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A B S T R A C T

Highly conductive nominally undoped ZnO (b-ZnO), obtained by means of an additional plasma near the
substrate during sputter deposition, represent an attractive alternative for ZnO:Al (AZO) commonly employed
in transparent windows of thin film solar cells. b-ZnO layers exhibit more than twice higher charge carrier
mobility in comparison to AZO layers of the same resistivity (1·10 Ω cm−3 ). In consequence, a better
transparency in near infrared region and an enhanced short circuit current can be achieved for low band gap
thin film solar cells. Replacement of AZO for b-ZnO thus enhances their energy output.

In order to allow assessment of suitability of these b-ZnO films for deployment in photovoltaic industry, we
examine their stability in various environments, and show pathways to improve it. We demonstrate that the b-
ZnO films can exhibit comparable stability to ZnO:Al films in both ambient and heated air over the period of 24
months. However, the examined b-ZnO films degrade faster in accelerated open damp heat (DH) conditions,
which we attribute to the lower compactness of columnar microstructure. In order to circumvent this limitation,
we introduce a novel multilayered b-ZnO film with an improved environmental stability, as verified by the
enhanced optoelectrical performance of DH-treated Cu(InGa)(SSe)2 solar cells.

1. Introduction

1.1. ZnO layers with high near infrared transparency

Thin film solar cells have a substantially lower carbon footprint
compared to the standard wafer technologies [1]. These solar cells rely
on the upper-most transparent conductive oxide (TCO) layer which
forms an n-type window. One way to improve the energy output of
these solar cells is to increase the transparency of this window without
compromising its conductivity.

TCO films based on ZnO are affordable alternatives to costly
In2O3:Sn (ITO). The most common variation is Al-doped ZnO (AZO)
that is highly conductive and highly transparent in the visible (VIS)
spectral region [2,3]. However, AZO has a major drawback in the
pronounced light absorption in the near infrared (NIR) spectral region,
owing to the significant free carrier absorption caused by high
concentration of free carriers. This is detrimental in those applications
where NIR transparency is of importance. For instance, the use of AZO
contact layer lowers the amount of light that can be used for effective

energy conversion in thin film solar cells based on Cu(In,Ga)(SSe2) and
Cu2ZnSn(SSe)4 absorbers featuring low band gap, Eg ≤ 1.2 eV.

An alternative to AZO with comparably high conductivity but a
better NIR transparency is nominally undoped ZnO [2,4–6] that can
exhibit a significantly higher NIR transparency. This is related to a
lower density of more mobile charge carriers which in the latter case
originate in the variations in zinc/oxygen stoichiometry, or in the
background doping by hydrogen [2,4,5].

Moreover, as in the case of AZO films, the highly conductive
nominally undoped ZnO can be deposited by planar magnetron
sputtering [4–7], which is a popular industrially-used technique that
allows large area coating at low deposition temperatures (below 80 °C)
required for solar cell stack fabrication.

The nominally undoped ZnO films with resistivities below
1·10 Ω cm−3 were recently prepared at ambient temperature by applica-
tion of an additional plasma ignited by means of low-power RF
substrate biasing during nonreactive sputtering from a ceramic ZnO
target [6]. These layers, labelled as b-ZnO films (for biased ZnO),
exhibit about 2.5 times lower charge carrier density in comparison to
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the AZO films of identical resistivity. In consequence, their transpar-
ency in the NIR spectral region is significantly improved. A replace-
ment of an AZO film by a b-ZnO film as the n-type window of low band
gap chalcopyrite and kesterites thin film solar cells thus enhances their
short circuit current [6].

The above claim is illustrated in Fig. 1 on the example of the
spectral response and optoelectrical characteristics of the two solar
cells fabricated from an identical Cu(In,Ga)(SSe2) (CIGS) absorber
(Eg=1 eV). It can be observed that the external quantum efficiency
(EQE) spectra of the solar cell finished with a b-ZnO window shows a
substantially higher amplitude in NIR region (i.e., for λ > 750 nm), if
compared to its counterpart with an AZO window (Fig. 1a). This results
in the rise of the respective short circuit current density, JSC, by
+3.3 mA cm−2, as depicted in Fig. 1b. It is to be noted that the higher
JSC is also translated into an improved power conversion efficiency, Eff,
from 13.9% to 15.1% (+9%), despite a slightly lowered fill factor, FF
(−1%). The open circuit voltage, VOC, is not significantly affected
( < + 1%).

