 ,(AttF(POE

2) ← ∅ →
∅) =

tr∗FT==⇒ (AttT(POE
2)←C2→ T2),T2) based on forward translation rules TRFT for pushout object

POE
2 . Note that the restriction to a subset of all critical pairs in CS-conflict-freeness matches the

situation, since, GA ∈L (CS) and M -composition of embeddings ik,1, ik,2 imply that the source
component of all conflict triple graphs of conflicts that may occur is significant w.r.t. L (CS) (cf.
Def. 4.2 and Item 1) and furthermore, all such conflict triple graphs of conflicts that may occur are
embedded in triple graphs that are created by forward translation sequences t1 and t2 (cf. Def. 4.2
and Item 2). Analogously, we iterate over all pushouts for k = (1, . . . ,n−1) and obtain a model

transformation sequence (POE
n ,(AttF(POE

n)←∅→∅) =
tr∗FT==⇒ (AttT(POE

n)←Cn→ Tn),Tn) based
on forward translation rules TRFT and almost injective matches. By Sec. 2.4 and Rem. 2.20,
POE

n = GA ∈L (TGG′)S, i.e., there is ∅′ =∗⇒ (GA←CA→ TA) via TR. We extend instance mor-
phism i : GA → G to a triple graph morphism i′ : (GA ← CA → TA)→ (G← C→ T) that is an
instance morphism componentwise for source, correspondence and target. Analogously to the
proof of Thm. 3.3 by Lem. 3.15 componentwise with instance morphism i′ and all application
conditions in TR being in M -normal form there is a transformation ∅=

∗⇒ (G←C→ T) via TR
and almost injective matches, i.e., G ∈L (TGG)S. Therefore, L (CS)⊆L (TGG)S.

According to domain completeness under restrictions in Sec. 3.5, we define domain complete-
ness of model transformations under restrictions. This is important for model transformations
that only cover specific elements of each graph in the source DSL. For example, the model trans-
formation in Sec. 3.5 from class diagrams (CDs) to relational database models (RDBMs) only

107

4.1. DOMAIN COMPLETENESS OF MODEL TRANSFORMATIONS

covers the elements of the restricted type graph TGCD,R in Fig. 3.16, i.e., classes and their at-
tributes in class diagrams, while neglecting class constructors and their visibilities. In contrast to
“full” domain completeness of the transformation which requires that all class diagrams can be
completely translated into RDBMs, domain completeness under restrictions only requires that all
classes and their attributes in each class diagram can be completely translated into corresponding
tables and columns.

Definition 4.3 (Domain Completeness of Model Transformations under Restrictions) Let
t : TGS

R → TGS ∈M be a type morphism and TGS
R be the restriction of source type graph

TGS. Let TG = (TGS
R ← TGC → TGT) be a triple type graph. Let CS be the set of source

domain graph constraints typed over TGS and L (CS) be the source domain-specific language
of graphs. Furthermore, let TGG be a triple graph grammar typed over TG that specifies the
translation MT : L (CS)VL (D2) of graphs in L (CS) into graphs in the target domain-specific
language L (D2). The model transformation MT is domain complete under restrictions, if for
the restriction Restrt(GS) of each graph GS ∈ L (CS) along t there is a model transformation

sequence (Restrt(GS),G0 =
tr∗FT==⇒ Gn,GT) based on the forward translation rules of TGG with

G0 = (AttF(Restrt(GS))←∅→∅) and Gn = (AttT(Restrt(GS))← GC→ GT). 4

Similarly to Thm. 4.1, in Thm. 4.3 we reformulate domain completeness of model transfor-
mations under restrictions by domain completeness under restrictions in the sense of Def. 3.33
which can be verified by verifying domain completeness w.r.t. restricted constraints as stated in
Cor. 4.1. In turn, domain completeness can be verified based on Thm. 4.2.

Theorem 4.3 (Domain Completeness of Model Transformations under Restrictions) Let
MT : L (CS)VL (D2) be a model transformation based on forward translation rules of a given
TGG. Transformation MT is domain complete under restrictions according to Def. 4.3 if and
only if domain completeness under restrictions w.r.t. L (CS) and L (TGG)S holds in the sense
of Def. 3.33. 4

Proof. Let GS ∈L (CS) and Restrt(GS) be its restriction along t.

“⇒” By assumption, there is a model transformation sequence (Restrt(GS),G0 =
tr∗FT==⇒ Gn,GT)

based on forward translation rules. By “classical” syntactical correctness of model trans-
formations based on foward translation rules, Restrt(GS) ∈L (TGG)S.

“⇐” By assumption, Restrt(GS) ∈ L (TGG)S. By “classical” syntactical completeness of
model transformations based on forward translation rules, there is a model transforma-
tion sequence (Restrt(GS),G0 =

tr∗FT==⇒ Gn,GT) based on forward translation rules.

Corollary 4.1 (Domain Completeness of Model Transformations under Restrictions) In the
context of Thm. 4.3, domain completeness under restrictions w.r.t. L (CS) and L (TGG)S holds if
according to Thm. 3.9 domain completeness w.r.t. LI(Restrt(CS

I))∩L (Restrt(CS
G)), L (TGG)S

and TGS
R holds with CS =CS

I ∪CS
G. 4

Proof. This follows directly by Thm. 3.9 and Items 1 and 2.

Based on the reformulations of domain completeness of model transformations (under restric-
tions) in Thms. 4.1 and 4.3 and the result from Cor. 4.1, the following relationship between the
notions of domain completeness and domain completeness under restrictions does exist.

108

CHAPTER 4. DOMAIN COMPLETENESS OF MODEL TRANSFORMATIONS & MODEL
SYNCHRONISATIONS

P5 C5

1:Attr

name=x

name=y

P5,R

C5,R

1:Attr

P1 C1

1:Class

:a

1:Class

:Attr

name=x

P1,R

C1,R

:a

:Attr

name=x

P2 C2

:a

P2,R

C2,R

:a

1:Attr 1:Attr

:Class

:Class

P3 C3

P3,R

C3,R

1:Class 1:Class

:Attr

name= oid

:Attr

name= instance

:a

:a

P4 C4

:a

1:Class

P4,R

C4,R

2:Attr

1:Class

2:Attr

:a

c9 = ¬∃(P1→C1, true) c10 = ¬∃(P2→C2, true) c11 = ¬∃(P3→C3, true) c12 = ¬∃(P4→C4, true)

c13 = ¬∃(P5→C5, true)

Figure 4.1: Additional Domain Graph Constraints with Restrictions

:a
tr=[F=>T]

:Corr1

:Corr2 :Table

:col

++
++

++

:Class

tr=T

:Attr

tr=[F=>T]

name=x

tr_name=[F=>T]

:Column

name=x

Attr2Column-FT

Figure 4.2: Foward Translation Rule Attr2Column−FT (left) & Conflict Analysis of Forward
Translation Rules with AGG (right)

Corollary 4.2 (Relationship between Domain Completeness of Model Transforma-
tions & Domain Completeness under Restrictions) Let MT : L (C) V L (D2) and
MTR : L (Restrt(C))VL (D2) be two model transformations defined by the same TGG where
according to Thm. 3.9, L (Restrt(C)) = LI(Restrt(CI))∩L (Restrt(CG)) for C = CI ∪CG. If
MTR is domain complete according to Def. 4.1, then MT is domain complete under restrictions
according to Def. 4.3. 4

Proof. By Thm. 4.1, domain completeness of MTR implies domain completeness w.r.t.
L (Restrt(C)), L (TGG)S and TGS

R. By Cor. 4.1, it follows domain completeness under restric-
tions w.r.t. L (C) and L (TGG)S implying further that MT is domain complete under restrictions
by Thm. 4.3.

Example 4.1 (Domain Completeness of Model Transformations under Restrictions) The model

109

4.1. DOMAIN COMPLETENESS OF MODEL TRANSFORMATIONS

:Class
Restrt(c8)

 Atom via Restrt(C) Extension via TGG

 :Class

:Attr

name= instance

:a

:Class

:Attr

name= oid

:a

Singleton2
Empty

 Ø

Instantiable
Class2Table

 Ø

:Attr
A  :Class

:a

:Class

:a

P1

 Ø

P2

 Ø

A=(Restrt(c6),Restrt(c7),Restrt(c8))
P1=(Singleton2Empty,Attr2Column)
P2=(InstantiableClass2Table,Attr2Column)

:Attr

name= instance

:Attr

name=x

:Attr

name= oid

:Attr

name=x

:a

:a

:Attr
B 

P1

 Ø

P2

 Ø

C  :Class

:a

:Class

:a

P1

 Ø

P2

 Ø

C=(Restrt(c7),Restrt(c8))

:Attr

name= instance

:Attr

name=x

:Attr

name= oid

:Attr

name=x

:a

:a

:Attr

name=x

:Class

:a

B=(Restrt(c6),Restrt(c8))

:Class

:a

:Class

:a

:Attr

name= instance

:Attr

name=x

:Attr

name= oid

:Attr

name=x

:a

:a

Figure 4.3: Verification of Restrt(C)-Extension Completeness of L (TGG)S

110

CHAPTER 4. DOMAIN COMPLETENESS OF MODEL TRANSFORMATIONS & MODEL
SYNCHRONISATIONS

transformation MT : L (C) V L (TGRDBM) from UML class diagrams (CDs) to relational
database models (RDBMs) as defined by the TGG with empty start graph and triple rules with-
out application conditions and typed over TGCD,R from Sec. 3.5 and Fig. 3.16 is not domain
complete w.r.t. the domain constraints C = {c1, . . . ,c13} in Figs. 3.17, 3.18 and 4.1, since,
class constructors together with their visibilities are not covered by the given TGG. We as-
sume that all constraints c ∈ C are designated for general satisfaction, i.e., C = CI ∪CG with
CI = ∅ and CG = C. However, the model transformation is domain complete under restric-
tions w.r.t. domain constraints C, the given TGG, type morphism t : TGCD,R → TGCD ∈M
and restriction TGCD,R. Thus, all Classes and Attributes in each CD can be translated to corre-
sponding Tables and Columns in RDBMs. In order to show this, by Cor. 4.1, we have to ver-
ify domain completeness w.r.t. the restricted domain constraints Restrt(C), the given TGG and
restricted type graph TGCD,R, i.e., by Thm. 4.1 domain completeness of model transformation
MTR : L (Restrt(C))VL (TGRDBM) from class diagrams that are typed over TGCD,R and satisfy
the restricted constraints Restrt(C) to RDBMs that are typed over TGRDBM. By Thm. 4.2, we have
to check that the forward translation rules of TGG are Restrt(C)-conflict-free and furthermore,
L (TGG)S is Restrt(C)-extension complete. According to Sec. 3.5 and Thm. 3.9, Restrt(C) =
{Restrt(c1),Restrt(c6),Restrt(c7),Restrt(c8),Restrt(c9),Restrt(c10),Restrt(c11),Restrt(c12),
Restrt(c13)} while constraints c2 to c5 are neglected for the verification, as, they are pos-
itive but unrestricted along t (c2 to c4) or negative but not purely restricted along t (c5).
The restricted constraints are highlighted by grey boxes in Figs. 3.17, 3.18 and 4.1 with
premises P ,R and conclusions C[E]

,R . Fig. 4.2 (left) shows the forward translation rule
Attr2Column−FT of triple rule Attr2Column in Fig. 3.16. Analogously, we derive for-
ward translation rules InstantiableClass2Table−FT and Singleton2Empty−FT for triple rules
InstantiableClass2Table and Singleton2Empty. Fig. 4.2 (right) depicts the result of the conflict
analysis of the forward translation rules with AGG [AGG16] while omitting conflicts of the same
rule and same match. Altogether, there are eight conflicts that are reflected by constraints c9 to
c12 in Fig. 4.1, i.e., each conclusion represents a conflict graph where the conflict occurs in the
premise part of the conclusion, respectively. Note that the conflicts are actually caused by up-
dates of translation attributes but the translation attributes are not depicted explicitly in Fig. 4.1.
In more detail, between rule InstantiableClass2Table−FT itself and Singleton2Empty−FT it-
self there are three conflicts, respectively, as reflected by conclusions C1,C2 and C4. This is due
to the fact that both rules may translate 1. the same Class but not the same Attribute, or 2. the
same attribute but not the same class, or 3. the same class and attribute but not the same edge : a
the assigns the attribute to the class. Therefore, we forbid the following obvious patterns in class
diagrams by constraints c9,c10 and c12: 1. Constraint c9 claims that each class does not have two
or more attributes of the same name. 2. Constraint c10 claims that each attribute is assigned to
at most one class. 3. Constraint c12 claims that for each two classes and attributes there is at
most one assignment edge : a between both. Between rules InstantiableClass2Table−FT and
Singleton2Empty−FT and vice versa there is one conflict, respectively, as reflected by conclu-
sion C3. This is due to the fact that both rules may translate the same class while translating
different attributes “instance′′ and “oid′′ of that class. Therefore, we forbid the pattern of a class
that has attributes “instance′′ and “oid′′ at the same time in class diagrams by constraint c11, i.e.,
class diagrams are not allowed to contain classes that are both instantiable and singleton at the
same time. Thus, by adding constraints c9 to c12 to domain constraints c1 to c8, the forward
translation rules are Restrt(C)-conflict-free. It remains to verify that L (TGG)S is Restrt(C)-
extension complete. The successful verification is depicted in Fig. 4.3. Each atom over restricted
type graph TGCD,R can be extended via restricted constraints Restrt(C) such that the extension
can be created by applying the triple rules of the given TGG with starting at the empty start graph

111

4.1. DOMAIN COMPLETENESS OF MODEL TRANSFORMATIONS

(a)

:Attr

:Column

:AC

:Attr :AC

(b)

:Const:Class :Attr
:a :mod

Figure 4.4: Graph Pattern of Conflict Graphs (a) and (b) & Conflict Analysis of Forward Trans-
lation Rules with AGG (right)

∅:

1. The atom with a single : Class node can be extended via Restrt(c8) to two graphs, i.e., one
graph with additional “instance′′ attribute and one with additional “oid′′ attribute, and both
graphs can be created via rule Singleton2Empty or InstantiableClass2Table, respectively.

2. The atom with a single : Attribute node can be extended via restricted constraints
Restrt(c6),Restrt(c7) and Restrt(c8) successively to two graphs, i.e., one graph with
two additional “instance′′ and x attributes and one with two additional “oid′′ and x at-
tributes, and both graphs can be created via rules Singleton2Empty and Attr2Column OR
InstantiableClass2Table and Attr2Column successively.

3. The atom with an : Attribute node, : Class node and : assignment edge in between can be
extended via Restrt(c6) and Restrt(c8) successively to the same two graphs as in Item 2.

4. The same is true for the atom with a single : Attribute node and node attribute name via
Restrt(c7) and Restrt(c8) successively. Note that constraint c13 is essential for building
the extensions, e.g., the second extension step in Item 4 via Restrt(c8) may also lead to an
overlapping resulting in an extension graph GE where node : Attr has two name attributes
which cannot be created via the rules of the TGG. However, due to constraint c13, graph
GE does not occur in extensions, since, GE is Restrt(C)-inconsistent according to Def. 3.5.

Therefore, the model transformation MTR from class diagrams typed over TGCD,R that satisfy
the restricted domain constraints Restrt(C) to RDBMs is domain complete implying further ac-
cording to Cor. 4.2 that the model transformation MT from class diagrams typed over TGCD that
satisfy the original domain constraints C to RDBMs is domain complete under restrictions w.r.t.
the given TGG, type morphism t and restricted type graph TGCD,R. 4

Example 4.2 (Domain Completeness of Model Transformations with Application Conditions)
Given the model transformation CD2RDBM from UML class diagrams to relational database
models in Sec. 2.3.2 and Ex. 2.6 based on the forward translation rules TRFT of the triple
rules TR with application conditions in Sec. 2.2.4 and Fig. 2.8 with triple graph grammar
CD2RDBM = (∅,TR) in Sec. 2.3.1 and Ex. 2.5 that is typed over triple type graph TG =

112

CHAPTER 4. DOMAIN COMPLETENESS OF MODEL TRANSFORMATIONS & MODEL
SYNCHRONISATIONS

(TGCD ← TGC → TGRDBM) in Sec. 2.2.1 and Fig. 2.4. Furthermore, given the source domain
constraints CS for UML class diagrams in Sec. 2.2.3 and Ex. 2.3 that are typed over type graph
TGCD. Fig. 4.4 (right) depicts the result of the conflict analysis of forward translation rules TRFT

via AGG [AGG16] where all critical pairs that are directly strict confluent and all critical pairs
with conflict graphs that do not satisfy the multiplicity constraints in TGCD in the source com-
ponent, respectively, are already omitted. Note that critical pairs with conflict graphs whose
source component violates a negative constraint in CS is CS-inconsistent according to Def. 4.2
and Item 1 and therefore also not significant w.r.t. L (CS) by Sec. 3.2 and Rem. 3.2 and thus, can
be omitted by Def. 4.2 and Item 1. In total there are the following 23 critical pairs remaining:

1. For forward translation rule C2T−FT, the source component of the conflict graph O of
each of the five critical pairs contains two Classes having the same name which is for-
bidden by constraint 12. Therefore, the five critical pairs can be omitted by Def. 4.2
and Item 1.

2. For the critical pair of rules MC−FT and TC2T−FT, the source component of the con-
flict graph contains graph pattern Fig. 4.4 (a) which is forbidden by constraints 9 and 15.
Therefore, this critical pair can be omitted by Def. 4.2 and Item 1.

3. The conflict graphs of the remaining critical pairs contain triple graph pattern Fig. 4.4 (b),
respectively, which cannot be created by forward translation sequences via TRFT . Thus,
these critical pairs can also be omitted by Def. 4.2 and Item 2.

Therefore, the forward translation rules TRFT are CS-conflict-free. CS-extension completeness
of L (CD2RDBM′)S can be successfully verified analogously to the verification of C-extension
completeness in Sec. 3.2 and Ex. 3.6 but this time without a projection to the source domain only.
Therefore, L (CS)⊆L (CD2RDBM)S by Thm. 4.2. Thus, model transformation CD2RDBM is
domain complete by Thm. 4.1. Therefore, all (infinitely many) UML class diagrams that satisfy
the source domain constraints CS can be transformed to relational database models. 4

4.2 Domain Completeness of Model Synchronisations

A model synchronisation is domain complete if each update on a source graph GS ∈ L (CS)
leading to a graph G′S can be completely propagated to the target domain in the sense that all
elements of G′S are in correspondence with elements in the target domain, i.e., all elements in
G′S are translated to elements in the target domain.

Definition 4.4 (Domain Completeness of Model Synchronisations) Let CS be the set of source
domain constraints and L (CS) be the source domain language of graphs. Furthermore, let TGG
be a triple graph grammar that specifies the translation of graphs in L (CS) into graphs of the
target domain. Let u : MS → M′S with MS,M′S ∈L (CS) be a model update from a model MS

to a model M′S both in the source domain. The synchronisation is domain complete, if for
each such update u and triple graph M = (MS←MC→MT) the forward propagation operation
fPpg(M,u)= (M′,u′) leads to an update u′ : MT →M′T in the target domain and integrated model

M′ = (M′S ← M′C → M′T) such that there is a model transformation sequence (M′S,M0 =
tr∗FT==⇒

Mn,M′T) based on the forward translation rules of TGG with M0 = (AttF(M′S)← ∅→ ∅) and
Mn = (AttT(M′S)←M′C→M′T). 4

Based on the “classical” syntactical completeness and correctness of model transformations
and synchronisations by triple graph grammars based on forward translation rules (cf. Cor. 8.5

113

4.2. DOMAIN COMPLETENESS OF MODEL SYNCHRONISATIONS

& Thm 9.25 in [EEGH15]) and the decomposition property of TGGs, the domain completeness
of model synchronisations can be reformulated as follows. While Def. 4.4 reflects the intu-
itive meaning behind complete synchronisations, Thm. 4.4 expresses completeness in terms of a
language inclusion which can be verified by using the verification techniques for domain com-
pleteness in Sec. 4.1 and Thm. 4.2. Therefore, both formulations of completeness in Def. 4.4
and Thm. 4.4 are equivalent.

Theorem 4.4 (Domain Completeness of Model Synchronisations) Let Synch(TGG) be the de-
rived TGG synchronisation framework with forward propagation operation fPpg such that the
sets of operational translation rules derived from TGG are kernel-grounded and determinis-
tic. Then, the synchronisation via fPpg is domain complete according to Def. 4.4 if and only if
L (CS)⊆L (TGG)S. 4

Proof. “⇒” Let u : MS−id→MS be the identical update with MS ∈L (CS) and M = (MS←MC→
MT). Furthermore, by “classical” correctness of model synchronisations fPpg(M,u) =

(M,u) and there is a model transformation sequence (MS,M0 =
tr∗FT==⇒ Mn,MT) based on for-

ward translation rules of TGG. By “classical” correctness of model transformations, there
is (MS←M′C→MT) ∈L (TGG) implying further that MS ∈L (TGG)S (cf. Def. 8.3 in
[EEGH15]). Thus, L (CS)⊆L (TGG)S.

“⇐” Let u : MS → M′S with MS,M′S ∈ L (CS) implying that MS,M′S ∈ L (TGG)S. Further-
more, let M = (MS ← MC → MT). By “classical” completeness of model synchronisa-
tions fPpg(M,u) = (M′,u′) with M′ = (M′S←M′C→M′T) and u′ : MT →M′T . By “clas-
sical” correctness of model synchronisations M′ ∈L (TGG), i.e., there is ∅ =

tr∗
=⇒ M′ via

rules in TGG. By the decomposition property of TGGs, there is a corresponding match-
consistent triple transformation sequence M0,0 = ∅ =

tr1,S
==⇒ M1,0 =⇒ . . . =

trn,S
==⇒ Mn,0 =

tr1,F
==⇒

Mn,1 =
...
=⇒=

trn,F
==⇒ M′ with Mn,0 = (M′S ← ∅→ ∅) (cf. Def. 7.21 in [EEGH15]). By def-

inition there is there is a source consistent triple transformation Mn,0 =
tr∗F=⇒ M′ (cf. Def.

7.18 in [EEGH15]). Therefore by Def. 7.23 in [EEGH15], there is a model transformation

sequence (M′S,Mn,0 =
tr∗F=⇒ M′,M′T). By Fact 7.36 in [EEGH15], there is a model transfor-

mation sequence (M′S,M′0 =
tr∗FT==⇒ M′n,M

′T) based on forward translation rules of TGG with
M′0 = (AttF(M′S)←∅→∅) and M′n = (AttT(M′S)←M′C→M′T).

Example 4.3 (Domain Completeness of Model Synchronisations) For the source domain con-
straints CS of UML class diagrams and triple graph grammar CD2RDBM for translating UML
class diagrams into relational database models, in Sec. 4.1 and Ex. 4.2 we have already shown
that L (CS) ⊆L (CD2RDBM)S. Therefore, the model synchronisation for propagating updates
from UML class diagrams to relational database models is domain complete by Thm. 4.4. Thus,
each update on UML class diagrams that respects domain constraints CS can be propagated to a
corresponding update on interlinked relational database models. 4

114

Chapter5
Further Applications

5.1 Completeness of Software Transformations

5.1.1 Introduction to Software Transformations

Software translations are the intrinsic idea of compilers where source code written in a (domain-
specific) programming language is translated into formulations of a mostly more low-level in-
termediate or directly machine-readable language [ASU06, SW13]. Software translations are
also demanded in scenarios where programs written in a diverse set of programming languages
may be translated into a unified language for unified maintainability and verification [HGN+14].
Apart from such text-to-text translations, a much older tradition is to translate textual represen-
tations into visual models which reflect the cognitive concepts we had in mind when preparing
and writing the texts from different domains (text-to-model translations) [Str08] and vice versa
(model-to-text translations) [SC12]. In the software world this trend was enforced by model-
driven engineering (MDE) approaches [WHR14] where source code is represented by diagram
models in a diverse set of different domain specific visual modelling languages (e.g. UML) and
vice versa source code is generated from models not only in the development phase but also for
maintenance after the systems have been deployed (cf. Fig. 5.1).

We do not concentrate on the reasons for translations (e.g., reducing or creating abstractions)
but on the well-known formal concept of graph grammars [EEPT06] from Sec. 2.2.4 as a gen-
eralisation of word grammars for specifying model transformations [EEGH15, MG06, CH03]
in general (cf. Sec. 2.3.2) and text-to-text [HNB+14] as well as text-to-model (model-to-text)
translations in particular. In the context of graph grammars, models are represented by graphs
whereas the translation of models is specified by a graph grammar, i.e., a set of graph trans-
formation rules together with a start graph. This allows the verification of the completeness of
translations. A translation from language L1 to L2 is syntactically complete, if all elements of
L1 can be completely translated. The completeness problem can be reformulated as a language
inclusion problem L1 ⊆ L3 where L3 is the language induced by the given graph grammar
which specifies the translation (cf. Sec. 5.1.5 and Thm. 5.1). In general, the language inclusion
problem is undecidable for context-free grammars L3, most of their sub-classes and all classes
above [AN00] (cf. Sec. 3.1). Therefore, we developed sufficient conditions (called domain com-
pleteness [NHBE14]) to approximately solve the inclusion problem for languages L1 that are
given by a type graph [GLEO12] together with a set of graph constraints [HP05, EEGH15] and
languages L3 that are given by a graph grammar (cf. Sects. 3.2 and 4.1). We concentrate on in-
stantiating the general concept of domain completeness of model transformations from Sec. 4.1

115

5.1. COMPLETENESS OF SOFTWARE TRANSFORMATIONS

Source
Programming

Language

Program 1

Program n

...

Translation

 Programs in other
Programming
Languages

 More low-level
intermediate/machine-
readable languages

 Diagrams (e.g. UML)

Compilers

MDE

text-to-text

text-to-model
(code visualisation)

Figure 5.1: Types of Software Translations

Extended Backus-Naur Form
(EBNF) as notation for

Context-free Grammar

defined by

Source Programming
Language

Program 1

Program n

...

Language of
Derivation

Trees

...

parse /
derivable by

induced by

Tree 1 of
Program 1

Tree m of
Program 1

Source Target

W
o

rd
 G

ra
m

m
ar

 D
o

m
ai

n
G

ra
p

h
 T

ra
n

sf
o

rm
at

io
n

D

o
m

ai
n

Graph Language

 of Source Models
(Derivation Trees)

Typed Attributed
(Derivation) Graph

represented by

defined by
+

Type Graph

Set of Graph
Constraints

Typed Attributed
(Derivation) Graph

Graph Language

of Target Models

?

derivation of

Language of
Derivation

Trees

Tree

serialise

represents

Program i

+
defined by

defined by

induced by

Translation based on
Triple Graph Grammar

L S L T

GS GT

TGS

CS
TGT

CT

V L S

V L T

Figure 5.2: Overview of Software Translations based on Triple Graph Grammars

to the completeness problem of software translations in Sec. 5.1.3 by closing the gap between
the definition of programming languages and the definition of graph languages in Sec. 5.1.4.
Derivation trees of context-free grammars are represented by typed attributed graphs [GLEO12]
with a tree-structure. Therefore, we present an encoding of context-free word grammars to at-
tributed type graphs together with graph constraints such that the language of derivation trees
that is induced by the word grammar is isomorphic to the graph language that is induced by the
type graph together with the graph constraints (cf. Sec. 5.1.4 and claim 5.1). This allows the
application of the domain completeness verification from Sec. 4.1 in the graph transformation
world in order to check if all abstract syntax trees that can be formed over a programming lan-
guage can actually be translated. For unambiguous programming languages L [HMU03] that
have a unique derivation tree for each program, this gives a good hint towards the syntactical
completeness of the translation of programs written in L.

5.1.2 Software Transformations based on Triple Graph Grammars

Fig. 5.2 illustrates an overview of software translations based on triple graph grammars. In
software translations, programs written in a source programming language L S are translated into
programs (i.e. words) of a target (programming) language L T (text-to-text translation) or into
models of a target visual modelling language V L T (text-to-model translation) (cf. Fig. 5.1). We

116

CHAPTER 5. FURTHER APPLICATIONS

1 PROGRAM: f i r s t =CLASS
−−−

3
CLASS : ’ c l a s s ’ name1=STRING (’ : ’ e=

↪→ STR LST) ? ’{ ’ (a t t r 1 =ATTR) ? ’} ’
↪→ (’\ n ’ (n1=CLASS | n2=ST)) ?

5 STR LST : name2=STRING (’ , ’ n3=STR LST) ?
ATTR : t y p e =STRING name3=STRING ’ ; ’ (n4

↪→ =ATTR) ?
7 −−−

9 NEW : ’new ’ c l 2 =STRING
ACCESS : o b j =VAR ’ . ’ a t t r 2 =STRING

11 ST : (a=ASG | p=PRINT | r =READ | i = IF
↪→ | g=GOTO) ’ ; ’ (’\ n ’ n5=ST) ?

ASG : (a1=VAR | a2=ACCESS) ’= ’ (a3=VAR
↪→ | a4=ACCESS | a5=NEW)

13 PRINT : ’ p r i n t ’ o u t =ACCESS
READ : ’ read ’ (i n 1 =VAR | i n 2 =ACCESS)

15 IF : ’ i f ’ c=COND ’ then ’ body=ST ’ end ’
COND : l =VAR (’ = ’ | ’ ! = ’) (r1 =STRING | r2

↪→ =ACCESS | r3 =NULL)
17 GOTO : ’ goto ’ l i n e =INT
−−−

19
t e r m i n a l NULL : ’ n u l l ’

21 t e r m i n a l STRING : ’ ” ’ .∗ ’ ” ’
t e r m i n a l VAR : (’ a ’ . . ’ z ’ | ’ A’ . . ’ Z ’) +

23 t e r m i n a l INT : (0 . . 9) +

1 c l a s s ” P e r so n ” { ” S t r i n g ” ”name ” ; ” Pe r so n
↪→ ” ” n e x t ” ; }

c l a s s ” Employee ” : ” P e r so n ” { ” S t r i n g ” ”
↪→ s a l a r y ” ; }

3 −−−
f s t = new ” Employee ” ;

5 l s t = f s t ;
read p r o c e e d ;

7 −−−
i f p r o c e e d = ” i n ” then

9 read l s t . ” name ” ;
read l s t . ” s a l a r y ” ;

11 p = new ” Employee ” ;
l s t . ” n e x t ” = p ;

13 l s t = p ;
goto 6 ;

15 end ;
−−−

17 i f p r o c e e d = ” o u t ” then
read name ;

19 c u r r e n t = f s t ;
i f name = c u r r e n t . ” name” then

21 p r i n t c u r r e n t . ” s a l a r y ” ;
end ;

23 c u r r e n t = c u r r e n t . ” n e x t ” ;
i f c u r r e n t != n u l l then

25 goto 2 0 ;
end ;

27 goto 6 ;
end ;

Figure 5.3: Xtext EBNF Grammar of language Conditional-IN-OUT (left) & Program of lan-
guage Conditional-IN-OUT (right)

assume that the source (target) word languages L S (L T) are defined by context-free grammars
GS (GT) where the extended backus-naur form (EBNF) is used as a short-hand notation for
context-free grammars in order to define programming languages. Moreover, we assume that
the target visual modelling language V L T is a graph language of typed attributed graphs as
models and is defined by an attributed type graph TGT together with a set of graph constraints
CT . Each context-free grammar induces a language of derivation trees that can be formed over
the grammar. Each derivation tree defines how a specific program (word) can be derived from the
grammar. Therefore, each derivation tree represents a specific program (word) of the language
which is defined by the grammar. Thus, the translation of programs is performed by translating
their derivation trees. In the following we give examples for an EBNF grammar, a derivation tree
and the corresponding program which serve as running examples for the subsequent sections.

Example 5.1 (Xtext EBNF Grammar) The EBNF grammar in Fig. 5.3 (left) is presented in
Xtext notation and defines the “toy” programming language Conditional-IN-OUT. Xtext [xte16]
uses a special EBNF syntax for specifying context-free grammars of textual domain specific
languages. Xtext is widely used for the definition of programming languages and generates
language parsers and editors automatically.

Each line represents a grammar rule. In language Conditional-IN-OUT, programs may read
input from the user (line 14), assign it to a (member) variable (ACCESS (line 9)) VAR (line 22)
and use the variable in comparisons with STRINGs (line 21) and variables as conditions COND
(line 16) in if-statements (line 15) in order to print some conditional output to the user (line 13).
Additionally to local variables VAR, data may also be stored in a more structured object-oriented

117

5.1. COMPLETENESS OF SOFTWARE TRANSFORMATIONS

way in member variables of classes. Each PROGRAM first starts with a class definition (line 1).
Each CLASS (line 4) optionally refers (n1) to the next class or statement ST (n2). Furthermore,
each CLASS has a name (name1) of type STRING and optionally may inherit (reference e) from
a set of classes that are given by a comma-separated list STR LST of STRINGs (line 5) that
are given after a colon : in the class definition and represent the class names. Moreover, each
CLASS may refer (attr1) to a set of attributes ATTR as member variables. Each attribute (line
6) is given by a type and a name (name3), both defined by a STRING, and optionally may refer
(n4) to the next attribute separated by a semicolon. Object creation (line 9) is given by the
keyword new followed by the class name (cl2) of the class from which the object is created.
ACCESS (line 10) to a member variable of an object is given by the standard dot-notation with a
VARiable that refers to the object (obj) on the left and the name of the member (attr2) on the right.
Statements ST (line 11) of a PROGRAM are assignments (ASG), PRINT, READ, IF-statements
or GOTOs. Furthermore, each statement ST optionally may refer (n5) to the next statement
separated by a semicolon and newline. Additionally to the statements that we already discussed
above, assignments (line 12) are given by the symbol = with a (member) variable (a2) a1 on the
left and a (member) variable (a4) a3 or object creation (a5) on the right. Furthermore, GOTO
statements (line 17) are given by the keyword goto together with the number INT of the line in
which the execution of the program should proceed.

