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Abstract In this paper we prove a priori estimates for Donaldson equation’s
oA (X +vV—1009)" ! = eF (x +/—1009¢)",

over a compact complex manifold X of complex dimension n, where w and x are arbitrary
Hermitian metrics. Our estimates answer a question of Tosatti-Weinkove (Asian J. Math.
14:19-40, 2010).
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1 Introduction
1.1 Donaldson’s equation over compact Kihler manifolds

Let (X, w) be a compact Kéhler manifold of the complex dimension 7, and x another Kéhler
metric on X. In [3], Donaldson considered the following interesting equation

n—1

oA =cn", [n]=[x], 1.1

where c is a constant, depending only on the Kéhler classes of [x] and [w], given by

A n—1
Czifxw X .

(1.2)
Jx 1"
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868 Y. Li

He noted that a necessary condition for Eq. (1.1) is
ncx —w >0, (1.3)

and then conjectured that the condition (1.3) is also sufficient. For n = 2, Chen [1] observed
that in this case the Eq. (1.1) reduces to a complex Monge-Ampere equation completely
solved by Yau on his celebrated work on Calabi’s conjecture [24].

1.2 J-flow and Donaldson’s equation

To better understand the Eq. (1.1), Donaldson [3] and Chen [1] independently discovered
the J-flow whose critical point gives the Eq. (1.1), and Chen showed that such flow always
exists for all time. Using the J-flow, Chen [2] proved that if n = 2 and the holomorphic
bisectional curvature of  is nonnegative then the J-flow converges to a critical metric. Later,
the curvature assumption was removed by Weinkove [22] and hence gave an alternative proof
of Donaldson’s conjecture on Kéihler surfaces. For higher dimensional case, Weinkove [23]
solved Donaldson’s conjecture on a slightly strong condition

ncx —(m—Dw >0 (1.4)

using the J-flow. For more detailed discussions and related works, we refer to [4-7,15,16].

1.3 Donaldson’s equation over compact Hermitian manifolds

Recently, the complex Monge-Ampere equation over compact Hermitian manifolds was
solved Tosatti and Weinkove [17,18]. Other interesting estimates can be found in [19,25,26].
A parabolic proof was late given by Gill [8] by considering a parabolic complex Monge-
Ampere equation. Other parabolic flows over compact Hermitian manifolds were considered
in [14,19-21], where they obtained lots of interesting results parallel to those in Kihler
case. By Tosatti-Weinkove’s work, the author considers Donaldson’s equation over compact
Hermitian manifolds.

Let (X, ) be a compact Hermitian manifold of the complex dimension n and x another
Hermitian metric on X. We denote by H, the set of all real-valued smooth functions ¢ on X
such that x, := x ++/—199¢ > 0. Locally we have

w=v"lg;:di Adzl, x =~ —ly;dz ndd. (1.5)

For any real positive (1, 1)-form « := «/—laijvdzi A dzf and real (1,1)-form B :=
«/—lﬂi]fdzi Adz) we set

trof 1= o'V 5. (1.6)
We consider Donaldson’s equation
wAxs =" xl peH, (1.7)

on X, where F is a given smooth function on X.
The main result of this paper is the following a priori estimates.

Theorem 1.1 Let (X, w) be a compact Hermitian manifold of the complex dimension n and
X another Hermitian metric. Let ¢ be a smooth solution of Donaldson’s equation (1.7).
Assume that

n—1
X — Fa)>0. (1.8)
ne
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Donaldson’s equation 869

Then

(1) there exist uniform constant A > 0 and C > 0, depending only on X, w, x, and F, such
that

troxy < C- eAlp—infx ). (1.9)
(2) there exists a uniform constant C > 0, depending only on X, w, x, and F, such that
llpllco = C; (1.10)
(3) there are uniform C a priori estimates on ¢ depending only on X, w, x, and F.

Meanwhile, Guan, Li and Sun [9,11-13] considered a priori estimates for Donaldson’s
equation over compact Hermitian manifolds under very general structure conditions rather
than the condition (1.8).

Remark 1.2 As remarked in [17] (see page 22, line 27-28), to prove the zeroth estimate in
Theorem 1.1 it suffices to show the second order estimate on ¢. Our result gives an affirmative
answer to the question in [17] (see page 22, line 28-30). Using the same argument in [17]
(page 33), we can get a C“ estimate on ¢ for some o € (0, 1). Differentiating (1.7) and
applying the standard local elliptic estimates imply uniform C estimates on ¢.

