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Summary

Aging causes cardiac dysfunction, often leading to heart failure

and death. The molecular basis of age-associated changes in

cardiac structure and function is largely unknown. The fruit fly,

Drosophila melanogaster, is well-suited to investigate the genet-

ics of cardiac aging. Flies age rapidly over the course of weeks,

benefit from many tools to easily manipulate their genome, and

their heart has significant genetic and phenotypic similarities to

the human heart. Here, we performed a cardiac-specific gene

expression study on aging Drosophila and carried out a compar-

ative meta-analysis with published rodent data. Pathway level

transcriptome comparisons suggest that age-related, extra-cellu-

lar matrix remodeling and alterations in mitochondrial metabo-

lism, protein handling, and contractile functions are conserved

between Drosophila and rodent hearts. However, expression of

only a few individual genes similarly changed over time between

and even within species. We also examined gene expression in

single fly hearts and found significant variability as has been

reported in rodents. We propose that individuals may arrive at

similar cardiac aging phenotypes via dissimilar transcriptional

changes, including those in transcription factors and micro-RNAs.

Finally, our data suggest the transcription factor Odd-skipped,

which is essential for normal heart development, is also a crucial

regulator of cardiac aging.
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Introduction

Aging results in significant deterioration in the structure and function of

cardiac muscle. Moreover, heart disease, the primary cause of mortality

worldwide, significantly increases with age (Minino et al., 2011). How-

ever, the molecular basis of cardiac aging (and aging in general) is still far

from understood. Therefore, it is imperative to further investigate the

molecular changes associated with the aging heart to develop improved

diagnostics and therapeutics that prolong cardiovascular health.

It is difficult to study the molecular-genetic contributions to aging in

humans as people have a long lifespan, and there is significant genetic,

epigenetic, and environmental diversity among individuals and between

populations (Balaresque et al., 2007; Lam et al., 2012). To date, human

studies have uncovered only a few individual genes that show a robust

association with aging in the heart (Jeck et al., 2012). However, human

and mouse studies across a range of tissues have shown age-related up-

regulation in extracellular matrix and inflammatory response genes, and

down-regulation of ribosomal and mitochondrial genes (Zahn et al.,

2006, 2007).

The fruit fly, Drosophila melanogaster, and the worm, Caenorhabditis

elegans, provide significant practical advantages over othermodel systems

to study the molecular mechanisms of aging: a short lifespan, low genetic

redundancy comparedwith mammals, and a plethora of tools available to

easily manipulate gene expression in a temporal and tissue-specific

manner. In fact, these two model organisms were instrumental in

uncovering the first molecular pathways (including insulin and TOR

signaling) associated with an increased lifespan in many species (Kenyon

et al., 1993; Beckman, 2004). However, Drosophila, unlike C. elegans,

has a functional heart with features that are remarkably conserved

between flies and humans (Cammarato et al., 2011).

The fly heart also shows similar age-related physiological decline to

the human heart. The incidence of cardiac arrhythmias increases with

age in humans, and is often caused by ion channel dysfunction (Strait &

Lakatta, 2012). Old (5–7 weeks of age) fly hearts are also significantly

more arrhythmic and have altered ion channel expression and function

compared with young (1-week old) fly hearts (Ocorr et al., 2007b).

Humans show exercise intolerance with age, and have a lower maximal

heart rate with each decade of life (Strait & Lakatta, 2012). Likewise, old

flies have a lower maximal heart rate and decreased tolerance to

cardiovascular stress caused by electrical pacing or increased ambient

temperature (Paternostro et al., 2001; Wessells et al., 2004). Aging

human hearts stiffen and show relaxation deficits and contractile

dysfunction (Strait & Lakatta, 2012). Fly hearts also exhibit elevated

stiffness, decreased diastolic diameter, lower fractional shortening and

impaired relaxation kinetics with age (Cammarato et al., 2008; Fink

et al., 2009; Kaushik et al., 2012, 2015). These changes are the

hallmarks of diastolic dysfunction. The phenotypic similarities, coupled

with the genetic tractability of the fly, make it an ideal model for gene

discovery during cardiac aging and pathogenesis.

The dramatic morphological and physiological differences observed

between young and aged adult Drosophila myocardium must be

accompanied by profound underlying changes in the cardiac transcrip-

tome. Moreover, it is likely that many of the genes responsible for

cardiac aging in Drosophila also contribute to age-related heart disease

in humans. This is because a large majority of human disease-causing

genes have counterparts in Drosophila (Bier & Bodmer, 2004) and its

heart is characterized by a cardiac proteome that is very similar to that of

vertebrate hearts (Cammarato et al., 2011).

To further elucidate the transcriptional changes that occur in the

aging heart, we profiled the transcriptomes of isolated cardiac tissue
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from young (1 week) and old (5 week) flies in two different genetic

backgrounds. Bioinformatic enrichment analysis was used to search for

micro-RNAs (miRs) and pathways that contribute to the aging-

dependent changes in the fly heart transcriptome. Additionally, both

gene and pathway level meta-analysis were conducted using published

transcriptomic data from aged fly, mouse, and rat hearts to determine

the extent of conservation (either at the gene or at the pathway level)

between or within species. As these comparisons highlighted significant

variability in gene expression, we also used nanofluidic qPCR to examine

transcriptional variability between single fly hearts. Finally, in vivo

functional studies suggested that a key transcriptional circuit involving

the transcriptional regulator Odd-skipped can induce phenotypic

changes in aged Drosophila hearts.

