
Postulates for Revocation Schemes
Technical Report

Marcos Cramer, Giovanni Casini

University of Luxembourg

Abstract. In access control frameworks with the possibility of delegating
permissions and administrative rights, delegation chains can form. There
are different ways to treat these delegation chains when revoking rights,
which give rise to different revocation schemes. Hagström et al. [11] pro-
posed a framework for classifying revocation schemes, in which the different
revocation schemes are defined graph-theoretically. At the outset, we iden-
tify multiple problems with Hagström et al.’s definitions of the revocation
schemes, which can pose security risks. This paper is centered around the
question how one can systematically ensure that improved definitions of the
revocation schemes do not lead to similar problems. For this we propose to
apply the axiomatic method originating in social choice theory to revocation
schemes. Our use of the axiomatic method resembles its use in belief revision
theory. This means that we define postulates that describe the desirable be-
haviour of revocation schemes, study which existing revocation frameworks
satisfy which postulates, and show how all defined postulates can be satisfied
by defining the revocation schemes in a novel way.

1 Introduction

In ownership-based frameworks for access control, it is common to allow principals
(users or processes) to grant both permissions and administrative rights to other
principals in the system. Often it is desirable to grant a principal the right to further
grant permissions and administrative rights to other principals. This may lead to
delegation chains starting at a source of authority (the owner of a resource) and
passing on certain permissions to other principals [12, 14, 5, 15].

Furthermore, such frameworks commonly allow a principal to revoke a permission
that she granted to another principal [11, 16, 5, 2]. Depending on the reasons for the
revocation, different ways to treat the delegation chain can be desirable [11, 1, 7].
For example, if one is revoking a permission given to an employee because he is
moving to another position in the company, it makes sense to keep in place the
permissions she previously granted; but if one is revoking a permission from a user
who has abused his rights and is hence distrusted, it makes sense to delete the
permissions she previously issued. Any algorithm that determines which permissions
to keep intact and which ones to delete when revoking a permission is called a
revocation scheme. Revocation schemes are usually defined in a graph-theoretical
way.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/78372025?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Hagström et al. [11] have presented a framework for classifying possible revo-
cation schemes along three different dimensions: the extent of the revocation to
other grantees (propagation), the effect on other grants to the same grantee (domi-
nance), and the permanence of the negation of rights (resilience). This classification
was based on revocation schemes implemented in database management systems
[10, 9, 4, 3]. The framework’s design decisions are carried over from these database
management systems and are often not fully motivated.

We identify a number of problems with Hagström et al.’s framework and the defi-
nitions of the revocation schemes included in the framework. Some of these problems
pose security risks. In order to avoid that an improved framework turns out to have
similar undesirable properties as those we identified in Hagström et al.’s framework,
we propose to formally study the merits and demerits of various definitions of revo-
cation schemes using the axiomatic method. This methodology originates in social
choice theory, and is used in a way akin to ours in belief revision theory (see [13]
for an overview of this methodology in belief revision and its connections to social
choice theory). We will state formal properties, called postulates, which formalize
our intuitions about the desired behaviour of the revocation schemes. We will study
which postulates are satisfied by the existing revocation frameworks, and show how
all of them can be satisfied by defining the revocation schemes in a novel way.

The idea to use this methodology in the study of delegation revocation was first
put forward in Cramer et al. [7] (the main author of which is also the main author
of the current paper). The main goal of Cramer et al. [7] was to state postulates
that fully characterize all the revocation schemes. This could only be achieved by
introducing a dedicated logic, called Trust Delegation Logic, that allows to formalize
the reasons that principals have for delegating and revoking. However, this logic is
highly complex and has many non-trivial design choices, so that this approach leaves
open the question whether the logic really correctly formalizes our intuitions about
the desired behaviour of revocation schemes. In this paper, we instead define simpler
postulates, whose meaning can be understood more readily. This way of applying the
axiomatic method is more in line with standard applications of this methodology in
social choice theory and belief revision. We show that one of the simple postulates
that we introduce in this paper is not satisfied by the framework that was introduced
in Cramer et al. [7]. This means that the approach of the present paper, based on
simpler postulates, can help to detect problems that the approach from [7] cannot
detect.

The rest of the paper is structured as follows: In Section 2 we discuss the work
of Hagström et al. [11] that the present paper is heavily based on. After specifying
some formal preliminaries in Section 3.1, we motivate and define four postulates for
revocation schemes in Section 3.2, and show which of these postulates are satisfied
by which existing delegation-revocation frameworks in Section 3.3. Sections 4-6 are
dedicated to defining a delegation-revocation framework that satisfies all the defined
postulates. This is done in a stepwise way: First we define in Section 4 the framework
Dom, which only covers the distinction made in the dominance dimension. Section
5 extends this framework to DR, which also covers the resilience dimension, which is



further extended in Section 6 to the framework DPR that covers all three dimensions.
In Section 7, we conclude the paper and discuss some possible further research.

2 Related work

The only existing work on delegation revocation that takes the same methodological
approach as the present paper is Cramer et al. [7]. The relation between the present
paper and [7] has already been sketched in the Introduction, and will be discussed
further throughout the rest of the paper. In the present section we discuss the work
of Hagström et al. [11] that both the present paper and [7] are heavily based on,
and explain a terminological issue.

2.1 Hagstöm et al.’s framework

Hagström et al. [11] have introduced three dimensions according to which revocation
schemes can be classified: dominance, propagation and resilience.

Dominance. This dimension deals with the case when a principal losing a permis-
sion in a revocation still has permissions from other grantors. If these other grantors’
revocation rights are dependent on the revoker, the revoker can dominate over these
grantors and revoke the permissions from them. This is a strong revocation. The
revoker can also choose to make a weak revocation, where permissions from other
grantors to a principal losing a permission are kept.

Propagation. The decision of a principal i to revoke an authorization previously
granted to a principal j may either affect only the direct recipient j or propagate
and affect all the other users in turn authorized by j. In the first case, we say that
the revocation is local, in the second case that it is global.

Resilience. This dimension distinguishes revocation by removal (deletion) of
positive authorizations from revocation by issuing a negative authorization which
just inactivates positive authorizations. In the first case another principal may grant a
similar authorization to the one that had been revoked, so the effect of the revocation
does not persist in time. In the second case a negative authorization will overrule
any (new) positive permission given to the same principal, so its effect will remain
until the negative permission is revoked. We call a revocation of the first kind a
delete or non-resilient revocation, and a revocation of the second kind a negative or
resilient revocation.

Since there are two possible choices along each dimension,
Hagström et al.’s framework allows for eight different revocation schemes. The be-
haviour of the revocation schemes is defined differently depending on whether prece-
dence is given to positive or negative authorizations. Cramer et al. [7] have argued
for integrating this precedence into the dominance dimension, thereby replacing the
binary distinction along the dominance dimension by a ternary distinction between
strong, predecessor-takes-precedence (p-t-p) and weak revocations. Here p-t-p has
the meaning that Hagström et al. give to strong, while a strong revocation dominates
over all other grantors’ authorizations, no matter whether the principal targeted by
the revocation is dependent on the principal performing the revocation or not. This



design decision and terminological decision are motivated in Section 3.1 of Cramer
et al. [7].

2.2 Problems with Hagström et al.’s framework

In this section we analyze some problems with the revocation framework by Hagström
et al. [11], and informally sketch how we propose to solve them.1 As many of these
problems amount to a principal having access right in a situation where the intended
meaning of the used revocation scheme implies that the principal should not have
access right, these problems can pose security risks.

(1) In Hagström et al.’s framework, the relative timing of a granting a permission
and a Strong Global Delete revocation influences the effect of the revocation in an
undesirable way. Let us illustrate this problem with an example.