1.2. Stability issue of ZnO-based layers

An important prerequisite of TCO for its application in thin film
solar cell modules is the inherent damp heat (DH) stability. It is known
that the sputtered AZO used in commercial CIGS thin film modules
protected by encapsulation (with lamination foil, edge sealing and
cover glass) does not limit the DH stability of those modules. It is thus
of crucial importance that the new TCO material does also not
compromise module stability, in order to avoid higher requirements
for the encapsulation.

The commonly observed conductivity drop of the ZnO-based layers
exposed to DH conditions can be explained on one hand by the
inherent instability of ZnO material in the presence of water that is
either the source of the degradation process (e.g., hydrolysis reactions)
or, at least, a catalyst of the physical or chemical processes [8,9]. On the
other hand, the columnar microstructure exhibited by all the poly-
crystalline ZnO films grown from vapor phase [10,11] features
columnar boundaries that represent possible pathways for penetration
of water and other reactive agents deep into the film [9,12,13].

It has been also reported that the water in-diffusion within ZnO
films is specifically pronounced if these layers are less compact, for
instance, as a consequence of their growths at elevated Ar pressures
[12] or atop rough substrates (e.g., CIGS absorbers), in which case the
microstructure exhibits extended grain boundaries [13]. In fact, the
water vapors can get adsorbed at the exposed film surface and then
diffuse within the film through accessible columnar and grain bound-

aries [8,9,13]. The adsorbed water molecules and their products (e.g.,
formed hydroxides) are believed to act as electron traps, resulting in
the accumulation of trapped electrons at the grain boundaries. This
raises the potential barrier that the free electrons have to overcome
[14], and thus increases their cross-boundary scattering.

The studies cited above are with no exception related to the
environmental stability of extrinsically doped ZnO (mostly AZO), while
the stability of the nominally undoped ZnO is rather unexplored; It is
commonly reported that nominally undoped ZnO films are prone to
degrade faster than AZO films even at relatively low (e.g., ambient)
temperatures [2,3,7], specifically if they are prepared by post-deposi-
tion treatment (e.g., by H plasma exposure [2] or UV illumination
[15]).

In contrary to these reports, recent work indicated that the b-ZnO
films made conductive due to RF substrate biasing can possess an
excellent stability in ambient air, and only a slightly lower high
temperature stability than AZO films [6]. However, it is the resistance
of b-ZnO films to harsh conditions (e.g., in damp heat) that can be
decisive for their application as the n-type windows in photovoltaic
industry.

1.3. Scope of this work

The motivation of the current work is to seek the answers for the
following three questions;

1. How the stability of b-ZnO compares to that of AZO?
2. Is the degradation mechanism of b-ZnO films in harsh environments

comparable to that of doped ZnO films?
3. What are the means of improving b-ZnO films' stability?

In particular, we investigate the stability of the b-ZnO films tested
in various environments. These include ambient air, heated air at
105 °C, as well as the accelerated ageing in DH conditions using 95 °C
and 85% humidity. For rigorous assessment of the damp heat stability,
both films and completed solar cell stacks are tested in DH with no
encapsulation (open DH). Afterwards, we attempt to relate the
obtained findings to the crystallographic characteristics of the films
under investigation, and suggest pathways for improvements. Finally,
we demonstrate a multilayered b-ZnO coating with enhanced DH
resistance.

2. Experimental details

The TCO depositions were performed in a commercial semi-

Fig. 1. External quantum efficiency spectra (a) and IV characteristics under irradiation (b) of the two solar cells with the TCO window formed by either an AZO layer (full line), or a b-
ZnO layer (dashed line). These cells are prepared atop an identical Cu(In,Ga)(SSe2) absorber. The enumerated increase or decrease of the principal solar cell characteristics due to the
replacement of the AZO window for the b-ZnO window is summarized in the inset of (b).
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automated sputtering deposition system equipped with 7.5 cm dia-
meter ceramic ZnO and AZO (2 wt% of Al2O3) targets powered by an
RF generator in non-reactive Ar atmosphere using a pressure of
0.13 Pa (1 mTorr). In the deposition of ZnO and b-ZnO films the
power load at the target was fixed to 125 W, and in the deposition of
AZO films to 140 W. The substrates, soda lime glass or partial solar cell
stacks (prepared by AVANCIS), were positioned at a distance of 13 cm
on an unheated substrate holder that was optionally biased by an
additional RF generator. In b-ZnO film depositions, the self-induced
negative DC voltage on the RF-powered substrate holder, referred to as
RF bias voltageUb, was assured by the application of an RF signal to the
substrate holder, employing low power densities (i.e., below
0.01 W cm−2). Ub was fixed to 25 V during growth of all single layer
b-ZnO films, but it was varied in the range from 25 V to 100 V in the
preparation of multilayered b-ZnO films.