Results

The fly heart ages by known aging mechanisms

To understand how the fly heart ages on a molecular level, and how this

compares with mammalian cardiac aging, we first catalogued the age-

related transcriptional changes in Drosophila myocardium and its

associated pericardial cells. Microarray analysis was performed to profile

global gene expression in the hearts of 1- and 5-week-old flies. Two

different fly background strains were first compared: yw and the progeny

of the outcross of yw to a cardiac Gal4 driver line (see Materials and

methods). Results showed 260 and 202 transcripts (corresponding with

239 and 193 unique genes) were significantly up- or down-regulated,

respectively, in old fly hearts of both genetic backgrounds compared with

genotype-matched young fly hearts (aging P-value < 0.005, interaction P-

value > 0.05, Fig. 1, Table S1, Supporting information; see Methods for

statistical analysis). These age-related transcriptional changes are consid-

ered robust as they occur in both genetic backgrounds.

To further probe the molecular mechanisms that likely contribute to

cardiac aging, we performed gene ontology (GO) analysis on the genes

that were differentially expressed with age in the fly heart. A number of

ontological cellular processes known to be involved with mammalian

aging were likewise enriched in the aging fly heart gene set (Fig. 1,

Table S2, Supporting information).

Firstly, extracellular matrix genes, and in particular metalloproteases,

were up-regulated in aged fly hearts (Fig. 1, Tables S1 and S2,

Supporting information). These genes include Matrix Metalloprotease

1 and 2 (Mmp1 and Mmp2), neprilysin 2 (Nep2), and TweedleF (TwdlF).

Metalloproteases, which regulate extracellular matrix proteins, are

similarly altered in the aged mammalian heart and aorta (Muller &

Dhalla, 2012; Zhou et al., 2012).

DNA replication and repair mechanisms were also up-regulated in the

aged fly heart (Fig. 1), consistent with increased expression of DNA

repair genes reported in hearts of aged compared with young mice

(Szczesny et al., 2010). Several mitochondrial metabolic processes,

including ATP synthesis and b-oxidation decline specifically in aged

hearts (Moslehi et al., 2012). Consistently, carbohydrate metabolism

was down-regulated in our aged fly hearts (Fig. 1). These findings are

suggestive of conserved core mechanisms of cardiac aging from flies to

mammals.

Comparison of aging mechanisms in fly and mammalian

hearts

We examined whether the changes in extracellular matrix, DNA

replication and repair mechanisms, mitochondrial metabolism, and

other pathways identified in Fig. 1 also occurred in different genetic

backgrounds, and different species. To this end, we determined which of

the pathways that were altered by aging in our Drosophila strains (720

upregulated and 763 downregulated genes-Aging P < 0.05, Interaction

P > 0.05 |Fold|>20%) were also significantly enriched in at least 4 or

more of the 11 published aging rodent heart Affymetrix microarray

datasets (10 from mouse hearts and one from rat heart, Table S3,

Supporting information; Fig. 2). Also included in this comparison were

pathways enriched in genes altered by aging in fly hearts of the w1118

genetic background (Monnier et al., 2012).

Interestingly no pathways were found to be enriched among all cardiac

aging datasets. However, protein transport was found to be enriched in

theupregulatedgenes in 10of the13datasets analyzed. Thiswas followed

by extracellular matrix and oxidoreductase activity, which were signifi-

cantly enriched in 8 of the 10 mouse datasets (Fig. 2), but not in the

previous study using w1118 flies (Monnier et al., 2012). DNA replication

and repair, on the other hand, were not enriched across multiple datasets.

Mitochondrial matrix and metabolism terms were enriched in the down-

regulated genes of both fly datasets and four to five mouse datasets,

respectively. Additionally, up-regulation of expression of protein packag-

ing and transport genes, and down-regulation of contractile function

geneswere also found in flies and inmice (Fig. 2). This suggests that, while

genetic background significantly affects transcriptional changes and the

related pathways, there are some genes, such as those associatedwith the

extracellular matrix (remodeling), mitochondrial metabolism and protein

handling, which are regulated more consistently across different species

during cardiac aging.

Comparison of genes dysregulated by age in Drosophila vs.

those of rodent hearts

We next assessed whether age-associated changes at the individual gene

level are also conserved within and between species. Meta-analysis of

rodent (10 mouse and one rat) aging heart datasets showed that

expression of 3–18% of genes was altered with age. On average, 10%

of genes were over-expressed and 10% were under-expressed in old

(compared with young) hearts. Expression of 13,249 out of 22,385

genes was significantly altered (corrected P-value < 0.05) in at least one

dataset. We focused on conserved genes that displayed transcriptional

changes in five or more datasets. With this cutoff, 183 genes and 42

gene orthologues were up- or down-regulated with age, respectively, in

the rodent heart data sets (Table S3, Supporting information). There was

striking heterogeneity among the mouse datasets with only five genes

commonly up-regulated (Src kinase associated phosphoprotein 2

(Skap2), Amylase 1 (Amy1), Cyclin D1 (Ccnd1) and Chemokine (C-C

motif) ligand 8 (Ccl8)), and no genes commonly down-regulated in all 10

datasets.