Example 1. User A issues an authorization to users B and C. B plans to grant
this authorization to C. At the same time A plans to perform a Strong Global
Delete revocation of B’s rights. Depending on which user performs the planned
action first, the outcome will be different in Hagström et al.’s framework. If the
Strong Global Delete is performed first, user C will be unaffected. But if B first
delegates to C, then user C will also lose his access right as a consequence of the
Strong Global Delete from A to B.

One way to explain why this behaviour is problematic is to note that if the
revocation was a Weak Global Delete instead of a Strong Global Delete, C would be
unaffected even if B first delegated to C. But the difference between a Strong Global
Delete and a Weak Global Delete is supposed to be only about the dominance of the
revocation, i.e. about what happens when others have delegated to B. But as no one
else has delegated to B, there should be no difference between the two revocations.

Another way to explain why this behaviour of the Strong Global Delete is prob-
lematic is to note that whether B attempts to delegate to A shortly before or shortly
after the Strong Global Delete should not make a difference. The timing of a dele-
gation with respect to a Strong Global Delete should only matter if it is a delegation
of a right to B, as the revocation is non-resilient. But since the revocation is global,
the timing of a delegation performed by B should not matter.

(2) A similar problem is faced by the Strong Local Negative revocations in
Hagström et al.’s framework:

Example 2. The SOA delegates a right to user A, who delegates it further to user
B, who delegates it further to user C. Now A plans to delete the authorization she

1 In Cramer et al. [7] five problems with Hagström et al.’s framework are discussed. As
problems (4) and (5) from [7] are also relevant to the present paper, we have taken
them over into the present paper, where they are listed as problems number (3) and (4)
respectively. Problem (1) below is based on problem (1) from [7], but the explanation of
the problem has been significantly reworked and extended. Problem (2) below has not
been presented in print before. Two further problems with Hagström et al.’s framework
not relevant to the present paper were presented in sections III.C and III.D of Cramer et
al. [6].



has issued to user B, and at the same time, the SOA plans to perform a Strong
Local Negative revocation of B’s rights. Depending on which user performs the
planned action first, the outcome will be different in Hagström et al.’s framework.
If the Strong Local Negative is performed first, C will conserve his access right
even after the deletion of the authorization from A to B. But if A deletes the
authorization to B first, then user C will lose his access right.

One way to explain why this behaviour of the Strong Local Resilient is problem-
atic is to note that the deletion of the authorization from A to B is a non-resilient
revocation. Hagström et al. say about non-resilient revocations that after the revo-
cation, “no trace remains of the fact that the authorization has been granted and
then revoked”. But in Example 2, there does remain a trace of the authorization
from A to B, namely the fact that C has access right (which materializes through
an auxiliary authorization from the SOA to C, which is created only because there
exists an authorization from A to B at the moment of the local revocation).

Another way to explain why this behaviour of the Strong Local Resilient is prob-
lematic is to note that while for a Strong Local Resilient revocation of B’s rights the
timing of delegations performed by B with respect to the revocation is relevant (as
it is a local revocation), the timing of other actions that affect B with respect to the
revocation should not make a difference, as the revocation is strong and resilient.

(3) Hagström et al. motivate the distinction between delete and negative revo-
cations mainly through the notion of resilience as defined in Section 2.1. However,
this definition renders the notion of a weak resilient revocation contradictory, since
a weak revocation does not affect authorizations issued by others than the revoker.
(Hagström et al. motivate the usage of weak negatives by pointing out that they
are useful for temporary revocations, but as discussed in Cramer et al. [7], a better
way to make temporary revocations possible is to not delete the forward chain in a
delete revocation.)

Furthermore, p-t-p and strong deletes would have undesirable effects, as illus-
trated by the following example:

Example 3. User A issues an authorization to user B, and gives user C the right
to perform strong revocations. User C performs a Strong Global Delete on B,
removing without traces the authorization provided to B by A. Later A realizes
that C cannot be trusted to perform strong revocations, and takes away B’s
right to do so through a Strong Global Delete revocation. Even though C can
no longer perform strong revocations, the effect of his strong delete persist: B
does not have the right originally issued to him by A until someone issues a new
authorization to him.

Hence we do not have a p-t-p or strong delete revocation in our framework, but
instead have the distinction between a resilient and a non-resilient negative for p-
t-p and strong revocations. To conclude, if the dominance of a revocation is p-t-p
or strong, there are two options along the resilience dimension, non-resilient and
resilient, both of which are defined through negative authorizations. But if the dom-
inance is weak, the value of the resilience dimension has to be “non-resilient”. A weak



non-resilient revocation is defined through the deletion of a positive authorization,
and is therefore also called a “weak delete”.

(4) Hagström et al. do not allow negative authorizations to be inactivated. The
reason they give is that they “do not want a revocation to result in a subject having
more permissions than before the revocation”. However, the deletion of negative
authorizations is allowed, even though it may have the same effect. We do allow
negative authorizations to be inactivated, but the only kind of revocation that can
result in a subject having more permissions than before is a revocation of someone’s
right to perform strong revocations, and in this case this is a desirable property.

2.3 Revocations and denials

A revocation of a principal’s rights removes rights that the principal already has. A
denial of rights on the other hand can be issued even when the principal does not
yet have the concerning rights, and has the effect that other principals will no longer
be able to effectively grant rights to the affected principal.

Negative authorizations can function as a form of denial. When, for example, j
does not yet have the rights in question and i issues a negative authorization for
those rights to j, this negative authorization functions like a denial rather than like a
revocation. The work in this paper applies to negative authorizations independently
of whether they are used to revoke existing rights or deny rights. We will for the
rest of this paper only use the term “revocation” and not “denial”, in order to be
consistent with the terminology used in the papers that we extensively refer to.

3 Postulates for Delegation and Revocation

In this section we formally define four postulates for delegation and revocation that
formalize desirable properties of a delegation-revocation framework. The postulates
are justified on the basis of the intended meaning of the possible values along the
three revocation dimensions. Our justification of the postulates is partially based on
the discussion of the problems considered in Section 2.2.

From a formal point of view, the role of a delegation-revocation framework is to
specify which users will have access given that certain delegations and revocations
have been performed in a certain temporal order. In order to make this more precise,
we first introduce some notation.

3.1 Preliminaries

Let S be the set of principals (subjects) in the system, let O be the set of objects
in the system and let A be the set of access types. For every object o ∈ O, there is
a source of authority (SOA), i.e. the manager of object o.

For any α ∈ A and o ∈ O, the SOA of o can grant the right to access α on object
o to other principals in the system. Secondly, the SOA can delegate this granting
right further. Thirdly, the SOA can grant the right to perform strong revocations
and to delegate this right further. Accordingly we have three permissions: access



right (A), delegation right (D) and strong revocation right (S). We assume that
delegation right implies access right. The set {A,D, S} of permissions is denoted
by P.

There is no interaction between the rights of principals concerning different
access-object pairs (α, o). For this reason, we can consider α and o to be fixed
for the rest of the paper, and no longer explicitly mention them. We use W, P, S, L,
G, N and R as abbreviations for weak, p-t-p (predecessor-takes-precedence), strong,
local, global, non-resilient, resilient and delete respectively. We define Σ∗ to be the
set {W, P, S} × {L, G} × {N, R}, i.e. the set of all conceivable combinations of
revocation dimension values (assuming that there are three possible values for the
dominance dimension as explained at the end of Section 2.1).

Let i and j be two principals, and let π be a permission π. We write
grant(i, j, π) for i’s action of granting permission π to j. Given (d, p, r) ∈ Σ∗, we
write revoke(i, j, π, d, p, r) for i’s action of revoking permission π from j with dom-
inance d, propagation p and resilience r. We say that the actions grant(i, j, π) and
revoke(i, j, π, d, p, r) are performed by the principal i and targeted at the principal
j.