The film thickness of each TCO sample was measured with a
profilometer, and the corresponding resistivity ρ was determined using
a homebuilt four point probe setup in Van-der-Pauw configuration
[16]. Hall mobility μHall and free carrier density ne were evaluated using
Hall measurements performed also in Van-der-Pauw configuration, at
a magnetic field of 0.57 T (AVANCIS), and in a wide range of magnetic
fields up to 7 T (University of Luxembourg).

The optical properties were analyzed with a spectrophotometer;
Transmittance (T λ( )) and reflectance (R λ( )) were measured and fitted
with the formulae in Reference [17] in order to retrieve the complex
refractive index spectra. The corresponding near infrared dielectric
constant spectra were subsequently fitted using the Drude model
[18,19] in order to enumerate the plasma wavelength, and to derive
the optical mobility, μopt, using ne previously estimated by Hall analysis.

The crystallinity of the TCO films was investigated by X-Ray
diffractometry (XRD) in θ θ− 2 and θ-rocking curve (RC) geometries
using the Cu Kα radiation. The X-ray coherence length, dXRD, was
enumerated from the broadening of the θ θ− 2 ZnO 002 diffraction
peak using Scherrer formula [20], and the c lattice parameter size, cXRD,
was evaluated from the position of the θ θ− 2 ZnO 002 diffraction peak.
The crystallite alignment was estimated using the broadening full width
at half maximum (FWHM) of the ZnO 002 diffraction peak obtained in
the RC geometry. The morphology of the selected coatings was
analyzed by cross-sectional scanning electron microscopy (SEM) using
Hitatchi SU-70.

Cu(In,Ga)(SSe2) (CIGS) absorbers were fabricated by AVANCIS R
&D baseline, using the stacked elemental layer rapid thermal (SEL-
RTP) process [21].

The current-voltage (IV) behaviour of the completed solar cell
devices was then evaluated in a commercial 1-sun simulator in order to
extract JSC, VOC, FF and Eff characteristics. Their external quantum
efficiency (EQE) was also evaluated in the wavelength range of 300–
1300 nm.

The accelerated ageing in open damp heat (DH) was executed in a
dedicated environmental chamber using 95 °C (10 °C more than
prescribed by the standard environmental test IEC 61646) and 85%
relative humidity.

3. Results and discussion

3.1. Ambient air ageing

The ambient stability of b-ZnO films deposited on flat soda lime
glass (SLG) substrates was investigated by monitoring their resistivity,
ρ, during a long period of ambient air exposure (i.e., room conditions),
and compared to that of a reference AZO film.

Fig. 2a depicts that the resistivity of the AZO films does not change
significantly (increases by less then 2% during 24 months of air
exposure). Instead, the resistivity of the b-ZnO films of various
thickness (280–520 nm) analyzed during the same period of time
slightly increases, by 4% (b-ZnO 420 nm) to 16%. Even thinner b-ZnO

films (than the ones presented here) that were exposed to ambient air
during 32 months exhibited a resistivity rise ρΔ ≤ + 3·10 Ω cm−4 (not
shown). The above observations reveal good ambient air stability of all
the (unencapsulated) b-ZnO layers under investigation; it is to be
stressed that such a small increase in film resistivity would not affect
thin film solar cell performance.

In Fig. 2a it can be seen that an occasional drop in b-ZnO film
resistivity that further lowers the corresponding Δρ is observed. The
reason for this unexpected behaviour is not yet understood, as the
previously assumed correlation with the season of the year [6] was not
confirmed. However, one can speculate that the actual air humidity
during the resistivity analyses may be of importance since the drop in
Δρ is higher for thinner or more degraded samples that can exhibit a
rougher surface; this effect is also witnessed by the pronounced drop in
ρ of the ZnO 520 nm film after 22 months of anneling, as visible in
Fig. 2b.