Next our yw fly heart microarray data were compared with the

published w1118 fly data (Monnier et al., 2012), using filters of an aging

P-value < 0.05 and an interaction P-value < 0.05. This analysis high-

lighted 720 up-regulated and 763 down-regulated aging probe sets in

our dataset, compared with 1107 age-regulated genes in the w1118 fly

data set. Interestingly, the Monnier et al. (2012) Drosophila study

implicated JNK/dJun and Vri/dNFIL3 as major regulators of cardiac

senescence. Overall, transcription of 87 genes (including Mmp1) was

altered in both fly datasets (Table S3, Supporting information). In

contrast, Synaptotagmin VII (Syt7) was the only gene that exhibited

significantly altered expression levels in both aged fly and rodent

datasets. These data highlight remarkable variability in how hearts age at

the individual gene level, even within the same species.
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Transcriptional variability in individual fly hearts

As fly hearts comprise only about 100 cells, 30 hearts were pooled to

extract sufficient RNA to perform microarray studies. Recent advances in

nanofluidic qPCR methods now allow analysis of RNA from a single cell.

To further investigate the transcriptional variability in aging fly hearts, we

used Fluidigm’s Biomark nanofluidic qPCR to measure gene expression in

individual yw hearts at 1 and 5 weeks of age. We found up to 16- or 32-

fold differences in expression between single hearts (difference of 5–6

PCR cycle thresholds). This expression variability was evident after

1 W 
yw

5 W 
yw 1 W 

yw x Gmh5

5 W 
yw x Gmh5

1 wk  yw 1 wk yw x Gmh5

Repressed Transcripts
Ontology Term Enrichment Changed Measured Total P-Value
Carboxylic acid transmembrane transp. act. 7 87 88       <0.0001
Structural constituent of cuticle 9 139 147   <0.0001
Glucan metabolic process 3 9 9 0.0005
Organic acid transport 5 59 59 0.0005
Cellular carbohydrate catabolic process 5 51 51 0.0015
Regulation of circadian sleep/wake cycle 3 17 17 0.002
Cellular carbohydrate biosynthetic process 3 26 26 0.002
Synaptic growth at neuromuscular junction 3 18 18 0.0025
Regulation of tube length, open tracheal system 3 24 24 0.004
Potassium ion transport 4 43 44 0.004
Neuropeptide signaling pathway 4 48 49 0.004
Purine nucleoside triph.metabolic process 11 343 348 0.004
ATPase activity 6 137 141 0.0055
Hydrolase activity 6 137 141 0.0055
Lipid particle 9 251 290 0.0055
Neuropeptide hormone activity 3 35 35 0.0065
Polysaccharide catabolic process 3 34 35 0.007
Glucuronosyltransferase activity 3 34 34 0.0085
Extracellular space 6 166 197 0.009
MicroRNA site enrichment
dme-miR-34 16 368 370      <0.0001
dme-miR-958 18 484 484 0.0005
dme-miR-1017 17 527 539 0.001
dme-miR-31a 12 320 320 0.0025
dme-miR-981 17 581 586 0.004
dme-miR-274 30 1204 1213 0.007

Induced Transcripts
Ontology Term Enrichment Changed Measured Total PermuteP
Kinetochore 5 31 31 <0.0001
Cell cycle phase 12 232 232 <0.0001
Cell fraction 7 119 119 <0.0001
Lsoprenoid biosynthetic process 3 15 15 0.0005
Metalloendopeptidase activity 6 82 82 0.0005
Spindle checkpoint 3 12 12 0.001
Chromosome, telomeric region 3 12 12 0.001
Endoplasmic reticulum membrane 8 151 151 0.001
Spindle 4 43 43 0.005
Macromolecule catabolic process 9 207 210 0.005
Oxidoreductase activity 8 179 181 0.005
GPI anchor metabolic process 3 26 26 0.0055
Endoplasmic reticulum 10 271 274 0.0055
Monooxygenase activity 6 111 112 0.006
Disulfide oxidoreductase activity 3 30 30 0.009
MicroRNA site enrichment
dme-miR-10-5p 9 124 126 0.0005
dme-bantam 16 379 381 0.0015
dme-miR-1 25 678 686 0.004
dme-miR-8 30 821 828 0.0045
dme-miR-962 30 859 867 0.0045

Baseline Group

Fig. 1 Heatmap of age-related gene changes in the Drosophila heart with associated Gene Ontology terms and miR binding site enrichment. 5-week-old yw and yw x

GMH5 fly hearts show significant up- and down-regulation of 260 and 202 transcripts (corresponding with 239 and 193 unique genes) respectively compared with 1-week-

old genotype matched controls (aging P-value < 0.005, interaction P-value > 0.05).
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normalization to traditional housekeeper genes, such as Acta42 and

Gapdh1 as well as to non-housekeeper genes such as Odd (Fig. S1,

Supporting information), and was similar to the transcriptional variation

seen in mouse hearts (Bahar et al., 2006). Despite the significant

variability in gene expression in both fly and rodent hearts, our pathway

analysis highlights central conserved cardiac aging mechanisms at the

pathway level. Therefore, we next assessed whether alterations in

regulatory molecules such as transcription factors and miRs could be

driving the conserved aging mechanisms in heart cells.

