
AN APPROACH TO INFORMATION
RETRIEVAL AND QUESTION ANSWERING

IN THE LEGAL DOMAIN

Adebayo Kolawole John, Luigi Di Caro, Guido Boella, and Cesare Bartolini

Dipartimento di Informatica, Universita Di Torino
Corso Svizzera 185, Torino, 10149, Italy

{kolawolejohn.adebayo}@unibo.it, {dicaro,guido.boella}@di.unito.it,
{cesare.bartolini}@uni.lu,

Abstract. We describe in this paper, a report of our participation at
COLIEE 2016 Information Retrieval (IR) and Legal Question Answer-
ing (LQA) tasks. Our solution for the IR part employs the use of a
simple but effective Machine Learning (ML) procedure. Our Question
Answering solution answers ”YES or ’NO’ to a question, i.e., ’YES’ if
the question is entailed by a text and ’NO’ otherwise. With recent exploit
of Multi-layered Neural Network systems at language modeling tasks, we
presented a Deep Learning approach which uses an adaptive variant of
the Long-Short Term Memory (LSTM), i.e. the Child Sum Tree LSTM
(CST-LSTM) algorithm that we modified to suit our purpose. Addition-
ally, we benchmarked this approach by handcrafting features for two
popular ML algorithms, i.e., the Support Vector Machine (SVM) and
the Random Forest (RF) algorithms. Even though we used some features
that have performed well from similar works, we also introduced some se-
mantic features for performance improvement. We used the results from
these two algorithms as the baseline for our CST-LSTM algorithm. All
evaluation was done on the COLIEE 2015 training and test sets. The
overall result confirms the competitiveness of our approach.

Keywords: Child-Sum tree lstm, Information Retrieval, textual entail-
ment

1 Introduction

COLIEE is an annual competition1 for legal Information Extraction (IE) and
Retrieval. COLIEE 2016 focuses on two main tasks, i.e. Textual Entailment
(TE) and Information Retrieval (IR) all proposed as a form of Legal question
answering task. The organizers divided the task into three sub-tasks, i.e., sub-
task one involves reading a legal bar exam question Q, presented as a query, and
extracting a subset of the Japanese Civil Code Articles C1,C2,C3...,Cn from the
entire Civil Codes made available in the COLIEE Dataset. The set of civil codes
retrieved by the system must sufficiently answer the initial query Q.

1 collocated with the JURISIN workshop

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/78371809?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Lecture Notes in Computer Science: Authors’ Instructions

Sub-Task two advances this objective by identifying entailment relationship
between an article or a set of articles and a given query, e.g., Ef (C1, C2,C3...,Cn,
Q), where Ef is the entailment function that produces a True or False answer.
The third combines the efforts of the first and second tasks. For the tasks, the
organizers released a corpus of Japanese Legal Civil Code Articles, the articles
have been translated into English for obvious reasons.

This paper presents a report of our participation in the first and second
tasks, as well as a description of the systems we developed for these tasks. The
remaining parts of the paper is structured as follows. In section 2, we succinctly
describe the general IR procedure and our own approach. Next, we describe
the TE problem and the state of the arts. This is followed by elucidation of
the features used for the SVM and RF classification and subsequently the Deep
Learning approach presented. Finally, we discuss the Experiments and the results
obtained.