3.2. Dry heat ageing

In the second set of experiments the resistivity of b-ZnO and
reference AZO films on the SLG substrates was monitored during their
annealing in an oven filled with air at 105 °C. The humidity within the
oven was not controlled, but it is reasonable to assume that it can reach
a few %. Humidity-induced degradation thus can't be excluded, even
though it has to be significantly less pronounced than in the DH
conditions. It is to be stressed that the resistivity was always analyzed
at the ambient temperature.

The resistivity of thin b-ZnO films (thickness below 400 nm) was
found to rise exponentially as suggested by the respective marks in
Fig. 2b. A steeper resistivity rise indicates an increasing rate of heat-
induced degradation with decreasing film thickness. In order to
understand the reason for this relation, XRD analyses have been
performed on the b-ZnO layers under investigation, using the samples
that were aged in the ambient air.

An example of a diffractogram obtained using θ θ− 2 geometry from
a b-ZnO film which depicts the ZnO 002 diffraction peak employed in
all the XRD analyses is illustrated in Fig. 2 in Ref. [22]. The broadening
of the θ θ− 2 ZnO 002 diffraction peaks suggested that the thinner b-
ZnO films possess a lower X-Ray coherence length, dXRD, as also
depicted here in the legend of Fig. 2a.

Similar observations of smaller dXRD (and a higher in-plane
mechanical stress) with decreasing layer thickness were previously
reported also for both ZnO and AZO [23]. A lower dXRD indicates a
smaller average distance between structural defects in the perpendi-
cular direction to the substrate surface. In addition, it was found that
the thinner b-ZnO films exhibit a larger FWHM of the θ-rocking curve
(RC) ZnO 002 diffraction peak, suggesting a lower order of grain
alignment (results not shown).

The above findings are of no surprise since the columnar structure
of ZnO exhibited by all AZO and b-ZnO films (as verified by cross-
sectional SEM) possess significantly smaller cystallographic features
(e.g., smaller grain size and columnar width) and a lower texture
degree closer to the underlying substrate as a consequence of limited
growth dynamics at temperatures far from thermal equilibrium
[11,24]. In consequence, thinner films are expected to feature a higher
amount of lattice defects such as open columnar boundaries also at the
layer's surface. These crystalline imperfections represent possible
pathways to any air-carried reactive agents (e.g., H2O and CO2) that
may diffuse into the film, facilitated by the elevated temperature, get
adsorbed at the grain boundaries (e.g., in a form of hydroxides and
carbonates), and negatively affect charge carrier transport as discussed
in the introduction. Similar observations of compromised DH stability
was previously reported for thinner AZO films [12,13].

The relation of the film crystallinity and the dry heat ageing stability
is also supported by the characteristics of the 420 nm thick b-ZnO film
highlighted by empty circles in Fig. 2. It is to be stressed that the
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resistance of this b-ZnO film was found to rise slower during 24 months
of annealing ( ρΔ ≈ + 9·10 Ω cm−4 , Fig. 2b) than that of the 100 nm
thicker b-ZnO film, and even slower than that of the reference AZO
layer of similar thickness (AZO 360 nm). The same b-ZnO 420 nm film
also exhibits the best ambient air stability from all the b-ZnO films, as
witnessed by the lowest resistivity rise during 24 month-long ambient
air ageing ( ρΔ ≈ + 0.6·10 Ωcm−4 , Fig. 2a).

The θ θ− 2 XRD analyses performed on this b-ZnO 420 nm film
revealed that the ZnO 002 diffraction peak possesses a significantly
higher intensity than observed from any other b-ZnO film prepared in
our laboratory (not shown), suggesting an enhanced crystallinity. The
other examined XRD characteristics do also indicate such conclusion;
dXRD is substantially larger (52 nm), and the FWHM of the ZnO 002
diffraction peak from the XRD θ-rocking curve analyses is significantly
smaller (4.1°), than are the corresponding dXRD and FWHM values
obtained from all the reference samples of 370–390 nm thickness, as
summarized in Fig. 3.

Moreover, in Fig. 3 it can be seen that the cXRD lattice parameter of
the b-ZnO 420 nm film is lower than cXRD of the other b-ZnO films.
Since the cXRD closer to the value expected for the unconstrained ZnO
crystals (c = 5.207 Åbulk [25])) indicates a lower in-plane lattice strain,
the latter observation suggests a lower level of residual compressive
stress within the b-ZnO 420 nm film.

It can thus be concluded that this particular b-ZnO 420 nm film has
a substantially improved crystallinity compared to the other b-ZnO
films under investigation and also to the AZO films of comparable
thickness. A lower amount of structural imperfections may then hinder
the penetration of air-carried reactive substances into the film, and
thus improve its stability.