In Xtext notation, terminal symbols may be grouped in sorts and defined by so called terminal
rules with regular expressions for each sort (lines 20-23). Sort STRING (line 21) is defined by
the regular expression ’”’.*’”’ allowing sequences of any character that are enclosed by quotation
marks. In contrast to STRINGs, variables VARs (line 22) are given by sequences of alphabetic
characters that are not enclosed by quotation marks and INTs (line 23) are defined by sequences
of numbers. Moreover, the sort NULL (line 20) is given by the keyword null which refers to the
null object. 4

Example 5.2 (Program in language Conditional-IN-OUT) In Fig. 5.3 (right), we present a pro-
gram of language Conditional-IN-OUT from Ex. 5.1. Two classes Person and Employee are
defined. Persons have a name and a next Person (line 1). Employees are a special type of Per-
sons by inheritance and additionally have a salary (line 2). Lines 4-5 initialise an empty list of
Employees with a new Employee object as the first (fst) and last (lst) list element. Line 6 reads
the user input into variable proceed. Depending on the user input, either the program asks the
user to add a new Employee to the list (lines 8-15) or the program returns the salary of an exist-
ing Employee in the list (lines 17-27) where the Employee is identified by his name. Finally, the
program proceeds with line 6 or terminates if the user input differs from “in” or “out”. 4

Example 5.3 (Derivation Tree) The derivation tree of the program in Ex. 5.2 up to line 3 as
induced by the grammar of Ex. 5.1 is presented in graphical notation in Fig. 5.4. Non-terminals
become nodes in the tree, terminals of sorts STRING,VAR,INT and NULL become node attributes
and references between grammar rules become edges. Explicit keywords of the language (e.g.
class) are not included in the tree. By following the grammar, in derivation trees, the list of
attributes of a class in a program are represented by edge :attr1 pointing to the first attribute and
edges :n4 pointing to the next attribute. Analogously, the lists of class definitions and the list of
inherited classes for each class in a program are represented by edges :first, :n1 and :e, :n3. The
complete tree that covers the whole program is given analogously. 4

Given a context-free grammar GS for source word language L S, then the translation of the
induced derivation trees is specified by a triple graph grammar. By Fig. 5.2, each derivation

118

CHAPTER 5. FURTHER APPLICATIONS

:PROGRAM

:first

:n1

:attr1

:n2

...

:STR_LST

name2= Person

:e

:ATTR

type= String

name3= salary

:CLASS

name1= Employee

:CLASS

name1= Person

:ATTR

type= String

name3= name

:ATTR

type= Person

name3= next

:attr1

:n4

Figure 5.4: Derivation Tree

PROGRAM

ST

ASG

a1:VAR

a3:VAR

PRINT READ

in1:VAR

GOTO

line:INT

IF

COND

l:VAR

r1:STRING

r3:NULL

c

NEW

cl2:STRING

ACCESS

obj:VAR

attr2:STRING

a p r ig

a2,a4a5 out in2

r2

Root

CLASS

name1:STRING

e

attr1

Classes

Statements

Correspo
ndence

Source Target

AA

Class

cname:STRING

Attr

type:STRING

aname:STRING

CC

SC
STR_LST

name2:STRING

n3

ATTR

type:STRING

name3:STRING

n4

n2

body

attr

n1n5
i assoc

first

Figure 5.5: EBNF Type Graph of Grammar Conditional-IN-OUT (Root+Statements+Classes) &
Triple Type Graph (Source← Correspondence→ Target)

tree is represented by a typed attributed graph in the source domain. Then, the translation is
performed by executing a model transformation on the graph based on the given triple graph
grammar. The result of the translation is a typed attributed graph in the target domain. For
text-to-model translations, the resulting graph is intended to directly serve as the resulting visual
model in the target visual modelling language V L T of the translation. For text-to-text transla-
tions, the resulting graph is intended to be a representation of a derivation tree which is induced
by the target context-free grammar GT of target word language L T . The overall result of the
text-to-text translation is obtained by flattening (serialising) the tree to a word (program) of the
target language L T . We demonstrate the graph-based approach for software translations by a
translation of programs of language Conditional-IN-OUT from Ex. 5.1 into UML class diagrams
in Ex. 5.5. At first, we present the attributed type graphs of the source (Conditional-IN-OUT)
and target (class diagrams) domains of the translation in Ex. 5.4.

Example 5.4 (Attributed Type Graphs) Fig. 5.5 illustrates both the attributed type graph of
source language Conditional-IN-OUT and the type graph of the target visual modelling lan-
guage of UML class diagrams. The type graph of Conditional-IN-OUT is given by boxes

119

5.1. COMPLETENESS OF SOFTWARE TRANSFORMATIONS

Root,Statements and Classes. The graph represents the structure of the Conditional-IN-OUT
grammar in Fig. 5.3 (left) where each grammar rule becomes a node in the graph and references
between rules become edges or node attributes. The type graph of class diagrams is given by
box Target. Each diagram may have several Class nodes with a name (node attribute cname) of
type STRING for each class. Furthermore, each class may have several attributes (Attr nodes)
each assigned by an attr edge. Each attribute has a type and a name (node attribute aname)
both of type STRING. Moreover, there may be explicit inheritance relationships (i edges) and
associations (assoc edges) between classes. 4

Example 5.5 (Translation of Conditional-IN-OUT) Each program of language Conditional-IN-
OUT from Ex. 5.1 is translated into an UML class diagram by transforming each class definition
in the program into a Class node with optional attributes, association and inheritance relation-
ships in the class diagram. The translation of programs is performed by translating their deriva-
tion trees and specified by the triple graph grammar TGG = (∅,P) with empty start graph ∅ and
triple graph productions P as given in Fig. 5.6. The triple graph production rules are typed over
the triple type graph (Source ← Correspondence → Target) in Fig. 5.5. The triple type graph
is given by boxes Classes for Source and Target as described in Ex. 5.4 together with a Corre-
spondence part which maps 1. CLASSes in programs to Class nodes in class diagrams (via cor-
respondence nodes CC), 2. the names of inherited classes (STR LST nodes) to Class nodes (via
SC correspondence nodes), and 3. class attributes (ATTR nodes) to class attributes (Attr nodes)
(via AA correspondence nodes). The production rules are presented in short-hand notation. The
elements of each triple rule are partitioned into the following three parts: 1. source- (Condition-
al-IN-OUT), 2. target-domain (UML class diagram) of the translation, and 3. correspondence
part which maps elements from source to target and vice versa. For each rule LHS → RHS
with left-hand side LHS and right-hand side RHS, the LHS consists of all elements that are not
marked with ++ whereas the RHS additionally consists of all elements that are marked with ++
and therefore, that are created when applying the rule to a LHS context. Moreover, each rule
is equipped with a negative application condition (NAC) which restricts the rule application by
describing a graph structure that is forbidden to exist for applying the rule. For example, rule
1:C2C in Fig. 5.6 simultaneously creates a CLASS and a Class node with name n in the source
and target domain with correspondence node :CC between both but only if the class diagram not
already contains a Class node of the same name. While the triple rules specify the translation, the
translation itself is performed by applying operational forward translation rules that are derived
from the triple rules. Thus, from each rule p ∈ P, an operational forward translation rule pFT is
automatically derived. For technical details we refer to Def. 7.29 in [EEGH15] while the idea is
rather straightforward. Given a triple rule p, then the corresponding forward translation rule pFT

of p translates those elements E that are created by p in the source domain into those elements
E ′ that are created by p in the target domain together with the created correspondence part by
adding elements E ′ to elements E. Moreover, the translation rule marks the translated elements
as being translated in order to prevent a second translation of those elements. In the following
we give short descriptions for the forward translations rules of the triple rules in Fig. 5.6. The
major challenges of the translation include: 1. the mapping of the list of class attributes for each
class in a program to a star of attributes around the corresponding class node in the class diagram
(rules 2 & 3), 2. the mapping of the list of names of inherited classes for each class in a program
to explicit inheritance relationships between actual class nodes in the class diagram (rules 4 &
5), and 3. the mapping of implicit associations between classes in a program as given by the
types of class attributes to explicit association relationships between actual class nodes in the
class diagram (rules 6 to 10).

120

CHAPTER 5. FURTHER APPLICATIONS

1: C2C = CLASS-2-Class(n:STRING)

:CC

++ ++++
++++:CLASS

name1 = n ++

:Class

cname = n ++

:Class

cname = n

NAC1

2: A2A1 = ATTR-2-Attr1(n:STRING)

:CC:CLASS :Class

:attr1 ++

:Attr

aname = n
:AA

:ATTR

name3 = n

++

++

++

++
++++

++

:Attr

aname = n

NAC2

:attr :attr

3: A2A2 = ATTR-2-Attr2(n:STRING)

:AA:ATTR :Attr

:n4 ++

:Attr

aname = n
:AA

:ATTR

name3 = n

++

++

++

++
++++

++

:Attr

aname = n

NAC3:attr

:attr:Class:attr

++

7: T2A1 = TYPE-2-Assoc1(t1,t2:STRING)

:Attr

type = t1
type = t2

:AA
:ATTR

type = t1 ++
++

NAC7a

:attr

:Class

cname = t1

:assoc

++ :assoc

NAC7b

9: T2A2 = TYPE-2-Assoc2(t1,t2:STRING)

:Attr

type = t1
type = t2

:AA
:ATTR

type = t1 ++
++

NAC9a

:attr

:Class
:Class

cname = t1

:assoc
++

:assoc
NAC9

b

8: T2T2 = TYPE-2-Type2(t1,t2:STRING)

:Attr

type = t1
type = t2

:AA
:ATTR

type = t1 ++
++

NAC8

:attr

:Class
:Class

cname = t1

:assoc

Correspo
ndence

Source Target

10: T2T3 = TYPE-2-Type3(t1,t2:STRING)

:Attr

type = t1
type = t2

:AA
:ATTR

type = t1 ++
++

NAC10b

:CLASS

name1 = t1

NAC10a

4: S2I1 = STR_LST-2-Inheritance1(n1,n2:STRING)

:CC
:CLASS

name1 = n1

:Class

cname = n1

:e ++

:Class

cname = n2
:SC

++

++

++:STR_LST

name2 = n2

++

++

:i ++ :i NAC4

5: S2I2 = STR_LST-2-Inheritance2(n1,n2:STRING)

:SC
:STR_LST

name2 = n1

:Class

cname = n1

:n3 ++

:Class

cname = n2
:SC

++

++

++:STR_LST

name2 = n2

++

++

:i ++ :i NAC5

6: T2T1 = TYPE-2-Type1(t1,t2:STRING)

:Attr

type = t1
type = t2

:AA
:ATTR

type = t1 ++
++

NAC6

:attr

:Class

cname = t1
:assoc

Correspo
ndence

Source Target

Figure 5.6: Triple Graph Rules for Translation of Derivation Trees of Grammar Conditional-IN-
OUT

1. Rule 1:C2CFT translates a CLASS of name n in a program into a corresponding Class node
with name n in the class diagram but only if there does not already exist a Class node with
the same name (cf. NAC1).

2. Rule 2:A2A1,FT assumes that a CLASS in a program is already translated into a correspond-
ing Class node in the class diagram. The rule translates the first class attribute (:ATTR) with
name n of :CLASS into a corresponding attribute (:Attr) with name n of node :Class in the
class diagram but only if node :Class does not already contain an attribute with the same

121

5.1. COMPLETENESS OF SOFTWARE TRANSFORMATIONS

name (cf. NAC2).

3. Rule 3:A2A2,FT translates the next attribute of the class into a corresponding attribute in
the class diagram but analogously to rule 2:A2A1,FT , only if the correponding Class node
in the diagram does not already contain an attribute with the same name (cf. NAC3).

4. Rule 4:S2I1,FT translates the name n2 of the first inherited class for class n1 in a program
into an inheritance edge between the corresponding Class nodes in the class diagram but
only if there does not already exist an inheritance edge between both nodes (cf. NAC4).

5. Analogously to rule 3:A2A2,FT for rule 2:A2A1,FT , rule 5:S2I2,FT translates the name n2
of the next inherited class for class n1 into an inheritance edge between the corresponding
Class nodes in the class diagram but only if there does not already exist an inheritance
edge between both nodes (cf. NAC5).

6. Rule 10:T2T3,FT translates the type t1 of a class attribute in a program into the same type
of the corresponding attribute in the class diagram but only if type t1 is not the name of a
CLASS in the program and the attribute in the diagram does not already have a type t2 (cf.
NAC10a∧NAC10b).

7. In contrast to rule 10:T2T3,FT , if type t1 is the name of a CLASS in the program, then:

(a) If t1 is the name of the class of the class attribute and the corresponding Class node
in the class diagram does already have a reflexive association (edge :assoc), then rule
6:T2T1 simply translates t1 into the same type of the corresponding attribute in the
class diagram but only if the attribute does not already have a type t2 (cf. NAC6).

(b) If t1 is the name of the class of the class attribute, then rule 7:T2A1 translates t1
into the same type of the corresponding attribute together with a reflexive associa-
tion for the corresponding Class node in the class diagram but only if the attribute
does not already have a type t2 and the Class node does not already have a reflexive
association (cf. NAC7a∧NAC7b).

(c) If t1 is not the name of the class of the class attribute but the name of another class in
the program and there already exists an association between the corresponding Class
nodes in the class diagram, then rule 8:T2T2 simply translates t1 into the same type
of the corresponding attribute in the class diagram but only if the attribute does not
already have a type t2 (cf. NAC8).

(d) If t1 is not the name of the class of the class attribute but the name of another class in
the program, then rule 9:T2A2 translates t1 into the same type of the corresponding
attribute together with an association between the corresponding Class nodes in the
class diagram but only if the attribute does not already have a type t2 and there does
not already exist an association between the two Class nodes (cf. NAC9a∧NAC9b).

The result of translating the derivation tree in Ex. 5.3 by the forward translation rules from
above is given by the typed attributed graph in Fig. 5.7. The graph serves as a class diagram
model in the target domain of the translation. The list of attributes name and next of class Per-
son becomes a star of attributes around the corresponding class node in the class diagram. Fur-
thermore, the implicit inheritance and association relationships between classes in the program
become explicit edges in the class diagram. 4

122

CHAPTER 5. FURTHER APPLICATIONS

:Class

cname= Person

:Attr

type= String

aname= name

:Attr

type= Person

aname= next

:Class

cname= Employee

:Attr

type= String

aname= salary

:attr :attr

:i

:attr

:assoc

Figure 5.7: Result Graph

Remark 5.1 (Application Conditions in Translation) The rules in Ex. 5.5 make extensive use
of negative application conditions (NACs) in order to control the translation. While the neg-
ative application conditions NAC7b,NAC9b and NAC10a ensure that at most one rule of rules 6
to 10 as applicable to a given context at the same time, the other application conditions rather
define restrictions of the target language of the translation, i.e., restrictions that need to be satis-
fied by each class diagram which results from a translation of a Conditional-IN-OUT program.
1. NAC1 ensures that each resulting class diagram does not contain two classes with the same
name, 2. NAC2 and NAC3 ensure that each resulting class diagram does not contain a class
with two or more class attributes having the same name, 3. NAC4 and NAC5 ensure that each
resulting class diagram does contain at most one inheritance edge between each two classes,
4. NAC6,NAC7a,NAC8,NAC9a and NAC10b ensure that each resulting class diagram does contain
at most one type for each class attribute, and 5. NAC7b and NAC9b ensure that each resulting class
diagram does contain at most one association between each two classes. 4

5.1.3 Completeness Problem of Software Transformations

As illustrated in Fig. 5.2, our approach of translating programs of a programming language L S is
to translate their derivation trees as induced by the word grammar GS of L S. Each derivation tree
is represented by a typed attributed graph in the source graph language V L S of derivation trees
and translated by performing a model transformation based on a given triple graph grammar. The
result is a typed attributed graph in the target modelling (graph) language V L T . Furthermore,
we assume that the source (target) graph language is defined by a type graph TGS (TGT) together
with a set CS (CT) of graph contraints.

Definition 5.1 (Graph Language over Type Graph & Constraints) Given a type graph TG and
a set C of graph constraints that are typed over TG. Then, the graph language over TG and C
is given by L (TG,C) = {G | graph G is typed over TG,G |=C} all graphs G that are typed over
TG and that satisfy the constraints C. 4

The translation is syntactically complete, if all derivation trees of GS can be completely trans-
lated. Intuitively, a derivation tree is completely translated, if all nodes and edges of the tree
are translated exactly once. Since, the translation of derivation trees is based on the translation
of their graph representations, it is required that the language Der(GS) of derivation trees of GS

is isomorphic to the graph language L (TGS,CS) of their graph representations (cf. Sec. 5.1.4
and claim 5.1). Thus, each tree in Der(GS) is represented by exactly one graph in L (TGS,CS)
and each graph in L (TGS,CS) represents exactly one derivation tree in Der(GS).

Definition 5.2 (Isomorphism of Derivation Tree Languages) Given a context-free word gram-
mar G with induced language Der(G) of derivation trees. Let L (TG,C) be a graph language of
derivation trees over type graph TG and graph constraints C. Languages Der(G) and L (TG,C)
are isomorphic, if there exists a bijection m : Der(G)→L (TG,C) between both. 4

123

5.1. COMPLETENESS OF SOFTWARE TRANSFORMATIONS

By Def. 5.3, a software translation is syntactically complete if each source derivation graph
GS ∈L (TGS,CS) can be completely translated via a model transformation sequence in the sense
that all elements of the graph are translated exactly once by changing their translation attributes
from F to T.

Definition 5.3 (Syntactical Completeness of Software Translations) Given a context-free word
grammar GS for source language L S with induced language Der(GS) of derivation trees. Let
TG = (TGS← TGC → TGT) be a triple type graph with L (TGS,CS) being the graph language
of derivation trees isomorphic to Der(GS). Furthermore, let TGG = (∅,TR) be a triple graph
grammar typed over TG with derived forward translation rules TRFT that specifies the model
transformation of graphs in L (TGS,CS) into graphs of target graph language L (TGT ,CT) based
on forward translation rules TRFT . The translation is syntactically complete, if for each derivation

graph GS ∈L (TGS,CS) there is a model transformation sequence (GS,G0 =
tr∗FT==⇒ Gn,GT) based

on forward translation rules TRFT with G0 = (AttF(GS)←∅→∅) and Gn = (AttT(GS)←GC→
GT). 4

From the setting for translations in Fig. 5.2 and from Def. 5.3 and Thm. 5.1, the following
problems arise concerning the completeness and correctness of software translations.

Problem 5.1 (Syntactical Completeness & Correctness of Software Translations) 1.
Syntactical Completeness & Correctness: Given a context-free word grammar G with
induced language Der(G) of derivation trees. How to derive a graph language L (TG,C)
of derivation trees from G that is isomorphic to Der(G)?

2. Syntactical Completeness: How to verify the language inclusion L (TGS,CS) ⊆
L (TGG)S (domain completeness)?

3. Syntactical Correctness: How to ensure that the resulting graphs of a translation are ac-
tually graphs of the target graph language L (TGT ,CT), i.e., L (TGG)T ⊆L (T GT ,CT)
(domain correctness)?

4. Syntactical Completeness & Correctness: Given verification techniques for the language
inclusion problems in Items 2 and 3. Are the techniques applicable to the derived type
graph TG and the derived set of graph contraints C of Item 1? 4

Beside the completeness problem, Fig. 5.2 also brings forth the correctness problem of soft-
ware translations in problem 5.1 and Item 3. Therefore, are the resulting graphs 1. models of the
target language in text-to-model translations, or 2. actually representations of derivation trees of
the target programming language in text-to-text translations such that they can be serialised to
target programs? While the correctness problem remains subject of future work under the notion
of domain correctness, we furthermore concentrate on the completeness problem based on the
notion of domain completeness. While the syntactical completeness of software translations in
the graph world itself, i.e., the language inclusion in Thm. 5.1, can be verified by means of the
existing verification techniques for domain completeness (cf. problem 5.1 and Item 2), it re-
mains to close the gap between the word grammar and graph world (cf. problem 5.1 and Item 1)
such that the verification techniques for domain completeness are applicable (cf. problem 5.1
and Item 4). The gap is closed by presenting a mapping from context-free (EBNF) grammars
G to attributed EBNF type graphs TG together with EBNF graph constraints C in Sec. 5.1.4
such that the induced language Der(G) of derivation trees is isomorphic to the graph language
L (TG,C) of derivation trees (cf. Sec. 5.1.4 and claim 5.1). Furthermore, we use several exten-

124

CHAPTER 5. FURTHER APPLICATIONS

sions of the verification techniques for domain completeness in view of the derived EBNF type
graphs TG and EBNF graph constraints C for verifying the completeness of the translation in
Sec. 5.1.2 and Ex. 5.5. The extension includes 1. recursive graph constraints from Sec. 3.4, and
2. domain restrictions from Sec. 3.5. While recursive graph constraints are used for the defini-
tion of EBNF graph constraints C in Sec. 5.1.4 and Def. 5.9, domain restrictions are necessary
for the translation in Sec. 5.1.2 and Ex. 5.5 which only covers those parts of a derivation tree
which are related to class definitions in a program. Thus, a restriction of the graph language of
derivation trees to a sub-language covering the class definitions only is required for verifying
the completeness of the translation, called domain completeness under restrictions (cf. Sec. 3.5
and Def. 3.33).

5.1.4 From EBNF Grammars to Attributed Type Graphs & Graph Constraints

In [HGN+14], Xtext is used for the definition of a source and target satellite procedure lan-
guage for software translations between both. In the following we take (abstract) syntax trees of
programs written in a programming language L and derivation trees of a context-free grammar
defining this language L as synonyms. We formalise the notion of Xtext EBNF grammars in
Def. 5.4, called EBNF grammars with labels. Labelled elements of the grammar are included in
derivation trees whereas unlabelled elements are not. In particular, a separation of the terminals
in the set T and a family of sets (Cs)s∈S allows a distinction of which terminals are included in
derivation trees and which are not. As software translations aim at the translation of the deriva-
tion tree of a program’s syntax, this distinction allows to specify which terminals are relevant for
the translation and which are not. The terminals T are not included in derivation trees whereas
the elements of the family of sets (Cs)s∈S may be included where each sort s ∈ S represents a
terminal rule in the Xtext grammar and the corresponding carrier set Cs is the set of all words
that are derivable from the regular expression of the terminal rule.

Definition 5.4 (EBNF Grammar with Labels) An EBNF grammar
G = (N,nS,T,L,S,(Cs)s∈S,P) with labels is given by

1. A set N of non-terminals,

2. A non-terminal nS ∈ N as start symbol,

3. a set T of terminals,

4. a set L of labels,

5. a set S of sorts disjoint from the set N,

6. a family of carrier sets (Cs)s∈S with a carrier set Cs for each sort s ∈ S (Cs defines the
terminals for s),

7. a set P of production rules p : n ∈ N → R∗ with a non-terminal n as the left-hand-side
(LHS) of the rule and an (empty) sequence R∗ as the right-hand-side (RHS) where R =
(L×N)∪T ∪ (L×S) such that:

(a) The labelling is unique. Thus, let |p| be the amount of label occurrences in pro-
duction p and L(p) be the set of labels that occur in p, then for P it holds that
+p∈P(|p|) = |∪p∈P (L(p))|.

(b) All labels are used in productions, i.e., |L|= |∪p∈P (L(p))|.

125

5.1. COMPLETENESS OF SOFTWARE TRANSFORMATIONS

The terminals T are called unlabelled whereas L× N are labelled references to non-
terminals N and L×S are labelled references to sorts S where each sort s ∈ S represents a
set of terminals Cs. For productions with an empty sequence as RHS we write n→ ε , and

8. the start symbol is not target of a reference. Therefore, for all productions p ∈ P with
p : n→ R∗, it holds that (l,ns) ∈ (L×N) does not occur in the RHS R∗ of p. 4

Def. 5.4, Item 5, and Items 7a and 7b enable the definition of the source and target of each
labelled reference in an EBNF grammar based on its label l ∈ L by well-defined functions s : L→
N for the source and t : L→ N∪S for the target.

Definition 5.5 (Source & Target of Labels) Let L be the labels and P be the productions of
an EBNF grammar with labels. The source s : L→ N of a label l ∈ L is given by s(l) := n
where (l,n′) ∈ (L×N) occurs in the RHS R∗ of a production p ∈ P with p : n→ R∗. The target
t : L→ N∪S of a label l ∈ L is given by

t(l) :=


n′ if (l,n′) ∈ (L×N) occurs in R∗

of a production p ∈ P with p : n→ R∗

s if (l,s) ∈ (L×S) occurs in R∗

of a production p ∈ P with p : n→ R∗

4

Remark 5.2 (Notational Abbreviations) In addition to the formal EBNF notation in Def. 5.4, the
notation for alternatives in N → R1(R2|R3)R4 inductively abbreviates the two production rules
N → R1R2R4 and N → R1R3R4. Furthermore, the quantification via the optional operator ? in
N→ R1(R2)?R3 inductively abbreviates the two productions N→ R1R3 and N→ R1R2R3. 4

Remark 5.3 (Context-Free Grammars) Note that Def. 5.4 coincides with the classical definition
of context-free grammars in two forms.

1. Def. 5.4 coincides with the classical notion for T =∅ and when defining for each terminal
t a sort st ∈ S with carrier set Cst = {t} except that an additional unique labelling is required
for each occurrence of a non-terminal or sort in the RHS of a production.

2. Def. 5.4 coincides with the classical notion for S =∅. 4

For each classical context-free grammar that does not satisfy restriction Def. 5.4 and Item 8,
the restriction can be bypassed by adding a production to the grammar with a new start symbol
as LHS and the old start symbol as RHS without changing the language that is induced by the
grammar.

Example 5.6 (EBNF Grammar with Labels) Each line in lines 1-17 of the EBNF grammar in
Sec. 5.1.2 and Ex. 5.1 represents a grammar rule of the form LHS:RHS where the LHS of the
rule consists of exactly one non-terminal and the RHS is a sequence of unlabelled terminals
and labelled references to non-terminals or sorts. For example, in line 4, class,’:’,{ and } are
unlabelled terminals whereas attr1=ATTR is a reference to non-terminal ATTR with label attr1
and name1=STRING is a reference to sort STRING with label name1. The sorts are given by
Xtext terminal rules in lines 20-23.

Based on Def. 5.4, the formal definition of the grammar is given by:

126

CHAPTER 5. FURTHER APPLICATIONS

1. The set N of non-terminals that are given by
the LHSs of the grammar rules with N = {PROGRAM,CL LST,CLASS,ST R LST,AT T R,
NEW,ACCESS,ST LST,ST,ASG,PRINT, READ, IF,COND,GOTO},

2. the first rule PROGRAM as start symbol,

3. the set T of terminals that are given by the words enclosed by quotes in the RHSs of the
rules with T = {\n,class, :,{,}, , , ; ,new, .,=, print,read, i f , then,end, ! =,goto},

4. the set L of labels that are given by the names of the references in the RHSs of the rules
with L = { f irst,cl1,n1,n2,name1,e,attr1,name2,n3, type,
name3,n4,cl2,ob j,attr2,st,n5,a, p,r, i,g,a1,a2,a3,
a4,a5,out, in1, in2,c,body, l,r1,r2,r3, line},

5. the sorts that are given by the terminal rules with S = {NULL,ST RING,VAR, INT},

6. the carrier sets that are given by the sets of all words that are derivable from
the regular expressions of the corresponding terminal rules with CST RING = {w |
w is derivable from ’”’.∗’”’}, CVAR = {w | w is derivable from (′a′..′z′|′A′..′Z′)+}, CINT =
{w | w is derivable from (0..9)+} and CNULL = {null}, and

7. the following productions by considering the notational abbreviations in Rem. 5.2:

a) PROGRAM→ (f irst,CL LST),

b) CL LST → (cl1,CLASS),

c) CL LST → (cl1,CLASS) \n (n1,CL LST),

d) CL LST → (cl1,CLASS) \n (n2,ST LST),

e) CLASS→ class (name1,ST RING) { },
f) CLASS→ class (name1,ST RING) { (attr1,AT T R) },
g) CLASS→ class (name1,ST RING) : (e,ST R LST) { },
h) CLASS→ class (name1,ST RING) : (e,ST R LST) { (attr1,AT T R) },
i) ST R LST → (name2,ST RING),

j) ST R LST → (name2,ST RING) , (n3,ST R LST),

k) AT T R→ (type,ST RING) (name3,ST RING) ;,

l) AT T R→ (type,ST RING) (name3,ST RING) ; (n4,AT T R), and

m) the productions for the rules in lines 8 to 17 are defined analogously.

Note that the set S of sorts is disjoint from the set N of non-terminals, the labelling is unique and
all labels are used in productions (cf. Def. 5.4 and Items 7a and 7b). This allows the definition
of the source and target of label name1 with s(name1) =CLASS and t(name1) = ST RING (cf.
Def. 5.5). The sources and targets of the other labels are given analogously. Furthermore, the
start symbol is not target of a reference (cf. Def. 5.4 and Item 8). 4

Software translations are performed by translating derivation trees of programs that are in-
duced by the underlying grammar of the programming language to models of the target lan-
guage. Def. 5.6 defines the language of derivation trees that are induced by an EBNF grammar.
The root node of each derivation tree is the start symbol of the grammar, the internal nodes are
non-terminals whereas the leafs are non-terminals or terminals (Cs)s∈S of sorts S. Note that by

127

5.1. COMPLETENESS OF SOFTWARE TRANSFORMATIONS

Def. 5.6 and Item 2, terminals T of the grammar are not contained in derivation trees making
them to a special type of abstract syntax trees of programs where not all details of a grammar are
reflected in the trees (cf. concrete syntax trees).

Definition 5.6 (Language of Derivation Trees) Let G = (N,ns,T,L,S,(Cs)s∈S,P) be an EBNF
grammar with labels. Then, the language Der(G) := trees(nS) of derivation trees of G is induc-
tively defined by all trees trees(nS) with root node nS and:

1. trees(ε) = {ε},

2. trees(t ∈ T) = {ε},

3. trees((l,s) ∈ (L×S)) = ∪t∈Cs{(l, t)},

4. trees((l,n) ∈ (L×N)) = ∪m∈trees(n){(l,m)}, and

5. trees(n ∈ N) = ∪p∈P′trees(rn) ◦ . . . ◦ trees(r1) ◦ {n}, for p : n→ r1 . . .rn and P ⊇ P′ =
{p : n→ R∗ | p ∈ P for some arbitrary R∗}. 4

Example 5.7 (Derivation Tree) Below, the derivation tree of the program in Sec. 5.1.2
and Ex. 5.2 up to line 3 is presented in formal notation by following Def. 5.6. The corresponding
visual graph-like notation is presented in Sec. 5.1.2 and Ex. 5.3.
PROGRAM (f i r s t , CL LST (c l1 , CLASS (name1 , ” P e r so n ”) (a t t r 1 , ATTR (type ,

↪→ ” S t r i n g ”) (name3 , ”name ”) (n4 , ATTR (type , ” Pe r so n ”) (name3 , ”
↪→ n e x t ”)))) (n1 , CL LST (c l1 , CLASS (name1 , ” Employee ”) (e , STR LST
↪→ (name2 , ” Pe r s on ”)) (a t t r 1 , ATTR (type , ” S t r i n g) (name3 , ” s a l a r y
↪→ ”))) (n2 , . . .)))

The complete tree that covers the whole program is given analogously. Note that the keywords
of the language (terminals T of the grammar) are not contained in the tree. 4

Remark 5.4 (Visual Notation of Graphs) Note that the graphs in Ex. 5.7 are presented in visual
notation. The type of each node and edge is indicated by a preceeding colon. Thus, the notation
:n means that the node or edge is of type n. Technically, the typing of a node (edge) :n is given
by a mapping from that node (edge) to node (edge) n in the type graph along the given type
morphism of the typed graph containing this node (edge) (cf. Def. 5.7). Furthermore, for node
attributes we do not use the explicit E-graph notation but visualise them directly with attribute
name and value inside the corresponding nodes. 4

Remark 5.5 (Language of Derivation Trees) In Def. 5.6, operation ◦ is the concatenation of
words with ε being the empty word, i.e., w◦ε = ε ◦w = w for all words w. The concatenation of
sets of words W ′◦W = {w′◦w |w∈W,w′ ∈W ′} is given by all possible concatenations of words.
Note that Def. 5.6 does not coincide with the classical notion of derivation trees (concrete syntax
trees) of context-free grammars, not even if Rem. 5.3 and Item 2 is assumed, since, terminals T
are not represented in the trees. 4

Remark 5.6 (Decidability of Derivation Tree Translations) Note that the context-free language
{anbn | n∈N } of words with an equal amount of a’s and b’s that is given by a context-free gram-
mar G with one production p (given below) may induce a regular language L (G) of derivation
trees by following Def. 5.6 (cf. regular structure of derivation trees below). However, as the
graph grammar GG for describing the translation of derivation trees may be context-free, the
inclusion problem L (G)⊆L (GG) remains undecidable, in general.

128

CHAPTER 5. FURTHER APPLICATIONS

p : S→ a s = S b
Derivation trees: S (s, S (s, . . .))

:s
:S :S

:s
...

4

In order to close the gap between word grammars and the theory of graph transformations,
we introduce a mapping from derivation trees as defined in Def. 5.6 to typed attributed graphs.
The graph language of derivation trees is given by an attributed type graph together with a set
of graph constraints. Thus, the mapping is based on the coding of EBNF grammars with labels
to attributed type graphs, called EBNF type graphs, together with graph contraints, called EBNF
graph constraints, such that the language of derivation trees that is induced by the EBNF gram-
mar is equivalent to the language of graphs that are typed over the type graph and that fulfill the
constraints. This enables the application of model transformations based on triple graph gram-
mars to translate the derivation trees. Furthermore, this enables the application of the developed
theory of domain completeness in order to verify the completeness of the translation.

Def. 5.7 defines the coding of EBNF grammars from Def. 5.4 to EBNF type graphs (cf. Def.
8.7 in [EEPT06]) and Def. 5.9 to EBNF graph constraints. The coding to EBNF type graphs is
performed as follows.

1. Each non-terminal n is represented by a node n.

2. Each reference (l,n′) with label l to a non-terminal n′ in the RHS of a production n→ R∗

is represented by an edge l from node n to n′.

