
Exponential S-Boxes: a Link Between the
S-Boxes of BelT and Kuznyechik/Streebog

Léo Perrin and Aleksei Udovenko

SnT, University of Luxembourg
{leo.perrin,aleksei.udovenko}@uni.lu

Abstract. The block cipher Kuznyechik and the hash function Streebog were recently
standardized by the Russian Federation. These primitives use a common 8-bit S-Box,
denoted 𝜋, which is given only as a look-up table. The rationale behind its design
is, for all practical purposes, kept secret by its authors. In a paper presented at
Eurocrypt 2016, Biryukov et al. reverse-engineered this S-Box and recovered an
unusual Feistel-like structure relying on finite field multiplications.
In this paper, we provide a new decomposition of this S-Box and describe how we
obtained it. The first step was the analysis of the 8-bit S-Box of the current standard
block cipher of Belarus, BelT. This S-Box is a variant of a so-called exponential
substitution, a concept we generalize into pseudo-exponential substitution. We derive
distinguishers for such permutations based on properties of their linear approximation
tables and notice that 𝜋 shares some of them. We then show that 𝜋 indeed has a
decomposition based on a pseudo-exponential substitution. More precisely, we obtain
a simpler structure based on an 8-bit finite field exponentiation, one 4-bit S-Box, a
linear layer and a few modular arithmetic operations.
We also make several observations which may help cryptanalysts attempting to
reverse-engineer other S-Boxes. For example, the visual pattern used in the previous
work as a starting point to decompose 𝜋 is mathematically formalized and the use of
differential patterns involving operations other than exclusive-or is explored.
Keywords: Reverse-Engineering · S-Box · Streebog · Kuznyechik · STRIBOBr1 ·
White-Box · Linear Approximation Table · Exponentiation · BelT

1 Introduction
Symmetric cryptographic primitives such as block ciphers and hash functions cannot
be linear. Therefore, their design often relies on so-called S-Boxes, non-linear functions
operating on a small enough space that they can be specified through their look-up table.

The choice of an S-Box is a crucial step of the design process of a primitive as the
resilience against linear [TCG92, Mat94] and differential [BS91] cryptanalysis usually hinges
on the mathematical properties of this function. For example, the excellent properties
of the S-Box of the AES [DR02] allow the designers of this block cipher to show that 4
rounds of the block cipher are sufficient to prevent single-trail differential distinguishers.

Three broad categories can be identified when it comes to S-Box design strategies. The
first is the use of mathematical objects, most prominently the finite field multiplicative
inversion first presented in [Nyb94]. The second approach is to pick many S-Boxes uniformly
at random and select the one with the best properties or, alternatively, to use a hill climbing
algorithm to optimize these properties. This is for instance the method used to design the
S-Boxes of the last Ukrainian standard, Kalyna [OGK+15]. The last approach relies on
using strategies from the design of block ciphers by building S-Boxes using for instance

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Symmetric Cryptology ISSN 2519-173X, Vol. 2016, No. 2, pp. 99–124
DOI:10.13154/tosc.v2016.i2.99-124

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/78371845?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:leo.perrin@uni.lu,aleksei.udovenko@uni.lu
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tosc.v2016.i2.99-124

100Exponential S-Boxes: a Link Between the S-Boxes of BelT and Kuznyechik/Streebog

Feistel structures [CDL15] or small Substitution-Permutation Networks as has been done
e.g. in CLEFIA [SSA+07].

Unfortunately, some institutions do not describe the rationale behind the choice of the
S-Boxes they use and merely give their look-up table. Still, as has been shown by a recent
line of research starting with [BP15], it is sometimes possible to reverse-engineer S-Boxes,
which means to figure out its design criteria or, if there is one, recover the structure used.

A prominent target for this type of analysis is the 8-bit S-Box shared1 by two of the
last standards of the Russian Federation, namely the hash function Streebog [Fed12] which
is also an IETF standard [DD13] and the block cipher Kuznyechik [Fed15]. While the
designers of the algorithm did not disclose the method used to generate this component,
Biryukov et al. recently managed to recover a first decomposition. A high-level view of
this decomposition is provided in Figure 1a. It is based on five 4-bit S-Boxes, a multiplexer
(not shown), two finite field multiplications and two linear layers specified using binary
matrices. These components are assembled in a fashion reminiscent of a Feistel network
where the usual exclusive-OR has been replaced by multiplications. Still, the design process
of this S-Box remains a mystery: for instance, how were the 4-bit components chosen?

Another block cipher has been standardized recently by Belarus, BelT [Bel11]. It also
uses an 8-bit S-Box specified only by its look-up table. Little information is available about
this algorithm in the literature but, as we will see, not only is its S-Box highly structured,
its S-Box is in fact related to that of the Russian algorithms.

ℒ
𝒩

𝒩
𝒩

𝒩

ℒ

(a) Previous decomposition.

log

𝒜

𝒩

ℒ

(b) New decomposition.

Figure 1: A simplied view of previous and our new decompositions of 𝜋. Linear (resp.
nonlinear) functions are denoted ℒ (resp. 𝒩). ⊙ denotes finite field multiplication and
log is a finite field logarithm. 𝒜 denotes a few simple integer arithmetic operations. Linear
functions are represented in grey, finite field operations in red and integer operations in
blue.

Our Contribution Our contribution can be organized along three main axes.

1. We identify some patterns in the linear approximation matrix of the S-Box of BelT
and show how those can be explained by the structure of this component which,
while not well known, is in fact described in a Belarusian paper. We further describe
new distinguishers to identify such permutations.

2. We provide new decompositions of the Russian S-Box relying, like the S-Box of BelT,
on finite field exponentiation. While some components of our decompositions remain
mysterious, our work illustrates that the decomposition of Biryukov et al. is not

1This S-Box is also used by StribobR1, a candidate for the first round of the CAESAR competition
designed by Saarinen [Saa15] who is not related to the designers of the Russian standards. The second
version of this algorithm [SB15] changed some of the components, including the S-Box, in no small part
because of the secrecy surrounding their design.

Léo Perrin and Aleksei Udovenko 101

unique and that the structures used for the Russian and the Belarusian algorithms
are related.

3. Finally, we make several observations which may help cryptanalysts trying to reverse-
engineer an unknown S-Box, be it based on a finite field exponentiation or not.

Outline This paper is organized as follows. First, we recall in Section 2 the notations and
definitions used throughout this work. For the sake of completeness, we provide a brief
description of the ciphers BelT and Kuznyechik in Section 3. We then analyse the S-Box
of BelT in Section 4: first, we show the patterns we identified in its linear approximation
table, then describe the structure its designers used and finally we generalize and provide
distinguishers for such permutations. Finally, Section 5 describes our new decompositions
of the S-Box of Kuznyechik as well as the process we used to derive them.

2 Notations and Definitions
Throughout the paper, we use the following notations and definitions related to Boolean
functions. Let F2 = {0, 1}. The set F𝑛

2 consisting of elements 𝑥 = (𝑥0, ..., 𝑥𝑛−1) can be
given different structure.

∙ It can be interpreted as a finite field of size 2𝑛 defined as F2[𝑥]/𝑝(𝑥) for some
irreducible polynomial 𝑝 of degree 𝑛. In this case, we let 𝑤 be a generator of the
multiplicative subgroup and identify 𝑥 ∈ F𝑛

2 with 𝑥̂ ∈ F2𝑛 where 𝑥̂ =
∑︀𝑛−1

𝑖=0 𝑥𝑖𝑤
𝑖.

We denote 𝑥⊙ 𝑦 the binary representation of the multiplication in the finite field of
𝑥̂ and 𝑦.

∙ Alternatively, F𝑛
2 can be viewed as Z/2𝑛Z, in which case 𝑥 ∈ F𝑛

2 is identified with
𝑥 =

∑︀𝑛−1
𝑖=0 𝑥𝑖2𝑖. We denote 𝑥 � 𝑦 and 𝑥 � 𝑦 the binary representations of 𝑥 + 𝑦

mod 2𝑛 and 𝑥− 𝑦 mod 2𝑛 respectively.

To simplify notations and because there is no ambiguity, if 𝜆 is a finite field element
then we use 𝜆𝑥 to denote 𝜆𝑥.

We also define the scalar product of two elements 𝑥 and 𝑦 of F𝑛
2 as 𝑥 · 𝑦 =

⨁︀𝑛−1
𝑖=0 𝑥𝑖𝑦𝑖.

S-Boxes are intended to provide non-linearity in a primitive. As such, they are the
components preventing, among others, differential and linear attacks. How good an S-Box
is with regards to these attacks can be quantified using the following two tables. We
consider a permutation2 𝑠 of F𝑛

2 .

DDT. The Difference Distribution Table of 𝑠 is the 2𝑛 × 2𝑛 table DDT where the entry
DDT[𝑖, 𝑗] is equal to the number of solutions 𝑥 of 𝑠(𝑥⊕ 𝑖)⊕ 𝑠(𝑥) = 𝑗.

LAT. The Linear Approximation Table of 𝑠 is the 2𝑛 × 2𝑛 table LAT where LAT[𝑎, 𝑏] =
(1/2)𝑊𝑎,𝑏. The coefficients 𝑊𝑎,𝑏 are the Walsh coefficients of the permutation 𝑠 and
are given by

𝑊𝑎,𝑏 =
∑︁

𝑥∈F𝑛
2

(−1)𝑎·𝑥⊕𝑏·𝑠(𝑥).

The maximum value of DDT[𝑖, 𝑗] for 𝑖 ̸= 0 is called differential uniformity of 𝑠 [Nyb94].
The lower it is, the better an S-Box is at preventing differential attacks. The non-linearity
of 𝑠 is equal to 2𝑛−1 −max(|𝑊𝑎,𝑏|)/2 = 2𝑛−1 −max(|LAT[𝑎, 𝑏]|), where the maximum is
taken over all non-zero 𝑎 and 𝑏. The higher it is, the better the resilience of the S-Box
against linear attacks.

2These notions are not tied to 𝑠 being a permutation but we restrict ourselves to such functions in this
paper.

102Exponential S-Boxes: a Link Between the S-Boxes of BelT and Kuznyechik/Streebog

We also recall the following well-known result which relates the LAT of two linear-
equivalent permutations.

Theorem 1 (Theorem 1 of [BPU16]). Let 𝑓 be a permutation of F𝑛
2 and let ℒ be its LAT.