There are some natural questions about the Eq. (1.7). Is condition (1.8) sufficient to
product a solution to (1.7)? When w and x both are Kihler, it has been proved in [2,22,23]
that this condition is sufficient. The second question is to consider a parabolic flow over
compact Hermitian manifolds like the J-flow. Can we prove the long time existence and
convergence of such a flow? Song and Weinkove [ 16] gave anecessary and sufficient condition
for existence of solutions to the Donaldson’s equation over compact Kéhler manifolds (and
also for convergence of the J-flow over compact Kéhler manifolds). The last question then
is whether we can find an analogous of above Song-Weinkove’s condition. Those questions
will be answered later.

Remark 1.3 Here and henceforth, when we say a “uniform constant” it should be understood
to be a constant that depends only on X, w, x, and F. We will often write C or C’ for such a
constant, where the value of C or C’ may differ from line to line. For the relation P < CQ
for a uniform constant C in the above sense, we write it as P < Q. Re(P) means the real
part of P.

2 The second order estimates
2.1 Basic facts and notions

Let (X, ) be a complex Hermitian manifold of the complex dimension n and x another
Hermitian metric on X. For a solution ¢ of Donaldson’s equation (1.7), we denote by

X = x + 1039 = V=1(x; +¢;7)dz AdZ. @.1)

Also, we set Xl.’/-. = Xij + ¢ij- Then we observe that

A nn—1
tryw= n% — 2.2)
X
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870 Y. Li

Consequently, tr,rw is uniformly bounded away from zero and infinity. Let A, denote the
Laplacian operator of the Chern connection associated to the Hermitian metric w, and simi-
larly for A, . Note that

tox' =87 (X7 +¢i7) = Uox + Dug. (23)

Remark 2.1 try,x’ and try @ are uniformly bounded from below away from zero. More
precisely,

/ n _ F
tryx = oF ryyw=ne . 24

The second assertion follows from (2.2), while the first inequality is obtained as follows. We
choose a normal coordinate system so that

8ij =8ijs X,-/JT = A;8ij
/

», > 0. Donaldson’s equation then yields

for some A, ..., A

I<i<n 1!
An elementary inequality shows that
2 2
n n
wox' = 3 Kz = =
1<i<n I<i<n N

We will frequently use the following

Lemma 2.2 (Guan-Li [10]) At any point p € X there exists a holomorphic coordinates
system centered at p such that, at p,

8i; =38ij, 0j8;=0 2.5)

foralli and j. Furthermore, we can assume that )(l.’]T is diagonal.

Let A denote the Laplacian operator associated to the Hermitian metric &; ; whose inverse
matrix is given by

h. X/tZX/kjgke, (26)

and V the associated covariant derivatives.
The basic idea to obtain the second order estimate, following from the method of Yau
[24], is to consider the quantity

Q = log(tr,x") — Ap 2.7
for some suitable constant A. Our first step is to estimate the term A log(tre,x/).
Definition 2.3 For convenience, we say that a term E is of type I if
|Elw S 1, (2.8)
and is of type II if
|Elo S tro X" (2.9)

It is east to see that any uniform constant is of type I and any type I term is of type II. We
will use E and E» to denote a type I and type II term, respectively.
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Donaldson’s equation 871

2.2 The estimate for A log(tr,x")

Direct computation shows
Atryy' Vo x'I?
trox’ (tryx)?

Alog(tryx') = (2.10)

By the definition, we have

Atryx' = h"fa,-a](g"zx,ig)
= hily; (_g"’;g"g 07845 - 17 +8"10; XIQZ)
= 17 [ 0,072 — & tigas - 070 — 878" 07845+ D)
N (_g"‘?gf’g 0igpq - 807845 — 878 18" 18 pi + 03845
+ gtgul; 3}805) X;iz] :

Using the local coordinates in Lemma 2.2, we deduce that

Atrg, ' = Z h“aia;)(;,; - Z hiiaigelg . 8;)(,15

1<i,j<n 1<i,k,f<n
iin o/ ifa oA /
=2 Wbt D0 hig,p - igks xyg
1<i,k,t<n 1<i,k,p<n
iia o iiaga . _ I
> Wi g xp— 2L W X
1<i,k,g<n 1<i,k<n

