
Avoiding Leakage and Synchronization Attacks through
Enclave-Side Preemption Control ∗

Marcus Völp, Adam Lackorzynski‡, Jérémie Decouchant, Vincent Rahli,
Francisco Rocha, and Paulo Esteves-Verissimo

CritiX Group — Interdisciplinary Center for Security, Reliability and Trust (SnT)
University of Luxembourg, L-2721 Luxembourg

‡ Kernkonzept GmbH and Technische Universität Dresden
01062 Dresden, Germany

<name>.<surname>@uni.lu, adam.lackorzynski@kernkonzept.com

ABSTRACT
Intel SGX is the latest processor architecture promising se-
cure code execution despite large, complex and hence poten-
tially vulnerable legacy operating systems (OSs). However,
two recent works identified vulnerabilities that allow an un-
trusted management OS to extract secret information from
Intel SGX’s enclaves, and to violate their integrity by ex-
ploiting concurrency bugs. In this work, we re-investigate
delayed preemption (DP) in the context of Intel SGX. DP
is a mechanism originally proposed for L4-family microker-
nels as disable-interrupt replacement. Recapitulating ear-
lier results on language-based information-flow security, we
illustrate the construction of leakage-free code for enclaves.
However, as long as adversaries have fine-grained control
over preemption timing, these solutions are impractical from
a performance/complexity perspective. To overcome this,
we resort to delayed preemption, and sketch a software im-
plementation for hypervisors providing enclaves as well as a
hardware extension for systems like SGX. Finally, we illus-
trate how static analyses for SGX may be extended to check
confidentiality of preemption-delaying programs.

CCS Concepts
•Security and privacy → Hardware security imple-
mentation;

Keywords
information-flow, SGX-enclaves, microkernels, preemption

1. INTRODUCTION
∗This work is in part supported by SnT — University of
Luxembourg and Fonds National de la Recherche Luxem-
bourg through PEARL grant FNR/P14/8149128.

To appear in ACM SysTEX ’16, Dec. 12-16, 2016, Trento, Italy
Autor version. DOI: http://dx.doi.org/10.1145/3007788.3007794

Over the last decades, several system architectures ad-
vocated the co-hosting of rich functionality (e.g., provided
by a legacy operating system (OS)) next to security critical
applications. For example, microhypervisor-based systems
provide a limited but more trustworthy execution environ-
ment next to virtualized or para-virtualized legacy OSs [7].

Intel SGX [2] is the latest generation of these solutions.
Rather than relying on a hypervisor, hardware modifica-
tions and a hypervisor-like implementation in microcode al-
low a non necessarily trustworthy management OS to con-
struct execution environments—enclaves—that benefit from
extended security guarantees. To launch an enclave, the
management OS marks a subset of the system memory as
belonging to the enclave. SGX hardware then protects the
confidentiality of stored data, and checks integrity and fresh-
ness. The management OS may retrieve this memory, but
while the enclave exists, it can only return a page with ex-
actly the same content as retrieved. The mechanisms used
to ensure these security guarantees consist in tagging and
encrypting all cachelines of an enclave prior to writing them
back from the processor caches to main memory.

Unfortunately, the current version of SGX fails to imple-
ment this protection in a tamperproof manner as has been
demonstrated in two recent publications: (i) Xu et al. [14]
managed to extract significant amounts of confidential data
(whole images) from enclaves by carefully paging enclaves
to observe their control flow; (ii) Weichbrodt et al. [13] care-
fully controlled the scheduling of enclave threads to trigger
concurrency bugs in enclave-protected applications. Both
attacks come from the fact that SGX allows the manage-
ment OS to preempt the execution of enclaves at arbitrary
points in time. Although the enclave state is encrypted, this
allows the management OS to observe the addresses of ac-
cessed code and data with cacheline granularity, and reveals
some further changes in the enclave state.

To avoid this problem, an obvious solution is to place en-
clave resources under the control of a trustworthy OS. How-
ever, this OS would then have to be tamperproof to enforce
the security of enclaves. In contrast to the functionality re-
quired to create enclaves1, the algorithms governing enclave

1 This work is primarily concerned with enclave resources
being under control of an untrusted management OS. We
therefore do not limit our approach to either hardware en-
clave providers (like SGX) or software solutions like a mi-
crokernel plus Inktag [6], but discuss both variants.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/78371667?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


resource management can become quite complex. Inside the
OS, these algorithms would be part of the trusted comput-
ing base and a worthwhile target for attacks. In this paper,
we investigate how delayed preemption (DP) can help foil
these attacks while maintaining resource control through an
untrusted management OS.