2 Task 1- Information Retrieval

Information Retrieval (IR) involves retrieving a set of item(s), usually from
among multiple options such that the result satisfies a user’s information need
(Query). Earliest approach to IR involves the use of Lexical Matching or Key-
word Search. This is however grossly inefficient as it is not robust to Natural
Language ambiguities (i.e., synonymy and polysemy). The Bag of Word (BOW)
based models such as LSA [8] and Term Frequency Inverse Document Frequency
(TFIDF) partially overcome this ambiguities by grouping terms that occur in a
similar context into the same semantic cluster based on their vector represen-
tation in the semantic space. Topic Modeling approaches have also been used
[18, 1]. The idea here is to probabilistically assign topics to documents as well
as query based on their term composition. Similar documents tends to belong
to similar topics, thus, the task would be to retrieve documents with similar
topics to the query. LDA [4], a generative probabilistic algorithm excel in this
category. Since the Query is usually a fraction of the document, a common ap-
proach for improving retrieval accuracy is by Query Expansion which uses the
Part-of-Speech (POS) to retrieve synonyms for Query enrichment. While this
partially helps, the approaches still do not necessarily capture the full seman-
tics of a language since they discard useful information about word order and
context without word-sense disambiguation. Recently, Machine Learning tech-
niques are being employed to overcome this barrier, e.g., the authors in [9, 31]
proposes Deep Learning (DL) architectures. There are now evolving some IR
systems which can arguably be classified as Question Answering (QA) systems.
These systems exploits the massive set of structured information2 available on
some Knowledge Base (KB) like the DBPedia, Freebase, Wikipedia and Babel-
Net etc., to retrieve information about any Query. QAKIS [6] and DEQA [19]

2 These information are serialized as structured SPO triples e.g., Subject-Predicate-
Object facts.

Lecture Notes in Computer Science: Authors’ Instructions 3

are examples of these systems and should not be confused with the demand of
the underlying task.

While encouraging results have been reported with DL techniques, these
systems generalizes better when trained on a large dataset. However, COLIEE
training data is different in that the set of documents to be queried are not
documents in actual sense but Japanese Civil Codes, each containing less than 4
sentences. Also, the total number of articles available is very small, actually less
than 500 instances. Our idea is that a simple challenge should not be approached
with a rather too complex system. More so, simple solutions in NLP (e.g. N-gram
models) often compete favourably with some complex techniques. We submitted
three runs using simple machine learning approaches. We describe our solution
below.

2.1 Distributed Representation and Information Retrieval

It can be argued that IR is about finding semantic connection between a query
and some document(s) in a corpus. In our case, the corpus to be queried is the set
of Japanese Civil Codes. We limit ourselves to finding the most related of the civil
codes to the query. As earlier explained, modeling language as BOW trades away
several useful contextual information which Humans find useful in aggregating
meaning. An obvious choice is to take advantage of the distributed representation
of words. Distributional Semantics rely on the idea that words within proximity
usually have similar meaning [33]. With application of Neural Networks, it is now
possible for a language models to learn high dimensional representation of words
and their relationships such that semantically related words are transformed
into similar vector representations. Specifically, such representation has greatly
shown to capture semantic relatedness and similarity, thus overcoming sparsity
problems in atomic representation. The Word2Vec3 [23] is a popular algorithm
for inducing such vector space representations of words, commonly known as
word embeddings. The method exploits the Distributional Hypothesis [33] and
works best when trained on large corpora. Furthermore, algebraic computations
could be performed on the embeddings, which still retain the latent semantic
characteristics of the vectors, e.g., Man + King - Woman = Queen. Also, relying
on compositionality4 of words [11], atomic vectors could be combined to generate
phrasal or sentential representation. This ensures that the meaning of words are
not captured in isolation, since the true meaning of a sentence must take into
account the interplay between the words it contains [25, 26, 11].

Our task is thus to generate a sentential representation for all the Articles
as well as queries, with an hypothetical assumption that sentential vectors of
semantically related articles and queries would point to the same direction. In
other words, we simply create a mapping between the Article(s) representation
and the query representation. Since this representations are vectors, a simple
choice is to measure the distance between that of a query and each Article with

3 Word2vec is available at https://code.google.com/p/word2vec/
4 e.g., man + marry + woman is closer to the vectors of child than car.

4 Lecture Notes in Computer Science: Authors’ Instructions

metrics like the Cosine Similarity and then rank the scores. However, this may
not generalize as expected. Without loss of generality, our embedding based
approach is able to capture the relatedness between embeddings of query to
some document even with little feature generation.