Let ℒ′ be a table defined by ℒ′[𝑢, 𝑣] = ℒ[𝜇(𝑢), 𝜂(𝑣)] for some linear permutations 𝜇 and 𝜂.
Then the function 𝑓 ′ has LAT ℒ′, where

𝑓 ′ = 𝜂𝑡 ∘ 𝑓 ∘ (𝜇−1)𝑡.

Finally, we denote 𝜌𝑑 the rotation left by 𝑑 steps, that is the permutation of F𝑛
2 mapping

(𝑥0, ..., 𝑥𝑛−1) to (𝑥𝑑, 𝑥𝑑+1, ..., 𝑥𝑑−1).

3 Ciphers Description

3.1 Description of Kuznyechik

Kuznyechik, which means “grasshopper” in Russian, is a 128-bit block cipher developed
by the Russian Technical Committee for standardization of “Cryptography and security
mechanisms” (TC 26) which is supervised by the Russian Federal Security Service (FSB),
i.e. the Russian counterpart of the American National Security Agency (NSA). This block
cipher is also known as GOST 34.12-2015 as it is an official Russian standard [Fed15]. It
has also been proposed for standardization by the IETF [Dol10b].

This cipher is a Substitution-Permutation Network which uses 9 rounds to encrypt a
128-bit block using a 256-bit key. The linear layer consists in multiplying the internal state
by a 16× 16 MDS matrix with elements in a finite field of size 28. The non-linear layer is
an S-Box layer using an 8-bit S-Box 𝜋, whose look-up table is given in Table 1. This S-Box
is applied in parallel on the full state. There has been few third-party attacks of this cipher.
The only one published to the best of our knowledge is a 5-round meet-in-the-middle
attack [AY15].

Table 1: The look-up table of 𝜋. For example 𝜋(0x7A) = 0xC6.
.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F

0. FC EE DD 11 CF 6E 31 16 FB C4 FA DA 23 C5 04 4D
1. E9 77 F0 DB 93 2E 99 BA 17 36 F1 BB 14 CD 5F C1
2. F9 18 65 5A E2 5C EF 21 81 1C 3C 42 8B 01 8E 4F
3. 05 84 02 AE E3 6A 8F A0 06 0B ED 98 7F D4 D3 1F
4. EB 34 2C 51 EA C8 48 AB F2 2A 68 A2 FD 3A CE CC
5. B5 70 0E 56 08 0C 76 12 BF 72 13 47 9C B7 5D 87
6. 15 A1 96 29 10 7B 9A C7 F3 91 78 6F 9D 9E B2 B1
7. 32 75 19 3D FF 35 8A 7E 6D 54 C6 80 C3 BD 0D 57
8. DF F5 24 A9 3E A8 43 C9 D7 79 D6 F6 7C 22 B9 03
9. E0 0F EC DE 7A 94 B0 BC DC E8 28 50 4E 33 0A 4A
A. A7 97 60 73 1E 00 62 44 1A B8 38 82 64 9F 26 41
B. AD 45 46 92 27 5E 55 2F 8C A3 A5 7D 69 D5 95 3B
C. 07 58 B3 40 86 AC 1D F7 30 37 6B E4 88 D9 E7 89
D. E1 1B 83 49 4C 3F F8 FE 8D 53 AA 90 CA D8 85 61
E. 20 71 67 A4 2D 2B 09 5B CB 9B 25 D0 BE E5 6C 52
F. 59 A6 74 D2 E6 F4 B4 C0 D1 66 AF C2 39 4B 63 B6

This S-Box is also used by Streebog which is both the standard hash function for Rus-
sia [Fed12] and an IETF standard [Dol10a]. It has been designed by the same institution.

Léo Perrin and Aleksei Udovenko 103

3.2 Description of BelT
In 2011, a new block cipher has been standardized by Belarus, called BelT [Bel11]. It
encrypts a 128-bit block using a 128-,192- or 256-bit key. The internal state is divided into
four 32-bit branches and the round function consists in a mix of Feistel-like operations
along with a Lai-Massey-like one. Exclusive-or, addition and subtraction modulo 232

are used to combine the output of the Feistel functions with the different branches. A
high-level view of the round function is provided in Figure 2.

⊕ ⊕

�

� �
�

⊕ ⊕

𝑎 𝑏 𝑐 𝑑

𝐺5 𝐺21

𝐺13

𝐺21

𝐺21 𝐺5

𝐺13

�
𝐾7𝑖−6

�
𝐾7𝑖−5

�
𝐾7𝑖−4

�
𝐾7𝑖−3

⊕

𝑖
�

𝐾7𝑖−2

�
𝐾7𝑖−1

�
𝐾7𝑖

(a) The round function of BelT.

𝐻

𝐻

𝐻

𝐻

≪ 𝑟

(b) The 32-bit function 𝐺𝑟.

Figure 2: A high level view of BelT.

The 𝐺𝑟 function is a 32-bit permutation. It has a structure very similar to that of the
Feistel function of the Magma (previously called GOST) block cipher which is still part of
the standard block cipher suite of the Russian Federation [Fed15], except that the layer of
8 parallel 4-bit S-Boxes is replaced by 4 parallel 8-bit ones. Unlike in Magma/GOST, the
S-Boxes used in 𝐺𝑟 are all identical. This S-Box is denoted 𝐻 and is specified in Table 2.
Our purpose in this paper is not to attack this block cipher but merely to study its S-Box.
A complete specification of the block cipher is given in [Bel11].

The S-Box 𝐻 is differentially 8-uniform and the maximum coefficient of its LAT
is 26. Using the approach originally applied to the “F-Table” of Skipjack [BP15],
we can show that the probability that a random S-Box has a similar or better pair
(max(LAT), #{(𝑖, 𝑗), LAT[𝑖, 𝑗] = max(LAT)}) is upper bounded by 2−122.9. Obviously, this
S-Box has not been picked uniformly at random and has not been picked as the best
element from a feasibly large set of random permutations.

The specification of the algorithm does not explain how this S-Box has been obtained.
We therefore set out to reverse-engineer it.

4 Studying the S-Box of BelT
The specification of [Bel11] does not contain any information about the actual design
of its S-Box. Indeed, much like in the specification of Kuznyechik [Fed15] or that of
the NSA cipher Skipjack [NSA98], it is simply given as a look-up table. We naturally
tried to reverse-engineer this S-Box or, in other words, we attempted to recover as much
information as possible from its look-up table. However, it later turned out that the

104Exponential S-Boxes: a Link Between the S-Boxes of BelT and Kuznyechik/Streebog

Table 2: The look-up table of 𝐻. For example 𝐻(0x7A) = 0x18.
.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F

0. B1 94 BA C8 0A 08 F5 3B 36 6D 00 8E 58 4A 5D E4
1. 85 04 FA 9D 1B B6 C7 AC 25 2E 72 C2 02 FD CE 0D
2. 5B E3 D6 12 17 B9 61 81 FE 67 86 AD 71 6B 89 0B
3. 5C B0 C0 FF 33 C3 56 B8 35 C4 05 AE D8 E0 7F 99
4. E1 2B DC 1A E2 82 57 EC 70 3F CC F0 95 EE 8D F1
5. C1 AB 76 38 9F E6 78 CA F7 C6 F8 60 D5 BB 9C 4F
6. F3 3C 65 7B 63 7C 30 6A DD 4E A7 79 9E B2 3D 31
7. 3E 98 B5 6E 27 D3 BC CF 59 1E 18 1F 4C 5A B7 93
8. E9 DE E7 2C 8F 0C 0F A6 2D DB 49 F4 6F 73 96 47
9. 06 07 53 16 ED 24 7A 37 39 CB A3 83 03 A9 8B F6
A. 92 BD 9B 1C E5 D1 41 01 54 45 FB C9 5E 4D 0E F2
B. 68 20 80 AA 22 7D 64 2F 26 87 F9 34 90 40 55 11
C. BE 32 97 13 43 FC 9A 48 A0 2A 88 5F 19 4B 09 A1
D. 7E CD A4 D0 15 44 AF 8C A5 84 50 BF 66 D2 E8 8A
E. A2 D7 46 52 42 A8 DF B3 69 74 C5 51 EB 23 29 21
F. D4 EF D9 B4 3A 62 28 75 91 14 10 EA 77 6C DA 1D

structure of the S-Box was public: the design rationale behind the BelT cipher and the
S-Box is explained in a separate note [AGMH40]. Nevertheless, our cryptanalysis attempt
leads to new reverse-engineering techniques and to the discovery of new properties of a
particular S-Box class which we describe below.

Here, we first show in Section 4.1 how the distributions of coefficients in LAT of an
S-Box can be used in a different way from what has been done before e.g. in [BP15]. Then,
we will see that tweaking the definition of the DDT may also yield interesting results in
Section 4.2, in particular for 𝐻. Finally, we will interpret our results in light of the actual
structure of 𝐻 in Section 4.3.

4.1 Looking at Lines/Columns
A key step in reverse-engineering an S-Box is the study of the distribution of the coefficients
in its DDT and in its LAT. A paper by Daemen and Rijmen [DR07] specifies the probability
distribution of these coefficients under the assumption that each coefficient is a sample
from a given distribution and that all sampling are independent. The authors show ample
empirical evidence to illustrate the validity of this assumption. This model has the following
implication.

Observation 1. The lines and the columns of the DDT of a random permutation should
be independent from one another. The same is true for the LAT.

In particular, the variance of the absolute value of the coefficients in each column
should be independent from the column index. The fact that this is not true for the S-Box
of Streebog and Kuznyechik is what allowed Biryukov et. al to decompose it in [BPU16].
Indeed, the visual pattern they observed in the LAT corresponds to 15 columns containing
each exactly 16 zeroes and, apart from that, only coefficients with an absolute value 𝑣
in {4, ..., 12}. These columns had thus a lower contrast than the others, a motif which
the cryptanalyst’s eye can efficiently identify. Figure 3 plots the variance of the absolute
values of the coefficients in each column3 of the LAT of Kuznyechik. As expected, we can
see 15 column indices for which the variance is significantly lower and which correspond to
the “red lines” Biryukov et al. saw in the LAT. Furthermore, all of those variances are
equal. In fact, all these columns have the exact same distribution of coefficients.

3Note that we operate on the absolute value of the coefficients. Indeed, the variance of the signed
coefficients is constant because of Parseval’s equality.