One preliminary remark is that Intel SGX does not guar-
antee the availability of the enclave, or that it will make
progress, unless the management OS is trusted to offer these
guarantees. The extension we propose does not change this
situation.

DP [11] was first proposed in the context of the L4-family
microkernels [8] as a mechanism to replace the disabling
of interrupts in application-level locks and paravirtualized
legacy operating systems. Rather than preempting appli-
cations immediately, the DP mechanism allows applications
to signal to the microkernel that preemptions should be de-
ferred until a point in time when the application has moved
forward from a critical section and is safe to be preempted.
At the same time, the kernel avoids unlimited deferral of in-
terrupt processing by bounding this deferral through a time-
out and by dropping applications that exceed this bound.
The interrupt triggering this timeout cannot be delayed by
the application.

We first focus on protecting data confidentiality, illustrat-
ing the possible though impractical leakage countermeasures
that protect data confidentiality even if attackers have fine-
grained control over preemptions. DP simplifies these coun-
termeasures. Sec. 4 reiterates previous work detailing how
DP can be integrated into security type systems (e.g., ex-
tending Moat [3]). In Sec. 5, we then discuss how DP hinders
the exploitation of concurrency bugs. Sec. 6 discusses DP
implementation concerns.

2. IMPRACTICALITY OF LEAKAGE
COUNTERMEASURES IN ARBITRA-
RILY PREEMPTIBLE SYSTEMS

Temporarily storing secret information in observable sys-
tem state, can prove dangerous, if adversaries have fine-
grained control over preemption timing of enclave applica-
tion code. As illustrated by Xu et al. [14], adversaries would
then be able to widen the window of vulnerability during
which a sensitive application state may be observed. Re-
capitulating known results on language-based information-
flow security, we show that whilst it is in principle possible
to construct leakage-free programs in systems with SGX,
it is practically infeasible for performance and complexity
reasons. We argue that if adversaries may observe the ad-
dresses of code and data memory accesses over extended pe-
riods in time by controlling preemptions, then no such access
must be secrecy-dependent. Indeed, variations in access pat-
terns would be reflected in variations of possibly observable
state, which contradicts non-interference [5]. Any secrecy-
dependent computation must therefore be casted into pub-
licly observable pieces of code and executed in memory that
is not externally observable (i.e., registers or scratchpad
memory).

Let us illustrate this point with the help of AES and
Osvik’s countermeasure against cache side-channel attacks
[10], which we recall in the following.

Table-based implementations of AES (e.g., the Linux im-
plementation, which is based on code from Brian Gladman)

use eight tables T0, . . . , T3, T
(fin)
0 , . . . , T

(fin)
3 , each storing in

memory 256 4-byte words to record combinations of the al-
gebraic functions ShiftRows, MixColumns2, and SubBytes,
the Rijndael S-Box. Given input x, AES proceeds at round
(r + 1) by computing the state x(r+1) by xor-ing the results
of looking up these tables at locations determined by the
state of the previous round x(r) and by xor-ing these values
with the round keys K(r+1), which are expanded from the

key k. The ith byte of the initial state x(0) is x
(0)
i = pi ⊕ ki,

where pi is the ith byte the 16-byte plaintext block currently
processed and ki the ith byte of the secret key. The state of
the first n− 1 rounds is computed as:

(x
(r+1)
0 , x

(r+1)
1 , x

(r+1)
2 , x

(r+1)
3 )

← T0[x
(r)
0 ]⊕ T1[x

(r)
5 ]⊕ T2[x

(r)
10 ]⊕ T3[x

(r)
15 ]⊕K

(r+1)
0

(x
(r+1)
4 , x

(r+1)
5 , x

(r+1)
6 , x

(r+1)
7 )