First, we describe how to generate the word embedding. we used a combi-
nation of the training and test data as well as 19,348 documents from Eur-Lex
dataset5. There is no specificity in the choice other than we needed a fair col-
lection of legal text to train the Word2Vec algorithm on. Moreover, this is still
by order of magnitude a very small amount of data for proper distributed rep-
resentation. We used the Gensim6 implementation of the algorithm.7 Gensim
implements a variant of the algorithm known as Skip-Gram, which trains word
representations using a model that when given a word will predict what words
are likely to occur within a fixed window around it.8

2.2 Model Description

Assume that each Article (hence Document) contains words xi,xi+1,xi+2,xi+3...xn.
We associate each word w in our vocabulary with a vector representation xw ∈
Rd. Each xw is of dimension d × V of the word embedding matrix We, where V
is the size of the vocabulary. For each Document D, we generate a representation
by performing an element wise sum of each xw ∈ D. We normalize the resulting
vector sum by the length of the sequence such that

si =
1

|n|

|n|∑
i=1

xi, si ∈ Rd×V (1)

where si denotes the embedding representation of a sentence. In the COLIEE
dataset for subtask 1, each Document is associated to Label. Actually, since the
original XML document contains pairs of tag t1 (article) and t2 (hypothesis),
it is possible to have more than one articles within a t1 tag. In this case, we
exclusively separate each article as an independent document along with their
subheading and labels as below. The number and phrase in bold are the label
and the title respectively, followed by the main text:
265 Content of Superficies A superficiary shall have the right to use the
land of others in order to own structures, or trees or bamboo, on that land.

5 http://www.ke.tu-darmstadt.de/resources/eurlex
6 Gensim is a python library for an array of NLP tasks. It is available at

https://radimrehurek.com/gensim/
7 Parameters used: Context Window: 5, Neural Network layer size: 50, Minimum word

count: 5.
8 Skip-gram training generally performs better than an alternative Word2Vec model

known as Continuous-Bag-of-Words (CBOW) that uses an alternative objective that
tries to predict a word by conditioning on all of the words that surround it within a
window.

Lecture Notes in Computer Science: Authors’ Instructions 5

As the titles carry important information, we combined them with the main
text to form each complete article.

Based on our observation of the training sample, none of the articles have
more than one unique labels, We therefore approach the problem as a modest
multi-class classification task, i.e., Given a training data set of the form (di,yi),
where di ∈ RD is the ith example and yi ∈ {1, . . . , K} is the ith class label,
we aim at finding a learning model H such that H(qi) = yi, where an unseen
example qi ∈ RQ is a query instance which by our assumption correlates to a
document di and Q is the set of all the queries. Our goal is for H to capture
semantic relatedness between (di, qi).

In order to avoid excessive feature generation, we use the sentential repre-
sentation, si of each article. Recall that this representation is a sum over all
individual word vectors xw for each document di. Additional, we use 4 simple
features used to capture the semantic distance of each article to another. To do
this, we obtained a corpus representation Dc, where like we did for each docu-
ment, Dc is a sum over all the vectors of each di ∈ RD. Likewise, we obtained
a representation Qc for all the Queries. Using cosine similarity, we measure the
distance between each article and Dc and Qc. The first is to capture how similar
each article is to the semantic space of all articles while the second captures the
gap to the semantic space of all queries. Also, using cosine similarity, we compare
si of each article to other articles, we rank and pick the top two most similar
articles to it. We use the similarity scores these top similar articles as the third
and fourth features. We feed into our classifier, the embedding si of each doc-
ument along with these four features appended. To the best of our knowledge,
we did not encounter any works which uses the embeddings for classification as
we have done here.

For the first two runs, we used the Scikit implementation of Support vector
Machine (SVM) and Random Forest (RF) algorithms as the choice classifiers.
We used Grid-Search to find the optimal set of parameters.

2.3 Word Clustering

Our baseline uses a flat clustering algorithm, K-Means [12]. Only constrained by
the number of clusters K which must be set a priori, it maintains that number
of so-called cluster centroids. The idea is to group related words based on their
distribution in the corpus. Usually, similar documents tends to have similar word
distribution and by extension, cluster distribution. The LDA [4] would have been
a natural choice, being generative. However, we are constrained by the rather
tiny size of data we are working with, especially since LDA performs best with
big training data. We used K-Means cluster size of 15. The algorithm was fed
with a BOW representation of the training documents which was then used to
transform the queries into their cluster representations. The idea is that instead
of comparing the cluster distribution for a query with that of all documents
in the training set, we simply compare with those in the same class and then
calculate the pairwise distance of their vectors with cosine similarity.