Léo Perrin and Aleksei Udovenko 105

5

10

15

20

25

30

0 50 100 150 200 250

V
a
r
ia
n
c
e

Column index

Figure 3: The variance of the columns of the LAT (absolute values) of 𝜋 (Streebog). The
expected variance is represented with a red dashed line.

The columns of the LAT of 𝐻 yield no such artifact. However, Figure 4 plots the
variance of the absolute values of the lines of the LAT of BelT and, as we can see, some of
the lines have identical and abnormally low variance.

5

10

15

20

25

30

0 50 100 150 200 250

V
a
r
ia
n
c
e

Line index

Figure 4: The variance of the lines of the LAT (absolute values) of 𝐻 (BelT). The expected
variance is represented with a red dashed line.

4.2 Alternative DDT
Because of the structure of BelTs Feistel function (see Figure 2b), where the key is added
using modular addition and where the output might be added, subtracted or xored into
the internal state, it is natural to investigate “hybrid” differentials where the input and
output operations are distinct.

For example, we count the number of solutions of the following equation for different
S-Boxes 𝑠 and for all 𝑎, 𝑏 in F8

2:

𝑠(𝑥� 𝑎)⊕ 𝑠(𝑥) = 𝑏,

where ⊕ denotes a bit-wise exclusive-or and � denotes addition modulo 28. The results
are given in Table 3 for several S-Boxes (the cases 𝑎 = 0 and 𝑏 = 0 are ignored): 𝐻, 𝜋,
that of the AES, one picked uniformly at random using a Knuth shuffle and a theoretical
distribution. There exists on average one 𝑥 such that 𝑠(𝑥 � 𝑎) ⊕ 𝑠(𝑥) = 𝑏 so we model
the number of solutions of this equation for a given pair (𝑎, 𝑏) as a sample from a Poisson

106Exponential S-Boxes: a Link Between the S-Boxes of BelT and Kuznyechik/Streebog

Table 3: The distribution of the number of solutions of 𝑠(𝑥� 𝑎)⊕ 𝑠(𝑥) = 𝑏 depending on
𝑎 and 𝑏 for different S-Boxes and for a Poisson distribution.

solutions 𝑁 #{(𝑎, 𝑏), #solutions = 𝑁}
𝐻 𝜋 AES Random Theoretical

0 11175 23252 22270 23582 23921.36
1 42498 24466 25486 24148 23921.36
2 11274 12414 12968 12271 11960.68
3 78 3784 3490 3810 3986.89
4 0 945 685 965 996.72
5 0 132 110 204 199.34
6 0 30 14 37 33.22
7 0 2 2 6 4.75
8 0 0 0 2 0.59

distribution with parameter 1. The corresponding expected number of solutions are listed
in the “Theoretical” column of Table 3.

As we can see, the maximum number of solutions for 𝐻 is far too small.

Observation 2. It is worth considering other differentials than the usual XOR-differences
in order to identify patterns in an unknown S-Box.

4.3 The Actual Structure of 𝐻

While we were not aware of it in the beginning, it turns out that the method used to
build 𝐻 is public — though hard to find. Indeed, in a paper from the Belarusian journal
“Управление защитой информации” [Information Security Management] [AGMH40] the
designers explain the rationale behind BelT and its S-Box. The following proposition is a
translation of this description.

Proposition 1 (The BelT S-Box Construction and its Properties, [AGMH40] (translated)).
The look-up tables of the S-Box coordinate functions were chosen as different segments of
length 255 of different linear recurrences defined by the irreducible polynomial 𝑝(𝜆):

𝑝(𝜆) = 𝜆8 + 𝜆6 + 𝜆5 + 𝜆2 + 1.

Additionally, a zero element was inserted in a fixed position of each segment.
We describe some cryptographic properties of the constructed permutation:

1. the nonlinearity of S is equal to 102 (for the given dimension the nonlinearity cannot
exceed 120; high nonlinearity provides resistance against linear cryptanalysis);

2. differential properties of S: 𝑅⊕⊕ = 8, 𝑅�� = 7, 𝑅⊕� = 6, 𝑅�⊕ = 3, where for
example 𝑅�⊕ = max𝑎 ̸=0,𝑏 #{𝑥 ∈ F8

2 | 𝑆(𝑥� 𝑎) = 𝑆(𝑥)⊕ 𝑏};

3. the algebraic degrees of all the coordinates are equal to 7 (for the given dimension
this is the maximum possible value, high algebraic degree prevents some variants of
differential attacks);

4. there are no quadratic equations relating between the S-Box input and output bits
(such equations may lead to algebraic attacks).

As pointed out by an anonymous reviewer, it is easy to check that 𝐻 satisfies this
description (with zero inserted at position 10) using the code given in Appendix B.

Léo Perrin and Aleksei Udovenko 107

4.3.1 Exponential S-Boxes

S-Boxes built from such a linear recurrence and where 0 maps to 0 are called exponential
substitution. They were introduced and some of their properties were studied in papers by
some of the BelT designers. The first one is a paper published in “Вести НАН Беларуси”
[News of the National Academy of Sciences of Belarus] [AA38] while the second is a
translation which the authors published on eprint [AA04].

Definition 1 (Exponential substitution [AA04, AA38]). Let 𝛼 be a primitive element
of the finite field F2𝑛 with minimal polynomial 𝑥𝑛 +

∑︀𝑛−1
𝑖=1 𝑚𝑖𝑥

𝑖 + 1. First, let 𝑥 be an
element of F𝑛

2 and denote 𝑥 =
∑︀𝑛−1

𝑖=0 𝑥𝑖2𝑖. An exponential substitution is a permutation ℎ
such that

ℎ(𝑥) =
{︃

0 if 𝑥 = 0,

𝛼𝑥 otherwise.

In this case, the truth table of each coordinate ℎ𝑖 of ℎ is such that, for all 𝑥 less than
2𝑛 − 𝑛,

ℎ𝑖(𝑥 + 𝑛)⊕𝑚𝑛−1ℎ𝑖(𝑥 + 𝑛− 1)⊕ . . .⊕𝑚1ℎ𝑖(𝑥 + 1)⊕ ℎ𝑖(𝑥) = 0.

In other words, each coordinate of ℎ is a segment of an LFSR sequence with linear
recurrence given by the same irreducible polynomial which is used to define the finite field.

In particular, it is shown in [AA04, AA38] that exponential substitutions have reason-
ably high non-linearity, hybrid differential resistance and high algebraic degree.

It is trivial to recover the structure of exponential substitutions.

Observation 3. If a permutation is an exponential substitution, then applying the
Berlekamp-Massey algorithm [Mas69] on each coordinate will give the linear recurrence
used to generate the permutation.

This reverse-engineering method will fail if the S-Box is composed with affine layers, a
method called affine whitening in [BPU16]. Nevertheless, exponential substitutions have a
very strong algebraic structure. It thus comes as no surprise that such permutations have
specific patterns in their Linear Approximation Tables.

Proposition 2. Let 𝜌𝑑 denote the rotation by 𝑑 bits to the left. The distribution of the
coefficients in lines 𝑎 and 𝜌𝑑(𝑎) of the LAT of an exponential substitutions are identical
for any 𝑑.

Proof. Because of the relation between LAT and Walsh coefficients, we prove the proposition
for 𝑊𝑎,𝑏. Remember that the Walsh coefficients 𝑊𝑎,𝑏 of a vectorial Boolean function ℎ are
given by:

𝑊𝑎,𝑏 =
∑︁

𝑥∈F𝑛
2

(−1)𝑎·𝑥+𝑏·ℎ(𝑥).

Note that the scalar product 𝑎 · 𝑥 is equal to 𝜌𝑑(𝑎) · 𝜌𝑑(𝑥). Using this, we rewrite 𝑊𝑎,𝑏 as
follows:∑︁

𝑥∈F𝑛
2

(−1)𝑎·𝑥+𝑏·ℎ(𝑥) =
∑︁

𝑥∈F𝑛
2

(−1)𝜌𝑑(𝑎)·𝜌𝑑(𝑥)+𝑏·ℎ(𝑥) =
∑︁

𝑦∈F𝑛
2

(−1)𝜌𝑑(𝑎)·𝑦+𝑏·ℎ(𝜌−𝑑(𝑦)),

where 𝑦 = 𝜌𝑑(𝑥). Furthermore, for all 𝑏 there exists a unique 𝑏′ such that 𝑏 · ℎ
(︀
𝜌−𝑑(𝑦)

)︀
=

𝑏′ · ℎ(𝑦) for all 𝑦. This equality obviously holds for 𝑦 = 0. If 𝑦 ≠ 0, then the right-hand
side is equal to

𝑏 · ℎ
(︀
𝜌−𝑑(𝑦)

)︀
= 𝑏 ·

(︃
𝑛−1∏︁
𝑖=0

𝛼𝑦𝑖2𝑖−𝑑

)︃
= 𝑏 ·

(︃
𝑛−1∏︁
𝑖=0

𝛼𝑦𝑖2𝑖

)︃2−𝑑

,

108Exponential S-Boxes: a Link Between the S-Boxes of BelT and Kuznyechik/Streebog

where 𝑥 ↦→ 𝑥2−𝑑 is a linear permutation which can be written 𝑥 ↦→ 𝑀𝑑 × 𝑥 for some
𝑛 × 𝑛 binary matrix 𝑀𝑑. We deduce that 𝑏 · ℎ

(︀
𝜌−𝑑(𝑦)

)︀
= 𝑏′ · ℎ(𝑦) for 𝑏′ = (𝑀 𝑡

𝑑 × 𝑏),
where 𝑀 𝑡

𝑑 is the transpose of 𝑀𝑑. As a consequence, the multisets {𝑊𝑎,𝑏,∀𝑏 ∈ F𝑛
2} and

{𝑊𝜌𝑑(𝑎),𝑏,∀𝑏 ∈ F𝑛
2} are identical, which in turn implies the proposition.

This proposition can be used to distinguish exponential substitutions from random
permutations.

If such an S-Box has been composed with an affine layer, i.e. if a permutation 𝜎 is
equal to 𝐴 ∘ 𝑓 where 𝐴 is an affine permutation and 𝑓 is an exponential permutation,
then the pattern described in Proposition 2 is still present: because of Theorem 1, this
composition merely shuffles the columns which leaves the distribution of the coefficients in
each line unchanged. Adding another linear layer before 𝑓 shuffles the rows. While this
breaks the rotational pattern, the fact that the rows fall into few distinct classes with
regards to the distribution of the coefficients remains unchanged.