Based on the findings of the environmental tests depicted in Fig. 2
and on the results of the crystallographic analyses presented in Fig. 3, it
can be stated that the b-ZnO films prepared under the optimized
deposition conditions can exhibit comparable ambient and heat
stability as the standard AZO films. However, these conditions are
yet to be defined, as the outstanding environmental resistance of the b-
ZnO 420 nm film could not be reproduced in the successive deposition
experiments.

Finally, it is to be noted that we did not observe any effect of
substrate composition on the dry heat stability of b-ZnO and AZO
layers, as tested in dry heat experiments employing films prepared onto
both SLG (containing Na and other chemical elements) and quartz (no
additives) substrates using identical deposition conditions; The respec-
tive resistivity rise during 20 months of dry heat ageing was not
affected by the substrate type (results not shown).

3.3. Open damp heat ageing

Accelerated ageing in open DH conditions during a week period was
performed on the two pairs of b-ZnO and AZO layers of different
thickness range (360 and 370 nm, and 850 and 830 nm, respectively).
These four n-type window representatives were prepared onto bare
SLG substrates, and characterized prior open DH exposure.

Afterwards, they were regularly removed from the DH chamber for
film resistivity and Hall analyses (for ρ, μHall and ne determination), of
which results are shown in Fig. 4a–c. In addition, the transmittance
and reflectance spectra (T λ( ) and R λ( )) of both bilayers were acquired
prior and after the accelerated ageing experiments for the purpose of
optical mobility evaluation from the plasma wavelength (the μopt values
corresponding to the thicker pair of b-ZnO and AZO layers are noted in
the inset of Fig. 4b).

Fig. 2. Film resistivity as a function of time during 24 months of exposure to either the ambient air (a), or to the air kept at 105 °C (b) for b-ZnO layers of various thickness (diamond,
circle and triangle marks) and for a reference AZO layer (square marks). Film's thicknesses and X-ray coherence lengths, dXRD, are identified in (a).

Fig. 3. XRD θ θ− 2 coherence length (a) and XRD θ-rocking curve (RC) FWHM (b) of
the ZnO 002 diffraction peak as a function of cXRD lattice parameter of several ZnO-based

films of comparable thickness (370–400 nm), namely AZO films (square marks), b-ZnO
films (filled circle marks) and ZnO films (diamond marks), and of the b-ZnO 420 nm film
(empty circle mark). cbulk value for an unconstrained ZnO crystal [25] is also depicted. It

is to be noted that all the films were prepared using comparable deposition conditions,
but over the period spanning up to 24 months.
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One should note that the as-deposited b-ZnO films of 360 nm and
850 nm thickness exhibit approximately 2.2 times higher electron
mobility μe (at 0 h in Fig. 4b) and about 2.4 times lower electron
density ne (Fig. 4c), in comparison to their AZO counterparts of the
same thickness. It is due to the lower ne that the 850 nm thick b-ZnO
film depicted in Fig. 4d has also a significantly higher transmittance
and a lower reflectance in the NIR spectral region.

Fig. 4a illustrates that a week-long accelerated DH ageing causes an
increase in ρ by approximately 300% and 50% for b-ZnO 360 nm and
b-ZnO 850 nm films, respectively, in contrast to the comparably thick
AZO films for which much lower rise in ρ is observed (by +63% for AZO
370 nm and by +5% for AZO 820 nm). The increase in ρ in all four
cases can be related mostly to the decrease in Hall mobility; The values
of μHall drop by about −70% and −12% for the b-ZnO films, and by
−30% and −7%, for the AZO films (Fig. 4b). The electron density
decreases as well, by −30% and −17% for b-ZnO films, and by −12% for
the AZO 370 nm film (Fig. 4c). (Instead, ne for AZO 850 nm increases
by up to +4% after several hours of DH ageing, and then starts
dropping. The reason for this phenomenon is not understood). Fig. 4d
also shows that there are no changes in the VIS transparency for both
of the films, while a significant rise in the NIR transmittance of the b-
ZnO layer reflects the reduced carrier density within DH-treated b-ZnO
850 nm film.