= > Wi -2Re | D hag-aix |+ B Q21D

1<ik<n 1<i,j,k<n
where

Er= > Wogp-dgg et D, h'oig; %8 g

1<i,j,k<n 1<i,j,k<n

- 2 Wadeg xg

1<i,k<n
Since under the above mentioned local coordinates x i’; = A}, itfollows that i’ = (x" ;)2 =
1/)\22; hence hit < &2F using Remark 2.1. Therefore we see that E is of type II, i.e.,
|Etlo S trox'. (2.12)

The first term on the right hand side of (2.11) can be computed as follows: From Donald-
son’s equation (1.7), we obtain

net’ = tryw = )(/ijgijT
and, after taking the derivative with respect to 7L,

1ib

ndgF - e = ="y Vogx! - gii + x"Vogg;.
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872 Y. Li

Differentiating above equation again with respect to z* yields

ndd;F - et +ndFoF -ef = —X’ibx’“jgijfakagx;]; - X’ibX/ajag‘Xégakgij
- (—x’iqx”’bakx,’,q X g = X" e x g gij) Ix.;
= X" X Tonx! s g7+ x" g
1ib raj 1ib

= —x""X' Y giz005x ;= X" A x; - ggi; + X" 005

- (_X/in/pbakX,/yg X = XXX - g7+ XX Bkgi;) x5

Multiplying above by g*¢ on both sides implies

(AoF + |VF2)ne’ = — Z (hijgkzakazxili_X/ijgkzakazgi])
1<i,jk.t<n '

1<i,j,k.l,a,b<n 1<i,j.k,t,p.g<n

jo g klea 7 ’ rib yraj klo . a7

+ > WMo e~ DL XK s -
1<i,j.k.t,p.g<n 1<i,j.k,t,a,b<n

Using the local coordinates (2.5) we arrive at
(AuF + |VF|}) ne”
== 2 Wadpg 0 xMadgi+ DL W o

1<i.k<n 1<i,k<n 1<i,j,k<n

s /AT ’ / /.T /.T /
+ > iy Y Oxi; kng; — 2 Re > KX ongi; - %X ji

1<i,j,k<n 1<i,j.k=n
Equivalently,
LT ’ T /.T ’ / T /.T / /
2, W= D WixMoogig > K d;
1<ik<n 1<i,j.k<n T 1<ijk<n

—2.Re Z X/iiX/jjakgi/_' . 312)(}{

1<i,jk<n

+ D Aodpg — (AoF + IVF)nef. (2.13)

1<i,k<n
Since
WX = oy (xi7 + ¢i7)
= OOz x;7 + i
= 0O Xi7 + 000

= OO x;; + 0i0; (X,:,; - Xk/é)
= ;07X + (D7 — 895 x47),
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Donaldson’s equation 873

we conclude that
SRy = > o+ D R (00 — wdpxp).  (2.14)
1<ik<n 1<i,k=<n 1<ik<n
Combining (2.13) and (2.14) yields
1<i,k<n 1<i,j,k<n

+ Z h”XU]aka/falzx;f

1<i,j.k=n

—2-Re( > xxMokgg- x| + B2 (215)

1<i,j.k<n
where
Ex= > x"adpgi+ D b (9idxq — %dgxi) — (AuF + [VF2) net.
1<i,k<n 1<i,k<n

2F we observe that E5 is of type I and

By the same reason that X”"T < ef and h"’T <e
|Ealw S 1. (2.16)

From (2.11) and (2.15), we get

1<i,j,k<n 1<i,jk<n

—2Re| D X okg 0

I=<i.j.k=n

—2-Re Z hiialfgj,;ai)(lijv +E|+ E;
1<i,j,k<n
_ Z i X/J] akX;ZaEX,/J + Z hllX/]] akX[/j‘-a]EX;-lT

1<i,j.k=n 1<i,j,k<n

—2-Re| > x’i;x/jfakgjzf’/zx[]

I=<i.j.k=n

—2Re| D hogoi; | + Ea

I<i,j.k=n

since any type I term is also of type II.