3. Each reference (l,s) with label l to a sort s in the RHS of a production n→ R∗ is repre-
sented by an attribute l of node n and of type s.

The requirement in Def. 5.4 and Item 5 that the non-terminals N are disjoint from the set
of sorts S simplifies the destinction between the labels that become edges and those labels that
become node attributes in the type graph in Items 2 and 3 and Def. 5.7 and Items 3c and 3d.

Definition 5.7 (EBNF Type Graph) Given an EBNF grammar with labels G =
(N,ns,T,L,S,(Cs)s∈S,P). The type graph TGDSIG

G = (TG,Z) of G is given by

1. an algebraic data signature DSIG = (S,OP) with sorts S and an arbitrary set of operations
OP,

2. the final DSIG-algebra Z = ((Zs)s∈S,OPZ) with Zs = {s} for each s ∈ S, and

3. an E-graph TG = (VTG ,VD,ETG,ENA,EEA ,(source j, target j) j∈{TG,NA,EA}) with

(a) VTG = N,

(b) VD = ∪s∈SZs,

(c) ETG = {l | l ∈ L, t(l) ∈ N},
(d) ENA = {l | l ∈ L, t(l) ∈ S},
(e) EEA =∅,

(f) source j : E j→VTG with source j(e) := s(e),

(g) targetTG : ETG→VTG with targetTG(e) := t(e), and

129

5.1. COMPLETENESS OF SOFTWARE TRANSFORMATIONS

(h) targetNA : ENA→VD with targetNA(e) := t(e) where {t(e)}= Zt(e).

For the definitions of s(L) and t(L) we refer to Def. 5.5. 4

Example 5.8 (EBNF Type Graph) The EBNF type graph of the grammar in Ex. 5.6 is given
below. The type graph represents the structure of the grammar where

1. all non-terminals N of the grammar become nodes in the graph (e.g., non-terminal PRINT
becomes node PRINT),

2. all labelled references to non-terminals in the grammar become edges in the graph
with corresponding non-terminals nodes as source and target (e.g., labelled reference
(cl1,CLASS) in productions CL LST → . . . becomes edge cl1 with source node CL LST
and target node CLASS), and

3. all labelled references to sorts in the grammar become attributes of corresponding non-
terminal nodes in the graph. Furthermore, the type of each attribute is given by the
corresponding referrenced sort (e.g., labelled reference (name1,ST RING) in productions
CLASS→ . . . becomes attribute name1 of node CLASS with type STRING).

By Def. 5.7, the formal notation of the EBNF type graph from above is given as follows:

1. S = {ST RING,VAR, INT,NULL},

2. Z = ((Zs)s∈S,OPZ) with Zs = {s},

3. (a) VTG = N,

(b) VD = {ST RING,VAR, INT,NULL},
(c) ETG = { f irst,n1,n2,n3,n4,n5,cl1,e,attr1,body,

st,a, p,r, i,g,a2,a4,a5,out, in2,c,r2},
(d) ENA = {name1,name2,name, type, line,a1,a3, cl2, in1,ob j,attr2, l,r1,r3},
(e) sourceTG(n1) = sourceTG(n2) = sourceTG(cl1) = CL LST for edges n1,n2,cl1 and

sourceNA(name3) = sourceNA(type) = AT T R for node attributes name, type, and

(f) targetTG(n2) = targetTG(n5) = targetTG(body) = ST LST for edges n2,n5,body and
targetNA(name3) = targetNA(type) = ST RING for node attributes name, type (the
sources and targets of the other edges and node attributes are given analogously). 4

The visual notation of the EBNF type graph is given by the elements in (Root + Statements +
Classes) in Sec. 5.1.2 and Fig. 5.5.

In order that all graphs typed over an EBNF type graph are actually graph representations
of an EBNF grammar’s derivation tree, the graphs additionally need to be restricted to obtain
tree-structures. These restrictions are expressed by EBNF graph constraints which are derived
from the EBNF grammar. While the EBNF type graph defines the overall structure of the EBNF
grammar and the domains of labelled terminals, the EBNF graph constraints ensure that the
syntax graphs are actually trees and represent the grammar structure, i.e.,

1. For the start symbol of the EBNF grammar there exists exactly one root node with no
incoming edge,

2. for each grammar production rule there exists exactly one node with at least one outgoing
and incoming edge for each edge type, and

130

CHAPTER 5. FURTHER APPLICATIONS

3. each syntax graph has no cycles.

The graph constraints are defined based on the notion of graphs over a set of labels. Given a set
of labels L such that all labels in L have the same source n, then the graph over L is given by a
node :n of type n together with an edge for each label with :n as source node and the target of the
label as type of the dedicated target node. Labels with non-terminals as targets become graph
edges whereas labels with sorts as targets become node attribute edges in the graph with unique
variables as attribute values (cf. Ex. 5.9).

Definition 5.8 (Graph over a set of Labels) Given an EBNF grammar with labels G =
(N,ns,T,L,S,(Cs)s∈S,P) and the corresponding EBNF type graph TGDSIG

G . Let E ∈P(L) be
a set of labels with same source n, i.e., for all labels e1,e2 ∈ E it is true that s(e1) = s(e2) = n (cf.
Def. 5.5). A graph over a set of labels E is given by an attributed graph GE = (G,TDSIG((Xs)s∈S))

1. that is typed over TGDSIG
G ,

2. with DSIG-term-algebra TDSIG((Xs)s∈S) with an infinite, countable set Xs = {xi | i ∈N} of
variables for each sort s, and

3. with graph G = G(E,n,1) which is composed as follows based on graphs Rn,Re and Re,i

in Fig. 5.8 2).

G(E,n, i) :=


Rn if E =∅,

Re +Rs(e) G(E \ e,s(e), i) if t(e) ∈ N,

Re,i +Rs(e) G(E \ e,s(e), i+1) if t(e) ∈ S

4

Remark 5.7 (Uniqueness of Graphs over Labels) Note that the construction in Def. 5.8 may lead
to a set S of different graphs for a given set of labels E, since, the selection of labels during the
construction is non-determinstic which may lead to different variables as node attribute values.
However, S is an isomorphism class, i.e., all graphs in S are unique up to isomorphisms, and
technically Def. 5.8 is defined based on representatives of these classes only. 4

Remark 5.8 (Visual Notation of Graph Morphisms) By A+I B, we denote the gluing of graphs
A and B over a common interface graph I. Technically, the gluing is given by a pushout over
morphisms I→ A and I→ B. The morphisms for the recursive gluing of graphs in Def. 5.8 are
given by the names of the nodes and edges in the graphs. Thus, in addition to Rem. 5.4, nodes
and edges may have names. Names are written before the colon. Thus, the notation 1:n means
that the node or edge has the name 1. For a morphism I→ A between two arbitrary graphs I and
A, the names are used to indicate the mappings along the morphism. For example in Fig. 5.8,
node 1:n in graph Rn is explicitly mapped to the source node 1:n of edge :e in graph Re along
morphism Rn → Re and is not mapped to node :t(e) which would also be possible for t(e) = n
but is not intended, as, this would change the desired semantics of the EBNF graph constraints
in Def. 5.9 and Item 2. Furthermore in contrast to Rem. 5.4, for node attributes in graphs of
EBNF graph constraints we use the explicit E-graph notation in Def. 5.9, i.e., node attributes are
explicit edges from the corresponding node to an explicit data node as attribute value. 4

Example 5.9 (Graph over a set of Labels) Given the set of labels L = {a1, . . . ,an,b1, . . . ,bm}
where all labels have the same source (n = s(a1) = . . . = s(an) = s(b1) = . . . = s(bm)), the tar-
gets of a1, . . . ,an are non-terminals (t(a1), . . . , t(an) ∈ N) and the targets of b1, . . . ,bm are sorts
(t(b1), . . . , t(bm) ∈ S). Then, the graph over L is as follows.

131

5.1. COMPLETENESS OF SOFTWARE TRANSFORMATIONS

R1 = :ns ,

R2 = :ns :ns , and

Re = :ns :s(e):e

Rn = 1:n ,

Re = 1:s(e) :t(e):e , and

Re,i = 1:s(e) xi:t(e):e with
xi ∈ Xt(e) being a variable
of sort t(e).

1) 2)

Re = :s(e)
:e :t(e)

:t(e):e

,

Re1,e2 = :s(e1) :t(e1)
:e1
:e2

,

Re1,e2 = :t(e1)
:e1

:e2

:s(e1)

:s(e2)
, and

Rr = :s(r) :r

3)

Figure 5.8: Visual notation of graphs for graph constraints in Def. 5.9

1:n
x1:t(b1):b1

:t(a1):a1

:t(an):an

xm:t(bm):bm

......

......

Note that the node attribute values (xi)i∈{1,...,m} are ensured to be unique by construction Def. 5.8,
i.e., there does not exist two different attributes b j,bk with j,k ∈ {1, . . . ,m}, j 6= k of node 1:n
having the same variable xi as value in the graph. 4

Remark 5.9 (Subsets of Labels & Induced Morphisms) Given a set of labels L and a subset
L′ ⊆ L. Furthermore, let GL be a graph over L and GL′ a graph over L′. If L′ is non-empty,
then there exists a unique morphism GL′ → GL that is induced by the labels, since, each label
becomes an unique edge with a unique edge type in graphs GL and GL′ by Defs. 5.7 and 5.8, and
morphisms are type preserving, i.e., nodes and edges in one graph must be mapped to nodes and
edges of the same type in the other graph along morphisms. 4

The set of EBNF graph constraints w.r.t. an EBNF grammar is the union of three sets
CRoot ,CRe f ,CMul of local constraints and a set CG of global constraints. Def. 5.4 and Item 8
simplifies the definition of the set of EBNF graph constraints, as, this rectriction allows the
unique denotation of the root node of each tree-like graph.

Definition 5.9 (EBNF Graph Constraints) Given an EBNF grammar with labels G =
(N,ns,T,L,S,(Cs)s∈S,P) and the corresponding EBNF type graph TGDSIG

G . The set of EBNF
graph constraints CG w.r.t. G are given by sub-sets CG =CRoot ∪CRe f ∪CMul ∪CG of graph con-
straints that are typed over TGDSIG

G and share the same DSIG-term-algebra TDSIG((Xs)s∈S) with
an infinite, countable set Xs = {xi | i ∈ N} of variables for each sort s. The sub-sets are defined

132

CHAPTER 5. FURTHER APPLICATIONS

as follows based on the graphs in Fig. 5.8.

1. CRoot =C1∪C2∪C3 with

(a) C1 = {∃(∅→ R1, true)},
(b) C2 = {¬∃(∅→ R2, true)}, and

(c) C3 = {¬∃(∅→ Re, true) | e ∈ L, t(e) = ns},

2. CRe f =C1∪C2∪C3 with

(a) For n ∈ N, with Pn = {p | p ∈ P, p is of form p : n→ R∗} we denote the set of pro-
ductions with non-terminal n as LHS. Furthermore, for production p ∈ Pn, with
Ep = {e | e ∈ L,(e,) occurs in RHS R∗ of p} we denote the set of labels that oc-
cur in p with same source n and therefore must exist for each occurrence of n in a
graph.
C1 = {∀(∅→ Rn,∨p∈Pn(∃(Rn→GEp , true))) | n∈N}with GEp being the graph over
Ep (cf. Def. 5.8) and Rn→ GEp being the morphism as induced by the node names
of the graphs in Fig. 5.8 (the node of Rn is mapped to the node which is source of the
edges in GEp).

(b) With En =∪p∈Pn(Ep) we denote the set of labels that occur in productions with n∈N
as LHS and with P(En) we denote its power set. With En = {Ep | p∈ Pn} we denote
the class of sets of labels that occur in productions with n ∈ N as LHS. Furthermore,
with P(En) = {E | E ∈P(En) \ En, there does not exist E ∈ En with E ⊆ E } we
denote the class of sets of labels whose combinations do not occur in productions
with n ∈ N as LHS and therefore, need to be forbidden in graphs.
C2 = {∀(∅→ Rn,¬(∃(Rn → GE , true))) | n ∈ N,E ∈P(En)} with GE being the
graph over E and Rn→GE being the morphism as induced by the node names of the
graphs in Fig. 5.8, and

(c) Similarly to class En in Item 2b, with En,E = {E | E ∈ En,E ⊂ E } we denote the
class of sets of labels that occur in productions with n ∈ N as LHS and that enclose
E. With P(En) = {E | E ∈P(En)\En, there exists E ∈ En with E ⊂ E } we denote
the class of sets of labels E that only partially occur in productions with n ∈ N as
LHS and therefore, need to be extended to sets En,E .
C3 = {∀(∅→ GE ,∨E ′∈En,E (∃(GE → GE ′ , true))) | n ∈ N,E ∈P(En)} with GE (or
GE ′) being the graph over E (or E ′) and GE → GE ′ being the morphism as induced
by the node names of the graphs in Fig. 5.8 for E = ∅. For E being non-empty, the
morphism is uniquely induced by the labels E (cf. Rem. 5.9).

3. CMul =C1∪C2∪C3∪C4∪C5 with

(a) C1 = {¬∃(∅→ Re, true) | e ∈ L},
(b) C2 = {¬∃(∅→ Re1,e2, true) | e1,e2 ∈ L, t(e1) ∈ N, t(e1) = t(e2),s(e1) = s(e2)},
(c) C3 = {¬∃(∅→ Re1,e2, true) | e1 ∈ L, t(e1) ∈ S,e1 = e2},
(d) C4 = {¬∃(∅→ Re1,e2, true) | e1,e2 ∈ L, t(e1) ∈ N, t(e1) = t(e2)}, and

(e) C5 = {¬∃(∅→ Rr, true) | r ∈ L,s(r) = t(r)},

4. CG: For each production rule p∈P in G construct a recursive graph schema GSp according
to Sec. 3.4 and Def. 3.18 such that the schema reflects all possible paths from the rule to

133

5.1. COMPLETENESS OF SOFTWARE TRANSFORMATIONS

the start symbol of G along labels in G. Then, constraints CG are given by the set of
(weakened or tightened) recursive graph constraints w.r.t. GSp, for all p ∈ P. Schema
GSp = ((S′,P′),M,sGSp , tGSp) for p : n ∈ N→ R∗ is constructed as follows:

(a) start graph S′ := :n:n is given by node : n with non-terminal n as node type and

out(S′) := :n:n ,

(b) productions P′ and matches M are given by (P′,M) = S ({(p,S′)},∅) with

S (H,MP′) :=

{
S ({(p′′, p′′) | (p′′, p′′, ,) ∈MP′′},MP′∪MP′′) , if MP′′ 6=∅
({p′′ | (, p′′, ,) ∈MP′},{m | (, , ,m) ∈MP′}) ,otherwise

where MP′′ = {(p′′, p′′,(l,n),m) | (p : n ∈ N → , p) ∈ H, p′′ : n′ ∈ N → R′∗ ∈
P,(l,n) ∈ R′∗,(p′′, ,(l,n),) 6∈ MP′} ∪ {(p′′, p′′,(l,n),m) | (p : n ∈ N → , p) ∈
H, p′′ : n′ ∈ N → R′∗ ∈ P,(l,n) ∈ R′∗,(p′′, p′′,(l,n),) ∈ MP′,(p′′, p′′,(l,n),m) 6∈

MP′}with productions p′′ := 1:n1:n 3:n 3:n 2:l
++++

where out(p′′) is given by node 3 : n′

and matches m := (1 7→ out(p)) with sGSp(m) := p′′ and tGSp(m) := p

Note that G may contain several production rules with the same non-terminal n ∈ N as
LHS. The schemata for these production rules are combined in the sense that we construct
the disjunction over the corresponding recursive graph constraints for CG. 4

An EBNF type graph together with a set of EBNF graph constraints form the meta-model
for the graph language of derivation trees. The elements of this language are called derivation
graphs.

Definition 5.10 (Derivation Graph) Let G = (N,nS,T,L,S,(Cs)s∈S,P) be an EBNF grammar
with labels, TGDSIG

G be the corresponding EBNF type graph and CG be the set of EBNF graph
constraints w.r.t. G. Then, a derivation graph of G is an attributed graph DG = (DG,A) such
that

1. DG is typed over TGDSIG
G ,

2. DG satisfies the constraints CG (DG |=CG), and

3. A is a DSIG-algebra with carrier sets (Cs)s∈S. 4

Example 5.10 (Derivation Graph) Note that the coding of EBNF grammars into EBNF type
graphs in Def. 5.7 neglects unlabelled terminals T of the grammar to be part of derivation graphs
whereas labelled terminals (Cs)s∈S may be contained in derivation graphs as node attribute val-
ues. Sec. 5.1.2 and Fig. 5.4 depicts a derivation graph of the EBNF grammar in Ex. 5.6 with the
EBNF type graph in Ex. 5.8 and corresponding EBNF graph constraints. 4

Definition 5.11 (Graph Language of Derivation Trees) Let G be an EBNF grammar with labels.
Then, the graph language L (G) of derivation trees of G is given by all derivation graphs of G
according to Def. 5.10. 4

If all non-terminal in an EBNF grammar G with labels are reachable from the start rule of
the grammar, then the language of derivation trees of G is isomorphic to the graph language of
derivation trees of G, i.e., according to Def. 5.2 there is a bijective mapping between both lan-
guages such that for each derivation tree over G there is a corresponding graph in the graph lan-
guage. A non-terminal is reachable from the start rule in the grammar, if there is a path via from

134

CHAPTER 5. FURTHER APPLICATIONS

the start rule to the corresponding non-terminal which induces a derivation tree. Note that for
context-free grammars, the detection of unreachable non-terminals is decidable and their elimi-
nation terminates for grammars with a finite set of grammar rules, a finite set of non-terminals
and where each grammar rule is finite (cf. Sec. 7.1.1. in [HMU03]).

Claim 5.1 (Isomorphism of Derivation Tree Languages) Let G be an EBNF grammar with
labels such that all non-terminals are reachable from the start rule of the grammar. Then, accord-
ing to Def. 5.2 the language Der(G) of derivation trees of G and the graph language L (G) of
derivation trees of G are isomorphic. 4

5.1.5 Completeness of Software Transformations

Based on the “classical” syntactical correctness and completeness of model transformations
by triple graph grammars based on forward translation rules (cf. Cor. 8.5 in [EEGH15] and
Sec. 2.4), the completeness of software translations from Def. 5.3 can be redefined as follows.
While Def. 5.3 reflects the intuitive meaning behind complete translations, Thm. 5.1 expresses
completeness in terms of a language inclusion which can be verified by using the verification
techniques for domain completeness in Sec. 4.1 and Thm. 4.1. Therefore, both formulations of
completeness in Def. 5.3 and Thm. 5.1 are equivalent.

Theorem 5.1 (Syntactical Completeness of Software Translations) The translation is syntacti-
cally complete according to Def. 5.3 if and only if L (TGS,CS)⊆L (TGG)S. 4

Proof. The proof is analogue to the proof of Sec. 4.1 and Thm. 4.1.

Example 5.11 (Syntactical Completeness of Software Translations) Given the translation of
Conditional-IN-OUT programs into UML class diagrams from Sec. 5.1.2 and Ex. 5.5 that are
performed by model transformation MT based on the forward translation rules of the TGG in
Sec. 5.1.2 and Ex. 5.5 that are typed over the EBNF type graph in Sec. 5.1.4 and Ex. 5.8 in
the source component, respectively. Furthermore, given corresponding EBNF graph constraints
as source domain constraints and the corresponding graph language of derivation trees whose
graphs should be translated by model transformation MT . Note that the translation only covers
aspects of class diagrams in the programs. Therefore, based on Thm. 5.1, the syntactical com-
pleteness of the translation can be successfully verified by using the notion of domain complete-
ness of model transformation MT under restrictions and corresponding verification techniques in
Sec. 4.1 and Thm. 4.3 where the restriction only covers the aspects of class diagrams. It turns
out that all aspects of class diagrams in Conditional-IN-OUT programs - including Class defini-
tions with Attributes, inheritance relationships and associations - can be translated to UML class
diagrams. 4

5.2 Completeness of Software Synchronisations

A software synchronisation is syntactically complete if each update on a source derivation graph
GS ∈L (TGS,CS) leading to a graph G′S can be completely propagated to the target domain in
the sense that all elements of G′S are in correspondence with elements in the target domain, i.e.,
all elements in G′S are translated to elements in the target domain.

Definition 5.12 (Syntactical Completeness of Software Synchronisations) Given a context-free
word grammar GS for source language L S with induced language Der(GS) of derivation trees.

135

5.3. COMPLETENESS OF STATIC SEMANTICS

:Stmt
:next

...
:access :Init

name=x

:next
:Stmt

:Var

name=x

*
:Stmt

:next

Figure 5.9: Recursive Graph Constraint - “Each variables is initialised before being accessed”

Let TG = (TGS← TGC→ TGT) be a triple type graph with L (CS) being the source graph lan-
guage of derivation trees isomorphic to Der(GS). Furthermore, let TGG = (∅,TR) be a triple
graph grammar typed over TG with derived forward translation rules TRFT that specifies the
model transformation of graphs in L (CS) into graphs of target graph language L (CT) based
on forward translation rules TRFT . Let u : MS→M′S with MS,M′S ∈L (CS) be a model update
from a model MS to a model M′S both in the source graph language of derivation trees L (CS).
The synchronisation is syntactically complete, if for each such update u and triple graph M =
(MS←MC →MT) the forward propagation operation fPpg(M,u) = (M′,u′) leads to an update
u′ : MT →M′T in the target domain and integrated model M′ = (M′S ←M′C →M′T) such that

there is a model transformation sequence (M′S,M0 =
tr∗FT==⇒ Mn,M′T) based on the forward transla-

tion rules of TGG with M0 = (AttF(M′S)←∅→∅) and Mn = (AttT(M′S)←M′C→M′T). 4

Based on the “classical” syntactical completeness and correctness of model transformations
and synchronisations by triple graph grammars based on forward translation rules (cf. Cor. 8.5 &
Thm 9.25 in [EEGH15] and Sec. 2.4) and the decomposition property of TGGs, the completeness
of software synchronisations can be reformulated as follows. While Def. 5.12 reflects the intu-
itive meaning behind complete synchronisations, Prop. 5.1 expresses completeness in terms of a
language inclusion which can be verified by using the verification techniques for domain com-
pleteness in Sec. 4.1. Therefore, both formulations of completeness in Def. 5.12 and Prop. 5.1
are equivalent.

Proposition 5.1 (Syntactical Completeness of Software Synchronisations) Let Synch(TGG) be
the derived TGG synchronisation framework with forward propagation operation fPpg such that
the sets of operational translation rules derived from TGG are kernel-grounded and determin-
istic. Then, the synchronisation via fPpg is syntactically complete according to Def. 5.12 if and
only if L (CS)⊆L (TGG)S. 4

Proof. The proof is analogue to the proof of Sec. 4.2 and Thm. 4.4.

5.3 Completeness of Static Semantics

In the following, we focus on static semantics of models that can be expressed by (infinite)
graph constraints on the structure of graphs by using the concept of recursive graph constraints
from Sec. 3.4. For example, for abstract syntax trees of source code in Sec. 5.1, we can define
a recursive graph schema which leads to the infinite recursive graph constraint as indicated in
Fig. 5.9. The constraint expresses the requirement that each variable Var of name x that is
accessed by some statement Stmt in the program has to be Initialised before. The path from
the accessed variable to its initialisation is expressed by a regular path with an arbitrary number
of statements in between by a recursive graph schema and induced infinite constraint. By the
construction in Sec. 3.4, we can construct a finite graph constraint from the infinite one which
then can be used within the verification of completeness of software transformations in Sec. 5.1.

136

CHAPTER 5. FURTHER APPLICATIONS

T

S

S2S-Action

:State

:Transition

action=x

:State

:src

:tgt

--
--

++
++

:Token

:Token

:State

:State

:Transition

event=x

:src

:tgt

--
--

:Token

:Token

++
++

T

S

NAC

S2S-Simple

:State

:Transition

action=x

:State

:src

:tgt

--
--

++
++

:Token

:Token

Figure 5.10: Operational Semantics of UML Statecharts

5.4 Completeness of Operational Semantics

In the following, we focus on operational semantics of models that are defined by a set of graph
transformation rules. In Fig. 5.10, two rules are presented that define aspects of the operational
semantics of UML statecharts from Sec. 1.1. Rule S2S−Simple defines the Transition from
on State to another state in the statechart but only if the transition performs no action when
being fired as ensured by the negative application condition (NAC). When being applied, the
rule moves the Token from the source (src) state of the transition to the target (tgt) state by
deleting the active token and creating a new token and assigned it to the target state. Similarly,
we define rule S2S−Action that performs a transition from a source to a target state if the
transition performs an action when being fired. Simultaneously, the rule fires the transition with
that event which is in correspondence with the action.

Therefore, both rules define a token semantics by replacing tokens. The deleted token points
to the source part of the graph (marked with S) and the created token points to the target part
of the graph (marked with T). We can intepret both rules as non-deleting rules where the S has
to exist and the T part is being created by the rule. Therefore, we can apply the verification
of domain completeness in order to verify if all elements in UML statecharts are covered by
the operational semantics. As the verification is restricted to graph grammars with empty start
graphs only, an additional rule has to be defined which creates the initial token to the initial state
of the statechart. The verification returns minimal examples of statechart excerpts that cannot be
completely covered by the semantics. This can be taken as the basis for the definition of a set
of domain constraints that successively restrict the structure of statecharts such that they can be
completely simulated. The constraints may serve as guidelines for modellers, e.g., in order to
avoid statecharts with deadlocks. Note that in the case of statecharts, the constraints will only
allow to represent single processes without choices in the statechart. However, single traces can
simply be combined to more complex statecharts with choices.

137

5.4. COMPLETENESS OF OPERATIONAL SEMANTICS

138

Chapter6
Conclusion, Related & Future Work

We have stated the domain completeness problem which focuses on the relationship between
nested graph constraints and graph grammars. More precisely, domain completeness claims that
a given set of nested graph constraints is more restrictive on the graph structure than (or as re-
strictive as) a given graph grammar. Therefore, domain completeness enlightens the relationship
between the descriptive approach of specifying graph languages via graph constraints and the
operational approach via graph grammars.

In Sec. 3.1, we proved the undecidability of the domain completeness problem for plain graphs
and derivative categories of graphs. The undecidability of the problem led to the development
of an under-approximative verification approach of domain completeness in Sec. 3.2. This ap-
proach is applicable in the M -adhesive category (AGraphsATGI,M) of typed attributed graphs
with node type inheritance. The termination of the verification is ensured by an upper bound
of the graph size. By doing this, also a complete check of all graphs up to the given upper
bound can be performed for verifying the language inclusion. However, in most cases, the pre-
sented approach is more efficient and terminates without an explicit upper bound. In Sec. 3.3
the limitations of the approach are discussed, i.e., the approach is only applicable to: 1. graph
grammars with empty start graph, 2. graph grammars with non-deleting productions, 3. graph
grammars with application conditions in M -normal form, 4. domain constraints in M -normal
form, and 5. domain constraints that are designated for general satisfaction. However, this setting
is suitable for model transformations and synchronisations based on the theory of triple graph
grammars (TGGs).

Consequently in Chap. 4, the results of domain completeness from Sec. 3.2 are applied to
verify the domain completeness of model transformations and model synchronisations.

In Chap. 5, further applications for the presented verification approach are discussed. In
Sec. 5.1, a coding of context-free word grammars in EBNF notation into type graphs and graph
constraints is given such that the language of derivation trees over the EBNF grammar is equiva-
lent (isomorphic) to the graph language over the derived type graph and graph constraints. This
result can be used for the verification of domain completeness of software translations and syn-
chronisations (cf. also Sec. 5.2). Apart from that, the verification of domain completeness of
software translations and synchronisations are direct extensions of the results for verifying do-
main completeness of model transformations and synchronisations. Due to the generality of the
results and the existing formal framework, these immediate steps are possible.

If the EBNF grammar of the programming language of programs that are translated is am-
biguous, then there may exist several derivation trees for each program written in the language.
Therefore, the approach for verifying the completeness of software translations is particularly

139

suitable for unambiguous EBNF grammars. For the coding in Sec. 5.1, graph constraints are
needed that are able to express infinite structures in graphs, i.e., regular paths. Therefore, we
developed recursive graph constraints in Sec. 3.4 and showed how they can be used for do-
main completeness verifications that terminate by presenting a construction for deriving finite
constraints from infinite recursive graph constraints. Recursive graph schemata and derived re-
cursive graph constraints can also be used for specifying static semantics of models, e.g., static
semantics of programs as discussed in Sec. 5.3. Furthermore, in Sec. 3.5, we discuss how to
restrict the source domain of model transformations and synchronisations to relevant domain el-
ements. In particular, this involves the restriction of the domain type graph and type constraints
to relevant domain elements only. In Sec. 5.1, we use the results of domain restrictions in order
to translate only the class definitions in source code to UML class diagrams while neglecting the
other syntactic aspects in the programs. In Sec. 5.4, we address that the presented approach for
verifying domain completeness can also be used to verify the completeness of operational (dy-
namic) token semantics. The operational semantics are given by a set of graph transformation
rules where models are simulated by applying the rules. The rules assign a token to some part of
the graph (model) and re-assign it to another part of the graph, therefore performing a semantic
step. The presented approach is not directly applicable to operational token semantics, since, the
rules are deleting. However, based on a given example it is clarified how deleting token rules can
be interpreted as non-deleting rules such that the approach is applicable.

Nested graph constraints were introduced in [HP09] in order to ensure that a given graph
grammar is more restrictive on the graph structure than (or as restrictive as) a given set of nested
graph constraints, i.e., the opposite direction of domain completeness. More precisely, a given
set of nested graph constraints is translated into application conditions of rules of a given graph
grammar such that it is guaranteed that all transformations via the rules of the grammar lead
to graphs that satisfy the graph constraints. A similar approach to recursive graph constraints
in Sec. 3.4 was introduced by adaptive star grammars [DHJ+06]. However, to the best of our
knowledge there is no construction to obtain finite constraints from infinite ones which is es-
sential for the termination of the verification of domain completeness. The results for domain
restrictions in Sec. 3.5 are basically an extension of the results in [SEM+12] from initial to gen-
eral satisfaction of graph constraints. The results for domain completeness in Chap. 4 are based
on the formal frameworks of model transformations and synchronisations in [EEGH15] which
are originated from the delta-lens framework [DXC10a, DXC+11, DXC10b, JR15]. In view of
Sec. 5.1.4, while context-free (EBNF) word grammars allow a generative approach to obtain the
language of all syntax trees that are derivable from the grammar, type graphs together with graph
constraints, together forming a language meta-model, allow a declarative approach for defining
this language of abstract syntax graphs. For existing work on deriving meta-models from word
grammars we refer to [BW13].

In future work the approach should be extended from the M -adhesive category
(AGraphsATGI,M) of typed attributed graphs with node type inheritance to the general frame-
work of M -adhesive categories which comprises a variety of other (graph-like) structures. Ba-
sically, this includes the development of a notion of boolean-valued marking of objects in M -
adhesive categories which was started in [HEOG10] and need to be extended to triple rules with
application conditions. As the presented verification approach is an approximation only, the
approach is open for optimisations with regard to different application scenarios. Possible start-
ing points for optimisations are presented by the limitations of the approach in Sec. 3.3. The
extension of the approach to graph grammars with deleting productions seems to be of most im-
portance while an extension to grammars with non-empty start graphs and application conditions
not in M -normal form seems to be interesting but of less importance. Finally, the approach for

140

CHAPTER 6. CONCLUSION, RELATED & FUTURE WORK

verifying domain completeness of model transformations and synchronisations can be extended
to a multi-model environment [TA15] without dedicated source and target models but with an
arbitrary number of interlinked models. The sufficient conditions for ensuring the language in-
clusion of restricted graph constraints and their originals are rather strict and may be refined in
future work. Finally, the entire approach for verifying domain completeness should be evaluated
based on a case study of relevant size with the help of an implementation in future work. The
existing HenshinTGG tool [Hen15, HNB+14] represents a suitable basis for implementing the
approach in order to enable automatic tool support for verifying domain completeness in the
future. The PIL2SPELL project [HGN+14] seems to be an appropriate real world scenario for
evaluating the approach concerning the verification of the completeness of software translations.
In PIL2SPELL, satellite control procedures were translated between different programming lan-
guages.

141

142

AppendixA
Detailed Proofs

A.1 Proof of Sec. 2.2.3 and Prop. 2.1

We prove the result for positive conditions at first and for non-positive conditions afterwards. By
induction over the structure of nested conditions:

P C

G

P′ C′

acC

O
(1)

(2)
(3)

a

p

q

ep e′p

mp mq

a′

o1

o2

o3

“⇒” Basis. For acP = true, let mp ◦ ep = p be the extremal E -M factorisation of p with
(ep, true) ∈ Inst(acP). It holds that mp |= true and therefore, p |= ∃(ep, true) implying
further that p |= acP. For acP = ∃(a : P→ C ∈M , true), p |= acP implies that there is
q ∈M with q ◦ a = p. Let mp ◦ ep = p be the extremal E -M factorisation of p ∈M
with ep ∈M by M -decomposition. We construction pullback (o1,o2) over (mp,q) with
o1,o2 ∈M , since, M -morphisms mp,q ∈M are closed under pullbacks. We construct
pushout (1) with a′,e′p ∈M , since, M -morphisms o1,o2 ∈M are closed under pushouts.
By effective pushouts, the induced morphism mq is in M with mq ◦a′ = mp and mq |= true
and therefore, mp |= ∃(a′, true). It remains to show that ∃(a′, true) is in Merge(ep,acP)
which would imply that mp |= Merge(ep,acP) and furthermore, p |= acP by Rem. 2.13.
By the universal pullback property, there is o3 with (2) and (3) commute. By (1),(2) and
(3) commute, respectively, (1)+(2)+(3) commutes. Furthermore, a′,e′p ∈M and there-
fore, e′p ∈O according to Rem. 2.3. Moreover, pushout (1) implies that (a′,e′p) are jointly
epimorphic and Merge(e′p, true) = true by construction. Hypothesis. The result holds for
conditions acC and acP,i, i ∈ I. Step. For acP = ∃(a : P→C ∈M ,acC), we conclude for
morphism a like before with induced morphism mq ∈M and mq ◦ e′p = q. By Lem. 3.11,
e′p ∈ E and therefore, mq◦e′p is an extremal E -M factorisation of q. Thus, p |= acP implies
q |= acC implying further by induction hypothesis that q |= acC and therefore by Rem. 2.13,
mq |= Merge(e′p,acC). Therefore, mp |= Merge(ep,acP) and furthermore, p |= acP by
Rem. 2.13. For acP = ∨i∈I(acP,i), p |= acP implies p |= acP,i for some i ∈ I. By induction
hypothesis, p |= acP,i implying further that mp |= Merge(ep,acP,i) for extremal E -M fac-
torisation mp ◦ep of p by Rem. 2.13. Thus, mp |=∨i∈I(Merge(ep,acP,i)) = Merge(ep,acP)

143

and therefore, p |= acP by Rem. 2.13. Analogously, we prove the fact for acP =∧i∈I(acP,i).