← T0[x
(r)
4 ]⊕ T1[x

(r)
9 ]⊕ T2[x

(r)
14 ]⊕ T3[x

(r)
3 ]⊕K

(r+1)
1

(x
(r+1)
8 , x

(r+1)
9 , x

(r+1)
10 , x

(r+1)
11 )

← T0[x
(r)
8 ]⊕ T1[x

(r)
13 ]⊕ T2[x

(r)
2 ]⊕ T3[x

(r)
7 ]⊕K

(r+1)
2

(x
(r+1)
12 , x

(r+1)
13 , x

(r+1)
14 , x

(r+1)
15 )

← T0[x
(r)
12 ]⊕ T1[x

(r)
1 ]⊕ T2[x

(r)
6 ]⊕ T3[x

(r)
11 ]⊕K

(r+1)
3

Finally, the algorithm produces the ciphertext in the last

round by replacing Ti with T
(fin)
i .

By observing the access timing of cachelines that map to
the same set as the tables, adversaries may learn which por-
tions of the table have been accessed and hence what the
secret key must be. To prevent this attack, Osvik proposes
to mask key-dependent accesses by touching the entire ta-
ble in cacheline-wide strides so that the adversary cannot
distinguish between key-dependent and countermeasure ac-
cesses. However, with tools such as AsyncShock, adversaries
may find and preempt the application after a key-dependent
access has been performed but before the cleanup could pro-
ceed and probe the cache to extract key information. Sim-
ilarly, if the table is loaded first, adversaries may preempt
the application after this cleanup, evict all cachelines and
then observe a key-based access.

The AES example illustrates a situation where confiden-
tial information is temporarily stored in parts of externally
observable system state, whether or not cachelines are al-
located. It also shows an example of a countermeasure to
repair this temporary exposure to information leakage and
how fine-grained preemption control can be used to circum-
vent this countermeasure. We therefore have to conclude
that no secret information must be stored in the data ac-
cesses to the memory subsystem if the addresses of these
accesses depend on secret information.

One may attempt to convert the secrecy-dependent data
access into a secrecy-dependent control flow, e.g., by access-
ing all entries of the table, discarding those that are not re-
quired for the round (i.e., all indexes that do not match any

of the state bytes x
(r)
i of the current round r). However, this

may reveal confidential information in the program timing
and in the control flow the program takes. In 2000, Johan
Agat [1] showed that cross-copying and similar mitigation
techniques can transform out timing leaks. Cross-copying
consists in inserting the code of branches of secrecy depen-
dent code paths into the respective other path, replacing the
original instructions with dummies to ensure both branches

2Omitted in T
(fin)
i



0 mov t_val[0][0] -> R1
1 mov t_val[0][1] -> R2
2 mov t_val[0][2] -> R3
3 mov t_val[0][3] -> R4
4 for (idx = 0, ..., 256)
5 mov T0[idx] -> R0
6 cmp idx, x0(r)
7 cmov R0, R1
8 cmp idx, x4(r)
9 cmov R0, R2
10 cmp idx, x8(r)
11 cmov R0, R3
12 cmp idx, x12(r)
13 cmov R0, R4
14 mov R1 -> t_val[0][0]
15 mov R2 -> t_val[0][1]
16 mov R3 -> t_val[0][2]
17 mov R4 -> t_val[0][3]
18 ...
19 // similar for T1 ... T3
20 // compute round withextracted table values

Figure 1: Merge of Osvik’s countermeasure in the
AES subBytes function through conditional moves.

have the same duration. Mantel and Starostin [9] empir-
ically study how well cross-copying and other mitigation
strategies reduce side-channel capacity in an uncontrolled
setting. The performance overhead of these strategies is
significant (up to 125% for cross-copying and 75% for con-
ditional assignment). However, with SGX and assuming ac-
cess to the binary code is possible, an adversary may observe
the addresses of instruction fetches and decode the instruc-
tions, as was demonstrated by Xu et al. [14]. The applica-
tion in the enclave must therefore both equalize the timing
and do this with instructions that are executed irrespective
of secret values to avoid leaking confidential information3.
In the following, we show one possible, though complex so-
lution, which ensures data confidentiality without delayed
preemption. After that, we illustrate the simplicity of Os-
vik’s countermeasure with DP.