Since delegation right implies access right, an action grant(i, j,D) can only be
performed in combination with the action grant(i, j, A). By taking the contraposi-
tive, the connection is reversed for revocations: The action revoke(i, j, A, d, p, r) can
only be performed in combination with the action revoke(i, j,D, d, p, r).

We define a delegation-revocation profile to be a sequence of delegation and
revocation actions such that directly before any action of the form grant(i, j,D)
there is an action of the form grant(i, j, A), and directly before any action of the
form revoke(i, j, A, d, p, r) there is an action of the form revoke(i, j,D, d, p, r). For
example, the profile

〈grant(A,B, A), grant(A,C, S), revoke(C,B, α, S,G,N), revoke(A,C, S,S,G,N)〉

formally expresses the delegation and revocation actions that were taken in Example
3 in Section 2.2 as well as there temporal ordering. Given two delegation-revocation
profiles Π1 and Π2, we write Π1 ⊕Π2 for the profile resulting from concatenating
the sequence Π1 with the sequence Π2.

Let Σ ⊆ Σ∗ be some set of revocation dimension combinations. We say that
a profile Π is over Σ if for every revocation action revoke(i, j, π, d, p, r) in Π,
{d, p, r} ∈ Σ. A delegation-revocation framework over Σ is a function F that takes
as input a delegation-revocation profile Π over Σ, and outputs a set F (Π) of
principals that encodes the information which principals have access and which ones
do not have access if delegation and revocation actions have been performed as
specified by Π.

For example, the Hagström et al. [11] define two delegation-revocation frame-
works: The one that describes the behaviour of the revocations when positive revoca-
tions have precedence is a delegation-revocation framework over {W, P}×{L, G}×
{N, R} (even though they use the terms “strong”, “delete” and “negative” instead
of “p-t-p”, “non-resilient” and “resilient”), while the framework that describes the
behaviour of the revocations when negative authorizations have precedence is in



place is a delegation-revocation framework over {S} × {L,G} × {N, R}. Below
we call these two delegation-revocation frameworks H+ and H− respectively. In
Cramer et al. [7] a delegation-revocation framework (called C below) over the set
Σ′ := ({W} × {L, G} × {N}) ∪ ({P, S} × {L, G} × {N,R}) is defined, whereas in
Cramer et al. [6], the restriction of this framework over {(P,G,R)} is defined (i.e. the
only revocation considered is P-t-p Global Resilient). The set Σ′ is also the most
extensive set over which we define a delegation-revocation framework in this paper.
The reason for not defining a delegation-revocation framework over the full set Σ∗

of conceivable revocation dimension combinations is that weak resilient revocations
do not make sense, as discussed under point (3) in Section 2.2.

Delegation-revocation frameworks are usually defined with the help of a delegation-
revocation graph, i.e. a graph whose nodes are principals and whose labelled edges
encode relevant information about the granting and revocation actions taken by
principals. The delegation-revocation framework specifies how the graph is to be
modified given a certain action, and how to determine who has access given a cer-
tain graph.

One might be tempted to think that delegation-revocation profiles are practically
the same thing as delegation-revocation graphs. However, the distinction between
them is central to our methodology. It is a distinction akin to the distinction between
the syntax and the semantics of a formal logical language. The delegation-revocation
profiles play the role of the syntax: They encode the observable granting and revo-
cation action of the principals, independently of how we decide to interpret these
actions. One could be tempted to think that the semantics of a delegation-revocation
profile should just be the set of principals that get access based on that profile. But
that information is not enough as a semantic structure, because two profiles that
lead to the same principals having access can nevertheless behave differently: Further
actions that are added to one of these two profiles can lead to different access rights
depending on which profile the actions were added to. The delegation-revocation
graphs give us the additionaly structural information that is needed to semantically
distinguish profiles that behave differently over time: They allow us to interpret what
a sequence of actions means, both in the sense of allowing us to determine who has
access after that sequence of actions, as well as allowing us to determine who will
have access if certain further actions are taken.

3.2 The four postulates

Given that any function from the set of delegation-revocation profiles to the powerset
of the set of principals counts as a delgation-revocation framework, there are many
different ways of defining delegation-revocation frameworks. However, we are not
really interested in arbitrary delegation-revocation frameworks, but only in those
frameworks that behave in a way that meets our expectations of what it means
to grant a permission and to revoke a permission with a certain combination of
revocation dimension values. The goal of the axiomatic approach that we take is
to formalize some of these expectations so that we can study which graph-theoretic
definitions of delegation-revocation frameworks meet which expectations. Following



the belief revision literature, whose methodological approach we follow, we call the
formalized formulation of these expectations postulates.

We should stress that in this paper we are not aiming at formalizing all our
expectations about what granting and the revocation dimensions mean, nor to spec-
ify a set of postulates that uniquely determines a delegation-revocation framework.
The latter aim was achieved by Cramer et al. [7], but at the expense of specifying a
very complicated postulate based on a dedicated logic (Trust Delegation Logic) with
many non-trivial design choices. The present paper complements that approach by
formulating simpler postulates, whose meaning can be understood more readily.

The first postulate that we consider is called Locality, as it formalizes a central
desirable feature of local revocation schemes: a local revocation should only affect
the principal at which it is targeted. Formally, the fact that the delegation-revocation
framework F satisfies Locality can be expressed as follows:

Locality. Let Σ ⊆ Σ∗ be a set of revocation dimension combinations. Then
for any delegation-revocation profile Π over Σ and any i, j ∈ S, π ∈ P,
d ∈ {W,P,S} and r ∈ {N,R} such that (d, L, r) ∈ Σ,

F (Π ⊕ 〈revoke(i, j, π, d, L, r)〉) ∪ {j} = F (Π) ∪ {j}.

The second postulate that we consider is called Resilience Indifference, as it
formalizes the idea that when a revocation is at then end of a delegation-revocation
profile, it does not make a difference whether it is a resilient or a non-resilient
revocation. Formally:

Resilience Indifference. Let Σ ⊆ Σ∗ be a set of revocation dimension
combinations. Then for any delegation-revocation profile Π over Σ and any
i, j ∈ S, π ∈ P, d ∈ {W,P,S} and p ∈ {L,G} such that (d, p,N) ∈ Σ and
(d, p,R) ∈ Σ,

F (Π ⊕ 〈revoke(i, j, π, d, p,N)〉) = F (Π ⊕ 〈revoke(i, j, π, d, p,R)〉).

The motivation for this postulate is that the intended difference between a resilient
and a non-resilient revocation is that the non-resilient revocation can be overridden
by a later granting action, whereas a resilient revocation cannot be overridden in
this way. As this difference only plays a role when there is some granting action after
the revocation, it cannot make a difference when the revocation is the last action
that has been performed.

The third postulate is called Access from Revocation, and formalizes the idea
that the only revocation that can lead to any principal having more access than
before the revocation is a revocation of permission S (the right to perform a strong
revocation). Formally:

Access from Revocation. Let Σ ⊆ Σ∗ be a set of revocation dimension
combinations, and let Π be a delegation-revocation profile over Σ. Let a
be a revocation action concerning a permission other than S. Then

F (Π ⊕ 〈a〉) ⊆ F (Π).



As explained in the discussion of problem (4) in Section 2.2, this postulate is a
weakening of an idea of Hagström et al., who “do not want a revocation to result in
a subject having more permissions than before the revocation”, but who nevertheless
define delete revocations that do not satisfy this property.

The fourth and last postulate that we consider is called Timing Indifference, as it
formalizes ideas about the conditions under which the relative timing of two actions
does not make a difference. The explanations of problems (1) and (2) in Section
2.2 were partially based on considerations of timing indifference. Those explanations
suggest the following characterization of timing indifference between a revocation
and another action:

– For a global non-resilient revocation targeted at principal l, the temporal ordering
between this revocation and any action targeted at a principal other than l does
not matter.