Observation 4. Consider the LAT of a permutation 𝜎 = 𝐴 ∘ 𝑓 ∘ 𝐵 where 𝐴 and 𝐵
are affine permutations and 𝑓 is an exponential permutation. The distribution of the
coefficients in the different lines are not independent. In fact, it is possible to recover some
information about 𝐵 using the fact that the LAT of 𝐴 ∘ 𝑓 is such that rows 𝑎 and 𝜌𝑑(𝑎)
have the exact same coefficient distribution.

There are other constructions known to exhibit some form of invariance in their LAT.
Notably, power functions 𝑥 ↦→ 𝑥𝑑 of F𝑛

2 are known to have the exact same distribution of
coefficients in each line of both their DDT and LAT [BCC10].

4.3.2 Pseudo-exponential substitution

The notion of exponential substitution can be generalized. Indeed, 𝐻 is strictly speaking
not an exponential substitution because 0 was not inserted at position 0 but at position
10. We formalize this difference using the following definition.

Definition 2 (Pseudo-Exponential and Pseudo-Logarithm). We call pseudo-exponential
of 𝑛 bits a permutation defined by an exponent 𝜆 generating the multiplicative group of
some field of size 2𝑛 and a position 𝑧 at which 0 is inserted. It is denoted exp𝜆,𝑧, so that

exp𝜆,𝑧(𝑥) =

⎧⎪⎨⎪⎩
0 if 𝑥 = 𝑧,

𝜆𝑥�1 if 𝑥 < 𝑧,

𝜆𝑥 otherwise .

A pseudo-logarithm is the functional inverse of a pseudo-exponential. The functional
inverse of exp𝜆,𝑧 is denoted log𝜆,𝑧.

This generalization is also convenient to link the structure described in [AA04, AA38]
with other permutations from the literature. Indeed, while both discrete logarithm [HN10]
and exponential [BR00, RBF08] have been discussed in the Western literature before, the
definitions used differ slightly. In [HN10], the discrete logarithm maps 𝑥 ̸= 0 to log𝛼(𝑥)
for some primitive element 𝛼 of F𝑛

2 and it maps 0 to 2𝑛 − 1. Thus, its inverse is not an
exponential substitution in the sense of Definition 1: it maps 𝑥 to 𝛼𝑥 unless 𝑥 = 2𝑛 − 1
which is mapped to 0. In this case, 0 is not inserted at position 0 but at position 2𝑛 − 1.
In [RBF08], rotational symmetries of such exponentials were studied. They were also
used to build the small 4-bit S-Box 𝐸 used inside the Whirlpool hash function [BR00].
Therefore, what is called “exponential” in those papers is here called “pseudo-exponential
with a 0 at position 2𝑛 − 1”, which is denoted exp𝜆,2𝑛−1.

Furthermore, as explained in [HN10], the coordinates of exp𝜆,2𝑛−1 are closely related
to the functions introduced by Feng et al. in [FLY09] and studied in [CF09]. In fact,

Léo Perrin and Aleksei Udovenko 109

when the input and output are of the same size, the function of Feng et al. is the discrete
logarithm except in {0, 1}: it maps 0 to 0 and 1 to 2𝑛 − 1. Incidentally, the coordinates of
𝐻−1 with low-variance Walsh spectra identified in Section 4.1 are related to the Boolean
functions of Feng et al., though not directly because of the position of the 0.

As said above, 𝐻 has yet another preimage for zero. These variations are to be
expected: since the exponential function has no preimage for zero, this quantity has to
be set arbitrarily. Unfortunately, this has been done in different ways in previous works.
While the impact of the difference between inserting 0 at position 0 or at position 2𝑛 − 1
is limited as it merely rotates the truth table, inserting it in the middle of the truth table
of the S-Box has more consequences.

Of particular interest to us is the fact that the LAT of a pseudo-exponential is less
structured than that of an exponential substitution. Indeed, the LAT of pseudo-exponentials
is not invariant through a rotation of the row indices, unlike exponential substitution. In
other words, Proposition 2 does not hold for pseudo-exponentials. Still, some patterns
remain as explained in the following proposition and its corollary.

Proposition 3. Let ℓ𝑧 be the smallest integer such that 2ℓ𝑧 > 𝑧. The lines of the LAT of
the pseudo-exponential exp𝜆,𝑧 with indices 𝑎 = 𝑘 × 2ℓ𝑧 for any integer 𝑘 do not depend on
𝑧. In particular, they are identical to those of the LAT of an exponential substitution with
the base 𝜆, which corresponds to the case 𝑧 = 0.

Proof. Let ℎ be a pseudo-exponential substitution with exponent 𝜆 and preimage for zero
𝑧, i.e. ℎ = exp𝜆,𝑧, and let 𝑓 be the exponential substitution with the same 𝜆. We must
prove that the following quantities are identical as long as 𝑎 = 𝑘 × 2ℓ𝑧 :∑︁

𝑥∈F𝑛
2

(−1)𝑎·𝑥⊕𝑏·ℎ(𝑥) =
∑︁

𝑥∈F𝑛
2

(−1)𝑎·𝑥⊕𝑏·𝑓(𝑥)

First of all, let us rewrite the left-hand side:∑︁
𝑥∈F𝑛

2

(−1)𝑎·𝑥⊕𝑏·ℎ(𝑥) =
∑︁
𝑥<𝑧

(−1)𝑎·𝑥⊕𝑏·𝜆𝑥�1
+ (−1)𝑎·𝑧 +

∑︁
𝑥>𝑧

(−1)𝑎·𝑥⊕𝑏·𝜆𝑥

= (−1)𝑎·𝑧 +
∑︁

0<𝑥≤𝑧

(−1)𝑎·(𝑥�1)⊕𝑏·𝜆𝑥

+
∑︁
𝑥>𝑧

(−1)𝑎·𝑥⊕𝑏·𝜆𝑥

= (−1)𝑎·𝑧 +
∑︁
𝑥 ̸=0

(−1)𝑎·𝜑𝑧(𝑥)⊕𝑏·𝜆𝑥

,

where 𝜑𝑧(𝑥) = 𝑥 if 𝑥 > 𝑧 and 𝜑𝑧(𝑥) = 𝑥 � 1 otherwise. It is sufficient to prove the
proposition to show that if 𝑎 = 𝑘 × 2ℓ𝑧 then 𝑎 · 𝜑𝑧(𝑥) = 𝑎 · 𝑥 for all 𝑥 ̸= 0.

If there exists 𝑖 in [0, ℓ𝑧 − 1] such that 𝑥𝑖 = 1 , then the carry from the subtraction
cannot propagate to 𝑥𝑗 and the other bits with higher weight. Therefore, it is necessary
for 𝑎 · 𝜑𝑧(𝑥) to be different from 𝑎 · 𝑥 that 𝑥0 = ... = 𝑥ℓ𝑧−1 = 0. If it is the case, then
𝑥 = 𝑚 × 2ℓ𝑧 but, in this case, 𝜑𝑧(𝑥) = 𝑥 because then 𝑥 ≥ 2ℓ𝑧 > 𝑧. Thus, for all 𝑥 ̸= 0
and all 𝑎 = 𝑘 × 2ℓ𝑧 , 𝑎 · 𝜑𝑧(𝑥) = 𝑎 · 𝑥. The proposition follows.

Note that Proposition 3 does not apply when 𝑧 = 2𝑛 − 1, i.e. for exponentials studied
in [HN10].

As the LAT of a pseudo-exponential shares some of its lines with an exponential
substitution, these lines also share the patterns presented in Proposition 2.

Corollary 1. The distributions of the coefficients in lines with indices 𝑎2𝑑 and 𝑎2𝑑′ of
the LAT of a pseudo-exponential substitutions are identical for any 𝑎 and any 𝑑, 𝑑′ such
that 𝑧 < min(2𝑑, 2𝑑′) and max(𝑎2𝑑, 𝑎2𝑑′) < 2𝑛.

110Exponential S-Boxes: a Link Between the S-Boxes of BelT and Kuznyechik/Streebog

It is possible to represent 𝐻 using such a pseudo-exponentiation. In order to find the
decomposition described below, we brute-forced all possible bases for the exponentiation
and all field representations to obtain pseudo exponentials exp𝜆,10. For each, we checked
whether 𝐻 ∘ exp−1

𝜆,10 was linear and, if it were, computed its matrix representation. Only
one of those matrices has a visible structure; it corresponds to the decomposition we kept.
Let 𝜔𝐻 be the symmetric matrix defined by

𝜔𝐻 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 1 1 1 0
1 1 0 1 1 1 0 0
1 0 1 1 1 0 0 0
0 1 1 1 0 0 0 1
1 1 1 0 0 0 1 1
1 1 0 0 0 1 1 1
1 0 0 0 1 1 1 0
0 0 0 1 1 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and let 𝜆 = 𝑤7 + 𝑤3 + 𝑤, where 𝑤 is the generator of the multiplicative group of
F2[𝑥]/(𝑥8 + 𝑥6 + 𝑥5 + 𝑥 + 1). Then 𝐻(𝑥) can be computed as follows:

𝐻(𝑥) = (𝜔𝐻 ∘ exp𝜆,10)(𝑥).

A SAGE [Dev16] script performing this computation is provided in Appendix A. It is worth
noting that 𝜔𝐻(𝑥) is the XOR of 10 shifts of 𝑥 composed with a bit reversal swapping 𝑥0
and 𝑥7, 𝑥1 and 𝑥6, etc.

As the linear mapping is applied after the pseudo-exponential when computing 𝐻, it
merely shuffles the columns of the LAT of the pseudo-exponential. Therefore, it exhibits
the patterns described in Corollary 1:

∙ rows with indices 16, 32, 64 and 128, that is 𝜌𝑖(1) for 𝑖 in {4, 5, 6, 7}, have the same
distribution of coefficients,

∙ rows with indices 48, 96 and 192, that is 𝜌𝑖(3) for 𝑖 in {4, 5, 6}, have the same
distribution of coefficients.