2.3 The estimate for Zlog(trw x"), continued: w is Kihler

In the case that w is Kéhler, we in addition have d;g;; = 0 for any i, j, k in Lemma 2.2, and
we deduce from the above equation that

Aoy’ = > h”x’-/'fakx;.;a,;xi’fr > h"fx’ffakxlffa,;xj’.;JrEz. 2.17)

I<i,j.k=n I=<i,j.k=n
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874 Y. Li

It remains to control the term | Vir,, x’ |2 /(tre,x")?. Notice that

0i (trox') = 0 (gkexzi ) 80 Xig= 2 dixgp

1<k<n

As in [17], we first give an inequality for ﬁtrw x |ﬁ /tre,x’ and then we control the term
Re (lei,jgn hiiX/”*/3iX]/.jr(3in; - 3;)(/-;))- From

~ iin. y/ 9./ SRy B!
Vo'l _ 3 PO _ 5 MR TALT:
/ ’ /
X i<igken  TeX 1<j.ki<n o X
1/2 12
1
iijq. .,/ (2 iijq. .,/ |2
=& x' Z Z 1951 Z 10 Xy
P% 1<jk<n \1<izn 1<i<n
172712
1 =
=— R0 x5
2| 20 e
X 1§j§n 1<i<n ]]
17272
l 'y . T
= j il jig. o/ |2
v Z S 20 e
l<]<n 1<1<n
< it 1jig. 4 12 — i rjja 8
< 2 Wi ol > nTx T ax o
1<i,j<n 1<i,j<n

From

0; =0 (X7 +0;7) = x5 +005 = Bxy7— 7+ 0

o _ _ _ a. Ay - a_. 7
;= (ij+<pjj) = O+ 0505 = %x;;— 05X+ 05X
it follows that

|§trw)(/|% hi[’ 1jj 9.y’ v - —8:v.-) (9-y Sy - — -y
— = Z X (le.Jf+ iXi;— inj)( ij;'"‘ iXjj— jXJ'i)

o)’ 1<i,j<n

2

_ ll /j] ll /]] . _

- Z h a/thajxjt—‘r Z h lXJ] anij

1<i,j<n 1<i,j<n
+2-Re| > hnx/uajxlff(a,-.xj;—ajij,-.) . 2.18)
1<i,j<n
Note that

0j X5 =19; (X,»;-Hﬂi;) =0j X+ 0i9;7 =0jX;j — %ixjj+0%ix;; (2.19)
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Donaldson’s equation 875

Substituting (2.19) into (2.18) we obtain

|6ter/|%, o . 2
MHoX Th TV I i)
oy’ = Z R X770 X595 X7 Z h™x

I<i,j=n I<i,j=n

%ixjj — 9ikij

+2-Re Z h”X/j/ain’,jT (8;ijf—3jxj;)

1<i,j<n

< X W2 Re | 3 W0 (97057

I<i,j<n I<i,j=n
(2.20)
Lemma 2.4 If w is Kéhler, then Alog(tryx') > —1.
Proof Calculate, since hiJ = x'JJ y'iJ,
2-Re | D7 W (97— 0x7)
I<i,j<n
=|2-Re | 37 VWG J i (o5 = 0750)
1<i,j<n
Py Py Py 2 2
< Do W e+ D K0 g — 057
1=i.j<n 1=i.j<n
< D WX o+ Er
1<i,j.k<n
= D WXk + Ea (2:21)
1<i,j,k<n

where Ej is a term of type II:
.7 2 2
Ex= > x5 — 050
I<i,j<n

From (2.10), (2.17), (2.20), and (2.21), we have

-~ 1 ey LT i LT
/ i.,jj /_a_/_ _ o /jja. v/ a-/_
Rlogltrox) = o= | 2 Wx oo + B2 = 20 Wx 0505
1<i,j.k<n 1<i,j=<n
1 el P
= 22 2 KU+ B
TwX I<i<n1<j#k<n
1 i 1jj ;|2
= tr / Z z h X ‘akxi;’ +E2
wX I<i<n 1<j#k<n ’
E>
= . (2.22)
try, x’
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876 Y. Li

By the definition of type II terms, there exists a positive universal constant C satisfying
|E2|w < C - try,x’. Therefore

Alog(trex) > —1.
Thus we complete the proof of the lemma. O

Theorem 2.5 Let (X, w) be a compact Kihler manifold of complex dimension n, and x a
Hermitian metric. Let ¢ be a smooth solution of Donaldson’s equation

w/\xg_l = eF)(g

where F is a smooth function on X. Assume that

n—1
w > 0.