– For a local resilient revocation targeted at principal l, the temporal ordering
between this revocation and any action performed by a principal other than l
does not matter.

– For a global resilient revocation, the temporal ordering between the revocation
and another action does not matter.

– For a local non-resilient revocation targeted at principal l, the temporal oredering
between this revocation and any action that performed by and targeted at a
principal other than l does not matter.

If both actions considered for timing indifference are revocations, the above condi-
tions need to be satisfied in both directions. If both actions are granting actions, the
timing between them should never make a difference.

The above criteria for timing indifference can be formalized in a single postulate
as follows:

Timing Indifference. Let Σ ⊆ Σ∗ be a set of revocation dimension com-
binations, and let Π1 and Π2 be delegation-revocation profiles over Σ.
Suppose that a1 is a granting or revocation action performed by i and tar-
geted at j, and that a2 is a granting or revocation action performed by k
and targeted at l such that the following properties are satisfied:
1. a1 is either a granting action or a global revocation action, or k 6= j.
2. a1 is either a granting action or a resilient revocation action, or l 6= j.
3. a2 is either a granting action or a global revocation action, or i 6= l.
4. a2 is either a granting action or a resilient revocation action, or j 6= l.

Then
F (Π1 ⊕ 〈a1, a2〉 ⊕Π2) = F (Π1 ⊕ 〈a2, a1〉 ⊕Π2).

3.3 The postulates applied to existing frameworks

Both H+ and H− (the two delegation-revocation frameworks by Hagström et al.
depending on the precedence of positive or negative authorizations) as well as C (the
delegation-revocation framework by Cramer et al. [7]) satisfy the Locality postulate,
because in a local revocation these three frameworks add auxiliary authorizations



from the principal performing to the revocation to any principal not targeted by the
revocation that would otherwise be affected by the revocation.

While H+ and C satisfy Resilience Indifference, H− does not satisfy it, due to
problem (4) from Section 2.2. Suppose the SOA gives A access right and gives B
the right to issue negative authorizations (i.e. to perform strong revocations), and
B uses this right to revoke A’s access right through a Strong Global Negative revo-
cation. Suppose further that after this the SOA revokes the right to issue negative
authorizations from B. If this revocation is a delete revocation (i.e. non-resilient), it
will according to Hagström et al. also delete the negative authorization from B to
A, thus giving back access to A. But if this revocation is a negative authorization
(i.e. resilient), it will not inactivate the authorization from B to A due to Hagström
et al.’s principle that negative authorizations cannot get inactivated, so A will not
get back access right. So A’s access right depends on whether the final action is a
resilient or non-resilient revocation, thus contradicting Resilience Indifference. Note
that modifying H− by allowing negative authorizations to get inactivated will ensure
satisfaction of Resilience Indifference.

H+ and H− fail to satisfy Timing Indifference in multiple ways. For example,
problem (1) from Section 2.2 shows how they fail to satisfy it for a Strong Global
Delete (i.e. Non-Resilient) revocation, and problem (2) shows how they fail to satisfy
it for a Strong Local Negative (i.e. Resilient) revocation. C also does not satisfy
Timing Indifference, because it behaves in the same way as H+ and H− on the
example from problem (2) in Section 2.2. But unlike in H+ and H−, the global
revocations in C do satisfy Timing Indifference. More formally, the restriction of C
to a delegation-revocation graph over ({W}×{G}×{N})∪ ({P, S}×{G}×{N,R})
satisfies Timing Indifference.

To conclude, H− only satisfies two of the four postulates that we have defined,
while H+ and C satisfy the first three of them. C only fails Timing Indifference in
the case of local revocations. This suggests that it might be possible to define a
delegation-revocation framework that satisfies all four postulates by modifying the
treatment of local revocations in C. This is what we will do by defining the framework
DPR in Section 6. To build up to that task, we first define a basic delegation-
revocation framework over {(S,G,R), (P,G,R), (W,G,N)} called Dom, which we then
extend stepwise.

4 The basic framework Dom

In this section we define the basic delegation-revocation framework Dom that dis-
tinguishess three revocations based on the dominance dimension. Dom will be ex-
tended to delegation-revocation frameworks incorporating first the Resilience dimen-
sion (Section 5), and then the Propagation dimension (Section 6).

The three revocations in Dom are Strong Global Resilient (SGR), P-t-p Global
Resilient (SGR) and Weak Global Delete (WGD). In other words, the value of the
propagation dimension is fixed to Global, and the value of the resilience dimension
is fixed to Resilient when possible (as explained in Section 2.2, it does not make
sense to have weak resilient revocations). So formally Dom is a delegation-revocation



framework over the set {(S,G,R), (P,G,R), (W,G,N)} of revocation dimension com-
binations.

As the delegation-revocation frameworks defined by Hagström et al. [11] and
Cramer et al. [7], Dom is defined in a graph-theoretical way, where the nodes of the
graph are the principals, and the labelled edges of the graph are authorizations that
principals have granted to each other. Dom admits for one kind of positive autho-
rization, denoted +, and two kinds of negative authorization, denoted −SR and −PR

(the R in the subscript means “resilient”; it is used here as we will define extensions
of Dom that have non-resilient negative authorizations). The set {+,−SR,−PR} of
authorization types is denoted by TDom.

Definition 1. An authorization is a tuple (i, j, τ, π), where i, j ∈ S, τ ∈ TDom,
π ∈ P.

From a graph-theoretical point of view, an authorization is an edge from i to j
labelled τ, π. The graph consisting of the principals and the authorizations is called
the authorization specification. As the set of principals is constant, we also use the
term authorization specification to refer to the set of authorizations that are in place.

In Dom, i’s action of granting a permission π to j corresponds to adding
(i, j,+, π) to the authorization specification. i’s action of revoking permission π
from j through an SGR or PGR revocation corresponds to adding (i, j,−SR, π) or
(i, j,−PR, π) respectively to the authorization specification. i’s action of revoking
permission π from j through a WGN revocation corresponds to deleting (i, j,+, π)
from the authorization specification. These correspondences inductively define a
function ADom that maps any delegation-revocation profileΠ over {(S,G,R), (P,G,R),
(W,G,N)} to an authorization specification (the base case is that ADom(〈〉) is the
empty authorization specification).

Since in a delegation-revocation profile Π a granting action of a delegation right
can only occur directly after a granting action of a corresponding access right (see
Section 3.1), an authorization (i, j,+, D) can only be present in an authorization
specification ADom(Π) if the authorization (i, j,+, A) is also present. Conversely, an
authorization (i, j, τ, A) for τ ∈ {−SR,−PR} can only be present if an authorization
(i, j,−SR, D) is present.

We visualize an authorization specification as in Example 4, in which A is the
SOA. For every authorization (i, j, τ, π) in the authorization specification, this graph
contains an edge from i to j labelled τ, π. We refrain from showing the authorizations
that can be implied to exist by the considerations explained in the previous paragraph
(for example, additionally to the depicted authorization (A,B,+, D), there must also
be an authorization (A,B,+, A), which is not depicted).

Example 4. An authorization specification

We define a relation R on P× (TDom×P) such that R(π, (τ, π′)) formalizes the
notion that permission π is a prerequisite for being a legal grantor of an authorization
of type τ and permission π′:

Definition 2. R(π, (τ, π′)) holds iff one of the following conditions is satisfied:



A B C

D

E
+, D

+, S

+, A

+, D

+
, D

+
, A

+, D

– π = D, τ 6= −SR and either π′ = A or π′ = D.
– π = S, τ 6= −SR and π′ = S.
– π = S and τ = −SR.