If compared to μHall values, the optical mobility obtained from the
Drude model using T λ( ) and R λ( ) analyses of the two thicker layers
(summarized in Fig. 4b) follow distinctively different trends; μopt of b-

ZnO 850 nm film increased from 98 to 120 cm2 V−1 s−1 (in conse-
quence of the increased average time between two successive scattering
events of free electrons), while μopt of the AZO 820 nm film does not
change.
μHall that decreases at a higher rate than μopt suggests a deterioration of
free electron transport across grain boundaries, as demonstrated on the
example of comparably thick AZO films grown on both smooths and
rough substrates [13]. However, in the case of b-ZnO 850 nm film the
trends in μHall (decreasing) and μopt (rising) are even opposite. This
indicates that the respective electron transport driven by an electric
field is hampered by a rising grain boundary scattering, the same way
as in DH-treated AZO films. This suggests that the mechanism of b-
ZnO films' degradation can mostly be related to the density of the
crystallographic imperfections (such as an average grain size and
columnar width) that are inherent to the columnar microstructure,
rather than to (in)stability of b-ZnO doping.

It is to be stressed that the density of grain boundaries and other
lattice imperfections is supposed to be substantially higher in both of
the investigated b-ZnO films in comparison to the AZO films. This is
suggested by the dXRD data plotted in Fig. 3a, indicating that all the
studied 370–400 nm thick b-ZnO layers possess a substantially smaller
average distance between structural defects than comparably thick AZO
layers (d ≈ 29 nmXRD for b-ZnO in comparison to d ≈ 41 nmXRD for
AZO). A significant difference in dXRD was also observed in the case of
the two thicker layers tested by DH ageing (d = 42 nmXRD for b-ZnO
850 nm film and d = 52 nmXRD for AZO 820 nm film, not shown).

Fig. 4. The evolution of film resistivity (a), electron Hall mobility (b), and electron density (c) of b-ZnO (circle marks) and AZO (square marks) films of two different thickness ranges
(specified in the inset of (a)), as a function of accelerated open DH exposure (in log scale). The empty symbols stand for the Hall analyses performed at the University of Luxembourg and
the filled symbols for those performed at AVANCIS. Optical mobility μopt evaluated for the thicker pair of TCO layers is in the inset of (b). (d) Optical transmittance (higher curves) and

reflectance (lower curves) spectra of the b-ZnO 850 nm and AZO 820 nm layers deposited on the SLG substrates evaluated before (in solid lines) and after (in dashed lines) a week of
accelerated ageing in open DH conditions.
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Taking the assumption that the dXRD values are at least rough
indicatives of the volume density of grain boundaries and other lattice
faults, it is rather expectable that the environmental stability of the
investigated b-ZnO films is lower than that of the reference AZO films.

3.4. Pathways towards stable b-ZnO films: multilayered b-ZnO

Following the same logic as above, it can be stated that the b-ZnO
films can be made more stable in harsh environments if the density of
lattice imperfections that allow in-diffusion of detrimental species is
lowered. In other words, if their microstructure would be more
compact. An example of such a film is the highy stable ZnO 420 nm
(d = 52 nmXRD ) discussed in Section 3.2. It is not unreasonable to
assume that its open DH stability would outperform the b-ZnO 360 nm
film and that it could even compete with the AZO 370 nm film (dashed
lines in Fig. 4).

It is hard to trace what the origin for the improved crystallinity of
the b-ZnO 420 nm film was. However, one may speculate that it may be
related to the higher plasma density during that particular deposition
process (for a reason that is not known). A higher plasma density above
the growing film kept at a low-voltage bias (e.g., U = 25 Vb used in the
current study) would cause a higher influx of plasma-generated
charged species (e.g., Ar ions). Such low-energy ion bombardment
delivers an additional energy to the condensing adatoms that can be
used for their enhanced surface diffusion allowing to reach the most
convenient binding position atop the under-lying surface. This is
known to be highly beneficial for densification of the microstructure
of both polycrystalline [26] and amorphous [27] films grown from a
vapor phase at low deposition temperatures. It is thus suggested that
the exposure of growing films to denser plasma densities in combina-
tion of low-voltage biasing might be one of the pathways towards more
compact b-ZnO films of enhanced environmental stability.

Another approach how to increase the resistance of the b-ZnO films
against harsh environments is to make the open columnar boundaries
and other crystallographic imperfections less accessible to aggresive
substances. It has been proposed [28], that this can be assured by a
multilayered coating featuring a thicker b-ZnO film covered by a
(thinner) overlayer comprising at least one b-ZnO film of different
crystallographic texture. As the upper film is forced to re-nucleate and
to develop its own textured columns atop the underlying layer, it will
cover the columnar boundaries of the latter. It can thus be expected
that such “cover” will act as a less permeable barrier that imposes a
more complex path (in terms of in-diffusion) for water or any other
reactive agents discussed previously. The film texture can also be
altered, in order to obtain multiple interfaces that would reinforce the
barrier effect.