“⇐” Basis. For acP = true, p |= acP. For acP = ∃(a : P→ C ∈M , true), p |= acP implies
mp |= Merge(ep,acP) for extremal E -M factorisation mp ◦ ep = p of p by Rem. 2.13.
Therefore, mp |= ∃(a′, true) for some commuting diagram (1)+ (2)+ (3) with a′ ∈M
and e′p ∈ O by construction Def. 2.16, i.e., there is mq ∈M with mq ◦a′ = mp. It remains
to show that e′p ∈M , since, by M -composition it would follow that mq ◦e′p ∈M and fur-
thermore, mq ◦ e′p ◦a = mq ◦a′ ◦ ep = mp ◦ ep = p, i.e., p |= acP. By M -decomposition of
p ∈M , ep ∈M and therefore by M -composition, a′ ◦ ep = e′p ◦ a ∈M . By e′p ∈ O
and Rem. 2.3, e′p,G is componentwise injective except perhaps for the data part e′p,D.
By a,e′p ◦ a ∈ M and Rem. 2.3 it follows that aD and e′p,D ◦ aD are isomorphisms

with inverse isomorphisms a−1
D and (e′p,D ◦ aD)

−1. Thus, a−1
D ◦ aD ◦ (e′p,D ◦ aD)

−1 aD is iso
=

(e′p,D ◦aD)
−1 e′p,D◦aD is iso

= (e′p,D ◦aD)
−1 ◦ e′p,D ◦aD ◦ (e′p,D ◦aD)

−1. By aD,(e′p,D ◦aD)
−1 are

isomorphisms, composition aD ◦ (e′p,D ◦aD)
−1 is an iso- and therefore, also epi-morphism,

i.e., a−1
D = (e′p,D ◦aD)

−1 ◦ e′p,D. Therefore, aD ◦ (e′p,D ◦aD)
−1 ◦ e′p,D = aD ◦a−1

D
aD is iso
= idDC

and furthermore, e′p,D ◦ aD ◦ (e′p,D ◦ aD)
−1 = idDC′ . Thus, e′p,D is an isomorphism. Fur-

thermore, e′p is type strict for all nodes a(P) in C, since, e′p ◦ a ∈M is type strict, and
furthermore e′p is type strict for all nodes n ∈C \a(P) in C that are not in P, since, condi-
tion acP is type strict and therefore, the type of node n cannot be refined along e′p. Thus
according to Rem. 2.3, e′p is in M . Hypothesis. The result holds for conditions acC and
acP,i, i ∈ I. Step. For acP = ∃(a : P→C ∈M ,acC), we conclude analogously to the base
case from before where p |= acP implies mp |= ∃(a′,Merge(e′p,acC)) for some commuting
diagram (1)+ (2)+ (3) with (a′,e′p) being jointly epimorphic by construction Def. 2.16,
i.e., mq |= Merge(e′p,acC). By Lem. 3.11, e′p ∈ E and therefore, mq ◦ e′p is an extremal
E -M factorisation of itself. By Rem. 2.13, mq ◦ e′p |= acC and furthermore by induction
hypothesis, mq ◦ e′p |= acC, i.e., p |= acP. For acP = ∨i∈I(acP,i), p |= acP implies that
mp |= Merge(ep,acP) = ∨i∈I(Merge(ep,acP,i)) by Def. 2.16 and Rem. 2.13 with extremal
E -M factorisation mp ◦ ep = p. Thus, mp |= Merge(ep,acP,i) for some i ∈ I implying
further that p |= acP,i by Rem. 2.13. By induction hypothesis, p |= acP,i and therefore,
p |= acP. For acP = ∧i∈I(acP,i), we conclude analogously.

For non-positive conditions acP = ¬ac′P and extremal E -M factorisation mP ◦ ep = p we

conclude as follows: p |= acP
De f . 2.12⇔ ¬(p |= ac′P)

Hypothesis⇔ ¬(p |= ac′P)
Rem. 2.13⇔ ¬(mp |=

Merge(ep,ac′P))
De f . 2.12⇔ mp |= ¬Merge(ep,ac′P)

De f . 2.16
= Merge(ep,acP)

Rem. 2.13⇔ p |= acP.

A.2 Proof of Sec. 2.2.3 and Prop. 2.2

P C

G

P′ C′
O

O′

acC

(2)(1)

(3)
(4)

(5)

a

p

q

ep eq

mp

mq

o1 o2

o′1 o′2

y

x

144

APPENDIX A. DETAILED PROOFS

We prove the result for positive conditions at first and for non-positive conditions afterwards.
By induction over the structure of nested conditions: Let mp ◦ ep = p be an extremal E -M
factorisation of p ∈ O .

“⇒” Basis. For acP = true, p |= ∃(ep ∈ EP, true). By construction Def. 2.18, acP =
∨e∈EP(∃(e, true)) and therefore, p |= acP. For acP = ∃(a : P→ C, true), p |=O acP im-
plies that there is q ∈ O with q ◦ a = p. Let mq ◦ eq = q be an extremal E -M fac-
torisation of q. We construct pullback (o1,o2) over (mp,mq) with induced morphism x
such that (1) and (2) commute. We construction pushout (3) with o1,o2,o′1,o

′
2 ∈M ,

since, M -morphisms mp,mq ∈ M are closed under pullbacks and pushouts, and in-
duced morphism y ∈M such that (4) and (5) commute by effective pushouts. Thus,
mp |= ∃(o′1, true). It remains to show that ∃(o′1, true) is in Merge(ep,acP) which would
imply that mp |= Merge(ep,acP) implying further that p |= acP by Rem. 2.13. As already
shown, o′1 ∈M . Furthermore, (1)+(2)+(3) commutes, since (1),(2) and (3) commute,
respectively. By q ∈ O and Rem. 2.3, qG is injective except perhaps for data part qD, i.e.,
mq ◦ eq = q implies that eq,G is injective except perhaps for data part eq,D. By o′2 ∈M ,
o′2 is injective and therefore, o′2,G ◦ eq,G is injective except perhaps for data part o′2,D ◦ eq,D,
i.e., o′2 ◦ eq ∈ O . By Lem. 3.9 and Item 3 with o′1 ∈M ,eq ∈ E and (o′1,o

′
2) being jointly

epimorphic by pushout (3), (o′1,o
′
2 ◦ eq) is jointly epimorphic. Therefore, ∃(o′1, true) is in

Merge(ep,acP). Hypothesis. The result holds for conditions acC and acP,i, i ∈ I. Step.
For acP = ∃(a : P→C,acC), we conclude analogously to the base case from before. It re-
mains to show that y |= Merge(o′2 ◦ eq,acC) which would imply that mp |= Merge(ep,acP)
implying further that p |= acP. By Lem. 3.11, (1)+(2)+(3) being commuting, ep ∈ E and
(o′1,o

′
2 ◦eq) being jointly epimorphic, it follows that o′2 ◦eq ∈ E . Furthermore, by (5) com-

mutes and the uniqueness of extremal E -M factorisations with y ∈M , y ◦ (o′2 ◦ eq) = q
is the extremal E -M factorisation of q. By p |=O acP it follows that q |=O acC implying
further by induction hypothesis that q |= acC, i.e., y |= Merge(o′2 ◦ eq,acC) by Rem. 2.13.
For acP = ∨i∈I(acP,i), p |=O acP implies p |=O acP,i for some i ∈ I. By induction hy-

pothesis, p |= acP,i
Rem. 2.13⇒ mp |= Merge(ep,acP,i)⇒ mp |= ∨i∈I(Merge(ep,acP,i))

De f . 2.16
=

Merge(ep,acP)
Rem. 2.13⇒ p |= acP. For acP = ∧i∈I(acP,i), we conclude analogously.

“⇐” Basis. For acP = true, p |=O acP. For acP = ∃(a : P→C, true), p |= acP implies mp |=
Merge(ep,acP) by Rem. 2.13. Thus, by construction Def. 2.16, there is some diagram
(1)+(2)+(3) which commutes and with o′2 ◦eq ∈O and y ∈M such that (4) commutes.
Therefore, by Rem. 2.3, y◦o′2 ◦ eq ∈ O and furthermore, (1)+(2)+(3)+(4) commutes,
i.e., p |=O acP. Hypothesis. The result holds for conditions acC and acP,i, i ∈ I. Step.
For acP = ∃(a : P→ C,acC), p |= acP additionally implies that y |= Merge(o′2 ◦ eq,acC)
and (o′1,o

′
2 ◦ eq) are jointly epimorphic. By Lem. 3.11, o′2 ◦ eq ∈ E and furthermore by

the uniqueness of extremal E -M factorisations, y ◦ (o′2 ◦ eq) is the extremal E -M fac-
torisation of itself. Thus by Rem. 2.13, y ◦ o′2 ◦ eq |= acC implying further by induction
hypothesis that y◦o′2 ◦ eq |=O acC, i.e., p |=O acP. For acP = ∨i∈I(acP,i), p |= acP implies
that mp |= Merge(ep,acP) = ∨i∈I(Merge(ep,acP,i)) by Def. 2.16 and Rem. 2.13. Thus,
mp |= Merge(ep,acP,i) for some i ∈ I implying further that p |= acP,i by Rem. 2.13. By
induction hypothesis, p |=O acP,i and therefore, p |=O acP. For acP = ∧i∈I(acP,i), we con-
clude analogously.

For non-positive conditions acP =¬ac′P we conclude as follows: p |=O acP
De f . 2.12⇔ ¬(p |=O ac′P)

Hypothesis⇔ ¬(p |= ac′P)
Rem. 2.13⇔ ¬(mp |= Merge(ep,ac′P))

De f . 2.12⇔ mp |= ¬Merge(ep,ac′P)
De f . 2.16

=

Merge(ep,acP)
Rem. 2.13⇔ p |= acP.

145

A.3 Proof of Sec. 3.1 and Thm. 3.1

Let C = (GraphsTG,fin,Mfin) be the finitary M -adhesive category of finite graphs typed over
finite type graph TG together with the class Mfin of injective morphisms. Note that C has E -
M -factorisation and M -initial object ∅ such that Lem. 3.1 can be used. The same is true
for the category C′ = (GraphsTG′,fin,Mfin) with TG′ ⊇ TG. The undecidability is shown by a
reduction from the undecidable tautology problem of (finite) nested graph constraints (cf. Cor.
9 in [HP09]), i.e., for a given (finite) set of (finite) constraints C over M -initial object ∅ in
C it is undecidable, whether C is satisfied by every graph in C (∗1). By Fact 6 in [HP09], for
each constraint over the M -initial object ∅, there is an equivalent constraint over ∅ in M -
normal form. Thus, (∗1) does also hold for constraints C in M -normal form (∗2). The results
from [HP09] can be directly applied to category C by expressing labels by types and the finite
label alphabet by a finite type graph TG. Furthermore, the results from [HP09] can be directly
transferred from weak adhesive HLR categories with E -M -factorisation, M -initial object and
strict M -decomposition to M -adhesive categories having these properties (like C), since, only
basic HLR properties and general categorical properties are additionally used in the proofs. The
reduction is given by a computable mapping from C = (c j) j∈J and TG to TG′ and the set of
constraints C′ = {true} together with a grammar GG = (S,P), both typed over TG′, with empty
start graph S =∅ and productions P that are defined as follows.

:T
++T...

T1

Tn

t1

tn :Ti :Tj
:t

++
:T

NAC:T :t
++

:T
NAC

:T
++

:Ti :T
:ti

++

TG =
aT art at T t i

Type graph TG′ = TG+VTG TG,VTG = {T1, . . . ,Tn} is TG extended by node T and edges t i to T
from each node Ti ∈ TG with inclusion it : TG→ TG′. We define the obvious functor F : C→C′
with F((G, typeG)) := (G, it ◦ typeG) and F(m) := m, for all (G, typeG) ∈ ObC and m ∈ MorC
which is naturally extended to the mapping F(C) of sets C of constraints inductively defined by:

F(true) := true,
F(∃(a : P→C,c)) := ∃(F(a) : F(P)→ F(C),F(c)),

F(¬c) := ¬F(c),
F(∧ j∈J(c j)) := ∧ j∈J(F(c j)), and

F(∨ j∈J(c j)) := ∨ j∈J(F(c j))

The mapping F(C) is given by F(C) := ∪c∈C({F(c)}). Obviously, for all G ∈ C, all sets of
constraints C and all G′ ∈ C′ with inclusions iG : F(G)→ G′ and typeG′(e) ∈ TG′ \ it(TG),∀e ∈
G′ \ iG(F(G)), it holds that G |= C⇔ G′ |= F(C) (∗3). For each node T ∈ TG there is a plain
rule aT ∈ P defined that creates a single node of type T . For each edge t ∈ TG with source Ti

and target Tj there is a rule (at ,NAC) ∈ P defined that creates an edge of type t between existing
source and target nodes : Ti and : Tj but only if there does not already exist a node of type T .
For each reflexive edge t ∈ TG on node T there is a rule (art ,NAC) ∈ P defined that creates a
reflexive edge of type t on node : T but only if there does not already exist a node of type T .
Additionally, there is rule (T ,LA(T ,F(C))) ∈ P defined that creates a single node of type T and
for each edge t i ∈ TG′ from node Ti to T there is a rule (t i,LA(t i,F(C))) ∈ P defined that creates
an edge of type t i between nodes : Ti and : T. Note that the last rules are only applicable if
the application conditions LA(T ,F(C)) and LA(t i,F(C)) are satisfied, respectively, which are
obtained from conditions C as given in Lem. 3.1. We assume M -matching for rule applications.
If neglecting the application conditions for rules T and t i, then L (GG) contains all graphs in
C′ (∗4). It remains to show that C is satisfied by all graphs in C if and only if L (C′)⊆L (GG)

146

APPENDIX A. DETAILED PROOFS

holds in C′. Then, assuming that the language inclusion problem is decidable would imply that
the tautology problem is decidable leading to a contradiction by (∗2).

“⇒” We need to show that the tautology of C in C implies that L (GG) contains all graphs
in C′, since, L (C′) contains all graphs in C′. By contradiction, assume that there
is some G ∈ C′ with G 6∈ L (GG). Thus by (∗4), there is some G′ ∈ C′, production
(p : L → R,LA(p,F(C))) ∈ P with p = T or p = t i and match m : L → G′ such that
m 6|= LA(p,F(C)). By Lem. 3.1, it follows that G′ 6|= F(C). By definition of C,C′ and
F , there exists G′′ ∈C with inclusion iG′′ : F(G′′)→G′ and typeG′(e) ∈ TG′ \ it(TG),∀e ∈
G′ \ iG′′(F(G′′)). By (∗3), G′′ 6|=C.

“⇐” We need to show that if L (GG) contains all graphs in C′, then C is satisfied by every
graph in C. By contradiction, assume that there is some G ∈ C with G 6|=C.

Case G =∅ We consider a graph G′ ∈ C′ which consists of a single : T node only. By (∗3),
F(G) 6|= F(C). By Lem. 3.1, for all matches m : L→ F(G) from production T : L→
R it is true that m 6|= LA(T ,F(C)). Thus, G′ 6∈L (GG), since, (T ,LA(T ,F(C))) is
the only rule in P that creates : T nodes.

Case G 6=∅ We consider a graph G′ ∈ C′ which is G on the it(TG) part and where all nodes : Ti

typed over it(TG) are connected to a single : T node via : ti edges. By the construc-
tion of P with NACs for rules at and art it is guaranteed that rule (t i,LA(t i,F(C))) is
the last rule applied via a match m : L→G′′ to obtain G′ with inclusion iG : F(G)→
G′′ and typeG′′(e) ∈ TG′ \ it(TG),∀e ∈ G′′ \ iG(F(G)). By (∗3), G′′ 6|= F(C) and fur-
thermore by Lem. 3.1, m 6|= LA(t i,F(C)). Thus, G′ 6∈L (GG).

Finally, GG is non-deleting by construction, P is finite, since, TG is finite and furthermore,
all application conditions in P are finite and in M -normal form by construction, since,
F(C) preserves the finiteness of set C and the finiteness and M -normal form of each
c j ∈ C. Furthermore, transformation LA leads to finite conditions by the finiteness of
set F(C) for conjunction ∧ j∈J and the fact that transformation A preserves the finiteness
of each c j ∈ F(C) by the finiteness of the graphs in C′ (cf. [HP09]). As we assume
M -matches for rule applications only, all application conditions over L that are not in
M -normal form can be transformed into equivalent application conditions over L in M -
normal form. The construction and proof is identical to Def. 5 and the proof of Fact 6 in
[HP09]. C′ is trivially finite and in M -normal form.

A.4 Proof of Sec. 3.2 and Thm. 3.4

The termination of the verification of both conditions is considered separately implying further
the termination of the verification of domain completeness up to the given upper bound.

1. For C-extension completeness we conclude as follows. The set of atoms that are typed
over the type graph is finite up to isomorphism, since, the type graph is finite. Due to the
fact that upper bound Gu is finite, the set of graphs GraphsGu = {G | G ∈L (TG),∃G→
Gu ∈M } is finite up to isomorphism as well as its computation terminates and there-
fore, also the set of graphs L (C)Gu ⊆ GraphsGu is finite up to isomorphism. The check
whether G ∈ GraphsGu is also in L (C)Gu , i.e., G ∈ L (C)Gu , terminates in each case,
since, G is finite by finite upper bound Gu, C is finite and moreover, each constraint c ∈ C

147

is finite with a finite number of nestings. Therefore, the set of effective atoms EAtoms(C)
is finite up to isomorphism and furthermore, the identification of their effectiveness w.r.t.
L (C)Gu terminates, since, for each atom a we can iterate over finite L (C)Gu in order to
find G ∈L (C)Gu with inclusion a→ G ∈M . The inclusion checking terminates in each
case, since, G is finite by finite upper bound Gu. Note that if a graph G is significant w.r.t.
L (C)Gu (∃G→ H ∈M ,H ∈L (C)Gu), then G is finite, since, all graphs in L (C)Gu are
finite by finite upper bound Gu and so their M -subobjects G. Concerning the extensions
Extensions(a,C) of each effective atom a, all graphs in Extensions(a,C) are significant
w.r.t. L (C)Gu by construction Def. 3.5 and therefore also finite. Note that if a graph G is
significant w.r.t. L (C)Gu (∃i1 : G→H ∈M ,H ∈L (C)Gu with i2 : H→Gu ∈M by defi-
nition of L (C)Gu), then G ∈GraphsGu , since, ∃i2 ◦ i1 : G→Gu ∈M by M -composition.
Thus, GraphsGu contains all graphs that are significant w.r.t. L (C)Gu . Therefore, the
fact that Extensions(a,C) only contains graphs that are significant w.r.t. L (C)Gu and that
set GraphsGu is finite implies that each extension E ∈ Extensions(a,C) is a finite set of
graphs up to isomorphism. Note that the power set P(GraphsGu) of the set GraphsGu

of significant graphs w.r.t. L (C)Gu is finite by the finiteness of GraphsGu . Thus, as
Extensions(a,C) only contains significant graphs w.r.t. L (C)Gu , P(GraphsGu) repre-
sents all possible extensions and therefore, Extensions(a,C) is a finite set of extensions up
to isomorphism. Finally, we can iterate over all effective atoms a ∈ EAtoms(C), iterate
over all extensions E ∈ Extensions(a,C) and check for each graph G ∈ E whether G can
be created via grammar GG from the empty start graph. The check terminates for each G,
since, the set of rules of GG is finite and each rule is non-deleting and non-trivial, i.e., the
number of branches of direct transformation steps are finite at each step and the graph is
extended by at least one element (node, edge or attribute) after each step and therefore, for
each branch, we stop if the size of the graph is bigger than finite G. The verification of
the satisfaction of application conditions of rules in each step terminates, since, the condi-
tions are finite with a finite number of nestings. Therefore, the verification of C-extension
completeness terminates.

Note that construction Def. 3.5 for constructing the Extensions(a,C) of each effective
atom a terminates as shown below and therefore, the construction can be directly used as
algorithm to compute the extensions. At each extension via extend(GE ,acP,m), the num-
ber of overlappings of GE and C via P′ in extend(GE , f ,m) is finite up to isomorphism in
each case, since, all conclusions C of all constraints are finite graphs. Analogously to the
identification of the effectiveness of atoms w.r.t. L (C)Gu , the identification of the signifi-
cance of graphs w.r.t. L (C)Gu terminates. Furthermore, the constraints acP are finite with
a finite number of nestings leading to a finite number of iterations via extend(GE ,acP,m),
i.e., each extension via extend(GE ,acP,m) terminates. Moreover, the set of constraints C
is finite, the premise of each constraint is a finite graph and therefore, the set of instances
Inst(C) of C is finite up to isomorphism. Therefore, there are finitely many extensions via
extend(GE ,acP,m) for each graph of an extension, which is again a finite set of graphs
as shown above. Therefore, we can step-wise compute extensions and stop a branch if it
yields an extension that was already computed. The procedure terminates, since, there are
only finitely many Extensions(a,C) as shown above.

2. For C-conflict-freeness of marking rules we conclude as follows. Note that GraphsGu is
finite up to isomorphism and the set of all graphs that are significant w.r.t. L (C)Gu as
shown above. Therefore, we can iterate over all graphs O ∈ GraphsGu in order to collect
all critical pairs with conflict graph O that are significant w.r.t. L (C)Gu . The procedure

148

APPENDIX A. DETAILED PROOFS

terminates, since, the set of rules of GG and therefore the set of all their combinations
is finite, all graphs are finite for matching and all application conditions are finite with
a finite number of nestings such that verifying their satisfaction terminates. Finally, we
can iterate over the finite set of critical pairs that are significant w.r.t. L (C)Gu and check
if each pair is strictly confluent. The confluence analysis terminates in each case, since,
we have finitely many non-trivial marking rules where each direct transformation step via
marking rules updates at least one marking attribute from F to T until there is no applicable
marking rule anymore or all marking attributes in finite O are set to T.

A.5 Proof of Sec. 3.2 and Lem. 3.2

The main part of this result has been shown already in [HEO+11] for the more complex setting of
triple graphs based on the fully formalised concepts for translation attributes [HEGO10]. Hence,
we reuse that equivalence result for triple sequences for the present case. First, note that each
graph H can be extended to a triple graph I (H) = (H←∅− ∅−∅→ ∅) with empty correspondence
and target component via inclusion functor I . Moreover, each rule (morphism) (r : L→ R) ∈ P
can be extended to a triple rule (morphism) I (r) = (r,∅,∅) : I (L) → I (R) with empty
correspondence and target component via inclusion functor I . Given a set of rules P, then
I (P) = {I (p) | p ∈ P}. Analogously, each match morphism can be extended and each mark-

ing rule m(p) = (L
l←−↩ K

r
↪−→ R) can be extended to I (m(p)) = (I (L)

I (l)
←−−↩I (K)

I (r)
↪−−→I (R)).

We derive the equivalence as follows:
∃ transformation sequence (1) = (G⊕ AttF

G =
∗⇒ G⊕ AttT

Gk
⊕ AttF

G\Gk
) via marking rules

m(GG) with intermediate steps G′i =
(m′i,m(pi))
=====⇒ G′i+1

⇔ ∃ transformation sequence I (G)⊕AttF
I (G) =

∗⇒ I (G)⊕AttT
I (Gk)

⊕AttF
I (G)\I (Gk)

via mark-
ing rules I (m(GG))

⇔ ∃ a transformation sequence I (∅) =
∗⇒ I (Gk) via I (P) with injective embedding

I (f) : I (Gk)→I (G) by Sec. 2.3.3 and Fact 2.1
⇔ ∃ a transformation sequence (2) =∅=

∗⇒ Gk via P with injective embedding f : Gk→G and

with intermediate steps Gi =
(mi,pi)
===⇒ Gi+1 (by restriction to the source component).

The correspondence of rules between the intermediate steps G′i =
(m′i,m(pi))
=====⇒ G′i+1 in sequence (1)

and Gi =
(mi,pi)
===⇒ Gi+1 in sequence (2) follows from Lemma 1 in [HEO+11] and for the equiva-

lence of triple steps and corresponding marking (consistency creating) steps and its application
in the proof for Sec. 2.3.3 and Fact 2.1.

A.6 Proof of Sec. 3.2 and Lem. 3.3

Let GG = (S,P) be a graph grammar with a set P of non-deleting rules and m(GG) be the set
of derived marking rules of GG. Let G be a graph and let GG′ be a graph grammar given
by GG′ = (∅,P∪{pS = (∅→ S)}). Then, there is the transformation step ∅ =

pS
=⇒ S via GG′

and there is the transformation step G⊕AttF
G = G⊕AttF

S ⊕AttF
G\S =

m(pS)
===⇒ G⊕AttT

S ⊕AttF
G\S via

m(GG′). Using Lem. 3.2, this implies that the following are equivalent.

• ∃ a transformation sequence G⊕AttF
G = G⊕AttF

S ⊕AttF
G\S =

m(pS)
===⇒ G⊕AttT

S ⊕AttF
G\S =

∗⇒
G⊕AttT

G via marking rules m(GG).

• ∃ a transformation sequence ∅=
pS
=⇒ S =

∗⇒ G via P.

149

Since the first step in any of the two sequences is always possible, we derive the result of the
lemma.

A.7 Proof of Sec. 3.2 and Lem. 3.6

Let G ∈L (C),a ∈ A ∈ Atoms(G) with embedding e : a→ G ∈M and En ∈ Extensions(a,C).

We assume that En is derived by extension sequence (E j =
extend(a j

E ,c j,m j)
=========⇒ E j+1) j∈{0,...,n−1} with

E0 = {a},∀ j ∈ {0, . . . ,n− 1}.a j
E ∈ E j,(f j ∈ E ,O,c j) ∈ Inst(C),c j ≡ ∨i∈I∃(aci : P′j →C′i ,acC′i)

and m j : P′j → a j
E ∈M according to Def. 3.5. In the following we show that there is an

E ∈ En

with morphisms e1 : a→ an
E ∈M and e2 : an

E → G ∈M with e = e2 ◦ e1 by induction over
the extension sequence. For each step j of the sequence we conclude as follows. For graph
a j

E with embedding e j : a j
E → G ∈M , we derive extended graph a j+1

E ∈ E j+1 with embeddings
c j : a j

E → a j+1
E ∈M and e′j : a j+1

E → G ∈M and with e j = e′j ◦ c j as follows.

P

P′j P′′j

a j
E

G

a j+1
E

C′i

(1)
(2)

(3)

(4) (5)

acC′i

p j∈O

f j∈E ,O

aci∈M

m j∈M

e j∈M

p′j∈M

q′j∈M

ac′iai

m′j b j

c j

e′j

Let match p j : P→ G = p′j ◦ f j with p′j = e j ◦m j. By Sec. 2.2.2 and Rem. 2.3 with f j ∈ O and
m j,e j ∈M , p j ∈ O and p′j ∈M by M -composition. G ∈L (C) and Sec. 2.2.3 and Def. 2.19
imply that p′j |= c j. Therefore, p′j |= ∃(aci,acC′i) for some i ∈ I, i.e., there exists morphism
q′j : C′i → G ∈M with q′j ◦ aci = p′j. We construct pullback (ac′i,m

′
j) over morphisms (e j,q′j)

with e j ◦m′j = q′j ◦ ac′i
(∗1). By e j,q′j ∈M and M -morphisms are closed under pullbacks, it

follows that ac′i,m
′
j ∈M . By the universal pullback property with e j ◦m j = p′ = q′j ◦ aci we

obtain unique morphism ai : P′j→P′′j with commuting (2) and (3). Furthermore, aci,ac′i ∈M and
M -decomposition imply that ai ∈M . We construct pushout (1) over morphisms (m′j,ac′i). Since
ac′i,m

′
j ∈M and M -morphisms are closed under pushouts, it follows that b j,c j ∈M . By (∗1)

and the universal pushout property we obtain unique morphism e′j : a j+1
E → G with commuting

(4) and (5). By effective pushouts it follows that e′j ∈M . Thus, there is an embedding e′j
from extended graph a j+1

E to G, i.e., by assumption G ∈L (C) it follows that a j+1
E is significant

w.r.t. L (C) implying further that a j+1
E is also not C-inconsistent by Rem. 3.2. We can conclude

recursively for nestings acC′i of condition c j. By construction Def. 3.5 it follows that (b j,a
j+1
E) ∈

extend(a j
E ,c j,m j). Therefore, for an extension step E j =

extend(a j
E ,c j,m j)

=========⇒ E j+1 with graph a j
E ∈ E j

and embedding e j : a j
E→G∈M , it holds that there exists a graph a j+1

E ∈ E j+1 with embeddings
c j : a j

E → a j+1
E ∈M and e′j : a j+1

E →G∈M and with e j = e′j ◦c j. By induction over the steps s j

of extension sequence (s j : E j =
extend(a j

E ,c j,)
========⇒ E j+1) j∈{0,...,n−1}, we obtain the desired result, that

extension En contains a graph an
E with morphisms e1 : a→ an

E ∈M and e2 : an
E → G ∈M and

with e = e2 ◦ e1. Basis. For n = 1, we have extension step s0 : E0 = {a} =
extend(a,c0,)
=======⇒ E1 with

embedding e : a→ G ∈M for a ∈ A ∈ Atoms(G). By using the result from above, there exists

150

APPENDIX A. DETAILED PROOFS

graph a1
E ∈ E1 with embeddings e1 : a→ a1

E ∈M and e2 : a1
E → G ∈M and with e = e2 ◦ e1.

Hypothesis. There is an n ∈ N and extension sequence (s j : E j =
extend(a j

E ,c j,)
========⇒ E j+1) j∈{0,...,n−1}

with E0 = {a},e : a→G∈M ,∀ j ∈ {0, . . . ,n−1}.a j
E ∈E j,(,c j)∈ Inst(C) such that there exists

a graph an
E ∈ En with embeddings e1 : a→ an

E ∈M and e2 : an
E → G ∈M and with e = e2 ◦ e1.

Step. For n+1, we focus on the last step sn : En =
extend(an

E ,cn,)
========⇒ En+1 of the extension sequence.

Case (a) Let an
E ∈ En be a graph with embeddings e′1 : a→ an

E ∈M and e′2 : an
E → G ∈M

and with e = e′2 ◦ e′1, then we can apply the result from above for step sn and obtain graph

an+1
E ∈En+1 with embeddings a−e

′
1−→ an

E −
e1−→ an+1

E ∈M (by M -composition) and e2 : an+1
E →

G ∈M and with e′2 = e2 ◦ e1, i.e., e′2 ◦ e′1 = e2 ◦ e1 ◦ e′1⇒ e = e2 ◦ e1 ◦ e′1.

Case (b) Let an
E ∈En be a graph without the embeddings from Case (a), then there exists another

graph a′nE ∈ En with embeddings e1 : a→ a′nE ∈M and e2 : a′nE → G ∈M and with e =
e2 ◦ e1 by induction hypothesis. By Def. 3.5, it holds that a′nE ∈ En+1, since, graph a′nE is
not extended by step sn.

A.8 Proof of Sec. 3.2 and Lem. 3.7

Let A = (ai)i∈{1,...,n} ∈ Atoms(G) be the atoms of graph G ∈ L (C) which generally satisfies
the set of constraints C with induced morphisms (ei : ai → G ∈M)i∈{1,...,n} by Lem. 3.5. Let
fE ∈ SELECTE(A,C) be a function that selects a C-extension Ei ∈ Extensions(ai,C) for each
atom ai ∈ A. By Lem. 3.6, it follows that each C-extension Ei contains a graph ai

E ∈ Ei with
morphisms ei

1 : ai → ai
E ∈M and ei

2 : ai
E → G ∈M and with ei = ei

2 ◦ ei
1. Therefore, we can

define a function faE ∈ SELECTaE (A,C, fE) such that ∀ai ∈ A. faE (ai) = ai
E with morphisms

ei
1 : ai→ faE (ai) ∈M and ei

2 : faE (ai)→ G ∈M and with ei = ei
2 ◦ ei

1. It remains to show that
there exists the corresponding sequence of pushouts (POE

k +GE
k

faE (ak+1) = POE
k+1)k∈{1,...,n−1}

with pushout objects POE
k+1, POE

1 = faE (a1) and POE
n = G. By induction over the list of atoms

(ai)i∈{1,...,n} we conclude as follows. For n = 1 the assumption holds trivially. Basis. For n = 2
we focus on the diagram below (right). By Lem. 3.5, there exists pushout (f ′n−1 ∈M ,en ∈M)
over (gn−1 ∈M , fn−1 ∈M) with POn−1 = an−1,POn = G and f ′n−1 = en−1. Furthermore, let
POE

n−1 = faE (an−1),en−1
1 = en−1

1 ∈M and en−1
2 = en−1

2 ∈M such that (3) commutes. Analo-
gously, commuting (4) is given with en

1,e
n
2 ∈M . We can construct pullback (1) by en−1

2 ∈M
with GE

n−1→ faE (an),GE
n−1→ POE

n−1 ∈M by M -morphisms are closed under pullbacks. Anal-
ogously, we can construct pullback (2) with G′n−1 → an ∈M . By pullback composition, also
(1)+ (2) is a pullback with induced unique morphism Gn−1 → G′n−1 and commuting (5) and
(6) by universal pullback property. By M -pushout-pullback decomposition with the outer
pushout diagram, commuting (3),(4) and (6), pullback (1)+ (2), and en−1

2 ,gn−1 ∈M , it fol-
lows that (1)+ (2) is a pushout. Again by M -pushout-pullback decomposition with pushout
(1)+(2), pullback (1), and G′n−1→ an,en

2 ∈M , it follows that (1) is the requested pushout with
POE

n = POn = G.