6 Lecture Notes in Computer Science: Authors’ Instructions

3 Task 2- Textual Entailment

The sub-task2 is a Textual Entailment (TE) task. TE aims at determining
whether an hypothesis h is entailed by a text t [3]. In fact, most semantic rep-
resentation tasks in NLP can be reduced to a TE task, e.g., text similarity
[15]. Previous works approached TE as a classification task, using hand crafted
features [10] and over relying on knowledge resources [24] e.g., WordNet, etc,.
At times, these features could be as simple as n-gram overlap, string match-
ing, presence of negation words e.g., never, shouldn’t etc., as well as IR tech-
niques such as TFIDF and cosine similarity [14]. The authors in [17] recently
employed a Convolutional Neural Network (CNN) to model entailment relation-
ship on COLIEE dataset, we use their system as a baseline for our results. We
attempted the same problem with two different approaches, i.e., conventional
ML with feature engineering and Deep Learning (DL) technique. For our ML
solution, following similar works, we handcrafted some features typical of mea-
suring similarity between two text snippets., while in the latter, we rely on
the ability of neural networks to autonomously learn latent features from data
for good generalization. We explain the two systems below. TE could be ap-
proached either as a binary classification(YES/NO) or multi-class classification
(YES/NO/NEUTRAL). The organizers proposed a binary classification task.

3.1 Machine Learning Approach

We obtained the following features from the t and h in order to train the RF algo-
rithm. The features include common similarity features, some semantic features
that we introduced as well as a negation feature which captures the occurrence
of words with negative sentiments e.g., Can’t, Should’t etc. We combined the
features and fit into their labels using the RF and SVM algorithms. As in the
previous experiment, we use grid-search for parameter optimization.
String matching :We compare each t and h character by character and ob-
tained the Longest common Substring, Levenshtein Distance as well as Jaccard
Similarity calculated as

Jac =
t ∩ h
t ∪ h

(2)

Word Ordering : We use the union of all tokens in a pair of sentences to build
a vocabulary of non-repeating terms. Building a vector for each sentence, from
their position mapping in the vocabulary. If a vocabulary term is found in the
sentence, the index number of that term in the vocabulary is added to the vector.
Otherwise, similarity of the vocabulary term and each term in the sentence is
calculated using a WordNet based word similarity algorithm. The index number
of the sentence term with highest similarity score above a threshold is added. If
the first two conditions does not hold, 0 is added to the vector.
Word Overlap: We use the word n-gram overlap feature [30]. The n-grams
overlap is defined as the harmonic mean of the degree of mappings between
the first and second sentence and vice versa, requiring an exact string match of

Lecture Notes in Computer Science: Authors’ Instructions 7

n-grams in the two sentences.

Ng(A,B) =

(
2(
| A |
A ∩B

+
| B |
A ∩B

)−1
)

(3)

Where A and B are the set of n-grams in the sentence and hypothesis. We
computed three separate features using equation 2 for each of the following
character n-grams: unigram, bigrams and trigrams. We also use weighted word
overlap which uses information content [28].

wwo(A,B) =

∑
w∈A∩B ic(w)∑
w′∈B ic(w

′)
(4)

ic(w) =

(
ln

∑
w′∈C freq(w

′
)

freq(w)

)
(5)

Where C is the set of words and freq(w) is the occurrence count obtained from the
Brown corpus. Our weighted word overlap feature is computed as the harmonic
mean of the functions wwo(A,B) and wwo(B,A).
POS Overlap: We used the Stanford POS-tagger to tag the words in each
sentence with their POS categories. We group the words by the following coarse
grained POS categories: nouns, verbs, adjectives and adverbs. We then compare
the overlap between these classes of part of speech in each sentence. The POS
overlap features are defined as the Jaccard similarity of the two sentences across
just the words in a particular POS category:

POVpos =
|Apos ∩Bpos|
|Apos ∪Bpos|

(6)