This partially explains the patterns we identified during our attempt at reverse-
engineering this S-Box. However, we actually identified stronger patterns than those
which can be deduced from Corollary 1. Indeed, we found that rows with indices 2𝑖 and
3× 2𝑖 all shared the same distribution of absolute value of coefficients.

These patterns were experimentally confirmed for other such pseudo-exponential, so
that we make the following conjecture.

Conjecture 1. Let ℒ and ℒ′ be the LAT of the exponential substitution with base 𝜆 and
exp𝜆,𝑧 respectively. Then, for all 𝑖, the distribution of the absolute value of the coefficients
at line 2𝑖 and 3× 2𝑖 is the same in ℒ and ℒ′, regardless of 𝑧.

Note that the proof of Proposition 2 cannot be simply adapted to prove this conjecture.
Indeed, although the distribution of the absolute value of the coefficients is preserved, we
observed that neither the sign nor the position of the coefficients are identical if 𝑎 ̸= 𝑘×2ℓ𝑧 .

Our strategy to try and reverse-engineer 𝐻 along with the patterns we found have so
far been extremely similar to those from [BPU16]. Indeed, the presence of LAT columns
with significantly lower variance is what allowed this previous work. An obvious question
thus arises: is it possible to represent the S-Box of Kuznyechik, 𝜋, using a pseudo-logarithm
along with some simple operations as well? As we show in the next session, the answer is
yes.

Léo Perrin and Aleksei Udovenko 111

5 An Exponential in the S-Box of Kuznyechik/Streebog
In the S-Box of BelT, the low-variance lines in the LAT are related to the finite field
exponentiation. It is thus plausible that 𝜋, the S-Box of Kuznyechik and Streebog, is
related to such a function as well, or rather to its inverse as the pattern is present in the
columns of its LAT rather than in its rows.

We have also noticed another interesting evidence of the finite field logarithm in 𝜋:
one of the 4-bit S-Boxes from the decomposition from [BPU16], namely 𝜈0, is actually
affine-equivalent to a finite field logarithm in F24 . We note also that both these S-Boxes
are affine-equivalent to the inverse of the 4-bit S-Box 𝐸 which is used to compute the 8-bit
S-Box of the hash function Whirlpool [BR00] and was built using an exponentiation.

5.1 Finding exponential patterns in 𝜋−1

The exponentiation 𝑥 ↦→ 𝑔𝑥 has the property that adding some integer 𝑐 to an input results
in multiplying the corresponding output by the field element 𝑔𝑐: 𝑔𝑥+𝑐 = 𝑔𝑥 ⊙ 𝑔𝑐. We can
use this property to check whether some function behaves like exponentiation at least on
some inputs. However, if the function is masked with some linear layers, this property
does not work anymore. On the input side we can change integer addition to xor: the
linear layer will just change the xor constant. If this constant is of the form 2𝑘, then the
𝑘-th bit in the exponent is flipped and the output is either multiplied or divided by 𝑔2𝑘 .

We made an exhaustive search for all xor constants and found four high probability
relations. Let 𝑐 = {0x12, 0x26, 0x24, 0x30}. Then for all but 16 values of 𝑥 one of the
following two relations holds:

𝜋−1(𝑥⊕ 𝑐𝑖) = 𝜋−1(𝑥)⊙ 𝑤2𝑖

, or

𝜋−1(𝑥⊕ 𝑐𝑖) = 𝜋−1(𝑥)/𝑤2𝑖

,

where 𝑖 runs over {0, 1, 2, 3}, multiplication and division are done in the finite field
F2[𝑥]/(𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1) and 𝑤 is the primitive element defined by 𝑥. The irreducible
polynomial is the default one in Sage [Dev16] and, for other polynomials, the relations
hold with much lower probabilities. Interestingly, the linear layer of the block cipher
Kuznyechik uses multiplications in a finite field defined by another irreducible polynomial.
Therefore it is not clear whether the S-Box and the linear layer of the block cipher interact
in some way. We also recall that the linear layer of the block cipher used as a component
of the hash function Streebog has also been reverse-engineered [KK13] and, much like
in Kuznyechik, uses finite field arithmetic over F8

2 defined by the irreducible polynomial
𝑥8 + 𝑥6 + 𝑥5 + 𝑥4 + 1.

To simplify further analysis, we can remove the exponentiation and work only with
exponents. That is, we analyze 𝜏 = log𝑤,0 ∘ 𝜋−1.

By our hypothesis, the constants 𝑐𝑖 should be mapped by the linear whitening layer to
some powers of 2. Moreover, from the observed relations we can guess that these powers
should be (1, 2, 4, 8) (the exponents of 𝑤). We therefore assume that the unknown linear
layer maps 𝑐𝑖 to 2𝑖 for 𝑖 ∈ {0, 1, 2, 3}. Now we need to complete the mapping by setting
preimages for powers 2𝑗 for 𝑗 ∈ {4, 5, 6, 7}. First we complete it randomly and get some
linear mapping 𝛼 (see Equation 1). We then observe that the look-up table of 𝜏 ∘ 𝛼−1

considered as a 16× 16 table is very highly structured (see Table 4). Moreover, by xoring
a constant which depends on the column index to the right branch before the permutation
it is possible to sort each of the rows. This dependence is linear so it can be included into
the linear layer. The matrix of the resulting linear layer 𝛽 is given in Equation 1 and the
look-up table of 𝜏 ∘ 𝛽−1 is given in Table 5.

112Exponential S-Boxes: a Link Between the S-Boxes of BelT and Kuznyechik/Streebog

Table 4: The look-up table of 𝜏−1 ∘ 𝛼−1.
.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F

0. 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
1. 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
2. 143 144 141 142 139 140 137 138 151 152 149 150 147 148 145 146
3. 160 161 158 159 156 157 154 155 168 169 166 167 164 165 162 163
4. 216 215 214 213 220 219 218 217 208 207 206 205 212 211 210 209
5. 97 96 95 94 101 100 99 98 89 88 87 86 93 92 91 90
6. 48 47 50 49 44 43 46 45 40 39 42 41 36 35 38 37
7. 82 81 84 83 78 77 80 79 74 73 76 75 70 69 72 71
8. 172 171 174 173 176 175 178 177 180 179 182 181 184 183 186 185
9. 53 52 55 54 57 56 59 58 61 60 63 62 65 64 67 66
A. 127 126 125 124 123 122 121 120 135 134 133 132 131 130 129 128
B. 246 245 244 243 242 241 240 239 254 253 252 251 250 249 248 247
C. 232 233 230 231 236 237 234 235 224 225 222 223 228 229 226 227
D. 113 114 111 112 117 118 115 116 105 106 103 104 109 110 107 108
E. 221 238 255 0 153 170 187 204 85 102 119 136 17 34 51 68
F. 13 14 15 16 9 10 11 12 5 6 7 8 1 2 3 4

Table 5: The look-up table of log𝜆,0 ∘ 𝜋−1 ∘ 𝛽−1.
.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F

0. 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
1. 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
2. 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
3. 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
4. 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
5. 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
6. 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
7. 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
8. 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
9. 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
A. 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
B. 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
C. 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
D. 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
E. 17 34 51 68 85 102 119 136 153 170 187 204 221 238 255 0
F. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

𝛼 =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 1 1 0
0 0 0 0 1 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
0 0 0 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

−1

, 𝛽 =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 1 1 0
1 0 0 0 1 0 0 1
0 0 1 0 0 0 0 0
0 1 0 0 0 1 1 0
1 0 1 0 0 0 1 1
0 0 0 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

−1

. (1)

Now we can reorder rows by applying a 4-bit S-Box on the left input branch of 𝜏 ∘ 𝛽−1.
Let

𝑞 = (12, 2, 9, 10, 13, 6, 3, 5, 11, 4, 8, 15, 14, 7, 0, 1),

and let 𝑞𝐿(𝑥||𝑦) = 𝑞(𝑥)||𝑦 be the permutation of F4
2×F4

2. The look-up table of 𝜏 ∘𝛽−1 ∘𝑞−1
𝐿

is given in Table 6. We describe a decomposition of the inverse of 𝜋 based on these findings
in Algorithm 1.

We note that 𝑞 is affine-equivalent to one of the S-Boxes used in the GOST R 34.11-
94 hash function, namely the S-Box “pi[1]” specified in RFC 5831 [Dol10a]. This hash

Léo Perrin and Aleksei Udovenko 113

Table 6: The look-up table of log𝜆,0 ∘ 𝜋−1 ∘ 𝛽−1 ∘ 𝑞−1
𝐿 .

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F
0. 17 34 51 68 85 102 119 136 153 170 187 204 221 238 255 0
1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2. 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
3. 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
4. 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
5. 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
6. 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
7. 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
8. 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
9. 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
A. 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
B. 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
C. 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
D. 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
E. 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
F. 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254

Algorithm 1 Computing the inverse of 𝜋: 𝑦 = 𝜋−1(𝑥).
(𝑙||𝑟)← 𝛽(𝑥)
𝑙← 𝑞(𝑙)
if 𝑙 = 0 then

𝑧 ← 17× ((𝑟 + 1) mod 16)
else

𝑧 ← 17× 𝑙 + 𝑟 − 16
end if
𝑦 ← exp𝑤,0(𝑧)
return 𝑦

114Exponential S-Boxes: a Link Between the S-Boxes of BelT and Kuznyechik/Streebog

function is the predecessor of Streebog. It was designed by the Russian Federal Agency of
Government Communications and Information, an institution which was later incorporated
to the FSB. However, there are only 302 affine-equivalence classes of 4-bit S-Boxes (see
Table 5 of [BDCBP03]), meaning that a mere coincidence cannot be ruled out.

5.2 Obtaining a First Decomposition of 𝜋

It is easy to invert Algorithm 1 to obtain a direct expression of 𝜋. However, doing this
requires introducing a base-17 decomposition of the output of a pseudo-logarithm. Our
aim in this section is to find a decomposition of 𝜋 which does not mix arithmetic modulo
16 and 17. In fact, we want to simplify the arithmetic layer as much as possible.

To achieve this, we concentrate on the function 𝒫 = log𝑤,0 ∘ 𝜋−1 ∘ 𝛽−1 ∘ 𝑞−1
𝐿 (which is

given in Table 6). The LAT of this function is shown in Figure 5a. We observe that the
LAT of 𝒫 composed with a branch swap contains a white square in the top left corner
(see Figure 5b). As with the decomposition of 𝜋 performed in [PUB16], this white square
corresponds to particular integral properties: if the left 4-bit nibble of the input takes all
possible values then the the left 4-bit nibble of the output takes all possible values as well.
Therefore, 𝒫 has a so-called TU-decomposition.