The transcription factor Odd-skipped affects cardiac aging

Transcription factors can regulate expression of suites of genes in various

physiological and disease states, and may alter expression of different

Fig. 2 GO terms enriched in up- and down-regulated fly and rodent aging heart gene sets. Red indicates a significantly enriched process (Z>2); brighter color represents a

higher Z score. Black indicates no significant enrichment (Z<2).

Aging fly heart expression profiles, L. Cannon et al. 85

ª 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.



genes in each individual to arrive at a similar aging phenotype. A number

of transcription factors, including Odd-skipped (Odd), were found to be

up-regulated with age in the fly heart (Table S1, Supporting information,

Odd was up 2.7-fold).

To see whether Odd may contribute to cardiac aging, Odd expression

in the fly heart was genetically manipulated and the physiological effects

were assessed. RNAi-mediated Odd knockdown with the cardiac-specific

Hand4.2-Gal4 driver (Odd RNAi) caused a slower heart rate (i.e.

increased heart period) and significantly increased arrhythmia in old

flies, (Fig. 3A,C). Such changes also are known to occur with aging in

human hearts (Strait & Lakatta, 2012). Conversely, diastolic diameter

and fractional shortening were not affected in Odd RNAi fly hearts

(Fig. 3A,C). These results, which show aggravated heart dysfunction

with age upon Odd knockdown, are consistent with increased expres-

sion of Odd in old hearts to possibly counteract the decline in heart

function that normally occurs with age.

As Odd over-expression using the Hand4.2-Gal4 driver was develop-

mentally lethal, with over 75% of flies dying before eclosion, we used

the inducible HandGS-Gal4 driver to over-express Odd only in adult flies.

Odd over-expression for the first week of adult life caused significant

bradycardia, systolic and diastolic dilation, and contractile dysfunction as

seen by decreased fractional shortening (Fig. 3B,C). However, Odd over-

expression for 1–2 weeks in old flies (5–6 weeks of age) did not have a

deleterious effect on heart function (Fig. 3B,C). To verify that Odd was

indeed overexpressed in these old hearts, we directly quantified the

amount of Odd mRNA, which showed significantly elevated levels

(Fig. S2, Supporting information). These findings are consistent with the

interpretation that the increased levels of cardiac Odd normally seen

with age are not pathogenic, but may rather protect from further

decline. This suggests that Odd levels are likely to be tightly regulated

throughout life, and while Odd up-regulation in old flies may be a

compensatory mechanism, overexpression in young fly hearts is detri-

mental.

Bioinformatics prediction of Odd target genes in the

Drosophila heart

To further understand signaling pathways potentially targeted by Odd or

by other transcription factors in the Drosophila heart, enrichment

analysis was conducted to determine evolutionarily conserved transcrip-

tion factor binding sites in the proximal promoters of genes either up-

(n = 260) or down-regulated (n = 202) with age (Ho Sui et al., 2007). In

total, 233 transcription factor binding sites were assessed for statistical

enrichment within 2 kb up- and downstream of the transcription start

site and ranked by significance score. Odd binding sites were the most

significantly enriched sites (Z score = 9.4; P < 1e�5) in the upregulated

genes (Table S4, Supporting information). Conversely, Odd sites were

not significantly enriched (Z = �1.2) in the promoters of downregulated

Fig. 3 Effect of modulating Odd-skipped on heart function. (A) Hand4.2>Odd TRiP RNAi (grey) compared with control (black) at 1 and 7 weeks by two-way ANOVA and

Tukey’s multiple comparison (**P = 0.01, *P < 0.05, n = 15–26). Heart Period and Arrhythmia Index exhibit a significant increase with age upon cardiac Odd RNAi

knockdown. (B) Conditional cardiac overexpression (OE) with HandGS>Odd-OE RU (grey) compared with control (black) at 1 and 6 weeks by two-way ANOVA and Tukey’s

multiple comparison (n = 15–20, *P < 0.05, ****P < 0.0001). Cardiac Odd OE at young but not old age causes increased Heart Period, dilation and reduced contractility

(decreased Fractional Shortening). (C) Representative M modes of control and Hand4.2>Odd RNAi hearts at 7 weeks and control and HandGS>Odd-OE RU hearts at 1 week.
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genes suggesting that Odd is acting primarily as a transcriptional

activator in aged fly hearts. Several predicted Odd target genes,

including the antimicrobial peptide Lysozyme X (LysX), and the extra-

cellular matrix proteins Neprilysin2 (Nep2) and TweedleF (TwdlF), were

found by nanofluidic qPCR to be up-regulated with age in the fly heart

(Fig. 4), suggesting that transcriptional regulation of these genes may, in

part, be regulated by Odd.