The pseudocode in Fig. 1 sketches our solution, which
merges Osvik’s countermeasure into the AES code without
reverting to temporarily storing secrets and without induc-
ing secrecy-dependent control flows. We assume a register
limited machine. Hence the extraction of table values into
the buffer t_val in Lines 14–17. The main part of the coun-
termeasure are the conditional moves in Line 7, 9, 11, and 13.
cmov is not guaranteed to access memory if the condition is
not satisfied. Hence, register-to-register moves must be used
to update the registers buffering the extracted table values.
The reads of previous values in Lines 0–3 are not required
for this example because in each round all four values will be
updated. We include these accesses to show the general pat-
tern: load, register update using a secrecy-dependent condi-
tional move; unconditional store. Compared to 20 memory
accesses per table (4 + 16 for the cacheline-stride accesses in
case of 64 byte wide cachelines), a single round now requires
256 memory loads per table. Although the pseudocode in
Fig. 1 shows that it is possible to construct leakage free code,
even if adversaries have fine-grained control over preemp-
tions, its costs and complexity are significant, as can be seen
when comparing it with the complete AES round in Fig. 2.

3SGX2 reveals only the page-granular addresses. However,
because adversaries may probe cache timings, the code of
both branches of a secrecy dependent conditional must be
located in the same cachline.

1 start_delay_preemptions()
2 if (!prepare()) goto 1
3 if (is_preemption_pending())
4 stop_delaying_preemptions()
5 yield()
6 goto 1
7 compute AES round
8 access tables in cacheline stride
9 stop_delaying_preemptions()
10 if (is_preemption_pending())
11 yield()

Figure 2: Osvik’s countermeasure in AES with de-
layed preemption

Delayed preemption shields temporarily insecure state from
observation until the cleanup procedure completes. In the
following, we discuss the security properties of this code,
which crucially depend on the non-sensitive but sensitive
code specific prepare phase executing without preemption,
both solicited and unsolicited, to create a state from which
it is safe to execute the confidentiality sensitive parts (the
AES round and Osvik’s countermeasure). Like AES, which
proceeds in sensitive rounds, we assume applications to pro-
cess confidential data in similar sequences of small sensi-
tive sections, interleaved with insensitive code. DP protects
these small sections and the leakage countermeasures that
re-establish safe-to-observe states.

3. DELAYED-PREEMPTION BASED
LEAKAGE COUNTERMEASURES

The control flow of an application can be preempted in
two ways: (i) solicited preemptions are triggered by the ap-
plication executing an operation (e.g., a memory operation
with insufficient privileges or a system call) that causes the
processor to transition control to the operating system. The
operating system in turn handles the cause of the preemp-
tion and returns to the application (e.g., after resolving the
page fault) or schedules another application (e.g., in case
of a blocking system call); and (ii) unsolicited preemptions
occur as a result of device interrupts, inter-processor inter-
rupts or timeouts programmed by the operating system for
scheduling purposes. DP defers involuntary preemptions of
the latter class but detects also solicited preemptions.

The user interface of DP consists of two flags: the user-
writable delay flag (d) and the read-only preemption-pending
flag (p). In addition, the management OS can configure a
timeout value by setting the maximum delay, which limits
how long the current application can defer preemptions and
which is readable by the application.

To start delaying preemptions, the application in the en-
clave sets the d-flag. As long as the d-flag is set, all preemp-
tions (solicited and unsolicited) will set the p-flag to indicate
that a preemption is pending. More precisely, if an interrupt
is signaled while the d-flag is set, the DP mechanism defers
the handling of this interrupt and sets the p-flag to indicate
a pending preemption. It then starts a timer to time out lat-
est maximum delay after the first interrupt was signaled in
the current delay phase and continues executing the applica-
tion. Similarly, if the application returns control to the OS
while the d-flag is set (e.g., through a page-fault exception),
the p-flag is set to indicate this solicited preemption.

For performance reasons, the application is then encour-
aged to return control to the OS as soon as possible. It can
do so by checking the preemption pending flag and yield-



ing to the OS, which resets the timer and allows the OS
to process the pending preemptions. However, to prevent a
malicious or erroneous application in an enclave from mo-
nopolizing the system by never yielding control back to the
management OS, the timer will fire at the latest maximum
delay after the first preemption signal.