Lemma 1 (TU-Decomposition, [PUB16]). Let 𝑓 be a function mapping F𝑛
2 × F𝑛

2 to itself
such that fixing the right input to any value and letting the left one take all 2𝑛 possible
values leads to the left output taking all 2𝑛 possible values. Then 𝑓 can be decomposed
using a keyed 𝑛-bit permutation 𝑇 and a keyed 𝑛-bit function 𝑈 (see Figure 6):

𝑓(𝑥, 𝑦) =
(︀
𝑇𝑦(𝑥), 𝑈𝑇𝑦(𝑥)(𝑦)

)︀
,

Besides, if 𝑓 is a permutation then 𝑈 is a keyed permutation.

(a) (b)

Figure 5: The Jackson Pollock representation of the LATs of 𝒫 and 𝒫 composed with a
branch swap.

𝑇

𝑈

Figure 6: TU-decomposition.

Léo Perrin and Aleksei Udovenko 115

Table 7: The mini-block ciphers from the TU-decomposition of 𝒫.
0 1 2 3 4 5 6 7 8 9 a b c d e f

𝑇0 1 2 3 4 5 6 7 8 9 a b c d e f 0
𝑇1 1 2 3 4 5 6 7 8 9 a b c d e f 0
𝑇2 2 3 4 5 6 7 8 9 a b c d e f 0 1
𝑇3 3 4 5 6 7 8 9 a b c d e f 0 1 2
𝑇4 4 5 6 7 8 9 a b c d e f 0 1 2 3
𝑇5 5 6 7 8 9 a b c d e f 0 1 2 3 4
𝑇6 6 7 8 9 a b c d e f 0 1 2 3 4 5
𝑇7 7 8 9 a b c d e f 0 1 2 3 4 5 6
𝑇8 8 9 a b c d e f 0 1 2 3 4 5 6 7
𝑇9 9 a b c d e f 0 1 2 3 4 5 6 7 8
𝑇𝑎 a b c d e f 0 1 2 3 4 5 6 7 8 9
𝑇𝑏 b c d e f 0 1 2 3 4 5 6 7 8 9 a
𝑇𝑐 c d e f 0 1 2 3 4 5 6 7 8 9 a b
𝑇𝑑 d e f 0 1 2 3 4 5 6 7 8 9 a b c
𝑇𝑒 e f 0 1 2 3 4 5 6 7 8 9 a b c d
𝑇𝑓 f 0 1 2 3 4 5 6 7 8 9 a b c d e

(a) 𝑇 .

0 1 2 3 4 5 6 7 8 9 a b c d e f
𝑈0 0 1 2 3 4 5 6 7 8 9 a b c d e f
𝑈1 1 0 2 3 4 5 6 7 8 9 a b c d e f
𝑈2 2 0 1 3 4 5 6 7 8 9 a b c d e f
𝑈3 3 0 1 2 4 5 6 7 8 9 a b c d e f
𝑈4 4 0 1 2 3 5 6 7 8 9 a b c d e f
𝑈5 5 0 1 2 3 4 6 7 8 9 a b c d e f
𝑈6 6 0 1 2 3 4 5 7 8 9 a b c d e f
𝑈7 7 0 1 2 3 4 5 6 8 9 a b c d e f
𝑈8 8 0 1 2 3 4 5 6 7 9 a b c d e f
𝑈9 9 0 1 2 3 4 5 6 7 8 a b c d e f
𝑈𝑎 a 0 1 2 3 4 5 6 7 8 9 b c d e f
𝑈𝑏 b 0 1 2 3 4 5 6 7 8 9 a c d e f
𝑈𝑐 c 0 1 2 3 4 5 6 7 8 9 a b d e f
𝑈𝑑 d 0 1 2 3 4 5 6 7 8 9 a b c e f
𝑈𝑒 e 0 1 2 3 4 5 6 7 8 9 a b c d f
𝑈𝑓 f 0 1 2 3 4 5 6 7 8 9 a b c d e

(b) 𝑈 .

The function 𝒫 does indeed have such a decomposition and the keyed permutations 𝑇
and 𝑈 are given in Table 7. The functions 𝑇 and 𝑈 are quite simple:

𝑇𝑘(𝑥) =
{︃

𝑥 + 𝑘, if 𝑘 ̸= 0,

𝑥 + 𝑘 + 1, otherwise,
𝑈𝑘(𝑥) =

{︃
((𝑥− 𝑘 − 1) mod 15) + 𝑘 + 1, if 𝑥 ̸= 0,

𝑘, otherwise.

Now it is easy to invert the whole decomposition because we can invert 𝑇 and 𝑈
separately. After doing this and simplifying the result, we obtain the algorithm computing
𝜋 given in Algorithm 2. The corresponding circuit is shown in Figure 7b.

Algorithm 2 Computing the S-Box 𝑦 = 𝜋(𝑥) using the first decomposition.
(𝑙||𝑟)← log𝑤,0(𝑥)
𝑙← 𝑙 − 𝑟
if 𝑙 = 0 then

𝑟 ← 𝑟 − 1
else

𝑙← (𝑙 + 𝑟 − 1) mod 15 + 1
end if
𝑟 ← 𝑟 − 𝑙
𝑙← 𝑞−1(𝑙)
𝑦 ← 𝛽−1(𝑙||𝑟)
return 𝑦

5.3 Another Decomposition of 𝜋

The somewhat heavy arithmetic performed in the middle of the computation of 𝜋 using our
new decomposition could point towards the idea that 𝜋 is built using a pseudo-exponential
rather than an exponential substitution. Intuitively, these operations could correspond to
a “correction” of the offset.

To explore this idea, we brute-forced all possible preimages 𝑧 for 0 and all possible
bases 𝑣 for the exponentiation. For each such pseudo-exponential substitution, we ran the
following steps.

116Exponential S-Boxes: a Link Between the S-Boxes of BelT and Kuznyechik/Streebog

𝜔

𝜎

𝜑 ⊙

𝜈1𝜈0

ℐ⊙

𝛼

(a) Old.

log𝑤,0

1

mod 15

1

[𝑙 = 0]

𝑞−1

𝛽−1

(b) New (first).

Figure 7: Old and new decomposition of 𝜋. The multiplexers return the left side if the
selector is equal to zero and the right side otherwise.

1. Compute4 𝑠 = 𝜋 ∘ exp𝑣,𝑧.

2. Compute the differential uniformity and the maximum LAT coefficient of 𝑠.

3. If these quantities are high enough then look for vector spaces ℓ0 and ℓ1 such that
for all (𝑎, 𝑏) in ℓ0 × ℓ1, LAT[𝑎, 𝑏] = 0.

We restrict ourselves to cases where the maximum LAT coefficient or differential uniformity
of 𝑠 is high. Indeed, this restriction ensures that the functions we study are “weak”, which
would be the case if it consisted only in few simple operations. In fact, we found that
for appropriate choices of 𝑣 and 𝑧, the differential uniformity and the maximum LAT
coefficient are respectively above 120 and 80, while typical values for a random permutation
would be in the vicinity of 12 and 32 respectively.

The idea behind the search for vector spaces of zeroes is of course to identify possible
linear layers to apply before and/or after 𝑠 in such a way that the resulting permutation has
a TU-decomposition. To do so, we used a variant of the algorithm described in [BPU16]
to recover part of the linear layer used to whiten a 4-round Feistel Network.

Among the pairs (𝑧, 𝑣) such that ℓ0 and ℓ1 were large enough, some were such that
ℓ0 = [0, 15] and ℓ1 = 𝒱, where 𝒱 = {00, 1𝑎, 20, 3𝑎, 44, 5𝑒, 64, 7𝑒, 8𝑎, 90, 𝑎𝑎, 𝑏0, 𝑐𝑒, 𝑑4, 𝑒𝑒, 𝑓4}
(using hexadecimal notations) is the vector space corresponding to the indices of the
lines found in the Jackson Pollock representation during the original decomposition of 𝜋
in [BPU16]. The inverse of the final linear layer 𝜔 of this decomposition can therefore
be composed with such permutations 𝑠 to obtain new permutations for which a TU-
decomposition exists.

Furthermore, it is possible to find a 4× 4 linear layer 𝐿𝑢 such that 𝑥 ↦→ (𝐿𝑢 ∘𝑈𝑘)(𝑥) =
𝑥�𝑞′(𝑘) for some 4-bit function 𝑞′. However, the only pair 𝑣, 𝑧 for which 𝑞′ is a permutation
is 𝑣 = 𝑤, 𝑧 = 16, in which case 𝑞′ has the following look-up table:

𝑞′ = {4, 14, 5, 12, 3, 10, 2, 9, 8, 1, 7, 6, 15, 0, 13, 11}.

Therefore, if we compose 𝑠 with the inverse of 𝐿𝑢 on the right side and the inverse of
𝑞′ on the left one, we obtain a new permutation whose TU-decomposition is such that

4We did consider that 𝜋 might consist in a pseudo-exponential preceded by another permutation, unlike
here where it is followed. This line of investigation did not lead to any decomposition.

Léo Perrin and Aleksei Udovenko 117

𝑈𝑘(𝑥) = 𝑥 � 𝑘, which is simpler than in the previous decomposition. Unfortunately, 𝑇
remains a strange object:

𝑇𝑘((−1)× 𝑥) =

⎧⎪⎨⎪⎩
15, if 𝑥 + 𝑘 = 16,

𝑥� 1, if 𝑥 + 𝑘 > 16,

𝑥, otherwise,

where + denotes addition without a modulo and where 𝑥× 𝑦 = 𝑥× 𝑦 mod 16. The full
codebook of 𝑇 is provided in Figure 8b. As we can see, each permutation 𝑇𝑘 is obtained
from the identity by inserting 15 at position 17−𝑘 (except for 𝑇0), much like 0 is inserted at
an arbitrary position in a pseudo-exponential substitution. The complete decomposition is
summarized in Algorithm 3 and Figure 8a. It is also implemented, along with the previous
decomposition, by the SAGE script in Appendix C. The arithmetic layer of Algorithm 3 is
quite sparse: 𝑈𝑘 is merely a modular addition and 𝑇𝑘 is simply derived from the identity.
In fact, it has a differential with probability 1/2.