LysX expression affects cardiac aging

LysX is the fly orthologue of the human antimicrobial peptide lysozyme.

RNAi-mediated cardiac-specific LysX knockdown caused diastolic and

systolic constriction in both young (1 week) and old (7 week) hearts and

bradycardia in old flies (Fig. 5A,C). The bradycardia seen in LysX-

deficient hearts phenocopies that seen in Odd-deficient hearts. Although

it is well known that microbial load increases with age in the heart, it is

not clear whether such elevated loads influence cardiac function. The

findings that LysX is upregulated with age and that LysX knockdown

negatively affects the aging heart are consistent with the hypothesis that

LysX may have a protective role, especially at old age.

miR-1 levels are reduced in aging Drosophila hearts

miRs are small non-coding RNAs that can target numerous mRNAs for

degradation or translational repression. A GO Elite (Zambon et al., 2012)

search for miRs revealed that the genes up-regulated with age in the fly

heart contain a significant enrichment of binding sites for several miRs,

including for miR-1 (Fig. 1). Furthermore, we found miR-1 is abundantly

expressed in the adult Drosophila heart, just as it is in human and other

mammalian hearts (Zhao et al., 2005), and is significantly down-

regulated with age (Fig. S3, Supporting information). These data support

our informatics prediction and suggest that miR-1 levels may contribute

to cardiac aging by differentially modulating target gene expression.

Mmp1 expression affects cardiac aging

Drosophila matrix metalloprotease 1 (Mmp1), the homolog of a number

of mammalian Mmps, is up-regulated in old fly hearts (Fig. 1) and has

both an Odd consensus sequence and miR-1 binding site. Matrix

metalloproteases (Mmps) are important players in tissue remodeling as

they regulate extracellular matrix, mitochondrial, sarcomeric, and

cytoskeletal proteins (Ali et al., 2011). Thus, metalloproteases may also

be important in age-related cardiac decline. However, the molecular

signaling mechanism that activates these proteases and their subsequent

effects in the aging heart are not well understood. Although cardiac

knockdown of Mmp1 had no effect, over-expression (Mmp1-OE) in the

fly heart caused a similar phenotype to Odd-OE at young ages, i.e. a

reduction in fractional shortening (compare Fig. 5B,C to Fig 3B,C). These

data are consistent with a role of Mmp1 during cardiac aging.

Discussion

Conservation of cardiac aging processes

Age-related remodeling causes mammalian hearts to become stiffer,

more arrhythmic, and less contractile (Strait & Lakatta, 2012). However,

the molecular mechanisms that cause these changes are not well

understood. Fly hearts have significant genetic homology and proteomic

similarity with mammalian hearts (Cammarato et al., 2011), and also

show increased stiffness, arrhythmias and dysfunction with age (Ocorr

et al., 2007a; Kaushik et al., 2012). Thus, Drosophila with its short

lifespan and myriad of genetic tools can be a useful model organism to

investigate the molecular causes of cardiac aging.

This study investigated the transcriptional changes that occur in aging

fly hearts, and assessed whether these changes are conserved in aging

rodent hearts. We found that genes involved in extra-cellular matrix

remodeling, mitochondrial metabolism, protein handling, and contractile

function were altered in multiple aging fly and rodent heart datasets.

However, no single process was found to be significantly enriched in

aged genes among all data sets examined.

Cardiac aging appears to be stochastic at the individual gene

level

One of the most striking observations from this study is that surprisingly

few specific genes were similarly altered across multiple aging cardiac

transcriptomic datasets. This phenomenon has been previously ascribed

to each experiment being conducted on animals of differing genetic

backgrounds, with different microarray platforms, and in different

laboratories. We propose that this result could also highlight the fact

that each individual - or at least individuals with similar genetic

backgrounds – age through similar processes, but not identical

transcriptional changes (Figs 1 and 2).

It has been well established that gene expression is highly variable

between individual cells, and that the degree of variability is cell type

specific (Dueck et al., 2015). Cell-to-cell transcriptional variability is

significant in young mouse hearts and worsens with age (Bahar et al.,

2006). For example, single cardiomyocytes from 27-month-old mice

Fig. 4 Nanofluidic qPCR results of bioinformatically predicted Odd target genes. mRNA of Odd target genes Odd, LysX, Nep2 and TwdlF are significantly up-regulated in 5

week hearts compared with 1 week controls (n = 15–16, permutation test < 0.05).

Aging fly heart expression profiles, L. Cannon et al. 87
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show much more variability in expression of housekeeper genes like

Gapdh, Actb, B2M and Tuba6, and of cardiac specific genes like Actc1

and Myl2, than cardiomyocytes from young (6-month-old) mice (Bahar

et al., 2006). However, we saw similar transcriptional variability in both

young and old fly hearts (Fig. S1, Supporting information).

Our single fly heart data and our meta-analysis of published rodent

cardiac aging data suggest that in aging cardiac tissue gene expression is

highly stochastic. Differences in genetic aging would explain why the

heritability of longevity in humans significantly varies by ethnicity and is

estimated to be only 4–30% (Herskind et al., 1996; Lee et al., 2004).