For n = 3 we focus on the diagram below (left) with k = 1. By Lem. 3.5, there exists pushout (7)

with PO1 = a1 and induced morphisms e1 : a1 −f
′
1−→ PO2 −f

′
2∈M−−−→ G ∈M ,e2 : a2 −g

′
1−→ PO2 −f

′
2∈M−−−→

G ∈M . Furthermore, let POE
1 = faE (a1) with e1

1 = e1
1 ∈M and e1

2 = e1
2 ∈M implying fur-

ther that (7a) and (7b) commute. We construct effective pushout (8) over (e1
2,e

2
2) with all

morphisms in M by M is closed under pushouts and pullbacks, pullback (8) + (8a) + (8b)
and induced morphism e2

2 ∈M such that (8a) and (8b) commute. By the universal pushout

151

property of (7) with f ′1 ◦ g1
(7)
= g′1 ◦ f1 ⇒ f ′2 ◦ f ′1 ◦ g1 = f ′2 ◦ g′1 ◦ f1 there is a unique morphism

PO2 → G = f ′2 ∈M such that (7a)+ (8a)+ (8c) and (7b)+ (8b)+ (8d) commute. Again by

the universal pushout property of (7) with f ′2 ◦ f ′1 ◦ g1 = f ′2 ◦ g′1 ◦ f1 ⇔ e1 ◦ g1 = e2 ◦ f1
(7a),(7b)⇒

e1
2 ◦e1

1 ◦g1 = e2
2 ◦e2

1 ◦ f1
(8a),(8b)⇒ e2

2 ◦a1 ◦e1
1 ◦g1 = e2

2 ◦b1 ◦e2
1 ◦ f1

e2
2 is mono
⇒ a1 ◦e1

1 ◦g1 = b1 ◦e2
1 ◦ f1,

there is morphism e2
1 such that (8c) and (8d) commute. Thus, for e2

2 ◦ e2
1, (7a)+(8a)+(8c) and

(7b)+(8b)+(8d) commute, i.e., the uniqueness of morphism f ′2 ∈M implies that f ′2 = e2
2 ◦ e2

1.
By M -decomposition with e2

2 ∈M it follows that e2
1 ∈M . By Lem. 3.5, there exists pushout

(f ′2 ∈M ,e3 ∈M) = (1)+ . . .+(6) over (gn−1 ∈M , fn−1 ∈M) in the diagram below (right)
with PO3 = G, e2

1,e
2
2, f ′2 ∈M from above such that (3) commutes. Analogously to base case

with n = 2, we obtain puhsout (1) leading to the requested sequence of pushouts (8) and (1) with
pushout object POE

3 = G.

POn−1 anGE
n−1

Gn−1

POE
n = POn = G

POE
n−1 faE (an)

G′n−1

(1)

(2)

(3) (4)

(5)

(6)

Gk

POk ak+1

G

POk+1

POE
k faE (ak+1)

POE
k+1

GE
k

(7)

(8)
(7a) (7b)

(8a) (8b)

(8c) (8d)

gn−1 fn−1

f ′n−1 en

en−1
1

en−1
2

en
1

en
2

gk fk

f ′k g′k

f ′n−1◦...◦ f ′k f ′n−1◦...◦ f ′k+1◦g′k

ek
1

ek
2

ek+1
1

ek+1
2ek+1

2

ek+1
1

Hypothesis. There is n ∈ N such that for given pushout (7) with k = 1, for given induced mor-

phisms PO1 −f
′
1−→ PO2 −

f ′n−1◦...◦ f ′2∈M−−−−−−−−→ G ∈M and e2 : a2 −g
′
1−→ PO2 −

f ′n−1◦...◦ f ′2∈M−−−−−−−−→ G ∈M according
to Lem. 3.5, and for given POE

1 with morphisms e1
1,e

1
2 ∈M such that (7a) commutes, the fol-

lowing holds: There exists a sequence of pushouts (POE
k +GE

k
faE (ak+1) = POE

k+1)k∈{1,...,n−1}
with pushout objects POE

k+1, all morphisms being in M and POE
n = G. Step. For n+1 and the

first pushout in the sequence (k = 1), we can conclude analogously to the base case for n = 3
with induced morphisms e1 : a1 −f

′
1−→ PO2 −f

′
n◦...◦ f ′2∈M−−−−−−−→ G ∈M and e2 : a2 −g

′
1−→ PO2 −f

′
n◦...◦ f ′2∈M−−−−−−−→

G ∈M and obtain pushout (8) and morphisms e2
1 : PO2→ POE

2 ,e
2
2 : POE

2 → G ∈M such that
f ′n ◦ . . .◦ f ′2 = e2

2 ◦ e2
1. By Lem. 3.5, there exists pushout (7) with k = 2 and induced morphisms

PO2−f
′
2−→ PO3−f

′
n◦...◦ f ′3∈M−−−−−−−→ G∈M and e3 : a3−g

′
2−→ PO3−f

′
n◦...◦ f ′3∈M−−−−−−−→ G∈M . Thus, by induction hy-

pothesis there exists the remaining sequence of pushouts (POE
k +GE

k
faE (ak+1) = POE

k+1)k∈{2,...,n}
with pushouts objects POE

k+1, all morphisms being in M and POE
n+1 = G.

A.9 Proof of Sec. 3.2 and Lem. 3.12

The proof is based on the structure and satisfaction of conditions (cf. Def. 2.12) as well as
the construction of merge (cf. Def. 2.16). By the satisfaction of conditions, the equivalence
Merge(b2,Merge(b1,acP))≡Merge(b2 ◦b1,acP) means that for all morphisms p : P′′→ G ∈O
to some G it is true that p |= Merge(b2,Merge(b1,acP)) if and only if p |= Merge(b2 ◦b1,acP).

152

APPENDIX A. DETAILED PROOFS

We prove this equivalence by induction over the number i of nestings of acP where the number
of nestings is given by the number of successive morphisms in acP. For i = 0 (induction base),
the equivalence is shown by induction over the structure of condition acP.

(base case acP = true) By the merge construction, it follows that acP = true = Merge(b1,acP)
= Merge(b2,Merge(b1,acP)) = Merge(b2 ◦b1,acP). Therefore, the equivalence holds.

(base case acP = ∃(a : P ↪−→C, true))

“⇒” By the satisfaction of conditions
and the merge construction, p |= Merge(b2,Merge(b1,acP)) implies that there ex-
ists diagrams (1) and (2) such that (1) commutes (∗1) and (2) commutes (∗2) with
b′1,b

′
2 ∈ O,a′,a′′ ∈M and (b′1,a

′) as well as (b′2,a
′′) being jointly epimorphic.

P

acP

P′ acP′

P′′

acP′′

C

acC

C′acC′

C′′acC′′

(1)

(2)

(=)
G

a′∈M

a′′∈M

a∈M

q∈M

b′1∈O

b′2∈O b2

b1

p

acC′ = Merge(b′1,acC),acC′′ = Merge(b′2,acC′)
acP′ = Merge(b1,acP),acP′′ = Merge(b2,acP′)

Furthermore, p |= ∃(a′′,acC′′) with acC′′ = Merge(b′2,acC′). This implies that there
exists a morphism q : C′′→ G ∈M with q◦a′′ = p and q |= acC′′

(∗3). By the com-
position of O-morphisms (cf. Lem. 3.8, item 1), it follows that b′2 ◦ b′1 ∈ O . By
the composition of jointly epimorphic pairs of morphisms (cf. Lem. 3.9, item 1)
and (∗2), it follows that (b′2 ◦ b′1,a

′′) is a pair of jointly epimorphic morphisms. Di-
agram (1) + (2) commutes, since, (∗1) implies b′1 ◦ a = a′ ◦ b1 =⇒ b′2 ◦ b′1 ◦ a =

b′2◦a′◦b1
(∗2)
=⇒ b′2◦b′1◦a= a′′◦b2◦b1. Therefore, aci = ∃(a′′,Merge(b′2◦b′1,acC)) is

a condition of Merge(b2 ◦b1,acP) = ∨iaci. Furthermore, by the merge construction,
acC = true implies Merge(b′2,acC′)=Merge(b′2◦b′1,acC)= true. Therefore, by (∗3),
q |= Merge(b′2 ◦b′1,acC). Thus, p |= aci and furthermore, p |= Merge(b2 ◦b1,acP).

“⇐” By the satisfaction of conditions and the merge construction, p |= Merge(b2 ◦
b1,acP) implies that there exists an outer diagram with morphisms (a,b′,b2 ◦b1 and
a′) such that the diagram commutes (∗1

a) with b′ ∈O,a′ ∈M ,a∈M (we assume con-
ditions in M -normal form) and (a′,b′) being jointly epimorphic (∗1

b). Furthermore,
there exists a morphism q : C′′→ G ∈M with q◦a′ = p and q |= acC′′

(∗1
c). For the

M -adhesive category (AGraphsATGI,M) (cf. [GLEO12] Thm. 7), we can use the
properties from Def. 4.9 and Fact 2.20 in [EEPT06] (M -morphisms are closed under
composition, decomposition, pushouts and pullbacks; pushouts and pullbacks exist
along M -morphisms; pushouts are closed under composition).
Since a′ ∈M and pullbacks exist along M -morphisms in AGraphsATGI , we can
construct the pullback (C,c,b′′) over morphisms (a′,b′). By M is closed under
pullbacks, from a′ ∈M it follows that c ∈M . By (∗1

a) and the universal pullback
property, there exists a morphism a : P→C with c◦a= a (∗2). By M -decomposition

153

an (∗2), it follows that a∈M . Since a∈M and pushouts exist along M -morphisms
in AGraphsATGI , we can construct pushout (1) over morphisms (a,b1). Analogously,
since c ∈M , we can construct pushout (2) over morphisms (c,b′1). By pushout
composition, it follows that (1)+(2) is a pushout with c◦a ∈M , since, M is closed
under composition. Since M is closed under pushouts, it follows that c′ ◦ a′ ∈M
(∗3). By (∗1

a),(∗2) and the universal pushout property, it follows that there exists a
morphism c′ : C′→C′′ with c′ ◦ b′′1 = b′ (∗

4) and c′ ◦ c′ ◦ a′ = a′ ◦ b2
(∗5). By b′ ∈ O ,

(∗4) and Lem. 3.8, item 2(a), it follows that b′′1 ∈ O (∗6). By (1)+(2) being a pushout,
it follows that (1)+(2) commutes and (b′′1,c

′ ◦a′) are jointly epimorphic (∗7) (cf. Fact
2.17, item 2 in [EEPT06]). By (∗2), (∗3), (∗6), (∗7) and the merge construction, it
follows that (1)+(2)+(4) is a diagram of Merge(b1,acP).

P

acP

C

P′ acP′

P′′

acP′′

C

acC

C′ C′acC′

C′′

acC′′

C′′ acC′′

(1)(2)

(3)

(4)

(5)

(=)

G

a∈M

a′∈M

q∈M

b1∈E

b′∈O

b2

p

a′c′

c′

b′′1

b′2

c′′
a′′

c

b′1

a

b′′

acC′ = Merge(b′′1,acC),acC′′ = Merge(b′,acC),acC′′ = Merge(b′2,acC′)
acP′ = Merge(b1,acP),acP′′ = Merge(b2 ◦b1,acP)

It remains to show that diagram (3)+(5) is a diagram of Merge(b2,Merge(b1,acP))
and that p |= Merge(b2,Merge(b1,acP)).
Since c′◦a′ ∈M (cf. (∗3)) and pushouts exist along M -morphisms in AGraphsATGI ,
we can construct pushout (3) over morphisms (c′ ◦a′,b2). By (∗5) and the universal
pushout property, there exists a morphism c′′ : C′′ → C′′ with c′′ ◦ b′2 = c′ (∗

8
a) and

c′′ ◦ a′′ = a′ (∗
8
b). Furthermore, (3) being a pushout implies that (3) commutes and it

follows that b′2 ◦ c′ ◦ a′ = a′′ ◦ b2 =⇒ c′′ ◦ b′2 ◦ c′ ◦ a′ = c′′ ◦ a′′ ◦ b2
(∗8

b)= a′ ◦ b2, i.e.,
diagram (3)+(5) commutes (∗9). Since, morphisms (a′,b′) are jointly epimorphic (cf.

(∗1
b)) and (a′,b′)

(∗4)
= (a′,c′ ◦ b′′1)

(∗8
a)= (a′,c′′ ◦ b′2 ◦ b′′1), it follows that (a′,c′′ ◦ b′2) are

jointly epimorphic morphisms (∗10) (cf. Lem. 3.9, item 2). It remains to show that c′′◦
b′2 ∈O for showing that diagram (3)+(5) is a diagram of Merge(b2,Merge(b1,acP)).
Since, a∈M and b′ ∈O (cf. (∗1

b)) it follows that b′◦a∈O . Furthermore, b′◦a= a′◦
b2◦b1 (cf. (∗1

a)) implies that b1 ∈O by Lem. 3.8, item 2(a). Since, b1 ∈O and b1 ∈ E
by assumption it follows that b1,S is an isomorphism (cf. Lem. 3.10). Thus, b′′1,S is an

154

APPENDIX A. DETAILED PROOFS

isomorphism, since, pushouts preserve isomorphisms and so do pushouts (1) and (2).

By Lem. 3.8, item 2(b), b′′1,S being an isomorphism, b′ ∈ O (cf. (∗1
b)) and b′

(∗4)
= c′ ◦

b′′1
(∗8

a)= c′′◦b′2◦b′′1 implies that c′′◦b′2 ∈O (∗11). Therefore, by a′ ∈M (cf. (∗1
b)), (∗9),

(∗10), (∗11) and the merge construction it follows that diagram (3)+(5) is a diagram
of Merge(b2,Merge(b1,acP)) with acC′′ = Merge(c′′ ◦b′2,Merge(b′′1,acC)) = true by
assumption acC = true and the merge construction.
Therefore, aci = ∃(a′,acC′′) = ∃(a′, true) is a nested-condition
of Merge(b2,Merge(b1,acP)) = ∨iaci. Thus, q |= acC′′ and furthermore by (∗1

c) it
follows that p |= aci and thus, p |= Merge(b2,Merge(b1,acP)).

(induction step acP = ∨i∈IacP,i) By showing the equivalence for the base cases, it follows
that Merge(b2,Merge(b1,ac)) ≡ Merge(b2 ◦ b1,ac) for some ac (hypothesis of the
structural induction). We assume the hypothesis for all acP,i. By the merge con-
struction, it follows that Merge(b2,Merge(b1,acP)) = Merge(b2,∨i∈IMerge(b1,acP,i)) =
∨i∈IMerge(b2,Merge(b1,acP,i)) and Merge(b2 ◦b1,acP) = ∨i∈IMerge(b2 ◦b1,acP,i).

“⇒” p |= Merge(b2,Merge(b1,acP)) implies that there is an i ∈ I with p |=
Merge(b2,Merge(b1,acP,i)) by the satisfaction of conditions. By induction hypoth-
esis, it follows that p |= Merge(b2 ◦ b1,acP,i) and therefore, p |= ∨i∈IMerge(b2 ◦
b1,acP,i) = Merge(b2 ◦b1,acP).

“⇐” p |= Merge(b2 ◦b1,acP) implies that there is an i ∈ I with p |= Merge(b2 ◦b1,acP,i)
by the satisfaction of conditions. By induction hypothesis, it follows that p |=
Merge(b2,Merge(b1,acP,i)) and therefore, p |= ∨i∈IMerge(b2,Merge(b1,acP,i)) =
Merge(b2,Merge(b1,acP)).

(induction step acP = ∧i∈IacP,i) Analogously to the previous step, by the merge con-
struction and induction hypothesis it follows that Merge(b2,Merge(b1,acP)) =
∧i∈IMerge(b2,Merge(b1,acP,i))≡ ∧i∈IMerge(b2 ◦b1,acP,i) = Merge(b2 ◦b1,acP).

(induction step acP = ¬ac′P) By
induction hypothesis, we assume that Merge(b2,Merge(b1,ac′P)) ≡ Merge(b2 ◦ b1,ac′P).
By merge construction, Merge(b2,Merge(b1,acP)) = Merge(b2,¬Merge(b1,ac′P)) =
¬Merge(b2,Merge(b1,ac′P)) and Merge(b2 ◦b1,acP) = ¬Merge(b2 ◦b1,ac′P).

“⇒” p |= ¬Merge(b2,Merge(b1,ac′P)) = Merge(b2,Merge(b1,acP)) implies ¬(p |=
Merge(b2,Merge(b1,ac′P))) by the satisfaction of conditions. By induction hypoth-
esis, it follows that ¬(p |= Merge(b2 ◦ b1,ac′P)), i.e., p |= ¬Merge(b2 ◦ b1,ac′P) =
Merge(b2 ◦b1,acP).

“⇐” p |= ¬Merge(b2 ◦ b1,ac′P) = Merge(b2 ◦ b1,acP) implies ¬(p |= Merge(b2 ◦
b1,ac′P)) by the satisfaction of conditions. By induction hypothesis, it follows
that ¬(p |= Merge(b2,Merge(b1,ac′P))), i.e., p |= ¬Merge(b2,Merge(b1,ac′P)) =
Merge(b2,Merge(b1,acP)).

Therefore, for some i and conditions acP in M -normal form with i nestings, the equivalence
Merge(b2,Merge(b1,acP)) ≡ Merge(b2 ◦ b1,acP) holds if b1 ∈ E (induction hypothesis). For
conditions in M -normal form with i+1 nestings (induction step), the equivalence is shown by
induction over the structure of condition acP again.

base case (acP = ∃(a : P ↪−→C,acC)) The equivalence is shown based on the base case with
acP = ∃(a : P ↪−→C, true).

155

“⇒” By Lem. 3.11, assumption b1 ∈ E implies b′1 ∈ E , since, (1) commutes and (a′,b′1)
are jointly epimorphic by the merge construction. Therefore, by induction hypoth-
esis, we can assume that Merge(b′2,Merge(b′1,acC)) ≡Merge(b′2 ◦ b′1,acC) for con-
dition acC in M -normal form. Thus, q |= Merge(b′2,Merge(b′1,acC)) implies that
q |= Merge(b′2 ◦b′1,acC) and therefore, p |= Merge(b2 ◦b1,acP) which is shown anal-
ogously to the base case.

“⇐” By Lem. 3.11, assumption b1 ∈ E implies b′′1 ∈ E , since, (1)+(2) commutes and
(b′′1,c

′ ◦ a′) are jointly epimorphic by the definition of pushout (1)+(2) (cf. Fact
2.17, item 2 in [EEPT06]). Therefore, by induction hypothesis, we can assume
that Merge(c′′ ◦ b′2,Merge(b′′1,acC)) ≡Merge(c′′ ◦ b′2 ◦ b′′1,acC) for condition acC in
M -normal form. Thus, q |= Merge(b′,acC) = Merge(c′′ ◦ b′2 ◦ b′′1,acC) implies that
q |= Merge(c′′ ◦ b′2,Merge(b′′1,acC)) and therefore, p |= Merge(b2,Merge(b1,acP))
which is shown analogously to the base case.

induction step (Disjunction, Conjunction and Negation) The equivalence is shown analo-
gously to the disjunction, conjunction and negation in the induction base.

A.10 Proof of Sec. 3.2 and Lem. 3.14

Given condition ac in M -normal form and its AC-schema ac. Furthermore, given match m ∈
O and instance morphism i ∈ E ,O by Def. 3.17. Note that the satisfaction of conditions by
morphisms in Sec. 2.2.3 and Def. 2.12 is defined based on O-morphisms. However, i◦m ∈O by
composition Lem. 3.8 and Item 1 of m, i ∈ O . The equivalence is shown by induction over the
number i of nestings and the structure of ac (cf. Def. 2.12). Basis. For non-nested conditions
(i = 0) we proceed as follows.

(base case ac = true) For ac = true, m |= ac = true⇔ i◦m |= ac = true.

(base case ac = ∃(a : P ↪−→C, true))

“=⇒” Match m is E -M factorised into b1 ∈ E and m1 ∈M with m1 ◦ b1 = m (∗1). By
Sec. 2.2.3 and Rem. 2.13, m |= ac implies m1 |= ac1 = Merge(b1,ac).

P

acac

P′ ac1

P′′ ac2

G

GI

Cac′

C′ac′1

C′′ac′2

(1)

(2)

a∈M

m1∈M

a′∈M

m2∈M

a′′∈M

q∈M

q′∈M

b1∈E

b2∈E m∈O

b′1∈O

i∈E ,O

b′2

ac1 = Merge(b1,ac),ac2 = Merge(b2,Merge(b1,ac))
ac′1 = Merge(b′1,ac′),ac′2 = Merge(b′2,Merge(b′1,ac′))

156

APPENDIX A. DETAILED PROOFS

This implies that there exists a commuting diagram (1) by the merge construction
(cf. Def. 2.16) with a′ ∈M ,b′1 ∈ O and (a′,b′1) are jointly epimorphic (∗2). Fur-
thermore, by the satisfaction of conditions (cf. Def. 2.12) there exists morphism
q : C′ → G ∈M with q ◦ a′ = m1 and q |= ac′1 = Merge(b′1,ac′) (∗3). Morphism
i ◦m1 is E -M factorised into b2 ∈ E and m2 ∈M with m2 ◦ b2 = i ◦m1

(∗4). By
b1,b2 ∈ E and Lem. 3.13 it follows that b2 ◦b1 ∈ E . By the uniqueness of extremal

E -M factorisations and i◦m
(∗1)
= i◦m1 ◦b1

(∗4)
= m2 ◦b2 ◦b1, it follows that m2 ◦b2 ◦b1

is the extremal E -M factorisation of i ◦m with b2 ◦ b1 ∈ E and m2 ∈M . Thus, by
Sec. 2.2.3 and Rem. 2.13 it remains to show that m2 |= Merge(b2 ◦ b1,ac) in order
to show that i ◦m |= ac. We construct pushout (2) along a′ ∈M with a′′ ∈M (∗5)

by M -morphisms are closed under pushouts. Diagram (2) is a merge diagram of
Merge(b2,Merge(b1,ac)) as argued in the following. Diagram (2) commutes and
(a′′,b′2) are jointly epimorphic by (2) being a pushout. Furthermore, b′2 ∈ O as ar-
gued in the following. By the definition of instance morphism i (cf. Def. 3.17),
it follows that i ∈ O . Therefore, by m1 ∈M ⊆ O from Lem. 3.8, item 1, it fol-
lows that i ◦m1 ∈ O . By (∗4) and Lem. 3.8, item 2(a), it follows that b2 ∈ O . By
Lem. 3.8, item 3, and (2) is a pushout, b2 ∈ O implies that b′2 ∈ O . Since (2) is a
diagram of Merge(b2,Merge(b1,ac)) = ∨iaci, it remains to show that m2 |= aci =
∃(a′′,ac′2) with ac′2 = Merge(b′2,Merge(b′1,ac′)) = true by assumption ac′ = true
(cf. Def. 2.16) implying that m2 |= Merge(b2,Merge(b1,ac)) implying further that
m2 |= Merge(b2 ◦b1,ac) by Lem. 3.12 with ac being in M -normal form and b1 ∈ E .
By the universal pushout property of (2), there exists morphism q′ : C′′ → GI with

q′ ◦ a′′ = m2 and q′ ◦ b′2 = i ◦ q (∗6), since, m2 ◦ b2
(∗4)
= i ◦m1

(∗3)
= i ◦ q ◦ a′. Since,

q′ |= true = ac′2, it remains to show that q′ ∈M . By Def. 2.12 it would follow that
m2 |= ∃(a′′,ac′2). Morphisms a′′,m2 ∈M imply that a′′D,m2,D are isomorphisms.
Thus, by (∗6), q′D ◦ a′′D = m2,D⇒ q′D ◦ a′′D ◦ a′′−1

D = m2,D ◦ a′′−1
D ⇔ q′D = m2,D ◦ a′′−1

D .
By the composition of isomorphisms with inverse isomorphism a′′−1

D , it follows that
q′D is an isomorphism. By the definition of instance morphism i (cf. Def. 3.17), iS
is an isomorphism, i.e., iS ◦m1,S ∈M by M -composition and b2,S ∈M by (∗4),
m2,S ∈M and M -decomposition. Morphism b2 ∈ E implies that b2,S is an epimor-
phism. Thus, by Lem. 3.10, it follows that b2,S is an isomorphism and therefore, b′2,S
is an isomorphism, since, isomorphisms are preserved by pushouts. Consequently,
by (∗6) q′S ◦ b′2,S = iS ◦ qS ⇒ q′S ◦ b′2,S ◦ b′−1

2,S = iS ◦ qS ◦ b′−1
2,S ⇔ q′S = iS ◦ qS ◦ b′−1

2,S .
Therefore, q′S ∈M by M -composition with iS,qS,b′−1

2,S ∈M and furthermore, q′ is
type strict by (∗6) and m2 ∈M is type strict, i.e., q′ ∈M .

“⇐=” Morphism m is E -M factorised into b1 ∈ E and m1 ∈M with m1 ◦ b1 = m (∗1).
Morphism i◦m1 is E -M factorised into b2 ∈ E and m2 ∈M with i◦m1 =m2◦b2

(∗2).

By Lem. 3.13, b2◦b1 ∈ E with (∗1) m1◦b1 =m⇒ i◦m1◦b1 = i◦m
(∗2)⇔ m2◦b2◦b1 =

i ◦m (∗3). By the uniqueness of E −M factorisations, (b2 ◦ b1 ∈ E ,m2 ∈M) is a
factorisation of i◦m. Assumption i◦m |= ac with i◦m ∈ O by Lem. 3.8 and Item 1
implies m2 |= Merge(b2 ◦ b1,ac) (∗4) by Sec. 2.2.3 and Rem. 2.13. Therefore by
Def. 2.16, there exists commuting diagram b′ ◦a = a′′ ◦b2 ◦b1 with a′′ ∈M , b′ ∈O
and (a′′,b′) are jointly epimorphic. Furthermore, there exists morphism q ∈M with
q ◦ a′′ = m2 and q |= Merge(b′,ac′) (∗5). We construct pushout (1) with a′ ∈M by
M -morphisms are closed under pushouts. By universal pushout property there is
b′2,2 ◦ b′2,1 with b′2,2 ◦ b′2,1 ◦ b′1 = b′ and b′2,2 ◦ b′2,1 ◦ a′ = a′′ ◦ b2

(∗4). We construct

157

epimorphism b′2,1 : C′→C with data part b′2,1,D being an isomorphism such that b′2,2
is type strict. By Lem. 3.11 with b1 ∈ E and pushout (1), i.e., (1) commutes and
(a′,b′1) are jointly epimorphic, it follows that b′1 ∈ E . Therefore, (∗4) together with
b′ ∈ O (b′S is injective) imply that b′1,S is injective (b′1 ∈ O) by injective morphisms
are closed under decomposition and furthermore, b′1 ∈ E (b′1,S is epimorphism, i.e.,
surjective) imply that b′2,2,S ◦ b′2,1,S is injective and therefore, also b′2,1,S is injective
(b′2,1 ∈ O). Analogously, b′2,1,S is epimorphism, i.e., surjective, with b′2,2,S ◦ b′2,1,S is
injective imply that b′2,2,S is injective.

P

acac

P′ ac1

P′′ ac2 G

GI

C

ac′

C′
ac′1

C′′

ac′2

(1)

(=)

(=)

(=)

a∈M

m1∈M

a′∈M

m2∈M

a′′∈M

q∈M

b1∈E

b2∈E
m∈O

b′∈O

i∈E ,O

b′2,1
b′2,2

b′1

ac1 = Merge(b1,ac),ac2 = Merge(b2 ◦b1,ac)
ac′1 = Merge(b′2,1 ◦b′1,ac′),ac′2 = Merge(b′,ac′)

Furthermore, b′2,1 ◦ a′ is type strict, since, instance morphism i is type strict by

Def. 3.17 and Item 3 and m1 ∈M is type strict ⇒ i ◦m1 is type strict
(∗2)⇒ m2 ◦ b2

is type strict ⇒ b2 is type strict a′′∈M⇒ a′′ ◦ b2 is type strict
(∗4)⇒ b′2,2 ◦ b′2,1 ◦ a′ is type

strict ⇒ b′2,1 ◦ a′ is type strict. Thus, b′2,1,S ◦ a′S is injective by composition of in-
jective morphisms, b′2,1,D ◦ a′D is an isomorphism by composition of isomorphisms
and b′2,1 ◦a′ is type strict implying further that b′2,1 ◦a′ ∈M . Moreover by Lem. 3.8

and Item 1, b′2,1 ◦b′1 ∈O , b′2,1 ◦b′1 ◦a
(1)
= b′2,1 ◦a′ ◦b1 and (b′2,1 ◦b′1,b

′
2,1 ◦a′) are jointly

epimorphic by Lem. 3.9 and Item 4 with b′2,1 being an epimorphism and (b′1,a
′) be-

ing jointly epimorphic by pushout (1) and therefore, (1) with subsequent morphism
b′2,1 is a diagram of Merge(b1,ac) = ∨iaci with aci = ∃(b′2,1 ◦ a′,ac′1) and ac′1 =
Merge(b′2,1 ◦b′1,ac′) = true for assumption ac′ = true (cf. Def. 2.16). It remains to
show that there is a morphism q′ : C→G∈M such that q′◦b′2,1◦a′=m1. As implic-
itly q′ |= ac′1 = true this would imply that m1 |= Merge(b1,ac) implying further that
m |= ac by (∗1) and Sec. 2.2.3 and Rem. 2.13 with m∈O . We construct q′ as follows:
By Def. 3.17, instance morphism i is in E and O , i.e., iS is an isomorphism. There-
fore, q′S = i−1

S ◦qS ◦b′2,2,S with inverse isomorphism i−1
S . By Sec. 2.2.2 and Rem. 2.3,

a′,m1 ∈M imply that a′D,m1,D are isomorphisms. Thus, q′D = m1,D ◦ a′−1
D ◦ b′−1

2,1,D

with inverse isomorphisms b′−1
2,1,D and a′−1

D . It holds that q′ ◦b′2,1 ◦a′ = m1 as shown

in the following: q′D ◦b′2,1,D ◦a′D = m1,D ◦a′−1
D ◦b′−1

2,1,D ◦b′2,1,D ◦a′D
b′2,1,D,a

′
D are isos
= m1,D

and q′S◦b′2,1,S◦a′S = i−1
S ◦qS◦b′2,2,S◦b′2,1,S◦a′S

(∗4)
= i−1

S ◦qS◦a′′S ◦b2,S
(∗5)
= i−1

S ◦m2,S◦b2,S

(∗2)
= i−1

S ◦ iS ◦m1,S
iS is iso
= m1,S. It remains to show that:

1. q′ is a typed attributed graph morphism concerning separately defined q′S and

158

APPENDIX A. DETAILED PROOFS

q′D, i.e., tG
EA ◦ q′G,EEA

= q′D ◦ tC
EA and tG

NA ◦ q′G,ENA
= q′D ◦ tC

NA, and that q′ is in M ,
i.e.,:

2. q′ is type strict,
3. q′S is injective, and
4. q′D is an isomorphism.

1. ∀e ∈ EC
j , j ∈ {EA,NA} we have iD(q′D(t

C
j (e)))

q′D= iD(m1,D(a′−1
D (b′−1

2,1,D(t
C
j (e)))))

(∗2),(∗4),(∗5)
= qD(b′2,2,D(b

′
2,1,D(a

′
D(a

′−1
D (b′−1

2,1,D(t
C
j (e)))))))

b′2,1,D and a′D are isos
= qD(b′2,2,D(t

C
j (e)))

q◦b′2,2∈Mor
= tGI

j (qG,E j(b
′
2,2,G,E j

(e))). Further-

more, we have iD(tG
j (q
′
G,E j

(e)))
q′S= iD(tG

j (i
−1
G,E j

(qG,E j(b
′
2,2,G,E j

(e))))) i∈Mor
=

tGI

j (iG,E j(i
−1
G,E j

(qG,E j(b
′
2,2,G,E j

(e)))))
iS is iso
= tGI

j (qG,E j(b
′
2,2,G,E j

(e))). Thus,

iD(tG
j (q
′
G,E j

(e))) = iD(q′D(t
C
j (e))) and furthermore, iD(tG

j (q
′
G,E j

(e))) ∈ tGI

j (EGI

j).

Assumption tG
j (q
′
G,E j

(e)) 6= q′D(t
C
j (e)) contradicts Def. 3.17 and Item 5. There-

fore, tG
j (q
′
G,E j

(e)) = q′D(t
C
j (e)), i.e., tG

j ◦q′G,E j
= q′D ◦ tC

j .

2. Morphism q′S = i−1
S ◦ qS ◦ b′2,2,S and therefore q′ is type strict, since, b′2,2,S, qS

and i−1
S are type strict by the construction of b′2,1, q ∈ M (cf. Sec. 2.2.2

and Rem. 2.3) and by Def. 3.17 for instance morphism i together with inverse
isomorphism i−1

S .
3. Morphism q′S = i−1

S ◦ qS ◦ b′2,2,S is injective by composition of injective mor-
phisms where i−1

S is injective by being an isomorphism (cf. Sec. 2.2.2
and Rem. 2.2), qS is injective by qS ∈M (cf. Sec. 2.2.2 and Rem. 2.3) and
b′2,2,S is injective as already shown before.

4. Morphism q′D = m1,D ◦ a′−1
D ◦ b′−1

2,1,D is an isomorphism by composition of iso-
morphisms where b′−1

2,1,D and a′−1
D are inverse isomorphisms as already shown

before and m1,D is an isomorphism by m1 ∈M (cf. Sec. 2.2.2 and Rem. 2.3).

(hypothesis) There are conditions ac′ and (aci)i∈I in M -normal form such that m |= ac′ if and
only if i◦m |= ac′ and m |= aci if and only if i◦m |= aci for all i ∈ I.