Algorithm 3 Computing the S-Box 𝑦 = 𝜋(𝑥) using a second decomposition.
(𝑙||𝑟)← log𝑤,16(𝑥)
𝑙← (−𝑙) mod 16
if 𝑙 + 𝑟 = 16 then

𝑙← 15
else if 𝑙 + 𝑟 > 16 then

𝑙← (𝑙 − 1) mod 16
end if
𝑟 ← (𝑙 + 𝑟) mod 16
𝑙← 𝑞′−1(𝑙)
𝑦 ← 𝜔′(𝑙||𝑟)
return 𝑦

𝜔′

⊗−1

�

𝑞′−1

log𝑤,16

𝑇

(a) High level view.

0 1 2 3 4 5 6 7 8 9 a b c d e f
𝑇0 0 1 2 3 4 5 6 7 8 9 a b c d e f
𝑇1 0 1 2 3 4 5 6 7 8 9 a b c d e f
𝑇2 0 1 2 3 4 5 6 7 8 9 a b c d f e
𝑇3 0 1 2 3 4 5 6 7 8 9 a b c f d e
𝑇4 0 1 2 3 4 5 6 7 8 9 a b f c d e
𝑇5 0 1 2 3 4 5 6 7 8 9 a f b c d e
𝑇6 0 1 2 3 4 5 6 7 8 9 f a b c d e
𝑇7 0 1 2 3 4 5 6 7 8 f 9 a b c d e
𝑇8 0 1 2 3 4 5 6 7 f 8 9 a b c d e
𝑇9 0 1 2 3 4 5 6 f 7 8 9 a b c d e
𝑇𝑎 0 1 2 3 4 5 f 6 7 8 9 a b c d e
𝑇𝑏 0 1 2 3 4 f 5 6 7 8 9 a b c d e
𝑇𝑐 0 1 2 3 f 4 5 6 7 8 9 a b c d e
𝑇𝑑 0 1 2 f 3 4 5 6 7 8 9 a b c d e
𝑇𝑒 0 1 f 2 3 4 5 6 7 8 9 a b c d e
𝑇𝑓 0 f 1 2 3 4 5 6 7 8 9 a b c d e

(b) The code-book of the block-cipher 𝑇 .

Figure 8: Another decomposition of 𝜋.

5.4 Analysis of the New Decompositions
The new decompositions have less “information-heavy” elements - one 4-bit S-Box and
one linear layer instead of four and two respectively in the decomposition from [BPU16]
(see Figure 7).

118Exponential S-Boxes: a Link Between the S-Boxes of BelT and Kuznyechik/Streebog

The new decompositions contain a central layer consisting of several arithmetic opera-
tions whose purpose is not clear. Interestingly, the finite field logarithms or exponentials
do not have TU-decompositions, but one appears when the arithmetic layer is added. It
is therefore possible that these were added so as to build S-Boxes with better hardware
implementations such as the original decomposition [BPU16].

The relationship between our decompositions and the original one is anything but
obvious. While the final linear layers are related, the remainder is utterly different: two
4-bit finite field multiplications, 5 random-looking 4-bit S-Boxes and a multiplexer turn
out to be functionally equivalent to a pseudo logarithm followed by modular arithmetic
and a 4-bit S-Box. The relation between the two representations would have been clearer
if the modular arithmetic layer had been placed before the pseudo-logarithm: the finite
field multiplications then would have been performed on logarithm tables. It is not the
case: removing the final linear layer exposes directly a modular addition in the new
decompositions.

We also note that the function 𝜋−1 ∘ log𝑤,16 is extremely weak from a cryptographic
perspective. Its coordinates have an algebraic degree as low as 3, it is differentially 128-
uniform and its highest linear bias is 96/128. We deduce that, in some sense, 𝜋 is “close”
to log𝑤,16. On the other hand, a permutation picked uniformly should yield a random
looking S-Box when composed with log𝑤,16.

Our results show that the algebraic structure, whose presence was known thanks
to [PUB16], is stronger than hinted in this paper. The permutation 𝜋 may have been
built using one of the known decompositions. However, we think it more likely that each
of these decompositions is a consequence of a strong algebraic structure used to design
it, probably one related to a finite field exponential. Still this “master decomposition”,
from which the other would be consequences, remains elusive. Unfortunately, unless the
Russian secret service release their design strategy, their exact process is likely to remain
a mystery, if nothing else because of the existence of alternative decompositions: which
exists by design and which is a mere side-effect of this design?

6 Conclusions
We have analyzed the S-Boxes 𝜋 and 𝐻 used by the standard cipher of Russia (Kuznyechik)
and Belarus (BelT) respectively.

As our main result, we found a common structure linking these S-Boxes and deduced
two new decompositions of 𝜋 based on a finite field exponentiation. These decompositions
improve previous results by Biryukov et al.[BPU16] and strengthen the idea that 𝜋 has
a strong algebraic structure hardly compatible with the claims of randomness of the
designers. We could not find sensible explanations for using a structure from any of our
decompositions as an S-Box.

These results highlight the importance of the “nothing-up-my-sleeve” idea whereby
constants and indeed S-Boxes should be chosen in such a way as to convince readers that
no weaknesses were introduced in their design. This concept has received a lot of attention
recently through the study of so-called rigid design procedures for elliptic curves intended
to prevent the insertion of backdoors. Using this concept, we can conclude that the S-Box
of Kuznyechik and Streebog lacks rigidity.

Acknowledgement
The authors thank the ToSC reviewers for their detailed comments which helped signifi-
cantly improve the clarity of this paper.

Léo Perrin and Aleksei Udovenko 119

The work of Léo Perrin is supported by the CORE project ACRYPT (ID C12-15-
4009992) funded by the Fonds National de la Recherche, Luxembourg. The work of Aleksei
Udovenko is supported by the Fonds National de la Recherche, Luxembourg (project
reference 9037104).

References
[AA04] Sergey Agievich and Andrey Afonenko. Exponential S-boxes. Cryptology

ePrint Archive, Report 2004/024, 2004. http://eprint.iacr.org/2004/
024.

[AA38] S.V. Agievich and A.A. Afonenko. О свойствах экспоненциальных под-
становок [On properties of the exponential S-Boxes]. In Вести НАН Бела-
руси [News of National Academy of Sciences of Belarus], volume 1, pages
106–112. National Academy of Sciences of Belarus, 2005 (It is available at
http://elib.bsu.by/handle/123456789/24138).

[AGMH40] S.V. Agievich, V.A. Galinskiy, N.D. Mikulich, and Y.S. Harin. Алгоритм
блочного шифрования BelT [Block Cipher BelT]. In Управление защитой
информации [Information Security Management], volume 6, pages 407–412.
2002 (It is available at http://elib.bsu.by/handle/123456789/24140).

[AY15] Riham AlTawy and Amr M Youssef. A meet in the middle attack on reduced
round Kuznyechik. IEICE TRANSACTIONS on Fundamentals of Electronics,
Communications and Computer Sciences, 98(10):2194–2198, 2015.

[BCC10] Céline Blondeau, Anne Canteaut, and Pascale Charpin. Differential properties
of power functions. International Journal of Information and Coding Theory,
1(2):149–170, 2010.

[BDCBP03] Alex Biryukov, Christophe De Cannière, An Braeken, and Bart Preneel. A
Toolbox for Cryptanalysis: Linear and Affine Equivalence Algorithms, pages
33–50. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[Bel11] Belarusian State University, National Research Center for Applied Prob-
lems of Mathematics and Informatics. “Information technologies. Data
protection. Cryptographic algorithms for encryption and integrity con-
trol.”. State Standard of Republic of Belarus (STB 34.101.31-2011), 2011.
http://apmi.bsu.by/assets/files/std/belt-spec27.pdf.

[BP15] Alex Biryukov and Léo Perrin. On Reverse-Engineering S-Boxes with Hidden
Design Criteria or Structure. In Rosario Gennaro and Matthew Robshaw,
editors, Advances in Cryptology – CRYPTO 2015, volume 9215 of Lecture
Notes in Computer Science, pages 116–140. Springer Berlin Heidelberg, 2015.

[BPU16] Alex Biryukov, Léo Perrin, and Aleksei Udovenko. Advances in Cryptology –
EUROCRYPT 2016: 35th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12,
2016, Proceedings, Part I, chapter Reverse-Engineering the S-Box of Streebog,
Kuznyechik and STRIBOBr1, pages 372–402. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2016.

[BR00] Paulo S. L. M. Barreto and Vincent Rijmen. The Whirlpool hashing function.
In First open NESSIE Workshop, Leuven, Belgium, volume 13, page 14, 2000.

http://eprint.iacr.org/2004/024
http://eprint.iacr.org/2004/024
http://elib.bsu.by/handle/123456789/24138
http://elib.bsu.by/handle/123456789/24140
http://apmi.bsu.by/assets/files/std/belt-spec27.pdf

120Exponential S-Boxes: a Link Between the S-Boxes of BelT and Kuznyechik/Streebog

[BS91] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosys-
tems. Journal of CRYPTOLOGY, 4(1):3–72, 1991.

[CDL15] Anne Canteaut, Sébastien Duval, and Gaëtan Leurent. Construction of
lightweight s-boxes using Feistel and MISTY structures. In Orr Dunkelman
and Liam Keliher, editors, Selected Areas in Cryptography - SAC 2015 -
22nd International Conference, Sackville, NB, Canada, August 12-14, 2015,
Revised Selected Papers, volume 9566 of Lecture Notes in Computer Science,
pages 373–393. Springer, 2015.

[CF09] Claude Carlet and Keqin Feng. An infinite class of balanced vectorial
boolean functions with optimum algebraic immunity and good nonlinear-
ity. In Yeow Meng Chee, Chao Li, San Ling, Huaxiong Wang, and Chaoping
Xing, editors, Coding and Cryptology: Second International Workshop, IWCC
2009, Zhangjiajie, China, June 1-5, 2009. Proceedings, pages 1–11. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009.

[DD13] V. Dolmatov and A. Degtyarev. GOST R 34.11-2012: Hash Function. RFC
6986 (Informational), August 2013.

[Dev16] The Sage Developers. SageMath, the Sage Mathematics Software System
(Version 7.2), 2016. http://www.sagemath.org.