It is to be stressed that a strong polar 〈001〉 texture is commonly

observed for the ZnO and AZO films reported in literature, and also for
all the films reported in this study so far, including the b-ZnO films.
The modification of the prevalent 〈001〉 texture can be achieved during
a unique deposition process by changing the RF bias amplitude; Both
non-polar 〈110〉 and 〈101〉 textures can be reached if a certain RF bias
threshold is reached [29], or if the RF bias amplitude is not kept steady
but varied in a continous matter [28].

The latter approach was applied in preparation of two prototypes of
multilayered films that comprised a 770 nm thick b-ZnO layer (with
〈001〉 texture) covered by a 70 nm thick b-ZnO overlayer (with 〈110〉
texture). More specifically, the driving RF power (and thus the Ub
value) was cycled fromU = 25 Vb toU = 100 Vb and back in a repetitive
manner (with 60 s ramping time). One of the overlayers was made
using 14 ramping cycles with no pauses in between, while the other one
employed only 5 ramping cycles and 120 s pauses at each of the twoUb
extremities.

The reason for this biasing pattern is to induce a stronger 〈110〉
texture within the overlayer. The presence of the < 110 > texture was
verified in a separate experiment in which another 380 nm thick b-ZnO
film, prepared at the identical deposition conditions as the 70 nm
overlayer, exhibited a more pronounced 110 reflection peak than b-
ZnO films prepared using a steady RF bias amplitude (e.g.,U = 100 Vb ).
Here, it should be stressed that the b-ZnO 〈110〉 coating deposited atop
an SLG substrate does not exhibit a better environmental resistance
than b-ZnO 〈001〉 films of comparable thickness, as also tested by dry
heat ageing (results not shown).

Fig. 5 shows the morphology of the first of the two b-ZnO multilayer
prototypes in which both the b-ZnO 〈001〉 base layer and the b-ZnO
〈110〉 overlayer (prepared using 14 cycles of RF bias variation) are
identified. It can be seen that the columnar width in the base layer
visibly enlarges with a rising distance from the SLG substrate, while the
columns within the overlayer are much thinner and hardly discernable
(also for the poor quality of the SEM image). This is a clear sign that
this latter layer grew from new nucleation centers atop the underlying
thicker one. It is to be underlined, that the optoelectrical properties of
this b-ZnO stack are not significantly compromised by the overlayer
presence [28], while its environmental stability is substantially im-
proved. This is witnessed by the dry heat ageing experiments [22], and
by the open DH analyses of unencapsulated solar cells equipped with
the b-ZnO multilayers that are discussed in the next section.

3.5. Open damp heat ageing of CIGS solar cells

In order to rigorously assess the environmental stability of the b-
ZnO films applicable as transparent conductive window contacts atop
functional solar cell devices, it is crucial to investigate their optoelec-
trical performance in open DH conditions if covering rough substrates
(such as are the large-grain CIGS absorbers) [13]. For this reason,
partial CIGS solar cell stack (AVANCIS) processed up to the i-ZnO layer
in the AVANCIS R&D baseline in Munich have been transferred to the
University of Luxembourg and equipped with either an AZO layer, a b-
ZnO layer, or with one of the two b-ZnO multilayer prototypes
discussed in the last section. The total thickness of these n-type
windows was approximately 850 nm.

The four types of layered stacks were finished into functioning solar
cell devices by mechanical scribing into numerous solar cells (16 cells
for each sample), and by contacting the front of the solar cells with e-
beam evaporated metals. All the solar cells were then analyzed by
current-voltage (IV) characterization in order to test their performance.

The average values of the power conversion efficiency, fill factor, JSC
and VOC, evaluated from the IV curves of the 8 centrally-positioned
solar cells during the incremental amount of hours of open DH
exposure, are depicted in Fig. 6, accompanied by the enumerated drop
of the averaged values due to the 57 h of open DH treatment (within
the inset of each graph). For clarity reasons, only the results related to
the b-ZnO multilayer prototype depicted in Fig. 5 (labelled as b-ZnO

Fig. 5. The cross-sectional SEM image of the 770 nm thick b-ZnO multilayer coating
consisting of a b-ZnO 〈001〉 base layer covered by a thin b-ZnO 〈110〉 overlayer.
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ML) are displayed in Fig. 6, since the second prototype exhibited
similar trends in all characteristics.