(step ac = ∧i∈I(aci), ac = ∨i∈I(aci) and ac = ¬ac′) Note that aci,ac′ are in M -normal form

by ac is in M -normal form. For ac = ∧i∈I(aci), m |= ac Sec. 2.2.3and Rem. 2.13⇔ m1 |=
Merge(e1,ac) for extremal E -M factorisation m1 ◦ e1 = m

Sec. 2.2.3and De f . 2.16⇔ m1 |=
∧i∈I(Merge(e1,aci))

Sec. 2.2.3and De f . 2.12⇔ ∀i ∈ I.m1 |= Merge(e1,aci)
Sec. 2.2.3and Rem. 2.13⇔

∀i∈ I.m |= aci
hypothesis⇔ ∀i∈ I.i◦m |= aci

Sec. 2.2.3and Rem. 2.13⇔ ∀i∈ I.m2 |=Merge(e2,aci) for

extremal E -M factorisation m2 ◦ e2 = i◦m
Sec. 2.2.3and De f . 2.12⇔ m2 |= ∧i∈I(Merge(e2,aci))

Sec. 2.2.3and De f . 2.16⇔ m2 |= Merge(e2,ac) Sec. 2.2.3and Rem. 2.13⇔ i ◦m |= ac. The equivalence

for ac = ∨i∈I(aci) is shown analogously. For ac = ¬ac′, m |= ac Sec. 2.2.3and Rem. 2.13⇔
m1 |= Merge(e1,ac) for extremal E -M factorisation m1 ◦e1 = m

Sec. 2.2.3and De f . 2.16⇔ m1 |=
¬(Merge(e1,ac′))

Sec. 2.2.3and De f . 2.12⇔ ¬(m1 |= Merge(e1,ac′)) Sec. 2.2.3and Rem. 2.13⇔ ¬(m |=
ac′)

hypothesis⇔ ¬(i◦m |= ac′) Sec. 2.2.3and Rem. 2.13⇔ ¬(m2 |= Merge(e2,ac′)) for extremal E -M

factorisation m2 ◦e2 = i◦m
Sec. 2.2.3and De f . 2.12⇔ m2 |=¬(Merge(e2,ac′))

Sec. 2.2.3and De f . 2.16⇔
m2 |= Merge(e2,ac) Sec. 2.2.3and Rem. 2.13⇔ i◦m |= ac.

159

Hypothesis. There is number i of nestings for ac′ in M -normal form such that m |= ac′ if and
only if i◦m |= ac′. Step. For i+1 nestings, we conclude as follows.

(base case ac = ∃(a : P ↪−→C,ac′))

“=⇒” We close analogously to the base case ac = ∃(a : P→C, true) for direction “=⇒” in
the basis for non-nested conditions. Note that 1. q◦b′1 ∈O (∗B) by q ∈M (⇒ q ∈O

– cf. Sec. 2.2.2 and Rem. 2.3) and Lem. 3.8 and Item 1, 2. q′ ◦ b′2 ◦ b′1 ∈ O (∗C)

by q′ ◦ b′2 ◦ b′1
(∗6)
= i ◦ q ◦ b′1, q ∈M (⇒ q ∈ O – cf. Sec. 2.2.2 and Rem. 2.3) and

Lem. 3.8 and Item 1, and 3. ac′ is in M -normal form (∗D) by assumption ac is in
M -normal form. Furthermore, by Lem. 3.11 with (∗1),(∗2) it follows that b′1 ∈ E
and by Lem. 3.11 with (∗4), diagram (2) commutes, (a′′,b′2) are jointly epimor-
phic it follows that b′2 ∈ E , i.e., b′2 ◦ b′1 ∈ E by Lem. 3.13 ⇒ q ◦ b′1 and q′ ◦ b′2 ◦ b′1
are extremal E -M factorisations (∗A), implying further that q |= Merge(b′1,ac′)
Sec. 2.2.3and Rem. 2.13,(∗A),(∗B)⇒ q ◦ b′1 |= ac′

Hypothesis,(∗B),(∗D)⇒ i ◦ q ◦ b′1 |= ac′
(∗6)
= q′ ◦ b′2 ◦

b′1 |= ac′
Sec. 2.2.3and Rem. 2.13,(∗A),(∗C)⇒ q′ |= Merge(b′2 ◦ b′1,ac′)

Lem. 3.12,b′1∈E ,(∗D)
⇒ q′ |=

Merge(b′2,Merge(b′1,ac′)) = ac′2. Thus, i◦m |= ac.

“⇐=” We close analogously to the base case ac = ∃(a : P→ C, true) for direction “⇐=”
in the basis for non-nested conditions. Note that 1. q′ ◦ b′2,1 ◦ b′1 ∈ O (∗B) by
q′ ∈ M (⇒ q′ ∈ O – cf. Sec. 2.2.2 and Rem. 2.3) and Lem. 3.8 and Item 1,
2. q ◦ b′ ∈ O (∗C) by q ∈ M (⇒ q ∈ O – cf. Sec. 2.2.2 and Rem. 2.3) and
Lem. 3.8 and Item 1, 3. ac′ is in M -normal form (∗D) by assumption ac is in

M -normal form, and 4. i ◦ q′ = q ◦ b′2,2
(∗E), since, iS ◦ q′S

Def. q′S= iS ◦ i−1
S ◦ qS ◦ b′2,2,S

iS is iso
= qS ◦b′2,2,S and iD ◦q′D

Def. q′D= iD ◦m1,D ◦a′−1
D ◦b′−1

2,1,D
(∗2)
= m2,D ◦b2,D ◦a′−1

D ◦b′−1
2,1,D

(∗5)
= qD ◦ a′′D ◦ b2,D ◦ a′−1

D ◦ b′−1
2,1,D

(∗4)
= qD ◦ b′2,2,D ◦ b′2,1,D ◦ a′D ◦ a′−1

D ◦ b′−1
2,1,D

a′−1
D ,b′−1

2,1,D are isos
= qD ◦ b′2,2,D. Furthermore, by Lem. 3.11 with (∗1),(1) commutes and

(a′,b′1) are jointly epimorphic, it follows that b′1 ∈ E and furthermore, epimorphism
b′2,1 ∈ E in (AGraphsATGI,M), i.e., b′2,1 ◦ b′1 ∈ E by Lem. 3.13, and by Lem. 3.13
with b1,b2 ∈ E , outer diagram commutes, (a′′,b′) are jointly epimorphic it follows
that b′ ∈ E , i.e., q′ ◦ b′2,1 ◦ b′1 and q ◦ b′ are extremal E -M factorisations (∗A), im-

plying further that q |= Merge(b′,ac′)
Sec. 2.2.3and Rem. 2.13,(∗A),(∗C)⇒ q◦b′ |= ac′

(∗4),(∗E)⇒

i ◦ q′ ◦ b′2,1 ◦ b′1 |= ac′
Hypothesis,(∗B),(∗D)⇒ q′ ◦ b′2,1 ◦ b′1 |= ac′

Sec. 2.2.3and Rem. 2.13,(∗A),(∗B)⇒
q′ |= Merge(b′2,1 ◦b′1,ac′) = ac′1. Thus, m |= ac.

(hypothesis) There are conditions ac′ and (aci)i∈I in M -normal form such that m |= ac′ if and
only if i◦m |= ac′ and m |= aci if and only if i◦m |= aci for all i ∈ I.

(step ac = ∧i∈I(aci), ac = ∨i∈I(aci) and ac = ¬ac′) We close analogously to the step for con-
junctions, disjunctions and negations in the basis for non-nested conditions.

A.11 Proof of Sec. 3.2 and Thm. 3.3

Let G=((GE ,DG), typeG) be a graph in (AGraphsATGI,M) with G∈L (C)=LI(CI)∩L (CG),

i.e., G
I
|= CI and G |= CG with C = CI ∪CG and CI being the contained constraints that are

160

APPENDIX A. DETAILED PROOFS

designated for initial satisfaction and CG being the contained constraints that are designated for
general satisfaction (cf. Sec. 3.1 and Def. 3.1). Let i : GA → G be an instance morphism, i.e.,
graph GA is the abstraction of G in the sense that GA shares the DSIG-term algebra TDSIG(X)
where all attribute values in G are substituted by variables x ∈ X in GA. By Lem. 3.5, there are
atoms A = (ai)i∈{1,...,n} ∈ Atoms(GA) of GA with induced morphisms ia : a→ GA ∈M ,∀a ∈
A. Note that ∀a ∈ A.a ∈ Atoms(ATG) (cf. Def. 3.6), since, a shares algebra TDSIG(X) up to
isomorphism by ia ∈M , i.e., ia,D being an isomorphism, and furthermore, all attribute values in
a are variables x ∈ X by ia,D being the unique homomorphism for a given variable assignment
that explicitly maps terms t 6∈ X in a to terms t ′ 6∈ X in GA by Fact B.16, Item 1, and Def. B.14
in [EEPT06]. Furthermore, ∀a ∈ A.a ∈ EAtoms(C) by induced morphism ia : a→ GA ∈M and

GA ∈ L (C) (cf. Def. 3.7). We show that GA ∈ L (C) = LI(CI)∩L (CG), i.e., GA

I
|= CI and

GA |=CG, as follows. By general assumption, constraints are interpreted via their AC-schemata,
i.e., G ∈L (C) implies that

1. G initially satisfies AC-schema acI of constraint acI for all acI ∈CI , and

2. G generally satisfies AC-schema acG of constraint acG for all acG ∈CG.

We have to show that

1. ⇒ GA initially satisfies AC-schema acI of constraint acI for all acI ∈CI , and

2. ⇒ GA generally satisfies AC-schema acG of constraint acG for all acG ∈CG.

1. For all constraints acI ∈ CI over P: G initially satisfies acI implies that ∃p : P→ G ∈ O
such that p |= acI by Sec. 2.2.3 and Def. 2.19. We have to show that ∃p′ : P→GA ∈O such
that p′ |= acI implying further that GA initially satisfies acI . Note that instance morphism
i : GA→G is in O and in E by Def. 3.17, i.e., graph part iS is an isomorphism with inverse
isomorphism i−1

S . Thus, we can construct morphism p′ : P → GA such that i ◦ p′ = p
as follows: Graph part p′S = i−1

S ◦ pS. Note that analogously to GA also P shares the
DSIG-term algebra TDSIG(X) with all attribute values in P being variables x ∈ X by the
general assumption. Therefore, we can define the variable assignment asg : X → DGA

from P to GA such that ∀e ∈ EP
j .asg(tP

j (e)) = tGA
j (p′S(e)), j ∈ {NA,EA} (∗1). W.l.o.g. we

assume that instance morphism i : GA→ G is given such that iD(asg(x)) = pD(x),∀x ∈ X
(∗2). Based on variable assignment asg, we construct data part p′D = asg : TDSIG(X)→
TDSIG(X) as defined in Def. B.14 in [EEPT06]. By the construction of asg it follows
that ∀e ∈ EP

j .p
′
D(t

P
j (e)) = tGA

j (p′S(e)), j ∈ {NA,EA} by (∗1), i.e., p′ is actually a typed

attributed graph morphism, and iD(p′D(x)) = pD(x),∀x ∈ X by (∗2) (∗3). By Fact B.16,
Item 1, in [EEPT06] the homomorphism TDSIG(X)→DG w.r.t. a given variable assignment
asg : X → DG is unique and therefore, iD ◦ p′D = pD by (∗3). Furthermore, p′S = i−1

S ◦ pS

⇒ iS ◦ p′S = iS ◦ i−1
S ◦ pS

iS is iso⇒ iS ◦ p′S = pS. Thus, i◦ p′ = p implying further that p′ ∈O by
p ∈ O and Lem. 3.8 and Item 2a. Therefore, by Lem. 3.14 with acI being in M -normal
form by assumption, p = i◦ p′ |= acI implies p′ |= acI . Thus, GA initially satisfies acI .

2. For all constraints acG ∈ CG over P: GA generally satisfies AC-schema acG means that
∀p : P→ GA ∈ O.p |= acG by Sec. 2.2.3 and Def. 2.19. Let p : P→ GA ∈ O . Then,
assumption G generally satisfies acG implies that i◦ p |= acG, since, i◦ p ∈ O by p, i ∈ O
and O-composition in Lem. 3.8 and Item 1. By Lem. 3.14 with acG being in M -normal
form by assumption, i◦ p |= acG implies p |= acG. Thus, GA generally satisfies acG.

161

By, ∀a ∈ A.a ∈ EAtoms(C) and L (GG′) is C-extension complete it follows that ∀a ∈ A.∃S ∈
Extensions(a,CG) such that S ⊆ L (GG′) by Def. 3.8. Thus, ∀a ∈ A.∃Sa ∈ Extensions(a,CG)
such that ∀s ∈ Sa.∃ transformation ∅′ =∗⇒ s via P and almost injective matches by gen-
eral assumption in Sec. 2.2.4 (∗A). By Def. 3.16, there is a function fE ∈ SELECTE(A,CG)
with fE(a) = Sa,∀a ∈ A. By Lem. 3.7, there is a function faE ∈ SELECTaE (A,CG, fE) with
faE (a) = s ∈ Sa,∀a ∈ A = (ai)i∈{1,...,n} (cf. Def. 3.16) such that there exist graphs (GE

j)1≤ j≤n−1

and pushouts (POE
k +GE

k
faE (ak+1) = POE

k+1)k∈{1,...,n−1} with pushout objects POE
k+1, POE

1 =

faE (a1) and injective embeddings ik,1 : POE
k → POE

k+1 and ik,2 : faE (ak+1)→ POE
k+1 ∈M where

POE
n = GA

(∗B). For pushout k = 1 we conclude as follows. By Lem. 3.2 with (∗A),(∗B)
and m(GG′) being the set of derived marking rules of GG′, it follows that there exists trans-
formations t1 : POE

2 ⊕ AttF
POE

2
=
∗⇒ POE

2 ⊕ AttT
faE (a1)

⊕ AttF
POE

2 \ faE (a1)
and t2 : POE

2 ⊕ AttF
POE

2
=
∗⇒

POE
2 ⊕AttT

faE (a2)
⊕AttF

POE
2 \ faE (a2)

via marking rules m(GG′). Assumption m(GG′) is C-conflict-

free implies that all critical pairs over productions m(GG′) that are significant w.r.t. L (C)
are strictly confluent by Def. 3.12 – Note that the assumption may also imply that all critical
pairs over P that are not C-inconsistent share the same rule and match, respectively. However,
the second implication implies the first implication by Remarks. 3.6 and 3.7 and therefore, it
is sufficient to continue we the first implication. By local confluence theorem Thm. 2.43 in
[EEGH15], transformation system m(GG′) is locally confluent and also terminating by Sec. 3.2
and Rem. 3.5 with all productions in GG being non-trivial by assumption, implying further that
m(GG′) is confluent by Lem. 3.32 in [EEPT06]. Thus, since, POE

2 is the pushout object,
it follows that embeddings i1,1 : faE (a1) → POE

2 and i1,2 : faE (a2) → POE
2 are jointly surjec-

tive and therefore, there are transformations POE
2 ⊕AttT

faE (a1)
⊕AttF

POE
2 \ faE (a1)

=
∗⇒ POE

2 ⊕AttT
POE

2

and POE
2 ⊕ AttT

faE (a2)
⊕ AttF

POE
2 \ faE (a2)

=
∗⇒ POE

2 ⊕ AttT
POE

2
via m(GG′) leading to transformation

POE
2 ⊕AttF

POE
2
=
∗⇒ POE

2 ⊕AttT
POE

2
. Thus by Lem. 3.2, there exists a transformation ∅′ =∗⇒ POE

2

via P and almost injective matches with injective embedding idPOE
2
. Analogously, we iterate

over all pushouts for k = (1, . . . ,n− 1) and obtain a transformation ∅′ =∗⇒ POE
n = GA via P

and almost injective matches. By Lem. 3.15 with instance morphism i : GA → G and all ap-
plication conditions in P being in M -normal form by assumption, there exists a transforma-
tion p : ∅′′ =∗⇒ G via P and almost injective matches with instance morphism i′ : ∅′→ ∅′′. By
Def. 3.17, i′ ∈ E ,O , i.e., graph part i′S is an isomorphism by Sec. 2.2.2 and Rem. 2.3, and further-
more, derived span der(p) : ∅′′→ G ∈M by Sec. 2.2.4 and Rem. 2.15, i.e., data part der(p)D

is an isomorphism by Sec. 2.2.2 and Rem. 2.3, and therefore, ∅′′ = ∅ by general assumption
where graphs G ∈L (C) and start graph ∅ of GG share the same algebra up to isomorphism.
Thus, there is a transformation ∅ =

∗⇒ G via P and almost injective matches, i.e., G ∈L (GG).
Therefore, L (C)⊆L (GG).

A.12 Proof of Sec. 3.4 and Prop. 3.4

1. For partial reachability, we only have to check if there is m : S→ G ∈M , since, if there
is m′ : G′→ G ∈M for some t : S =

∗⇒ G′ then there is m = m′ ◦ der(t) : S→ G ∈M by
M -composition and Rem. 2.15. Thus, @m⇒ @m′.

2. The undecidability is shown by a reduction from an undecidable variant of the halting
problem over turing machines (Does a deterministic turing machine (TM) with exactly one
final/accepting state accept on a given input?). The reduction is given by a mapping from
TMs and inputs to graph grammars and final graphs. Configurations are encoded as typed

162

APPENDIX A. DETAILED PROOFS

graphs and each transition of the transition function δ is encoded as a graph transformation
rule over typed graphs leading to a graph grammar with the initial configuration as start
graph. The type graph is given below (middle) and defined by (a) a node qi for each
state qi ∈ Q, i = (0 . . .m) of the TM, (b) auxiliary node l which links together the tape
symbols to a word as the tape content, (c) a reflexive edge w j on node l for each symbol
w j ∈ Γ, j = (0 . . .n) of the tape alphabet Γ, (d) an auxiliary edge headqi from node qi to
l for each qi which marks the tape position together with the state for each configuration
of TM, and (e) reflexive auxiliary egdes L� and R� on node l that mark the left and right
ends of the tape. The start graph S for the initial configuration with input word w0w1 . . .wn

and initial state q0 is given below (right).

:l

:w0

:l

:headq0

:L :l

:w1

:l :l

:wn

:l :R ...

:q0

lL R

w0 wn...

headq0

q0

headqm

qm...

:l

:headqf

:qf

final Graph Type Graph Start Graph / Initial Configuration

For each transition (q,w)→ (q′,w′,α) ∈ δ with α ∈ {L,N,R}, a δα,q,q′,w,w′-rule is defined
as below. Each δ -rule deletes symbol w,replaces it by w′ and moves the head on the tape
one step to the left for α = L, to the right for α = R or performs no move for α = N by
deleting the old head and state q and replacing them by the new state q′ and head pointing
to the new tape position.

:l
:w

:headq

:l

:q

:w
:headq

:q

++

++
++

--
--

:l

--

:l
:w

:headq

:l

:q

:w
:headq

:q

--

++

++
++

--
--

:l

:w

:l

:w

--

++

:headq

:q

:headq

:q -- ++
++--

δL,q,q′,w,w′ δR,q,q′,w,w′ δN,q,q′,w,w′

Furthermore, the following auxiliary rules are defined: (a) Rules add−Blank− left and
add−Blank− right that add a new blank symbol � to the right and left ends of the tape,
(b) for each symbol w ∈ Γ, a rule delw that deletes the symbol from the tape if a final state
q f is reached, (c) rules del−Blank− left and del−Blank− right that delete the markers
L� and R� for the left and right ends of the tape if a final state q f is reached, and (d) rule
del− link which delets l nodes if a final state q f is reached.

Therefore, a TM with input w0w1 . . .wn is encoded as start graph S together with the set
P of production rules from above forming graph grammar GG = (S,P) and together with
the final graph from above (left) where q f is the final state. Moreover, P is finite by Q and
Γ being finite for δ : (Q\q f)×Γ→ Q×Γ×{L,N,R} and the final graph is finite.

163

:l :R :l:R

: ++
++

++--
:l :L :l:L

: --
++

++++

:qf :l

:w

:l

--

:l:L :qf

--
:l :R :qf

--

:qf :l

--

add-Blank-left add-Blank-right

delw del-Blank-left del-Blank-right del-link

Obviously, if the TM reaches the final state q f , then the final graph is (partially) reachable
from the start graph. This holds, since, (a) for each transition there exists a dedicated
δ -rule simulating the transition, (b) new blank symbols can be added to the ends of the
tape at any time by auxiliary rules del−Blank− left(right) simulating an infinite tape,
and (c) auxiliary rules del . . . finally delete all nodes and edges except the final graph due
to the gluing condition. Conversely, if the final graph is (partially) reachable from the
start graph, then the TM reaches the final state q f . This holds, since, each graph which
is reachable from the start graph follows the structure of the start graph with exactly one
state node and head edge, at most one L� edge and at most one R� edge at the ends of
the tape and at most one symbol edge between each two l nodes forming a linear tape
without branchings via edges. Therefore, there is at most one δ -rule applicable to each
graph via at most one (M -)match exactly representing the corresponding transition of the
TM by the determinism of TM with δ being a function. Thus, each sequence of mixed δ -
and add−Blank− left(right)-rule applications from the start graph to a graph containing
(final) state node qi represents a computation of TM from the initial configuration to a
configuration with (final) state qi. Finally, when assuming the decidability of the (partial)
reachability problem, we could also decide the halting problem leading to a contradiction.

3. (a) There are at most |M|! acyclic (terminating) match-paths in GS (that start in S) where
each is composed of at most |M| matches.

Lp Kp Rp

A1

O1 B1

A2 O2 B2

O B

G

(1)

(2)

(3)

(4)

(5)

(6)

rp

r′p,1

r′p,2

r′

lp

l′p,1

l′p,2

i

l′

m′′

n1 ◦m
n′′1 n′1

n2 ◦m

n′′2

n′2

n′′ n′

n′′ n′

o b

Furthermore, given a match-path path, a graph G and two recursive transformations
A =

path
==⇒GS B and A =

path
==⇒GS B′, then ∃m′ : B→ G ∈M if and only if ∃m′′ : B′ →

G ∈M (∗1), i.e., @m′ implies @m′′ for all other recursive transformations w.r.t. path.
Therefore, for verifying all acyclic, terminating recursive transformations that start
in S whether m exists, it is sufficient to verify only one recursive transformation for
each match-path. By a finite set of acyclic, terminating match-paths in GS that start in

164

APPENDIX A. DETAILED PROOFS

S, each path being finite and G being finite, the verification terminates. For showing
(∗1), we show it analogously for a single recursive transformation step which directly
implies (∗1) by induction over the recursive transformations. Thus, given a match
m, a production p = (Lp←lp− Kp −rp−→ Rp), a graph G and two recursive transformation

steps A1 =
(p,m,n1)
====⇒GS,n′1

B1 and A2 =
(p,m,n2)
====⇒GS,n′2

B2 with i : A1→ A2 ∈M and i◦n1 ◦
m = n2 ◦m, if ∃m′′ : B2→G ∈M , then ∃m′ = m′′ ◦m′ ∈M with m′ : B1→ B2 ∈M
and m′ ◦n′1 = n′2. By the restriction theorem with i ∈M and i◦n1 ◦m = n2 ◦m, there
exists pushouts (1)+(2),(3),(4)+(5) and (6) with n′′ ◦n′′ = n′′2 and n′ ◦n′ = n′2. By
(AGraphsATGI,M) being M -adhesive, uniqueness of pushout complements and (1)
as well as (1)+ (2) being pushouts, there is induced isomorphism o : O1→ O with
o◦n′′1 = n′′. By pushout decomposition with (1)+(2)+(3) and (1) being pushouts,
(2)+(3) is a pushout. By M being closed under pushouts, n′′ ◦o ∈M . By (4) and
(4)+ (5) being pushouts, there is induced morphism b : B1→ B with b◦n′1 = n′ by
universal pushout property. By pushout decomposition with (4)+ (5)+ (6) and (4)
being pushouts, (5)+ (6) is a pushout. Thus, m′ = n′ ◦ b ∈M with m′ ◦ n′1 = n′2,
since, M is closed under pushouts. Finally, m′′ ◦m′ ∈M by M -composition.

(b) For cyclic, terminating recursive transformations that start in S we conclude as fol-
lows. By (∗1), the verification of a single recursive transformation for each match-
path again encloses the verification of all recursive transformations. The verifica-
tion procedure of whether m ∈M exists is as follows: Given t : A =

path
==⇒GS,n′ B with

n′ : R → B ∈M - we start at S with the empty path path and n′ = idS : S → S.
Then, there are at most (|M||M|)k · |M| match-paths for some k ∈ N that may ex-
tend path by up to |M| · k + 1 matches. For each possible path extension via
matches (mi)i∈{1...l≤|M|·k+1}, t is extended match-wise via recursive transformation

steps si : (Ai =
(sGS(mi),mi,n′i−1)
=========⇒GS,n′i

Bi)i∈{1...l} with n′0 = n′ and A0 = B. If there is some
mi in an extension such that the corresponding step si does not exist due to a viola-
tion of the gluing condition, then we stop for this specific extension. If there is some
x ∈ n′i−1() that is preserved along der(si) but x 6∈ n′i() (i.e., B is strongly extended
by element x), then we recursively proceed with the verification procedure for this
specific extension with t = t ′ where t ′ is t extended up to si and n′ = n′i. Note that x
will never be touched (deleted) in any further extensions. Thus, by this monotonicity
in recursive transformations we can stop for a specific extension if we reach a graph
in that extension that is composed out of x’s and is larger than G. If we have applied
the last possible step s|M|·k+1 in an extension, then it is true that there is a match
mi : L→C ∈M which was visited at least k+1 times in that extension via some step
si with k = |C|! and |C| being the sum of graph elements (nodes and edges) in C.
Furthermore, the graph which is obtained by si is isomorphic to each graph which
was obtained by any of the previous steps via mi, since, the graphs where not strongly
extended by some element and we have already obtained all possible k = |C|! combi-
nations of mapping the elements of C to C. Thus, it is guaranteed that we repeat one
of these combinations with k+ 1 and therefore, can stop for this specific extension.
Therefore, the overall procedure terminates.

165

A.13 Proof of Sec. 3.4 and Prop. 3.7

The base-path bpath′ of a match-path path′ = (m1 . . .mn) and the partial mapping
⇀path′ : {1 . . .n} → {1 . . .n} of positions of matches from path′ to bpath′ are given by bpath′ :=
b(∅,0,1,path′) with

for j ≤ n,b(m, i, j,path′ = (m1 . . .mi,mi+1 . . .m j . . .mk . . .mn)) :={
b(m, i, j+1,path′) if i > 0 and (mi+1 . . .m j . . .mk) is a match-cycle,
b((m,m j), j, j+1,path′) otherwise with ⇀path′ (j) := |m|+1

and for j > n,b(m, i, j,path′ = (m1 . . .mn)) := m

Obviously, if path′ is acyclic, then bpath′ = path′ (∗
1). Moreover, if path′ is cyclic, terminating,

starts in A or ends in B, then bpath′ is acyclic, terminating, starts in A or ends in B (∗2). We show
for general terminating match-paths path′ = (m1 . . .mn), sequences of recursive transformation

steps t ′ : (Ai−1 =
(sGS(mi),mi,ni−1)
=========⇒GS,ni

Ai)i∈{ j...n} over (m j . . .mn) and morphisms ac′ : A→ A j−1 for
1 ≤ j ≤ n with (j,) ∈⇀path′ that there is (ac : A→ B,n) ∈ L w(bpath′ ,⇀path′ (j),ac′,n j−1,)

such that there is i : B→ An ∈M with i ◦ ac = der(t ′) ◦ ac′ and i ◦ n = nn
(∗3). Moreover, if

(m jmn) is acyclic, then ac= der(t ′)◦ac′ and n= nn which does also hold for non-terminating
(m1 . . .m jmn)

(∗4).

Case ((m j . . .mn) is acyclic) By assumption (j,) ∈⇀path′ , bpath′ = (m1 . . .m j′ . . .mn′) with
n− j = n′− j′, (m j+i = m j′+i)i∈{0...n− j} and (⇀path′ (j + i) = j′+ i)i∈{0...n− j}

(∗5), since
by the construction of bpath′ , assuming the opposite for some j + i with i > 0 im-
plies a match-cycle contradicting with assumption (m j . . .mn) being acyclic. By in-
duction over t ′: Basis. Let j = n, i.e., t ′ be given by a single recursive trans-

formation step t ′ : An−1 =
(sGS(mn),mn,nn−1)
==========⇒GS,nn

An. Case (P = ∅ or k = 2) By con-
struction of L w and (∗5) with ⇀path′ (n) = n′, bpath′ = (m1 . . .mn′) and mn = mn′ ,
(der(t ′) ◦ ac′,nn) ∈ L w(bpath′ ,⇀path′ (j),ac′,n j−1,). Finally, i = idAn ∈M with idAn ◦
der(t ′) ◦ ac′ = der(t ′) ◦ ac′ and idAn ◦ nn = nn. Case (P 6= ∅) By (ac′,n j−1) ∈ C , it
leads to the previous case with switch k = 2. Hypothesis. Assume that (∗4) holds
for t ′ consisting of 1 ≤ k < n steps with j = (n + 1)− k. Step. Let j = (n + 1)−
(k + 1) = n− k, i.e., t ′ consists of k + 1 steps. Analogously to the basis by (∗5)
with mn−k = m j = m j′ = m⇀path′ (j) ∈ bpath′ , there is some invocation L w(bpath′ ,⇀path′

(n− k) + 1,der(t) ◦ ac′,nn−k,)
(∗5)
= L w(bpath′ ,⇀path′ ((n + 1)− k),der(t) ◦ ac′,nn−k,)

from L w(bpath′ ,⇀path′ (j),ac′,n j−1,) with t : An−k−1 =
(sGS(mn−k),mn−k,nn−k−1)
=============⇒GS,nn−k

An−k,

t ′ : (Ai−1 =
(sGS(mi),mi,ni−1)
=========⇒GS,ni

Ai)i∈{(n+1)−k...n} and der(t ′) ◦ der(t) = der(t ′). By hy-
pothesis and Prop. 3.2 together with acyclic (m j . . .mn) implying (m j+1 . . .mn) =
(m(n+1)−k . . .mn) being acyclic, (der(t ′) ◦ der(t) ◦ ac′,nn) = (der(t ′) ◦ ac′,nn) ∈
L w(bpath′ ,⇀path′ ((n + 1)− k),der(t) ◦ ac′,nn−k,) and therefore, (der(t ′) ◦ ac′,nn) ∈
L w(bpath′ ,⇀path′ (j),ac′,n j−1,). Finally, i= idAn ∈M with idAn ◦der(t ′)◦ac′= der(t ′)◦
ac′ and idAn ◦nn = nn.