Moreover, a number of genome-wide association studies (GWAS) on

various human populations have uncovered very few genes that

correlate with human longevity, and different sets of aging genes were

resolved in each study (Murabito et al., 2012). Also, the AgeMAP study,

which compared gene expression across different tissues in a number of

species, found merely 22 genes to be similarly changed in the same

tissues in mice and humans; only the electron transport chain gene set

appeared altered in expression with age in human, mouse, and fly (Zahn

et al., 2007). Our study used enrichment analyses with the most current

ontologies to find many more biological processes that are likely to be

conserved during aging (Fig. 2). All these data support the hypothesis

that cardiac aging may occur by similar processes in different species, but

is unlikely to be driven by changes in the exact same gene set in each

individual.

Developmental genes are important in cardiac aging

How can differing transcriptional changes during cardiac aging lead to a

common functional decline at old age? Perhaps master regulators that

control developmental processes also participate in aging; these

molecules may activate different transcriptional targets in varying cellular

milieus. We found that two such molecules, Odd and miR-1, are

potential contributors to cardiac aging in the Drosophila model.

The zinc-finger transcription factor Odd is up-regulated in old fly

hearts (Fig. 4; Table S1, Supporting information). Odd was originally

identified as a critical transcriptional regulator in patterning the body

plan of the Drosophila embryo (Coulter & Wieschaus, 1988). Further-

more, its mammalian homolog, Odd-skipped related 1 (Osr1), is required

for heart and kidney development in mice (Wang et al., 2005). However,

it was not known whether Odd contributes to aging-related tissue

remodeling. We found that cardiac-specific knockdown of Odd

decreases heart rate and increases arrhythmia in old flies – changes

that are commonly seen in the hearts of elderly humans. The fact that

knockdown of Odd exacerbates cardiac aging in the fly suggests that the

increased Odd expression in aging hearts may be an attempt to

compensate for functional decline. We found that cardiac-specific over-

expression of Odd is detrimental in young flies, causing bradycardia,

cardiac dilation and contractile defects, but has no effect on heart

function in old flies. This also points to the possibility that the Odd up-

Fig. 5 Effect of modulating LysX or Mmp1 on heart function. (A) Hand4.2>LysX RNAi (grey bars) compared with control (black bars). Comparisons analyzed by two-way

ANOVA and Tukey multiple comparisons (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001; n = 8–20). (B) Hand4.2>Mmp1-OE (grey) compared with control (black) at

1 and 5 weeks. Comparisons analyzed by two-way ANOVA and Tukey multiple comparisons (n = 15–30, *P < 0.05). (C) Representative M modes of control vs.

Hand4.2>LysX RNAi at 7 weeks and control vs. Hand4.2>Mmp1-OE at 5 weeks.
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regulation, observed with age in old flies, may be a compensatory

response to aging, and that Odd expression must be tightly regulated

throughout life for optimal cardiac function. This is reminiscent of

reports showing that dysregulation in cardiac expression of the KCNQ

potassium channel, integrin-linked kinase and b1-integrin, or the

transcription factor FoxO, leads to cardiac dysfunction and accelerated

aging (Ocorr et al., 2007b; Nishimura et al., 2014; Blice-Baum et al.

2017).

We found that several predicted Odd target genes are also up-

regulated with age (Fig. 4). These genes include the antimicrobial

peptide-encoding LysX. Cardiac-specific LysX inhibition caused brady-

cardia (Fig. 5A), similar to that seen in Odd-deficient hearts (Fig. 3A),

and cardiac constriction (Fig. 5A), an opposite phenotype to that seen in

Odd-overexpressing hearts (Fig. 3B). These data support the hypothesis

that LysX is an Odd target gene and that Odd may alter transcription of

immune modulating genes as the heart ages.

We also discovered that miR-1 was down-regulated with age and is

predicted to target a number of the genes that were up-regulated in the

aged fly heart (Fig. 1). Like Odd,miR-1 is essential for heart development

and function in both flies and mice (Kwon et al., 2005; Zhao et al.,

2005; Qian et al., 2011). Furthermore, miR-1 expression decreases in

human heart failure (Tritsch et al., 2013). We have previously shown

that cardiac restricted miR-1 overexpression induces arrhythmias in

young adult flies (Qian et al., 2011). Therefore, like Odd, miR-1 possibly

regulates several of the age-related gene changes in the fly heart.

Odd is a key developmental regulator. Our data support the intriguing

hypothesis that developmental genes may also control aging, possibly

acting through a different target gene set. This warrants further investi-

gation of exactly which genes are targeted by Odd during embryonic

development, adultmaintenance, andage-associateddecline of the heart.

Matrix metalloprotease 1 (Mmp1) was one of the genes we found to

be up-regulated with age and it is potentially targeted by both Odd and

miR-1. Drosophila Mmp1 has a number of mammalian Mmp homo-

logues, including Mmp2, -9, -11, -14, and -15. Several of these are also

altered in old rodent hearts (Table S3, Supporting information) and are

known to contribute to cardiac pathology including contractile dysfunc-

tion (Spinale et al., 2009).