The key insight why DP helps preventing information
leakage is in the detection of solicited preemptions and in
the deferral of all unsolicited preemptions.

3.1 Avoiding Solicited Preemptions in
Sensitive Code

Sec. 2 and the attack by Xu et al. [14] have already shown
that page-faults and other solicited exits carry sensitive in-
formation about the program. Our approach is therefore
to preload the translation lookaside buffers (TLBs), which
cache virtual to physical access rights, to prevent page-faults
from happening during sensitive code. That is, in the prepa-
ration phase, we execute insensitive code that is located in
the same memory pages as the sensitive code and read re-
spectively write (without changing the content) all pages
that the sensitive code will write to. The important point
is that the patterns in which these accesses are performed
reveal no confidential information. If necessary, more pages
are accessed to mask secret dependent page access.

Now obviously, if this preparation code is preempted, the
operating system on the same core as the enclave may change
privileges in the page tables and flush TLBs to counteract
this protective measure. We therefore have to execute the
preparation code non-preemptively using the DP mechanism
and restart the entire preparation phase in case a preemp-
tion (solicited or unsolicited) has happened. Also, we have
to ensure that no self eviction occurs because then the prepa-
ration phase or later the sensitive code could evict a transla-
tion from the TLB that will later on be required. Notice that
this countermeasure is multiprocessor safe because although
the OS instances on other cores may modify the page ta-
bles, a core-local preemption is required to shoot down TLB
entries. But DP defers this preemption like all other pre-
emptions (with the exception of the DP limiting timeout).

Also, we have to make sure that the DP timeout does
not fire during the execution of sensitive code. For this rea-
son, the preparation phase has to check whether the timeout
value for the core is larger than the worst-case execution time
of the preparation phase (assuming all checks succeed) plus
the worst-case execution time of the sensitive code. More-
over, we have to require that the DP timeout value maxi-
mum delay can only be modified by the management OS on
the same core as the enclave (i.e., that maximum delay is a
local resource like the TLB).

3.2 Architecture Specifics
In addition to the above checks, specific characteristics of

the processor architecture may require further checks in the
preparation phase and additional properties. Examples of
these include:
FPU: in case the sensitive code makes use of FPUs or other
accelerators that the management OS switches lazily, the
preparation code must access these devices to trigger the
switch during the preparation phase.
Power Management: if the processor allows cross-core
power adjustments, the WCET must be a safe upper bound
in all power modes. If only local power adjustments are

possible, revealing the power state and checking for a power-
state dependent timeout value suffices.
Shared Caches: in case deeper cache levels are shared be-
tween cores, the enclave provider must ensure that no infor-
mation is leaked to other cores by observing the allocation in
shared caches. Software enclave providers can achieve this
through cache coloring or way-locking.
Device Virtualization: a fundamental requirement for
our approach to work is that the p-flag is not virtualizable.
Otherwise, the management OS would be able to conceal so-
licited and unsolicited preemptions by virtualizing the DP
mechanism. In case the sensitive code needs to access de-
vices, the preparation phase must perform a benign access as
well to check whether the access is virtualized (by observing
that the p-flag is set upon VM exit).

4. ATTESTING INFORMATION-FLOW
SECURITY

For users to believe in the secure execution of an appli-
cation inside an enclave, the enclave provider has to prove
that it is correctly setup and that it actually runs the de-
sired code. The enclave must also ensure that it correctly
implements the necessary leakage countermeasures. Only
then will users entrust secrets to the enclave and use it for
remote processing.

The first two concerns are taken care of by the dynamic
root of trust infrastructure built into SGX, respectively by
similar secure and authenticated boot schemes of hypervisor-
based solutions, which extend these schemes to applications
inside enclaves [4]. Although Moat [3] is one approach to
address the latter issue, it does not address side-channel
attacks.

In 2008, Völp [12] introduced a security type system to
check shared-memory programs, which in the following we
call SHM. We sketch the basic ideas behind SHM and our
future plans for extending Moat to attest confidentiality de-
spite cache side-channels. For a more formal treatment, the
interested reader is referred to [12].