Case ((m j . . .mn) is cyclic)

166

APPENDIX A. DETAILED PROOFS

(a)

(...mj...mk)

acyclic

(mk+1...ml)

(ml+1...mn) (...mj...mk)

acyclic

(mk+1...ml)

(ml+1...mo)

acyclic

(mo+1...mp)

(mp+1...mn) (...mj...mk)

cyclic

(mk+1...ml)

(ml+1...mn) (...mj...mk)

cyclic

(mk+1...ml)

(ml+1...mo)

cyclic

(mo+1...mp)

(mp+1...mn)

(b) (c) (d)

base-pathbase-pathbase-pathbase-path

By induction over the structure of t ′ based on Basis (a) and Steps (b)-
(d) from above: Sub-paths (ml+1 . . .mn) or (mp+1 . . .mn) with l, p < n in (a)-
(d) are guaranteed to be in the base-path of path′, respectively, since, assum-
ing they were part of a match-cycle contradicts with the assumption that path′

is terminating. Furthermore by assumption (j,) ∈⇀path′ , sub-paths (m j . . .mk)
with j ≤ k in (a)-(d) are guaranteed to be in the base-path of path′, respec-
tively. Let (m j . . .mn) be composed of sub-paths (m j . . .mk),(mk+1 . . .ml),(ml+1 . . .mn)
or (m j . . .mk),(mk+1 . . .ml),(ml+1 . . .mo),(mo+1 . . .mp),(mp+1 . . .mn), respectively, with
(mk+1 . . .ml) ∈ PathstGS(ml+1),tGS(ml+1)(GS) and (mo+1 . . .mp) ∈ PathstGS(mp+1),tGS(mp+1)(GS)
being (a)cyclic match-cycles and bpath′ = (. . .m j . . .mk,ml+1 . . .mn) or bpath′ =
(. . .m j . . .mk,ml+1 . . .mo,mp+1 . . .mn) being the base-paths of path′. Thus, the sequence

t ′ of steps is given by sub-sequences t ′(y,z) : (Ai−1 =
(sGS(mi),mi,ni−1)
=========⇒GS,ni

Ai)i∈{y...z} for (y,z) ∈
{(j,k),(k+1, l),(l+1,n)} or (y,z) ∈ {(j,k),(k+1, l),(l+1,o),(o+1, p),(p+1,n)}, re-
spectively. Basis. By Prop. 3.2 and bpath′ being acyclic by (∗2), (m j . . .mk,ml+1 . . .mn)

and therefore, (m j . . .mk) are acyclic and furthermore, bpath′
(∗1)
= bbpath′ . Thus, by

(∗4) , (der(t ′(j,k)) ◦ ac′,nk) ∈ L w((. . .m j . . .mk),⇀path′ (j),ac′,n j−1,). Therefore, by
the match-wise construction of L w, there is an invocation L w(bpath′ ,⇀path′ (l +
1),der(t ′(j,k))◦ac′,nk,) from L w(bpath′ ,⇀path′ (j),ac′,n j−1,). Assume that match-cycle
m= (mk+1 . . .ml)∈�GS (bpath′), then mn ∈m by the definition of�GS and therefore, bpath′

is not terminating contradicting with the direct implication of assumption path′ being ter-
minating via (∗2). Thus, from m 6∈�GS (bpath′) and m being acyclic by assumption, we
conclude that m ∈P ⊆ PathstGS(m⇀path′ (l+1)),tGS(m⇀path′ (l+1))(GS)\ �GS (bpath′). We induc-

tively conclude over sequence t ′(k+1,l) as follows:

Lk+1 Rk+1

Rk

Ak Ak+1

Lk+2 Rk+2

Ak+2

R′k+1 R′k+2

L′k+2
(1)

(2)

(3)

(4)

(5)

Li Ri

Ri−1

Ai−1 Ai

L′i−1

R′i−1

L′i

R′i

(6i)

(7i)

(8i)

mk+1

mk+2

nk
nk+1

nk+2rk+1

gk+1 gk+2

lk+2

rk+2

ak+1 ak+2

mi

ni−1

li−1

ri−1

ai−1

li

gi

ri

ni

ai

All given morphisms from above are in M by the definition of non-deleting productions
and recursive transformation steps. Therefore, we can construct pushouts over them re-
sulting again in M -morphisms only, since, M is closed under pushouts. In particu-
lar, we construct pushout (1) with induced morphism ak+1 and ak+1 ◦ rk+1 = nk+1. By
pushout decomposition with (1)+ (2) and (1) being pushouts, (2) is a pushout. We con-
struct pushouts (3) and (4) resulting in pushout (3)+ (4) by pushout composition with
induced morphism ak+2 and ak+2 ◦ rk+2 ◦ lk+2 = nk+2. Again, by pushout decomposition

167

with (3)+(4)+(5) and (3)+(4) being pushouts, (5) is a pushout. Analogously, for each
subsequent step i with k+2< i≤ l in t ′(k+1,l), we construct pushouts (6i) over li−1◦mi ∈M

by M -composition and (7i) resulting again in pushouts (6i)+ (7i) and (8i) with induced

morphism ai and ai ◦ ri ◦ li = ni. Thus, by (∗4) for m
(∗1)
= bm, (gl ◦ . . .◦gk+1,rl ◦ ll) ∈ Bm =

L w(m,1, idRk , idRk ,2) in Def. 3.28 and Item 2a. Furthermore, for t ′(k+1,l) by pushout com-
position, we obtain pushouts (1)+(4)+(7k+3)+ . . .+(7l) and (2)+(5)+(8k+3)+ . . .+
(8l) and the composition of both. Therefore, the pushout complement exists in Def. 3.28
and Item 2c with induced morphism ll ∈M . Since, the pushout complement and ob-
ject in Def. 3.28 and Item 2b are unique up to isomorphism, w.l.o.g. we conclude that
(der(t ′(k+1,l)) ◦ der(t ′(j,k)) ◦ ac′,nl) ∈ Ak ⊕Bm ⊆ C for the trivial iLk+1-M -decomposition

d = (ILk+1 −
iLk+1−−→ Lk+1−

idLk+1−−−→ Lk+1)∈D in Def. 3.28 and Item 1 with m=mk+1 in Def. 3.28.
Note that for der(t) = n′ = idRk in Def. 3.28 and Item 2d, Def. 3.28 and Item 2(d)i
holds, since, o′ is an isomorphism by preservation of isomorphism idLk+1 along the con-
structed pushout (o,o′) with inverse isomorphism a′′ = o′−1 - Def. 3.28 and Items 2(d)ii
and 2(d)iii follow directly from a′′ being an isomorphism. Therefore, there is an invo-
cation L w(bpath′ ,⇀path′ (l+1),der(t ′(k+1,l))◦der(t ′(j,k))◦ac′,nl,2) from L w(bpath′ ,⇀path′

(j),ac′,n j−1,). By Prop. 3.2 and bpath′ being acyclic by (∗2), (ml+1 . . .mn) is acyclic.

Therefore by (∗4) with bbpath′
(∗1)
= bpath′ , (der(t ′(l+1,n))◦der(t ′(k+1,l))◦der(t ′(j,k))◦ac′,nn) =

(der(t ′) ◦ ac′,nn) ∈ L w(bpath′ ,⇀path′ (l + 1),der(t ′(k+1,l)) ◦ der(t ′(j,k)) ◦ ac′,nl,2). Thus,
(der(t ′) ◦ ac′,nn) ∈ L w(bpath′ ,⇀path′ (j),ac′,n j−1,). Hypothesis. Assume that (∗4)

and therefore (∗3) with i being the corresponding identity morphism hold for case (a).
Step. Analogously to the base case, for case (b), there is an invocation L w(bpath′ ,⇀path′

(l +1),der(t ′(k+1,l))◦der(t ′(j,k))◦ac′,nl,2) from L w(bpath′ ,⇀path′ (j),ac′,n j−1,). By in-
duction hypothesis, (der(t ′)◦ac′,nn) ∈L w(bpath′ ,⇀path′ (l+1),der(t ′(k+1,l))◦der(t ′(j,k))◦
ac′,nl,2) and therefore, (der(t ′) ◦ ac′,nn) ∈ L w(bpath′ ,⇀path′ (j),ac′,n j−1,). Anal-
ogously, we inductively proceed with arbitrary acyclic match-cycles that are reach-
able from bpaths′ . For case (c) with cyclic match-path (mk+1 . . .ml), let (ml′ . . .ml) in
(mk+1 . . .ml′ . . .ml) with tGS(ml′) = tGS(mk+1) and ∀i ∈ {l′+1 . . . l}.tGS(mi) 6= tGS(ml′)

(∗6)

be the last match-cycle in (mk+1 . . .ml) that starts and ends in tGS(ml+1). Analogously to
the base case, there is an invocation L w(bpath′ ,⇀path′ (l + 1),der(t ′(j,k)) ◦ ac′,nk,) from
L w(bpath′ ,⇀path′ (j),ac′,n j−1,). Based on the construction in Def. 3.28 we conclude as
follows:

Lk+1 Rk+1 . . . Rl′−2

Rk ◦ ◦ R′l′−1 = R′′

Ll′−1 Rl′−1 = Rk

der(t) :

Ak Ak+1 . . . Al′−2 Al′−1

(k+1) (l′−1)

Ll′ Rl′ . . . ◦

Rl′−1

Al′−1 Al′ . . . Al−1 Al

Ll Rl = Rk

◦

◦◦ ◦
(l′2) (l2)

(l′1) (l1)

der(t ′(k+1,l′−1)) der(t ′(l′,l))

mk+1
gk+1 gl′−1

ml′−1
n′ = rl′−1 ◦ ll′−1

nk al′−1

nl′−1 ml′

nl′−1

bl′

a′l′ a′l

ll−1 ◦ml ll

rl

al

nl

bl

gl′ gl

168

APPENDIX A. DETAILED PROOFS

Rk R′′

Ak Al′−1

Rk

Ll′ ◦I′Ll′
ILl′

◦

C

(PB) (1)+(2)

(k+1)+ . . .+(l′−1)

der(t) :

RlLl′ ◦

Rl′−1 ◦

Al′−1 C C′

◦

◦

Al

(1)

(2)
(3)

iLl′ ,1

nk

gl′−1 ◦ . . .◦gk+1

der(t ′(k+1,l′−1))

al′−1

iLl′ ,2

m

ml′

n′

nl′−1

ac′

a′2

a′1

d

c◦n2

e1

ac′

ml′

ac

n2

d

nl′−1
c

bl ◦ . . .◦bl′

rl

ala′l ◦ . . .◦a′l′

gl ◦ . . .◦gl′

ll

i

i1 i2

c′

n1

Analogously to the base case by assumption path′ being terminating, (mk+1 . . .ml′−1) ∈
P = PathstGS(m⇀path′ (l+1)),tGS(m⇀path′ (l+1))(GS)\ �GS (bpath′) and furthermore, by (∗1),(∗2)

with b(ml′ ...ml) being acyclic, b(ml′ ...ml) ∈P ⊆P . Thus, for Ak⊕Bb(ml′ ...ml)
we conclude

as follows. Although (ml′ . . .ml) is not terminating, we can apply the induction hypoth-
esis and steps to it, since, from (ml′ . . .ml) being the last cycle in (mk+1 . . .ml′ . . .ml)
from and to tGS(ml+1) it follows that (a) sub-path (. . .ml) is in the base-path b(ml′ ...ml)

of (ml′ . . .ml), (b) for all cycles c in (ml′ . . .ml) that are reachable from b(ml′ ...ml) it is
true that c 6∈�GS (b(ml′ ...ml)) and furthermore, (c) sub-path (ml′ . . .) is in the base-path
b(ml′ ...ml) by definition (i.e., b(ml′ ...ml) = (ml′ , . . . ,ml)). For (a) : Assume that (. . .ml) is
not in b(ml′ ...ml), then it is part of a match-cycle (ml′′ . . .ml) in (ml′ . . .ml′′ . . .ml) with
l′′ > l′ and tGS(ml′′) = tGS(ml′) which contradicts with assumption (∗6). For (b) : As-
sume that c ∈�GS (b(ml′ ...ml)), then by (a), ml ∈ c by definition and therefore, ∃ml′′ in
(ml′ . . .ml′′ . . .ml) with l′′ > l′ and tGS(ml′′) = tGS(ml′) by the definition of match-paths
which contradicts with assumption (∗6). Moreover, analogously to the base case via
pushout (de)-compositions for sequence t ′(k+1,l′−1), there is a recursive transformation t
w.r.t. (mk+1 . . .ml′−1) from Rk to R′l′−1 =R′′ with derived span der(t)= gl′−1◦ . . .◦gk+1 and
co-match n′ = rl′−1 ◦ ll′−1 : Rl′−1 = Rk→ R′l′−1. Furthermore, (k+1)+ . . .+(l′−1) (is a)
are pushout(s) and al′−1◦n′= nl′−1. This also holds for sequence t ′(l′,l) with (l′1)+ . . .+(l1)
and (l′2) + . . .+ (l2) being pushouts and al ◦ rl ◦ ll = nl . By induction hypothesis and
steps for (ml′ . . .ml), there is (ac,n2 ◦ n1) ∈ L w(b(ml′ ...ml),1, idRk , idRk ,2) = Bb(ml′ ...ml)

in

Def. 3.28 and Item 2a with i ∈ M and i ◦ ac = gl ◦ . . . ◦ gl′ ◦ idRk = gl ◦ . . . ◦ gl′ as
well as i ◦ n2 ◦ n1 = rl ◦ ll and ac ∈M by M -decomposition with gl ◦ . . . ◦ gl′ ∈M
by M -composition (∗7). By construction in Def. 3.28 and pushout (de)-composition,
again we obtain pushout (1) with pushout complement (ac′ ∈ M ,n2 ∈ M) and in-
duced morphism n1 ∈M in Def. 3.28 and Item 2c and construct pushouts (2) and (3)
with i1 ∈M by M -preservation along (3) and (2) + (3) being a pushout by composi-
tion. From (l′2)+ . . .+(l2) being a pushout and (∗7), (i ◦ ac,nl′−1) over (a′l ◦ . . . ◦ a′l′ ,al)
is also a pullback. Thus by effective pushouts with (2) + (3) being a pushout, there
is i2 ∈M with i2 ◦ c′ = al and i2 ◦ i1 ◦ d = a′l ◦ . . . ◦ a′l′ = der(t ′(l′,l))

(∗8). Therefore,

i2 ◦ i1 ◦ c ◦ n2 ◦ n1
(3),(∗8)
= al ◦ i ◦ n2 ◦ n1

(∗7)
= al ◦ rl ◦ ll = nl

(∗9). By pushout composition
(1)+ (2) is a pushout with nl′−1 ◦ml′ ∈M by M -composition and therefore, (1)+ (2)
is also a pullback. Analogously, pushout (k + 1)+ . . .+(l′− 1) with nk ∈M is also a
pullback. We construct pullback (PB) over (n′ ◦ml′ ,gl′−1 ◦ . . . ◦ gk+1) with iLl′ ,2,m ∈M ,
since, M is closed under (PB). Let [iLl′ ,1 ∈M] be the initial M -subobject of I′Ll′

. By
Prop. 3.6, [iLl′ ,2 ◦ iLl′ ,1 ∈ D] is the initial M -subobject of Ll′ and its decomposition in
Def. 3.28 and Item 1. Furthermore for Def. 3.28 and Item 2d, we construct pushout (o,o′)

169

over (iLl′ ,2,m) with induced morphism a′′ ∈M by effective pushout (cf. Item 2(d)i)and
a′′ ◦ o = n′ ◦ml′ (cf. Item 2(d)ii) as well as a′′ ◦ o′ = der(t) (cf. Item 2(d)iii). Finally,
we construct pushout (a′1,a

′
2) over (ac′ ◦ iLl′ ,2,nk ◦m) in Def. 3.28 and Item 2b with (a′2 ◦

der(t ′(j,k))◦ac′,a′1◦n1)∈Ak⊕Bb(ml′ ...ml)
⊆C . Thus, there is an invocation L w(bpath′ ,⇀path′

(l+1),a′2◦der(t ′(j,k))◦ac′,a′1◦n1,2) from L w(bpath′ ,⇀path′ (j),ac′,n j−1,). Moreover by
pullback composition, (PB)+(k+1)+ . . .+(l′−1)+(1)+(2) is a pullback and therefore
by effective pushouts, there is e1 ∈M with e1 ◦a′1 = c◦n2 and e1 ◦a′2 = d ◦der(t ′(k+1,l′−1))

(∗10). Thus by M -composition, there is i′ = i2 ◦ i1 ◦e1 ∈M with i′ ◦a′2 ◦der(t ′(j,k))◦ac′
(∗10)
=

i2◦ i1◦d ◦der(t ′(k+1,l′−1))◦der(t ′(j,k))◦ac′
(∗8)
= der(t ′(l′,l))◦der(t ′(k+1,l′−1))◦der(t ′(j,k))◦ac′=

der(t ′(k+1,l)) ◦ der(t ′(j,k)) ◦ ac′ and i′ ◦ a′1 ◦ n1
(∗10)
= i2 ◦ i1 ◦ c ◦ n2 ◦ n1

(∗7),(3)
= i2 ◦ c′ ◦ rl ◦ ll

(∗8)
=

al ◦ rl ◦ ll = nl
(∗11). With the remaining sequence over match-path (ml+1,mn) we proceed

as follows.

Ri

Li

Ri−1 Ai−1

Ai

◦

◦

Ai−1

◦

(1) (2)

(=)

(=)

(3)

ni−1

ni

mi

ii−1

ii,2

a′′i

n′i

n′i−1

aia′i

ii−1

ii,1

Beside the existing sequence t ′(l+1,n) of steps with pushouts (2) for i ∈ {l + 1 . . .n}
and der(t ′(l+1,n)) = an ◦ . . .al+1, we construct a corresponding sequence t ′′(l+1,n) over
(ml+1 . . .mn) with pushouts (1), der(t ′′(l+1,n)) = a′n ◦ . . . ◦ a′l+1 and n′l = a′1 ◦ n1, il = i′.
For each step i we construct pushout (3) over ii−1 ∈ M with ii,1 ∈ M and pushout
(1) + (3) by pushout composition and preservation of M along (3). By the definition
of recursive transformation steps and M -composition with ni−1 ◦mi ∈M , (2) is also
a pullback and therefore by effective pushouts with pushout (1) + (3) and (∗11), there
is ii,2 ∈M with ii = ii,2 ◦ ii,1 ∈M by M -composition, ii ◦ n′i = ni and ii,2 ◦ a′′i = ai ⇒
ii,2 ◦ a′′i ◦ ii−1 = ai ◦ ii−1

(3)⇔ ii ◦ a′i = ai ◦ ii−1. Thus, in ◦ n′n = nn and in ◦ der(t ′′(l+1,n)) =

in ◦ a′n ◦ . . . ◦ a′l+1 = an ◦ . . . ◦ al+1 ◦ il = der(t ′(l+1,n)) ◦ il (∗12). Analogously to the
base case, (ml+1 . . .mn) is acyclic and therefore by (∗4), (der(t ′′(l+1,n)) ◦ a′2 ◦ der(t ′(j,k)) ◦
ac′,n′n) ∈L w(bpath′ ,⇀path′ (l +1),a′2 ◦der(t ′(j,k))◦ac′,a′1 ◦n1,2), i.e., (der(t ′′(l+1,n))◦a′2 ◦
der(t ′(j,k)) ◦ ac′,n′n) ∈ L w(bpath′ ,⇀path′ (j),ac′,n j−1,). Furthermore, there is in ∈M

with der(t ′) ◦ ac′ = der(t ′(l+1,n)) ◦ der(t ′(k+1,l)) ◦ der(t ′(j,k)) ◦ ac′
(∗11)
= der(t ′(l+1,n)) ◦ i′ ◦ a′2 ◦

der(t ′(j,k)) ◦ ac′
(∗12)
= in ◦ der(t ′′(l+1,n)) ◦ a′2 ◦ der(t ′(j,k)) ◦ ac′ and in ◦ n′n

(∗12)
= nn. Analogously

to case (c), for case (d), there is an invocation L w(bpath′ ,⇀path′ (l + 1),ac1,n1,2) from
L w(bpath′ ,⇀path′ (j),ac′,n j−1,) with i1 ∈M and i1 ◦ac1 = der(t ′(k+1,l))◦der(t ′(j,k))◦ac′

as well as i1 ◦ n1 = nl
(∗13). Furthermore analogously to (c), we construct a sequence

t ′′(l+1,n) over (ml+1 . . .mn) and n1 with co-match n′n, morphism in ∈ M , in ◦ n′n = nn

170

APPENDIX A. DETAILED PROOFS

and in ◦ der(t ′′(l+1,n)) = der(t ′(l+1,n)) ◦ i1 (∗14). By (∗3) for case (c), there is (ac2,n2) ∈
L w(bpath′ ,⇀path′ (l+1),ac1,n1,2) with i2 ∈M , i2 ◦ac2 = der(t ′′(l+1,n))◦ac1 and i2 ◦n2 =

n′n
(∗15). Thus, there is (ac2,n2) ∈ L w(bpath′ ,⇀path′ (j),ac′,n j−1,) with in ◦ i2 ∈M

by M -composition, in ◦ i2 ◦ ac2
(∗15)
= in ◦ der(t ′′(l+1,n)) ◦ ac1

(∗14)
= der(t ′(l+1,n)) ◦ i1 ◦ ac1

(∗13)
=

der(t ′(l+1,n))◦der(t ′(k+1,l))◦der(t ′(j,k))◦ac′ = der(t ′)◦ac′ and in ◦ i2 ◦n2
(∗15)
= in ◦n′n

(∗14)
= nn.

Analogously, we inductively proceed with arbitrary cyclic match-cycles that are reachable
from bpath′ .

1. Let t : S =
path
==⇒GS G be terminating, acyclic and starting in S. By Def. 3.20, path is ter-

minating, acyclic and starts in S, therefore, bpath
(∗1)
= path ∈ PathsS(GS). Thus, by the

construction of Lw(GS) and (∗4), [der(t)] ∈Lw(GS) for ac′ = n0 = idS.

2. Let t : S =
path
==⇒GS G be terminating, cyclic and starting in S. By Def. 3.20, path is terminat-

ing, cyclic and starts in S. Thus by (∗2), bpath ∈ PathsS(GS) and furthermore, (∗3) implies
that there is [ac : S→G′] ∈Lw(GS) such that there is i : G′→G ∈M with i◦ac = der(t)
for ac′ = n0 = idS.

3. By induction over the construction of L w in Def. 3.28: Basis. Let (ac,n) ∈ L w(m =
(m1 : L→ R, . . . ,mn),1, idR, idR,) be obtained without recursive calls of L w for C . Then,
by the construction in Def. 3.28, there is t : R =

m⇒GS,n A with ac = der(t). Thus, there is
identity idA ∈M with idA ◦ac = ac = der(t) and idA ◦n = n. Hypothesis. For (ac,n′) ∈
L w(m= (m1 : L→ R, . . . ,mn),1, idR, idR,) there is t : R=

m⇒GS,n A and i∈M with i◦ac=
der(t) and i◦n′ = n. Step. Let (ac,n) ∈L w(m = (m1 : L→ R . . .m j . . .mn),1, idR, idR,)
be obtained by recursive calls L w(mi,1, idRi , idRi ,2) for C starting at position j for i in m
with 1< j≤ n. Note that there does not exist such recursive calls at position 1, since, either
L w is called with R = S (i.e., P =∅) or L w is called with switch k = 2 for position 1 (A).

By the construction of L w in Def. 3.28, there is t1 : R =
(m1...m j−1)
======⇒GS,n j−1

A and invocation
L w(m, j,ac1 = der(t1),n1 = n j−1,) with i′1 = idA ∈M and i′1 ◦ac1 = der(t1) as well as
i′1 ◦ n1 = n j−1

(∗1). Furthermore for recursive calls for C by construction with pushouts
(o,o′) over (iL,2,m) (cf. Def. 3.28 and Item 2d) and (a′1,a

′
2) over (ac′ ◦ iL,2,n1 ◦ idRi ◦m)

(cf. Def. 3.28 and Item 2b) we conclude as follows (all morphisms given below are in M
by definition and preservation of M along pushouts and M -composition):

I′L L O

Ri

L′

Ri R′′

A A′

◦

◦

B

◦ ◦

C◦CB

Ri R′ ◦

◦

◦

D

(1) (2)

(=)

(=)

(=)

(=)

iL,2
o

o′m

ac′

idRi

n1

der(t ′2)

a′′

a′2

a′1

b1 ◦m′1

b2

c2

c3

d2

d1

e2 e3

f2

i1i2

h2
g2

g1

i3

ac

d1 ◦n′

g2

g1 ◦b1

der(t ′3)

i′3

r2

r1
q1

q2

n′′m′1 ◦n′

i′3

c1

e1 f1

171

For the pushout in Def. 3.28 and Item 2c, we construct a pushout (b1,b2) over (n′,ac)
and by pushout composition and Def. 3.28 and Item 2(d)ii obtain pushout (b1 ◦m′1,b2)
over (ac′,a′′ ◦ o). We construct pushout (c1,c2) over (ac′,o) with induced morphism c3

and c3 ◦ c1 = b1 ◦m′1
(∗3) and obtain pushout (c3,b2) over (c2,a′′) by pushout decom-

position. We construct pushout (d1,d2) over (der(t ′2),n1), i.e., over (a′′ ◦ o′,n1 ◦ idRi)
by Def. 3.28 and Item 2(d)iii, and construct pushout (e1,e2) over (o′,n1 ◦ idRi) with in-
duced morphism e3, (e3,d1) being a pushout over (a′′,e1) by pushout decomposition
and therefore by M -preservation along pushouts, e3 ∈M with e3 ◦ e1 = d1 ◦ a′′ and
e3 ◦ e2 = d2

(∗2). We construct pushout (f1, f2) over (c2,e1). By pushout composi-
tion, (f1 ◦ c1, f2 ◦ e2) is a pushout over (ac′ ◦ iL,2,n1 ◦ idRi ◦m) and therefore also a pull-
back, since by M -composition ac′ ◦ iL,2 ∈M . Therefore by effective pushouts, there
is i1 ∈M with i1 ◦ a′1 = f1 ◦ c1 and i1 ◦ a′2 = f2 ◦ e2

(∗4). We construct pushout (g1,g2)
over (b2,d1) and pushout (i2,h2) over (f2,e3). By pushout composition, (i2 ◦ f1,h2) and

(g1 ◦ c3,g2) are pushouts over (c2,d1 ◦a′′)
(∗2)
= (c2,e3 ◦ e1) and also pullbacks by c2 ∈M .

Therefore again by effective pushouts, we obtain i3 ∈M with i3 ◦ i2 ◦ f1 = g1 ◦ c3 and

i3 ◦h2 = g2
(∗5). Thus, i3 ◦ i2 ◦ i1 ◦a′1

(∗4)
= i3 ◦ i2 ◦ f1 ◦ c1

(∗5)
= g1 ◦ c3 ◦ c1

(∗3)
= g1 ◦b1 ◦m′1 and

i3 ◦ i2 ◦ i1 ◦a′2
(∗4)
= i3 ◦ i2 ◦ f2 ◦e2

(PO)
= i3 ◦h2 ◦e3 ◦e2

(∗2)
= i3 ◦h2 ◦d2

(∗5)
= g2 ◦d2

(∗6). By induc-
tion hypothesis, for (ac,m′1 ◦n′) there is t ′3 : Ri =

∗⇒GS,n′′ and i′3 ∈M with i′3 ◦ac = der(t ′3)

and i′3 ◦m′1 ◦ n′ = n′′ (∗
7). By pushout composition of pushouts (b1,b2) and (g1,g2), (1)

is a pushout. We construct pushout (2) with (1)+ (2) being a pushout by composition.
Furthermore we construct pushout (q1,q2) over (der(t ′3),d1 ◦ n′) which is also a pullback
by d1 ◦ n′ ∈M and therefore, we obtain a sequence t2 of recursive transformation steps
from A via t ′2 and t ′3 over n1 with derived span q2 ◦ d2 and co-match q1 ◦ n′′ by pushout
(de)-compositions analogously to proving the base case for Prop. 3.7 and Items 1 and 2.
By effective pushouts, there is i′3 ∈M with i′3 ◦ r1 = q1 and i′3 ◦ r2 ◦ g2 = q2

(∗8). Thus,

i′3 ◦ r2 ◦ i3 ◦ i2 ◦ i1 ◦a′1 ◦n′
(∗6)
= i′3 ◦ r2 ◦g1 ◦b1 ◦m′1 ◦n′

(2)
= i′3 ◦ r1 ◦ i′3 ◦m′1 ◦n′

(∗7)
= i′3 ◦ r1 ◦n′′

(∗8)
=

q1 ◦n′′ and i′3 ◦ r2 ◦ i3 ◦ i2 ◦ i1 ◦a′2
(∗6)
= i′3 ◦ r2 ◦g2 ◦d2

(∗8)
= q2 ◦d2

(∗9).

R ◦

A A′

D

◦ ◦D′

(3)

R A′ ◦

D′

◦

◦ ◦

D′′
(4)

(5)

der(t1)

ac1 i′1

n j−1

q2 ◦d2

a′2

i′3 ◦ r2 ◦ i3 ◦ i2 ◦ i1

q1 ◦n′′

a′1 ◦n′n1

s1s2

a′2 ◦ac1

der(t) i

a′1 ◦n′
s1 ◦q1 ◦n′′

m j

p

n′

ac2

ac′2
i′

Finally, we extend t1 from (∗1) by t2 to a recursive transformation t : R =
∗⇒GS,s1◦q1◦n′′ D′

with der(t) = s2 ◦der(t1) by constructing pushout (3). Therefore for (a′2 ◦ac1,a′1 ◦n′) ∈ C

with succeeding invocation L w(m, j,a′2 ◦ac1,a′1 ◦n′,2), there is i = s1 ◦ i′3 ◦r2 ◦ i3 ◦ i2 ◦ i1 ∈

M by M -composition and recursive transformation t with i ◦ a′2 ◦ ac1
(∗9)
= s1 ◦ q2 ◦ d2 ◦

ac1
(3)
= s2 ◦ i′1 ◦ ac1

(∗1)
= s2 ◦ der(t1) = der(t) and i ◦ a′1 ◦ n′

(∗9)
= s1 ◦ q1 ◦ n′′. The case for

der(t ′2) = n′ = idRi in Def. 3.28 and Item 2d is shown analogously by omitting recursive
transformation t ′2. For succeeding invocation L w(m, j,a′2 ◦ac1,a′1 ◦n′,2) with switch k =
2, pushout (4) over (p,a′1 ◦n′ ◦m j) is obtained from the recursive step of the construction.

172

APPENDIX A. DETAILED PROOFS

We construct pushout (5) over (ac2, i) and obtain pushout (4)+(5) by composition which
extends recursive transformation t to a recursive transformation t ′ : R =

∗⇒GS,i′◦n′ D′′ with
der(t ′) = ac′2 ◦ der(t). Thus for succeeding invocation L w(m, j+ 1,ac2 ◦ a′2 ◦ ac1,n′,1),
there is i′ ∈M by M -preservation of i along pushout (5) and recursive transformation

t ′ with i′ ◦ ac2 ◦ a′2 ◦ ac1
(5)
= der(t ′) and i′ ◦ n′ = i′ ◦ n′. For (ac,n) ∈ L w(m = (m1 : L→

R . . .m j . . .mn),1, idR, idR,), by induction over the construction for match-path m we fi-
nally obtain that there is t ′′ : R =

∗⇒GS A′′ and i′′ ∈M with i′′ ◦ ac = der(t ′′). Note that if
m is terminating and starts in S then also t ′′ is terminating and starts in S, since, by (A)
and the construction of L w, a step ((4)+ (5)) via match m1 (mn) is the first (last) step in
t ′′. Thus, by the definition of Lw(GS) with m being terminating and starting in S, for each
[ac] ∈Lw(GS) there is terminating t ′′ : S =

∗⇒GS which starts in S and morphism i′′ ∈M
with i′′ ◦ac = der(t ′′).

A.14 Proof of Sec. 3.5 and Lem. 3.16

Let Restrt(G) be the restriction of G along t with injection t ′ : Restrt(G)→ G. We first show
for positive conditions acP that ∃p : Restrt(P)→ G ∈M with p |= Restrt(acP) if and only if
∃pR : Restrt(P)→ Restrt(G) ∈M with pR |= Restrt(acP) such that t ′ ◦ pR = p (∗A).

TG

TGR

G

Restrt(G) Restrt(C) Restrt(P)

(1) Restrt(acC)

tG

tGR

t t ′

tCR

aR

p

q

qR

pR

“⇒” By induction over the structure of conditions: Basis. For Restrt(acP) = true, by the con-
struction of restricted conditions in Def. 3.32, p being a morphism from object Restrt(P)
typed over TG via morphism t ◦ tCR ◦ aR to object G typed over TG via morphism tG im-
plies that t ◦ tCR ◦aR = tG ◦ p. Therefore, by the universal property of pullback (1) from the
construction of Restrt(G) (cf. Def. 3.32), there is a morphism pR : Restrt(P)→ Restrt(G)
with t ′ ◦ pR = p and pR |= true = Restrt(acP). By M -decomposition with p ∈M and
t ′ ∈M (since, M -morphisms t ∈M are closed under pullbacks (1)), pR ∈M . Hypoth-
esis. For restricted conditions Restrt(acC) and Restrt(acP,i), i ∈ I the assumption holds.
Step. For Restrt(acP) = ∃(aR : Restrt(P)→ Restrt(C),Restrt(acC)), p |= Restrt(acP) im-
plies that there is q : Restrt(C)→ G ∈M with q ◦ aR = p (∗1). From q being a mor-
phism it follows that tG ◦ q = t ◦ tCR . Thus, by the universal property of pullback (1)
there is qR : Restrt(C) → Restrt(G) with t ′ ◦ qR = q (∗2). By M -decomposition with
q, t ′ ∈M , qR ∈M . Analogously from p being a morphism, it follows that there is pR

with t ′ ◦ pR = p (∗3) and furthermore, from p, t ′ ∈M by M -decomposition, pR ∈M .

Thus, t ′ ◦ pR
(∗3)
= p

(∗1)
= q ◦ aR

(∗2)
= t ′ ◦ qR ◦ aR. By t ′ ∈M being a monomorphism, it fol-

lows that qR ◦aR = pR. By induction hypothesis and assumption q |= Restrt(acC), there is

q′R with q′R |= Restrt(acC) and t ′ ◦ q′R = q
(∗2)
= t ′ ◦ qR. By t ′ ∈M being a monomorphism,

q′R = qR. Thus, pR |= Restrt(acP). For Restrt(acP) = ∧i∈I(Restrt(acP,i)) we obtain mor-
phisms pR,i ∈M with pR,i |= Restrt(acP,i) and t ′ ◦ pR,i = p. By t ′ ∈M being a monomor-
phism, pR,i1 = pR,i2 = p for all i1, i2 ∈ I and therefore, p |= Restrt(acP). Analogously, we
prove the step for Restrt(acP) = ∨i∈I(Restrt(acP,i)).

173

“⇐” By induction over the structure of conditions: Basis. For Restrt(acP) = true, there is
t ′ ◦ pR : Restrt(P)→ G ∈M by M -composition with t ′ ◦ pR |= true = Restrt(acP). Hy-
pothesis. For restricted conditions Restrt(acC) and Restrt(acP,i), i ∈ I the assumption
holds. Step. For Restrt(acP) = ∃(aR : Restrt(P)→ Restrt(C),Restrt(acC)), by assump-
tion pR |= Restrt(acP), pR ∈M there is qR ∈M with qR ◦aR = pR and qR |= Restrt(acC).
By M -composition, there are t ′ ◦ pR, t ′ ◦ qR ∈M with t ′ ◦ qR ◦ aR = t ′ ◦ pR. By induc-
tion hypothesis, t ′ ◦ qR |= Restrt(acC). Thus, t ′ ◦ pR |= Restrt(acP). For Restrt(acP) =
∧i∈I(Restrt(acP,i)) we obtain morphisms pi ∈M with pi |= Restrt(acP,i) and t ′ ◦ pR = pi.
Thus, pi1 = pi2 = p for all i1, i2 ∈ I and therefore, p |= Restrt(acP). Analogously, we prove
the step for Restrt(acP) = ∨i∈I(Restrt(acP,i)).

For non-positive conditions Restrt(¬ac′P)=¬Restrt(ac′P) with negations we conclude as follows.
We already have shown that there exists p, pR ∈M with t ′ ◦ pR = p for both directions. For
p |= ¬Restrt(ac′P) assume that pR |= Restrt(ac′P). Then, by the result from before it follows
that there is p′ = t ′ ◦ pR = p with p′ = p |= Restrt(ac′P) contradicting with assumption ¬(p |=
Restrt(ac′P)). Therefore, pR |= ¬Restrt(ac′P), i.e., p |= Restrt(¬ac′P) implies pR |= Restrt(¬ac′P).
The other direction is shown analogously. The main difference is that we obtain a morphism
p′R with p′R |= Restrt(ac′P) and t ′ ◦ p′R = p = t ′ ◦ pR. By t ′ ∈M being a monomorphism (as
already shown before), p′R = pR and therefore, pR |= Restrt(ac′P) contradicts with assumption
¬(pR |= Restrt(ac′P)). Therefore, pR |= Restrt(¬ac′P) implies p |= Restrt(¬ac′P).