Where Apos and Bpos are the set of terms in POS class pos of sentences 1 and
2, respectively. This results in 4 unique POS overlap features.
Dependency Parsing : We used Stanford Parser [21] to extract the subject-
verb-object triples from each sentence. We compare the subject and object of
both sentences. If any of the objects or subjects in a sentence is a NE, we sim-
ply compare with the corresponding one from the other sentence by pure string
matching. When the same word takes either the role of subject or object in the
two sentences, we assign a flat score of 0.5. If both the subject and object in the
two sentences correspond to the same NEs as in the example above, we assign a
score of 1.0. Otherwise, we assign a score of 0.0.
Word Embedding Similarity : Using the embedding from the Word2Vec model
trained earlier, we obtained the cosine of the semantic representation of both the
text and hypothesis. Where the semantic representation is an additive and mul-
tiplicative composition of words in each sentence.
WordNet similarity : Based on the ideas in [20], we obtained WordNet simi-
larity between a text and hypothesis relying both on the path length as well as
the depth function.
Negation Words: We use the presence of negation words to determine if en-
tailment exist. First, we curated a list of negation words and also a dictionary of

8 Lecture Notes in Computer Science: Authors’ Instructions

anti-negation words e.g., nobody:somebody, no one:someone, nothing:something,
no where:somewhere, neither:either etc, each well mapped to its respective nega-
tion word. We normalized all shortened form of a negation word to its true form
e.g., couldn’t -¿ could not etc. In all, we had 22 words. For any negation word
found in t, we look for the same in h and viz versa. Using dependency parsing,
we compare the role of such word in both. If they both have the same semantic
role, we assign a fixed score of 1 and 0 otherwise. Secondly, for any negation
word found in h, we look for the presence of its respective anti-negation word
from the dictionary in t and also if they bear the same dependency roles, we
assign a score 1, otherwise 0. Lastly, we compare the ratio of negation words in
t to h, this behaves like overlap measure.
Vector Space based Similarity : We used the feature extraction module of the
scikit-learn to extract the TFIDF weighted feature vectors for the two sentences
and then calculated the cosine similarity between them:

cos(A,B) =

∑n
t=1 TFIDF (wt,A)TFIDF (wt,B)√∑n

t=1 w
2
t,A

∑n
t=1 w

2
t,B

(7)

Where A and B are the text and hypothesis.

3.2 Deep Learning Approach

Recently, researchers using algorithms like the CNN [16], Recurrent Neural Net-
works (RNN) [22], Long Short-Term Memory (LSTM) [13] have reported encour-
aging results on Language Modeling tasks. Most importantly, [5, 29, 2] showed
that deep Neural architecture can match and outperform lexical classifiers which
use hand-crafted features for TE. Inspired by these results, we employed a variant
of Tree LSTM, the Child-Sum Tree LSTM proposed by Tai et al., [32] and which
was previously applied for semantic relatedness task. Tree-LSTMs are special-
ized LSTMs that adopt the tree-structure topology, i.e., at any given time step
t the LSTM is able to compose its states from input vector and hidden states of
its child-nodes simultaneously. This is unlike the standard LSTM that assumes
a single child per unit. The Child-Sum-Tree LSTMs transition is represented by
the following equation:

ĥj =
∑

k∈C(j)

hk (8)

ij = σ

(
W (i)xj + U (i)ĥj + b(i)

)
(9)

fjk = σ

(
W (f)xj + U (f)ĥk + b(f)

)
(10)

oj = σ

(
W (o)xj + U (o)ĥj + b(o)

)
(11)

Lecture Notes in Computer Science: Authors’ Instructions 9

uj = tanh

(
W (u)xj + U (u)ĥj + b(u)

)
(12)

cj = ij � uj +
∑

k∈C(j)

fjk � ck (13)

hj = oj � tanh cj (14)

Cj are the child-nodes in unit j and k ∈ Cj . In order to generate a semantic
representation for a pair of text and hypothesis, each child of a tree is a node from
a dependency parse tree of a text or hypothesis as well as its child nodes. For each
node, the algorithm takes as input the word vectors. We obtain a representation
(htxt, hhyp) from both the text and hypothesis considering the distance and
angle of their element-wise summed vectors as well multiplied vectors. We use
Neural Network to predict the probability of either +1 or -1 class, where +1
signifies entailment and -1 means Non-entailment. At each node j, we use a
softmax classifier to predict the label ŷj given the inputs xj observed at nodes
in the subtree rooted at j. The classifier takes the hidden state hj at the node
as input, considering both the distance and angle between the pair as shown in
the equations below:

h× = htxt � hhyp,

h+ = htxt + hhyp,

hh = |htxt − hhyp|,

hs = σ

(
W (×)h× +W (×)hh +W (+)h+ + b(h)