Like Moat, SHM considers the effect of active adversaries
by interleaving adversarial actions in between any two atomic
operations of the enclave. Adversaries non-deterministically
modify all state they share with the enclave, a modification
that Moat calls havocing this non-enclave memory. As is
common for security type systems, SHM abstracts from con-
crete values, keeping only security relevant information (e.g.,
the labels H and L for secret and public information). Both
Moat and SHM verify that successfully checked programs
never reveal secret information to the management OS, al-
though SHM does not support SGX. Unlike Moat, SHM
considers locks and shared objects. That is, while holding
the corresponding lock, an application may store secret in-
formation in a shared object, provided all entities that share
this object are trusted to adhere to the locking policy (i.e.,
they will not access the object without holding the lock)
and provided the application removes the secret informa-
tion prior to releasing the lock. SHM further supports col-
laboration between enclaves by recording which information
enclaves may have learned from previous accesses to shared
objects. In particular, it considers untrusted applications in
enclaves, which attempt to reveal this information through
the checked enclave. Unfortunately, the isolation provided
by SGX is not sufficient to tolerate completely untrusted



…
mov Ti[xj

(r)], R0
…
mov Ti[0], R0 
…

source code

…
mov Ti[xj

(r)], R0
cacheline(Ti[xj

(r)]) = alloc
…
mov Ti[0], R0
cacheline(Ti[0]) = alloc
…

Ti

cache

Ti

cache

: H

: L

: H

: L

: L

intermediate 
representation

labels

havoc

havoc

havoc

Figure 3: Integration of side-channel effects and as-
signment of dynamic types

applications. Instead, we have to require for SGX that no
application inside an enclave reveals secret information to
the management OS. Hypervisor-based implementations are
able to tolerate untrusted enclaves.

The type system is applicable to check programs that use
the DP mechanism to protect information. Like a lock, de-
laying preemptions prevents other applications from running
on the same core and thus restricts which part of the sys-
tem state is visible to the adversary. Only if the checked
program does not delay preemptions can an adversary see
the complete state.

Fig. 3 illustrates our approach on the example of Osvik’s
AES countermeasure. To consider the effect of side chan-
nels, we transform the source code of the enclave program
into an intermediate representation where side channels are
made explicit. In this example, cacheline(a) = alloc de-
notes that the cacheline corresponding to address a is allo-
cated. Since, during the analysis, we do not know the exact

value of the AES state x
(r)
i and hence the address accessed

(the black dot), we transform it into a non-deterministic
assignment to any location in the table. Because the ad-
dress is a secret value (derived from the secret key), the
type system changes the labels of the ghost variables, which
we use to keep track of the table’s cache allocation state,
to H. Would the program be preemptible at this point in
time (which implies that the cache allocation state would be
observable), the type system rejects the program when eval-
uating the middle havoc operation. It detects part of the
cache state to potentially contain secret information. The
subsequent table accesses in cacheline stride (shown in Fig. 3
is the first at offset 0) remove any secret information from
the table’s cache state (shown is the first cacheline as white
rectangle). In the intermediate language, this cacheline al-
location is an assignment to a constant address, executed
in a public branch of the program, which assigns a constant
value. Hence, the security type system assigns the label L to
the cacheline ghost. DP ensures that the cache state is not
accessible before Osvik’s countermeasure has removed all se-
crets. The havoc operation is therefore restricted to those
parts of the system state that can be observed respectively
modified remotely by other cores. Yielding, respectively the
delay aborting timeout makes these variables visible again.

5. CONCURRENCY BUGS
We now turn to the exploitation of concurrency bugs for

the purpose of violating enclave integrity as demonstrated by
Weichbrodt et al. [13]. The attack proceeded by widening
the window of vulnerability during which race conditions

thread_1:
1 start_delay_preemptions()
2 free(pointer);
3 pointer = NULL;
4 stop_delaying_preemptions()
5 if (is_preemption_pending())
6 yield()

thread_2:
7 if (pointer) use object;

Figure 4: use-after-free concurrency bug

lead to wrong synchronization behavior.
Naturally, DP cannot repair broken synchronization prim-

itives. However, running critical sections under DP protec-
tion helps preventing the exploitation of these bugs. We
illustrate this on the example of the use-after-free concur-
rency bug from [13], which we depict in Fig. 4. Thread 1
deallocates a pointer in Line 2 but sets it to NULL only in
Line 3 to inform the other thread that the object has been
deallocated. Consequently, if thread 2 preempts thread 1
in between Line 2 and 3, it would use a deallocated object.
With DP, the bug does not vanish as it is still possible for
thread 2 executing on a different core to use the object if its
check interleaves between Line 2 and 3 of the first thread.
However, DP ensures that this window of vulnerability can-
not be extended to increase the change of thread 2 hitting
this spot. Similar to the example above, DP can help cre-
ate atomicity wrt. local threads and it may help prevent
well known ABA problems (e.g., due to counter overflows)
in wait-free synchronization primivites by executing them
non-preemptively.