Y —
nef

Then there are uniform constants A > 0 and C > 0, depending only on X, w, x, and F,
such that

troxy < C - eAlp—infx o)

Proof Use the local coordinates in Lemma 2.2. The proof is similar to that in [22,23]. By
the definition, one has

Ap =g = "™V — ) = D, K —mx =trpo — iy
1<k<n
Lemma 2.4 and (2.7) imply that
AQ = Alog (trox’) — Ap] = —C — A (tryo —tryx)

>_C—A z X’Z;+A Z Xu'Z'X/iZ'XI_;'

1<i<n 1<i<n

Since ¢ is a solution of Donaldson’s equation, it follows that tr, @ = ne’ by (2.7) and hence,
for any given positive uniform constants A and B (we will chose those constants later),

ROz (Bne™ —C) = (A+B) 3 1T+ 4 > Xy

1<i<n 1<i<n

By the assumption we have y > = (1 + e)w for some suitable number esuchthat) < e <

conclude that

0> (BneF—C)—(A—I—B) Z X/iZ+A Z X/i{X/iZXﬂ
I<i<n I<i<n
> (Bne —C) - e > A

1<i<n 1<i<n
We denote by A; the eigenvalues of x” at point p such that A} < --- < A;l. Hence

0> (BneF ) (A+ B) Z

1<1<n 1<i<n l

/ll

In order to obtain the upper bound for 1} we need the following O
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Donaldson’s equation 877

Lemma 2.6 Let 11, ..., A, be a sequence of positive numbers. Suppose
1 1
Oxloe 2 P 25
1<i<n I<i<n 1
for some a, B > 0andn > 2. If
4 o 4
-<—< (2.23)
n B n—1
holds, then
A < 28 (2.24)
"7 a— /na? — 4B .
for each i.
Proof Note that @ — v/na? — 48 > 0 by (2.23). Since
2 2
Yy (L _ VB ) o
2 \2VB A 4p
it implies that
> (1) ="
Z 2B k) T 4B
The right hand side of the above inequality is nonnegative by (2.23). Consequently,
o VB - na? —4p
2VB A T 4p
and then
a —/na? —4p - VB
2JB Y
Hence we obtain (2.24). m]
To apply Lemma 2.6, we assume
Bne' > C, (2.25)
and set
A+ B AL +e)
a= 248 g Tnet . (2226)
Bnef — C Bnef — C

In the following we will find the explicit formulas for A and B in terms of C such that the
assumption (2.25) and the condition (2.23) are both satisfied.
We choose a real number 7 satisfying

0<n<l. 2.27)
Set
2 4
L , (2.28)
B n—n
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878 Y. Li

where « and B are given in (2.26). If (2.28) was valid, then the condition (2.23) is true.
Equations (2.26) and (2.28) imply

n—1

4
(A+B)? = ——(1+e) (Bne" —C) =
n—n ne

so that

A=0.

P [~ (L) PR

n—n (n — mneF

The above relation can be rewritten as

2 2
[A+(1_2(1+e)(n—1>)3] :[(1_2(1+e>(n—1>) _I}Bz
n—n n—n
A4l 4eam—DC
(n— nyneF

Taking

A= (_1 + W) B (2.29)
n—n

we have A > B and

4(14€)(n—1)C (_1 + 2(1+6)(n—1))
n—n

g _ (n—mnel _C —m-m+2d+e9m-1 (2.30)
(1 B 2(1+e)(n—1))2 _q nef'  —(m—m+U+e)n—-1"
n—r
assuming
n—mn
(1+e¢) > ) (2.31)
n—1

From (2.30) and (2.31) we see that

Bne®  —(n—n+2(1+e)n—1)
C  —m-m+d+emn-1

> 1.

From the assumption 0 < € < n]j wehave 0 <n — (n — 1)(1 +¢€) < 1 and then such a n

always exists. Hence Lemma 2.6 yields

)\"<¢
"Ta—/na? —48

where « and 8 are determined by (2.26), (2.29), and (2.30). Since tr, x' = Z:’z 1 A; ,it follows
that, at p € X, tr,, x’ < C for some uniform constant C and, for any point ¢ € X,

0(q) < Q(p) =log(tryx")(p) — Ap(p) < C — A - infxg.