In order to evaluate which principals have access given a certain authorization
specification, we need to consider which authorizations are active and which ones
are inactivated. For an authorization to be active, one prerequisite is that it must
be connected back to the SOA through a chain of active authorizations that ensure
that each principal along the chain is a legal grantor of the authorization in the
chain granted by that principal. Additionally, a negative authorization (i, j,−SR, π)
inactivates every positive authorization from some principal k to j (as this negative
authorization means that i has performed a Strong Global Resilient revocation onto
j).

In order to formally specify which authorizations get inactivated when issuing a
negative authorization, we define through a simultaneous inductive definition the no-
tions of an authorization being active and an authorization being directly inactivated
in Definitions 3 and 4.2 The auxiliary notion of a directly inactivated authorization
captures the idea of an authorization from k to j being inactivated by a negative
authorization from i to j.

Definition 3. Let A be an authorization specification. An authorization
(i, j, τ, π) is active in A if it is not directly inactivated in A and there are nodes
p1, . . . , pn, pn+1 satisfying the following properties:

– p1 = SOA, pn = i and pn+1 = j.
– For 1 ≤ l < n there is an authorization (pl, pl+1,+, π

′) in A that is not directly
inactivated, where R(π′, (τ, π)).

– There do not exist l,m such that 1 ≤ l ≤ m ≤ n and an authorization
(pl, pm+1,−PR, π

′) in A such that τ = + and π′ = π if m = n, and such
that R(π′, (τ, π)) otherwise.

2 These definitions inductively depend on each other. They should be read as an inductive
definition with the well-founded semantics [8]. As discussed in Appendix A of Cramer
et al. [7], there are exist paradoxical cases in which the well-founded semantics is three-
valued rather than two-valued, so that for some authorizations it is undecided whether
they are active or not. Such paradoxical cases only arise when strong revocation of the
permission S depend on each other in a circular way. For the purpose of this paper we
stipulate that undecided is treated as false, so that the principals directly affected by such
a paradoxical situation will not have access until the paradoxical situation is resolved.



Definition 4. Let A be an authorization specification. An authorization
(i, j,+, π) is directly inactivated in A if there is an active authorization
(k, j,−SR, π) in A.

The notion of an active authorization is used in the definition of access right:

Definition 5. Let A be an authorization specification. A principal j has access right
in A iff j is the SOA or there is an active authorization of the form (i, j,+, A) for
some node i.

Now we are in a position to define the delegation-revocation framework Dom:

Definition 6. Given a delegation-revocation profile Π over {(S,G,R), (P,G,R),
(W,G,N)}, we define

Dom(Π) := {i ∈ S | i has access right in ADom(Π)}.

Example 5. Consider the authorization specification in Example 4. Let the prin-
cipal B perform an action revoke(B,C, A,S,G,R), that is, a global revocation of
access rights targeting the principal C (see Figure 1). The result of the action
in the graph we add a negative authorization (B,C,−SR, A) (that implies also
the negative authorization (B,C,−SR, D)). Such a negative authorization is ac-
tive, making the positive authorizations targeting C directly inactivated, and
consequently making also the authorization previously issued by C, (C,E,+, D),
inactive.

A B C

D

E

+, D

+, S

+, A

+, D

+
, D

−SR, A

+
, A

+
, D

Fig. 1. Example 5

Dom satisfies all four postulates from Section 3.2. Locality and Resilience Indif-
ference are satisfied vacuously, as Dom does not support any local revocation nor
any pair of revocations that differ only in the resilience dimension.

Theorem 1. Dom satisfies Locality, Resilience Indifference, Access from Revoca-
tion, and Timing Indifference.

Proof. As explained in Section 4, Dom vacuously satisfies Locality and Resilience
Indifference. The following reasoning sketches a proof of the claim that Dom satisfies
the Access from Revocation postulate: The only way that a principal j could gain ac-
cess right through a revocation action is that some previously inactive authorization



of the form (i, j,+, A) gets reactivated. The only way for such an authorization to be
reactivated is if some authorization (k, l,+, D) in a chain of authorizations linking
the SOA to i gets reactivated, or if (i, j,+, A) stops being directly inactivated. But
(k, l,+, D) can only get reactivated if either some authorization (k′, l′,+, D) in a
chain of authorizations linking the SOA to k gets reactivated, or if (k, l,+, A) stops
being directly inactivated. Applying this reasoning inductively, we can conclude that
the only way for (i, j,+, A) to get reactivated is for it or some authorization of the
form (k, l,+, D) to stop being directly inactivated. But the only way in which an
authorization of the form (i, j,+, π) can stop to be directly inactivated is for an au-
thorization of the form (k, j,−SR, π) to be inactivated. The only way in which such
an authorization can be inactivated is if an authorization (k′, j′,+, S) in a chain of
authorizations linking the SOA to k gets inactivated. The only way this can happen
is if either an authorization of the form (k′′, j′′,+, S) in a chain of authorizations
linking the SOA to k′ gets inactivated, or if (k′, j′,+, S) starts to be directly in-
activated. Applying this reasoning inductively, we can conclude that the only way
in which an authorization of the form (k, j,−SR, π) can get inactivated is if some
authorization of the form (k′, j′,+, S) starts to be directly inactivated. The only way
this can happen is if some authorization of the form (p, k′,−SR, S) either gets added
or gets reactivated. As the case of (p, k′,−SR, S) getting reactivated is analogous to
the case of (i, j,+, A) getting reactivated, we can see that (p, k′,−SR, S) can only
get reactivated if some authorization of the form (p′, k′′,−SR, S) either gets added
or gets reactivated. Applying induction once more, we can conclude that the only
way that j to get access is for some authorization of the form (p, k′,−SR, S) to get
added, i.e. for some strong revocation of permission S to be performed, just as the
Access from Revocation postulate claims.

To see why Dom satisfies Timing Indifference, note that the only way in which

ADom(Π1 ⊕ 〈a1, a2〉 ⊕Π2) = ADom(Π1 ⊕ 〈a2, a1〉 ⊕Π2)

can fail to hold is if a1 is a granting action and a2 is a WGN revocation between
the same two principals. But in this case the preconditions of Timing Indifference
are not satisfied. So whenever these preconditions are satisfied, the above equation
holds, and thus

Dom(Π1 ⊕ 〈a1, a2〉 ⊕Π2) = Dom(Π1 ⊕ 〈a2, a2〉 ⊕Π2)

holds too, as required. �

5 Adding Non-Resilient revocation: DR

In this section we extend Dom to a delegation framework DR that introduces into
the framework also the possibility of performing non-resilient revocations.

DR is defined by making the following modifications to Dom:

– New negative authorization types −SN and −PN are introduced i.e. TDR :=
{+,−SR,−PR,−SN,−PN}.



– We introduce a new element in the authorization specification, the shields, which
protect a positive authorization from being inactivated by an earlier non-resilient
negative authorization (see below).

– We redefine how performing a granting action modifies the authorization speci-
fication, introducing also the possibility of the shields.

– We modify the definition of active and directly inactivated in order to account
for the shields.

The addition of the authorization types −SN and −PN means that TDom gets
replaced by TDR in the definitions of authorization and R, and that “τ 6= −SR” gets
replaced by “τ /∈ {−SR,−SN}” in the definition of R.

The behaviour of the global non-resilient revocations is the same in DR as in
the delegation-revocation framework C from Cramer et al. [7]. However, Cramer et
al. defined this behaviour without reference to shields. Instead, they included time
stamps on the authorizations that indicate when an authorization was issued, and
that were used to get the same effect as we get in DR through the use of shields.
The reason why we use shields instead of time stamps is that time stamps include a
lot of additional information into the authorization specification that is not relevant
for determining access rights. By using shields we encode in the authorization spec-
ification only that part of the information about the temporal ordering of actions
that is needed to correctly define access right.