Conclusion

This study shows that aging-induced extra-cellular matrix remodeling

and changes in mitochondrial metabolism, protein handling, and

contractile function are conserved in Drosophila hearts, mirroring several

aging processes in mammalian hearts. We propose that diverse genetic

mechanisms can lead to similar aging processes. While the processes

themselves are evolutionarily conserved, there is little overlap of

individual gene expression changes either between or within species.

Therefore, we need to identify the types of regulatory mechanisms

which drive or accompany these diverse aging events. Our data suggest

that age-dependent changes in heart physiology could be controlled, in

part, by the transcription factor encoded by Odd.

Materials and methods

Drosophila stocks

yw and progeny of yw crossed to GMH5-Gal4 (Wessells et al., 2004)

were used for microarray analysis of age-related changes in the

Drosophila heart. Odd-TRiP RNAi (stock number 34328) and Odd-OE

lines were obtained from Bloomington Stock Center (stock number

9902). The Mmp1-OE line (genotype: w; {UAS-Mmp1.f1, w+}/TM3),

stock number AMP1037) was obtained from Andrea Page McCaw. LysX-

RNAi line (stock number v49896) was obtained from VDRC. Cardiac

driver lines Hand4.2-Gal4 and Hand-GS-Gal4 were as used previously in

Kaushik et al. (2012), Nishimura et al. (2014) and Monnier et al. (2012).

Aging flies

All flies were collected within 24 h of eclosing and aged in vials of

standard fly media at 25 °C with 12 h light-dark cycles. Flies were

transferred into fresh food vials twice a week. Only female flies were

collected and used for all experiments.

RNA isolation and cDNA production, labeling and

fragmentation

Drosophila hearts from 1- and 5-week-old yw wildtype or yw x GMH5

flies (n = 30) were isolated (Fink et al., 2009), removed and homoge-

nized in TRIzol (Invitrogen Life Sciences). Total RNA was precipitated and

purified by miRNeasy mini-column (Qiagen) according to the manufac-

turer’s instructions. The recovered RNA was subjected to first and second

strand cDNA synthesis, amplification, and purification using the WT-

ovation Pico RNA Amplification System (NuGEN), Agencourt RNAClean

purification beads (Beckman Coulter), and DNA Clean and Concentra-

tor-25s columns (Zymo Research). cDNA was fragmented and labeled

using the FL-ovation cDNA Biotin Module V2 (NuGEN).

Microarray analysis

Hybridization of biotin labeled cardiac cDNA from each fly group to

Affymetrix GeneChip arrays, washing, staining, and scanning were

carried out by the UCSD/Veterans Medical Research Foundation

GeneChip Microarray Core facility using standard protocols. Five

biological replicates (for each age and genotype group) were performed.

The cel files were quality controlled with the R package AffyQCReport

(Parman et al., 2013) and resulted in the following numbers of replicates

per group: 4 of the yw 9 GMH5 1 week, 3 of the yw 9 GMH5 5 week,

3 of the yw 1 week and 3 of the yw 5 week. The limma package (Smyth

& Speed, 2003) was then used to determine genotype, aging, and

interaction P values.

Gene ontology and microRNA binding site enrichment

analysis

GO-Elite (Zambon et al., 2012) was used to identify Gene Ontology (GO)

and miR binding site enrichment in up- and down-regulated aging

genes. Ensembl-miR associations were obtained from the program GO-

Elite (Emig et al., 2010) which incorporates miR binding site predictions

from TargetScan, RNAhybrid, miRanda, miRBase, and Pictar databases.

To provide a more conservative set of predictions for human, mouse, and

rat, only miRs found in more than one database were included. Details

on this process are available from http://www.altanalyze.org/help.

htm#microrna. Associated EntrezGene relationships were obtained using

the Ensembl-EntrezGene relationship files in GO-Elite.

Meta-analysis

11 rodent aging heart datasets were compared to two aging fly heart

datasets using the following analyses. All of the datasets with the

exception of the fly dataset from Monnier et al. (2012) were generated
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with Affymetrix 30 expression microarrays. All raw Affymetrix.cel files

were downloaded and submitted for quality control (QC) analysis using

the Affymetrix QC report (Parman et al., 2013). Samples failing QC

standards were removed prior to normalization. Each individual dataset,

with the exception of the non-affymetrix data from Monnier, was then

background subtracted and normalized with RMA in R (Irizarry et al.,

2003). Each experiment’s internal control data (the “young” samples)

were used to compute fold changes and P values against the aged

groups. Identical fold (|fold|> 1.2) and P value (P < 0.05) cutoffs were

used to define age responsive transcripts. GO term enrichment was

computed with GO-Elite. We then filtered all significantly enriched GO

categories (Z > 2) in our yw 9 GMH5 aging genes for GO-terms also

significantly enriched in at least four or more of the other datasets. These

pathways were then clustered by Z score using complete linkage

clustering. GO-terms for datasets that fell below the significance

threshold of (Z > 2) were reset to a Z score of 0 prior to clustering to

facilitate heat map visualization.