)
,

p̂θ = softmax

(
W (p)hs + b(p)

)
,

ŷj = arg max
y

p̂θ(y|xj) (15)

The cost function is given below:

J(θ) = − 1

m

m∑
k=1

(y(k)|x(k)) +
λ

2
||θ||22 (16)

where m = 2, i.e., (YES/NO) and is an L2 norm regularization hyperparameter.

10 Lecture Notes in Computer Science: Authors’ Instructions

4 Experiments

The COLIEE corpuscontains pairs of sentences, i.e., the civil code article well
labeled with an identifier, e.g., ’Article 572’ as well as the query question. The
Query question is ignored for the first task as it serves as the hypothesis for
entailment in the second task. In all, 296 civil code articles each with distinct ID
was released as training data for task one while 490 pairs of civil code articles
an query was made available as training data for the second task. Furthermore,
task 1 has 95 test data while task 2 has 66 test data. Since the organizers did not
release the official Gold standard for the tasks and/or the official performance
evaluation of the submitted systems, we only report an evaluation on the 2015
dataset.

Due to the setup of our IR system, more attention is focused on precision
than recall. For instance, since we approached it as a classification task, the
system only predict an article per query, i.e. even if a query has more than one
related articles, the model only select the one with highest confidence score. In
a way, this can also reduce recall but many unrelated articles can be avoided
from the result set. For the purpose of evaluation, we simply use accuracy score,
which is calculated as the number of correct prediction over the total number of
prediction, i.e., if out of 10 queries, the system got 4 correctly, then the accuracy
0.40. Tables 1, 3 summarizes the result obtained on task 1 and 2. In particular,
Table 3 shows the result on a 5-fold cross validation run for the second subtask.
As shown in table 3, we used the result reported by Kim et al., [17] as our
baseline score since their evaluation was on the same COLIEE data. We observe
a slightly better performance from the DL approach which even outperforms
the baseline system. We performed an ablation test on the features designed in
order to see the best mix. To do this, we made 3 runs by randomly withholding
3 features per time. The table 2 shows the performance of the SVM for each
runs.

Model No of Train Article No of Test Query Accuracy

Run1 (SVM) 296 79 0.521

Run2 (RF) 296 79 0.560

Run3 (KM) 296 79 0.481
Table 1. Task 1 Evaluation

Model Withheld Features Accuracy

Run1 (SVM) Word Embedding Similarity, POS overlap, Dependency parsing 0.460

Run2 (SVM) Negation Words 1 and 2, word overlap 0.51

Run3 (SVM) Negation Words 2, Word Embedding Similarity, Vector space similarity 0.394
Table 2. Feature Ablation Evaluation on Task 1

Lecture Notes in Computer Science: Authors’ Instructions 11

Model Train Test

SVM (Features+) 78.20 68.40

RF (Features+) 76.00 64.19

Child-Sum-Tree LSTM 81.33 70.10

Baseline (Kim et al.,) [17] - 55.87
Table 3. Task 2 Evaluation on COLIEE dataset

We implemented a child-Sum Tree LSTM as proposed by [32]. As earlier
stated, we used our pre-trained word embedding as input vector to the LSTM,
instead of one-hot encoding representation with sequence to sequence learning.
Our embedding has 50 dimension.