A shield is a pair ((i, j,+, π), (k, j,−pN , π
′)) for p ∈ {S, P}, i.e. a pair consisting

of a positive authorization and a non-resilient negative authorization that target the
same principal. In order to have the shields in the authorization specification, we
need to redefine the authorization specification to be a more complex structure than
a graph: An authorization specification is a structure consisting of a graph (with
vertices and edges as in Section 6) plus a binary relation S on the edges of the
graph, where we require that S((i, j, τ, π), (k, l, τ ′, π′)) can only hold if τ = +,
τ ′ ∈ {−PR,−SR} and l = j.

A shield ((i, j,+, π), (k, j,−pN , π
′)) represents the fact that (i, j,+, π) results

from a granting action performed after the revocation action that gave rise to
(k, j,−pN , π

′), which by the intuitive meaning of non-resilient means that (i, j,+, π)
cannot be inactivated by (k, j,−pN , π

′). In order to ensure that the right shields are
in the authorization specification, we need to modify the effect that performing a
granting action has on the authorization specification. Whenever a granting action
grant(i, j, π) is performed:

– (i, j,+, π) is added to the authorization specification.
– If in the authorization specification there is a non-resilient negative authoriza-

tion (k, j,−SN, π
′), then add S((i, j,+, π), (k, j,−SN, π

′)) to the authorization
specification.

The last step in the definition of DR is to modify the definition of active and
directly inactivated in order to account for the shields:

Definition 7. Let A be an authorization specification with shield relation S. An
authorization (i, j, τ, π) is active in A if it is not directly inactivated in A and there
are nodes p1, . . . , pn, pn+1 satisfying the following properties:



– p1 = SOA, pn = i and pn+1 = j.
– For 1 ≤ l < n there is an authorization (pl, pl+1,+, π

′) in A that is not directly
inactivated, where R(π′, (τ, π)).

– There do not exist l,m such that 1 ≤ l ≤ m ≤ n and an authorization
(pl, pm+1, τ

′, π′) in A such that
• τ ′ ∈ {−PR,−PN},
• ((pm, pm+1,+, π

′′), (pl, pm+1, τ
′, π′)) /∈ S, where π′′ = π if m = n, and

R(π′′, (τ, π)) otherwise,
• τ = + and π′ = π if m = n, and
• R(π′, (τ, π)) if m 6= n.

Definition 8. Let A be an authorization specification with shield relation S. An
authorization (i, j,+, π) is directly inactivated in A if there is an active authorization
(k, j, τ, π) in A such that τ ∈ {−SR,−SN} and ((i, j,+, π), (k, j, τ, π)) /∈ S).

Example 6. The starting point is the graph in Example 4. B issues a non-resilient
strong revocation of A targeted at C.

Let D re-issue the positive authorization (D,C,+, A); since there is a non-
resilient negative authorization (B,C,−SN, A) targeting C, a shield ((D,C,+, A),
(B,C,−SN, A)) is issued.

A B C

D

E

+, D

+, S

+, A

+, D

+
, D

−SN, A

+
, A

+
,
A

+
, D

Following Definition 8, the authorization (D,C,+, A) is not directly inacti-
vated by (B,C,−SN, A) since there is a shield from the former to the latter.
(D,C,+, A) is actually active, and C’s access rights are restored.

The framework DR satisfies all four postulates defined in Section 3.2 (Locality
is satisfied vacuously due to the lack of local revocations):

Theorem 2. DR satisfies Locality, Resilience Indifference, Access from Revocation,
and Timing Indifference.

Proof. DR vacuously satisfies Locality, as it does not support any local revocations.
One can easily see that DR satisfies Resilience Indifference by noting that

AΠ⊕〈revoke(i,j,π,d,p,R)〉 cannot contain a shield whose second element is a negative
authorization that originates from the action revoke(i, j, π, d, p,R).

Given that the resilient revocation behave the same way in Dom and DR, the
fact that DR satisfies Access from Revocation directly follows from the facts that
Dom satisfies Access from Revocation and that DR satisfies Resilience Indifference.



To see why DR satisfies Timing Indifference, first note that if neither of the
actions a1 and a2 mentioned in the Timing Indifference postulate is a strong non-
resilient or p-t-p non-resilient revocation, the postulate can be shown to be satisfied
by DR in the same way as for Dom. Furthermore, note that the only way in which

ADom(Π1 ⊕ 〈a1, a2〉 ⊕Π2) = ADom(Π1 ⊕ 〈a2, a1〉 ⊕Π2)

can fail to hold when at least one of a1 and a2 is a strong non-resilient or p-t-p
non-resilient revocation is if a shield gets added in one of the action pairs 〈a1, a2〉
and 〈a2, a1〉, but not in the other. The only way this can happen is if a1 and a2
target the same principal. But in this case the preconditions of Timing Indifference
are not satisfied. �

6 Adding local revocations: DPR

In this section we extend the framework DR to a delegation-revocation framework
DPR over Σ∗. In other words, DPR fully covers all three revocation dimensions, i.e.
it can handle all ten revocation actions defined in Section 3.1. For this, we need to
specify how DR gets modified so as to support local revocations.

As seen at the end of Section 4, the definition of local revocations presented by
Cramer et al. [7] does not satisfy the postulate of Timing Indifference. The goal of
this section is to define the local revocations in such a way that this postulate is
satisfied. We do this by extending the framework Dom in the following way:

– We add a new set of nodes to the graph, the set B of bridges. A bridge can be
used in delegation chains in order to preserve the effect of authorizations issued
by a principal targeted by a local revocation.

– We introduce a new class of actions, Local Revocations.
– We appropriately modify the definition of the authorization specifications as well

as the definition of when an authorization is active.

We define the set of bridges to be

B := {bridge(i, j, d, r, π)|i, j ∈ S, (d, r) ∈ ({S,P,W}× {R,N}) \ {W,R} and π ∈ P}.

Following a local revocation action revoke(i, j, d, L, r, π), the purpose of bridge(i, j,
d, r, π) is to be a substitute for j in the delegation chains that ensure that the
principals whose access right previously depended on j is preserved.

We extend the definition of an authorization-specification from Section 5 by
allowing bridges to be nodes of the graph as well, and adding shields to this extended
notion of a graph using the same definition that was used to add shields in Section 5,
only that i, j, and k now refer to the new notion of a node (a principal or a bridge)
rather than to the old notion of a node (just a principal). The main distinguishing
factor between a principal and a bridge is that a bridge cannot perform any action, as
bridges cannot be mentioned in delegation-revocation profiles. We say that a bridge
bridge(i, j, d, r, π) is a bridge for the principal j, and we indicate with Bj the set of
the bridges for j.



We change the definition of how the authorization specification gets modified
when a granting action or a global revocation action targeting a principal j is per-
formed by adding not only an authorization ending in j, but also analogous autho-
rizations ending in the bridges in Bj . More precisely, the action grant(i, j, π) results
in adding not only (i, j,+, π), but also (i, b,+, π) for any b ∈ Bj to the authoriza-
tion specification; and the action revoke(i, j, d, G, r, π) results in adding not only
(i, j,−dr, π), but also (i, b,−dr, π) for any b ∈ Bj to the authorization specification.