Identification of evolutionarily conserved Odd consensus

elements

oPOSSUM single site analysis (Ho Sui et al., 2007) was used to analyze

promoter sequences for enrichment of evolutionarily conserved tran-

scription factor binding site sequence motifs. Occurrence frequencies of

transcription factor binding sites, based on insect and vertebrate position

weight matrices from the JASPAR database, were computed within 2 kb

of the transcription start site of the ~237 upregulated aging genes (aging

P-value < 0.005, interaction P-value > 0.05) using the recommended

default query parameters recommended by the website.

Nanofluidic qPCR of single fly hearts

Individual hearts from female 1- and 5-week-old flies were isolated and

snap frozen in 8 lL of water. Each heart was then brought up to a final

volume of 40 lL of lysis buffer (LB) (0.25% NP40 in water). Lysis was

carried out by heating individual hearts in LB for 2 min at 98 °C. The

lysed hearts were then briefly centrifuged, and 30 lL transferred to a

fresh tube. Reverse transcription was carried out by using 3.3 lL of lysed
heart (~8% of a single heart) in a 5 lL final reaction volume using the

VILO Reaction mix as per the manufacturer’s instructions (Life Tech-

nologies), resulting in a final volume of 6 lL of RT cDNA per heart. For

use with the BioMark platform, we then carried out pre-amplification for

48 genes using a Fluidigm Master Mix (Fluidigm corp) (3 lL), 109 single

target amplification (STA) (1.5 lL of 109 STA – 100 lM primers), 0.5 M

EDTA (pH 8) (0.075 lL), and water, to a final volume of 9 lL. Pre-

amplification was then carried out in a volume of 15 lL (pre-amp cycling

– 95 °C for 2 min, and 20 cycles of 96 °C 5 s, 60 °C for 4 min). For

removal of single stranded DNA prior to nanofluidic cycling, 6 lL of

Exosap solution (4.2 lL of water, 0.6 lL of Exonuclease 1 Rn Buffer,

Exonuclease 1 (20 units lL�1, New England Biolabs) was added to the

15 lL final reaction volume of the RT step. The resulting 21 lL final

volume was then incubated at 37 °C for 30 min and then heat

inactivated at 80 °C for 15 min. The pre-amplified volume (21 lL) was

then diluted 10-fold in DNA suspension buffer (Teknova), and stored at

�20 °C prior to running on the chip. Pre-amplified products for each

individual fly heart were then assayed using Fluidigm’s 48.48 nanofluidic

qPCR arrays on a Biomark system (Fluidigm), according to their

protocols. Biotium’s EvaGreen DNA binding dye was used to detect

amplified products according to Fluidigm’s protocols.

RNA in situ hybridization

RNA in situ hybridization was performed as in Viswanathan et al. (2016)

and Blice-Baum AC et al. (in press, Aging Cell) with modifications:

probes against Odd-skipped and Gapdh1 were generated using the

RNAscope (ACD) platform, and hybridized following the manufacturer’s

protocol. Labeled specimens were immediately mounted in Prolong Gold

(Molecular Probes), and imaged the following day on an Imager.Z1

equipped with an OrcaFlash 4LT camera (Hamamatsu) and Apotome.2

(Zeiss), using ZEN software (2.3). 16-bit dual channel images were

analyzed using Fiji/ImageJ. Particles, representing individual messages,

were quantified.

microRNA isolation and quantification

Total RNA was extracted from 20-30 female 1 week and 5 week hearts

using the miRNeasy kit. RT-PCR was done using Taqman microRNA

assays according to the manufacturer’s protocol (Life Technology,

Applied Byosystem, Carlsbad, CA, USA). A total of nine PCR experiments

from triplicate biological samples were analyzed and normalized with 2S.

In vivo validation

Genes of interest were knocked down or over expressed specifically in

the heart using Hand4.2-Gal4 in conjunction with UAS-RNAi lines (VDRC

KK library, Bloomington TRiP library) or UAS-over expressing lines. In vivo

cardiac parameters were assessed in female flies at different ages using

the semi-intact preparation outlined in (Fink et al., 2009).

Statistics

For cluster analysis of aging genes the following LIMMA-derived

statistical filters were used: Aging P-value < 0.005, interaction P-

value > 0.05. This resulted in 260 up-regulated and 202 down-regulated

aging probe sets. For the cross species meta-analysis of functional

groups, a less stringent filter was used: Aging P-value < 0.05, interaction

P-value > 0.05. This resulted in 720 up-regulated and 763 down-

regulated aging probe sets. The significance of the in vivo studies of

cardiac function was assessed via analysis of variance (ANOVA), and

Tukey’s multiple comparison using GraphPad Prism�. Values are

presented as means � SEM. P values < 0.05 were considered significant.

For statistical analysis of the nanofluidic data, all statistical comparisons

between age-groups were tested using a non-parametric randomization

test using R statistical software under the DAAG software package.

Treatment groups were compared and the null was rejected if P < 0.05.

This statistical test was employed to avoid employing an assumption of a

normal distribution of sample values in the targeted hearts from

different ages.
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