6. IMPLEMENTATION
In this section, we discuss the specifics of implement-

ing DP in a software hypervisor and in SGX-like hardware.
Common to both is the communication of the intend to delay
using the d-flag, the signalling of solicited and pending un-
solicited preemptions with the p-flag and the programming
of the timeout to maximum delay once the first preemption
is signalled after the d-flag is set.

6.1 Hypervisor-Based Implementation
Let us first consider a software-based implementation of

delayed preemption using a trustworthy, enclave-providing
hypervisor, which runs the main untrusted management OS.

Before entering preemption-sensitive code, the application
in the enclave sets the d-flag to indicate that from now on
preemptions should be delayed. One option to implement
DP would be to introduce a hypervisor call that disables all
interrupts except for the timer interrupt, which it program
to fire after maximum delay. However, this involve a poten-
tially costly hypervisor entry and exit every time DP is used.
To avoid this overhead, Uhlig et al. [11] proposed locating
the d- and p-flag in a per thread user-kernel shared memory
location and deferring the detection until the first interrupt
(or solicited preemption occurs). In this case, the kernel will
catch the preemption signalling interrupt and perform the
above operations (i.e., program the timer, disable all other
interrupts and set the p-flag), but it will defer the processing
of the interrupt until the application returns.

There are several architecture-dependent ways to disable
all interrupts with the exception of the timer. If supported
by the processor, the hypervisor could mask all interrupts
while programming the timer to occur as non-maskable in-



terrupt, as fast IRQ (which on ARM processors can be dis-
abled separately from normal interrupts), or as an otherwise
higher prioritized interrupt. For the latter, the hypervisor
may raise the interrupt acceptance priority (e.g., by pro-
gramming the x86 APIC task priority register) to a level
larger than all normal device interrupts and IPIs but lower
than that of the timer. In case the processor architecture
supports none of these options, the hypervisor has to mask
all interrupts individually or record all deferred preemptions
for later processing.

In addition, the hypervisor must record all solicited pre-
emptions (e.g., the exception, which reflects enclave page
faults to the management OS) by setting the p-flag.

6.2 Hardware-Based Implementation
Like a software implementation, a hardware-based imple-

mentation has to ensure that neither the application in the
enclave has to trust the management OS (to avoid informa-
tion leakage) nor the management OS to trust the applica-
tion (to not monopolize the system), but without relying on
a hypervisor to context switch DP state.

We propose to integrate the DP mechanism into the per-
processor interrupt controller (e.g., the x86 APIC) and to
augment the enclave entry and exit code to handle solicited
preemptions. As interface, a register suggests itself (e.g., a
machine specific register) with op-code aliases for accessing
the d- and p-flag at user level. However, there are some intri-
cate details that must be observed to prevent the untrusted
management OS from tricking enclave applications into ex-
ecuting preemption sensitive code while being preemptable.

Both the d- and p-flag must be writeable by the appli-
cation, but not the maximum tolerable delay value, which
determines when the timeout fires. Otherwise, if the timeout
can be changed by the application in the enclave, it can mo-
nopolize the system by setting this timeout to a large value,
in particular if this modification becomes effective immedi-
ately. Moreover, as illustrated above in Sec. 3.1 and 3.2,
maximum delay must be writable only locally by the man-
agement OS on the same core as the enclave and the DP
register must not be virtualizable.

In addition to the above interface constraints, enclave exit
must be adjusted to set the p-flag on enclave exits (i.e., so-
licited preemptions) if the d-flag is set. Otherwise, the ap-
plication in the enclave cannot detect solicited preemptions
during the preparation phase. This requires that the p-flag
is stored and reloaded as part of the enclave-to-management
OS context switch. Otherwise, the managment OS could re-
set this flag upon solicited preemptions during the prepara-
tion phase (by itself or, if restricted to enclave mode, through
a compromised enclave) and return to the sensitive phase af-
ter negating the protective steps.