[Dol10a] V. Dolmatov. GOST R 34.11-94: Hash Function Algorithm. RFC 5831
(Informational), March 2010. Updated by RFC 6986.

[Dol10b] V. Dolmatov. GOST R 34.12-2015: Block Cipher “Kuznyechik”. (Informa-
tional), March 2010. Updated by RFC 6986.

[DR02] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the advanced
encryption standard. Springer, 2002.

[DR07] Joan Daemen and Vincent Rijmen. Probability distributions of correlation
and differentials in block ciphers. Journal of Mathematical Cryptology JMC,
1(3):221–242, 2007.

[Fed12] Federal Agency on Technical Regulation and Metrology. GOST R 34.11-2012:
Streebog hash function, 2012. https://www.streebog.net/.

[Fed15] Federal Agency on Technical Regulation and Metrology (GOST). Block Ci-
phers, 2015. http://www.tc26.ru/en/standard/draft/ENG_GOST_R_bsh.
pdf.

[FLY09] Keqin Feng, Qunying Liao, and Jing Yang. Maximal values of generalized
algebraic immunity. Designs, Codes and Cryptography, 50(2):243–252, 2009.

[HN10] Risto M. Hakala and Kaisa Nyberg. On the nonlinearity of discrete log-
arithm in F2𝑛 . In Claude Carlet and Alexander Pott, editors, Sequences
and Their Applications – SETA 2010: 6th International Conference, Paris,
France, September 13-17, 2010. Proceedings, pages 333–345. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010.

[KK13] Oleksandr Kazymyrov and Valentyna Kazymyrova. Algebraic Aspects of
the Russian Hash Standard GOST R 34.11-2012. IACR Cryptology ePrint
Archive, 2013:556, 2013.

[Mas69] J. Massey. Shift-register synthesis and bch decoding. IEEE Transactions on
Information Theory, 15(1):122–127, Jan 1969.

https://www.streebog.net/
http://www.tc26.ru/en/standard/draft/ENG_GOST_R_bsh.pdf
http://www.tc26.ru/en/standard/draft/ENG_GOST_R_bsh.pdf

Léo Perrin and Aleksei Udovenko 121

[Mat94] Mitsuru Matsui. Linear cryptanalysis method for des cipher. In Advances in
Cryptology – EUROCRYPT’93, pages 386–397. Springer, 1994.

[NSA98] National Security Agency National Security Agency. SKIPJACK and KEA
Algorithm Specifications, 1998.

[Nyb94] Kaisa Nyberg. Differentially uniform mappings for cryptography. In Advances
in cryptology — Eurocrypt’93, pages 55–64. Springer, 1994.

[OGK+15] Roman Oliynykov, Ivan Gorbenko, Oleksandr Kazymyrov, Victor Ruzhentsev,
Oleksandr Kuznetsov, Yurii Gorbenko, Oleksandr Dyrda, Viktor Dolgov, An-
drii Pushkaryov, Ruslan Mordvinov, and Dmytro Kaidalov. A new encryption
standard of ukraine: The kalyna block cipher. Cryptology ePrint Archive,
Report 2015/650, 2015. http://eprint.iacr.org/2015/650.

[PUB16] Léo Perrin, Aleksei Udovenko, and Alex Biryukov. Advances in Cryptology
– CRYPTO 2016: 36th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, chapter Crypt-
analysis of a Theorem: Decomposing the Only Known Solution to the Big
APN Problem, pages 93–122. Springer Berlin Heidelberg, Berlin, Heidelberg,
2016.

[RBF08] Vincent Rijmen, Paulo S.L.M. Barreto, and Décio L. Gazzoni Filho. Rota-
tion symmetry in algebraically generated cryptographic substitution tables.
Information Processing Letters, 106(6):246 – 250, 2008.

[Saa15] Markku-Juhani O Saarinen. STRIBOB: Authenticated encryption from GOST
R 34.11-2012 LPS permutation. In Математические вопросы криптографии
[Mathematical Aspects of Cryptography], volume 6, No. 2, pages 67–78. Steklov
Mathematical Institute of Russian Academy of Sciences, 2015.

[SB15] Markku-Juhani O. Saarinen and Billy Bob Brumley. Secure IT Systems: 20th
Nordic Conference, NordSec 2015, Stockholm, Sweden, October 19–21, 2015,
Proceedings, chapter WHIRLBOB, the Whirlpool Based Variant of STRIBOB,
pages 106–122. Springer International Publishing, Cham, 2015.

[SSA+07] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata.
The 128-bit blockcipher clefia. In Fast software encryption, pages 181–195.
Springer, 2007.

[TCG92] Anne Tardy-Corfdir and Henri Gilbert. A known plaintext attack of feal-4 and
feal-6. In Joan Feigenbaum, editor, Advances in Cryptology – CRYPTO’91,
volume 576 of Lecture Notes in Computer Science, pages 172–182. Springer
Berlin Heidelberg, 1992.

http://eprint.iacr.org/2015/650

122Exponential S-Boxes: a Link Between the S-Boxes of BelT and Kuznyechik/Streebog

A Generating 𝐻 Using a Pseudo-Exponential
The following SAGE [Dev16] script generates and prints 𝐻. It relies on the Pseudo-
Exponential decomposition.

from sage.all import *

def applymat(x, mat):
x = [int(bool(x & (1 << i))) for i in xrange(mat.ncols())][::-1]
y = mat * vector(GF(2), x)
return sum(1 << i for i, b in enumerate(y[::-1]) if b)

gamma = Matrix(GF(2), 8, 8, [
[1, 1, 1, 0, 1, 1, 1, 0],
[1, 1, 0, 1, 1, 1, 0, 0],
[1, 0, 1, 1, 1, 0, 0, 0],
[0, 1, 1, 1, 0, 0, 0, 1],
[1, 1, 1, 0, 0, 0, 1, 1],
[1, 1, 0, 0, 0, 1, 1, 1],
[1, 0, 0, 0, 1, 1, 1, 0],
[0, 0, 0, 1, 1, 1, 0, 1],

])

X = GF(2).polynomial_ring().gen()
F = GF(2**8, name="a", modulus=X**8 + X**6 + X**5 + X + 1)
g = 0x4a

H = [(F.fetch_int(g)**x).integer_representation() for x in xrange(1, 2**8)]
H.insert(10, 0)
H = [applymat(H[x], gamma) for x in xrange(0, 256)]
print H

B Generating 𝐻 Using LFSR
The following SAGE [Dev16] script is proposed by an anonymous reviewer. It generates
and prints 𝐻 using the LFSR-based decomposition described by the designers.

from sage.all import *

toF2 = lambda u: [GF(2)(x) for x in u]
S0 = lfsr_sequence(toF2([1,0,1,1,0,0,1,0,1]),toF2([1,0,0,0,0,0,1,1]),255)
S = [S0[11*i:]+S0[:11*i] for i in range(8)]
H = [sum(Integer(S[j][i])<<j for j in range(8)) for i in range(255)]
H.insert(10,0)
print H

C Generating 𝜋 Using a Pseudo-Logarithm
The following SAGE [Dev16] script generates and prints 𝜋.

from sage.all import *

def applymat(x, mat):
x = [int(bool(x & (1 << i))) for i in xrange(mat.ncols())][::-1]
y = mat * vector(GF(2), x)
return sum(1 << i for i, b in enumerate(y[::-1]) if b)

Léo Perrin and Aleksei Udovenko 123

F8 = GF(2**8, name=’a’)
toF = F8.fetch_int
fromF = lambda x: x.integer_representation()

first decomposition

g = toF(2)
exp = [0] + [fromF(g**x) for x in xrange(1, 2**8)]
log = [exp.index(x) for x in xrange(256)]

beta_inv = matrix(GF(2), 8, 8, [
[1, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 1, 1, 0],
[1, 0, 0, 0, 1, 0, 0, 1],
[0, 0, 1, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 1, 1, 0],
[1, 0, 1, 0, 0, 0, 1, 1],
[0, 0, 0, 1, 0, 0, 0, 0],

])
q_inv = [14, 15, 1, 6, 9, 7, 5, 13, 10, 2, 3, 8, 0, 4, 12, 11]

sbox = []
for x in xrange(256):

x = log[x]
l, r = x >> 4, x & 0xf

l = (l - r) % 16
if l != 0:

l = (l + r - 1) % 15 + 1
else:

r = (r - 1) % 16
r = (r - l) % 16

l = q_inv[l]
y = applymat((l << 4) | r, beta_inv)
sbox.append(y)

print "S-Box:", sbox

second decomposition

pseudo_exp = [fromF(g**x) for x in xrange(1, 2**8)]
pseudo_exp.insert(16, 0)
pseudo_log = [pseudo_exp.index(x) for x in xrange(256)]

omega_prime = Matrix(GF(2), 8, 8, [
1,0,1,0,0,0,0,0,
0,1,0,0,0,0,0,0,
0,0,0,0,1,1,1,0,
1,0,1,0,1,0,0,1,
1,0,0,0,0,0,0,0,
0,1,0,0,0,1,1,0,
0,0,1,0,0,0,1,1,
0,0,0,1,0,0,0,0,

124Exponential S-Boxes: a Link Between the S-Boxes of BelT and Kuznyechik/Streebog

])
q2_inv = [13, 9, 6, 4, 0, 2, 11, 10, 8, 7, 5, 15, 3, 14, 1, 12]

sbox2 = []
for x in xrange(0, 256):

y = pseudo_log[x]
l, r = y >> 4, y & 0xf
l = (-l) % 16
if l+r == 16:

l = 0xf
elif l+r > 16:

l = (l-1) % 16
r = (r + l) % 16
l = q2_inv[l]
y = applymat((l << 4) | r, omega_prime)
sbox2.append(y)

print "S-Box2: ", sbox2

	Introduction
	Notations and Definitions
	Ciphers Description
	Description of Kuznyechik
	Description of BelT

	Studying the S-Box of BelT
	Looking at Lines/Columns
	Alternative DDT
	The Actual Structure of H

	An Exponential in the S-Box of Kuznyechik/Streebog
	Finding exponential patterns in pi inverse
	Obtaining a First Decomposition of pi
	Another Decomposition of pi
	Analysis of the New Decompositions

	Conclusions
	Generating H Using a Pseudo-Exponential
	Generating H Using LFSR
	Generating pi Using a Pseudo-Logarithm