In what follows we need to distinguish in the set Bj the bridges that are actually
playing an active role in the graph, since they are associated to some active neg-
ative authorizations, from the ones that are not relevant. We call the former ones
the active bridges for j, and denote the set of the active bridges for j by Ba

j (see
Definition 9 below). Informally, the main idea is the following: Given a principal j,
its bridges in Bj record all the global authorizations targeting j. In the moment a
local revocation is performed by a principal i toward j, resulting into a negative
authorization (i, j,−dr, π), all the authorizations issued by j up to that point are
‘copied’ in the bridge bridge(i, j,−SR, π), i.e. for every (j, k, τ ′, π′) in the autho-
rization specification, an authorization (bridge(i, j, d, r, π), k, τ ′, π′) is added to the
authorization specification. In such a way, for every authorization (j, k, τ ′, π′) that
was active before the performing of a local revocation targeting j, we introduce
a new authorization (bridge(i, j,−SR, π), k, τ ′, π′) that is active in the new graph.
This ensures that whatever rights were granted by j before the local revocation are
still supported by an active delegation chain that ‘bypasses’ the principal j through
a bridge for j.

Performing a local revocation revoke(i, j, π, d, L, r) has the following effects on
an authorization specification:

1. For every principal k and every authorization (j, k, τ ′, π′) in the authorization
specification, an authorization (bridge(i, j, d, r, π), k, τ ′, π′) is added to the au-
thorization specification.

2. For every principal k and every authorization (k, j, τ ′, π′) in the authorization
specification, an authorization (k, bridge(i, j, d, r, π), τ ′, π′) is added to the au-
thorization specification.3

3. (i, j,−dr, π) is added to the authorization specification.

The constraints defining which authorization are active and which are inactive
must be changed in order to consider also the bridges, but only the active ones. Apart
from reinterpreting the meaning of the word node and the domain of quantification
of the variable i, j, p1, . . . , pn+1 to include bridges as well as principals, Definition
8 remains unchanged, while we change Definition 7 simply adding the following
condition:

– For 1 < l ≤ n, if pl ∈ Bj for some principal j, then pl ∈ Ba
j .

3 We add such a condition even though every authorization from k to j created due to
a granting or global revocation action already has a copy from k to any bridge for j,
because there can be authorizations from k to j created due to local revocations that
must be added at this point.



Note that the latter condition refers to the set of active bridges. So instead of building
a simultaneous inductive definition consisting of Definitions 3 and 4 as in Section 4,
here we build an analogous simultaneous inductive definition using Definition 4, the
modified version of Definition 3, and a third component, Definition 9:

Definition 9. Given a principal j, the set Ba
j is defined as follows: For every

bridge(i, j, d, r, π) ∈ Bj , bridge(i, j, d, r, π) ∈ Ba
j if and only if (i, j,−dr, π) is an

active authorization.

According to the above constraints, when a local revocation revoke(i, j, d, L, r) is
performed, a negative authorization (i, j,−dr, π) is issued and a node
bridge(i, j, d, r, π) is associated to (i, j, τ, π). In case (i, j,−dr, π) is inactive, also
bridge(i, j, d, r, π) is inactive and its presence is irrelevant. But if (i, j,−dr, π) is
active, bridge(i, j, τ, π) is active and ensures that all rights that were granted by j
before the revocation are preserved.

Example 7. Consider the authorization specification in Example 4. Let the prin-
cipal B perform an action revoke(B,C, A,S,L,R), i.e. a local revocation of access
A targeting the principal C. If in the graph we simply added a negative autho-
rization (B,C,−SR, A) as in Example 5, this would have the effect of a global
revocation, inactivating also the authorization (C,E,+, D) previously issued by
B. Now we use bridges to model the locality of the revocation. In the visualiza-
tion of the graph, we depict only the bridge that is relevant for the performed
local revocation revoke(B,C, A,S,L,R), namely bridge(B,C,S,R, A).

In step 1 of the three steps describing the effects of the local revocation
revoke(B,C, A,S,L,R), we add an authorization (bridge(B,C,S,R, A), j, τ, π) for ev-
ery authorization (C, j, τ, π). In this case we only have to replicate the autho-
rization (C,E,+, D) as (bridge(B,C,S,R, A), E,+, D). In step 2, we do not need to
add anything, because previously only non-local actions have been performed,
and all the non-local actions targeting C have already given rise to authoriza-
tions targeting bridge(B,C,S,R, A) (see footnote 3). Finally, we add the negative
authorization (B,C,−SR, A). The resulting graph is the following.

A B C

D

E

bridge(B,C,S,R, A)

+, D

+, S

+, A

+, D

+
, D

−SR, A

+
,
A

+, D

+
,
A

+
,
D

+, A +, D

As the negative authorization (B,C,−SR, A) is active, the node bridge(B,C,S,R, A)
is also active. Then it is easy to check that the principal E obtains through the
bridge the delegation right that C had previously granted to E, while C itself no
longer has access or delegation right.

The framework DPR satisfies all four postulates defined in Section 3.2:



Theorem 3. DPR satisfies Locality, Resilience Indifference, Access from Revoca-
tion, and Timing Indifference.

Proof. First we prove that DPR satisfies Locality.
Suppose that the preconditions of the Locality postulate are satisfied. The idea

behind the proof is that the treatment of bridge(i, j, d, r) in the local revocation
does not give access to any principal that did not have access before the revocation,
but ensures that for every active delegation chain that gave access to a principal
k 6= j before the loval revocation, there is a corresponding active delegation chain
(possibly going through bridge(i, j, d, r) instead of through j) that gives access to
k after the local revocation. To formalize this idea, we need to prove the equality
statement of Locality by proving a set inclusion in both direction.

First suppose that k ∈ DPR(Π) ∪ {j}. If k = j or k = SOA, then trivially
k ∈ DPR(Π ⊕ 〈revoke(i, j, π, d, L, r)〉) ∪ {j}. If k ∈ DPR(Π) and k 6= SOA, then
there is an authorization (l, k,+, π′) with π′ = A or π′ = D that is active in
AΠ . So there is a chain of authorizations in AΠ satisfying the properties specified
in Definition 3 (the definition of active in Dom) plus the additional property that
gets added to the definition of active in Section 6. Any authorization in AΠ is
also in AΠ⊕〈revoke(i,j,π,d,L,r)〉, so this chain also exists in AΠ⊕〈revoke(i,j,π,d,L,r)〉. If
either this chain does not go through j or the negative authorization (i, j,−dr, π) is
not active, then this chain also satisfies the properties of the definition of “active”
in AΠ⊕〈revoke(i,j,π,d,L,r)〉, so that (l, k,+, π′) is active in AΠ⊕〈revoke(i,j,π,d,L,r)〉, i.e.
k ∈ DPR(Π ⊕ 〈revoke(i, j, π, d, L, r)〉), as required. If this chain does go through
j and (i, j,−dr, π) is active, then the chain formed from this chain by replac-
ing j by bridge(i, j, d, r) satisfies the properties of the definition of “active” in
AΠ⊕〈revoke(i,j,π,d,L,r)〉, so that (l, k,+, π′) is active in AΠ⊕〈revoke(i,j,π,d,L,r)〉, i.e.
k ∈ DPR(Π ⊕ 〈revoke(i, j, π, d, L, r)〉), as required.

Now suppose that k ∈ DPR(Π ⊕ 〈revoke(i, j, π, d, L, r)〉) ∪ {j}. If k = j or
k = SOA, then trivially k ∈ DPR(Π). If k ∈ DPR(Π ⊕ 〈revoke(i, j, π, d, L, r)〉)
and k 6= SOA, then there is an authorization (l, k,+, π′) with π′ = A or π′ =
D that is active in AΠ⊕〈revoke(i,j,π,d,L,r)〉. So there is a chain of authorizations in
AΠ⊕〈revoke(i,j,π,d,L,r)〉 satisfying the properties of the definition of “active”. If this
chain does not go through bridge(i, j, d, r), then its authorizations also exists in
DPR(Π), and the chain satisfies the properties of the definition of “active” also in
DPR(Π), so that (l, k,+, π′) is active in DPR(Π), i.e. k ∈ DPR(Π), as required. If
this chain does go through bridge(i, j, d, r), then the chain formed from this chain
by replacing bridge(i, j, d, r) by j satisfies the properties of the definition of “active”
in DPR(Π), so that (l, k,+, π′) is active in DPR(Π), i.e. k ∈ DPR(Π), as required.
This finishes the proof that DPR satisfies Locality.