Now, we prove the main results of Lem. 3.16. For direction “⇐”, we use the uniqueness of
initial morphisms, i.e., for initial morphisms iPR : I → Restrt(P), iG : I → G and p ◦ iPR : I → G
from initial object I and morphism p : Restrt(P)→ G it holds that p◦ iPR = iG (∗1). The same is
true for direction “⇒” and initial morphisms iPR ,iGR : I→ Restrt(G) and pR ◦ iPR : I→ Restrt(G)

with pR ◦ iPR = iGR
(∗2).

“
I
|=” G

I
|=Restrt(acP)

(∗1)⇔ ∃p : Restrt(P)→G∈M with p |=Restrt(acP)
(∗A)⇔ ∃pR : Restrt(P)→

Restrt(G) ∈M with pR |= Restrt(acP)
(∗2)⇔ Restrt(G)

I
|= Restrt(acP).

“|=” G |= Restrt(acP)
(∗1)⇔ ¬∃p : Restrt(P) → G ∈ M with p |= Restrt(¬acP)

(∗A)⇔

¬∃pR : Restrt(P) → Restrt(G) ∈ M with pR |= Restrt(¬acP)
(∗2)⇔ Restrt(G) |=

Restrt(acP).

A.15 Proof of Sec. 3.5 and Thm. 3.10

Let ac′P be an extension of a plain condition acP ∈CI ∪CG via CG and G ∈LI(CI)∩L (CG) be
an object. For morphism p : P→ G we prove that p |= acP if and only if p |= ac′P. By induction
over plain positive conditions:

“⇒” Basis. For acP = true, p |= ac′P = true. For acP = ∃(a : P→C, true), let (mi : Pi→ Ei ∈
M ,acPi,i ∈CG)i∈{1,...,n} be the matches mi and conditions acPi,i≡∨ j∈J∃(a j : Pi→C j, true)
that are used for the step-wise extension ac′P according to Sec. 3.2 and Def. 3.5. By
p |= acP, there exists q1 : C→ G ∈M . For each step i of the extension we conclude as
follows. Assumption G ∈ L (CG), i.e., G |= acPi,i, implies that there exists q′i+1 : C j →
G ∈M with qi ◦mi = q′i+1 ◦ a j for some j ∈ J according to Sec. 2.2.3 and Rem. 2.10
and match qi ◦mi ∈M by M -composition. We create pullback (m′i,a

′
j) over (qi,q′i+1)

and subsequent pushout (1) where all morphisms are in M , since, M -morphisms (qi and

174

APPENDIX A. DETAILED PROOFS

q′i+1) are closed under pushouts and pullbacks. By the universal pullback property, there is
pi : Pi→ P′i with mi = m′i ◦ pi and a j = a′j ◦ pi implying further by M -decomposition and
mi,m′i ∈M that pi ∈M . Furthermore by effective pushouts, there is qi+1 : Ei+1→G∈M
with qi = qi+1 ◦ ei. By definition Sec. 3.2 and Def. 3.4, Ei+1 is not CG-inconsistent, since,
G |= c,∀c ∈ CG by assumption G ∈ L (CG). Assume that Ei+1 is CG-inconsistent, i.e.,
Ei+1 6|= c for some c ∈ CG that is violation stable under embedding, then also G 6|= c via
inclusion qi+1 contradicting with the statement from before. Therefore by constructions
Defs. 3.5 and 3.35, p |= ac′P.

C = E1P E2

P1 C j

G

P′1

(1)m1

e1

a j

a

e′1

p q1

m′1

a′jp1

q2

q′2

Hypothesis. The assumption holds for plain conditions acP,i, i ∈ I. Step. For acP =
∨i∈I(acP,i), p |= acP implies that p |= acP,i for some i∈ I. Let ac′P,i be the extension of acP,i

in ac′P, then by induction hypothesis, p |= ac′P,i and therefore, p |= ac′P by construction
Def. 3.35. Analogously, we conclude for acP = ∧i∈I(acP,i).

“⇐” Basis. For acP = true, p |= acP. For acP = ∃(a : P → C, true) and extension ac′P =
∨i∈{1,...,n}(∃(P −ei◦a−−→ Ei, true)), p |= ac′P implies that p |= ∃(P −ei◦a−−→ Ei, true) for some i,
i.e., there exists qi : Ei→G∈M with p = qi ◦ei ◦a. By construction Sec. 3.2 and Def. 3.5
and M -composition, ei ∈M , since, M -morphisms a′j are closed under pushouts (1).
Therefore by M -composition, qi ◦ ei ∈M and furthermore qi ◦ ei |= true, i.e., p |= acP.
Hypothesis. The assumption holds for plain conditions acP,i, i ∈ I. Step. For acP =
∨i∈I(acP,i), p |= ac′P implies that p |= ac′P,i for some i ∈ I and extension ac′P,i of acP,i.
By induction hypothesis, p |= acP,i, i.e., p |= acP. Analogously, we conclude for acP =
∧i∈I(acP,i).

For plain non-positive conditions acP = ¬acP, let ac′P = ¬ac′P be an extension of acP with
extension ac′P of acP.

“⇒” Assume that p 6|= ac′P = ¬ac′P, i.e., p |= ac′P. Therefore, p |= acP contradicting with as-
sumption p |= acP, i.e., ¬(p |= acP). Therefore, p |= ac′P.

“⇐” Assume that p 6|= acP, i.e., p |= acP. Therefore, p |= ac′P contradicting with assumption
p |= ac′P = ¬ac′P, i.e., ¬(p |= ac′P). Therefore, p |= acP.

Based on the fact from above, in the following, we proof that G∈LI(CI)∩L (CG) if and only
if G ∈LI(CI ∪C′I)∩L (CG∪C′G).

“⇒” G ∈ LI(CI)∩L (CG) implies that G
I
|= acP,I,∀acP,I ∈ CI and G |= acP,G,∀acP,G ∈ CG.

For each extension ac′P,I ∈ C′I of some acP,I ∈ CI we conclude as follows. By Sec. 2.2.3

and Rem. 2.10, G
I
|= acP,I implies that there exists p : P→ G with p |= acP,I implying

175

further that p |= ac′P,I , i.e., G
I
|= ac′P,I according to Sec. 2.2.3 and Rem. 2.10. Thus,

G ∈ LI(CI ∪C′I). For each extension ac′P,G ∈ C′G we conclude analogously leading to
G ∈L (CG∪C′G). Therefore, G ∈LI(CI ∪C′I)∩L (CG∪C′G).

“⇐” G ∈LI(CI ∪C′I)∩L (CG∪C′G) implies that G
I
|= cI,∀cI ∈CI and G |= cG,∀cG ∈CG im-

plying further that G ∈LI(CI)∩L (CG).

176

Bibliography

[AGG16] AGG 2.1 - The Attributed Graph Grammar System. http://www.user.tu-
berlin.de/o.runge/agg/, 2016.

[AHS90] Jiřı́ Adámek, Horst Herrlich, and George Strecker. Abstract and Concrete Cate-
gories. Wiley-Interscience, New York, NY, USA, 1990.

[ALS15] Anthony Anjorin, Erhan Leblebici, and Andy Schürr. 20 years of triple graph
grammars: A roadmap for future research. ECEASST, 73, 2015.

[AN00] Peter R.J. Asveld and Anton Nijholt. The inclusion problem for some subclasses of
context-free languages. Theoretical Computer Science, 230(12):247 – 256, 2000.

[ASU06] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2006.

[BBG05a] Sami Beydeda, Matthias Book, and Volker Gruhn. Model-Driven Software Devel-
opment. Springer, 2005.

[BBG05b] Sami Beydeda, Matthias Book, and Volker Gruhn. Model-Driven Software Devel-
opment. Springer-Verlag, Berlin/Heidelberg, 2005.

[BDK+12] Nathalie Bertrand, Giorgio Delzanno, Barbara König, Arnaud Sangnier, and Jan
Stückrath. On the decidability status of reachability and coverability in graph trans-
formation systems. In 23rd International Conference on Rewriting Techniques and
Applications (RTA’12) , RTA 2012, May 28 - June 2, 2012, Nagoya, Japan, pages
101–116, 2012.

[BEGG10] Benjamin Braatz, Hartmut Ehrig, Karsten Gabriel, and Ulrike Golas. Finitary m-
adhesive categories. In H. Ehrig, A. Rensink, G. Rozenberg, and A. Schürr, editors,
Proceedings of Intern. Conf. on Graph Transformation (ICGT’ 10), volume 6372,
pages 234–249, 2010.

[Béz05] Jean Bézivin. On the unification power of models. Software & Systems Modeling,
4(2):171–188, 2005.

[BW13] Alexander Bergmayr and Manuel Wimmer. Generating metamodels from gram-
mars by chaining translational and by-example techniques. In Proceedings of the

177

BIBLIOGRAPHY

First International Workshop on Model-driven Engineering By Example co-located
with ACM/IEEE 16th International Conference on Model Driven Engineering Lan-
guages and Systems (MoDELS 2013), Miami, Florida, USA, September 29, 2013.,
pages 22–31, 2013.

[CH03] Krzysztof Czarnecki and Simon Helsen. Classification of model transformation
approaches. In 2nd OOPSLA’03 Workshop on Generative Techniques in the Context
of MDA, Anaheim, CA, USA, 2003.

[CH06] Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model transfor-
mation approaches. IBM Syst. J., 45(3):621–645, July 2006.

[CHH+12] Andrea Corradini, Reiko Heckel, Frank Hermann, Susann Gottmann, and Nico
Nachtigall. Transformation systems with incremental negative application condi-
tions. In Recent Trends in Algebraic Development Techniques, 21st International
Workshop, WADT 2012, Salamanca, Spain, June 7-10, 2012, Revised Selected Pa-
pers, pages 127–142, 2012.

[DHJ+06] Frank Drewes, Berthold Hoffmann, Dirk Janssens, Mark Minas, and Niels
Van Eetvelde. Adaptive Star Grammars, pages 77–91. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2006.

[DR15] Brahma Dathan and Sarnath Ramnath. Object-Oriented Analysis, Design and Im-
plementation: An Integrated Approach, chapter Modelling with Finite State Ma-
chines, pages 275–322. Springer International Publishing, Cham, 2015.

[DXC10a] Zinovy Diskin, Yingfei Xiong, and Krzysztof Czarnecki. From state- to delta-based
bidirectional model transformations. In Theory and Practice of Model Transforma-
tions, Third International Conference, ICMT 2010, Malaga, Spain, June 28-July 2,
2010. Proceedings, pages 61–76, 2010.

[DXC10b] Zinovy Diskin, Yingfei Xiong, and Krzysztof Czarnecki. Specifying overlaps of
heterogeneous models for global consistency checking. In Models in Software En-
gineering - Workshops and Symposia at MODELS 2010, Oslo, Norway, October
2-8, 2010, Reports and Revised Selected Papers, pages 165–179, 2010.

[DXC+11] Zinovy Diskin, Yingfei Xiong, Krzysztof Czarnecki, Hartmut Ehrig, Frank Her-
mann, and Fernando Orejas. From state- to delta-based bidirectional model trans-
formations: The symmetric case. In Model Driven Engineering Languages and
Systems, 14th International Conference, MODELS 2011, Wellington, New Zealand,
October 16-21, 2011. Proceedings, pages 304–318, 2011.

[EEE+07] Hartmut Ehrig, Karsten Ehrig, Claudia Ermel, Frank Hermann, and Gabriele
Taentzer. Information preserving bidirectional model transformations. In Funda-
mental Approaches to Software Engineering, 10th International Conference, FASE
2007, Held as Part of the Joint European Conferences, on Theory and Practice of
Software, ETAPS 2007, Braga, Portugal, March 24 - April 1, 2007, Proceedings,
pages 72–86, 2007.

[EEGH15] Hartmut Ehrig, Claudia Ermel, Ulrike Golas, and Frank Hermann. Graph and
Model Transformation: General Framework and Applications. Springer, 2015.

178

BIBLIOGRAPHY

[EEKR99] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation: Vol. 2: Applications,
Languages, and Tools. World Scientific Publishing Co., Inc., River Edge, NJ, USA,
1999.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation (Monographs in Theoretical Computer Science. An EATCS Series).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[EKMR99] H. Ehrig, H.J. Kreowski, U. Montanari, and G. Rozenberg. Handbook of Graph
Grammars and Computing by Graph Transformation, Volume 3: Concurrency, Par-
allelism, and Distribution. World Scientific, 1999.

[EM90] H. Ehrig and Bernd Mahr. Fundamentals of Algebraic Specification 2: Module
Specifications and Constraints. Springer-Verlag New York, Inc., New York, NY,
USA, 1990.

[Fet99] James H. Fetzer. The role of models in computer science. The Monist, 82(1):20–36,
1999.

[GdLK+13] Esther Guerra, Juan de Lara, Dimitrios S. Kolovos, Richard F. Paige, and Os-
mar Marchi dos Santos. Engineering model transformations with transML. Soft-
ware & Systems Modeling, 12(3):555–577, 2013.

[GEH11] Ulrike Golas, Hartmut Ehrig, and Frank Hermann. Formal Specification of Model
Transformations by Triple Graph Grammars with Application Conditions. ECE-
ASST, 2011.

[GHN+13] Susann Gottmann, Frank Hermann, Nico Nachtigall, Benjamin Braatz, Claudia Er-
mel, Hartmut Ehrig, and Thomas Engel. Correctness and completeness of gener-
alised concurrent model synchronisation based on triple graph grammars. In Pro-
ceedings of the Second Workshop on the Analysis of Model Transformations (AMT
2013), Miami, FL, USA, September 29, 2013, 2013.

[GLEO12] Ulrike Golas, Leen Lambers, Hartmut Ehrig, and Fernando Orejas. Attributed
graph transformation with inheritance: Efficient conflict detection and local conflu-
ence analysis using abstract critical pairs. Theor. Comput. Sci., 424:46–68, 2012.

[GNE+16] Susann Gottmann, Nico Nachtigall, Claudia Ermel, Frank Hermann, and Thomas
Engel. Towards the propagation of model updates along different views in multi-
view models. In Proceedings of the 5th International Workshop on Bidirectional
Transformations, Bx 2016, co-located with The European Joint Conferences on
Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April
8, 2016., pages 45–60, 2016.

[Har87] David Harel. Statecharts: a visual formalism for complex systems. Science of
Computer Programming, 8(3):231 – 274, 1987.

[HEGO10] Frank Hermann, Hartmut Ehrig, Ulrike Golas, and Fernando Orejas. Efficient anal-
ysis and execution of correct and complete model transformations based on triple
graph grammars. In Proceedings of the First International Workshop on Model-
Driven Interoperability, MDI ’10, pages 22–31, New York, NY, USA, 2010. ACM.

179

BIBLIOGRAPHY

[Hen15] HenshinTGG. https://github.com/de-tu-berlin-tfs/Henshin-Editor, 2015.

[HEO+11] Frank Hermann, Hartmut Ehrig, Fernando Orejas, Krzysztof Czarnecki, Zinovy
Diskin, and Yingfei Xiong. Correctness of model synchronization based on triple
graph grammars - extended version. Technical Report TR 201107, TU Berlin, Fak.
IV, 2011.

[HEO+15] Frank Hermann, Hartmut Ehrig, Fernando Orejas, Krzysztof Czarnecki, Zinovy
Diskin, Yingfei Xiong, Susann Gottmann, and Thomas Engel. Model synchroniza-
tion based on triple graph grammars: correctness, completeness and invertibility.
Software and System Modeling, 14(1):241–269, 2015.

[HEOG10] F. Hermann, H. Ehrig, F. Orejas, and U. Golas. Formal analysis of functional
behaviour for model transformations based on triple graph grammars - extended
version. Technical Report 2010/08, 2010.

[HGN+13] Frank Hermann, Susann Gottmann, Nico Nachtigall, Benjamin Braatz, Gianluigi
Morelli, Alain Pierre, and Thomas Engel. On an automated translation of satellite
procedures using triple graph grammars. In Theory and Practice of Model Trans-
formations - 6th International Conference, ICMT 2013, Budapest, Hungary, June
18-19, 2013. Proceedings, pages 50–51, 2013.

[HGN+14] Frank Hermann, Susann Gottmann, Nico Nachtigall, Hartmut Ehrig, Benjamin
Braatz, Gianluigi Morelli, Alain Pierre, Thomas Engel, and Claudia Ermel. Triple
graph grammars in the large for translating satellite procedures. In Theory and
Practice of Model Transformations - 7th International Conference, ICMT 2014,
Held as Part of STAF 2014, York, UK, July 21-22, 2014. Proceedings, pages 122–
137, 2014.

[HKP05] David Harel, Hillel Kugler, and Amir Pnueli. Formal Methods in Software and
Systems Modeling: Essays Dedicated to Hartmut Ehrig on the Occasion of His
60th Birthday, chapter Synthesis Revisited: Generating Statechart Models from
Scenario-Based Requirements, pages 309–324. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2005.

[HLH+13] Stephan Hildebrandt, Leen Lambers, Giese Holger, Jan Rieke, Joel Greenyer, Wil-
helm Schäfer, Marius Lauder, Anthony Anjorin, and Andy Schürr. A Survey of
Triple Graph Grammar Tools. In Bidirectional Transformations, volume 57, pages
1–18. EC-EASST, 2013.

[HMU03] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to au-
tomata theory, languages, and computation - international edition (2. ed). Addison-
Wesley, 2003.

[HNB+14] Frank Hermann, Nico Nachtigall, Benjamin Braatz, Thomas Engel, and Susann
Gottmann. Solving the fixml2code-case study with henshintgg. In Proceedings
of the 7th Transformation Tool Contest part of the Software Technologies: Ap-
plications and Foundations (STAF 2014) federation of conferences, York, United
Kingdom, July 25, 2014., pages 32–46, 2014.

[HP05] Annegret Habel and Karl-Heinz Pennemann. Nested constraints and application
conditions for high-level structures. In Formal Methods in Software and Systems

180

BIBLIOGRAPHY

Modeling, Essays Dedicated to Hartmut Ehrig, on the Occasion of His 60th Birth-
day, pages 293–308, 2005.

[HP09] Annegret Habel and Karl-Heinz Pennemann. Correctness of high-level transforma-
tion systems relative to nested conditions. Mathematical Structures in Computer
Science, 19(2):245–296, 2009.

[HS04] Zhaoxia Hu and Sol M. Shatz. Mapping uml diagrams to a petri net notation for
system simulation. In Frank Maurer and Gnther Ruhe, editors, SEKE, pages 213–
219, 2004.

[HSGP13] Brian Henderson-Sellers and Cesar Gonzalez-Perez. Domain Engineering:
Product Lines, Languages, and Conceptual Models, chapter Multi-Level Meta-
Modelling to Underpin the Abstract and Concrete Syntax for Domain-Specific
Modelling Languages, pages 291–316. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2013.

[JABK08] Frdric Jouault, Freddy Allilaire, Jean Bzivin, and Ivan Kurtev. Atl: A model trans-
formation tool. Science of Computer Programming, 72(12):31 – 39, 2008. Special
Issue on Second issue of experimental software and toolkits (EST).

[JR15] Michael Johnson and Robert D. Rosebrugh. Spans of delta lenses. In Proceedings
of the 4th International Workshop on Bidirectional Transformations co-located with
Software Technologies: Applications and Foundations, STAF 2015, L’Aquila, Italy,
July 24, 2015., pages 1–15, 2015.

[KLR+12] Gerti Kappel, Philip Langer, Werner Retschitzegger, Wieland Schwinger, and
Manuel Wimmer. Conceptual Modelling and Its Theoretical Foundations: Essays
Dedicated to Bernhard Thalheim on the Occasion of His 60th Birthday, chapter
Model Transformation By-Example: A Survey of the First Wave, pages 197–215.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[KPP08] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. Theory and
Practice of Model Transformations: First International Conference, ICMT 2008,
Zürich, Switzerland, July 1-2, 2008 Proceedings, chapter The Epsilon Transfor-
mation Language, pages 46–60. Springer Berlin Heidelberg, Berlin, Heidelberg,
2008.

[LAD+14] Levi Lúcio, Moussa Amrani, Juergen Dingel, Leen Lambers, Rick Salay, Gehan
M. K. Selim, Eugene Syriani, and Manuel Wimmer. Model transformation intents
and their properties. Software & Systems Modeling, pages 1–38, 2014.

[LS99] Stephen Lack and Pawel Sobocinski. Adhesive and quasiadhesive categories, 1999.

[Mah09] Bernd Mahr. Information science and the logic of models. Software and System
Modeling, 8(3):365–383, 2009.

[Mah10] Bernd Mahr. Position statement: Models in software and systems development.
ECEASST, 30, 2010.

[Men13] Tom Mens. Model Transformation: A Survey of the State of the Art, pages 1–19.
John Wiley Sons, Inc., 2013.

181

BIBLIOGRAPHY

[MFBC12] Pierre-Alain Muller, Frédéric Fondement, Benoı̂t Baudry, and Benoı̂t Combemale.
Modeling modeling modeling. Software & Systems Modeling, 11(3):347–359,
2012.

[MG06] Tom Mens and Pieter Van Gorp. A taxonomy of model transformation. Elec-
tronic Notes in Theoretical Computer Science, 152:125 – 142, 2006. Proceed-
ings of the International Workshop on Graph and Model Transformation (GraMoT
2005)Graph and Model Transformation 2005.

[NBE13] Nico Nachtigall, Benjamin Braatz, and Thomas Engel. Symbolic execution of satel-
lite control procedures in graph-transformation-based EMF ecosystems. In Pro-
ceedings of the 10th International Workshop on Model Driven Engineering, Ver-
ification and Validation MoDeVVa 2013, co-located with 16th International Con-
ference on Model Driven Engineering Languages and Systems (MoDELS 2013),
Miami, Florida, October 1st, 2013., pages 61–66, 2013.

[NHBE14] Nico Nachtigall, Frank Hermann, Benjamin Braatz, and Thomas Engel. Towards
domain completeness for model transformations based on triple graph grammars.
In Proceedings of the Third International Workshop on Verification of Model Trans-
formations co-located with Software Technologies: Applications and Foundations,
VOLT@STAF 2014, York, UK, July 21, 2014., pages 46–55, 2014.

[NMN+92] R. De Nicola, U. Montanari, M. Nielsen, G. Rozenberg, and P.S. Thiagarajan. Ele-
mentary transition systems. Theoretical Computer Science, 96(1):3 – 33, 1992.

[Put01] Janis Putman. Architecting with RM-ODP. Prentice Hall, 2001.

[Qua98] Terry Quatrani. Visual Modeling with Rational Rose and UML. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1998.

[QVT15] QVT, 2015.

[Rei85] Wolfgang Reisig. Petri Nets: An Introduction. Springer-Verlag New York, Inc.,
New York, NY, USA, 1985.

[RHM+14] Louis M. Rose, Markus Herrmannsdoerfer, Steffen Mazanek, Pieter Van Gorp, Se-
bastian Buchwald, Tassilo Horn, Elina Kalnina, Andreas Koch, Kevin Lano, Bern-
hard Schätz, and Manuel Wimmer. Graph and model transformation tools for model
migration. Software & Systems Modeling, 13(1):323–359, 2014.

[RJB04] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling Language
Reference Manual, The (2Nd Edition). Pearson Higher Education, 2004.

[Roz97] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformation: Volume I. Foundations. World Scientific Publishing Co.,
Inc., River Edge, NJ, USA, 1997.

[SC12] Jess Snchez Cuadrado. Towards a family of model transformation languages. In
Zhenjiang Hu and Juan de Lara, editors, Theory and Practice of Model Trans-
formations, volume 7307 of Lecture Notes in Computer Science, pages 176–191.
Springer Berlin Heidelberg, 2012.

182

BIBLIOGRAPHY

[Sch94] Andy Schürr. Specification of graph translators with triple graph grammars. In
Graph-Theoretic Concepts in Computer Science, 20th International Workshop, WG
’94, Herrsching, Germany, June 16-18, 1994, Proceedings, pages 151–163, 1994.

[Sel03] Bran Selic. The pragmatics of model-driven development. IEEE Softw., 20(5):19–
25, September 2003.

[SEM+12] Hanna Schölzel, Hartmut Ehrig, Maria Maximova, Karsten Gabriel, and Frank Her-
mann. Satisfaction, restriction and amalgamation of constraints in the framework of
m-adhesive categories. In Proceedings Seventh ACCAT Workshop on Applied and
Computational Category Theory, ACCAT 2012, Tallinn, Estonia, 1 April 2012.,
pages 83–104, 2012.

[SK08] Andy Schürr and Felix Klar. 15 years of triple graph grammars. In Graph Trans-
formations, 4th International Conference, ICGT 2008, Leicester, United Kingdom,
September 7-13, 2008. Proceedings, pages 411–425, 2008.

[Sta73] Herbert Stachowiak. Allgemeine Modelltheorie. Springer, Wien, New York, 1973.

[Str08] Michael Striewe. Using a triple graph grammar for state machine implementations.
pages 514–516. 2008.

[SW13] James Stanier and Des Watson. Intermediate representations in imperative compil-
ers: A survey. ACM Comput. Surv., 45(3):26:1–26:27, July 2013.

[TA15] Frank Trollmann and Sahin Albayrak. Extending model to model transformation
results from triple graph grammars to multiple models. In Theory and Practice of
Model Transformations - 8th International Conference, ICMT 2015, Held as Part of
STAF 2015, L’Aquila, Italy, July 20-21, 2015. Proceedings, pages 214–229, 2015.

[Tha11] Bernhard Thalheim. The theory of conceptual models, the theory of conceptual
modelling and foundations of conceptual modelling. In David W. Embley and
Bernhard Thalheim, editors, Handbook of Conceptual Modeling: Theory, Practice
and Research Challenges, pages 543–577. Springer, Berlin, Heidelberg, 2011.

[UML15] Object Management Group Unified Modeling Language (UML) Version 2.5, 2015.

[WHR14] J. Whittle, J. Hutchinson, and M. Rouncefield. The state of practice in model-driven
engineering. Software, IEEE, 31(3):79–85, May 2014.

[xte16] Xtext Framework, 2016.

183

Index

C-extension completeness, 53
C-extensions, 50

sets of graphs, 61
E -M factorisation

extremal, 23
uniqueness, 23

M -composition, 21
M -decomposition, 21

strict, 22
M -decomposition of morphisms, 81
M -morphisms, 21
M -pushout-pullback decomposition, 22
M -subobject

initial, 81
along M , 83
construction, 82
uniqueness, 82

application condition, 24, 31
S-consistent, 39
T-Extension, 38
NAC, 32
PAC, 32

atom, 52
effective, 53

category, 20
AGraphsATGI , 20

E -morphisms, 23
M -morphisms, 22
O-morphisms, 22
epimorphism, 20
isomorphism, 20
monomorphism, 20
type strict-morphisms, 22

ATrGraphsATGI , 36

M -morphisms, 36
O-morphisms, 36

M -adhesive, 21
basic HLR properties, 21
finitary, 23

AGraphs ATGI,fin,22
co-match, 32
conflict graph, 34
confluence, 34
critical pair, 34

C-inconsistent, 55
significant, 56
strict confluence, 34

domain completeness, 46
limitations, 70
problem, 46

under restrictions, 95
termination, 59
undecidability

with application conditions, 47
without application conditions, 47

under restrictions, 95
up to upper bound, 58
verification, 57

EBNF grammar
with labels, 125

source, 126
target, 126

final DSIG-algebra, 17
functor, 20

grammar, 33
finite, 33

184

INDEX

non-deleting, 33
typed over, 33

graph, 17
C-inconsistent, 50
atomic split, 60
attributed, 17

data part, 17
graph part, 17

binary split, 59
derivation graph, 134
E-graph, 17
finite, 22
morphism, 17

attributed, 17
attributed – data part, 17
attributed – graph part, 17
E-graph, 17
typed, 17
typed & attributed, 18

over labels, 131
restriction, 95
significant, 49
typed, 17
typed & attributed, 17
with translation attributes, 38

graph condition, 24
C-extensions, 103
M -normal form, 25
O-satisfaction, 25
AC-schema, 29

satisfaction, 30
equivalence, 25
finite, 25
instance, 29
plain, 25
positive, 25
purely restricted, 99
restricted, 99
restriction, 95
standard satisfaction, 25
type strict, 31
typed over, 25

graph constraint, 24
AC-schema

general satisfaction, 30
initial satisfaction, 30
satisfaction (relationship to conditions

I), 31

satisfaction (relationship to conditions
II), 31

EBNF graph constraints, 132
into left application conditions, 47
satisfaction

general, 25
initial, 25
set of constraints, 25

violation stable under embedding, 49

inclusion, 20

language
L (C) over graph constraints, 46, 123
L (GG) over graph grammar, 46
L (TG) over type graph, 46
domain-specific, 46
graph language of derivation trees, 134
of derivation trees, 128

isomorphism, 123
local confluence, 34
local confluence theorem, 34

marking rule, 54
C-conflict-freeness, 56

match, 32
match-path, 75

acyclic, 75
composition, 75
decomposition, 75

cyclic, 75
ends in, 75
match-cycle, 75

equivalence up to shifting of matches,
83

reachable, 75
set of paths, 75
starts in, 75
terminating, 75

model synchronisation, 41
”classical” syntactical completeness, 43
”classical” syntactical correctness, 43
domain completeness, 113

model transformation, 39
”classical” syntactical completeness, 43
”classical” syntactical correctness, 43
domain completeness, 105

under restrictions, 108
forward translation sequence, 39

185

INDEX

sequence, 39
model update, 40
morphism

M -initial, 24
epimorphism, 20

jointly, 20
extremal E , 23
initial, 24
instance, 62
isomorphism, 20
merge over morphism, 29
monomorphism, 20
restriction, 95

object
M -initial, 24
M -subobject, 23
initial, 24

partial reachability
decidability, 80
problem, 80

production, 32
pullback, 20

composition, 34
decomposition, 34

pushout, 20
complement, 21

existence, 21
uniqueness, 22

composition, 34
decomposition, 34
effective, 24
initial, 21

boundary graph, 21
context graph, 21

recursive graph condition, 78
M -normal form, 78
satisfaction

decidability, 80
tightened, 87

M -normal form, 88
weakened, 87

M -normal form, 88
recursive graph schema, 73

language, 77
tightened, 81
weakened, 83

well-definedness, 87
simple, 90

recursive transformation
derived span, 76
sequence, 75

acyclic, 75
cyclic, 75
ends in, 75
starts in, 75
terminating, 75

step, 75
restriction theorem, 34

software synchronisation
completeness, 135

software transformation
completeness, 124

transformation, 32
derived span, 33
direct, 32
rule, 31

non-deleting, 32
plain, 31
typed over, 32

system, 33
terminating, 35

triple graph, 35
grammar (TGG), 36

language L (TGG), 36
language L (TGG)S, 36
language L (TGG)T, 36

morphism, 35
typed & attributed, 36

transformation, 36
direct, 36

typed & attributed, 36
triple rule, 36

consistency creating rule, 41
forward translation rule, 39

C-conflict-freeness, 106
type graph

EBNF type graph, 129
restriction, 95

186

	Foreword & Acknowledgements
	General Introduction
	Models in Information Science
	Models, Transformations & Synchronisations
	Graph Transformations for Model Trans. & Synchronisations
	Organisation of this Thesis & Main Results
	Chapter 2: Model Transformations, Model Synchronisations & Formal Framework
	Chapter 3: Domain Completeness
	Chapter 4: Domain Completeness of Model Transformations & Model Synchronisations
	Chapter 5: Further Applications
	Chapter 6: Conclusion, Related & Future Work

	Model Transformations, Synchronisations & Framework
	General Introduction to Model Transformations & Synchronisations
	Model Transformation
	Model Synchronisation

	Graph Transformation
	Graphs, Typed & Attributed Graphs
	M-adhesive Categories
	Graph Conditions & Constraints
	Graph Grammars, Transformations & M-adhesive Transformation Systems

	Model Transformation & Synchronisation based on TGGs
	Triple Graphs & Triple Graph Grammars (TGGs)
	Model Transformations based on TGGs
	Model Synchronisations based on TGGs

	Properties of Model Transformations & Synchronisations

	Domain Completeness
	Domain Completeness Problem & Undecidability
	Verification of Domain Completeness
	Limitations
	Conditions are Sufficient but not Necessary
	Graph Grammars with Non-Empty Start Graph
	Graph Grammars with Deleting Productions
	Initial & General Satisfaction
	Constraints & Application Conditions in M-normal Form
	Termination Requires Upper Bound

	Recursive Graph Constraints
	Domain Restrictions

	Domain Completeness of Model Transformations & Model Synchronisations
	Domain Completeness of Model Transformations
	Domain Completeness of Model Synchronisations

	Further Applications
	Completeness of Software Transformations
	Introduction to Software Transformations
	Software Transformations based on Triple Graph Grammars
	Completeness Problem of Software Transformations
	From EBNF Grammars to Attributed Type Graphs & Graph Constraints
	Completeness of Software Transformations

	Completeness of Software Synchronisations
	Completeness of Static Semantics
	Completeness of Operational Semantics

	Conclusion, Related & Future Work
	Detailed Proofs
	Proof of sec-gt-gc,prop:sec-gc-gc:relsatcondac
	Proof of sec-gt-gc,th:sec-gc-gc:relsatacschema
	Proof of sec-dc-general,thm:sec-dc-general:undec1
	Proof of sec-dc-verification,th:sec-dc-verification:termdc
	Proof of sec-dc-verification,lem:equivalence-marking-emptySG
	Proof of sec-dc-verification,lem:equivalence-marking
	Proof of sec-dc-verification,lemma:closure-c-ext
	Proof of sec-dc-verification,lem:union-ext-atoms
	Proof of sec-dc-verification,lem:compmerge
	Proof of sec-dc-verification,lem:acschemasatinstmor
	Proof of sec-dc-verification,thm:C-extensionCompleteness
	Proof of sec-dc-general-rec,prop:sec-compl-software-trans:decpartreach
	Proof of sec-dc-general-rec,prop:sec-compl-software-trans:weakenedlangwelldef
	Proof of sec-dc-general-res,lem:sec-dc-general-res:resobsat
	Proof of sec-dc-general-res,thm:sec-dc-general-res:extconstr

	References
	Index