For implementation, we used the Keras9 Deep Learning library . Our LSTM
model has an hidden layer size of 300. We used a batch-size of 25. We used
ADAM, a stochastic optimizer with learning rate set at 0.01 and a decay value
of 1e-4 as well as momentum of 0.9. Typically, we set the number of training
epochs to 200. However, throughout the experiments, we track the model for
over-fitting by monitoring the peak accuracy on validation data as well as the
epoch where the model does not seem to learn sufficiently again and accuracy
begins to drop or does not increase anymore. Usually, we pick this epoch for
our test runs. Since the organizers did not include any validation set, we divided
the test data into two. We actually tested on half while the other half was used
as the validation set. As observable, our system is able to generalize even with
little training data. It should be noted that the quality of embedding used as
input also influences the result obtained. However, we did not verify how the
use of a bigger pretrained embedding like the Glove vectors [27] can improve
performance

5 Conclusion

The paper describes our team’s attempt at solving some of the challenges pro-
posed by COLIEE2016 organizers. We participated in two tasks, i.e. IR and TE
which is receiving lots of attention in NLP domain generally. For the first task,
we submitted 3 runs, each based on SVM, RF and K-means clustering which was
used as the baseline. In the second task, we designed some novel features com-
bined and fit into the labels with SVM and RF algorithms. Secondly, we adapted
the Child-sum tree LSTM for the textual entailment task. The result obtained
on a 5-fold cross validation shows that the DL system slightly outperformed the
SVM and RF systems.

Acknowledgments. Kolawole J. Adebayo has received funding from the Eras-
mus Mundus Joint International Doctoral (Ph.D.) programme in Law, Science

9 Keras is a modular but powerful Deep Learning Library built on top of Theano and
Tensorflow. Available at https://github.com/fchollet/keras

12 Lecture Notes in Computer Science: Authors’ Instructions

and Technology. Luigi Di Caro and Guido Boella have received funding from the
European Union’s H2020 research and innovation programme under the grant
agreement No 690974 for the project “MIREL: MIning and REasoning with
Legal texts”.

References

1. Leif Azzopardi, Mark Girolami, and CJ Van Rijsbergen. Topic based language
models for ad hoc information retrieval. In Neural Networks, 2004. Proceedings.
2004 IEEE International Joint Conference on, volume 4, pages 3281–3286. IEEE,
2004.

2. Petr Baudǐs and Jan Šedivỳ. Sentence pair scoring: Towards unified framework for
text comprehension. arXiv preprint arXiv:1603.06127, 2016.

3. Luisa Bentivogli, Peter Clark, Ido Dagan, Hoa Dang, and Danilo Giampiccolo. The
seventh pascal recognizing textual entailment challenge. Proceedings of TAC, 2011,
2011.

4. David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.
Journal of machine Learning research, 3(Jan):993–1022, 2003.

5. Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning.
A large annotated corpus for learning natural language inference. arXiv preprint
arXiv:1508.05326, 2015.

6. Elena Cabrio, Julien Cojan, Alessio Palmero Aprosio, Bernardo Magnini, Alberto
Lavelli, and Fabien Gandon. Qakis: an open domain qa system based on relational
patterns. In Proceedings of the 2012th International Conference on Posters &
Demonstrations Track-Volume 914, pages 9–12. CEUR-WS. org, 2012.

7. Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen Clark. Mathematical foun-
dations for a compositional distributional model of meaning. arXiv preprint
arXiv:1003.4394, 2010.

8. Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and
Richard Harshman. Indexing by latent semantic analysis. Journal of the American
society for information science, 41(6):391, 1990.

9. Jianfeng Gao, Li Deng, Michael Gamon, Xiaodong He, and Patrick Pantel. Mod-
eling interestingness with deep neural networks, June 13 2014. US Patent App.
14/304,863.

10. Miguel Angel Ŕıos Gaona, Alexander Gelbukh, and Sivaji Bandyopadhyay. Rec-
ognizing textual entailment using a machine learning approach. In Mexican Inter-
national Conference on Artificial Intelligence, pages 177–185. Springer, 2010.

11. Edward Grefenstette, Mehrnoosh Sadrzadeh, Stephen Clark, Bob Coecke, and
Stephen Pulman. Concrete sentence spaces for compositional distributional models
of meaning. In Computing Meaning, pages 71–86. Springer, 2014.

12. John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering
algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics),
28(1):100–108, 1979.

13. Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-
putation, 9(8):1735–1780, 1997.