The accelerated ageing in open DH creates significantly harsher test
conditions than are those commonly employed in the photovoltaic
industry. In consequence, the average optoelectrical characteristics of
even the most resistant solar cells in this investigation, the cells
featuring the reference AZO film, exhibit a significant deterioration;
After the 57 h of open DH exposure the conversion efficiency decreases
by −51%, the FF value by ΔFF = −35%, JSC by JΔ = − 7%SC , and VOC by

VΔ = − 19%OC .
The solar cells equipped with a single layer b-ZnO film exhibit even

substantially larger decrease in all the monitored characteristics. This
may be related to the largest drop in FF (ΔFF = −59%); The final value
of FF = 27% indicates that the devices do not show diode IV
characteristics anymore. The origin for the diode quality deterioration
might be the modified recombination paths of charge carriers within
the space charge region, and/or the increasing influence of parasitic
resistances. Both of these effects that are difficult to be disentangled
may be fingerprints of the deteriorating b-ZnO films' microstructure
due to penetrating water vapors, as discussed in Section 3.3.

Fig. 6 also shows that the optoelectrical characteristics of the solar
cells equipped with the b-ZnO ML prototype decrease in their
amplitude at much lower rate than those of the cells coated with the
single layer b-ZnO. In particular, the solar cells coated with b-ZnO ML
exhibit ΔFF = −50% and JΔ = − 26%SC . In consequence, the respective
conversion efficiency after the 57 h of ageing in the open DH is in
average 3 times higher (with a drop of −75%) than that of the solar cells

equipped with the standard b-ZnO film. This observation confirms the
enhanced DH stability of the b-ZnO ML prototype, which thus serves as
a proof of concept that the multilayered b-ZnO coatings offer an
enhanced environmental stability. Further improvements are expected
if a proper optimization of the deposition procedure is undertaken.

4. Conclusions

This work demonstrates that the highly conductive and transparent
b-ZnO films with an improved NIR transparency can compete with the
standard AZO films in terms of their stability in the ambient as well as
in the heated air. Their ambient air stability tested over the period of 24
months is comparable to that of the reference AZO film, and a b-ZnO
film with an improved crystallinity showed even better stability in dry
heat ageing. However, the specimen of the b-ZnO films aged in open
DH conditions exhibited faster degradation than the AZO films, as
indicated by a more pronounced drop in both charge carrier density
and Hall mobility, and by the compromised optoelectrical character-
istics of the CIGS solar cells coated with the corresponding n-type
windows.

Furthermore, it was found that b-ZnO films prepared under the
non-optimized deposition conditions (with respect to the exceptionally
resistant b-ZnO layer with significantly improved crystallinity) exhibit
smaller X-ray coherence length than AZO films, suggesting a lower
compactness of the columnar microstructure. This permits an easier in-
diffusion of water and/or other reactive substances, which in turn
raises grain boundary scattering of free electrons, as also suggested by

Fig. 6. The power conversion efficiency (a), fill factor (b), shortcircuit current density (c) and open circuit voltage (d) analyzed from the set of 8 model solar cells as a function of
accelerated open DH exposure (in log scale). The solar cells were coated by transparent contact film comprising either a standard AZO layer, a single layer of b-ZnO, or a multilayer b-
ZnO coating (b-ZnO ML, depicted in Fig. 5) featuring a 70 nm thick b-ZnO of different texture. The relative average drop in the examined solar cell characteristics due to the 57 h of
exposure to the open DH conditions is also summarized in the inset of each figure.
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decreasing Hall mobility but not-decreasing optical mobility.
Degradation of b-ZnO films can thus be more related to their
compactness, rather than to the stability of doping.

In order to overcome the compromised stability of the examined b-
ZnO films due to the limitations imposed by the lower crystalline
compactness of the columnar microstructure, prototype multilayered
b-ZnO windows featuring a 70 nm b-ZnO overlayer of different texture
were tested atop unencapsulated CIGS-based solar cells. The respective
solar cells exhibited substantially lower deterioration of all the mon-
itored optoelectrical characteristics if compared to those solar cells
equipped with a single layer b-ZnO film, suggesting thus the reduced
in-diffusion of detrimental agents.
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