One can prove that DPR satisfies Resilience Indifference in a similar way as DR
was shown to satisfy Resilience Indifference in Theorem 2.

To see why DPR satisfies Access from Revocation, note that if a is a local
revocation, we can show that DPR(Π⊕〈a〉) ⊆ F (Π) in a similar way as we showed
Locality above, whereas if a is a global revocation, we can show that DPR(Π⊕〈a〉) ⊆
F (Π) in a similar way as in the proof that Dom satisfies Access from Revocation in
Theorem 1.



To see why DPR satisfies Timing Indifference, first note that if neither of the
actions a1 and a2 mentioned in the Timing Indifference postulate is a local revoca-
tion, the postulate can be shown to be satisfied by DPR in the same way as for DR.
Furthermore, note that the only way in which

ADom(Π1 ⊕ 〈a1, a2〉 ⊕Π2) = ADom(Π1 ⊕ 〈a2, a1〉 ⊕Π2)

can fail to hold when at least one of a1 and a2 is a local revocation is if the target of a
local revocation in {a1, a2} is the principals that performs the other action, because
only in this case can the creation of authorizations coming out of bridge(i, j, d, r, π)
based on authorizations coming out of j depend on the temporal ordering of a1 and
a2. But in this case the preconditions of Timing Indifference are not satisfied. �

Note that of the delegation-revocation frameworks that we have defined, DPR
is the only one which satifies all four postulates in a non-vacuous way, and the only
one which supports all ten revocation actions defined in Section 3.1.

7 Conclusion and Future Work

Following an idea first proposed in Cramer et al. [7], we analyse delegation revocation
using the axiomatic method. In contrast to Cramer et al. [7], we define relatively
simple and readily understandable postulates. This way, our use of the axiomatic
method resembles more closely the standard way it is used in social choice theory
and belief revision. The four postulates that we define formalize desirable features
of revocation scheme, i.e. expactations about the behaviour of various revocation
schemes that are based on the intended meaning of the three revocation dimensions
first identified by Hagström et al. [11].

We have shown that none of the existing frameworks satisfies all four defined pos-
tulates. Even the framework defined in Cramer et al. [7] fails to satify one of the pos-
tulates in the case of local revocations. In order to define the delegation-revocation
framework DPR that satisfies all four postulates while supporting all meaningful re-
vocation schemes, we first defined the simple basic delegation-revocation framework
Dom that supports only three simple revocation schemes, which we extended in a
stepwise way first to DR and finally to DPR.

We believe that the approach taken in this paper can be a fruitful foundation for
future research. Concerning the specific topic of this paper, further research should
study the possibility of defining further postulates for relegation revocation frame-
works and of proving representation results similar to those in belief revision (see
Rott [13]). Furhermore, the approach from the present paper based on simple pos-
tulates could be combined with the approach from Cramer et al. [7] that formulated
a complex postulate based on a dedicated logic called Trust Delegation Logic. Com-
bining these approaches could lead to an improved variant of Trust Delegation Logic
that fully characterizes a delegation-revocation framework that additionally satisfies
all the desirable simple postulates.

Finally, we consider the work presented in this paper as a proof of concept showing
the fruitfulness of applying the axiomatic method to problems in computer security.



We believe that other problems sudied in computer security could also profit from
being analyzed using the axiomatic method.

Acknowledgements

The work of Marcos Cramer was supported by the Fonds National de la Recherche,
Luxembourg, via the INTER project Specification logics and Inference tools for verifi-
cation and Enforcement of Policies. The work of Giovanni Casini has been supported
by the Fonds National de la Recherche, Luxembourg, and cofunded by the Marie
Curie Actions of the European Commission (FP7-COFUND) (AFR/9181001).

References

1. Aucher, G., Barker, S., Boella, G., Genovese, V., van der Torre, L.: Dynamics in Dele-
gation and Revocation Schemes: A Logical Approach. In: Li, Y. (ed.) Data and Appli-
cations Security and Privacy XXV, Lecture Notes in Computer Science, vol. 6818, pp.
90–105. Springer Berlin (2011)

2. Barker, S., Boella, G., Gabbay, D., Genovese, V.: Reasoning about delegation and
revocation schemes in answer set programming. Journal of Logic and Computation
(2014)

3. Bertino, E., Samarati, P., Jajodia, S.: An extended authorization model for relational
databases. Knowledge and Data Engineering, IEEE Transactions on 9(1), 85–101 (Jan
1997)

4. Bertino, E., Jajodia, S., Samarati, P.: A Non-timestamped Authorization Model for
Data Management Systems. In: Proceedings of the 3rd ACM Conference on Computer
and Communications Security. pp. 169–178. CCS ’96, ACM, New York, NY, USA
(1996), http://doi.acm.org/10.1145/238168.238211

5. Chander, A., Dean, D., Mitchell, J.C.: Reconstructing trust management. Journal of
Computer Security (2004)

6. Cramer, M., Hertum, P.V., Lapauw, R., Dasseville, I., Denecker, M.: Resilient Dele-
gation Revocation with Precedence for Predecessors Is NP-Complete. In: 2016 IEEE
29th Computer Security Foundations Symposium (CSF). pp. 432–442 (June 2016)

7. Cramer, M., Ambrossio, D.A., van Hertum, P.: A Logic of Trust for Rea-
soning about Delegation and Revocation. In: Proceedings of the 20th ACM
Symposium on Access Control Models and Technologies. pp. 173–184 (2015),
http://doi.acm.org/10.1145/2752952.2752968

8. Denecker, M.: The Well-Founded Semantics Is the Principle of Inductive Definition.
In: Dix, J., del Cerro, L., Furbach, U. (eds.) Logics in Artificial Intelligence, Lecture
Notes in Computer Science, vol. 1489, pp. 1–16. Springer Berlin Heidelberg (1998)

9. Fagin, R.: On an Authorization Mechanism. ACM Trans. Database Syst. 3(3), 310–319
(Sep 1978), http://doi.acm.org/10.1145/320263.320288

10. Griffiths, P.P., Wade, B.W.: An Authorization Mechanism for a Relational
Database System. ACM Trans. Database Syst. 1(3), 242–255 (Sep 1976),
http://doi.acm.org/10.1145/320473.320482

11. Hagström, Å., Jajodia, S., Parisi-Presicce, F., Wijesekera, D.: Revocations – A Clas-
sification. In: Proceedings of the 14th IEEE Workshop on Computer Security Foun-
dations. pp. 44–. CSFW ’01, IEEE Computer Society, Washington, DC, USA (2001),
http://dl.acm.org/citation.cfm?id=872752.873508



12. Li, N., Grosof, B.N., Feigenbaum, J.: Delegation Logic: A Logic-based Approach to Dis-
tributed Authorization. ACM Transaction on Information and System Security (2003)

13. Rott, H.: Change, Choice and Inference: a study of belief revision and nonmonotonic
reasoning. Oxford University Press, Oxford, UK (2001)

14. Tamassia, R., Yao, D., Winsborough, W.H.: Role-Based Cascaded Delegation. In: Pro-
ceedings of the 9th ACM symposium on Access control models and technologies (2004)

15. Yao, D., Tamassia, R.: Compact and Anonymous Role-Based Authorization Chain.
ACM Transactions on Information and System Security (2009)

16. Zhang, L., Ahn, G.J., Chu, B.T.: A rule-based framework for role-based delegation and
revocation. ACM Transactions on Information and System Security (2003)