14. Sergio Jimenez, George Duenas, Julia Baquero, Alexander Gelbukh, Av Juan Dios
Bátiz, and Av Mendizábal. Unal-nlp: Combining soft cardinality features for se-
mantic textual similarity, relatedness and entailment. In Proceedings of the 8th
International Workshop on Semantic Evaluation (SemEval 2014), pages 732–742,
2014.

Lecture Notes in Computer Science: Authors’ Instructions 13

15. Adebayo Kolawole John, Luigi Di Caro, and Guido Boella. Normas at semeval-2016
task 1: Semsim: A multi-feature approach to semantic text similarity. Proceedings
of SemEval, pages 718–725, 2016.

16. Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural
network for modelling sentences. arXiv preprint arXiv:1404.2188, 2014.

17. Mi-Young Kim, Ying Xu, and Randy Goebel. A convolutional neural network in
legal question answering.

18. Mi-Young Kim, Ying Xu, and Randy Goebel. Legal question answering using
ranking svm and syntactic/semantic similarity. In JSAI International Symposium
on Artificial Intelligence, pages 244–258. Springer, 2014.

19. Jens Lehmann, Tim Furche, Giovanni Grasso, Axel-Cyrille Ngonga Ngomo, Chris-
tian Schallhart, Andrew Sellers, Christina Unger, Lorenz Bühmann, Daniel Gerber,
Konrad Höffner, et al. Deqa: deep web extraction for question answering. In In-
ternational Semantic Web Conference, pages 131–147. Springer, 2012.

20. Yuhua Li, David McLean, Zuhair A Bandar, James D O’shea, and Keeley Crockett.
Sentence similarity based on semantic nets and corpus statistics. Knowledge and
Data Engineering, IEEE Transactions on, 18(8):1138–1150, 2006.

21. Christopher D Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven
Bethard, and David McClosky. The stanford corenlp natural language processing
toolkit. In ACL (System Demonstrations), pages 55–60, 2014.

22. LR Medsker and LC Jain. Recurrent neural networks. Design and Applications,
2001.

23. Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

24. Shachar Mirkin, Ido Dagan, and Eyal Shnarch. Evaluating the inferential utility
of lexical-semantic resources. In Proceedings of the 12th Conference of the Eu-
ropean Chapter of the Association for Computational Linguistics, pages 558–566.
Association for Computational Linguistics, 2009.

25. Jeff Mitchell and Mirella Lapata. Vector-based models of semantic composition.
In ACL, pages 236–244, 2008.

26. Jeff Mitchell and Mirella Lapata. Language models based on semantic composition.
In Proceedings of the 2009 Conference on Empirical Methods in Natural Language
Processing: Volume 1-Volume 1, pages 430–439. Association for Computational
Linguistics, 2009.

27. Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global
vectors for word representation. In EMNLP, volume 14, pages 1532–43, 2014.

28. Philip Resnik. Using information content to evaluate semantic similarity in a
taxonomy. arXiv preprint cmp-lg/9511007, 1995.

29. Tim Rocktäschel, Edward Grefenstette, Karl Moritz Hermann, Tomáš Kočiskỳ,
and Phil Blunsom. Reasoning about entailment with neural attention. arXiv
preprint arXiv:1509.06664, 2015.

30. Frane Šarić, Goran Glavaš, Mladen Karan, Jan Šnajder, and Bojana Dalbelo Bašić.
Takelab: Systems for measuring semantic text similarity. In Proceedings of the First
Joint Conference on Lexical and Computational Semantics-Volume 1: Proceedings
of the main conference and the shared task, and Volume 2: Proceedings of the Sixth
International Workshop on Semantic Evaluation, pages 441–448. Association for
Computational Linguistics, 2012.

31. Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. A latent
semantic model with convolutional-pooling structure for information retrieval. In
Proceedings of the 23rd ACM International Conference on Conference on Informa-
tion and Knowledge Management, pages 101–110. ACM, 2014.

14 Lecture Notes in Computer Science: Authors’ Instructions

32. Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved seman-
tic representations from tree-structured long short-term memory networks. arXiv
preprint arXiv:1503.00075, 2015.

33. Peter D Turney, Patrick Pantel, et al. From frequency to meaning: Vector space
models of semantics. Journal of artificial intelligence research, 37(1):141–188, 2010.