Equivalently, log(tr,x") < C + A(p — infx ¢).
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Donaldson’s equation 879

2.4 The estimate for Zlog(trw x'), continued: general case

Now we consider the general case that both w and y may not be Kihler. Using Lemma 2.2
we have

Aoy = D hYozoex:+ DL WX 0 + Ea

I=<i.j.k=n I=<i,j.k=n

—2-Re z X“'Tx’ffakgj;a,;xi’j

1<i,j.k<n

—2Re| D hagoi |- (2.32)

1<i,jk<n

As in [17] we deal with the last two terms by using the local coordinates in Lemma 2.2.
Starting from the last term, we calculate

> e = X Wi (ng+ ;)

1<i,j,k<n 1<i,j,k<n
= Z hiialvgﬂ; (3,' Xij + akgoi])
1<i,j,k<n
= z h”al-gj,g (3,' Xi + 3/()(1.’]7 — 8/()(1-/7)
1<i,j.k<n
n _
= z Z h”a;gj,;akxi’j + Eq, (2.33)

i=1 1<j#k<n
where E is a term of type I and is given by

Ei= > h”(’);gj,;(aixk]v—akxi]). (2.34)

I=<i.j.k=n

Taking the real part of (2.33) gives

2-Re Z h""a,-xlij-.a,—.gj,;

1<i,jk<n

=1{2-Re Z Z \/ﬁ X'jjak)(i,f'Vhil_’,/X;j‘»afgle + Ei

I<i<n 1<j#k<n
- - n -
o .
D > WUXMaax D0 DL W rdig + Er
l<i<n 1<j#k<n i1 1<j#k<n

> > W + Ea (2.35)

1<i<n 1<j#k<n

IA

IA
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880 Y. Li

since D1 D1 zk<n hffx;ia;gj,;a,»gk]—. is of type II. Similarly we have

2:Re D0 X" opxons;;

1<i,j.k<n
—|2-Re z Vhii X/iialng’_l_'. /X/iiakgij
1<i,j,k<n
1 .7 .7 1 i s
<5 2 WMo+ Er=5 0 >0 WU oo + B (236)
1<i,j,k<n 1<i,j,k<n
where
Ev=2 > x"og;0e; (2.37)
1<i,j.k<n

is a term of type I.
From (2.32), (2.35), and (2.36), we conclude that

Ruox' = > Wi+ > W o

L

1<i,j.k<n 1<i,j.k<n
n _ _ 1 _ _

_ i, /jj I a i, /jj I a_,,/
Z Z R X0 50k X 57 2 Z h X0 X 50k X, 5 + E2
i=1 1<j#k<n I<i,j.k<n

1 T , o ,

=3 > iy oex 50005 + > ki Hojx/0500; + B2 (2.38)

1<i,j,k<n 1<i,j<n

It remains to control the term ﬁtrw x’ |ﬁ /(try, x))2. As in (2.20) one has

Vtrox I P
J19. v -y’
o X’ = Z h X8 %::95 X7
@ 1<i,j=<n

+2-Re| > h”x’ffaix}](a;-x,j—3;)(,-;) . (2.39)
1<i,j<n

Lemma 2.7 One has Alog(try,x') > —1.

Proof As in the proof of Lemma 2.4 we have

2.Re Z hii)(/iiaix}j (angj‘»—ajf)(j;)

1<i,j<n
_ i3 TP 7 it (a9 a9y
=PoRe| 3 Voo Son (a5 - 5x7)
1<i,j<n
1 LT LT T 2
— Jiy'iig. v 5=y’ ! (W2 |9y - — 9oy -
=5 Z h'ly B,ijaixjjv+2 z ijv(h) 31‘ij 3,'in
1<i,j<n I<i,j<n
1 I P 1 .7 LT
<5 2 WTaxgttEr = 50 20 WX + B2, (2:40)
1<i,j,k<n 1<i,j,k=<n
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where E» is a term of type II and given by

Ex=2 3 x:(")?

1<i,j<n

Combining (2.40) with (2.10), (2.38), and (2.39), we arrive at

2

j X

i //J ii //J
2 Z h 3kX]tale]+ Z h a/thal

1<i,j,k<n 1<i,j<n

T otrex’

E>
trox’

1
- Wi ’“a,x 7K~ 2 > WX o X 0px s + Er | =

1<i,j<n 1<i.jk<n

By the definition of type II terms, there exists a positive uniform constant C satisfying
|Es|w < C - tryx . Therefore

Alog(tr,x") > —C.
This complete the proof. O

By using the similar method as in the proof of Theorem 2.5, we have

Theorem 2.8 Let (X, w) be a compact Hermitian manifold of the complex dimension n, and
Xx another Hermitian metric. Let ¢ be a smooth solution of Donaldson’s equation

a)/\)((:)'_l :eFxg,

where F is a smooth function on X. Assume that

n—1 0
- o > 0.
X nel

Then there are uniform constants A > 0 and C > 0, depending only on X, w, x, and F,
such that

troxy < C - eAlp—infx o)
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