The yield to the management OS (e.g., in Line 5 of Fig. 2)
is not necessary because the preemption signal is directly
masked in the interrupt controller before causing a poten-
tially costly kernel entry. Moreover, because the p-flag is lo-
cated in a device register, the interrupt controller can check
pending interrupts when this flag is reset and inject them to
the management OS when this flag is cleared. At this time,
it may also reset the maximum delay timeout to avoid costly
interruption at a later point in time.

7. CONCLUSIONS
In this paper, we have demonstrated how delayed pre-

emption simplifies the implementation of leakage-free code
in systems such as SGX that grant adversaries fine-grained
control over preemptions. Our hardware implementation
of SGX allows applications to implement efficient leakage-
preventing countermeasures and the sketched security type
system allows proving these countermeasues secure. Our
approach is currently limited to core local state only. Di-
rections of future work include further extensions to prevent
cross-core side channel attacks and merging Moat with our
type system SHM.

8. REFERENCES
[1] J. Agat. Transforming out timing leaks. In M. N.

Wegman and T. W. Reps, editors, POPL 2000, pages
40–53. ACM, 2000.

[2] V. Costan and S. Devadas. Intel SGX explained. MIT -
Techreport, 2016. https://eprint.iacr.org/2016/086.pdf
(Accessed: 2016-07-22).

[3] J. S. Denker, S. M. Bellovin, H. Daniel, N. L. Mintz,
T. Killian, and M. Plotnick. Moat: a virtual private
network appliance and services platform. pages
251–260, 1999.

[4] P. England and J. Loeser. Para-Virtualized TPM
Sharing, pages 119–132. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008.

[5] J. A. Goguen and J. Meseguer. Security policies and
security models. In Symposium on Security and
Privacy, pages 11–20, Oakland, CA, USA, 1982. IEEE.

[6] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and
E. Witchel. Inktag: Secure applications on an
untrusted operating system. In ASPLOS, 2013.

[7] M. Hohmuth, M. Peter, H. Härtig, and J. S. Shapiro.
Reducing TCB size by using untrusted components:
Small kernels versus virtual-machine monitors. In
Proceedings of the 11th ACM SIGOPS European
Workshop, EW 11, New York, NY, USA, 2004. ACM.

[8] J. Liedtke. On micro-kernel construction. In
Proceedings of the 15th ACM Symposium on Operating
System Principles, pages 237–250, 1995.

[9] H. Mantel and A. Starostin. Transforming out timing
leaks, more or less. In ESORICS 2015, pages 447–467,
2015.

[10] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks
and countermeasures: the case of AES. IACR
Cryptology ePrint Archive, 2005:271, 2005.

[11] V. Uhlig, J. LeVasseur, E. Skoglund, and
U. Dannowski. Towards scalable multiprocessor
virtual machines. In Proceedings of the 3rd Conference
on Virtual Machine Research And Technology
Symposium - Volume 3, VM’04, pages 4–4, Berkeley,
CA, USA, 2004. USENIX Association.

[12] M. Völp. Statically checking confidentiality of shared
memory programs with dynamic labels. In ARES
2008, pages 268–275. IEEE Computer Society, 2008.

[13] N. Weichbrodt, A. Kurmus, P. Pietzuch, and
R. Kapitza. Asyncshock: Exploting synchronisation
bugs in intel SGX enclaves. In ESORICS, 2016.

[14] Y. Xu, W. Cui, and M. Peinado. Controlled-channel
attacks: Deterministic side channels for untrusted
operating systems. In IEEE Symposium on Security
and Privacy, pages 640–656, 2015.


	Introduction
	Impracticality of Leakage Countermeasures in Arbitra-rily Preemptible Systems
	Delayed-Preemption Based Leakage Countermeasures
	Avoiding Solicited Preemptions in Sensitive Code
	Architecture Specifics

	Attesting Information-Flow Security
	Concurrency Bugs
	Implementation
	Hypervisor-Based Implementation
	Hardware-Based Implementation

	Conclusions
	References

